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Abstract
The entropic doubling 𝜎ent[X] of a random variable X tak-

ing values in an abelian group G is a variant of the notion

of the doubling constant 𝜎[A] of a finite subset A of G, but

it enjoys somewhat better properties; for instance, it con-

tracts upon applying a homomorphism. In this paper we

develop further the theory of entropic doubling and give

various applications, including: (1) A new proof of a result

of Pálvölgyi and Zhelezov on the “skew dimension” of sub-

sets of ZD with small doubling; (2) A new proof, and an

improvement, of a result of the second author on the dimen-

sion of subsets of ZD with small doubling; (3) A proof that

the Polynomial Freiman–Ruzsa conjecture over F2 implies

the (weak) Polynomial Freiman–Ruzsa conjecture over Z.
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1 INTRODUCTION AND STATEMENT OF RESULTS

Notation. Throughout the paper we use standard asymptotic notation. The notations X = O(Y), X ≪ Y ,

or Y ≫ X all denote the bound |X| ≤ CY for an absolute constant C. Different instances of the notation

may imply different constants C.

1.1 Entropy doubling and Ruzsa distance

Let G = (G,+) be an abelian group. In this paper, by a “G-valued random variable” we mean a random

variable X taking values in a finite subset of G. Given such a variable, the entropic doubling constant
(first introduced in [20]) 𝜎ent[X] is defined by the formula

𝜎ent[X] ∶= exp (H(X1 + X2) − H(X)) ,
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2 GREEN ET AL.

where X1,X2 are independent copies of X. Here, H(X) denotes the Shannon entropy of X, the definition

and basic properties of which we review in Appendix A.

If A ⊆ G is a finite non-empty set, by abuse of notation we write 𝜎ent[A] = 𝜎ent[UA], where UA is

a uniform random variable drawn from A. For instance, if H is a finite subgroup of G, one can check

that 𝜎ent[H] = 1.

The entropic doubling constant is related to other standard measures of additive structure via

the inequalities |A|3
E[A]

≤ 𝜎ent[A] ≤ 𝜎[A]. (1.1)

Here, 𝜎[A] ∶= |A+A||A| is the doubling constant of A and

E[A] ∶= |{(a1, a2, a3, a4) ∈ A4 ∶ a1 + a2 = a3 + a4}|
is the additive energy of A.

The second inequality in (1.1) was noted in [20, eq. 10], and we recall the proof in Appendix B.

The first inequality seems not to have appeared explicitly in the literature, but it follows easily either

by a direct argument using the weighted AM–GM inequality, or by quoting the monotonicity of Rényi

entropy. For completeness, we give this argument in Appendix B. Both inequalities can be far from

tight: we give an example in Appendix B.

1.1.1 Entropic Ruzsa distance

If X, Y are G-valued random variables (not necessarily independent, or even defined on the same

sample space), then we define the entropic Ruzsa distance 𝑑ent(X, Y) between these variables by

the formula

𝑑ent(X, Y) ∶= H(X′ − Y ′) − 1

2
H(X′) − 1

2
H(Y ′), (1.2)

where X′, Y ′ are independent copies of X, Y respectively. This concept, introduced by Ruzsa [16] and

studied in more detail by the third author [20], generalizes entropic doubling, since 𝜎ent[X] = e𝑑ent(X,−X).

It is easy to see that 𝑑ent(X, Y) = 𝑑ent(Y ,X) ≥ 0, and also that 𝑑ent(UH ,UH) = 0 for any finite

subgroup H of G. Note that 𝑑ent(X, Y) depends only on the distributions

pX(x) ∶= P(X = x); pY (y) ∶= P(Y = y)

of X, Y . We have (see the final paragraph of [16], [20, theorem 1.10], or Lemma 1.1 below) the entropic
Ruzsa triangle inequality

𝑑ent(X, Z) ≤ 𝑑ent(X, Y) + 𝑑ent(Y , Z) (1.3)

for any three G-valued random variables X, Y , Z.

Remark. It is somewhat traditional to use the letter K for the combinatorial doubling con-

stant 𝜎[A]. We will generally use the letter k for distances 𝑑ent(X, Y). Where these arise

from sets (for instance if X = Y = UA) one should informally think of k being on the order

of log K. It should be carefully noted that k may take values in [0,∞) and is not constrained

to be an integer.
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GREEN ET AL. 3

It will be technically convenient to introduce a small modification of the entropic Ruzsa distance.

Define the maximal entropic Ruzsa distance 𝑑∗
ent(X, Y) to be the quantity

𝑑∗
ent(X, Y) ∶= sup

X′,Y ′

(
H(X′ − Y ′) − 1

2
H(X′) − 1

2
H(Y ′)

)
(1.4)

where X′, Y ′ range over all pairs of random variables with marginal distributions pX , pY respectively

(i.e., all couplings of X and Y). In particular, X′, Y ′ are not required to be independent.

We have the following observations.

Lemma 1.1. Let X, Y , Z be G-valued random variables. Then:

(i) We have 𝑑∗
ent(X, Z) ≤ 𝑑ent(X, Y) + 𝑑ent(Y , Z).

(ii) We have 𝑑ent(X, Y) ≤ 𝑑∗
ent(X, Y) ≤ 3𝑑ent(X, Y).

For the proof, see Section 2.

1.1.2 Small Ruzsa distance

We turn now to our first main result, which gives a closer connection than (1.1) between small entropy

doubling (or more generally small Ruzsa distance) and small doubling. Here, for a real parameter

p ∈ (0, 1), we write h(p) ∶= p log
1

p
+ (1− p) log

1

1−p
for the entropy of the Bernouilli random variable

with probability p.

Proposition 1.2. Let C ≥ 4 be a real parameter. For any G-valued random variables X, Y
there is a non-empty finite subset S of G such that, if US is a uniform random variable on
S, then

𝑑∗
ent(US, Y) ≤ (C + 2)𝑑ent(X, Y) + h

(
1 − 2

C

)
(1.5)

and

log
|S − S||S| ≤ (2C + 4)𝑑ent(X, Y) + 2h

(
1 − 2

C

)
. (1.6)

We isolate two special cases of this proposition for future use:

(i) If we take C = 4 in the above proposition, then (using, in addition, Lemma 1.1 (ii)) we obtain

the bounds 𝑑ent(US, Y) ≤ 6𝑑ent(X, Y) + log 2 and |S − S| ≤ 4e12𝑑ent(X,Y)|S|.
(ii) If 𝑑ent(X, Y) = 𝜀 for some 0 < 𝜀 ≤

1

16
, then on taking C ∶= 𝜀−1∕2 we obtain the bounds

𝑑ent(US, Y) ≪ 𝜀1∕2 log
1

𝜀
and |S − S| ≤ (

1 + O(𝜀1∕2 log
1

𝜀
)
) |S|.

We also remark that a qualitative version of this proposition (with unspecified dependence on

𝑑ent(X, Y) on the right-hand side) was previously established in [20, proposition 5.2].

In the regime where 𝑑ent(X, Y) is small, we can in fact obtain the following more precise result.

Proposition 1.3. There is absolute constant 𝜀0 > 0 such that the following is true. Let
X, Y be G-valued random variables, and suppose that 𝑑ent(X, Y) ≤ 𝜀0. Then there is some
finite subgroup H of G such that 𝑑ent(X,UH), 𝑑ent(Y ,UH) ≤ 12𝑑ent(X, Y).

Remark. The constant 𝜀0 could be specified explicitly if desired, but we have not car-

ried out such a calculation. The constant 12 can be improved, but we will not attempt to

optimise it here.
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4 GREEN ET AL.

1.1.3 Behaviour under homomorphisms

Given the close relation between notions of entropy doubling and Ruzsa distance and the usual

combinatorial notions, one would be forgiven for wondering what the point of introducing

the former is.

The answer is that the entropy notions are more flexible and behave better in various ways. Most

obviously, they are defined for arbitrary random variables X, with no requirement that X be uniform

on a set. Related to this is the fact that the entropy notions behave well under homomorphisms in a

way that the combinatorial notions do not.

The following is our main result in this direction. Here (and below) we use (X|E) to denote a random

variable X conditioned to a positive probability event E. We adopt the convention that expressions such

as pY1
(y1)pY2

(y2)𝑑ent ((X1|Y1 = y1), (X2|Y2 = y2)) vanish if one of the events Y1 = y1, Y2 = y2 occurs

with zero probability.

Proposition 1.4. Let 𝜋 ∶ G → H be a homomorphism, let X1,X2 be G-valued random
variables, and set Y1 ∶= 𝜋(X1) and Y2 ∶= 𝜋(X2). Then we have

𝑑ent(X1,X2) ≥ 𝑑ent(Y1, Y2)

+
∑

y1,y2∈H
pY1

(y1)pY2
(y2)𝑑ent ((X1|Y1 = y1), (X2|Y2 = y2)) .

In particular, we have

𝑑ent(X1,X2) ≥ 𝑑ent(Y1, Y2)

and thus

𝜎ent[𝜋(X)] ≤ 𝜎ent[X] (1.7)

for any G-valued random variable X.

Remark. The main inequality here is a precise version of the intuition that the doubling

constant of a subset of G in the presence of a homomorphism 𝜋 ∶ G → H should somehow

be at least the doubling constant of the ‘base’ times some combination of the

doubling constants of the ‘fibres’. To make sense of this rigorously we need to

pass from sets to general random variables, and replace combinatorial doubling by

entropy doubling.

An example of the failure of a similar result in the purely combinatorial setting (in fact

of the analogue of (1.7)) is outlined in [22, exercise 2.2.10].

Remark. Many previous works have noted the advantageous properties of entropy in

somewhat related settings. To give a few examples, in rough chronological order there is

the work of Avez [1] and of Kaı̆manovich and Vershik [11] on random walks on discrete

groups, the work of Hochman [10] on fractals, and the work of Breuillard–Varjú [3] on

Bernouilli convolutions.

