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Abstract

The entropic doubling 6.y [X] of a random variable X tak-
ing values in an abelian group G is a variant of the notion
of the doubling constant o[A] of a finite subset A of G, but
it enjoys somewhat better properties; for instance, it con-
tracts upon applying a homomorphism. In this paper we
develop further the theory of entropic doubling and give
various applications, including: (1) A new proof of a result
of Palvolgyi and Zhelezov on the “skew dimension” of sub-
sets of Z” with small doubling; (2) A new proof, and an

376201, 256485. . .
improvement, of a result of the second author on the dimen-

sion of subsets of Z” with small doubling; (3) A proof that
the Polynomial Freiman—Ruzsa conjecture over F, implies
the (weak) Polynomial Freiman—Ruzsa conjecture over Z.
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1 | INTRODUCTION AND STATEMENT OF RESULTS

Notation. Throughout the paper we use standard asymptotic notation. The notations X = O(Y), X < Y,
or Y > X all denote the bound |X| < CY for an absolute constant C. Different instances of the notation
may imply different constants C.

1.1 | Entropy doubling and Ruzsa distance

Let G = (G, +) be an abelian group. In this paper, by a “G-valued random variable” we mean a random
variable X taking values in a finite subset of G. Given such a variable, the entropic doubling constant
(first introduced in [20]) oen[X] is defined by the formula

oent[X] 1= exp (H(X; + X3) — H(X)),
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2 Wl LEY GREENET AL.

where X, X, are independent copies of X. Here, H(X) denotes the Shannon entropy of X, the definition
and basic properties of which we review in Appendix A.

If A C G is a finite non-empty set, by abuse of notation we write oent[A] = Genc[Ua], Where Uy is
a uniform random variable drawn from A. For instance, if H is a finite subgroup of G, one can check
that oend[H] = 1.

The entropic doubling constant is related to other standard measures of additive structure via
the inequalities

7' | <0—en IA <O'A| (1 1)
EIA ' ’ '
Here, clA] := | Al | is the doubling constant of A and

E[A] := |{(a1,a2,a3,a1) €EA* @ a1 + ar = a3 + aq}|

is the additive energy of A.

The second inequality in (1.1) was noted in [20, eq. 10], and we recall the proof in Appendix B.
The first inequality seems not to have appeared explicitly in the literature, but it follows easily either
by a direct argument using the weighted AM—GM inequality, or by quoting the monotonicity of Rényi
entropy. For completeness, we give this argument in Appendix B. Both inequalities can be far from
tight: we give an example in Appendix B.

1.1.1 | Entropic Ruzsa distance

If X,Y are G-valued random variables (not necessarily independent, or even defined on the same
sample space), then we define the entropic Ruzsa distance d.,;(X,Y) between these variables by
the formula

dem(X,Y) :=HX' -Y") - %H(X’) - %H(Y'), (1.2)

where X', Y’ are independent copies of X, ¥ respectively. This concept, introduced by Ruzsa [16] and
studied in more detail by the third author [20], generalizes entropic doubling, since ey [X] = e%n®:=%),

It is easy to see that dep((X,Y) = den(Y,X) > 0, and also that de,(Uy, Uy) = O for any finite
subgroup H of G. Note that d.,(X, Y) depends only on the distributions

px(x) :=PX =x); py® :=P¥ =y)

of X, Y. We have (see the final paragraph of [16], [20, theorem 1.10], or Lemma 1.1 below) the entropic
Ruzsa triangle inequality

dent(X, Z) < den(X,Y) + den(Y, Z) (1.3)

for any three G-valued random variables X, Y, Z.

Remark. 1t is somewhat traditional to use the letter K for the combinatorial doubling con-
stant c[A]. We will generally use the letter k for distances d.n (X, Y). Where these arise
from sets (for instance if X = Y = U,) one should informally think of k being on the order
of log K. It should be carefully noted that k may take values in [0, c0) and is not constrained
to be an integer.
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GREEN ET AL. WI LEY 3

It will be technically convenient to introduce a small modification of the entropic Ruzsa distance.
Define the maximal entropic Ruzsa distance d,(X,Y) to be the quantity

A5 (X, Y) 1= sup (H(X’ Y- %H(X’) - %H(Y’)) (1.4)

Xy

where X', Y’ range over all pairs of random variables with marginal distributions py, py respectively
(i.e., all couplings of X and Y). In particular, X', Y’ are not required to be independent.
We have the following observations.

Lemma 1.1. Let X, Y, Z be G-valued random variables. Then:

(i) We have d3(X,Z) < dent(X, Y) + dent(Y, Z).
ity We have dent(X,Y) < d% (X, Y) < 3dene(X, Y).

For the proof, see Section 2.

1.1.2 | Small Ruzsa distance

We turn now to our first main result, which gives a closer connection than (1.1) between small entropy
doubling (or more generally small Ruzsa distance) and small doubling. Here, for a real parameter
p €(0,1), we write h(p) :=plog i +(1—-p)log ﬁ for the entropy of the Bernouilli random variable
with probability p.

Proposition 1.2. Let C > 4 be a real parameter. For any G-valued random variables X, Y
there is a non-empty finite subset S of G such that, if Us is a uniform random variable on
S, then

42 (Us, V) S (C+ Dden(X, 1) + (1 - %) (15)

and
IS — S|
S|

We isolate two special cases of this proposition for future use:

log < (2C + Hdey (X, Y) + 2h(1 - %) (1.6)

(1) If we take C = 4 in the above proposition, then (using, in addition, Lemma 1.1 (ii)) we obtain
the bounds dey(Us, ¥) < 6den(X,Y) +1og2 and |S — S| < 4e!2ex® V)|,

(i) If dey(X,Y) = € for some 0 < & < 11—6, then on taking C := £~'/2 we obtain the bounds

den(Us, V) < €'/ log L and |5 = §] < (1+ 0/ 10g 1)) ISI.

We also remark that a qualitative version of this proposition (with unspecified dependence on
dent(X, Y) on the right-hand side) was previously established in [20, proposition 5.2].
In the regime where d., (X, Y) is small, we can in fact obtain the following more precise result.

Proposition 1.3. There is absolute constant €y > 0 such that the following is true. Let
X, Y be G-valued random variables, and suppose that den (X, Y) < €¢. Then there is some
finite subgroup H of G such that den(X, Uy), dent(Y, Up) < 12dene(X, Y).

Remark. The constant gy could be specified explicitly if desired, but we have not car-
ried out such a calculation. The constant 12 can be improved, but we will not attempt to
optimise it here.
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4 Wl LEY GREENET AL.

1.1.3 | Behaviour under homomorphisms

Given the close relation between notions of entropy doubling and Ruzsa distance and the usual
combinatorial notions, one would be forgiven for wondering what the point of introducing
the former is.

The answer is that the entropy notions are more flexible and behave better in various ways. Most
obviously, they are defined for arbitrary random variables X, with no requirement that X be uniform
on a set. Related to this is the fact that the entropy notions behave well under homomorphisms in a
way that the combinatorial notions do not.

The following is our main result in this direction. Here (and below) we use (X|E) to denote a random
variable X conditioned to a positive probability event E. We adopt the convention that expressions such
as py, y1)py, y2)dent (X1|Y1 = y1), (X2|Y2 = y2)) vanish if one of the events Y = y;, ¥> = y; occurs
with zero probability.

Proposition 1.4. Let 7 : G — H be a homomorphism, let X|, X, be G-valued random
variables, and set Y, .= n(Xy) and Y, := n(X5). Then we have

dent(X17X2) > dent(Yla YZ)
+ ) Py ODPr, 02 den (X1 Y1 = 1), (2] Y2 = 1)) .

Yyi:y,€H

In particular, we have

den(X1,X2) > deni(Y1,Y2)

and thus

Oent[7(X)] £ Gen[X] (L.7)

for any G-valued random variable X.

Remark. The main inequality here is a precise version of the intuition that the doubling
constant of a subset of G in the presence of a homomorphism z : G — H should somehow
be at least the doubling constant of the ‘base’ times some combination of the
doubling constants of the ‘fibres’. To make sense of this rigorously we need to
pass from sets to general random variables, and replace combinatorial doubling by
entropy doubling.

An example of the failure of a similar result in the purely combinatorial setting (in fact
of the analogue of (1.7)) is outlined in [22, exercise 2.2.10].

Remark. Many previous works have noted the advantageous properties of entropy in
somewhat related settings. To give a few examples, in rough chronological order there is
the work of Avez [1] and of Kaimanovich and Vershik [11] on random walks on discrete
groups, the work of Hochman [10] on fractals, and the work of Breuillard—Varji [3] on
Bernouilli convolutions.

