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1 | INTRODUCTION

A transversal in an n X n latin square is a set of n entries such that no two of them come from the
same row or column or contain the same symbol.

Although there are examples of latin squares with no transversals (e.g., the multiplication table
of Z/nZ for n even), it is widely believed that these are rare. For example, a famous conjecture
of Ryser claims that an z X n latin square contains a transversal whenever n is odd. In the same
direction, Kwan [6] proved that a uniformly random n X n latin square has a transversal with prob-
ability 1 — o(1). Moreover, he showed that, with probability 1 — o(1), the number of transversals
is (1 —o(1)n/e?)".

In this paper, we improve Kwan’s result by finding the precise asymptotic of the number of
transversals in a uniformly random latin square.

Theorem 1.1. Let L be a uniformly random n X n latin square. Then L has (e=/2 + o(1))n!? /n"
transversals with probability 1 — o(1) as n — oo.
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More generally, we find a (deterministic) quasirandomness condition for latin squares which is
sufficient to guarantee this same asymptotic number of transversals.

Theorem 1.2. Thereis a constant p > 0 such that the following holds. Let L be an n X n latin square
which is A-quasirandom with parameter p. Then L has (e‘l/ 24 o(l))n!2 /n" transversals.

The precise definition of “.A-quasirandom” is in terms of the spectral gap of some operator
associated to L: see Definition 7.1. Despite the language, it is not actually obvious that a uniformly
random n X n is quasirandom with high probabilityasn — oo, and hence that Theorem 1.2 implies
Theorem 1.1. Indeed, it is incredibly delicate to prove any statistical properties of a uniform ran-
dom latin square, for a number of reasons: the exact asymptotic count of n X n latin squares is
not known; the latin square property is too rigid to make local changes; and no efficient way of
sampling uniform random latin squares is known.

However, using a recent result of Kwan, Sah, Sawhney, and Simkin [7] we are indeed able to
establish that a random latin square is .A-quasirandom with parameter o(1), with high probability,
and we can thus prove Theorem 1.1 as a consequence of Theorem 1.2.

Theorem 1.3. Let L be a uniformly random n X n latin square. Then L is A-quasirandom with
parameter o(1), with probability 1 — o(1) as n - .

Somewhat opposite to random latin squares are latin squares that are multiplication tables of
finite groups. In [3], we proved that as long as the underlying group satisfies a necessary condition
to have at least one transversal, we have the count as in Theorem 1.2 with an extra factor equal to
the size of the group’s abelianization. For some groups, this result is implied by Theorem 1.2 and
the following (easy) result.

Theorem 1.4. Let G be a group and let L; be the multiplication table of G. Then L is A-
quasirandom with parameter 1/D, where D is the minimal dimension of a nontrivial linear
representation of G.

This shows that the .A-quasirandomness condition when restricted to group multiplication
tables coincides with the usual notion of quasirandomness for groups due to Gowers [5]. Thus,
together Theorems 1.2 and 1.4 recover the main result of [3] for sufficiently quasirandom groups.

There appears to be no single universal definition of a “quasirandom latin square,” in the
same way that there is no single definition of a “quasirandom set of integers”. Instead there are
various possible qualitatively inequivalent definitions, some more natural than others, and the
correct choice depends on the problem at hand. For this reason we prefer to talk about a quasir-
andomness condition than about a “definition of quasirandomness,” and we do not claim that the
condition in Definition 7.1 is necessarily the correct one for other problems. In particular it is not
directly related to the notion introduced in [1, 4], as that depends on some additional structure
(namely, an ordering on the set of symbols) to which our condition is oblivious. See Section 7 for
further remarks.

2 | OUTLINE

Our approach is analytical rather than combinatorial. Let X, Y, Z be n-element sets of rows,
columns and symbols. We identify an n X n latin square L with a subset of X X Y X Z satisfying the
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86 | EBERHARD ET AL.

latin square property, that is, every pair from X X Y, Y X Z and Z X X is in exactly one triple from
L. We let L2(X), L?(Y), L?>(Z) denote the spaces of complex-valued functions on X, Y, Z (equipped
with the standard hermitian inner product). The latin square tensor A = A is defined by

A(f,g,h) 1= E(x,y,z)eLf(x)g(y)h(z)

for f € L*(X), g € LA(Y), h € L*(2).

We stress that the latin square tensor A, depends on L, but we will always just write A for
brevity. We use the same notation for powers of L, in the following sense. If L; and L, are latin
squares then L; X L, is also a latin square, where L; X L, is simply the cartesian product of L; and
L, as subsets of X; X Y| X Z; and X, X Y, X Z,. Accordingly the powers L are latin squares of
order n™ for all m > 0, and if f € L*(X™), g € L>(Y™), h € L?*(Z™) then we write

A(f’ 9, h') = E(x,y,z)eme(x)g(y)h(z)-

Of particular interest is the latin square L". We write S (or sometimes Sy to emphasize the
domain, and similarly Sy and S,) for the subset S C X" of all bijections [n] — X. Then one can
check that the number of transversals in L is

nZn
A(ls, ls, 15)7.

Our goal is therefore to show that

A(lg, 15, 1g) = (e7/2 +0(1)) (%)3 2.1

provided that L satisfies an appropriate quasirandomness condition.

We approach (2.1) principally by studying how 1 deviates from its density n!/n". We do this as
follows. For any set A C [m], we may identify L>(X“) with the subspace of L>(X") consisting of
functions X" — C that factor as X — X“ — C; that is, functions f(x,, ..., x,,,) that only depend
on (x; : i € A). These spaces are nested: if A C B then L*(X*) C L?>(X?). We write Q, for the
orthogonal projection L?>(X™) — L?(X“) and P for the orthogonal projection

P, L(X™) - LX(X*)n (1) L2(xP) (2.2)
BGCA

Here L*(XB)! is the space of functions f(x, ..., X,,,) orthogonal to functions depending only on
(x; : i € B), that is, such that E, ;¢ f(x1, ..., x,,) = 0 for any choice of (x; : i € B). Therefore,
the space on the right-hand side of (2.2) is the space of functions depending only on (x; : i € A)
and such that E, f(x,,...,x,,) = Oforanyi € A.

The operators P, Q4 are related via inclusion-exclusion rules:

QA=ZPB’

BCA

Py= Z (_1)|A\B|Q3-

BCA
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TRANSVERSALS IN QUASIRANDOM LATIN SQUARES 87

Hence, we have a kind of “Fourier expansion”

f=2 Pif

AC[m]

for any function f € L?(X™) (which is only truly a Fourier expansion if n = 2 and X" is identified
with F"). Applying this to f = 15 € L*(X"),

AC[n]

By the discussion above, P15 can be thought of as the component of 1¢ that depends exactly on
(x; : i € A) (and is orthogonal to all functions depending only on variables in a strict subset of
A). For example, Py1y is equal to the density n!/n".

The relevance of the P, projections is that any latin square tensor A, is diagonal with respect
to this decomposition: that is,

A, 15,15) = z A(Pp1g, Pylg, Pyl). (2.3)
AC[n]

This is a consequence of the following lemma.
Lemma 2.1. Let f € L*>(X"),g € L>(Y"),h € L>(Z") and A,B,C C [n]. Then
AP, f,Pgg,Pch) =0
unless A =B = C.
Proof. Assume it is not the case that A = B = C. By symmetry we may assume A ¢ B, say i €

A\ B. We may also assume P, f = f, Pgg = g, Poh = h, by replacing f, g, h with their images
under P4, Py, P, respectively. Now consider

A(f,g,h) = E(x,y,z)eL"f(x)g(y)h(Z)-
In particular, consider the average over the variables (x;,y;, z;) € L. Asi ¢ B, there is no depen-
dence on y;, so it is equivalent by the latin square property to average over all (x;,z;) € X X Z. As

Exif(xl, s Xp,) = 0, it follows that A(f, g, h) = 0. O

We now divide up the sum (2.3) according to the size m of A.