1.2 Structure of sets with small doubling

We turn now to applications of the results of the previous subsection to inverse theorems for sets with

small doubling.
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GREEN ET AL. 5

1.2.1 Skew dimension

The first application is a new proof of a result of Pálvölgyi and Zhelezov [15], which they used to give

a new and much shorter proof of a celebrated result of Bourgain and Chang [2]. For the purposes of this

result, an affine coordinate space is a subset of ZD (for some D) obtained by fixing the values of some

possibly empty set of coordinates. For instance, {(2,−1, x3) ∶ x3 ∈ Z} ⊆ Z3 is an affine coordinate

space. If A is a finite subset of some affine coordinate space V , its1 skew-dimension dim∗(A) is defined

inductively, as follows:

1. dim∗(A) = 0 if and only if A is a singleton (or empty).

2. If r ≥ 1, then dim∗(A) ≤ r if and only if there is a coordinate map 𝜋 ∶ V → Z such that

dim∗(𝜋−1(n) ∩ A) ≤ r − 1 for all n ∈ Z.

Theorem 1.5 (Pálvölgyi–Zhelezov). Suppose A is a finite subset of some affine coordi-
nate space with 𝜎[A] ≤ K for some K ≥ 2. Then there is A′ ⊆ A with |A′| ≥ K−O(1)|A|
and dim∗ A′ ≪ log K.

This result is essentially contained in a paper [15] of Pálvölgyi and Zhelezov: whilst it is not actually

stated in that paper, it is mentioned in a talk by Zhelezov [23, min 27:30], and can be established using

the methods of [15]. Lecture notes of the first author may be consulted for a detailed account with

some simplifications [8], as well as details of the deduction of the result of Bourgain and Chang.

In fact we will establish the following slightly stronger result.

Theorem 1.6. There is an absolute constant C with the following property. Suppose that
A,B ⊆ ZD. Then there are A′ ⊆ A and B′ ⊆ B with |A′||B′| ≥ e−C𝑑ent(A,B)|A||B|, and such
that dim∗(A′), dim∗(B′) ≤ C𝑑ent(A,B).

Setting B = −A and using (1.1), we recover Theorem 1.5. The “bilinear” form of Theorem 1.6 will

be convenient for induction purposes.

1.2.2 Dimension and PFR over Z
Whilst the notion of skew-dimension is useful in the context of the work of Bourgain and Chang,

the actual (affine) dimension dim A, defined as the dimension of the span of A − A over the

reals, is a more intrinsically natural quantity. Note that dim∗ A ≤ dim A for any A. It is conjec-

tured that Theorem 1.5 remains true with dim∗ A′ replaced by dim A′ – this is sometimes (see, for

instance, [4], [15, conjecture 1]) called the weak Polynomial Freiman–Ruzsa conjecture (PFR) over

Z. (The term ‘weak’ comes from the fact that only the dimension is controlled, and no attempt is

made to put A economically inside a box or homomorphic image of the lattice points in a convex set.

Such stronger statements are also speculated to be true, but care must be taken in their formulation,

as discussed in [13].)

Conjecture 1.7 (Weak PFR over Z). Suppose that A ⊆ ZD is a set with 𝜎[A] ≤ K. Then
there is a subset A′ ⊆ A, |A′| ≥ K−O(1)|A|, with dim A′ ≪ log K.

Prior to this paper, the best known bound in the direction of this conjecture was a result of the

second author [14].

Theorem 1.8 ([14, theorem 1.5]). Suppose that A ⊆ ZD is a finite set with 𝜎[A] ≤ K.

Then there is A′ ⊆ A with |A′||A| ≫ exp(−Clog2K) and dim A′ ≪ log K.

1Pálvölgyi and Zhelezov use the term query complexity instead of skew dimension.
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6 GREEN ET AL.

The proof of this result in [14] was a little exotic, making use of projections modulo 2 and a kind

of “U3-energy”. We provide a new, shorter, proof of this result, retaining the first feature but using

entropic notions in place of the exotic energy.

We will eventually go further in this paper by using results on sets with additive structure in FD
2 to

improve the bounds, but before doing that we make a detour into the world of structure theorems for

sets of small doubling in FD
2 .

1.2.3 Small doubling in FD
2 and PFR over F2

In the following discussion, FD
2 denotes the vector space of dimension D over F2; the value of D is

typically somewhat unimportant. Essentially everything we have to say would work equally well over

other finite fields F, but this introduces some further technicalities and implied constants would need

to depend on F, and we do not discuss this aspect here.

Denote by CPFR any constant for which the following statement is true: if A ⊆ FD
2 , and if the

doubling constant 𝜎[A] is at most K, then A is covered by exp(O(logCPFR(2K))) cosets of some subspace

H ≤ FD
2 of size at most |A|. The implied constant in the O() notation is allowed to depend on CPFR.

A celebrated result of Sanders [18, corollary A.2] (together with standard covering lemmas) is that

one may take CPFR = 4. By an improved version of the argument due to Konyagin (see [19, theorem

1.4]), one can in fact take any CPFR > 3. Strictly speaking, the statement in [19] applies to more

general abelian groups than FD
2 , but replaces the subspace H by a convex coset progression. However,

an inspection of the arguments in the characteristic 2 case shows that the convex coset progression in

this case can be taken to be a subspace (basically because the convex coset progressions are constructed

via Bohr sets, which are automatically subspaces in the characteristic 2 setting). Alternatively, one can

invoke the discrete John theorem (see [21, theorem 1.6]) to control the convex coset progression by a

generalized arithmetic progression (up to acceptable losses, and increasing CPFR by an epsilon), and

then observe that in FD
2 , all generalized arithmetic progressions are in fact subspaces. We leave the

details of these arguments to the interested reader.

We have the following notorious conjecture, known as the Polynomial Freiman–Ruzsa

conjecture over F2.

Conjecture 1.9. We may take CPFR = 1.

There are a large number of equivalent formulations of Conjecture 1.9; see [7,9,12,17]. We add

a further equivalent form of Conjecture 1.9, formulated in terms of entropy. It says that, in the case

G = FD
2 , Proposition 1.3 is valid with no smallness restriction on the entropic distance 𝑑ent(X, Y).

Proposition 1.10. Conjecture 1.9 is equivalent to the claim that, for any FD
2 -valued

random variables X, Y , there is a finite subgroup H ≤ FD
2 such that 𝑑ent(X,UH) ≪

𝑑ent(X, Y).

1.2.4 Small doubling and dimension, again

We now return to the main topic, and offer the following improvement of Theorem 1.8.

Theorem 1.11. Suppose that A ⊆ ZD is a finite set with 𝜎[A] ≤ K. Then there is A′ ⊆ A
with |A′||A| ≥ exp(−Clog

2− 1

CPFR K) and dim A′ ≪ log K.

We remark that the constant C is allowed to depend on CPFR (and so by implication on the implied

constant in the definition of CPFR). As it turns out, the implied constant in the ≪ is independent of

CPFR, and in particular can be taken to be 40∕ log 2.
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GREEN ET AL. 7

Thus, using the Konyagin/Sanders result we can obtain

|A′||A| ≫ exp(−Clog5∕3+o(1)K),

which is the strongest unconditional result currently known. Perhaps more interestingly, we obtain the

following conditional implication between the two forms of the Polynomial Freiman–Ruzsa conjecture

discussed above.

Corollary 1.12. Conjecture 1.9 implies Conjecture 1.7.

1.2.5 Plan of the paper

We begin by developing the theory of entropy doubling and (entropy) Ruzsa distance, as discussed

above. In Section 2 we establish Lemma 1.1. In Section 3, we look at the link between random variables

and sets and establish Proposition 1.2. In Section 4 we look at homomorphisms and give the (short)

proof of Proposition 1.4. Then, in Section 5, we combine these results to prove Proposition 1.3, which

relates random variables with small entropy doubling to subgroups. This section is a little lengthy but,

as we indicate at the appropriate points, not all of the analysis is needed in subsequent sections.

After this, we turn to the applications to small doubling in ZD. We begin, in Section 6, by proving

Theorem 1.6 (and thus reproving Theorem 1.5). Then, we give a new proof of the result of the second

author, Theorem 1.8.

Next, we take a brief detour into structural results over F2, establishing the equivalence of the

Polynomial Freiman–Ruzsa conjecture in this setting with its entropic formulation (Proposition 1.10).

Finally, we return to small doubling in ZD, establishing Theorem 1.11 (and hence Corollary 1.12)

in Section 9.

Finally, we remark that although we have written the paper in the context of an abelian group G,

many of the arguments (e.g., the proof of Theorem 1.3) do not require this assumption.

2 AN IMPROVED ENTROPIC RUZSA TRIANGLE INEQUALITY

In this section we prove Lemma 1.1.

Proof of Lemma 1.1. We begin with part (i). It suffices to show that

H(X − Z) − 1

2
(H(X) + H(Z)) ≤ 𝑑ent(X, Y) + 𝑑ent(Y , Z).

This is equivalent to establishing

H(X − Z) ≤ H(X − Y) + H(Y − Z) − H(Y)

whenever Y is independent of (X, Z) (but X and Z are not required to be independent of

each other).

We apply the submodularity inequality (A5) with A = X −Y , B = Z, C = X −Z. With

these choices we have

H(A,B,C) = H(X, Y , Z) = H(X, Z) + H(Y),
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8 GREEN ET AL.

H(A,C) = H(X − Y ,X − Z) = H(X − Y , Y − Z) ≤ H(X − Y) + H(Y − Z)

and

H(B,C) = H(Z,X − Z) = H(X, Z).

In the second display we used (A3). Applying (A5) gives part (i) of Lemma 1.1.