1.2 | Structure of sets with small doubling

We turn now to applications of the results of the previous subsection to inverse theorems for sets with
small doubling.
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GREEN ET AL. WI LEY 5

1.2.1 | Skew dimension

The first application is a new proof of a result of Palvolgyi and Zhelezov [15], which they used to give
anew and much shorter proof of a celebrated result of Bourgain and Chang [2]. For the purposes of this
result, an affine coordinate space is a subset of Z” (for some D) obtained by fixing the values of some
possibly empty set of coordinates. For instance, {(2,—1,x3) : x3 € Z} C Z is an affine coordinate
space. If A is a finite subset of some affine coordinate space V, its' skew-dimension dim,(A) is defined
inductively, as follows:

1. dim.(A) = 0if and only if A is a singleton (or empty).
2. If r > 1, then dim,(A) < r if and only if there is a coordinate map = : V — Z such that
dim.(z7'(n)NA) < r—1foralln € Z.

Theorem 1.5 (Palvolgyi—Zhelezov). Suppose A is a finite subset of some affine coordi-
nate space with 6[A] < K for some K > 2. Then there is A’ C A with |A’| > K=9W|A|
and dim, A’ < logK.

This result is essentially contained in a paper [ 15] of Palvolgyi and Zhelezov: whilst it is not actually
stated in that paper, it is mentioned in a talk by Zhelezov [23, min 27:30], and can be established using
the methods of [15]. Lecture notes of the first author may be consulted for a detailed account with
some simplifications [8], as well as details of the deduction of the result of Bourgain and Chang.

In fact we will establish the following slightly stronger result.

Theorem 1.6. There is an absolute constant C with the following property. Suppose that
A,B C ZP. Then there are A’ C A and B' C B with |A’||B'| > e~ C4e@B|A||B|, and such
that dim,(A"), dim,(B") < Cdew(A, B).

Setting B = —A and using (1.1), we recover Theorem 1.5. The “bilinear” form of Theorem 1.6 will
be convenient for induction purposes.

1.2.2 | Dimension and PFR over Z

Whilst the notion of skew-dimension is useful in the context of the work of Bourgain and Chang,
the actual (affine) dimension dimA, defined as the dimension of the span of A — A over the
reals, is a more intrinsically natural quantity. Note that dim, A < dimA for any A. It is conjec-
tured that Theorem 1.5 remains true with dim, A’ replaced by dim A’ — this is sometimes (see, for
instance, [4], [15, conjecture 1]) called the weak Polynomial Freiman—Ruzsa conjecture (PFR) over
Z. (The term ‘weak’ comes from the fact that only the dimension is controlled, and no attempt is
made to put A economically inside a box or homomorphic image of the lattice points in a convex set.
Such stronger statements are also speculated to be true, but care must be taken in their formulation,
as discussed in [13].)

Conjecture 1.7 (Weak PFR over Z). Suppose that A C ZP” is a set with 6[A] < K. Then
there is a subset A' C A, |A’| > K"°W|A|, with dimA’ <« logK.

Prior to this paper, the best known bound in the direction of this conjecture was a result of the
second author [14].

Theorem 1.8 ([14, theorem 1.5]). Suppose that A C 7P is a finite set with c[A] < K.
Then there is A’ C A with % > exp(—Clog’K) and dimA’ < log K.

'Palvolgyi and Zhelezov use the term query complexity instead of skew dimension.
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6 Wl LEY GREENET AL.

The proof of this result in [14] was a little exotic, making use of projections modulo 2 and a kind
of “U3-energy”. We provide a new, shorter, proof of this result, retaining the first feature but using
entropic notions in place of the exotic energy.

We will eventually go further in this paper by using results on sets with additive structure in F5 to
improve the bounds, but before doing that we make a detour into the world of structure theorems for
sets of small doubling in F%.

1.2.3 | Small doubling in F5 and PFR over F,

In the following discussion, Fg denotes the vector space of dimension D over Fy; the value of D is
typically somewhat unimportant. Essentially everything we have to say would work equally well over
other finite fields F, but this introduces some further technicalities and implied constants would need
to depend on F, and we do not discuss this aspect here.

Denote by Cppr any constant for which the following statement is true: if A C F2, and if the
doubling constant ¢[A] is at most K, then A is covered by exp(O(logCPFR (2K))) cosets of some subspace
H < F5 of size at most |A|. The implied constant in the O() notation is allowed to depend on Cpgg.

A celebrated result of Sanders [18, corollary A.2] (together with standard covering lemmas) is that
one may take Cppr = 4. By an improved version of the argument due to Konyagin (see [19, theorem
1.4]), one can in fact take any Cppr > 3. Strictly speaking, the statement in [19] applies to more
general abelian groups than F2, but replaces the subspace H by a convex coset progression. However,
an inspection of the arguments in the characteristic 2 case shows that the convex coset progression in
this case can be taken to be a subspace (basically because the convex coset progressions are constructed
via Bohr sets, which are automatically subspaces in the characteristic 2 setting). Alternatively, one can
invoke the discrete John theorem (see [21, theorem 1.6]) to control the convex coset progression by a
generalized arithmetic progression (up to acceptable losses, and increasing Cppr by an epsilon), and
then observe that in F2, all generalized arithmetic progressions are in fact subspaces. We leave the
details of these arguments to the interested reader.

We have the following notorious conjecture, known as the Polynomial Freiman—Ruzsa
conjecture over F.

Conjecture 1.9. We may take Cpgg = 1.

There are a large number of equivalent formulations of Conjecture 1.9; see [7,9,12,17]. We add
a further equivalent form of Conjecture 1.9, formulated in terms of entropy. It says that, in the case
G= Fé) , Proposition 1.3 is valid with no smallness restriction on the entropic distance dey (X, Y).

Proposition 1.10. Conjecture 1.9 is equivalent to the claim that, for any F5-valued
random variables X, Y, there is a finite subgroup H < Fg such that deyw(X,Upy) <
dent(X, Y).

1.2.4 | Small doubling and dimension, again

We now return to the main topic, and offer the following improvement of Theorem 1.8.

Theorem 1.11. Suppose that A C ZP is a finite set with o[A] < K. Then there is A’ C A
, 1

with % > exp(—Clog2_mK) and dim A’ < log K.
We remark that the constant C is allowed to depend on Cppr (and so by implication on the implied
constant in the definition of Cpggr). As it turns out, the implied constant in the < is independent of

Cprr, and in particular can be taken to be 40/ log 2.
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GREEN ET AL. WI LEY 7

Thus, using the Konyagin/Sanders result we can obtain

!
||1:|| > exp(—Clog®/3*°VK),

which is the strongest unconditional result currently known. Perhaps more interestingly, we obtain the
following conditional implication between the two forms of the Polynomial Freiman—Ruzsa conjecture
discussed above.

Corollary 1.12. Conjecture 1.9 implies Conjecture 1.7.

1.2.5 | Plan of the paper
We begin by developing the theory of entropy doubling and (entropy) Ruzsa distance, as discussed
above. In Section 2 we establish Lemma 1.1. In Section 3, we look at the link between random variables
and sets and establish Proposition 1.2. In Section 4 we look at homomorphisms and give the (short)
proof of Proposition 1.4. Then, in Section 5, we combine these results to prove Proposition 1.3, which
relates random variables with small entropy doubling to subgroups. This section is a little lengthy but,
as we indicate at the appropriate points, not all of the analysis is needed in subsequent sections.

After this, we turn to the applications to small doubling in Z”. We begin, in Section 6, by proving
Theorem 1.6 (and thus reproving Theorem 1.5). Then, we give a new proof of the result of the second
author, Theorem 1.8.

Next, we take a brief detour into structural results over F,, establishing the equivalence of the
Polynomial Freiman—Ruzsa conjecture in this setting with its entropic formulation (Proposition 1.10).

Finally, we return to small doubling in Z”, establishing Theorem 1.11 (and hence Corollary 1.12)
in Section 9.

Finally, we remark that although we have written the paper in the context of an abelian group G,
many of the arguments (e.g., the proof of Theorem 1.3) do not require this assumption.

2 | ANIMPROVED ENTROPIC RUZSA TRIANGLE INEQUALITY
In this section we prove Lemma 1.1.

Proof of Lemma 1.1. We begin with part (i). It suffices to show that
1
HX -7) - E(H(X) + H(2)) < den(X.Y) + den(Y, 2).
This is equivalent to establishing
HX-2)<HX-Y)+ H(Y - 2)-H(Y)

whenever Y is independent of (X, Z) (but X and Z are not required to be independent of
each other).

We apply the submodularity inequality (AS) withA =X —-Y,B=Z7,C = X —Z. With

these choices we have

HA,B,C)=H(X,Y,Z2) =HX,Z2) + H(Y),
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HA,C)=HX-Y,X-Z)=HX-Y,Y-2) <HX -Y)+ H(Y - 2)

3

GREENET AL.

and

H(B,C) = H(Z, X — Z) = H(X, 2).