2.1 | Major arcs
The terms in this decomposition where A is very sparse (of size up to cn'/2) form the major arcs.

Theorem 2.2. There is a constant ¢ > 0 such that forlogn < m < cn'/?,

1\3
3 A@ALg, Pylg, Paly) = ("—n> e"V/2(1+ 0(m?/n)).
AC[n] "
|[Alsm
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88 | EBERHARD ET AL.

The proof is a mostly mechanical adaptation of [3, section 4], which did not use group theory
in an essential way.

2.2 | Sparse minor arcs

The next range, the sparse minor arcs, concerns A of size up to cn for some small absolute constant
c.

Theorem 2.3. There is a constant ¢ > 0 such that for1 < m < cn,

n!\3
> P15l IPaLslIPATs) < () 0™/ (m /™.
AC[n]
|Al=m

Note |[A(P41g, P41g, P419)| < A(IP 416, |P41gl, [P 41g]) by the triangle inequality. The point is
we have an exponential-in-m gain over the main term provided

mlog(n/m) > C'(m + n/m),
for some large enough C’ > 0. This would be satisfied as long as
C(n/logn)'/?* < m < en, (2.4)

for some large enough C > 0 and small enough € > 0.
We prove Theorem 2.3 by exhibiting a majorant for |P,15| and then using generating
function methods.

2.3 | Dense minor arcs

Finally, we have the dense range, where m > cn. Here we use quasirandomness. To be precise
we define a certain Markov chain on X X Y, with adjacency operator .4, and we consider L to
be A-quasirandom with parameter p if .4 has a spectral gap at least 1 — p, that is, if the spectral
radius of A — U is at most p, where U is the projection to constants (the uniform distribution).
See Definition 7.1.

Theorem 2.4. For every € > 0 there is p > 0 such that if L is A-quasirandom with parameter p,
then

1\3
D IAPALs, Pyl Palg)l < <%) 107"
AC[n]
|A]>en

2.4 | Quasirandomness

It remains (for Theorems 1.1 and 1.4) to demonstrate that the latin squares in scope are quasiran-
dom in this sense. If L is the multiplication table of a group G we compute the entire spectrum of
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TRANSVERSALS IN QUASIRANDOM LATIN SQUARES | 89

A and find p = 1/D where D is the minimal dimension of a nontrivial representation of G, which
shows that our notion of quasirandomness is equivalent to the usual one due to Gowers [5] in the
case of groups. For genuinely random latin squares we use recent work of Kwan, Sah, Sawhney,
and Simkin [7] to show that tr A® = 1 + o(1) with high probability, and this implies that p = o(1).

2.5 | Proof of Theorem 1.2

Putting Theorems 2.2 to 2.4 together, it is straightforward to deduce Theorem 1.2.

Proofof Theorem1.2. LetC andebeasin (2.4)and M := C(n/ log n)'/2. Theorems 2.2, 2.3, and 2.4
give us that for some ¢ > 0

Als 15, 15) = (€772 + O(M*/m)) (%)3

+ 3 o (i)

M<m<en

afn\?
+107( ﬁ) ,
aslong as L is .A-quasirandom with parameter p for small enough p (depending on €). The choice
of M implies (2.1) and hence Theorem 1.2. O

2.6 | Layout of the paper

To prove Theorems 2.2 to 2.4, we need some background material on partition systems (Sec-
tion 3.1) and on the primitive “Fourier analysis” of coordinate projections Q4, P, discussed above
(Section 4). This builds on similar material from [3].

Then, Sections 5 to 7 give the proofs of the three key theorems above. Finally, Section 8 proves
the quasirandomness properties from Subsection 2.4.

3 | PARTITIONS AND PARTITION SYSTEMS
3.1 | Partitions

Most of our language relating to the partition lattice is standard.

(1) If A is a set, IT, is the set of all partitions of A. If A = [m], we will conserve brackets by
writing simply IT,,,.

2) HX‘) is the set of partitions all of whose cells have size at most k.

(3) If A C B, then any partition of A is identified with a partition of B by adding singletons
{{b}: b € B\ A}. With this convention, IT, C IIp.

(4) The support supp 7 of a partition 7 € I1, is the union of the nonsingleton cells of 7. It is the
smallest set B C A such that 7 € Ilj.
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90 | EBERHARD ET AL.

(5) I, isthesetof 7 € HA with supp 7 = A.
(6) If m, ' €I, m < 7’ means that 7 is a refinement of 7’ (i.e., every cell of 7’ is a union of
cells of 7). Synonymously, 7’ is a coarsening of 7.
(7) The meet 7 A 7r’ is the coarsest partition refining both 7z and 7’; the join 7 v 7’ is the finest
partition coarsening both 7 and 7’.
(8) Thepartition{{a} : a € A}isthe discrete partition; the partition {A}is the indiscrete partition.
(9) The rank of a partition 7 € I1, is rank(7) = |A| — |7|; equivalently it is the greatest r such
that there are partitions 7, < 7; < -- < 7, = 7. (Note that rank(7) is meaningful without
specifying A, unlike |7|; that is, it is invariant under adding or removing singletons.)
(10) The Mébius function u at w € I1 is given by u(r) = (—1)rank(z) Hpeﬂ(lpl -1
(11) A function f : A —» X is m-measurable if f is constant on the cells of 7. A subset S C A is
called 7-measurable if 15 is 7-measurable.
(12) If 7 €Tl,, ¢, € L>(X4) is the indicator of m-measurability (i.e., c (f) is 1 if f is
m-measurable, and 0 otherwise).

The exponential formula for partitions states
Z - Z Hx|p| —exp<z 0~ > 3.1
m>0 nell, pen

Here x4, x5, ... are formal variables. We will apply (3.1) several times in Section 6.

3.2 | Partition systems

In Sections 5 and 6, it will be essential to have good bounds on the quantity A(cﬂl,cﬂz, cﬂa) for
A C [n] and various choices 7, 7,, 75 € I1,. This motivates the following definitions.

(1) A partition triple on a set A is a triple B = (71, 75, 73) € Hi.
(2) We call *B a partition system if supp 7; = supp 7, = supp 7.
(3) The support of P is supp B = supp 77; U supp 7, U supp 7.

Definition 3.1 (Combinatorial rank). Let P = (7, 7, 73) € HZ be a partition triple. We write
S C *B to mean that S C 7; U, Ll 73, that is, S is a collection of cells labeled 1, 2, or 3. A subset
S C %P is closed (with respect to *B) if whenever p; € 7; fori = 1,2,3 and p, N p, N p; # B, if two
of p;, p,, p; are in S then so is the third. The closure (S) of S is the intersection of all closed sets
containing S. The combinatorial rank of B = (7, m,, m5) is defined as
crank(®P) = 2|A| — min{|S| : S C B, (S) = P}
The motivation for combinatorial rank is the following bound.
Lemma 3.2. For a set A, partitions 7y, m,, w3 € I1 4, and latin squareL C X XY X Z,

—crank(7y,7,,73)
<A(cﬂ1,cﬂ2,cn3)<n 1712:73)

The idea of the proof is the same as for the related result [3, Lemma 4.6].
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TRANSVERSALS IN QUASIRANDOM LATIN SQUARES 91

Proof. The A value is, by definition, n=2/4! times the number of triples of functions
fii A-X, fri A-Y, f3i A=>2Z

such that f; is ;-measurable for i = 1, 2,3 and such that (f,(a), f,(a), fs(a)) € Lforall a € A.
Note we can think of f; as a function on the cells of 7;, as it is 7r;-measurable.

