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Abstract
A transversal in an 𝑛 × 𝑛 latin square is a collection
of 𝑛 entries not repeating any row, column, or sym-
bol. Kwan showed that almost every 𝑛 × 𝑛 latin square
has

(
(1 + 𝑜(1))𝑛∕𝑒2

)𝑛 transversals as 𝑛 → ∞. Using a
loose variant of the circle method we sharpen this to
(𝑒−1∕2 + 𝑜(1))𝑛!2∕𝑛𝑛. Our method works for all latin
squares satisfying a certain quasirandomness condi-
tion, which includes both random latin squares with
high probability as well as multiplication tables of
quasirandom groups.

MSC 2020
05B15 (primary)

1 INTRODUCTION

A transversal in an 𝑛 × 𝑛 latin square is a set of 𝑛 entries such that no two of them come from the
same row or column or contain the same symbol.
Although there are examples of latin squares with no transversals (e.g., themultiplication table

of 𝐙∕𝑛𝐙 for 𝑛 even), it is widely believed that these are rare. For example, a famous conjecture
of Ryser claims that an 𝑛 × 𝑛 latin square contains a transversal whenever 𝑛 is odd. In the same
direction, Kwan [6] proved that a uniformly random𝑛 × 𝑛 latin square has a transversalwith prob-
ability 1 − 𝑜(1). Moreover, he showed that, with probability 1 − 𝑜(1), the number of transversals
is

(
(1 − 𝑜(1))𝑛∕𝑒2

)𝑛.
In this paper, we improve Kwan’s result by finding the precise asymptotic of the number of

transversals in a uniformly random latin square.

Theorem 1.1. Let 𝖫 be a uniformly random 𝑛 × 𝑛 latin square. Then 𝖫 has
(
𝑒−1∕2 + 𝑜(1)

)
𝑛!2∕𝑛𝑛

transversals with probability 1 − 𝑜(1) as 𝑛 → ∞.
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TRANSVERSALS IN QUASIRANDOM LATIN SQUARES 85

More generally, we find a (deterministic) quasirandomness condition for latin squares which is
sufficient to guarantee this same asymptotic number of transversals.

Theorem 1.2. There is a constant 𝜌 > 0 such that the following holds. Let 𝖫 be an 𝑛 × 𝑛 latin square
which is-quasirandom with parameter 𝜌. Then 𝖫 has

(
𝑒−1∕2 + 𝑜(1)

)
𝑛!2∕𝑛𝑛 transversals.

The precise definition of “-quasirandom” is in terms of the spectral gap of some operator
associated to 𝖫: see Definition 7.1. Despite the language, it is not actually obvious that a uniformly
random𝑛 × 𝑛 is quasirandomwithhigh probability as𝑛 → ∞, andhence that Theorem 1.2 implies
Theorem 1.1. Indeed, it is incredibly delicate to prove any statistical properties of a uniform ran-
dom latin square, for a number of reasons: the exact asymptotic count of 𝑛 × 𝑛 latin squares is
not known; the latin square property is too rigid to make local changes; and no efficient way of
sampling uniform random latin squares is known.
However, using a recent result of Kwan, Sah, Sawhney, and Simkin [7] we are indeed able to

establish that a random latin square is-quasirandomwith parameter 𝑜(1), with high probability,
and we can thus prove Theorem 1.1 as a consequence of Theorem 1.2.

Theorem 1.3. Let 𝖫 be a uniformly random 𝑛 × 𝑛 latin square. Then 𝖫 is -quasirandom with
parameter 𝑜(1), with probability 1 − 𝑜(1) as 𝑛 → ∞.

Somewhat opposite to random latin squares are latin squares that are multiplication tables of
finite groups. In [3], we proved that as long as the underlying group satisfies a necessary condition
to have at least one transversal, we have the count as in Theorem 1.2 with an extra factor equal to
the size of the group’s abelianization. For some groups, this result is implied by Theorem 1.2 and
the following (easy) result.

Theorem 1.4. Let 𝐺 be a group and let 𝖫𝐺 be the multiplication table of 𝐺. Then 𝖫𝐺 is -
quasirandom with parameter 1∕𝐷, where 𝐷 is the minimal dimension of a nontrivial linear
representation of 𝐺.

This shows that the -quasirandomness condition when restricted to group multiplication
tables coincides with the usual notion of quasirandomness for groups due to Gowers [5]. Thus,
together Theorems 1.2 and 1.4 recover the main result of [3] for sufficiently quasirandom groups.
There appears to be no single universal definition of a “quasirandom latin square,” in the

same way that there is no single definition of a “quasirandom set of integers”. Instead there are
various possible qualitatively inequivalent definitions, some more natural than others, and the
correct choice depends on the problem at hand. For this reason we prefer to talk about a quasir-
andomness condition than about a “definition of quasirandomness,” and we do not claim that the
condition in Definition 7.1 is necessarily the correct one for other problems. In particular it is not
directly related to the notion introduced in [1, 4], as that depends on some additional structure
(namely, an ordering on the set of symbols) to which our condition is oblivious. See Section 7 for
further remarks.

2 OUTLINE

Our approach is analytical rather than combinatorial. Let 𝑋, 𝑌, 𝑍 be 𝑛-element sets of rows,
columns and symbols.We identify an 𝑛 × 𝑛 latin square 𝖫with a subset of𝑋 × 𝑌 × 𝑍 satisfying the
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86 EBERHARD et al.

latin square property, that is, every pair from 𝑋 × 𝑌, 𝑌 × 𝑍 and 𝑍 × 𝑋 is in exactly one triple from
𝖫. We let 𝐿2(𝑋), 𝐿2(𝑌), 𝐿2(𝑍) denote the spaces of complex-valued functions on𝑋,𝑌, 𝑍 (equipped
with the standard hermitian inner product). The latin square tensor Λ = Λ𝖫 is defined by