In the second display we used (A3). Applying (A5) gives part (i) of Lemma 1.1.

For part (ii), the first inequality dey(X,Y) < di(X,Y) is trivial. For the second

inequality, we apply (i) and (1.3) to conclude that

denX, Y) < dentX, Y) + den(Y, Y)
S dem(X, Y) + ant(Y’ X) + dent(X, Y)’

giving the claim.

| FROM RANDOM VARIABLES TO SETS

The objective of this section is to prove Proposition 1.2. Let C,X,Y be as in that proposi-
tion. We may assume without loss of generality that X, Y are independent. For brevity we adopt
the notation k : = d., (X, Y). We need to locate a set S satisfying (1.5) and (1.6). The key lemma is the
following.

Lemma 3.1. There exists a finite non-empty subset S of G such that
2
log |S| > H(Y) — 2h(1 - E) — 4k

and such that

d&n(Z,Y) < Ck+ 3 (H(Y) ~ H(2)
whenever Z is an S-valued random variable.

Proof. As X, Y are independent and k = d.n(X, Y), we have
HX-Y) = %H(X) + %H(Y) +k,
and hence by (A14) it follows that
HX -Y)-H(Y) < 2k.
Applying the equality case of (A18), we conclude that

D px()Dgr(x = Y|IX = ¥) < 2k.

Inspired by this, we define S by the formula

S :={x: px(x)> 0,Dg (x— Y|IX = Y) < Ck} .

3.1

3.2)

(3.3)

34

(3.5)
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GREEN ET AL. WI LEY 9

Denote by A the random variable A := lxes, and write p := P(A = 1) = P(X € S). By
Markov’s inequality and (3.4), it follows that

2 1
=PXeSH>1-2>_. 3.6
p=F )= c23 (3.6)
Now we make some observations. First,
HX) = H(X,A)
= H(X|A) + HA) (3.7
=pHX|A =1)+ (1 — pHX]|A = 0) + h(p).
Second, since Y is independent of X and A, it follows using (A13) that
HX -Y|A=1i)>HY),HX|A =)
for i = 0, 1; therefore
HX-Y)>HX-Y|A)
=pHX-Y[A=1)+ 1 -pHX-Y|A=0) (3.8)
> pH(Y) + 22 (H(Y) + H(X]A = 0).
Combining (3.7), (3.8) with (3.3) we conclude after a short computation that
k> gH(Y) _ §H(X|A =1)- %h(p). (3.9)

By (A1), we have H(X|A = 1) < log |S|. Substituting into (3.9) and rearranging yields

log |S| > H(Y) — hp) _ Z—k
4 4

Using (3.6) (and the monotone decreasing nature of h(p) for p > 1/2), we obtain (3.1).
Now we prove (3.2). From (A18) (replacing X by X — Y there) we have
H(Z - Y) = H(Y) £ ) pz()Dir(z = Y|IX = V).
4

Note here that the Kullback-Leibler divergence is well-defined and finite. Indeed, Z
takes values z € S, and hence by the definition of S we have px(z) > 0 for such z. Thus if

P—y() > 0 then py_y(1) = Y px(X)pr—y(t) = px(2)p—y(t) > 0.
By definition of S, Dg;(z — Y||X — Y) < Ck for z in the range of Z, and the claim (3.2)
follows. n

Now we are ready for the proof of Proposition 1.2 itself.

Proof of Proposition 1.2. We begin by establishing (1.5). Let S be as in Lemma 3.1.
Taking Z = Us in (3.2), we have

* 1
den(Us, Y) < Ck+ 7 (H(Y) — log ISD).
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10 Wl LEY GREENET AL.

The required bound (1.5) then follows from (3.1).
Now we prove (1.6). Let Z,Z' be any pair of S-valued random variables. From
Lemma 1.1 (ii) and (3.2) we have

0//:5dny woxy paprojumoq 0 ‘$ 1478601

din(Z,Z') < dent(Z,Y) + deni(Z', Y)
<2Ck+HY) - %H(Z) - %H(Z’)
or equivalently
H(Z - 7Z') < 2Ck + H(Y). (3.10)

Now we observe that it is possible to choose Z,Z’ supported on S so that Z — Z' has
the uniform distribution on § — S. To do this, simply take (Z,Z’) to have distribution
function

L 1
Pzz)(s1,82) 1= IS—S[#{(t1,) €ES - 11 —1r = 51 — 52}

for sy,52 € S. In this case H(Z — Z') = log|S — §|. Using (3.10) and (3.1), (1.6)
follows. [

Remark. The last part of this argument has considerable similarity with [16, sect. 5].

4 | ENTROPY DISTANCE UNDER HOMOMORPHISMS

:sdiy) SuonIpUoy) pue swia I oy 295 “[707/80/€T] U0 ATRIqIT QWU K]t A\ “ANSIOATUN) UOWAULI Aq TSTTTBSYZ00T 01/10p W00 Ko

In this section we establish Proposition 1.4. Let notation be as in the statement of that
proposition.

Proof of Proposition 1.4. We have

woo Koy

H(X—Xz|Y1, Y2)
= > prO0prLODHX — Xo| Vi = y1. Y2 = y). @D

Y €H

-pUB-SULID)

HX Y1) = ) py, 0DHX) Yy = y)

= Y Py, 00y 02)den((Xi Y1 = y1), (X2 Y2 = y2)).
Y €H

yiEH ;

4.2) Z

= Z Py,v0py,02)HX Y1 = y1), 7

Y1y €H q

and similarly 9
HXGIY2) = ) py,00py, 02)HX|Ys = y2). 43)

Yi:y2€H "g

Subtracting half of (4.2) and half of (4.3) from (4.1) gives 7:—
1 1 2

HX, - Xx|Y1, Y2) — SHX, Y1) - SHX;|Y2) 5

2 : (4.4)
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Now X; determines Y;, and so
HX, Y1) = H(X)) - H(Y1), H(X:|Y2) = H(Xz) — H(Y?2). 4.5
Moreover, by (A7),

HX| — X,|Y,,Y2) S HX| — X3|Y| = 12) 46)

=HX, - X;) - H(Y, - Y») '
(because X; — X, determines Y; — Y;). Combining (4.4), (4.5), (4.6) gives the result.
In fact one sees that the difference between the LHS and the RHS in the proposition is
HX; — Xo|Y1 — Y2) — H(X; — Xa|Y1, Y2). L]

5 | VERY SMALL ENTROPY DOUBLING

In this section we prove Proposition 1.3, which states that random variables X, Y for which dey (X, Y)
is small are close to uniform on a subgroup. We first handle the case X = Y (in which case we will
establish Proposition 1.3 with the improved constant of 6). Assume henceforth that X is a G-valued
random variable with d. (X, X) = € < &q.

We first observe that a weak version of Proposition 1.3 (which in fact suffices for many applica-
tions) follows quickly from Proposition 1.2. As observed in item (ii) after Proposition 1.2, we see that
there is S such that

den(Us, Y) < €'/% log 1 5.1
E

and

IS— 5| < <l+0(£1/210gé>>|5| < %lSI, 5.2)

where the last inequality holds if £y is small enough. A well-known classical observation of Freiman [5]
now implies that H := S — S is a group. We recall the short proof here.
Forany x,y € S,x—Sandy— SbothlieinS—Sandso |[x—S)ny—39)| > %|S|. That is, there
are > %lSI pairs (#,v) € S X S such that x — u = y — v. For each such pair, we have x —y = u — v.
Now let x',y' € S be any other elements. Similarly, there are > %lS | pairs (u’,v') € S x S such that
x —y =u' — V' There are > %|S| values of v and > %|S| values of «/, and all these values lie in S;
therefore we must have v = ' for some pair of these elements. It then follows that (x — y) + (X' —y') =
w—v)+@ —v)=u—-v €S-S8. Since x,y,x',y were arbitrary, it follows that S — S is closed under
addition. Since it contains 0 and is closed under taking inverses, it must be a group.
From (A16) (noting that § is contained in a single coset of H) and (5.2) we have
|H| 1/2

1
dent(Ug, Us) = 3 log S <€

log 1
€
Therefore from (5.1) and (1.3) we have

den(Ug, Y) < €'/? log 1 (5.3)
E
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12 Wl LEY GREENET AL.

This is weaker than Proposition 1.3 only in the non-linear dependency on g, which in many applications
is not important.

We will deduce the stronger statement of Proposition 1.3 by bootstrapping this bound. To do this,
we require two lemmas which are essentially special cases of Proposition 1.3 itself. First, we consider
the case in which X is highly concentrated near one point.

0//:5dny woxy paprojumoq 0 ‘$ 1478601

Lemma 5.1. There is 69 > 0 such that the following is true. Suppose that X is a G-valued
random variable and xy € G is a value such that P(X = x¢) > 1 — 6y. Then H(X) <
2den(X, X).