For part (ii), the first inequality 𝑑ent(X, Y) ≤ 𝑑∗
ent(X, Y) is trivial. For the second

inequality, we apply (i) and (1.3) to conclude that

𝑑∗
ent(X, Y) ≤ 𝑑ent(X, Y) + 𝑑ent(Y , Y)

≤ 𝑑ent(X, Y) + 𝑑ent(Y ,X) + 𝑑ent(X, Y),

giving the claim. ▪

3 FROM RANDOM VARIABLES TO SETS

The objective of this section is to prove Proposition 1.2. Let C,X, Y be as in that proposi-

tion. We may assume without loss of generality that X, Y are independent. For brevity we adopt

the notation k ∶= 𝑑ent(X, Y). We need to locate a set S satisfying (1.5) and (1.6). The key lemma is the

following.

Lemma 3.1. There exists a finite non-empty subset S of G such that

log |S| ≥ H(Y) − 2h
(

1 − 2

C

)
− 4k (3.1)

and such that

𝑑∗
ent(Z, Y) ≤ Ck + 1

2
(H(Y) − H(Z)) (3.2)

whenever Z is an S-valued random variable.

Proof. As X, Y are independent and k = 𝑑ent(X, Y), we have

H(X − Y) = 1

2
H(X) + 1

2
H(Y) + k, (3.3)

and hence by (A14) it follows that

H(X − Y) − H(Y) ≤ 2k.

Applying the equality case of (A18), we conclude that∑
x

pX(x)DKL(x − Y||X − Y) ≤ 2k. (3.4)

Inspired by this, we define S by the formula

S ∶= {x ∶ pX(x) > 0,DKL(x − Y||X − Y) ≤ Ck} . (3.5)
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GREEN ET AL. 9

Denote by A the random variable A ∶= 1X∈S, and write p ∶= P(A = 1) = P(X ∈ S). By

Markov’s inequality and (3.4), it follows that

p = P(X ∈ S) ≥ 1 − 2

C
≥

1

2
. (3.6)

Now we make some observations. First,

H(X) = H(X,A)
= H(X|A) + H(A)
= pH(X|A = 1) + (1 − p)H(X|A = 0) + h(p).

(3.7)

Second, since Y is independent of X and A, it follows using (A13) that

H(X − Y|A = i) ≥ H(Y),H(X|A = i)

for i = 0, 1; therefore

H(X − Y) ≥ H(X − Y|A)
= pH(X − Y|A = 1) + (1 − p)H(X − Y|A = 0)

≥ pH(Y) + 1 − p
2

(H(Y) + H(X|A = 0)) .

(3.8)

Combining (3.7), (3.8) with (3.3) we conclude after a short computation that

k ≥
p
2

H(Y) − p
2

H(X|A = 1) − 1

2
h(p). (3.9)

By (A1), we have H(X|A = 1) ≤ log |S|. Substituting into (3.9) and rearranging yields

log |S| ≥ H(Y) − h(p)
p

− 2k
p
.

Using (3.6) (and the monotone decreasing nature of h(p) for p ≥ 1∕2), we obtain (3.1).

Now we prove (3.2). From (A18) (replacing X by X − Y there) we have

H(Z − Y) − H(Y) ≤
∑

z
pZ(z)DKL(z − Y||X − Y).

Note here that the Kullback–Leibler divergence is well-defined and finite. Indeed, Z
takes values z ∈ S, and hence by the definition of S we have pX(z) > 0 for such z. Thus if

pz−Y (t) > 0 then pX−Y (t) =
∑

x pX(x)px−Y (t) ≥ pX(z)pz−Y (t) > 0.

By definition of S, DKL(z− Y||X − Y) ≤ Ck for z in the range of Z, and the claim (3.2)

follows. ▪

Now we are ready for the proof of Proposition 1.2 itself.

Proof of Proposition 1.2. We begin by establishing (1.5). Let S be as in Lemma 3.1.

Taking Z = US in (3.2), we have

𝑑∗
ent(US, Y) ≤ Ck + 1

2
(H(Y) − log |S|) .
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10 GREEN ET AL.

The required bound (1.5) then follows from (3.1).

Now we prove (1.6). Let Z, Z′ be any pair of S-valued random variables. From

Lemma 1.1 (ii) and (3.2) we have

𝑑∗
ent(Z, Z′) ≤ 𝑑ent(Z, Y) + 𝑑ent(Z′, Y)

≤ 2Ck + H(Y) − 1

2
H(Z) − 1

2
H(Z′)

or equivalently

H(Z − Z′) ≤ 2Ck + H(Y). (3.10)

Now we observe that it is possible to choose Z, Z′ supported on S so that Z − Z′ has

the uniform distribution on S − S. To do this, simply take (Z, Z′) to have distribution

function

p(Z,Z′)(s1, s2) ∶=
1|S − S|#{(t1, t2) ∈ S ∶ t1 − t2 = s1 − s2}

for s1, s2 ∈ S. In this case H(Z − Z′) = log |S − S|. Using (3.10) and (3.1), (1.6)

follows. ▪

Remark. The last part of this argument has considerable similarity with [16, sect. 5].

4 ENTROPY DISTANCE UNDER HOMOMORPHISMS

In this section we establish Proposition 1.4. Let notation be as in the statement of that

proposition.

Proof of Proposition 1.4. We have

H(X1−X2|Y1, Y2)

=
∑

y1,y2∈H
pY1

(y1)pY2
(y2)H(X1 − X2|Y1 = y1, Y2 = y2), (4.1)

H(X1|Y1) =
∑
y1∈H

pY1
(y1)H(X1|Y1 = y1)

=
∑

y1,y2∈H
pY1

(y1)pY2
(y2)H(X1|Y1 = y1),

(4.2)

and similarly

H(X2|Y2) =
∑

y1,y2∈H
pY1

(y1)pY2
(y2)H(X2|Y2 = y2). (4.3)

Subtracting half of (4.2) and half of (4.3) from (4.1) gives

H(X1 − X2|Y1, Y2) −
1

2
H(X1|Y1) −

1

2
H(X2|Y2)

=
∑

y1,y2∈H
pY1

(y1)pY2
(y2)𝑑ent((X1|Y1 = y1), (X2|Y2 = y2)).

(4.4)
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GREEN ET AL. 11

Now Xi determines Yi, and so

H(X1|Y1) = H(X1) − H(Y1), H(X2|Y2) = H(X2) − H(Y2). (4.5)

Moreover, by (A7),

H(X1 − X2|Y1, Y2) ≤ H(X1 − X2|Y1 − Y2)
= H(X1 − X2) − H(Y1 − Y2)

(4.6)

(because X1 − X2 determines Y1 − Y2). Combining (4.4), (4.5), (4.6) gives the result.

In fact one sees that the difference between the LHS and the RHS in the proposition is

H(X1 − X2|Y1 − Y2) − H(X1 − X2|Y1, Y2). ▪

5 VERY SMALL ENTROPY DOUBLING

In this section we prove Proposition 1.3, which states that random variables X, Y for which 𝑑ent(X, Y)
is small are close to uniform on a subgroup. We first handle the case X = Y (in which case we will

establish Proposition 1.3 with the improved constant of 6). Assume henceforth that X is a G-valued

random variable with 𝑑ent(X,X) = 𝜀 ≤ 𝜀0.

We first observe that a weak version of Proposition 1.3 (which in fact suffices for many applica-

tions) follows quickly from Proposition 1.2. As observed in item (ii) after Proposition 1.2, we see that

there is S such that

𝑑ent(US, Y) ≪ 𝜀1∕2 log
1

𝜀
(5.1)

and

|S − S| ≤ (
1 + O

(
𝜀1∕2 log

1

𝜀

))|S| < 3

2
|S|, (5.2)

where the last inequality holds if 𝜀0 is small enough. A well-known classical observation of Freiman [5]

now implies that H ∶= S − S is a group. We recall the short proof here.

For any x, y ∈ S, x − S and y − S both lie in S − S and so |(x − S) ∩ (y − S)| > 1

2
|S|. That is, there

are >
1

2
|S| pairs (u, v) ∈ S × S such that x − u = y − v. For each such pair, we have x − y = u − v.

Now let x′, y′ ∈ S be any other elements. Similarly, there are >
1

2
|S| pairs (u′, v′) ∈ S × S such that

x′ − y′ = u′ − v′. There are >
1

2
|S| values of v and >

1

2
|S| values of u′, and all these values lie in S;

therefore we must have v = u′ for some pair of these elements. It then follows that (x− y) + (x′ − y′) =
(u− v) + (u′ − v′) = u− v′ ∈ S− S. Since x, y, x′, y′ were arbitrary, it follows that S− S is closed under

addition. Since it contains 0 and is closed under taking inverses, it must be a group.

From (A16) (noting that S is contained in a single coset of H) and (5.2) we have

𝑑ent(UH ,US) =
1

2
log

|H||S| ≪ 𝜀1∕2 log
1

𝜀
.

Therefore from (5.1) and (1.3) we have

𝑑ent(UH , Y) ≪ 𝜀1∕2 log
1

𝜀
. (5.3)
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12 GREEN ET AL.

This is weaker than Proposition 1.3 only in the non-linear dependency on 𝜀, which in many applications

is not important.

We will deduce the stronger statement of Proposition 1.3 by bootstrapping this bound. To do this,

we require two lemmas which are essentially special cases of Proposition 1.3 itself. First, we consider

the case in which X is highly concentrated near one point.

Lemma 5.1. There is 𝛿0 > 0 such that the following is true. Suppose that X is a G-valued
random variable and x0 ∈ G is a value such that P(X = x0) ≥ 1 − 𝛿0. Then H(X)≤
2𝑑ent(X,X).

Proof. By replacing X by X − x0 if necessary, we may assume without loss of general-

ity that x0 = 0. Let X1,X2 be independent copies of X. Then our task is equivalent to

showing that

H(X1 − X2) ≥
3

2
H(X). (5.4)

Write p ∶= P(X ≠ 0) (thus p ≤ 𝛿0), and let A denote the indicator function of the event

that X1,X2 ≠ 0; then P(A = 0) = 1 − p2 and P(A = 1) = p2. As a consequence, we have

H(X1−X2) ≥ H(X1 − X2|A)
= (1 − p2)H(X1 − X2|A = 0) + p2H(X1 − X2|X1,X2 ≠ 0)
≥ (1 − p2)H(X1 − X2|A = 0) + p2H(X|X ≠ 0)

(5.5)

where we used (A13) in the last line.