Λ(𝑓, g , ℎ) ∶= 𝐄(𝑥,𝑦,𝑧)∈𝖫𝑓(𝑥)g(𝑦)ℎ(𝑧)

for 𝑓 ∈ 𝐿2(𝑋), g ∈ 𝐿2(𝑌), ℎ ∈ 𝐿2(𝑍).
We stress that the latin square tensor Λ𝖫 depends on 𝖫, but we will always just write Λ for

brevity. We use the same notation for powers of 𝖫, in the following sense. If 𝖫1 and 𝖫2 are latin
squares then 𝖫1 × 𝖫2 is also a latin square, where 𝖫1 × 𝖫2 is simply the cartesian product of 𝖫1 and
𝖫2 as subsets of 𝑋1 × 𝑌1 × 𝑍1 and 𝑋2 × 𝑌2 × 𝑍2. Accordingly the powers 𝖫𝑚 are latin squares of
order 𝑛𝑚 for all𝑚 ⩾ 0, and if 𝑓 ∈ 𝐿2(𝑋𝑚), g ∈ 𝐿2(𝑌𝑚), ℎ ∈ 𝐿2(𝑍𝑚) then we write

Λ(𝑓, g , ℎ) ∶= 𝐄(𝑥,𝑦,𝑧)∈𝖫𝑚𝑓(𝑥)g(𝑦)ℎ(𝑧).

Of particular interest is the latin square 𝖫𝑛. We write 𝑆 (or sometimes 𝑆𝑋 to emphasize the
domain, and similarly 𝑆𝑌 and 𝑆𝑍) for the subset 𝑆 ⊆ 𝑋𝑛 of all bijections [𝑛] → 𝑋. Then one can
check that the number of transversals in 𝖫 is

Λ(1𝑆, 1𝑆, 1𝑆)
𝑛2𝑛

𝑛!
.

Our goal is therefore to show that

Λ(1𝑆, 1𝑆, 1𝑆) =
(
𝑒−1∕2 + 𝑜(1)

)( 𝑛!
𝑛𝑛

)3
, (2.1)

provided that 𝖫 satisfies an appropriate quasirandomness condition.
We approach (2.1) principally by studying how 1𝑆 deviates from its density 𝑛!∕𝑛𝑛. We do this as

follows. For any set 𝐴 ⊆ [𝑚], we may identify 𝐿2(𝑋𝐴) with the subspace of 𝐿2(𝑋𝑚) consisting of
functions 𝑋𝑚 → 𝐂 that factor as 𝑋𝑚 → 𝑋𝐴 → 𝐂; that is, functions 𝑓(𝑥1, … , 𝑥𝑚) that only depend
on (𝑥𝑖 ∶ 𝑖 ∈ 𝐴). These spaces are nested: if 𝐴 ⊆ 𝐵 then 𝐿2(𝑋𝐴) ⊆ 𝐿2(𝑋𝐵). We write 𝑄𝐴 for the
orthogonal projection 𝐿2(𝑋𝑚) → 𝐿2(𝑋𝐴) and 𝑃𝐴 for the orthogonal projection

𝑃𝐴 ∶ 𝐿
2(𝑋𝑚) → 𝐿2(𝑋𝐴) ∩

⋂
𝐵⊊𝐴

𝐿2(𝑋𝐵)⟂. (2.2)

Here 𝐿2(𝑋𝐵)⟂ is the space of functions 𝑓(𝑥1, … , 𝑥𝑚) orthogonal to functions depending only on
(𝑥𝑖 ∶ 𝑖 ∈ 𝐵), that is, such that 𝐄𝑥𝑖∶𝑖∉𝐵𝑓(𝑥1, … , 𝑥𝑚) = 0 for any choice of (𝑥𝑖 ∶ 𝑖 ∈ 𝐵). Therefore,
the space on the right-hand side of (2.2) is the space of functions depending only on (𝑥𝑖 ∶ 𝑖 ∈ 𝐴)
and such that 𝐄𝑥𝑖𝑓(𝑥1, … , 𝑥𝑚) = 0 for any 𝑖 ∈ 𝐴.
The operators 𝑃𝐴, 𝑄𝐴 are related via inclusion–exclusion rules:

𝑄𝐴 =
∑
𝐵⊆𝐴

𝑃𝐵,

𝑃𝐴 =
∑
𝐵⊆𝐴

(−1)|𝐴⧵𝐵|𝑄𝐵.

 1460244x, 2023, 1, D
ow

nloaded from
 https://londm

athsoc.onlinelibrary.w
iley.com

/doi/10.1112/plm
s.12538 by Princeton U

niversity, W
iley O

nline Library on [23/08/2024]. See the Term
s and C

onditions (https://onlinelibrary.w
iley.com

/term
s-and-conditions) on W

iley O
nline Library for rules of use; O

A
 articles are governed by the applicable C

reative C
om

m
ons License



TRANSVERSALS IN QUASIRANDOM LATIN SQUARES 87

Hence, we have a kind of “Fourier expansion”

𝑓 =
∑
𝐴⊆[𝑚]

𝑃𝐴𝑓,

for any function 𝑓 ∈ 𝐿2(𝑋𝑚) (which is only truly a Fourier expansion if 𝑛 = 2 and𝑋𝑚 is identified
with 𝐅𝑚

2
). Applying this to 𝑓 = 1𝑆 ∈ 𝐿2(𝑋𝑛),

1𝑆 =
∑
𝐴⊆[𝑛]

𝑃𝐴1𝑆.

By the discussion above, 𝑃𝐴1𝑆 can be thought of as the component of 1𝑆 that depends exactly on
(𝑥𝑖 ∶ 𝑖 ∈ 𝐴) (and is orthogonal to all functions depending only on variables in a strict subset of
𝐴). For example, 𝑃∅1𝑆 is equal to the density 𝑛!∕𝑛𝑛.
The relevance of the 𝑃𝐴 projections is that any latin square tensor Λ𝖫 is diagonal with respect

to this decomposition: that is,

Λ(1𝑆, 1𝑆, 1𝑆) =
∑
𝐴⊆[𝑛]

Λ(𝑃𝐴1𝑆, 𝑃𝐴1𝑆, 𝑃𝐴1𝑆). (2.3)

This is a consequence of the following lemma.

Lemma 2.1. Let 𝑓 ∈ 𝐿2(𝑋𝑛), g ∈ 𝐿2(𝑌𝑛), ℎ ∈ 𝐿2(𝑍𝑛) and 𝐴, 𝐵, 𝐶 ⊆ [𝑛]. Then

Λ(𝑃𝐴𝑓, 𝑃𝐵g , 𝑃𝐶ℎ) = 0

unless 𝐴 = 𝐵 = 𝐶.