Proof. By replacing X by X — xj if necessary, we may assume without loss of general-
ity that xo = 0. Let X;, X, be independent copies of X. Then our task is equivalent to
showing that

HX, - X)) > %H(X). (5.4)

Write p := P(X # 0) (thus p < ), and let A denote the indicator function of the event
that X;, X5 # 0; then P(A = 0) = 1 — p? and P(A = 1) = p®. As a consequence, we have

HX-X,) > HX; — X2|A)
= (1 = pHHX; — X2|A = 0) + p"H(X; — X2|X1, X2 # 0) (5.5)
> (1 - pHH(X; — X2|A = 0) + p"H(X|X # 0)

where we used (A13) in the last line.
Now note that for any z, if A = 0 and X; — X, = z then (X|, X;) can take only two
values (z,0) and (0, —z) if z # 0, and only one value (0, 0) if z = 0. Hence

:sdiy) SuonIpUoy) pue swia I oy 295 “[707/80/€T] U0 ATRIqIT QWU K]t A\ “ANSIOATUN) UOWAULI Aq TSTTTBSYZ00T 01/10p W00 Ko

H(X1,X3|A = 0) - H(X; — Xz]A = 0)
=HX, X5|X) — X5,A=0)

woo Koy

-pUB-SULID)

<P(X; - X, # 0]A =0)log2 = Mlogz
p

Combining with (5.5), we obtain

HX, - X2) > (1 — pHH(X(, X2|A = 0) 56
+ PP H(X|X # 0) — 2p(1 — p) log 2. '
We also observe that

2H(X) = H(X1, X,) = H(X1, X2, A) = H(X1, X2]A) + H(A)
= (1 - pHH(X1, X2|A = 0) + p"H(X1, X2|A = 1) + h(p?) (5.7)
= (1 —pHH(X,, X>|A = 0) + 2p*H(X|X # 0) + h(p?).

We further note that, writing [ for the indicator of X # 0,

H(X) = HX|I) + H(I) = pH(X|X # 0) + h(p). (5.8)

50O SUOWIO)) 2ATEA1) 2[qeat|dde o Aq PIWIOACS I SOJITIE VO (SN JO SO[NI 10§ ATRIQIT AUIUQ AAJLA UO (SUOTIp
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Taking (5.7) minus p times (5.8) gives

0//:5dny woxy paprojumoq 0 ‘$ 1478601

2 - p)HX) = (1 - pHH(X;, X2]A = 0)+
+p*H(X|X # 0) + h(p?) — ph(p).

Combining this with (5.6), we obtain
H(X; — X3) > (2 — p)H(X) + ph(p) — 2p(1 = p)log2 — h(p?). (5.9)

Recall that our aim is to demonstrate (5.4). To get this from (5.9), we first note that
expansion to leading order gives

2p(1 = p)log2 + h(p?) < (% —p)h(p) (5.10)

provided &y is small enough: the LHS here is ~ 2p log 2, whilst the right hand side is ~ %p

log % (A more careful analysis shows that 6y = 2% is sufficient.) We also have
h(p) = H(/) £ H(X). (5.11)

The desired bound (5.4) then follows immediately from (5.9), (5.10) and (5.11). [

Remark. The constant 2 in the statement of Lemma 5.1 can be replaced by anything
larger than 1, at the expense of making 6y smaller. This may be shown with very minor
modifications of the above argument.
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We next consider the case of a random variable supported on H.

Lemma 5.2. Suppose that X is an H-valued random variable with H(X) > log |H| — é
Then

woo Koy

]0g |H| - H(X) < 2dent(Xa X)-

-pUB-SULID)

To prove this we will use the following lemma concerning couplings of almost uniform random
variables, which is plausibly of independent interest. Here, for a probability distribution p on a group
H, we write ||p —uglli := Yoy [P&) — %I| for the #!-distance of p from the uniform distribution
(or, equivalently, twice the total variation ({istance of p from the uniform distribution).

Lemma 5.3. Suppose p1,p2,p3 : H = Ry are three probability distributions on H such
that

lp1 = unlls + llp2 = unlls + llp3 — unll < 1. (5.12)

Then there exists a pair of random variables (X,Y) on H (not necessarily independent)
having the marginal distributions px = p1, py = p2 and px_y = ps.

Proof. We wish to show that the triple of distributions (p1, p2, p3) € R” x R x R¥ lies
in the convex hull of the set X := {(6x, 8y, 0,—y) : X,y € H} C R x R x RY. Here (as
usual) 6,(u) = 1 if u =, and 6,(u) = 0 otherwise. By the (finite-dimensional) Hahn—Banach
theorem, this is equivalent to showing that there is no hyperplane separating (p;, p2, p3)
from X, or in other words whenever f1, f>,f; : H — R are functions such that

50O SUOWIO)) 2ATEA1) 2[qeat|dde o Aq PIWIOACS I SOJITIE VO (SN JO SO[NI 10§ ATRIQIT AUIUQ AAJLA UO (SUOTIp



14 Wl LEY GREENET AL.

H&) +L0) +fx—y) 20 (5.13)
for all x,y € H, one also has
D)+ Y LGP + Y fE@paa) 2 0. (5.14)
xeH yeEH z€H

Henceforth, assume (5.13). Note that (5.13) and (5.14) are both unaffected if we shift
f1./2.f3 by constants ¢y, ¢z, c3 summing to zero. Thus we may normalize so that

minf] = minf;, = minf;.

If this quantity is non-negative then (5.14) is immediate, so we may assume that it is
negative. By rescaling we may thus normalize so that

minf] = minf, = minfz = —1. (5.15)

In particular, there exists xg € H such that fj(xp) = —1. From (5.13) and (5.15), we
conclude that for every y € H one has

L) +f0—-y) 21 and  min((y),f3(x0 —y)) = —1.

This implies that

L0p2(y) + f3(x0 — y)paxo —y)
2 (2(y) +f3(x0 — ¥)) min(p2(y), p3(xo — ¥))
+ min(2(y), f3(xo — ¥)|p2(y) — p3(xo — y)|
= min(p2(y), p3(xo — y)) — |p2(y) — p3(xo — y)|

_ P20 +p3to—y) _ %)pz(y) — p3Cxo — y)

2
p2(y)+p3xo—y) 3 1 3 1
> 60 S - -—]-= -y - —].
2 > 2|172(y) |H|| 2|P3(Xo y) il

Summing over y, we conclude that

> 00+ D@3 2 1= 2l = anlly = 3 lps — unl.

yeH z€H

Cyclically permuting the roles of fi,f>,f;3 and pi,p>,p3; and averaging, the desired
bound (5.14) then follows from (5.12). [

Proof of Lemma 5.2. By (A10) and Pinsker’s inequality (A12) it follows that

1

lpx = unlli < v/2(og |H| - H(X)) < (5.16)

|

Applying Lemma 5.3 (with p; = p» = px and p3 = ﬁ), it follows that there exists a pair
of random variables (X;, X,) such that X;, X, each have the same marginal distribution as
X, and X; — X5 is uniform on H.
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:sdiy) SuonIpUoy) pue swia I oy 295 “[707/80/€T] U0 ATRIqIT QWU K]t A\ “ANSIOATUN) UOWAULI Aq TSTTTBSYZ00T 01/10p W00 Ko

woo Koy

-pUB-SULID)

50O SUOWIO)) 2ATEA1) 2[qeat|dde o Aq PIWIOACS I SOJITIE VO (SN JO SO[NI 10§ ATRIQIT AUIUQ AAJLA UO (SUOTIp



GREEN ET AL. WI LEY 15

Finally, Lemma 1.1 gives

0//:5dny woxy paprojumoq 0 ‘$ 1478601

log |H| = H(X; — X2) < H(X) + den(X, X)
<SHX) + den(X, X) + den(X, X),

which immediately implies the result. n
Proof of Proposition 1.3. We first establish the case X = Y (with the constant 12 replaced

by 6). Suppose, as we have throughout the section, that de, (X, X) =€ < g9.Letz : G —
G/H be the quotient projection. Recall from (A16) that

denX, Up) = H(z(X)) + % (log |H| — H(X)). (5.17)

From (5.3) we have the weak bound de, (X, Uy) < €'/? log é Thus

:sdiy) SuonIpUoy) pue swia I oy 295 “[707/80/€T] U0 ATRIqIT QWU K]t A\ “ANSIOATUN) UOWAULI Aq TSTTTBSYZ00T 01/10p W00 Ko