We claim that, given S C B with (S) = 3, the triple (f,, f,, f3) is determined by the values of
f; on cells in S. Hence, the number of such triples is at most n!S!, giving the result.

Indeed, suppose f', f ; f ; is another triple of measurable functions with the same restriction
to S. Let W C P be the set of all cells p; € 7; such that f;|, = f t’ p,- BY hypothesis W D S. If
p; €m;fori=1,2,3,a € p; N p, N ps, and two of py, p,, p; are in W, then so is the third, as the
triples (f;(a), f»(a), f3(a)), (f{ (a), f;(a), fg(a)) € L agree at two coordinates and so are equal by
the latin square property. Hence, W is a closed set,so W 2 (S) = Pand f; = f l/ ,asrequired. []

This reduces the problem of bounding A(c , ¢, ;) from above to the problem of bounding
crank(rm,, ,, ;) from below. In [3], we did this using two slightly weaker notions of rank, called
triple rank and lower rank, defined, respectively, as

trank(°B) = gle%f(rank(no(l)) + 1ank(7,(5) V 7y3)))

Irank(p) = (rank(z,) + rank(z,) + rank(zs) + rank(z, V 7, vV 73)) /2.
Lemma 3.3. crank(®P) > trank(®B) > lrank(*P).
Proof. For the first inequality, let S C *B contain all of 77; and one cell of 7, from each cell of
7, V 7y Then |S| = |7y| + |7, V 75| and (S) = P, so crank(®P) > rank(xr,) + rank(rx, Vv 73), and
equally for other permutations of 1, 2, 3. The second inequality was proved in [3, Lemma 4.8], and

in any case will not be used in this paper. O

For continuity with [3], we define the complexity of a partition system *J3 to be

cx(*P) = trank () — | supp P|.

The complexity of a partition system is nonnegative, and it is zero if and only if § = (z, 7, 7) for
some matching 7, that is, a partition of A = supp 7 into |A|/2 pairs.

3.3 | Combinatorial rank of matching systems

In this subsection, we compute crank(w,, 7,, ;) for all (7, 7,,7;) € Hf) , that is, partition
triples such that all cells of 7, 7r,, 75 have size at most 2. Where it applies, this is a significant
improvement on what Lemma 3.3 gives us.

Lemma 3.4. Let i, m,, 715 € Hf). Suppose there are precisely k cells p € m, V m, V 75 such that
7|, has full support (i.e., is a matching) for each i € [3]. Then

crank(rm,, m,, m;) = rank(m;) + rank(z,) + rank(z;) — k.
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92 | EBERHARD ET AL.

Proof. As all terms are additive across cells of 7, V 7, V 3, we may assume 7, V 7, V 75 is
indiscrete. In particular, k € {0, 1}, and k = 0 if and only if one of 7,, 7r,, 775 has a singleton.
Case k = 1: In this case 7, 7,, 775 are matchings, so

rank(rr,) = rank(m,) = rank(m;) = |A|/2,
and we must show
crank(m,, m,, m3) = 3|A|/2 - 1.

Let G be the multigraph whose vertex set is A and with edges given by the cells of 7, 7,, 75
(which are all 2-cells). Clearly G is 3-regular, with |A| vertices and 3|A|/2 edges. As 7t V 7, V 75
is indiscrete, G is connected.

According to Definition 3.1, we want to infect as few edges as possible in such a way that, if
two infected edges incident at a vertex always spread infection to the third edge, then infection
spreads to all edges. Note that for this to happen, it is necessary and sufficient to infect at least
one edge in each cycle, as the edges that are uninfected at the end of the process form a subgraph
with no vertex of degree 1. Hence, equivalently, we want to delete as few edges as possible to get
a forest.

As G has 3|A|/2 edges and any forest has at most |A| — 1 edges, we must delete at least
|A|/2 + 1 edges. Conversely, given any connected 3-regular multigraph, we can delete edges until
we have a (simple) tree. Hence, the minimal number of generators is precisely |A|/2 + 1, so
crank(m,, m,, m3) = 2|A| — (|A|/2 + 1) = 3|A|/2 — 1, as claimed.

Case k = 0: In this case, at least one of 7, 7,, 775 has a singleton, and we must show that

crank(rm,, 7,, m;) = rank(smr; ) + rank(rm,) + rank(rm;).
We define a graph G as in the previous case but additionally for every singleton {v} € 7; U 7, U 75
we add an edge {v, *}, where * is a special additional vertex at which infection does not spread.
As Vv m, V myis indiscrete, G\ * is connected. As there is at least one singleton, G is connected.
Again we want to delete as few edges as possible to get a forest. The number of vertices in G is
|A| + 1 and the number of edges is |77;| + |7,| + |73|, so the number of edges we must delete is
precisely |7, | + |m,| + |73 — |A|. Hence,

crank(m,, 7y, w3) = 3|A| — |7, | — |7,| — |75] = rank(mr,) + rank(sr,) + rank(r,),

as claimed. O

4 | THE “FOURIER” EXPANSION OF 1

Recall from Section 2 that Q, denotes the orthogonal projection L?>(X™) — L*(X*) and P,
denotes the orthogonal projection

P, LA(X™) - LA(XMn ﬂ LByt
BGA
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TRANSVERSALS IN QUASIRANDOM LATIN SQUARES 93

and these operators are related via inclusion-exclusion rules:

QAZZPB,

BCA

P,y =) (-1)VIQ,. (4.1)

BCA

In this section, we study the terms in the expansion
Ac[n]

To express some of the results, it is convenient to use the linear map U : C[z] — C defined by

() = {Z"/(n)k k<n,

tk>n.

Here (n), =n(n—1)--(n—k +1).

4.1 | Formulae for P,1g
Let S, C X“ denote the set of injections A — X. Thus, if |[A| = m, |S,| = (n),,.

Lemma4.1. IfA C [n]and |A| = m,

n! n™m

nt (n), 4

Qulg =

Proof. Afunction f: A — X can be extended to a bijection [n] — X in (n — m)! ways if f is injec-
tive and 0 ways otherwise, and by definition Q 4 15(f) is the number of such extensions normalized
by 1/n"~™. O

Lemma 4.2 [3, Lemma 4.3].

Ig, = ) u(me,.

melly

Lemma4.3. IfA C [n] and |A| = m, then

| m
Pylg = %# U(m)P 4.
"M zert,

Proof. Combining the previous two lemmas,

n! n™
Pylg=P,Qulg=——— Y wmP,c,.
n (I’l)m m€lly

As ¢, € L*(X®'PP7), only the terms with supp 7 = A survive. O
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94 | EBERHARD ET AL.

We can use U to give another formula for P, 15. If x € XA (ie.,x : A— X), the kernel ker x €
IT, of x is the level set partition

kerx = {x7'(t) : t € X,x71(t) # 0}.
Note that
c(x) =1 < xism-measurable < 7 < kerx.