Now note that for any z, if A = 0 and X1 − X2 = z then (X1,X2) can take only two

values (z, 0) and (0,−z) if z ≠ 0, and only one value (0, 0) if z = 0. Hence

H(X1,X2|A = 0) − H(X1 − X2|A = 0)
= H(X1,X2|X1 − X2,A = 0)

≤ P(X1 − X2 ≠ 0|A = 0) log 2 = 2p(1 − p)
1 − p2

log 2.

Combining with (5.5), we obtain

H(X1 − X2) ≥ (1 − p2)H(X1,X2|A = 0)
+ p2H(X|X ≠ 0) − 2p(1 − p) log 2.

(5.6)

We also observe that

2H(X) = H(X1,X2) = H(X1,X2,A) = H(X1,X2|A) + H(A)
= (1 − p2)H(X1,X2|A = 0) + p2H(X1,X2|A = 1) + h(p2)
= (1 − p2)H(X1,X2|A = 0) + 2p2H(X|X ≠ 0) + h(p2).

(5.7)

We further note that, writing I for the indicator of X ≠ 0,

H(X) = H(X|I) + H(I) = pH(X|X ≠ 0) + h(p). (5.8)
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GREEN ET AL. 13

Taking (5.7) minus p times (5.8) gives

(2 − p)H(X) = (1 − p2)H(X1,X2|A = 0)+
+ p2H(X|X ≠ 0) + h(p2) − ph(p).

Combining this with (5.6), we obtain

H(X1 − X2) ≥ (2 − p)H(X) + ph(p) − 2p(1 − p) log 2 − h(p2). (5.9)

Recall that our aim is to demonstrate (5.4). To get this from (5.9), we first note that

expansion to leading order gives

2p(1 − p) log 2 + h(p2) ≤
(

1

2
− p

)
h(p) (5.10)

provided 𝛿0 is small enough: the LHS here is ∼ 2p log 2, whilst the right hand side is ∼ 1

2
p

log
1

p
. (A more careful analysis shows that 𝛿0 = 1

20
is sufficient.) We also have

h(p) = H(I) ≤ H(X). (5.11)

The desired bound (5.4) then follows immediately from (5.9), (5.10) and (5.11). ▪

Remark. The constant 2 in the statement of Lemma 5.1 can be replaced by anything

larger than 1, at the expense of making 𝛿0 smaller. This may be shown with very minor

modifications of the above argument.

We next consider the case of a random variable supported on H.

Lemma 5.2. Suppose that X is an H-valued random variable with H(X) ≥ log |H| − 1

8
.

Then

log |H| − H(X) ≤ 2𝑑ent(X,X).

To prove this we will use the following lemma concerning couplings of almost uniform random

variables, which is plausibly of independent interest. Here, for a probability distribution p on a group

H, we write ||p − uH||1 ∶=
∑

x∈H
|||p(x) − 1|H| ||| for the 𝓁1-distance of p from the uniform distribution

(or, equivalently, twice the total variation distance of p from the uniform distribution).

Lemma 5.3. Suppose p1, p2, p3 ∶ H → R≥0 are three probability distributions on H such
that

||p1 − uH||1 + ||p2 − uH||1 + ||p3 − uH||1 ≤ 1. (5.12)

Then there exists a pair of random variables (X, Y) on H (not necessarily independent)
having the marginal distributions pX = p1, pY = p2 and pX−Y = p3.

Proof. We wish to show that the triple of distributions (p1, p2, p3) ∈ RH × RH × RH lies

in the convex hull of the set Σ ∶= {(𝛿x, 𝛿y, 𝛿x−y) ∶ x, y ∈ H} ⊆ RH × RH × RH . Here (as

usual) 𝛿t(u) = 1 if u= t, and 𝛿t(u) = 0 otherwise. By the (finite-dimensional) Hahn–Banach

theorem, this is equivalent to showing that there is no hyperplane separating (p1, p2, p3)
from Σ, or in other words whenever f1, f2, f3 ∶ H → R are functions such that
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14 GREEN ET AL.

f1(x) + f2(y) + f3(x − y) ≥ 0 (5.13)

for all x, y ∈ H, one also has∑
x∈H

f1(x)p1(x) +
∑
y∈H

f2(y)p2(y) +
∑
z∈H

f3(z)p3(z) ≥ 0. (5.14)

Henceforth, assume (5.13). Note that (5.13) and (5.14) are both unaffected if we shift

f1, f2, f3 by constants c1, c2, c3 summing to zero. Thus we may normalize so that

min f1 = min f2 = min f3.

If this quantity is non-negative then (5.14) is immediate, so we may assume that it is

negative. By rescaling we may thus normalize so that

min f1 = min f2 = min f3 = −1. (5.15)

In particular, there exists x0 ∈ H such that f1(x0) = −1. From (5.13) and (5.15), we

conclude that for every y ∈ H one has

f2(y) + f3(x0 − y) ≥ 1 and min(f2(y), f3(x0 − y)) ≥ −1.

This implies that

f2(y)p2(y) + f3(x0 − y)p3(x0 − y)
≥ (f2(y) + f3(x0 − y))min(p2(y), p3(x0 − y))
+ min(f2(y), f3(x0 − y))|p2(y) − p3(x0 − y)|

≥ min(p2(y), p3(x0 − y)) − |p2(y) − p3(x0 − y)|
= p2(y) + p3(x0 − y)

2
− 3

2

|||p2(y) − p3(x0 − y)|||
≥

p2(y) + p3(x0 − y)
2

− 3

2

|||p2(y) −
1|H| | − 3

2
|p3(x0 − y) − 1|H| |||.

Summing over y, we conclude that∑
y∈H

f2(y)p2(y) +
∑
z∈H

f3(z)p3(z) ≥ 1 − 3

2
||p2 − uH||1 − 3

2
||p3 − uH||1.

Cyclically permuting the roles of f1, f2, f3 and p1, p2, p3 and averaging, the desired

bound (5.14) then follows from (5.12). ▪

Proof of Lemma 5.2. By (A10) and Pinsker’s inequality (A12) it follows that

||pX − uH||1 ≤
√

2(log |H| − H(X)) ≤ 1

2
. (5.16)

Applying Lemma 5.3 (with p1 = p2 = pX and p3 = 1|H| ), it follows that there exists a pair

of random variables (X1,X2) such that X1,X2 each have the same marginal distribution as

X, and X1 − X2 is uniform on H.
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GREEN ET AL. 15

Finally, Lemma 1.1 gives

log |H| = H(X1 − X2) ≤ H(X) + 𝑑∗
ent(X,X)

≤ H(X) + 𝑑ent(X,X) + 𝑑ent(X,X),

which immediately implies the result. ▪

Proof of Proposition 1.3. We first establish the case X = Y (with the constant 12 replaced

by 6). Suppose, as we have throughout the section, that 𝑑ent(X,X) = 𝜀 ≤ 𝜀0. Let 𝜋 ∶ G →
G∕H be the quotient projection. Recall from (A16) that

𝑑ent(X,UH) = H(𝜋(X)) + 1

2
(log |H| − H(X)) . (5.17)

From (5.3) we have the weak bound 𝑑ent(X,UH) ≪ 𝜀1∕2 log
1

𝜀
. Thus

H(𝜋(X)) ≪ 𝜀1∕2 log
1

𝜀
(5.18)

and

H(X) ≥ log |H| − O
(
𝜀1∕2 log

1

𝜀

)
. (5.19)

Now by Proposition 1.4 (replacing H there by G∕H, and recalling that 𝑑ent(X,X) = 𝜀)

we obtain

𝑑ent (𝜋(X), 𝜋(X)) ≤ 𝜀 (5.20)

and ∑
y1,y2∈G∕H

p𝜋(X)(y1)p𝜋(X)(y2)𝑑ent(Xy1
,Xy2

) ≤ 𝜀, (5.21)

where Xy denotes X conditioned to the event 𝜋(X) = y.

By (5.18) and (A2), we see that there is some y0 ∈ G∕H such that P(𝜋(X) = y0) ≥
1−O

(
𝜀1∕2 log

1

𝜀

)
. By translating X if necessary, we may assume without loss of generality

that y0 = 0, that is to say

p𝜋(X)(0) = P(X ∈ H) ≥ 1 − O
(
𝜀1∕2 log

1

𝜀

)
≥ max

(
10

11
, 1 − 𝛿0

)
(5.22)

where 𝛿0 is the constant from Lemma 5.1, and we assume that 𝜀0 from the statement of

Proposition 1.3 is sufficiently small.

Applying Lemma 5.1 to 𝜋(X) using (5.20), (5.22), we conclude that

H(𝜋(X)) ≤ 2𝜀. (5.23)

Meanwhile, discarding all terms in the sum over y1 in (5.21) except the term y1 = 0,

and using (5.22), it follows that∑
y∈G∕H

p𝜋(X)(y)𝑑ent(X0,Xy) ≤ 1.1𝜀.
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16 GREEN ET AL.

By (A14), this implies that∑
y∈G∕H

p𝜋(X)(y)||H(Xy) − H(X0)|| ≤ 2.2𝜀,

and hence by the triangle inequality

|||H(X|𝜋(X)) − H(X0)
||| ≤ 2.2𝜀.

Using H(X) = H(X|𝜋(X)) + H(𝜋(X)) and (5.23), we conclude that

|H(X) − H(X0)| ≤ 4.2𝜀. (5.24)

In particular, from (5.19) we deduce

H(X0) ≥ log |H| − O
(
𝜀1∕2 log

1

𝜀

)
. (5.25)

Now by discarding all terms in (5.21) except the one with y1 = y2 = 0, and

using (5.22), we have

𝑑ent(X0,X0) ≤ 1.21𝜀.

It follows from Lemma 5.2 that H(X0) ≥ log |H| − 2.42𝜀, and hence by (5.24) we obtain

H(X) ≥ log |H| − 6.62𝜀.