H(z(X)) < €'?log 1 (5.18)
€

and

H(X) > log |H| —0(51/2 log 1). (5.19)
€
Now by Proposition 1.4 (replacing H there by G/H, and recalling that de, (X, X) = €)
we obtain

dent (2(X), m(X)) < € (5.20)

and

> Pe DR 02 den (X, X,y) < £ (5.21)

yi:0,€G/H

-pUB-SULID)

where X, denotes X conditioned to the event 7#(X) = y.
By (5.18) and (A2), we see that there is some yo € G/H such that P(z(X) = yg) >

1-0 (5 1/21og é ) By translating X if necessary, we may assume without loss of generality

that yp = 0, that is to say
a1 10
Prco(©0) =P(X € H) > 1 - 02 1og g) > max(H, 1 50) (5.22)

where 6 is the constant from Lemma 5.1, and we assume that £y from the statement of
Proposition 1.3 is sufficiently small.
Applying Lemma 5.1 to z(X) using (5.20), (5.22), we conclude that

H(z(X)) < 2e. (5.23)

Meanwhile, discarding all terms in the sum over y; in (5.21) except the term y; = 0,
and using (5.22), it follows that

Z pﬂ(X)(y)dent(XO»Xy) < l.le.
yeG/H

50O SUOWIO)) 2ATEA1) 2[qeat|dde o Aq PIWIOACS I SOJITIE VO (SN JO SO[NI 10§ ATRIQIT AUIUQ AAJLA UO (SUOTIp
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By (A14), this implies that

> preo()|HX,) — HXo)| < 2.2,
yeG/H

and hence by the triangle inequality
‘H(Xlzr(X)) - H(Xo)| <22
Using H(X) = HX|#z(X)) + H(x (X)) and (5.23), we conclude that
[H(X) — H(Xp)| < 4.2¢. (5.24)
In particular, from (5.19) we deduce
H(X) 2 log [H] - 0 €'/ logé). (5.25)

Now by discarding all terms in (5.21) except the one with y; = y, = 0, and
using (5.22), we have

dent(XOvXO) <1.2le.
It follows from Lemma 5.2 that H(X) > log |H| — 2.42¢, and hence by (5.24) we obtain
H(X) > log |H| — 6.62¢.

Combining this with (5.17) and (5.23) gives den (X, Uy) < 5.31e < 6¢, which is the
statement of Proposition 1.3 (with a better constant) in the symmetric case X =Y.

Finally, we deduce the general case in which X and Y may be different. Suppose now
that den (X, Y) = € < g, where €[, := £0/2 with g, the constant above. By the triangle
inequality, den(X, X) < 2e < g9, and so by the symmetric case of Proposition 1.3 estab-
lished above we have d. (X, Uy) < 12¢ for some subgroup H < G. Similarly, we have
dent(Y, Upr) < 12¢ for some subgroup H' < G.

It remains to argue that H = H’. For this, we observe that by the triangle inequality
we have

d(Un, Upr) < 25¢. (5.26)

If H # H', then H+H’ is a subgroup of G properly containing H, H' and therefore of size at
least 2 max(|H|, |H'|). Since Uy — Uy is uniform on H + H', we have d(Uy, Uy) > log 2,
which contradicts (5.26) if £ is small enough. Therefore we do indeed have H = H’, and
this concludes the proof. [

6 | SKEW DIMENSION AND A RESULT OF PALVOLGYI AND ZHELEZOV

In this section we give the proof of Theorem 1.6 (and thus Theorem 1.5).

Proof of Theorem 1.6. Let € > 0 be a small constant to be specified later, and set C :=
2/e. We will prove Theorem 1.6 with this particular value of C.

0//:5dny woxy paprojumoq 0 ‘$ 1478601
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We proceed by induction on |A||B| and on D. Denote by = : ZP — Z projection
onto the first coordinate. We may assume that at least one of the sets 7(A), #(B) is not a
singleton (otherwise D may be reduced to D — 1).

Let X, X, be uniform random variables on A, B respectively, and let ¥; = z(X)).
Applying Proposition 1.4 and rearranging, we obtain

0//:5dny woxy paprojumoq 0 ‘$ 1478601

. . K
201 0Py, ()log 2 > den (Y1, Y2) ©.1)
ij i

where

K :=exp (den(X1,X2))

and

Kij :=exp (den((X1|Y1 = ), (X2 Y2 = )))) .

We now divide into two cases, according to whether den (Y1, Y2) < € or not.
Case I: den(Y1,Y) < €. Let g be the constant from Proposition 1.3, and assume that

€ < min <60, 2‘—4) By Proposition 1.3 and the fact that H = {0} is the only finite subgroup
of Z, we have

denl(Yl 5 0)’ dent(YL 0) < 12denl(Yl s YZ)'

Since den(Y;,0) = %H(Y,), it follows that

:sdiy) SuonIpUoy) pue swia I oy 295 “[707/80/€T] U0 ATRIqIT QWU K]t A\ “ANSIOATUN) UOWAULI Aq TSTTTBSYZ00T 01/10p W00 Ko

H(Yl) + H(YZ) < 48dem(Y1, YZ) < Cdem(Yl, YZ) (62)

by the choice of C, €. Inserting this into (6.1) and rearranging, we obtain

woo Koy

— ¥ 1 <0.
<K(PY1 (i)PYZ(]'))l/C> -

-pUB-SULID)

D py, (py, () log
ij

In particular, there exist i, j such that
Kij < K(y,0pr,()"/ < K.

Invoking the induction hypothesis (with A, B replaced by A n z~'({i}) and B n z~'({j})
respectively), we see that there are sets A’ C A, B’ C B with

dim, A’,dim, B’ < ClogK;; < ClogK

and
IA'IB'] = KA Nz~ ({iPIB Nz~ (D] = KiFpy, (Dpy,(DIAIIB]

C
K::
> K =2 ) |AlIIB| = K~C|A|lB|.
L K

This closes the induction in Case 1.

50O SUOWIO)) 2ATEA1) 2[qeat|dde o Aq PIWIOACS I SOJITIE VO (SN JO SO[NI 10§ ATRIQIT AUIUQ AAJLA UO (SUOTIp
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Case 2: deni(Y1,Y5) > €.
In this case we see from (6.1) that

. . K
20y (pr,()log - > €.
ij i

The contribution from those (i, j) with log = < 1s at most . Thus if we set

K
=4 @) log =— > = }
{u B>

then
. . K £
2 Prpr()log 2= > 2. 6.3)
(IS
Note in particular that, if (i,j) € S,
Kij <K. (6.4)

By the induction hypothesis, for each pair (i, ) € S there are sets A’ i CA, B! ; € B with
|AL;1IB};| = K Cpy,(Dpy, (DIAIBI, (6.5)

and all with skew-dimension at most

IJ_

ClogK, <C(logK—§)=ClogK—l. (6.6)

(Here we used the fact that C = 2 /¢.)

For each i € Z, set A to be the largest of the sets Az,,’ @i,j)) € S(or Al = ﬂ if (i,j) € S
for every j), and similarly for each j € Z set B]’ to be the largest of the sets B; J, i) €S,
breaking ties arbitrarily. Finally, set A" := | J,c; A} and B' := (J;;, B]. By the definition
of skew-dimension and the bound (6.6), we have dim, A’, dim, B’ < ClogK.

From the elementary inequality # > log? for 7 > 1 applied to t = (K/K;;)C (noting
by (6.4) that we do indeed have ¢ > 1), we have

K £ > CK Clog £
ij

for any (i, j) € S. From this and (6.5), (6.3) we have

A'|IB'| = ) |A]IIB]|

(i)ez?
> )AL 1B
(i)HES
> |AlIB] Y Kifpy, ()py, ()
@)ES
> |AlIB] Y <CK Clog)pyl(opyzo)
((MIEN
> SERClAIBI = KCIAlBI

0//:5dny woxy paprojumoq 0 ‘$ 1478601
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This completes the induction, and the theorem is proved. L]

7 | DIMENSION AND A RESULT OF THE SECOND AUTHOR

We turn now to the question of the dimension (as opposed to the weaker skew-dimension) of subsets of
ZP with small doubling. Our aim in this section is to give an entropic proof of Theorem 1.8. In so doing,
we will also lay the groundwork for the proof of Theorem 1.11, our improvement upon this result.

As in [14, slogan 2.5], a key idea is that a set A C ZP with small doubling must look rather singular
under the projection map ¢ : Z” — F5. In Lemma 7.2 below, we give an entropic formulation of this
principle. We isolate the following lemma from the proof.

Lemma 7.1. Let G be torsion-free, and let X,Y be G-valued random variables. Then
Aent(X,2Y) < 5deni(X, ).

Proof. We assume X, Y are independent. Then?