Lemma 4.4. Let A C [n], |A| = m. Forx € X", let 1 = ker(x|,) € I14. Then

n!
Pa15(x) = (1™ Cu [Tz - 1.

pen

Proof. From (4.1) and Lemma 4.1, we have

n! A\B| n!B!
Pylg=— Y ()" =—1g .
n" 5ch (m)yp "

Now, the sets B such that x| is injective are precisely those which intersect each cell of 7 in at
most one point. Hence,

n!
Pylg(x) = U ¥ (~D)AVIZPl1g ()
BCA

n! _
= —(-nHA-I"ly -1).
(D p|€ﬂ|(lplz ) 0

4.2 | Sparseval

The word sparseval is our playful term for the computation of ||P,f ||§ for any A C [n]. This is
possible by inclusion-exclusion and orthogonality: as

1Qaf13 =D 1P I,

BCA

it follows that

IPAfI3 = D (=D [IQufI12. (4.2)

BCA
Lemma4.5. IfA C [n]and |A| = m,

2
IPatslE = (2) UG- o).
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TRANSVERSALS IN QUASIRANDOM LATIN SQUARES 95

Proof. Note that |15 |13 = (n) 5 /n'®! for every B C A. Hence, from (4.2) and Lemma 4.1,
|B|
IPAIE( ) = 3 e AL — ().
ich () O

Proposition 4.6. Assume0 < m < nandlett = m/n. Then

0<U(z-D") < (;) e,

where
s(t) = t'/% — tlogt'/? — (1 — t) log(1 + t'/?).
In particular,
U((z—1)") < e2™(m/n)™/>.

Sketch. The inequality U((z - 1)’") > 0 follows from the previous lemma. For the main claim, by
expanding we have
m

U(z-1") = % > <7:>(—1)m_knk(n — k),

" k=0

and this can be identified as (:1)_1 times the coefficient of X in e /(1 4+ X)"~+1, The stated
bound follows by taking a contour integral (chosen in the spirit of the saddle-point method) to
extract the coefficient. For details, see [2, bound for the sum in (5.4)]. Extra care is needed for ¢
near 1, but we omit the details because we will not use the claim for t > 1/2. The second bound
follows by Stirling’s formula. O

The following corollary will not be used but is included for interest.
Corollary 4.7. The sign of P,14(x) is (—1)rank(kerx|s)
Proof. Let m = ker(x|4). By Lemma 4.4, it suffices to prove that

U H(Iplz —-1)>0.

pem

There are nonnegative integers r,, > 0 such that

[Taplz—=» =[] (ol =D +Upl = 1) = Y ruz =)

pPET pPET wCrm

Hence, the claim follows from U ((z — 1)) > 0. O
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5 | MAJOR ARCS

The goal in this section is to prove Theorem 2.2. Define

(=1
Sp= :
sem 2kk!
AC[n]
[Alsm

Our aim is to prove that, for m < cn'/2,

M,, = (&, +0(m?/n)) (%)3

In particular, this implies Theorem 2.2.

5.1 | The quantities y and y,

(5.1)

From Lemma 4.3, it is clear that to estimate A(P41g,P41g,P41g) it suffices to estimate
A(Pyey,, Pycy , Pycy,) for every partition system B = (7, 7,, 73) with support A and aggre-
gate the results with the appropriate weighting. For continuity with [3, section 4], we define the

normalized quantities
Yo(B) = n"™™ PA(e, Lcpe,)

and

y(P) = ntrank(smA(PAcﬂl’PACﬂz’PAC

for any partition triple B = (7, 7r,, 7r5). Note that

0<y7,(P)<1

73)

by Lemmas 3.2 and 3.3. As ¢, € L2(X5'PP7), y(B) = 0 unless B is a partition system.

Lemma 5.1. Let B be a partition system with support supp B = A of size m, and suppose m' points

of A are contained in cells 7w, V 7w, V 75 of size at least 3. Then

ly(P)| < 2.

Sketch. The idea is that

A(PACEI’PACﬂz’PACﬂ'3) = A(CHI,CKZ,PACﬂs)

= Y (DA, s ey, Qpes)

BCA

= Z (—1)|A\B|A(Q30n1’ QpCr,> QpCr,);

BCA
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TRANSVERSALS IN QUASIRANDOM LATIN SQUARES 97

and

QBcﬂ =n" rank(7r)+rank(7r|3)cﬂ|8 ,
where
wlg={pnNB:penr,pnB+#P@}

Let *B|z = (7,1, 75|, 73]5). Then, normalizing,

YOB) = D (D) Ply (Bl p)n BB,

BCA

where
3
t(B, B) = trank(B|z) — trank(P) + Z (rank(7r;) — rank(7;|p)).

i=1

In [3, section 4] we showed t(*B, B) > 0. As y,(*B|g) € [0, 1] for all B this shows |y(*B)| < 2". The
stronger bound with m’ in place of m follows by separating off the doubleton cells of 7r; V 7, V 7.
See [3, section 4] for details. O

52 | The M, (z) series
For a partition triple B = (7, 7,, 7r3) we use the shorthand

u(P) = u(my) u(my) u(rms).

From Lemma 4.3 we have

3
n!\3 plsupp Bl .

My, = <_n> Z <( —> LBy (P)n~ Tankeh)
n suppBem \ Wl supp )

where the sum is over all partition systems on [n]. For z € C define
3 | supp *B| ’
!
M,@=(%) Y ("—) PCOTZE IR
n | supp Pl<m (n)|SUPP Bl

As we have mentioned, cx(®8) > 0 for any partition system 3, so M,,,(z) is a polynomial such that
M,, = M,,(1/n). By bounding M,,(z) and using some complex analysis we will show M,,(1/n) ~
M,,(0), and then we will directly estimate M,,(0).

Proposition 5.2. There is a constant ¢ > 0 such that, for |z|'/?

M, (2)] < <%>2(2—L>3

< ¢/m, we have
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98 | EBERHARD ET AL.

Proof. By the definition of M,,(z), the triangle inequality, and Lemma 5.1, the quantity
IM,,(2)|/(22)" is bounded by

3
2 n_w(%) 2 2Pl (219,
A

|[Alsm supp P=A

where m’(B) is the number of points of supp P contained in cells of 7z; V 7, V 75 of size at least
3. This exact sum was analyzed in [3, section 4.4], and we showed that it is O(n™ /(n),,)* provided
|z|'/2 < ¢/m. The proposition follows. O

Corollary 5.3. There is a constant ¢ > 0 such that, for m < cn'/?,
2 n! 3
IM,, = M,, O] < (m?/m)( )

Proof. By the residue theorem,
1 M, (z)u
My -M, 0= 5§ T s

27i [ iz=r (z —u)z

as long as |u| < R. Hence,

|ul/R
|M,,,(u) — M,,,(0)] < max ax |Mp(2)| —
— lul/R°
Take u = 1/n and R = ¢?>/m?, where c is as in the previous proposition. Then as long as 1/n <
¢ /m?, thatis, m < cn'/2, we get

_ nm \? m?/n
IM,,, — M,,(0)] <<(1+n1/2)2m< >< )

(n),, nt/) 1—m2/(ctn)’

1/2 we get the claimed bound. O

Hence, as long as say m < (¢/2)n

5.3 | The constant term M,,(0)

By definition,

3
3 | supp P|
M= () X <&> HOBYy (PP,

| supp *B|<m (n)| supp Bl
cx(PP)=0

As remarked, cx(*B) = 0 if and only if B = (7, 7, 7) for some matching 7. In this case, if say
| supp | = 2k,

nlsuppBl - 2k

(n)lsuppim B (”)2k
u(P) = u(r)® = (-1,
y(B) = (1 —1/n).