Proof. Assume it is not the case that 𝐴 = 𝐵 = 𝐶. By symmetry we may assume 𝐴 ⊈ 𝐵, say 𝑖 ∈
𝐴 ⧵ 𝐵. We may also assume 𝑃𝐴𝑓 = 𝑓, 𝑃𝐵g = g , 𝑃𝐶ℎ = ℎ, by replacing 𝑓, g , ℎ with their images
under 𝑃𝐴, 𝑃𝐵, 𝑃𝐶 , respectively. Now consider

Λ(𝑓, g , ℎ) = 𝐄(𝑥,𝑦,𝑧)∈𝖫𝑛𝑓(𝑥)g(𝑦)ℎ(𝑧).

In particular, consider the average over the variables (𝑥𝑖, 𝑦𝑖, 𝑧𝑖) ∈ 𝖫. As 𝑖 ∉ 𝐵, there is no depen-
dence on 𝑦𝑖 , so it is equivalent by the latin square property to average over all (𝑥𝑖, 𝑧𝑖) ∈ 𝑋 × 𝑍. As
𝐄𝑥𝑖𝑓(𝑥1, … , 𝑥𝑚) = 0, it follows that Λ(𝑓, g , ℎ) = 0. □

We now divide up the sum (2.3) according to the size𝑚 of 𝐴.

2.1 Major arcs

The terms in this decomposition where 𝐴 is very sparse (of size up to 𝑐𝑛1∕2) form themajor arcs.

Theorem 2.2. There is a constant 𝑐 > 0 such that for log 𝑛 < 𝑚 ⩽ 𝑐𝑛1∕2,

∑
𝐴⊆[𝑛]|𝐴|⩽𝑚

Λ(𝑃𝐴1𝑆, 𝑃𝐴1𝑆, 𝑃𝐴1𝑆) =
(
𝑛!

𝑛𝑛

)3
𝑒−1∕2

(
1 + 𝑂(𝑚2∕𝑛)

)
.
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88 EBERHARD et al.

The proof is a mostly mechanical adaptation of [3, section 4], which did not use group theory
in an essential way.

2.2 Sparse minor arcs

The next range, the sparseminor arcs, concerns𝐴 of size up to 𝑐𝑛 for some small absolute constant
𝑐.

Theorem 2.3. There is a constant 𝑐 > 0 such that for 1 ⩽ 𝑚 ⩽ 𝑐𝑛,∑
𝐴⊆[𝑛]|𝐴|=𝑚

Λ(|𝑃𝐴1𝑆|, |𝑃𝐴1𝑆|, |𝑃𝐴1𝑆|) ⩽ (
𝑛!

𝑛𝑛

)3
𝑂(1)𝑚+𝑛∕𝑚(𝑚∕𝑛)𝑚∕8.

Note |Λ(𝑃𝐴1𝑆, 𝑃𝐴1𝑆, 𝑃𝐴1𝑆)| ⩽ Λ(|𝑃𝐴1𝑆|, |𝑃𝐴1𝑆|, |𝑃𝐴1𝑆|) by the triangle inequality. The point is
we have an exponential-in-𝑚 gain over the main term provided

𝑚 log(𝑛∕𝑚) > 𝐶′(𝑚 + 𝑛∕𝑚),

for some large enough 𝐶′ > 0. This would be satisfied as long as

𝐶(𝑛∕ log 𝑛)1∕2 < 𝑚 < 𝜖𝑛, (2.4)

for some large enough 𝐶 > 0 and small enough 𝜖 > 0.
We prove Theorem 2.3 by exhibiting a majorant for |𝑃𝐴1𝑆| and then using generating

function methods.

2.3 Dense minor arcs

Finally, we have the dense range, where 𝑚 ⩾ 𝑐𝑛. Here we use quasirandomness. To be precise
we define a certain Markov chain on 𝑋 × 𝑌, with adjacency operator , and we consider 𝖫 to
be -quasirandom with parameter 𝜌 if  has a spectral gap at least 1 − 𝜌, that is, if the spectral
radius of  − is at most 𝜌, where  is the projection to constants (the uniform distribution).
See Definition 7.1.

Theorem 2.4. For every 𝜖 > 0 there is 𝜌 > 0 such that if 𝖫 is -quasirandom with parameter 𝜌,
then ∑

𝐴⊆[𝑛]|𝐴|⩾𝜖𝑛
|Λ(𝑃𝐴1𝑆, 𝑃𝐴1𝑆, 𝑃𝐴1𝑆)| ⩽ (

𝑛!

𝑛𝑛

)3
10−𝑛.

2.4 Quasirandomness

It remains (for Theorems 1.1 and 1.4) to demonstrate that the latin squares in scope are quasiran-
dom in this sense. If 𝖫 is the multiplication table of a group 𝐺 we compute the entire spectrum of
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TRANSVERSALS IN QUASIRANDOM LATIN SQUARES 89

 and find 𝜌 = 1∕𝐷 where𝐷 is the minimal dimension of a nontrivial representation of𝐺, which
shows that our notion of quasirandomness is equivalent to the usual one due to Gowers [5] in the
case of groups. For genuinely random latin squares we use recent work of Kwan, Sah, Sawhney,
and Simkin [7] to show that tr6 = 1 + 𝑜(1)with high probability, and this implies that 𝜌 = 𝑜(1).

2.5 Proof of Theorem 1.2

Putting Theorems 2.2 to 2.4 together, it is straightforward to deduce Theorem 1.2.

Proof of Theorem 1.2. Let𝐶 and 𝜖 be as in (2.4) and𝑀 ∶= 𝐶(𝑛∕ log 𝑛)1∕2. Theorems 2.2, 2.3, and 2.4
give us that for some 𝑐 > 0

Λ(1𝑆, 1𝑆, 1𝑆) =
(
𝑒−1∕2 + 𝑂(𝑀2∕𝑛)

) ( 𝑛!
𝑛𝑛

)3
+

∑
𝑀<𝑚⩽𝜖𝑛

𝑂(𝑒−𝑐𝑚)
(
𝑛!