Combining this with (5.17) and (5.23) gives 𝑑ent(X,UH) ≤ 5.31𝜀 ≤ 6𝜀, which is the

statement of Proposition 1.3 (with a better constant) in the symmetric case X = Y .

Finally, we deduce the general case in which X and Y may be different. Suppose now

that 𝑑ent(X, Y) = 𝜀 ≤ 𝜀′0, where 𝜀′0 ∶= 𝜀0∕2 with 𝜀0 the constant above. By the triangle

inequality, 𝑑ent(X,X) ≤ 2𝜀 ≤ 𝜀0, and so by the symmetric case of Proposition 1.3 estab-

lished above we have 𝑑ent(X,UH) ≤ 12𝜀 for some subgroup H ≤ G. Similarly, we have

𝑑ent(Y ,UH′ ) ≤ 12𝜀 for some subgroup H′ ≤ G.

It remains to argue that H = H′. For this, we observe that by the triangle inequality

we have

𝑑(UH ,UH′ ) ≤ 25𝜀. (5.26)

If H ≠ H′, then H+H′ is a subgroup of G properly containing H,H′ and therefore of size at

least 2 max(|H|, |H′|). Since UH −UH′ is uniform on H+H′, we have 𝑑(UH ,UH′ ) ≥ log 2,

which contradicts (5.26) if 𝜀0 is small enough. Therefore we do indeed have H = H′, and

this concludes the proof. ▪

6 SKEW DIMENSION AND A RESULT OF PÁLVÖLGYI AND ZHELEZOV

In this section we give the proof of Theorem 1.6 (and thus Theorem 1.5).

Proof of Theorem 1.6. Let 𝜀 > 0 be a small constant to be specified later, and set C ∶=
2∕𝜀. We will prove Theorem 1.6 with this particular value of C.
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GREEN ET AL. 17

We proceed by induction on |A||B| and on D. Denote by 𝜋 ∶ ZD → Z projection

onto the first coordinate. We may assume that at least one of the sets 𝜋(A), 𝜋(B) is not a

singleton (otherwise D may be reduced to D − 1).

Let X1,X2 be uniform random variables on A,B respectively, and let Yi = 𝜋(Xi).
Applying Proposition 1.4 and rearranging, we obtain

∑
i,j

pY1
(i)pY2

(j) log
K

Ki,j
≥ 𝑑ent(Y1, Y2) (6.1)

where

K ∶= exp (𝑑ent(X1,X2))

and

Ki,j ∶= exp (𝑑ent((X1|Y1 = i), (X2|Y2 = j))) .

We now divide into two cases, according to whether 𝑑ent(Y1, Y2) ≤ 𝜀 or not.

Case 1: 𝑑ent(Y1, Y2) ≤ 𝜀. Let 𝜀0 be the constant from Proposition 1.3, and assume that

𝜀 ≤ min
(
𝜀0,

1

24

)
. By Proposition 1.3 and the fact that H = {0} is the only finite subgroup

of Z, we have

𝑑ent(Y1, 0), 𝑑ent(Y2, 0) ≤ 12𝑑ent(Y1, Y2).

Since 𝑑ent(Yi, 0) = 1

2
H(Yi), it follows that

H(Y1) + H(Y2) ≤ 48𝑑ent(Y1, Y2) ≤ C𝑑ent(Y1, Y2) (6.2)

by the choice of C, 𝜀. Inserting this into (6.1) and rearranging, we obtain

∑
i,j

pY1
(i)pY2

(j) log

(
Ki,j

K(pY1
(i)pY2

(j))1∕C

)
≤ 0.

In particular, there exist i, j such that

Ki,j ≤ K(pY1
(i)pY2

(j))1∕C ≤ K.

Invoking the induction hypothesis (with A,B replaced by A ∩ 𝜋−1({i}) and B ∩ 𝜋−1({j})
respectively), we see that there are sets A′ ⊆ A,B′ ⊆ B with

dim∗ A′, dim∗ B′ ≤ C log Ki,j ≤ C log K

and |A′||B′| ≥ K−C
i,j |A ∩ 𝜋−1({i})||B ∩ 𝜋−1({j})| = K−C

i,j pY1
(i)pY2

(j)|A||B|
≥ K−C

i,j

(
Ki,j

K

)C|A||B| = K−C|A||B|.
This closes the induction in Case 1.
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18 GREEN ET AL.

Case 2: 𝑑ent(Y1, Y2) ≥ 𝜀.

In this case we see from (6.1) that∑
i,j

pY1
(i)pY2

(j) log
K

Ki,j
≥ 𝜀.

The contribution from those (i, j) with log
K

Ki,j
≤

𝜀

2
is at most

𝜀

2
. Thus if we set

S ∶=
{
(i, j) ∶ log

K
Ki,j

>
𝜀

2

}
then ∑

(i,j)∈S
pY1

(i)pY2
(j) log

K
Ki,j

≥
𝜀

2
. (6.3)

Note in particular that, if (i, j) ∈ S,

Ki,j < K. (6.4)

By the induction hypothesis, for each pair (i, j) ∈ S there are sets A′
i,j ⊆ A, B′

i,j ⊆ B with

|A′
i,j||B′

i,j| ≥ K−C
i,j pY1

(i)pY2
(j)|A||B|, (6.5)

and all with skew-dimension at most

C log Ki,j ≤ C
(

log K − 𝜀

2

)
= C log K − 1. (6.6)

(Here we used the fact that C = 2∕𝜀.)

For each i ∈ Z, set A′
i to be the largest of the sets A′

i,j, (i, j) ∈ S (or A′
i = ∅ if (i, j) ∉ S

for every j), and similarly for each j ∈ Z set B′
j to be the largest of the sets B′

i,j, (i, j) ∈ S,

breaking ties arbitrarily. Finally, set A′ ∶=
⋃

i∈Z A′
i and B′ ∶=

⋃
j∈Z B′

j . By the definition

of skew-dimension and the bound (6.6), we have dim∗ A′, dim∗ B′ ≤ C log K.

From the elementary inequality t ≥ log t for t ≥ 1 applied to t = (K∕Ki,j)C (noting

by (6.4) that we do indeed have t ≥ 1), we have

K−C
i,j ≥ CK−C log

K
Ki,j

for any (i, j) ∈ S. From this and (6.5), (6.3) we have

|A′||B′| = ∑
(i,j)∈Z2

|A′
i||B′

j|
≥

∑
(i,j)∈S

|A′
i,j||B′

i,j|
≥ |A||B| ∑

(i,j)∈S
K−C

i,j pY1
(i)pY2

(j)

≥ |A||B| ∑
(i,j)∈S

(
CK−C log

K
Ki,j

)
pY1

(i)pY2
(j)

≥
C𝜀

2
K−C|A||B| = K−C|A||B|.
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GREEN ET AL. 19

This completes the induction, and the theorem is proved. ▪

7 DIMENSION AND A RESULT OF THE SECOND AUTHOR

We turn now to the question of the dimension (as opposed to the weaker skew-dimension) of subsets of

ZD with small doubling. Our aim in this section is to give an entropic proof of Theorem 1.8. In so doing,

we will also lay the groundwork for the proof of Theorem 1.11, our improvement upon this result.

As in [14, slogan 2.5], a key idea is that a set A ⊆ ZD with small doubling must look rather singular

under the projection map 𝜙 ∶ ZD → FD
2 . In Lemma 7.2 below, we give an entropic formulation of this

principle. We isolate the following lemma from the proof.

Lemma 7.1. Let G be torsion-free, and let X, Y be G-valued random variables. Then
𝑑ent(X, 2Y) ≤ 5𝑑ent(X, Y).

Proof. We assume X, Y are independent. Then2

H(X − 2Y) = H((X − Y) − Y)

≤ 𝑑∗
ent(X − Y , Y) + 1

2
H(X − Y) + 1

2
H(Y)

(7.1)

by definition of 𝑑∗
ent. By Lemma 1.1,

𝑑∗
ent(X − Y , Y) ≤ 𝑑ent(Y , Y) + 𝑑ent(X − Y , Y)

≤ 2𝑑ent(X, Y) + 𝑑ent(X − Y , Y).
(7.2)

Letting Y1, Y2 be independent copies of Y (which are also independent of X) we have

𝑑ent(X − Y , Y) = H(X − Y1 − Y2) −
1

2
H(X − Y) − 1

2
H(Y). (7.3)

Writing A ∶= Y1, B ∶= Y2 and C ∶= X − Y1 − Y2, we have

H(A,B,C) = H(X, Y1, Y2) = H(X) + 2H(Y),

and

H(A,C) = H(A,C + A) = H(Y1,X − Y2) = H(Y) + H(X − Y2),

H(B,C) = H(B,C + B) = H(Y2,X − Y1) = H(Y) + H(X − Y1)

so applying the submodularity inequality (A5) gives

H(X − Y1 − Y2) ≤ H(X − Y1) + H(X − Y2) − H(X).

Combining this with (7.3) gives

𝑑ent(X − Y , Y) ≤ 3

2
H(X − Y) − H(X) − 1

2
H(Y)

2The use of 𝑑∗
ent here simplifies an earlier version of the argument, and was suggested to the authors by Noah Kravitz.
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20 GREEN ET AL.

which, together with (7.1) and (7.2), yields

H(X − 2Y) ≤ 2𝑑ent(X, Y) + 2H(X − Y) − H(X) = 4𝑑ent(X, Y) + H(Y)

and so

𝑑ent(X, 2Y) ≤ 4𝑑ent(X, Y) +
1

2
(H(Y) − H(X)) ≤ 5𝑑ent(X, Y)

where we used (A14) in the last step. ▪

Lemma 7.2. Let X, Y be ZD-valued random variables for some D ≥ 0. Denote by 𝜙 ∶
ZD → FD

2 the natural homomorphism. Then

H(𝜙(X)),H(𝜙(Y)) ≤ 10𝑑ent(X, Y).