=1+ 0(K*/n),
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TRANSVERSALS IN QUASIRANDOM LATIN SQUARES | 929

The last identity holds by a direct calculation analogous to [3, Lemma 4.10]. The number of
matchings 7 in [n] of support size 2k is

2k
(;{);’!‘ = ;k—k!(l +0(k*/n)).

Thus,

2
3tm/2l ok

M0 =(5) Y Z (14002 /n)
k

n" = 2kk!
nl\3
— (ﬁ> (®,, +0(1/n)).

By combining with Corollary 5.3, we have
n! 3 2
M, = (£2) (@), +0(m?/n))

provided m < cn'/2. This finishes the proof of (5.1).

6 | SPARSE MINOR ARCS

To prove Theorem 2.3, we need a bound on A(|P41g|, |P41s|, |[P41g]) for larger |A|. Note that in
any latin square L’ € (X', Y’,Z"),

AL, 9. W] = [E(yy e f)9R()]
<SEcx fOI[E,, . (epmer s M@ < If 1911l 6.1)

using the latin square property and Cauchy-Schwarz, and similarly permuting f, g, h. One
approach to Theorem 2.3 might be to find upper bounds on |P,14(x)|, pointwise or in L',
and simply apply (6.1). However, by itself this approach is too crude, even assuming optimal
upper bounds.

Another idea is to seek a majorant for |P41¢| of the form

Palsl < D) tacy (6.2)

melly

for some coefficients ¢, > 0. Then

A(lPAlsl, |PA15|a |PA15|) S Z tﬂltﬂztn’3A(cﬂlyc7{29Cﬂ3)

71,705, T3 €Il 4

and Lemma 3.2, together with generating function techniques, gives a way to control the right-

hand side. This bound is particularly effective if 7; € Hf), given Lemma 3.4.
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Again this approach does not succeed by itself. Our final argument works by decomposing

|P 41| into two pieces and combining the two techniques discussed above.

6.1 | A majorant for |P,1|

Throughout this section, let C > 0 be some large enough constant, A C [n] and |A| = m < n/C.

Additionally, we let

§ :=(Cm/n)\/?.

Although we will always have this specific value of § in mind, most of the results in this sec-
tion only rely on § < 1. The next proposition gives a useful bound for |P415|. For § := (Cm/n)'/?,

r > 1, and 7 a partition define

o) tr=1,
o =
r—1 :r>1,

@ _TTs®
O = H O'lpl.

pen
Proposition 6.1. We have
n! s
PALs(Ol < Moy (xe XY,
Proof. From Lemma 4.4,
2 n!
Pals(x) = (- TU,

where 7 = ker x and

¢=[Jdplz-1 =) r,z—1",

pET wCm
ro= [ dpl=-D]] Ip.
pET\w pEw

From Proposition 4.6 and crude estimates (Stirling’s formula), for 0 < d < m,
U(z—1%) < (Cd/n)*? < (Cm/n)¥/? = 5¢
provided C is large enough. Then

U < Z rwc?"‘)'

wCm

= [TdpI—1+1pI5)

pen
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TRANSVERSALS IN QUASIRANDOM LATIN SQUARES 101

®) |pl
=0, H <1 + 5)
pem:|p|>1 |p| -1

<o +26)"

9) 6

as required. O
In light of the proposition, to find majorants for |P 41| of the form (6.2) it suffices to find anal-
ogous bounds for agf). Recall that HX() is the set of all = € IT, having no part of size greater than

k. Let r;(r) be the number of k-cells in 7 and let r; () = Zk>3 i (7T).

Lemma 6.2. Let 7 be a partition.

D
0515) < Z{cf,) R 2 = H(3)}.
(2)
agf) < Z{O’f, s < e, () = V3+(7T)}-
(3)

65,5) < 50 Z{O’f,) U A = H(z)}.

Proof. Consider the first inequality. Both sides are multiplicative across cells of 7, so we may
assume 7 is a single cell, say of size r. The inequality is trivial for r < 3 (as ogf) is one of the

summands on the right-hand side), so we may assume r > 4. Then it suffices to check

r! b
r—1< Z —2".
b
Sa51_, 219a131bb!

This is a calculation for r < 10 (say) and an uninteresting exercise for » > 10.
Now consider the second inequality. This time, the right-hand side is not itself multiplicative
over cells of 7z, but if we replace the condition r4, (7') = r;, () by the stronger one

Vp €, |p| >3 : thereisexactly one p’ € 7’ with p’ C pand |p’| > 3

then it becomes so, and it suffices to prove the corresponding stronger inequality. Now we may
again assume that 7 is an r-cell, and we may assume r > 5. Then we must check

r!
rel< Y o2l
saiintaesy 21¢al3Pblalcc!
b+c=1

Again we omit further details.
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102 | EBERHARD ET AL.

Now consider the third inequality. Again it suffices to consider the case of an r-cell, and we may
assume r > 3. Then the assertion is

|
r—1<67! g9,
h a;:,, al21bb!

As 6 < 1, it suffices to check

Z r!
-1 < )
d al2!bp!

a+2b=r
a<l

which is again essentially a calculation. O
Lemma 6.3. Let x € X*. Then

n! s
IP41s, () < 2™ 3 e ().
ﬂeH(AS)

Proof. By Proposition 6.1,

n! sm @

IPals, (0] < 2ol

By Lemma 6.2(1),

) ) )
of(e)rx < E {G;) cmw<L<kerx, e Hf:)} = E 0; )cn(x).
neny) O

6.2 | A splitting of [P,1,]
We can use the bound on |P 41| given in the previous section to bound the L' norm of P15, but
the bound would not be strong enough for what we need. To go further, we break upR := |P414|
into two parts, a part whose L' norm we can control better, and a part we can analyze separately.
Fixe > 0 and let

I = {melly : ry (m) <em}.
Let I’ = IT, \ IT*. Define

Rﬁ(x) = 1z (ker x)R(x),

Rb(x) = 1p(ker x)R(x).

Clearly, R = R4+ R.
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TRANSVERSALS IN QUASIRANDOM LATIN SQUARES 103

Lemma 6.4. We have

n!
Rbsﬁem Z 0';5)0
e’ NII*)

nl sm ©)
RIi < me z Oy Crs

T

rellf N

n! _
Rf Feamé em 2 Jff)cﬂ.
7eln®

Proof. By Proposition 6.1,

n! sm (8
R(x)gﬁe Oper -

Suppose ker x € IT°. Then by Lemma 6.2(2),
Okerx S 2{0,, 7w <kerx,m € I, ry, (1) > em}.

This proves the bound on R’. The first bound on R is proved identically. The second is proved in
the same way using instead Lemma 6.2(3). O

Corollary 6.5. We have
!
”Rb”1 < Leo(m)(m/n)(l+e)m/2.
nn
Proof. Using the previous lemma, § < 1and ||c,||; = n~ rank(7)

b n! (8), — rank
IR™]l; < ﬁem Z a%n rank()_
rell’ NI
Let

a,(x,w) = Z O_Sré)xrank(n)er(n).