𝑛𝑛

)3
+ 10−𝑛

(
𝑛!

𝑛𝑛

)3
,

as long as 𝖫 is-quasirandomwith parameter 𝜌 for small enough 𝜌 (depending on 𝜖). The choice
of𝑀 implies (2.1) and hence Theorem 1.2. □

2.6 Layout of the paper

To prove Theorems 2.2 to 2.4, we need some background material on partition systems (Sec-
tion 3.1) and on the primitive “Fourier analysis” of coordinate projections𝑄𝐴, 𝑃𝐴 discussed above
(Section 4). This builds on similar material from [3].
Then, Sections 5 to 7 give the proofs of the three key theorems above. Finally, Section 8 proves

the quasirandomness properties from Subsection 2.4.

3 PARTITIONS AND PARTITION SYSTEMS

3.1 Partitions

Most of our language relating to the partition lattice is standard.

(1) If 𝐴 is a set, Π𝐴 is the set of all partitions of 𝐴. If 𝐴 = [𝑚], we will conserve brackets by
writing simply Π𝑚.

(2) Π(𝑘)
𝐴

is the set of partitions all of whose cells have size at most 𝑘.
(3) If 𝐴 ⊆ 𝐵, then any partition of 𝐴 is identified with a partition of 𝐵 by adding singletons{

{𝑏}∶ 𝑏 ∈ 𝐵 ⧵ 𝐴
}
. With this convention, Π𝐴 ⊆ Π𝐵.

(4) The support supp𝜋 of a partition 𝜋 ∈ Π𝐴 is the union of the nonsingleton cells of 𝜋. It is the
smallest set 𝐵 ⊆ 𝐴 such that 𝜋 ∈ Π𝐵.
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90 EBERHARD et al.

(5) Π′
𝐴
is the set of 𝜋 ∈ Π𝐴 with supp𝜋 = 𝐴.

(6) If 𝜋, 𝜋′ ∈ Π𝐴, 𝜋 ⩽ 𝜋′ means that 𝜋 is a refinement of 𝜋′ (i.e., every cell of 𝜋′ is a union of
cells of 𝜋). Synonymously, 𝜋′ is a coarsening of 𝜋.

(7) Themeet 𝜋 ∧ 𝜋′ is the coarsest partition refining both 𝜋 and 𝜋′; the join 𝜋 ∨ 𝜋′ is the finest
partition coarsening both 𝜋 and 𝜋′.

(8) The partition {{𝑎} ∶ 𝑎 ∈ 𝐴} is the discrete partition; the partition {𝐴} is the indiscrete partition.
(9) The rank of a partition 𝜋 ∈ Π𝐴 is rank(𝜋) = |𝐴| − |𝜋|; equivalently it is the greatest 𝑟 such

that there are partitions 𝜋0 < 𝜋1 < ⋯ < 𝜋𝑟 = 𝜋. (Note that rank(𝜋) is meaningful without
specifying 𝐴, unlike |𝜋|; that is, it is invariant under adding or removing singletons.)

(10) TheMöbius function 𝜇 at 𝜋 ∈ Π𝐴 is given by 𝜇(𝜋) = (−1)rank(𝜋)
∏
𝑝∈𝜋(|𝑝| − 1)!.

(11) A function 𝑓 ∶ 𝐴 → 𝑋 is 𝜋-measurable if 𝑓 is constant on the cells of 𝜋. A subset 𝑆 ⊆ 𝐴 is
called 𝜋-measurable if 1𝑆 is 𝜋-measurable.

(12) If 𝜋 ∈ Π𝐴, 𝑐𝜋 ∈ 𝐿2(𝑋𝐴) is the indicator of 𝜋-measurability (i.e., 𝑐𝜋(𝑓) is 1 if 𝑓 is
𝜋-measurable, and 0 otherwise).

The exponential formula for partitions states

∑
𝑚⩾0

1

𝑚!

∑
𝜋∈Π𝑚

∏
𝑝∈𝜋

𝑥|𝑝| = exp
(∑
𝑘⩾1

1

𝑘!
𝑥𝑘

)
. (3.1)

Here 𝑥1, 𝑥2, … are formal variables. We will apply (3.1) several times in Section 6.

3.2 Partition systems

In Sections 5 and 6, it will be essential to have good bounds on the quantity Λ(𝑐𝜋1 , 𝑐𝜋2 , 𝑐𝜋3) for
𝐴 ⊆ [𝑛] and various choices 𝜋1, 𝜋2, 𝜋3 ∈ Π𝐴. This motivates the following definitions.

(1) A partition triple on a set 𝐴 is a triple𝔓 = (𝜋1, 𝜋2, 𝜋3) ∈ Π
3
𝐴
.

(2) We call𝔓 a partition system if supp𝜋1 = supp𝜋2 = supp𝜋3.
(3) The support of𝔓 is supp𝔓 = supp𝜋1 ∪ supp𝜋2 ∪ supp𝜋3.

Definition 3.1 (Combinatorial rank). Let 𝔓 = (𝜋1, 𝜋2, 𝜋3) ∈ Π
3
𝐴
be a partition triple. We write

𝑆 ⊆ 𝔓 to mean that 𝑆 ⊆ 𝜋1 ⊔ 𝜋2 ⊔ 𝜋3, that is, 𝑆 is a collection of cells labeled 1, 2, or 3. A subset
𝑆 ⊆ 𝔓 is closed (with respect to𝔓) if whenever 𝑝𝑖 ∈ 𝜋𝑖 for 𝑖 = 1, 2, 3 and 𝑝1 ∩ 𝑝2 ∩ 𝑝3 ≠ ∅, if two
of 𝑝1, 𝑝2, 𝑝3 are in 𝑆 then so is the third. The closure ⟨𝑆⟩ of 𝑆 is the intersection of all closed sets
containing 𝑆. The combinatorial rank of𝔓 = (𝜋1, 𝜋2, 𝜋3) is defined as

crank(𝔓) = 2|𝐴| −min {|𝑆| ∶ 𝑆 ⊆ 𝔓, ⟨𝑆⟩ = 𝔓}.
The motivation for combinatorial rank is the following bound.