Proof. By Proposition 1.4 and Lemma 7.1,

𝑑ent(𝜙(X), 𝜙(2Y)) ≤ 𝑑ent(X, 2Y) ≤ 5𝑑ent(X, Y). (7.4)

However, 𝜙(2Y) is identically zero and so

𝑑ent(𝜙(X), 𝜙(2Y)) = 𝑑ent(𝜙(X), 0) =
1

2
H(𝜙(X)).

Combining this with (7.4) gives the stated bound for H(𝜙(X)). The bound for H(𝜙(Y))
follows in the same way. ▪

Remark. It is perhaps worth remarking on the meaning and proof of this statement. Sup-

posing that A ⊂ ZD is a set with small (combinatorial) doubling K, it follows that the dilate

2 ⋅ A, which is contained in A + A, is commensurate (up to polynomial factors in K) with

A. Projecting mod 2, one therefore expects the projection 𝜋(A) to be commensurate with

the projection 𝜋(2 ⋅ A) = {0}. A version of this argument appears in [14, appendix B]. In

the entropy setting, Lemma 7.1 acts as a replacement for the trivial observation that 2 ⋅ A
is contained in A + A.

Now we are ready for the proof of Theorem 1.8 itself. To make the argument work, we will in fact

need to establish the following bipartite variant of the result.

Theorem 7.3. There is an absolute constant C1 such that, setting f (t) ∶= C1t(1 + t), the
following is true. Let D ∈ N, and suppose that A,B ⊆ ZD are finite non-empty sets. Then
there exist nonempty A′ ⊆ A, B′ ⊆ B with

log
|A||A′| + log

|B||B′| ≤ f (𝑑ent(UA,UB)) (7.5)

and such that dim A′, dim B′ ≤ C1𝑑ent(UA,UB).

It is clear from (1.1) that this indeed implies Theorem 1.8.

We first prove a simple lemma which will be used several times in what follows.

Lemma 7.4. Let 𝜙 ∶ G → H be a homomorphism, and A,B ⊆ G finite subsets. For
x, y ∈ H write Ax = A ∩ 𝜙−1(x) and By = B ∩ 𝜙−1(y) for the fibres of A and B, and write
𝛼x ∶= |Ax||A| and 𝛽y ∶= |By||B| . Write k = 𝑑ent(UA,UB), k = 𝑑ent(𝜙(UA), 𝜙(UB)) and M =
H(𝜙(UA)) + H(𝜙(UB)). Then there exist x, y ∈ H such that Ax,By are non-empty and with
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GREEN ET AL. 21

k log
1

𝛼x𝛽y
≤ M

(
k − 𝑑ent(UAx ,UBy )

)
. (7.6)

Proof. First observe that the random variables (UA|𝜙(UA) = x) and (UB|𝜙(UB) = y) are

equal in distribution to UAx ,UBy respectively, that is to say the uniform distributions on the

fibres. It follows from Proposition 1.4 that∑
x,y∈H

𝛼x𝛽y𝑑ent(UAx ,UBy) ≤ k − k. (7.7)

By definition, M =
∑

x,y 𝛼x𝛽y log
1

𝛼x𝛽y
and hence

∑
x,y∈H

𝛼x𝛽y

(
M𝑑ent(UAx ,UBy ) + k log

1

𝛼x𝛽y

)
≤ Mk.

It follows by the pigeonhole principle that there is at least one choice of x, y such that

𝛼x, 𝛽y > 0 and

M𝑑ent(UAx ,UBy) + k log
1

𝛼x𝛽y
≤ Mk.

Rearranging gives (7.6). ▪

We now turn to the proof of Theorem 7.3.

Proof of Theorem 7.3. Let us begin by noting the simple inequality

f (b) = C1b(1 + b)
≤ C1b(1 + a) = f (a) − C1(a − b)(1 + a)

(7.8)

for all a, b ∈ R with 0 ≤ b ≤ a.

Let us turn now to the main proof. We will proceed by induction on |A|+ |B|. We may

also assume that A,B do not sit inside cosets of a proper subgroup of ZD, else we may

replace ZD by that subgroup. We also suppose D ≥ 1, as the result is trivial otherwise.

Let 𝜙 ∶ ZD → FD
2 be the natural homomorphism. Then, by the preceding remark and

the fact that ker𝜙 is a proper subgroup of ZD, we may assume that at least one of𝜙(A), 𝜙(B)
is not a singleton. For x, y ∈ FD

2 , denote by Ax ∶= A ∩ 𝜙−1(x) and By ∶= B ∩ 𝜙−1(y) the

fibres of A,B. Note that

|Ax| + |By| < |A| + |B| (7.9)

for all x, y.

Write k ∶= 𝑑ent(UA,UB) and 𝜀 ∶= 𝑑ent(𝜙(UA), 𝜙(UB)). Let 𝛿 > 0 be a small positive

constant to be determined later, and set C1∶= max(20∕𝛿, 100). We will divide into two

cases, according to whether or not 𝜀 ≤ 𝛿.

Case 1: 𝜀 > 𝛿. By Lemma 7.2 with X = UA, Y = UB, we have

H(𝜙(UA)) + H(𝜙(UB)) ≤ 20k. (7.10)
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22 GREEN ET AL.

By Lemma 7.4 applied to G = ZD and H = FD
2 , we may find x, y ∈ FD

2 such that (7.6)

holds. Fix such x, y, and for brevity set k′∶= 𝑑ent(UAx ,UBy ). Then (7.6) implies that

k′ ≤ k and

log
|A||Ax| + log

|B||By| ≤ 20k
𝜀

(k − k′). (7.11)

Noting (7.9), we may apply the induction hypothesis to conclude that there are A′ ⊆ Ax,

B′ ⊆ By with

log
|Ax||A′| + log

|Bx||B′| ≤ f (k′)

such that dim A′, dim B′ ≤ C1k′ ≤ C1k. This and (7.11) immediately imply

log
|A||A′| + log

|B||B′| ≤ f (k′) + 20k
𝜀

(k − k′).

By (7.8), this is at most f (k), since C1 ≥ 20∕𝛿 ≥ 20∕𝜀. This closes the induction in Case 1.

Case 2: 𝜀 ≤ 𝛿. Recall here that 𝜀 = 𝑑ent(𝜙(UA), 𝜙(UB)), and note that 𝜀 ≤ k by

Proposition 1.4. Let 𝜀0 be the constant from Proposition 1.3 and suppose 𝛿 ≤ 𝜀0. By

Proposition 1.3 there is some H ≤ FD
2 such that

𝑑ent(𝜙(UA),UH), 𝑑ent(𝜙(UB),UH) ≤ 12𝜀.

It is possible that H = FD
2 . In this case, we have by (A14) and Lemma 7.2 that

log(2D) = H(UH) ≤ H(𝜙(UA)) + 2𝑑ent(𝜙(UA),UH) ≤ 10k + 24𝜀 ≤ 34k,

and so D ≤ 100k. This gives Theorem 7.3 simply by taking A=A′, B = B′, since C1 ≥ 100.

Alternatively, suppose that H is a proper subgroup of FD
2 . Denote by 𝜙̃ the composition

of 𝜙 with projection to FD
2 ∕H. By (A17) we have

H(𝜙̃(UA)) ≤ 2𝑑ent(𝜙(UA),UH) ≤ 32𝜀.

By (A2) there is some x0 such that P(𝜙̃(UA) = x0) ≥ e−32𝜀 ≥ e−32𝛿 . Choosing 𝛿 sufficiently

small, this is ≥ 1 − 𝛿0 where 𝛿0 is the constant in Lemma 5.1, and so by Lemma 5.1

H(𝜙̃(UA)) ≤ 2𝑑ent

(
𝜙̃(UA), 𝜙̃(UA)

)
≤ 4𝑑ent(𝜙̃(UA), 𝜙̃(UB))

where the second inequality is by (1.3). The same bound holds for H(𝜙̃(UB)).
Hence by Lemma 7.4 applied to 𝜙̃, A and B (noting that we cannot have H(𝜙̃(UA)) =

H(𝜙̃(UB)) = 0, as then A,B would be contained in cosets of a proper subgroup) we deduce

that there exist x ∈ FD
2 ∕H, y ∈ FD

2 ∕H such that

log
|A||Ax| + log

|B||By| ≤ 8
(
k − 𝑑ent(UAx ,UBy )

)
, (7.12)

where Ax = A ∩ 𝜙̃
−1(x), By = B ∩ 𝜙̃

−1(y).
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GREEN ET AL. 23

We now finish the proof as before. Set k′ = 𝑑ent(UAx ,UAy ), which is ≤ k by (7.12).

Since A,B are not contained in cosets of a proper subgroup of ZD, we have

|Ax| + |By| < |A| + |B|
and so by induction we may find A′ ⊆ Ax, B′ ⊆ By with

log
|Ax||A′| + log

|By||B′| ≤ f (k′)

and dim A′, dim B′ ≤ C1k′ ≤ C1k. Combining with (7.12) gives

log
|A||A′| + log

|B||B′| ≤ f (k′) + 8(k − k′).

By (7.8) (and since C1 ≥ 8) this is at most f (k). This closes the induction in Case 2 and

the proof of Theorem 7.3 is complete. ▪

Remark. For this argument, the full strength of Proposition 1.3 was not needed, and the

weaker bound (5.3) would have sufficed.

8 ENTROPY FORMULATION OF PFR OVER F2

In this section we establish Proposition 1.10. Recall that the content of this proposition is that the

following two statements are equivalent:

Statement 1. If A ⊆ FD
2 and if 𝜎[A] ≤ K then A is covered by O(KO(1)) cosets of some subspace

H ≤ FD
2 of size at most |A|.

Statement 2. If X, Y are two FD
2 -valued random variables, there is some subgroup H ≤ FD

2 such

that 𝑑ent(X,UH), 𝑑ent(Y ,UH) ≪ 𝑑ent(X, Y).