7T€H£,4)
Then, for real w > 1,

Z Jgf)n— rank(m) <w "a,,(1/n,w).
mell’ NI

Using the exponential formula (3.1) with x;, = crl(f)xk‘1 ykfork =1,2,x; = al(f)

3,4,and x; = 0 for k > 5, we obtain

wxk=1yk for k =

Z %ocr(x, w)y" = exp(8y + xy*/2 + wx?y* /3 + wx3y*/8).

r=0 " °
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104 | EBERHARD ET AL.

Hence, for real y > 0,

w ", (x, w) < - " exp(8y + xy*/2 + wx*y /3 + wxy*/8).

eEmyym
y

Putting x = 1/n,y = (mn)'/?, and w = (n/m)'/?, we get

m! e0m),

w ", (1/n,w) < (n/m)em/z.(mn)m/z

This proves what we want. O

Corollary 6.6. We have

1\3
A(R,R,R) < A(RY, R®, RY) + (”—n> o))" (m/n)1+</2m,
n
Proof. We have ||Rji||2 < ||R||, because 0 < R KR pointwise. Hence, from (6.1),

ARR,R,R) = AR, R,R) + A(R", R", R) + AR, R*, R”) + A(R", R, RY)

< AR, RL R + 3|IRIZIR ;.

From sparseval (Lemma 4.5 and Proposition 4.6),

n! \2
IRI2 < (ﬁ) O (g fym/2,

Combining with Corollary 6.5 gives the bound. O

6.3 | The contribution from R’

Finally, we must bound A(Rﬁ, R, Rﬁ). From Lemma 6.4,

! !
RF < Ledms—mQ < g0 /ny=m/2q, (6.3)
n" nn
where
)
Q= Z afr )cn.
el

Hence, it suffices to bound A(Q, Q, Q). The key ingredient for this is the knowledge of the exact
value of combinatorial rank for 7;, 77, 75 € II¥ (Lemma 3.4).

Lemma 6.7.

AQ,Q, Q) < (m/n)>m/2e0m+n/m)

d °1 €T0T XPPTO9F1

sy woyy

:sd11Y) SUONIPUOD) PuE SWA . A1 998 “[4707/30/£7] U0 ATeIqIT SUIUQ AJ[IAL ‘ANSIOAIUN G0N AQ RESTTSWI/ZT [ 1°01/10p/WO Ko[im-

1oy w00 Koji A

25U02 SUOWWIOD) AAIEaL) 2[qeardde ay Aq PAUIAAOS AT SO[OIIE O 595N JO SAINI 0] AIBIGYT SUIUO AB[1 AN TO



TRANSVERSALS IN QUASIRANDOM LATIN SQUARES | 105

Proof. Let M, C H(z) be the set of matchings (partitions all of whose cells have size 2). For

Ty, Ty, T3 € Hfj), let k(7t,, 75, 7r,) be the number of cells p € 7, V 7, V 75 such that ;| , € M,
for each i € [3]. Then, from Lemmas 3.2 and 3.4,

Ale c, )< nk(n‘l ,ﬂz,ﬂ3)—rank(7:1)—rank(ﬂz)—rank(m)‘
3

Ty
Hence,
AQ.Q.Q) = 000N, )
71,705,713 €1)
< 07(2) 07(;3) 07(T53) k(1,705 3)—rank(mr) )—rank(7,)—rank(7s)

TT1,75,73 er)

Z H z nk (L. ms) H o.gfi)n—rank(ni).

nelly pen Ty T EHTDZ) ie[3]

T VIV ={p}

In the last sum above, as m; V m, V3 ={p}, k(mw,,7,, ;) is 0 or 1 according to whether
Ty, 7y, T3 € M. Splitting the sum according to these cases,

AQ,Q,Q) < z H Z H U;é)n—rank(m) " Z " H 0(5) —rank(r;)

nelly pen @ i€l3] T T3EM,  Q€[3
p

01,705,713 €
Vi Va3 ={p}

T VI VT3 ={p}

In the second sum, we will ignore the constraint 77, V 7, V 75 = {p}; in the first sum we will use
only rank(7,) + rank(r,) + rank(rr;) > rank(m, V7, vV ;) = |p| — 1.
Fix parameters w, > 1 for all r > 1. Define

ocr(x)= Z 0.7(T5)xrank(7z)’
EEHE,Z)

oz;(x) — Z 0.(5) rank(r) _ IM,,Ix’/Z,
TEM,

B.(x) = Z H( ~(pl= 1oc|p (wp|x) +x~ oclpl(x)3>.

nell, pen

Then, by the discussion above,

AQ,Q,Q) < B,,(1/n).

Three applications of the exponential formula (3.1) give

D %oc,(x) = exp(8y + xy?/2), (6.4)

r=0
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106 EBERHARD ET AL.

Z —a/(x) = exp(xy*/2), (6.5)
r>0
yrwr—r+1ar(wrx)3 yrx—la;(x)3
2 ' ,Br(x) = exp (Z : + — ) (6.6)
r! ri r!
r=0 rx1 r=2 even

From (6.4), for real y > 0,

a,(x) < — eXp(éy + xy%/2).

Replacing x with w,x, putting w, = 2 /(xr) (we will ensure later that w, > 1 for 1 < r < m) and
y =r/8 gives

—r+1 3 O(r).r sr+2,r—1
w " (w,x)” < e (prgr+2x1,

From (6.5) with y = (r/x)'/2, we have

a)(x) < y— exp(xy’/2) < r'/*(rx/e)"/?

(alternatively, this follows directly from &/ (x) = | M, |x" /2). Hence, from (6.6) for x,y > 0,
Bn(x) < — exp b(x,y), (6.7)

where b is the truncated sum

m

m. oy, ,—r+1 3 —1 / 3

Yw " a,(w,x) o (x)

b(x,y) = Y ——————+ E —r'
r=1 : r=2 :

m m
<« Z eO(r)5r+2xr—1yr + Z rO(l)(e—1/2r1/2x3/2y)rx—1.

r=1 r=2

Inserting x = 1/nand § = (Cm/n)"/2,

m m
b(1/n,y) < 2 om'?y/n*?Y'm + Z rOW(e=1/2p1/2y 1032y .

r=1 r=2

Note that w, = Cm/r, and thisisindeed atleast1forr < m because we may assume C > 1. Finally,
lety = cn3/ 2 /m1/2 for a sufficiently small constant ¢ > 0. Then

b(1/n,y) <xm+n/m.

Hence, from (6.7),
AQ,Q,Q) < B, (1/n) < —exp b(1/n,y) < (m/n)*"/2e0mn/m),

as claimed. O
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TRANSVERSALS IN QUASIRANDOM LATIN SQUARES 107

FIGURE 1 A transition (x,y) + (x’,y’) in the Markov chain.
Putting the last few results together, we have the following theorem, which clearly implies
Theorem 2.3.

Theorem 6.8. We have
n!\?
AP L5l IPALs L IPALsID < (35 ) (m/myP/se0tmensm),
Proof. From Corollary 6.6,

1\3
A(R,R,R) < A(R", R!, RY) + (”—n> O (m /)1 +e/2m
n
By (6.3) and the previous lemma, the main term is

n!
nn

AL BB < (22) e m/m)/20(Q, 0,Q)

o (22 -

nt

Sete =1/4. O

7 | DENSE MINOR ARCS

Define a Markov chain on X X Y as follows. If the current state is (x, y), pick uniformly at random
z € Z. The next state is (x’, '), where x” and y’ are the unique solutions to

(x,y',2),(x',y,z) €L

(see Figure 1). Let A be the transition operator for this Markov chain:

APEN =5 Y FE).