HX -2Y)=H((X -Y)-Y)

. 1 1 7.1
SdaX =Y., Y)+ EH(X—Y)-F EH(Y)
by definition of d;,,. By Lemma 1.1,
diX =Y, Y) <den(Y,Y) + dentX = Y, Y
t( ) enl( ) enl( ) (7.2)

L2eniX,Y) + dent( X = Y, 7).
Letting Y1, Y> be independent copies of Y (which are also independent of X) we have
deniX =Y, Y)=HX-Y, - Y») - %H(X -Y) - %H(Y). (7.3)
Writing A :=Y,B:=Y,and C :=X - Y| — Y,, we have
H(A,B,C) = H(X, Y1, Y2) = HX) + 2H(Y),

and

HA,C)=HA,C+A) =HY,X-Y,) =HY)+HX - Y»),
HB,C)=HB,C+B)=HY,,X-Y)=HXY)+HX-Y))
so applying the submodularity inequality (AS) gives
HX -Y, -Y,) <HX-Y))+HX - Y,) - HX).
Combining this with (7.3) gives

den(X — Y. V) < %H(X —Y)—HX) - %H(Y)

2The use of d*

ent

here simplifies an earlier version of the argument, and was suggested to the authors by Noah Kravitz.
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20 Wl LEY GREENET AL.

which, together with (7.1) and (7.2), yields
HX —2Y) <2de(X,Y) + 2HX = Y) — HX) = 4de(X, Y) + H(Y)

and so

@M&zns4@M&YrrgHav—Ha»s5¢M&Y>

where we used (A14) in the last step. ]
Lemma 7.2. Let X, Y be ZP-valued random variables for some D > 0. Denote by ¢ :
ZP — F2 the natural homomorphism. Then

H(¢(X)), H(¢(Y)) < 10den (X, Y).
Proof. By Proposition 1.4 and Lemma 7.1,

dent(P(X), $(2Y)) < den(X,2Y) < Sden(X, Y). (1.4)

However, ¢(27) is identically zero and so

dent(P(X), P(2Y)) = deni(P(X),0) = %H(d)(X))-

Combining this with (7.4) gives the stated bound for H(¢(X)). The bound for H(¢(Y))
follows in the same way. n

Remark. It is perhaps worth remarking on the meaning and proof of this statement. Sup-
posing that A ¢ Z” is a set with small (combinatorial) doubling K, it follows that the dilate
2 - A, which is contained in A + A, is commensurate (up to polynomial factors in K) with
A. Projecting mod 2, one therefore expects the projection z(A) to be commensurate with
the projection z(2 - A) = {0}. A version of this argument appears in [14, appendix B]. In
the entropy setting, Lemma 7.1 acts as a replacement for the trivial observation that 2 - A
is contained in A + A.

Now we are ready for the proof of Theorem 1.8 itself. To make the argument work, we will in fact

need to establish the following bipartite variant of the result.

Theorem 7.3. There is an absolute constant Cy such that, setting f(t) := Cit(1 + 1), the
following is true. Let D € N, and suppose that A, B C Z are finite non-empty sets. Then
there exist nonempty A’ C A, B’ C B with

|A] |B|

log — +log — < f (dent(Ua, U, 7.5
o {1 +108 1 < [en(Us, Un)) (7.5)

and such that dim A’, dim B’ < Cideni(Uy, Up).

It is clear from (1.1) that this indeed implies Theorem 1.8.
We first prove a simple lemma which will be used several times in what follows.

Lemma 7.4. Let ¢ : G — H be a homomorphism, and A,B C G finite subsets. For
x,y € Hwrite A, = AN ¢~ (x) and By = B ¢~ (y) for the fibres of A and B, and write

a, = Al and g, := 'f;l'. Write k = den(Ua, Ug), k = deni(p(Uy), p(Up)) and M =
H(d(Uy)) + H(¢p(Up)). Then there exist x,y € H such that Ay, B, are non-empty and with
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klog —— < M (k = den(Ua , Ug)) . (7.6)

a.py

0//:5dny woxy paprojumoq 0 ‘$ 1478601

Proof. First observe that the random variables (U |¢(Ua) = x) and (Ug|p(Up) = y) are
equal in distribution to Uy , Up respectively, that is to say the uniform distributions on the
fibres. It follows from Proposition 1.4 that

Y afyden(Us,. Us) <k —k. a.7)

x,yeH

By definition, M = Zx,y a.py log ﬁ and hence

Z axﬂy <Mdent(UAX’ UB),) + Hog > < Mk.

x,y€H Py

It follows by the pigeonhole principle that there is at least one choice of x,y such that
oy, fy > 0 and

1

Py

< Mk.

Mdenl(UAX’ UB).) + %log

Rearranging gives (7.6). [

We now turn to the proof of Theorem 7.3.
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Proof of Theorem 7.3. Let us begin by noting the simple inequality

f() = Cib(1 +b)

(7.8)
<Cib(1+a)=f(a) - Ci(a—b)(1 +a)

woo Koy

-pUB-SULID)

foralla,b € Rwith0 < b <a.

Let us turn now to the main proof. We will proceed by induction on |A| 4+ |B|. We may
also assume that A, B do not sit inside cosets of a proper subgroup of Z”, else we may
replace Z” by that subgroup. We also suppose D > 1, as the result is trivial otherwise.

Let ¢ : Z” — F? be the natural homomorphism. Then, by the preceding remark and
the fact that ker ¢ is a proper subgroup of Z”, we may assume that at least one of ¢(A), ¢(B)
is not a singleton. For x,y € F?, denote by A, := An ¢~ !(x) and B, :=Bn ¢~(y) the
fibres of A, B. Note that

|Ax| + |By| < |A| +|BI (7.9)

for all x, y.

Write k 1= den(Ug, Ug) and € := den(p(Uys), p(Up)). Let 6 > 0 be a small positive
constant to be determined later, and set C;:= max(20/8, 100). We will divide into two
cases, according to whether or not € < 6.

Case I: € > 6. By Lemma 7.2 with X = Uy, Y = Up, we have

H(¢(Ua)) + H(¢p(Up)) < 20k. (7.10)
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By Lemma 7.4 applied to G = Z” and H = F5, we may find x,y € F2 such that (7.6)
holds. Fix such x,y, and for brevity set k':= dent(Ua,, UBy). Then (7.6) implies that
k' < kand

0//:5dny woxy paprojumoq 0 ‘$ 1478601

Al
|Ax|

1Bl

log <
By |

20K & — ey, (7.11)
E

Noting (7.9), we may apply the induction hypothesis to conclude that there are A’ C A,
B’ C B, with

|Ax|
|A’]

kl
) </

log

+ log

such that dimA’, dim B’ < C1k’ < Cyk. This and (7.11) immediately imply

1AL
|A’]

1Bl

log —- B

+log — | <fk')+ Ok(k - k).
€
By (7.8), this is at most f(k), since C; > 20/ > 20/e. This closes the induction in Case 1.
Case 2: ¢ < 6. Recall here that € = dep(P(Ua), p(Up)), and note that ¢ < k by
Proposition 1.4. Let gp be the constant from Proposition 1.3 and suppose 6 < gp. By

Proposition 1.3 there is some H < F5 such that

dent(P(Un), Un), den($(Up), Up) < 12¢.

It is possible that H = F2. In this case, we have by (A14) and Lemma 7.2 that
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10g(2”) = H(Un) < H($(Un)) + 2den(p(Un), Un) < 10k + 24 < 34k,

and so D < 100k. This gives Theorem 7.3 simply by taking A =A’, B = B’, since C; > 100.
Alternatively, suppose that H is a proper subgroup of F5. Denote by ¢ the composition
of ¢ with projection to F& /H. By (A17) we have

woo Koy

-pUB-SULID)

H($(Un)) < 2den((Un), Up) < 32¢.

By (A2) there is some xg such that P(¢(Uy) = x) > =32 > ¢732%. Choosing 6 sufficiently
small, this is > 1 — §yp where §y is the constant in Lemma 5.1, and so by Lemma 5.1

H(A(Un)) < 2dent ($(Un), $(Un)) < 4deni(P(Ua), $(Up))

where the second inequality is by (1.3). The same bound holds for H(¢(Up)).

Hence by Lemma 7.4 applied to ¢, A and B (noting that we cannot have H(¢p(U,)) =
H((f)( Up)) = 0, as then A, B would be contained in cosets of a proper subgroup) we deduce
that there exist x € FY'/H, y € F5 /H such that

AL | 1og 1B

log
|Ax] 1By

<8 (k= den(Ua, Us)) . (7.12)

where A, =AN¢ (). B,=Bnd ().
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We now finish the proof as before. Set k' = dent(Ua,, Uys), which is < k by (7.12).
Since A, B are not contained in cosets of a proper subgroup of Z”, we have
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|Axl + |By| < |A[ + |B|
and so by induction we may find A’ C A,, B’ C B, with

|Ax| |B)| < ’
k
) 3

1 ,
o8 B~

+ log

and dimA’, dim B’ < C1k’ < C1k. Combining with (7.12) gives

|A] |B| , ,
log— +log—- < f(k')+ 8k —k).
o2 1) o8 < Sk +8( )
By (7.8) (and since C; > 8) this is at most f(k). This closes the induction in Case 2 and
the proof of Theorem 7.3 is complete. n

Remark. For this argument, the full strength of Proposition 1.3 was not needed, and the
weaker bound (5.3) would have sufficed.