Lemma 3.2. For a set 𝐴, partitions 𝜋1, 𝜋2, 𝜋3 ∈ Π𝐴, and latin square 𝖫 ⊆ 𝑋 × 𝑌 × 𝑍,

0 ⩽ Λ(𝑐𝜋1 , 𝑐𝜋2 , 𝑐𝜋3) ⩽ 𝑛
−crank(𝜋1,𝜋2,𝜋3).

The idea of the proof is the same as for the related result [3, Lemma 4.6].
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TRANSVERSALS IN QUASIRANDOM LATIN SQUARES 91

Proof. The Λ value is, by definition, 𝑛−2|𝐴| times the number of triples of functions
𝑓1 ∶ 𝐴 → 𝑋, 𝑓2 ∶ 𝐴 → 𝑌, 𝑓3 ∶ 𝐴 → 𝑍

such that 𝑓𝑖 is 𝜋𝑖-measurable for 𝑖 = 1, 2, 3 and such that (𝑓1(𝑎), 𝑓2(𝑎), 𝑓3(𝑎)) ∈ 𝖫 for all 𝑎 ∈ 𝐴.
Note we can think of 𝑓𝑖 as a function on the cells of 𝜋𝑖 , as it is 𝜋𝑖-measurable.
We claim that, given 𝑆 ⊆ 𝔓 with ⟨𝑆⟩ = 𝔓, the triple (𝑓1, 𝑓2, 𝑓3) is determined by the values of

𝑓𝑖 on cells in 𝑆. Hence, the number of such triples is at most 𝑛|𝑆|, giving the result.
Indeed, suppose 𝑓′

1
, 𝑓′
2
, 𝑓′
3
is another triple of measurable functions with the same restriction

to 𝑆. Let 𝑊 ⊆ 𝔓 be the set of all cells 𝑝𝑖 ∈ 𝜋𝑖 such that 𝑓𝑖|𝑝𝑖 = 𝑓′𝑖 |𝑝𝑖 . By hypothesis 𝑊 ⊇ 𝑆. If
𝑝𝑖 ∈ 𝜋𝑖 for 𝑖 = 1, 2, 3, 𝑎 ∈ 𝑝1 ∩ 𝑝2 ∩ 𝑝3, and two of 𝑝1, 𝑝2, 𝑝3 are in𝑊, then so is the third, as the
triples (𝑓1(𝑎), 𝑓2(𝑎), 𝑓3(𝑎)), (𝑓′1(𝑎), 𝑓

′
2
(𝑎), 𝑓′

3
(𝑎)) ∈ 𝖫 agree at two coordinates and so are equal by

the latin square property. Hence,𝑊 is a closed set, so𝑊 ⊇ ⟨𝑆⟩ = 𝔓 and 𝑓𝑖 = 𝑓′𝑖 , as required. □

This reduces the problem of bounding Λ(𝑐𝜋1 , 𝑐𝜋2 , 𝑐𝜋3) from above to the problem of bounding
crank(𝜋1, 𝜋2, 𝜋3) from below. In [3], we did this using two slightly weaker notions of rank, called
triple rank and lower rank, defined, respectively, as

trank(𝔓) = max
𝜎∈𝑆3

(
rank(𝜋𝜎(1)) + rank(𝜋𝜎(2) ∨ 𝜋𝜎(3))

)
lrank(𝔓) =

(
rank(𝜋1) + rank(𝜋2) + rank(𝜋3) + rank(𝜋1 ∨ 𝜋2 ∨ 𝜋3)

)
∕2.

Lemma 3.3. crank(𝔓) ⩾ trank(𝔓) ⩾ lrank(𝔓).

Proof. For the first inequality, let 𝑆 ⊆ 𝔓 contain all of 𝜋1 and one cell of 𝜋2 from each cell of
𝜋2 ∨ 𝜋3. Then |𝑆| = |𝜋1| + |𝜋2 ∨ 𝜋3| and ⟨𝑆⟩ = 𝔓, so crank(𝔓) ⩾ rank(𝜋1) + rank(𝜋2 ∨ 𝜋3), and
equally for other permutations of 1, 2, 3. The second inequality was proved in [3, Lemma 4.8], and
in any case will not be used in this paper. □

For continuity with [3], we define the complexity of a partition system𝔓 to be

cx(𝔓) = trank(𝔓) − | supp𝔓|.
The complexity of a partition system is nonnegative, and it is zero if and only if𝔓 = (𝜋, 𝜋, 𝜋) for
somematching 𝜋, that is, a partition of 𝐴 = supp𝜋 into |𝐴|∕2 pairs.
3.3 Combinatorial rank of matching systems

In this subsection, we compute crank(𝜋1, 𝜋2, 𝜋3) for all (𝜋1, 𝜋2, 𝜋3) ∈ Π
(2)
𝐴
, that is, partition

triples such that all cells of 𝜋1, 𝜋2, 𝜋3 have size at most 2. Where it applies, this is a significant
improvement on what Lemma 3.3 gives us.

Lemma 3.4. Let 𝜋1, 𝜋2, 𝜋3 ∈ Π
(2)
𝐴
. Suppose there are precisely 𝑘 cells 𝑝 ∈ 𝜋1 ∨ 𝜋2 ∨ 𝜋3 such that

𝜋𝑖|𝑝 has full support (i.e., is a matching) for each 𝑖 ∈ [3]. Then
crank(𝜋1, 𝜋2, 𝜋3) = rank(𝜋1) + rank(𝜋2) + rank(𝜋3) − 𝑘.
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92 EBERHARD et al.