(x,y",2),(x y,2)EL
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108 | EBERHARD ET AL.

The Markov chain is reversible with uniform stationary distribution, so .4 is self-adjoint and has
the constant function on X X Y as a 1-eigenvector. Let U be the projection to constants:

VE = = FEY).
xl,y/

Definition 7.1. We say L is .A-quasirandom with parameter p if A — U has spectral radius at
most p.

In particular, p < 1 if and only if the Markov chain is connected, and in general p measures the
rate of mixing.

Remark 7.2. For a finite set T, let L*(T), denote the subspace { f € L*(T) : Ef = 0}. Then equiv-
alently, L is A-quasirandom with parameter p if the restriction A|;2(xy), has spectral radius at
most p.
All our applications of quasirandomness go through the following lemma.
Lemma 7.3. Assume L is A-quasirandom with parameter p and’ let m > 1. Then
IACf, g, < ™2 NIF 1 llgl 1Rl (7.1)

forall f € L2(X)2™, g € LX(V)™, h € LX(Z)®".

Remark 7.4. Identifying L>(X)®™ with L>(X™) in the usual way, L*(X )?m is identified with the
subspace im Py,,,; € L*(X™); see (2.2).

Proof of Lemma 7.3. By Cauchy-Schwarz,

A 9. = By mpein f()90IR()

< (EZ

F _ 1/2
= (Ez,x,y,x’,y’:(x,y,z),(x’,y’,z)eLmf(x)g(y)f(x,)g(y,)) / lAll,

= (A®"(f ® ), f ® 3)'/?||hll,.

5\ 1/2
Ex,y;(x,y,z>eme<x)g(y>|) 1Al

Note [|f ® 7ll, = If1l,llgll,, and that f ® g € L*(X X Y)gpm. As AlLZ(Xxy)U has spectral radius at

most p, the tensor power A®™| L2y @™ has spectral radius (and hence operator norm) at most
0

o™, so the last expression above is bounded by p™/2 £ 1219l Rll - O

Remark 7.5. As stated in the introduction, while Definition 7.1 has some nice properties (e.g., the
spectral radius of A — U" can be computed efficiently), it is chosen for mainly practical rather than

" Note that the m = 1 case of (7.1) does not obviously imply the general case: the operator-type norm for trilinear forms
does not behave well under taking tensor powers.
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TRANSVERSALS IN QUASIRANDOM LATIN SQUARES | 109

philosophical reasons, and there are similar but qualitatively inequivalent conditions that would
work equally well.

One notable criticism of this definition is that latin squares associated to Steiner triple sys-
tems (i.e., where X = Y = Z and L contains the diagonal {(x, x, x) : x € X}and is invariant under
the S;-action on triples) always fail to be .4-quasirandom with parameter p < 1 (as the diagonal
{(x,x) : x € X} of X XX is a closed set for the Markov chain). On the other hand, a random
Steiner triple system is far from having algebraic structure and presumably satisfies (7.1) for
p = o(1) with high probability as n — .

One point of view is that (7.1) itself is the more natural quasirandomness condition (but harder
to verify), and Definition 7.1 is a convenient sufficient condition.

Proof of Theorem 2.4. Let A C [n] and |A| = m. By Lemma 7.3 and Remark 7.2,

nl\?3
IAPALs, Pals, Pals)l < 0" 2IIP 41513 < o™ 215113 = p™/2( 3 )

nVl

Hence, for p < 1,

n\3
D IAPALs Pals, PaTol < 270" (2)

n
|Al>m n

Taking m = en and p so that 20/ < 1/10, the result follows. O

8 | QUASIRANDOMNESS

In this section, we will verify that two natural classes of latin squares are .4-quasirandom with
parameter o(1):

* multiplication tables of quasirandom groups;
* uniformly random n X n latin squares, with high probability as n — 0.

In the case of a group, we can compute the whole spectrum of .4 using representation theory. In
the case of a random latin square, we will use the bound

1+ 0% <trA®

which holds because the spectrum of A is real and 6 is even. By interpreting n® tr A° as counting
certain kinds of configuration in L (and using a recent result of [7]) we will show that tr A% =
1 + o(1) with high probability, which implies that p = o(1). (Using the same method one can show
that tr A* = 3 + o(1) with high probability, so 6 is the smallest even integer that we can use for
this argument.)

8.1 | Quasirandom groups

The following proposition shows that our quasirandomness condition generalizes the definition
of a quasirandom group (see [5]), implying Theorem 1.4.
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110 | EBERHARD ET AL.

Proposition 8.1. Suppose L is the multiplication table of a group G. Then the spectrum of A consists
of d*(d + 1)/2 copies of 1/d and d*(d — 1)/2 copies of —1/d for every d-dimensional irreducible
representation of G, and n* — Z){Em(G) x(1)* zeros. In particular, p = 1/D where D is the minimal
dimension of a nontrivial representation of G.

Proof. Here X =Y =Z =G andL ={(x,y,z) €G? : xy =z}, s0 LA (X XY) = L>(G X G) and A
is the operator defined by

A = 2 Y fay ™ x2).

zeG

By representation theory, L?(G) has an orthogonal basis consisting of the functions of the
form x — (p(x)e;, e;), where p: G — U(V) is an irreducible unitary representation of G and
€1, ..., €qimy 1S an orthonormal basis of V.

It follows that L?(G X G) = L*(G) ® L*(G) has an orthogonal basis consisting of functions of
the form

Fopijery)={p)e,e;){e..0' 1e,),

where p: G —» U(V) and p’ : G — U(V') are two irreducible unitary representations of G and
1<i,j<dimV,1<k,Z <dimV’.

To find A(f, o j k), We recall the Schur orthogonality relation for matrix coefficients, which
states that for irreducible V, V' as above, a,b € V and a/,b’ € V/,

= Y (p(@a,b)p' ¢ (2)a) =

zeG

0 D (e, V) 2 (o', V")
(a,a)b) 1 (V)= (0 V),

and thereby compute

Al ot i) = 1 3 (p@POerse; ) (p(x)€], p(2)e], )

zeG
_Jo L (p.V) ¢ (0. V)
——(p(x)es.e;) (e pWer) (0. V)= (0, V")

_J0 e, V)2 (V)
ﬁfp,p,f,j,k,i(%)’) (e, V)=, V).

In the case p # p’, we get an eigenfunction with eigenvalue 0. When p = p’ and i = £ we get a
(1/ dim V)-eigenfunction. Finally, when p = p’ and i # ¢, the functions

fp,p,i,j,k,f x fp,p,f,j,k,i

are eigenfunctions of A with eigenvalues +1/ dim V, respectively.
Altogether we have d* + d*(d — 1)/2 = d*(d + 1)/2 copies of 1/d and d3(d — 1)/2 copies of
—1/d, and the rest 0, as claimed. O
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TRANSVERSALS IN QUASIRANDOM LATIN SQUARES 111

8.2 | Random latin squares

We will use a recent result of Kwan, Sah, Sawhney, and Simkin [7] on configuration counts in

random latin squares. A triple system is a 3-uniform 3-partite hypergraph H C X, X Y}, X Z,; with

vertex classes X}, Yy, Z,. The number of vertices is v = |[Xy| + |Yy| + |Z4] and the number of

triples (hyperedges) is e = |H|. We say H is latin if every pair of vertices is in at most one triple. (A

latin square of order n is then a latin triple system with three classes of n vertices and n? triples.)
Let H be a fixed triple system. A copy of H in a triple system L is a triple of injective maps

Xy = XL, Yy—=Y, Zy—=Z
which maps triples to triples. Let N,,(L) denote the number of copies of H in L.