Proof of Proposition 1.10. We first derive the entropic statement, that is to say Statement

2 above, from the combinatorial one (Statement 1). Write k ∶= 𝑑ent(X, Y) and set K ∶= ek.

We may assume that k ≥ 𝜀0, where 𝜀0 is the constant in Proposition 1.3, since the claim

follows immediately from that proposition otherwise. Applying Proposition 1.2 with C =
4, we obtain a set S ⊆ FD

2 with

𝑑ent(X,US) ≪ k (8.1)

and (recalling that
|S+S||S| ≤

(|S−S||S|
)3

; see for example, [22, corollary 2.12])

|S + S| ≪ KO(1)|S|. (8.2)

By Statement 1 there is a subgroup H ≤ FD
2 , |H| ≤ |S|, such that S is covered by O(KO(1))

cosets of H. Note, in particular, that S+H is contained in the union of the aforementioned

cosets, and so |S + H| ≪ KO(1) min(|S|, |H|). Now for any sets A,B we have
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24 GREEN ET AL.

𝑑ent(UA,UB) = H(UA − UB) −
1

2
(H(UA) + H(UB))

≤ log |A − B| − 1

2
(log |A| + log |B|)

= log

( |A − B||A|1∕2|B|1∕2

)
.

(This is the bipartite version of (1.1).) Applying this with A = S and B = H (and noting

H = −H) gives 𝑑ent(US,UH) ≪ k, and so by the triangle inequality and (8.1) we have

𝑑ent(X,UH) ≪ k, which is the conclusion in Statement 2.

We turn now to the reverse implication, deriving the combinatorial Statement 1 from

the entropic Statement 2. Suppose that A ⊆ FD
2 is a set and write K∶= 𝜎[A] and k∶= log K.

Then, by (1.1), we have 𝑑ent(A,−A) = log 𝜎ent[A] ≤ k. Assuming Statement 2, there is

some finite subgroup H ≤ FD
2 with 𝑑ent(UA,UH) ≪ k. By (A14) and the fact that H(UA) =

log |A|, H(UH) = log |H|, we have

K−O(1)|A| ≪ |H| ≪ KO(1)|A|. (8.3)

Writing p(x) for the density function of UA−UH , thus p(x) = |A∩(H+x)||A||H| , it follows from (A2)

that there is some x0 such that

p(x0) ≥ e−H(UA−UH ) = e−𝑑ent(UA,UH )|A|−1∕2|H|−1∕2 ≫ K−O(1)|A|−1,

or in other words |A ∩ (H + x0)| ≫ K−O(1)|H|.
Recall the Ruzsa covering lemma (see e.g., [22, lemma 2.14]), which states that if|U + V| ≤ K|U| then V is covered by K translates of U − U. Applying this with U =

A∩ (H + x0) and V = A, and using the fact that U +V ⊆ A+A and U −U ⊆ H, it follows

that A is covered by O(KO(1)) translates of H.

If |H| ≤ |A|, we are done. If |H| > |A|, pass to a subgroup H′ ≤ H of size in the range

( 1

2
|A|, |A|]; then A is covered by O(KO(1)) translates of H′, and the proof is complete in

this case also. ▪

A minor modification of the first part of the above proof, using the quantity CPFR from the

introduction in place of Statement 1, gives the following statement.

Proposition 8.1. Let X, Y be FD
2 -valued random variables, and suppose that 𝑑ent(X, Y) =

k. Then there is some subgroup H ≤ FD
2 such that 𝑑ent(X,UH) ≤ Ck(1+ kCPFR−1), for some

absolute constant C (which may depend on CPFR).

9 DIMENSION AND THE WEAK PFR CONJECTURE

We now prove Theorem 1.11 (and hence Corollary 1.12). The proof is along somewhat similar lines

to the proof of Theorem 1.8 given in Section 7, but more involved. An important ingredient will be the

following lemma.

Throughout this section, C will be the constant in Proposition 8.1 (but the precise nature of this

constant is not important).
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GREEN ET AL. 25

Lemma 9.1. Suppose that X and Y are FD
2 -valued random variables. Then there is a sub-

group H ≤ FD
2 such that, denoting by 𝜓 ∶ FD

2 → FD
2 ∕H the natural projection, and setting

k ∶= 𝑑ent(𝜓(X), 𝜓(Y)), we have

log |H| ≤ 2(H(X) + H(Y)) (9.1)

and

H(𝜓(X)) + H(𝜓(Y)) ≤ 8Ck
(
1 + kCPFR−1

)
. (9.2)

We isolate the following (sub-) lemma from the proof.

Lemma 9.2. Let n ∈ N. Let X, Y be Fn
2-valued random variables. Set k∶= 𝑑ent(X, Y), and

suppose that

H(X) + H(Y) > 8Ck
(
1 + kCPFR−1

)
. (9.3)

Then there is a nontrivial subgroup H ≤ Fn
2 such that

log |H| ≤ H(X) + H(Y) (9.4)

and (writing 𝜓 ∶ Fn
2 → Fn

2∕H as above)

H(𝜓(X)) + H(𝜓(Y)) ≤ 1

2
(H(X) + H(Y)) . (9.5)

Proof. Set k∶= 𝑑ent(X, Y). Applying Proposition 8.1, we obtain a subgroup H such that

𝑑ent(X,UH), 𝑑ent(Y ,UH) ≤ Ck(1 + kCPFR−1). By (A17) and (9.3), it follows that

H(𝜓(X)) + H(𝜓(Y)) ≤ 4Ck
(
1 + kCPFR−1

)
<

1

2
(H(X) + H(Y)),

which is (9.5). To prove (9.4), an application of (A14) yields

log |H| − H(X) ≤ 2𝑑ent(X,UH) ≤ 2Ck
(
1 + kCPFR−1

)
,

and similarly for Y . Therefore using (9.3) we have

log |H| ≤ 1

2
(H(X) + H(Y)) + 2Ck

(
1 + kCPFR−1

)
< H(X) + H(Y),

which gives the required bound (9.4).

If H were trivial we would have 𝜓(X) = X, 𝜓(Y) = Y and so (9.5) would imply H(X)+
H(Y) = 0, which then contradicts (9.3). ▪

Proof of Lemma 9.1. We iteratively define a sequence {0} = H0 < H1 < · · · of subgroups

of FD
2 . Denote by 𝜓i ∶ FD

2 → FD
2 ∕Hi the ith associated projection operator, and set ki ∶=

𝑑ent(𝜓i(X), 𝜓i(Y)). We stop the iteration at the ith stage if we have

H(𝜓i(X)) + H(𝜓i(Y)) ≤ 8Cki

(
1 + kCPFR−1

i

)
. (9.6)
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26 GREEN ET AL.

Otherwise, we apply Lemma 9.2 to 𝜓i(X), 𝜓i(Y), obtaining a nontrivial subgroup

Hi+1∕Hi ≤ FD
2 ∕Hi such that

log
|Hi+1||Hi| ≤ H(𝜓i(X)) + H(𝜓i(Y)) (9.7)

and

H(𝜓i+1(X)) + H(𝜓i+1(Y)) ≤
1

2
(H(𝜓i(X)) + H(𝜓i(Y))) . (9.8)

Clearly from iterated application of (9.8) we obtain

H(𝜓i(X)) + H(𝜓i(Y)) ≤ 2−i(H(X) + H(Y)).

Then, from a telescoping application of (9.7) we get

log |Hi| ≤ 2(H(X) + H(Y)). (9.9)

Since the groups Hi form a strictly increasing sequence, the iteration does terminate at

some time i. At this time we have both (9.6) and (9.9) and so, setting 𝜓 = 𝜓i, the proof of

Lemma 9.1 is concluded. ▪

Now we turn our attention to Theorem 1.11. It is a consequence of the following bipartite statement,

which should be compared to Theorem 7.3.

Theorem 9.3. There are absolute constants C1,C2 such that, setting f (t) ∶= C1t(1 +
t1−1∕CPFR), the following is true. Let D ∈ N, and suppose A,B ⊆ ZD are finite non-empty
sets, and set k ∶= 𝑑ent(UA,UB). Then there exist nonempty A′ ⊆ A, B′ ⊆ B with

log
|A||A′| + log

|B||B′| ≤ f (k)

and such that dim A′, dim B′ ≤ C2k.

Proof. We will proceed by induction on |A| + |B|. We may also assume that A,B do not

sit inside cosets of a proper subgroup of ZD, else we may replace ZD by that subgroup.

Let 𝜙 ∶ ZD → FD
2 be the natural homomorphism. By Lemma 7.2 we have

H(𝜙(UA)),H(𝜙(UB)) ≤ 10k. (9.10)

Applying Lemma 9.1 to 𝜙(UA), 𝜙(UB), we find a subgroup H ≤ FD
2 and associated

projection 𝜓 ∶ FD
2 → FD

2 ∕H such that, denoting by 𝜙̃ = 𝜓◦𝜙 ∶ ZD → FD
2 ∕H the natural

(composite) projection, we have

log |H| ≤ 2(H(𝜙(UA)) + H(𝜙(UB))) ≤ 40k (9.11)

and

H(𝜙̃(UA)) + H(𝜙̃(UB)) ≤ 8C𝑑
(
1 + 𝑑CPFR−1

)
(9.12)
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GREEN ET AL. 27

where

𝑑 ∶= 𝑑ent

(
𝜙̃(UA), 𝜙̃(UB)

)
. (9.13)

Now by (9.10), (A4) we also have

H(𝜙̃(UA)) + H(𝜙̃(UB)) ≤ 20k. (9.14)

In the following, set 𝛾 ∶= 1∕CPFR for convenience. If 𝑑 ≥ 1 then taking (9.12) to the

power 𝛾 times (9.14) to the power 1 − 𝛾 gives

H(𝜙̃(UA)) + H(𝜙̃(UB)) ≤ 20Ck1−𝛾𝑑.