Proof. As all terms are additive across cells of 𝜋1 ∨ 𝜋2 ∨ 𝜋3, we may assume 𝜋1 ∨ 𝜋2 ∨ 𝜋3 is
indiscrete. In particular, 𝑘 ∈ {0, 1}, and 𝑘 = 0 if and only if one of 𝜋1, 𝜋2, 𝜋3 has a singleton.
Case 𝑘 = 1: In this case 𝜋1, 𝜋2, 𝜋3 are matchings, so

rank(𝜋1) = rank(𝜋2) = rank(𝜋3) = |𝐴|∕2,
and we must show

crank(𝜋1, 𝜋2, 𝜋3) = 3|𝐴|∕2 − 1.
Let  be the multigraph whose vertex set is 𝐴 and with edges given by the cells of 𝜋1, 𝜋2, 𝜋3
(which are all 2-cells). Clearly  is 3-regular, with |𝐴| vertices and 3|𝐴|∕2 edges. As 𝜋1 ∨ 𝜋2 ∨ 𝜋3
is indiscrete,  is connected.
According to Definition 3.1, we want to infect as few edges as possible in such a way that, if

two infected edges incident at a vertex always spread infection to the third edge, then infection
spreads to all edges. Note that for this to happen, it is necessary and sufficient to infect at least
one edge in each cycle, as the edges that are uninfected at the end of the process form a subgraph
with no vertex of degree 1. Hence, equivalently, we want to delete as few edges as possible to get
a forest.
As  has 3|𝐴|∕2 edges and any forest has at most |𝐴| − 1 edges, we must delete at least|𝐴|∕2 + 1 edges. Conversely, given any connected 3-regular multigraph, we can delete edges until

we have a (simple) tree. Hence, the minimal number of generators is precisely |𝐴|∕2 + 1, so
crank(𝜋1, 𝜋2, 𝜋3) = 2|𝐴| − (|𝐴|∕2 + 1) = 3|𝐴|∕2 − 1, as claimed.
Case 𝑘 = 0: In this case, at least one of 𝜋1, 𝜋2, 𝜋3 has a singleton, and we must show that

crank(𝜋1, 𝜋2, 𝜋3) = rank(𝜋1) + rank(𝜋2) + rank(𝜋3).

We define a graph  as in the previous case but additionally for every singleton {𝑣} ∈ 𝜋1 ⊔ 𝜋2 ⊔ 𝜋3
we add an edge {𝑣, ∗}, where ∗ is a special additional vertex at which infection does not spread.
As 𝜋1 ∨ 𝜋2 ∨ 𝜋3 is indiscrete, ⧵ ∗ is connected. As there is at least one singleton,  is connected.
Again we want to delete as few edges as possible to get a forest. The number of vertices in  is|𝐴| + 1 and the number of edges is |𝜋1| + |𝜋2| + |𝜋3|, so the number of edges we must delete is
precisely |𝜋1| + |𝜋2| + |𝜋3| − |𝐴|. Hence,

crank(𝜋1, 𝜋2, 𝜋3) = 3|𝐴| − |𝜋1| − |𝜋2| − |𝜋3| = rank(𝜋1) + rank(𝜋2) + rank(𝜋3),
as claimed. □

4 THE “FOURIER” EXPANSION OF 𝟏𝑺

Recall from Section 2 that 𝑄𝐴 denotes the orthogonal projection 𝐿2(𝑋𝑚) → 𝐿2(𝑋𝐴) and 𝑃𝐴
denotes the orthogonal projection

𝑃𝐴 ∶ 𝐿
2(𝑋𝑚) → 𝐿2(𝑋𝐴) ∩

⋂
𝐵⊊𝐴

𝐿2(𝑋𝐵)⟂,

 1460244x, 2023, 1, D
ow

nloaded from
 https://londm

athsoc.onlinelibrary.w
iley.com

/doi/10.1112/plm
s.12538 by Princeton U

niversity, W
iley O

nline Library on [23/08/2024]. See the Term
s and C

onditions (https://onlinelibrary.w
iley.com

/term
s-and-conditions) on W

iley O
nline Library for rules of use; O

A
 articles are governed by the applicable C

reative C
om

m
ons License



TRANSVERSALS IN QUASIRANDOM LATIN SQUARES 93

and these operators are related via inclusion–exclusion rules:

𝑄𝐴 =
∑
𝐵⊆𝐴

𝑃𝐵,

𝑃𝐴 =
∑
𝐵⊆𝐴

(−1)|𝐴⧵𝐵|𝑄𝐵. (4.1)

In this section, we study the terms in the expansion

1𝑆 =
∑
𝐴⊆[𝑛]

𝑃𝐴1𝑆.

To express some of the results, it is convenient to use the linear map𝑈 ∶ 𝐂[𝑧] → 𝐂 defined by

𝑈(𝑧𝑘) =

{
𝑛𝑘∕(𝑛)𝑘 ∶ 𝑘 ⩽ 𝑛,

0 ∶ 𝑘 > 𝑛.

Here (𝑛)𝑘 = 𝑛(𝑛 − 1)⋯ (𝑛 − 𝑘 + 1).

4.1 Formulae for 𝑷𝑨𝟏𝑺

Let 𝑆𝐴 ⊆ 𝑋𝐴 denote the set of injections 𝐴 → 𝑋. Thus, if |𝐴| = 𝑚, |𝑆𝐴| = (𝑛)𝑚.
Lemma 4.1. If 𝐴 ⊆ [𝑛] and |𝐴| = 𝑚,

𝑄𝐴1𝑆 =
𝑛!

𝑛𝑛
𝑛𝑚

(𝑛)𝑚
1𝑆𝐴 .

Proof. A function 𝑓∶ 𝐴 → 𝑋 can be extended to a bijection [𝑛] → 𝑋 in (𝑛 − 𝑚)!ways if 𝑓 is injec-
tive and 0ways otherwise, and by definition𝑄𝐴1𝑆(𝑓) is the number of such extensions normalized
by 1∕𝑛𝑛−𝑚. □

Lemma 4.2 [3, Lemma 4.3].

1𝑆𝐴 =
∑
𝜋∈Π𝐴

𝜇(𝜋)𝑐𝜋.

Lemma 4.3. If 𝐴 ⊆ [𝑛] and |𝐴| = 𝑚, then
𝑃𝐴1𝑆 =

𝑛!

𝑛𝑛
𝑛𝑚

(𝑛)𝑚

∑
𝜋∈Π′

𝐴

𝜇(𝜋)𝑃𝐴𝑐𝜋.

Proof. Combining the previous two lemmas,

𝑃𝐴1𝑆 = 𝑃𝐴𝑄𝐴1𝑆 =
𝑛!

𝑛𝑛
𝑛𝑚

(𝑛)𝑚

∑
𝜋∈Π𝐴

𝜇(𝜋)𝑃𝐴𝑐𝜋.