Let B,, denote the random triple system B,, C [n] X [n] X [n] in which each possible triple is
present independently with probability 1/n. Note that E[N(B,,)] = (1 — o(1))n"~¢ (when H is
fixed and n is large). We say H is a-stable if « > v — e and

E[Ny(B,) | Q € B,] — E[Ny(B,)] = o(n®)

for any latin triple system Q C [n] X [n] X [n] with at most n(log n)? triples.

Theorem 8.2 [7, Theorem 7.2]. Fix an a-stable latin triple system H with v vertices and e triples. Let
L be a uniformly random latin square. Then

N,(L) € n~¢ + o(n%)
with high probability as n — oo.

To use this theorem effectively, we need a computable form of stability. Let H be a latin triple
system. A subset of the vertices S C X, UY, U Z, is called closed if whenever two vertices of a
triple of His in S, so is the third. The closure (S),, of a subset S if the smallest closed set containing
it. If F C Hlet X, Y, Z¢ denote the vertices incident with at least one member of F, and let v(F) =
|Xe| + |Ye| + |Z¢| and e(F) = |F|. We say F C H generates H if

Let
d(H) = min{e(F) : F generates H}.
For example, if H, is the latin triple system shown in Figure 2, one generating set consists of
both triples containing z;, one triple containing z;, and one triple containing z5, and there is no

smaller generating set, so d(H;) = 4.

Lemma 8.3. Let H be a latin triple system with v vertices and e triples. Then H is ct-stable provided
az>v—eand

a>v—e+ max (d(F)— v(F) + e(F)).
fAFCH
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112 EBERHARD ET AL.

FIGURE 2 Thechain (x,,¥,), ..., (X4, ) and the latin triple system H, defined by identifying x, with x, and
Yo With yg.

Remark 8.4. A much simpler model problem is the following: given a fixed graph H and a random
graph Gy p» does G contain n)pe(F)(1 4 o(1)) copies of H (i.e., close to the expected number)
with high probability? The answer might be no if H contains a subgraph H’ with much greater
density than H in some sense: indeed, if n"( ) pe(H/) = 0(1) then with high probability G(n, p)
contains zero copies of H’, and hence of H. However, this is essentially all that can go wrong. The
condition for «-stability in the lemma captures a similar intuition.

Remark 8.5. Given a triple system H C X, X Y, X Z;, one can construct a partition triple 3 =
(mry, 7y, 13) € 1'[|3_| in the sense of Subsection 3.1 (i.e., the ground set has size e(H)) where two triples
(x,y,2),(x',y',2") € H lie in the same cell of 7, if and only if x = x’, and similarly for 7, and
y=y,andmyand z = z'.

The construction can be reversed (up to the issue of repeated edges). In other words, triple
systems and partition triples are more-or-less the same objects. Under this analogy, the notion of
closure here coincides with that in Definition 3.1, and crank(®) = 2e(H) — d(H).

Although using both languages is strictly speaking redundant, it is useful to keep the two
notions separate, partly for minor technical reasons, but mainly because using partition systems
follows our previous work in [2, 3] while using triple systems follows [7].

Proof of Lemma 8.3 [7, p. 15]. Let Q C [n]° be a latin triple system with at most n*°®) triples. For
a copy of H in B,,, say one of its triples is forced if it appears in Q. The difference

E[N,(B,) | Q C B,] — E[N,(8,)] (8.1)
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TRANSVERSALS IN QUASIRANDOM LATIN SQUARES | 113

arises from copies of H with at least one forced triple. Let F C H be a nonempty subsystem and
consider copies of H whose forced triples are precisely the images of those in F. Let F, C F be a
generating subsystem of size d(F). Because Q satisfies the latin property, any copy of F in Q is
determined by the image of F,,. Therefore, the number of copies of F in Q is at most |Q|!fo!. There
are v — v(F) vertices of H outside F, each with n possible images in [n]?, and the image of each of
the e — e(F) triples outside F has probability 1/n (independently) of being present in B,,. Hence,
the contribution to (8.1) from F is bounded by

|Q|IFOInU—U(F)(l/n)e—e(F) — nv—e+d(F)—v(F)+e(F)+o(1).

This is o(n*) provided the stated condition is satisfied. O

Now we can show that random latin squares are .A-quasirandom with parameter o(1) with high
probability (Theorem 1.3). This follows from the following proposition and the bound 1 + p° <
tr A°.

Proposition 8.6. For a uniformly random latin square L,
tr A% =1+ o0(1)
with high probability as n — oo.

Proof (Computer-assisted). For (x,,y,) € X XY, let (x;,y;) denote the iterates of (x,,y,) under
the Markov chain defining .A. Then

tr A = Z P((x@%) = (XO’yO)) = N/n°,

X0,Y0

where N is the number of configurations in L of the form shown in Figure 2 with x, = x; and
Yo = ¥¢. We do not assume the other vertices are distinct.

Let H, be the latin triple system depicted in Figure 2 and let H,, ..., H, (where k is bounded)
be all the degenerations obtainable by identifying some (like-colored) vertices and identifying
triangles as necessary to preserve the latin property.

Formally, we consider all triples of partitions (7y, 7y, 7r,) Where 7y € HXH] , Ty € HYH] , Ty €
HZH1 satisfying the following closure property: if (x, y, z) and (x’,y’, z") are two triples of H, and
two of the pairs (x, x"), (¥,¥'), (z, z") are in the same cell of 7, 7y, 7, respectively, then so is the
third. Number such triples of partitions 1, ..., k, where 1 corresponds to three copies of the discrete
partition. Then H; denotes the quotient hypergraph of H, with respect to partition i.

Let N; = Ny (L). Then N = N; + - + Ny Let v; = v(H;) and ¢; = e(H;). Then v, —e; =18 —
12 = 6. Now the proposition follows from Theorem 8.2, Lemma 8.3, and the following two
claims:

(1) v; —e; <5foreachi > 1,
(2) v; — ¢; + maxg ey (d(F) — v(F) + e(F)) < 5 foreach i > 1.

Indeed, provided (1) and (2) hold, Lemma 8.3 shows that H; is 6-stable for each i > 1, so Theo-
rem 8.2 implies that N; < n%~¢ + o(n®) with high probability for each i, so N < (1 + 0(1))n® with
high probability.
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(“} Z@
O O

v=15,e=10

v=16,e=11

v=11,e=06 v=11,e=6

FIGURE 3 Degenerations of H, with v; —e; = 5and e¢; < 12. Some triangles are shown flat.

Both claims can be verified by exhaustive search. We find H,, ..., H;, by starting with H; and
iteratively identifying pairs of vertices, using breadth-first search. Thus, we verify (1). Now for
each H; we check all subsystems F C H; and compute d(F) by checking all F, C F, and thus we
verify (2).

It turns out k = 1206, and there are 154 distinct isomorphism classes among the degenerations
H;. The quantity in (2) turns out to be at most 4 in all cases except H;, for which it is 5. There are
just eight degenerations H; (up to isomorphism) for which v; — e; = 5. Of these, four are just H,;
with a single pair of vertices identified (so v; = 17 and e; = 12). The other four cases are shown in
Figure 3. These cases are therefore the dominant contributors to the error term. O
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