If 𝑑 ≤ 1 then the right-hand side of (9.12) is ≤ 16C𝑑. Thus in all cases we have

H(𝜙̃(UA)) + H(𝜙̃(UB)) ≤ 20C(1 + k1−𝛾 )𝑑. (9.15)

Now if H is all of FD
2 then it follows from (9.11) (taking C2 = 40∕ log 2) that D ≤ C2k,

and so Theorem 9.3 is true simply by taking A′ = A, B′ = B.

Suppose, then, that H is not all of FD
2 . For x, y ∈ FD

2 ∕H, denote by Ax ∶= A ∩ 𝜙̃
−1(x)

and By ∶= B∩ 𝜙̃−1(y) the fibres of A,B above x, y respectively. Since we are assuming that

A,B do not sit inside cosets of a proper subgroup of ZD, we may assume that at least one

of 𝜙̃(A), 𝜙̃(B) is not a singleton, and so

|Ax| + |By| < |A| + |B|
and H(𝜙̃(UA)) + H(𝜙̃(UB)) > 0, whereby 𝑑 > 0 by (9.12). Applying Lemma 7.4 once

again, and noting (9.13) and (9.15), we find x, y ∈ FD
2 ∕H such that

log
|A||Ax| + |B||By| ≤ 20C(1 + k1−𝛾 )

(
k − 𝑑ent(UAx ,UBy )

)
(9.16)

Set k′ = 𝑑ent(UAx ,UBy ). By induction on Ax, By we may find A′ ⊆ Ax and B′ ⊆ By such

that dim A′, dim B′ ≤ C2k′ ≤ C2k and

log
|Ax||A′| + log

|By||B′| ≤ f (k′).

Adding this to (9.16) yields

log
|A||A′| + log

|B||B′| ≤ f (k′) + 20C(1 + k1−𝛾 )(k − k′). (9.17)

However,

f (k′) = C1k′(1 + (k′)1−𝛾 )
≤ C1k′(1 + k1−𝛾 )
= f (k) − C1(k − k′)(1 + k1−𝛾 ).
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28 GREEN ET AL.

This, provided C1 ≥ 20C, the right-hand side of (9.17) is at most f (k), and this closes the

induction. The proof is complete. ▪
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APPENDIX A: BASIC FACTS ABOUT ENTROPY

In this section we gather together basic facts about entropy, referring the reader to other sources

(e.g., [20, appendix A] or [6]) for the (standard, and mostly easy) proofs.

We begin with the most basic results.

A.1 BASIC ENTROPY RESULTS
If X is an S-valued random variable for some finite S, the Shannon entropy is defined as

H(X) ∶=
∑

x
pX(x) log

1

pX(x)
,

where x is understood to range over S and3 we adopt the convention that any term involving a factor

of pX(x) vanishes when pX(x) = 0. From Jensen’s inequality we have

H(X) ≤ log |S|. (A1)

Also,

H(X) =
∑

x
pX(x) log

1

pX(x)
≥ min

x∶pX (x)>0
log

1

pX(x)
,

and therefore

max
x

pX(x) ≥ e−H(X). (A2)

If X, Y are random variables then

H(X, Y) ≤ H(X) + H(Y), (A3)

and equality occurs if X, Y are independent. At the other end of the spectrum, if X determines Y then

H(X, Y) = H(X). See for instance [6, lemma 2.3.2].

3We use the natural logarithm in this paper, but one could easily work with other bases of the logarithm if desired.
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30 GREEN ET AL.

A.2 CONDITIONAL ENTROPY
We define

H(X|Y) = ∑
y

pY (y)H(X|Y = y).

Then we have the chain rule

H(X, Y) = H(X|Y) + H(Y).

If Y = f (X) for some function f then, since H(X, Y) = H(X), it follows that

H(f (X)) ≤ H(X). (A4)

A.3 SUBMODULARITY
For any three random variables A,B,C we have the submodularity inequality

H(A,B,C) + H(C) ≤ H(A,C) + H(B,C) (A5)

(which is equivalent to the non-negativity of the conditional mutual information I(A ∶ B|C)); see

for instance [6, lemma 2.5.5].

An equivalent and useful way to write the submodularity inequality is

H(A|B,C) ≤ H(A|C). (A6)

Note also that, if B determines C, then H(A,B,C) = H(A,B) and H(B,C) = H(B), and submo-

dularity implies that

H(A|B) ≤ H(A|C). (A7)

A.4 KULLBACK–LEIBLER DIVERGENCE
Suppose that X, Y are random variables with distribution functions 𝜇X , 𝜇Y respectively. Then we define

DKL(X||Y) ∶= ∑
t
𝜇X(t) log

(
𝜇X(t)
𝜇Y (t)

)
.

It is conventional to define the summand here to be 0 if 𝜇X(t) = 0 and ∞ if 𝜇Y (t) = 0 but 𝜇X(t) ≠ 0; in

practice, we will avoid the latter situation.

It is convenient to relate this to the cross-entropy

H(X ∶ Y) ∶=
∑

t
𝜇X(t) log

1

𝜇Y (t)
(A8)

(where the same conventions are in force). Thus

DKL(X||Y) = H(X ∶ Y) − H(X). (A9)
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GREEN ET AL. 31

In particular, if X takes values in a finite set S, then H(X ∶ US) = log |S| and thus

DKL(X||US) = log |S| − H(X). (A10)

Note that H(X ∶ Y) is not at all the same thing as H(X, Y) (or H(X|Y)). Indeed, the former depends

only on the distribution functions of X, Y and not in any way on their dependence, and it is also asym-

metric in that in general H(X ∶ Y) ≠ H(Y ∶ X). From a standard application of Jensen’s inequality we

obtain Gibbs’ inequality

DKL(X||Y) ≥ 0 (A11)

(see e.g., [6, theorem 2.3.1]); we also have the well known Pinsker’s inequality

∑
t
|pX(t) − pY (t)| ≤ √

2DKL(X||Y), (A12)

see for example, [6, lemma 5.2.8].

Now we turn to some simple results about G-valued random variables, where G is abelian, and we

assume all random variables to have finite support. The reader may wish to recall the definitions of

𝑑ent and 𝑑∗
ent, given at (1.2) and (1.4) respectively.

First, if X, Y are independent such variables then

H(X − Y) ≥ H(X − Y|Y) = H(X). (A13)

From this we see that

𝑑ent(X, Y) = 𝑑ent(Y ,X) ≥
|H(X) − H(Y)|

2
≥ 0. (A14)

Let X be a G-valued random variable, and let H be a finite subgroup of G. Denote by 𝜋 ∶ G → G∕H
the quotient map. Let UH be a uniform random variable on H, independent of X. Then we have

H(X + UH) = H(𝜋(X)) + H(UH) = H(𝜋(X)) + log |H|. (A15)

It follows that

𝑑ent(X,UH) = H(𝜋(X)) + 1

2
(log |H| − H(X)). (A16)

From this and (A14) we have

H(𝜋(X)) ≤ 2𝑑ent(X,UH). (A17)

Also, from Lemma 1.1 and 𝑑ent(UH ,UH) = 0 we observe that

𝑑∗
ent(X,UH) = 𝑑ent(X,UH).
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32 GREEN ET AL.

Finally, if X, Y , Z are G-valued random variables (not necessarily independent), we observe from

the Gibbs inequality (A11) the useful bound

H(Z − Y) − H(Y) ≤ H(Z − Y ∶ X) − H(Y)

=
∑

z
pZ(z) (H(z − Y ∶ X) − H(z − Y))

=
∑

z
pZ(z)DKL(z − Y||X) (A18)

where we have used the permutation-invariance of Shannon entropy to observe that H(z− Y) = H(Y),
as well as the fact that pZ−Y (t) =

∑
z pZ(z)pz−Y (t). Note that we in fact have equality when X = Z − Y .

APPENDIX B: ENERGY, ENTROPY AND DOUBLING

In this section we prove the inequalities (1.1). Recall the statement, which is that

|A|3
E[A]

≤ 𝜎ent[A] ≤ 𝜎[A]. (B1)

Proof. Denote X ∶= UA+U′
A to be the sum of two independent uniform random variables

on A. The right-hand inequality is immediate from the inequality H(X) ≤ log |A + A|,
which is a special case of Jensen’s inequality. As for the left-hand inequality, observe that

pX(x) ∶=
|A ∩ (x − A)||A|2 .

and then by the weighted AM–GM inequality,

e−H(X) =
∏

x
pX(x)pX (x) ≤

∑
x

pX(x)2 = E[A]|A|4 .
The result follows immediately. ▪

The above argument can be reformulated in terms of the Rényi entropies H𝛼(X), defined for

𝛼 ≠ 1 by

H𝛼(X) ∶=
1

1 − 𝛼
log

(∑
x

pX(x)𝛼
)

and extended by continuity to 𝛼 = 1 by setting H1(X) ∶= H(X). A brief calculation reveals the

identities

exp(H0(X)) = |A + A|
exp(H1(X)) = 𝜎ent[A]|A|
exp(H2(X)) =

|A|4
E[A]

,

and the claim now follows from the well-known fact that the Rényi entropy H𝛼(X) is non-

increasing in 𝛼.
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GREEN ET AL. 33

We conclude with a simple example showing that both inequalities in (B1) can be far from tight.

Suppose that n = 2m is even and A = H ∪ {x1, … , xm}, with H a subgroup of size m and x1, … , xm
highly dissociated with respect to H, for instance with xi + xj − xk − xl ∈ H only if {i, j} = {k, l}. Then

we have |A|3∕E[A] = 1

16
+ o(1) as n → ∞. Turning to 𝜎ent[A], we of course have H(UA) = log n. The

variable UA + U′
A may be conditioned to subvariables which are, respectively, uniformly distributed

on H, on the set
⋃m

i=1(xi + H), and on the multiset
⋃m

i,j=1{xi + xj}, with the conditioning probabilities

being
1

4
,

1

2
,

1

4
. One therefore computes that H(UA + U′

A) = ( 7

4
+ o(1)) log n and so 𝜎ent[A] = n3∕4+o(1).

Finally, 𝜎[A] = ( 3

4
+ o(1))n.
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