8 | ENTROPY FORMULATION OF PFR OVER F,

In this section we establish Proposition 1.10. Recall that the content of this proposition is that the
following two statements are equivalent:

Statement 1. If A C F2 and if 6[A] < K then A is covered by O(K?™M) cosets of some subspace
H < FY of size at most |A].

Statement 2. If X, Y are two F5-valued random variables, there is some subgroup H < F2 such
that denl(Xs UH): dent(Y, UH) < dent(X» Y)
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Proof of Proposition 1.10. We first derive the entropic statement, that is to say Statement
2 above, from the combinatorial one (Statement 1). Write k : = dey (X, Y) and set K : = e*.
We may assume that k > g, where ¢ is the constant in Proposition 1.3, since the claim
follows immediately from that proposition otherwise. Applying Proposition 1.2 with C =

4, we obtain a set S C F2 with

dent(X7 US) <k (81)
3
and (recalling that % < (%) ; see for example, [22, corollary 2.12])
IS + 5| < K°D|s]. (8.2)

By Statement 1 there is a subgroup H < F2, |H| < |S|, such that S is covered by O(K°(")
cosets of H. Note, in particular, that S+ H is contained in the union of the aforementioned
cosets, and so |S + H| < K% min(|S|, |H|). Now for any sets A, B we have
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den(Ua, Up) = H(Uy — Up) — %(H(UA) + H(Up))

< log |4 — Bl - 2 (log|A| + log |B)
=1lo |A_B|
= log |A|1/2|B|1/2 '

(This is the bipartite version of (1.1).) Applying this with A = S and B = H (and noting
H = —H) gives den(Us, Uy) < k, and so by the triangle inequality and (8.1) we have
deni(X, Uy) < k, which is the conclusion in Statement 2.

We turn now to the reverse implication, deriving the combinatorial Statement 1 from
the entropic Statement 2. Suppose that A C F2 is a set and write K : = o[A] and k : = log K.
Then, by (1.1), we have dep (A, —A) = log oen[A] < k. Assuming Statement 2, there is
some finite subgroup H < F’zj with den(Uys, Uy) < k. By (A14) and the fact that H(U,) =
log |A|, H(Uy) = log |H|, we have

K %DIA| < |H| < K°DA]. (8.3)

Writing p(x) for the density function of U4 — Uy, thus p(x) = %, it follows from (A2)
that there is some x; such that

P(XO) > e_H(UA_UH) — e—dem(UA,UH)|A|—1/2|H|—l/2 > K_0(1)|A|_17

or in other words |A N (H + xp)| > K-°W|H]|.

Recall the Ruzsa covering lemma (see e.g., [22, lemma 2.14]), which states that if
|U + V| < K|U| then V is covered by K translates of U — U. Applying this with U =
AN(H+xp)and V = A, and using the factthat U+ V CA+Aand U — U C H, it follows
that A is covered by O(K°()) translates of H.

If |H| < |A|, we are done. If |H| > |A|, pass to a subgroup H’ < H of size in the range
(%lAl, |A|]; then A is covered by O(K°!D) translates of H’, and the proof is complete in
this case also. [

A minor modification of the first part of the above proof, using the quantity Cppr from the
introduction in place of Statement 1, gives the following statement.

Proposition 8.1. Let X,Y be Fg -valued random variables, and suppose that de(X,Y) =
k. Then there is some subgroup H < F? such that den (X, Ug) < Ck(1 4 kCr=1), for some
absolute constant C (which may depend on Cpgg).

9 | DIMENSION AND THE WEAK PFR CONJECTURE

We now prove Theorem 1.11 (and hence Corollary 1.12). The proof is along somewhat similar lines
to the proof of Theorem 1.8 given in Section 7, but more involved. An important ingredient will be the
following lemma.

Throughout this section, C will be the constant in Proposition 8.1 (but the precise nature of this
constant is not important).
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Lemma 9.1. Suppose that X and Y are F5-valued random variables. Then there is a sub-
group H < F2 such that, denoting by y : FY — F5 /H the natural projection, and setting
k 1= den(w(X), w(Y)), we have

log |[H| < 2(H(X) + H(Y)) .1

and
H(y (X)) + H(w (Y)) < 8Ck (1 + kSr=~1) 9.2)
We isolate the following (sub-) lemma from the proof.

Lemma 9.2. Lern € N. Let X, Y be F5-valued random variables. Set k : = den(X, Y), and
suppose that

H(X) + H(Y) > 8Ck (1 + kSr=~1) 9.3)
Then there is a nontrivial subgroup H < ¥} such that
log |[H| < HX) + H(Y) 9.4)
and (writing v : ¥5 — ¥5/H as above)
H(y (X)) + Hy (Y)) < % HX) + H(Y)). 9.5)

Proof. Set k:= den(X,Y). Applying Proposition 8.1, we obtain a subgroup H such that
dentX, Ug), den(Y, Ugy) < Ck(1 + kCr==1). By (A17) and (9.3), it follows that

H(y (X)) + Hy(Y)) < 4Ck (1 + k1) < %(H(X) +H(Y)),
which is (9.5). To prove (9.4), an application of (A14) yields
log |H| — H(X) < 2den(X, Uy) < 2Ck (1 + kSt |
and similarly for Y. Therefore using (9.3) we have
log |H| < %(H(X) +H(Y)) +2Ck (1 + kP=71) < HX) + H(Y),
which gives the required bound (9.4).

If H were trivial we would have yw(X) = X, w(Y) = Y and so (9.5) would imply H(X) +
H(Y) = 0, which then contradicts (9.3). n

Proof of Lemma 9.1. We iteratively define a sequence {0} = Hy < H| < - - - of subgroups

of FY. Denote by y; : F¥ — F2/H; the ith associated projection operator, and set k; :=
dent(Wi(X), w;(Y)). We stop the iteration at the ith stage if we have

H(yi(0) + Hyi(V) < 8Ck; (1+k77"). 9.6)
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Otherwise, we apply Lemma 9.2 to w;(X),y;(Y), obtaining a nontrivial subgroup
HH_]/Hi < Fg/H, such that

l%%%%sm%@»+m%a» ©.7)
and
HOis1 00) + By (1) < & (Hi00) + Hi(1). 9.8)

Clearly from iterated application of (9.8) we obtain
H(yi(X)) + H(yi(Y)) < 27'(HX) + H(Y)).
Then, from a telescoping application of (9.7) we get
log |H;| < 2(H(X) + H(Y)). 9.9)

Since the groups H; form a strictly increasing sequence, the iteration does terminate at
some time i. At this time we have both (9.6) and (9.9) and so, setting y = y;, the proof of
Lemma 9.1 is concluded. n

Now we turn our attention to Theorem 1.11. It is a consequence of the following bipartite statement,
which should be compared to Theorem 7.3.

Theorem 9.3. There are absolute constants Cy, Cy such that, setting f(t) := Cit(1 +
1'=1/Com) the following is true. Let D € N, and suppose A, B C ZP are finite non-empty
sets, and set k := den(Uy, Up). Then there exist nonempty A’ C A, B' C B with

Al o Bl <
¥ £

1
o 8] =

+ log

and such that dimA’, dim B’ < Csk.
Proof. We will proceed by induction on |[A| 4+ |B|. We may also assume that A, B do not

sit inside cosets of a proper subgroup of Z”, else we may replace Z” by that subgroup.
Let ¢ : ZP — F% be the natural homomorphism. By Lemma 7.2 we have

H(¢(Una)), H(é(Up)) < 10k. 9.10)

Applying Lemma 9.1 to ¢(Uy), p(Us), we find a subgroup H < F5 and associated

projection y : F5 — FY/H such that, denoting by ¢ = wo¢ : Z° — F5 /H the natural
(composite) projection, we have

log |H| < 2(H(¢(Ua)) + H(¢(Up))) < 40k 0.11)

and

H(¢(Ur)) + H(p(Up)) < 8Cd (1 + dr") (9.12)
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where

d 1= den (P(Ua), §(Up)) . (9.13)
Now by (9.10), (A4) we also have
H(4(Uy)) + H(p(Up)) < 20k. 9.14)

In the following, set y := 1/Cpgr for convenience. If d > 1 then taking (9.12) to the
power y times (9.14) to the power 1 — y gives

H($(Ux)) + H($(Up)) < 20Ck'7d.
If d < 1 then the right-hand side of (9.12) is < 16Cd. Thus in all cases we have
H(A(Uy)) + H(P(Up)) <20C(1 + k' 7)d. 9.15)

Now if H is all of Fg then it follows from (9.11) (taking C, = 40/ log 2) that D < Cyk,
and so Theorem 9.3 is true simply by taking A’ = A, B’ = B.