As 𝑐𝜋 ∈ 𝐿2(𝑋supp𝜋), only the terms with supp𝜋 = 𝐴 survive. □
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94 EBERHARD et al.

We can use𝑈 to give another formula for 𝑃𝐴1𝑆 . If 𝑥 ∈ 𝑋𝐴 (i.e., 𝑥 ∶ 𝐴 → 𝑋), the kernel ker 𝑥 ∈
Π𝐴 of 𝑥 is the level set partition

ker 𝑥 =
{
𝑥−1(𝑡) ∶ 𝑡 ∈ 𝑋, 𝑥−1(𝑡) ≠ ∅}.

Note that

𝑐𝜋(𝑥) = 1 ⟺ 𝑥 is 𝜋-measurable ⟺ 𝜋 ⩽ ker 𝑥.

Lemma 4.4. Let 𝐴 ⊆ [𝑛], |𝐴| = 𝑚. For 𝑥 ∈ 𝑋𝑛, let 𝜋 = ker(𝑥|𝐴) ∈ Π𝐴. Then
𝑃𝐴1𝑆(𝑥) = (−1)

rank(𝜋) 𝑛!

𝑛𝑛
𝑈

∏
𝑝∈𝜋

(|𝑝|𝑧 − 1).
Proof. From (4.1) and Lemma 4.1, we have

𝑃𝐴1𝑆 =
𝑛!

𝑛𝑛

∑
𝐵⊆𝐴

(−1)|𝐴⧵𝐵| 𝑛|𝐵|
(𝑛)|𝐵| 1𝑆𝐵 .

Now, the sets 𝐵 such that 𝑥|𝐵 is injective are precisely those which intersect each cell of 𝜋 in at
most one point. Hence,

𝑃𝐴1𝑆(𝑥) =
𝑛!

𝑛𝑛
𝑈

∑
𝐵⊆𝐴

(−1)|𝐴⧵𝐵|𝑧|𝐵|1𝑆𝐵 (𝑥)
=
𝑛!

𝑛𝑛
(−1)|𝐴|−|𝜋|𝑈∏

𝑝∈𝜋

(|𝑝|𝑧 − 1).
□

4.2 Sparseval

The word sparseval is our playful term for the computation of ‖𝑃𝐴𝑓‖22 for any 𝐴 ⊆ [𝑛]. This is
possible by inclusion–exclusion and orthogonality: as

‖𝑄𝐴𝑓‖22 = ∑
𝐵⊆𝐴

‖𝑃𝐵𝑓‖22,
it follows that

‖𝑃𝐴𝑓‖22 = ∑
𝐵⊆𝐴

(−1)|𝐴⧵𝐵|‖𝑄𝐵𝑓‖22. (4.2)

Lemma 4.5. If 𝐴 ⊆ [𝑛] and |𝐴| = 𝑚,
‖𝑃𝐴1𝑆‖22 = (

𝑛!

𝑛𝑛

)2
𝑈
(
(𝑧 − 1)𝑚

)
.
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TRANSVERSALS IN QUASIRANDOM LATIN SQUARES 95

Proof. Note that ‖1𝑆𝐵‖22 = (𝑛)|𝐵|∕𝑛|𝐵| for every 𝐵 ⊆ 𝐴. Hence, from (4.2) and Lemma 4.1,

‖𝑃𝐴1𝑆‖22( 𝑛!𝑛𝑛 )−2 = ∑
𝐵⊆𝐴

(−1)|𝐴⧵𝐵| 𝑛|𝐵|
(𝑛)|𝐵| = 𝑈

(
(𝑧 − 1)𝑚

)
.

□

Proposition 4.6. Assume 0 ⩽ 𝑚 ⩽ 𝑛 and let 𝑡 = 𝑚∕𝑛. Then

0 ⩽ 𝑈
(
(𝑧 − 1)𝑚

)
≪

(
𝑛

𝑚

)−1

𝑒𝑠(𝑡)𝑛,

where

𝑠(𝑡) = 𝑡1∕2 − 𝑡 log 𝑡1∕2 − (1 − 𝑡) log(1 + 𝑡1∕2).

In particular,

𝑈
(
(𝑧 − 1)𝑚

)
⩽ 𝑒𝑂(𝑚)(𝑚∕𝑛)𝑚∕2.

Sketch. The inequality𝑈
(
(𝑧 − 1)𝑚

)
⩾ 0 follows from the previous lemma. For the main claim, by

expanding we have

𝑈
(
(𝑧 − 1)𝑚

)
=
1

𝑛!

𝑚∑
𝑘=0

(
𝑚

𝑘

)
(−1)𝑚−𝑘𝑛𝑘(𝑛 − 𝑘)!,

and this can be identified as
(𝑛
𝑚

)−1 times the coefficient of 𝑋𝑚 in 𝑒𝑛𝑋∕(1 + 𝑋)𝑛−𝑚+1. The stated
bound follows by taking a contour integral (chosen in the spirit of the saddle-point method) to
extract the coefficient. For details, see [2, bound for the sum in (5.4)]. Extra care is needed for 𝑡
near 1, but we omit the details because we will not use the claim for 𝑡 > 1∕2. The second bound
follows by Stirling’s formula. □

The following corollary will not be used but is included for interest.

Corollary 4.7. The sign of 𝑃𝐴1𝑆(𝑥) is (−1)rank(ker 𝑥|𝐴).
Proof. Let 𝜋 = ker(𝑥|𝐴). By Lemma 4.4, it suffices to prove that

𝑈
∏
𝑝∈𝜋

(|𝑝|𝑧 − 1) > 0.
There are nonnegative integers 𝑟𝜔 ⩾ 0 such that∏

𝑝∈𝜋

(|𝑝|𝑧 − 1) = ∏
𝑝∈𝜋

(|𝑝|(𝑧 − 1) + (|𝑝| − 1)) = ∑
𝜔⊆𝜋

𝑟𝜔(𝑧 − 1)
|𝜔|.

Hence, the claim follows from 𝑈
(
(𝑧 − 1)𝑚

)
⩾ 0. □
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96 EBERHARD et al.