Suppose, thianl, that H is not all of F5. For x,y € F¥/H, denote by A, :=An <;3_1(x)
and B, :=Bn¢ (y) the fibres of A, B above x, y respectively. Since we are assuming that
A, B do not sit inside cosets of a proper subgroup of Z”, we may assume that at least one
of p(A), d(B) is not a singleton, and so

|Axl + |By| < |A] + |B|

and H(¢p(Uys)) + H(¢(Up)) > 0, whereby d > 0 by (9.12). Applying Lemma 7.4 once
again, and noting (9.13) and (9.15), we find x,y € F2 /H such that

AL | 18l
Al By

log <20C(1 + k') (k = dent(Ua,, Up)) (9.16)

Set k" = den(Uy,, Ug,). By induction on A,, B, we may find A" C A, and B’ C B, such
that dimA’, dim B’ < Gk’ < Cyk and

Al | vl
1
%) I8 <
Adding this to (9.16) yields
Al B ' 1 /
1 SSfEY+20CA +k77)(k—K). 9.17
gIA’I+ 2 | SfUED) +20C0 + k77)( ) 9.17)

However,
fK) = CK (1 + &)™)
<G4k
=flk) = Ci(k = K')(1 + k'™7).
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This, provided C; > 20C, the right-hand side of (9.17) is at most f(k), and this closes the
induction. The proof is complete. [
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APPENDIX A: BASIC FACTS ABOUT ENTROPY

In this section we gather together basic facts about entropy, referring the reader to other sources
(e.g., [20, appendix A] or [6]) for the (standard, and mostly easy) proofs.
We begin with the most basic results.

A.1 | BASIC ENTROPY RESULTS
If X is an S-valued random variable for some finite S, the Shannon entropy is defined as

HO) = Y py@)log ——

" px(x)’

where x is understood to range over S and® we adopt the convention that any term involving a factor
of px(x) vanishes when px(x) = 0. From Jensen’s inequality we have

H(X) <log|S]. (A1)
Also,

1 .
> min log —,
px(x) ~ xipx@>0 T px(x)

H(X) = ) px(x)log
X
and therefore
max py(x) > e H®, (A2)
If X, Y are random variables then
H(X,Y) < HX)+ H(Y), (A3)

and equality occurs if X, Y are independent. At the other end of the spectrum, if X determines Y then
H(X, Y) = H(X). See for instance [6, lemma 2.3.2].

3We use the natural logarithm in this paper, but one could easily work with other bases of the logarithm if desired.
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A.2 | CONDITIONAL ENTROPY
We define

H(X|Y) = ) py)HX[Y = ).
>
Then we have the chain rule
H(X,Y) = HX|Y) + H(Y).
If Y = f(X) for some function f then, since H(X, Y) = H(X), it follows that

H(f (X)) < HX). (A4)

A.3 | SUBMODULARITY
For any three random variables A, B, C we have the submodularity inequality

H(A,B,C)+ H(C) <H(A,C)+ H(B,O) (AS5)
(which is equivalent to the non-negativity of the conditional mutual information I(A : B|C)); see

for instance [6, lemma 2.5.5].
An equivalent and useful way to write the submodularity inequality is

H(A|B, C) < HA|O). (A6)

Note also that, if B determines C, then H(A, B, C) = H(A, B) and H(B, C) = H(B), and submo-
dularity implies that

H(A|B) < H(A|O). (A7)

A.4 | KULLBACK-LEIBLER DIVERGENCE
Suppose that X, Y are random variables with distribution functions uy, uy respectively. Then we define

. ux (1)
Dgr(X||Y) := ZMX(I) IOg(,uy(t) )

It is conventional to define the summand here to be O if uy () = 0 and oo if uy () = 0 but ux(¢) # 0; in
practice, we will avoid the latter situation.
It is convenient to relate this to the cross-entropy

HX:Y):= Zux(r) log 1 (A8)

: Hy (1)
(where the same conventions are in force). Thus

D (X]|Y) = H(X : ¥) — HX). (A9)
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In particular, if X takes values in a finite set S, then H(X : Us) = log |S| and thus
Dg1(X||Us) = log |S| — H(X). (A10)

Note that H(X : Y) is not at all the same thing as H(X, Y) (or H(X|Y)). Indeed, the former depends
only on the distribution functions of X, ¥ and not in any way on their dependence, and it is also asym-
metric in that in general H(X : Y) # H(Y : X). From a standard application of Jensen’s inequality we
obtain Gibbs’ inequality

Dk (X||Y) >0 (A11)

(see e.g., [6, theorem 2.3.1]); we also have the well known Pinsker’s inequality
Y Ipx(®) = pr(®)] < V2D (X[Y), (A12)
t

see for example, [6, lemma 5.2.8].

Now we turn to some simple results about G-valued random variables, where G is abelian, and we
assume all random variables to have finite support. The reader may wish to recall the definitions of
dene and di,,, given at (1.2) and (1.4) respectively.

First, if X, Y are independent such variables then

HX-Y)>HX-Y|Y) =HX). (A13)
From this we see that

dent(X,Y) = den(Y, X) >

IHE) = HY)| ; HOL 5 o, (Al14)

Let X be a G-valued random variable, and let H be a finite subgroup of G. Denoteby = : G - G/H
the quotient map. Let Uy be a uniform random variable on H, independent of X. Then we have

H(X + Uy) = Hz(X)) + H(Uy) = Hx(X)) + log |H]|. (A15)

It follows that

dent(X, Un) = H(z(X)) + %(log |H| — H(X)). (A16)

From this and (A14) we have

H(z(X)) < 2den(X, Un). (A17)
Also, from Lemma 1.1 and d.(Uy, Uy) = 0 we observe that

déknt(X, UH) = dent(X, UH)
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Finally, if X, Y, Z are G-valued random variables (not necessarily independent), we observe from
the Gibbs inequality (A11) the useful bound

0//:5dny woxy paprojumoq 0 ‘$ 1478601

HZ-Y)-HY)<HZ-Y : X)- H®Y)

= Hz-Y : X)—-H(iZ-Y
ZPZ(Z)( z )—H(z-Y)) Als)

= sz(z)DKL(Z - YlIX)

where we have used the permutation-invariance of Shannon entropy to observe that H(z — Y) = H(Y),
as well as the fact that p;_y(7) = ZZ pz(2)p.-y(1). Note that we in fact have equality when X =Z — Y.

APPENDIX B: ENERGY, ENTROPY AND DOUBLING

In this section we prove the inequalities (1.1). Recall the statement, which is that

AP _ o A] < olA] (B1)
E[A] — ent — .
Proof. Denote X := U, + U/, to be the sum of two independent uniform random variables
on A. The right-hand inequality is immediate from the inequality H(X) < log|A + A|,
which is a special case of Jensen’s inequality. As for the left-hand inequality, observe that

_ An(x—-A)
px(x) = T
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and then by the weighted AM-GM inequality,

woo Koy

- e _ E[A]
e HX = 1:[Px(x)p < ;PX()C)2 = W.

-pUB-SULID)

The result follows immediately. L]

The above argument can be reformulated in terms of the Rényi entropies H,(X), defined for
a # 1by

H,(X) := lia log(pr(x)a>

and extended by continuity to a = 1 by setting H;(X) := H(X). A brief calculation reveals the
identities
exp(Ho(X)) = |A + A|
exp(Hi (X)) = oen AllA|
|Al*

exp(H2(X)) = E[A]’

and the claim now follows from the well-known fact that the Rényi entropy H,(X) is non-
increasing in a.

50O SUOWIO)) 2ATEA1) 2[qeat|dde o Aq PIWIOACS I SOJITIE VO (SN JO SO[NI 10§ ATRIQIT AUIUQ AAJLA UO (SUOTIp



GREEN ET AL. WI LEY 33

We conclude with a simple example showing that both inequalities in (B1) can be far from tight.
Suppose that n = 2m iseven and A = HU {xy, ... ,x,}, with H a subgroup of size m and x, ... ,x,
highly dissociated with respect to H, for instance with x; +x; —x; —x; € H only if {i,j} = {k,[}. Then
we have |A|3/E[A] = % + o(1) as n — oo. Turning to oen[A], we of course have H(U,) = logn. The
variable Uy + U} may be conditioned to subvariables which are, respectively, uniformly distributed
on H, on the set U:’;l (x; + H), and on the multiset UZ}:] {x; + x;}, with the conditioning probabilities

11

being i, 3+ ;- One therefore computes that H(Uy + U}) = (% + o(1)) log n and 50 6oy [A] = n¥/4+o0),

Finally, o[A] = ( + o(1)n.
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