5 MAJOR ARCS

The goal in this section is to prove Theorem 2.2. Define

𝔖𝑚 =
∑
2𝑘⩽𝑚

(−1)𝑘

2𝑘𝑘!
,

𝑀𝑚 =
∑
𝐴⊆[𝑛]|𝐴|⩽𝑚

Λ(𝑃𝐴1𝑆, 𝑃𝐴1𝑆, 𝑃𝐴1𝑆).

Our aim is to prove that, for𝑚 ⩽ 𝑐𝑛1∕2,

𝑀𝑚 =
(
𝔖𝑚 + 𝑂(𝑚

2∕𝑛)
)( 𝑛!
𝑛𝑛

)3
. (5.1)

In particular, this implies Theorem 2.2.

5.1 The quantities 𝜸 and 𝜸𝟎

From Lemma 4.3, it is clear that to estimate Λ(𝑃𝐴1𝑆, 𝑃𝐴1𝑆, 𝑃𝐴1𝑆) it suffices to estimate
Λ(𝑃𝐴𝑐𝜋1 , 𝑃𝐴𝑐𝜋2 , 𝑃𝐴𝑐𝜋3) for every partition system 𝔓 = (𝜋1, 𝜋2, 𝜋3) with support 𝐴 and aggre-
gate the results with the appropriate weighting. For continuity with [3, section 4], we define the
normalized quantities

𝛾0(𝔓) = 𝑛
trank(𝔓)Λ(𝑐𝜋1 , 𝑐𝜋2 , 𝑐𝜋3)

and

𝛾(𝔓) = 𝑛trank(𝔓)Λ(𝑃𝐴𝑐𝜋1 , 𝑃𝐴𝑐𝜋2 , 𝑃𝐴𝑐𝜋3)

for any partition triple𝔓 = (𝜋1, 𝜋2, 𝜋3). Note that

0 ⩽ 𝛾0(𝔓) ⩽ 1

by Lemmas 3.2 and 3.3. As 𝑐𝜋 ∈ 𝐿2(𝑋supp𝜋), 𝛾(𝔓) = 0 unless𝔓 is a partition system.

Lemma 5.1. Let𝔓 be a partition system with support supp𝔓 = 𝐴 of size𝑚, and suppose𝑚′ points
of 𝐴 are contained in cells 𝜋1 ∨ 𝜋2 ∨ 𝜋3 of size at least 3. Then

|𝛾(𝔓)| ⩽ 2𝑚′
.

Sketch. The idea is that

Λ(𝑃𝐴𝑐𝜋1 , 𝑃𝐴𝑐𝜋2 , 𝑃𝐴𝑐𝜋3) = Λ(𝑐𝜋1 , 𝑐𝜋2 , 𝑃𝐴𝑐𝜋3)

=
∑
𝐵⊆𝐴

(−1)|𝐴⧵𝐵|Λ(𝑐𝜋1 , 𝑐𝜋2 , 𝑄𝐵𝑐𝜋3)
=

∑
𝐵⊆𝐴

(−1)|𝐴⧵𝐵|Λ(𝑄𝐵𝑐𝜋1 , 𝑄𝐵𝑐𝜋2 , 𝑄𝐵𝑐𝜋3),
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TRANSVERSALS IN QUASIRANDOM LATIN SQUARES 97

and

𝑄𝐵𝑐𝜋 = 𝑛
−rank(𝜋)+rank(𝜋|𝐵)𝑐𝜋|𝐵 ,

where

𝜋|𝐵 = {𝑝 ∩ 𝐵 ∶ 𝑝 ∈ 𝜋, 𝑝 ∩ 𝐵 ≠ ∅}.
Let𝔓|𝐵 = (𝜋1|𝐵, 𝜋2|𝐵, 𝜋3|𝐵). Then, normalizing,

𝛾(𝔓) =
∑
𝐵⊆𝐴

(−1)|𝐴⧵𝐵|𝛾0(𝔓|𝐵)𝑛−𝑡(𝔓,𝐵),
where

𝑡(𝔓, 𝐵) = trank(𝔓|𝐵) − trank(𝔓) + 3∑
𝑖=1

(
rank(𝜋𝑖) − rank(𝜋𝑖|𝐵)).

In [3, section 4] we showed 𝑡(𝔓, 𝐵) ⩾ 0. As 𝛾0(𝔓|𝐵) ∈ [0, 1] for all 𝐵 this shows |𝛾(𝔓)| ⩽ 2𝑚. The
stronger boundwith𝑚′ in place of𝑚 follows by separating off the doubleton cells of𝜋1 ∨ 𝜋2 ∨ 𝜋3.
See [3, section 4] for details. □

5.2 The𝑴𝒎(𝒛) series

For a partition triple𝔓 = (𝜋1, 𝜋2, 𝜋3) we use the shorthand

𝜇(𝔓) = 𝜇(𝜋1) 𝜇(𝜋2) 𝜇(𝜋3).

From Lemma 4.3 we have

𝑀𝑚 =
(
𝑛!

𝑛𝑛

)3 ∑
| supp𝔓|⩽𝑚

(
𝑛| supp𝔓|
(𝑛)| supp𝔓|

)3

𝜇(𝔓)𝛾(𝔓)𝑛− trank(𝔓),

where the sum is over all partition systems on [𝑛]. For 𝑧 ∈ 𝐂 define

𝑀𝑚(𝑧) =
(
𝑛!

𝑛𝑛

)3 ∑
| supp𝔓|⩽𝑚

(
𝑛| supp𝔓|
(𝑛)| supp𝔓|

)3

𝜇(𝔓)𝛾(𝔓)𝑛−| supp𝔓|𝑧cx(𝔓).
As we have mentioned, cx(𝔓) ⩾ 0 for any partition system𝔓, so𝑀𝑚(𝑧) is a polynomial such that
𝑀𝑚 = 𝑀𝑚(1∕𝑛). By bounding𝑀𝑚(𝑧) and using some complex analysis we will show𝑀𝑚(1∕𝑛) ≈

𝑀𝑚(0), and then we will directly estimate𝑀𝑚(0).

Proposition 5.2. There is a constant 𝑐 > 0 such that, for |𝑧|1∕2 ⩽ 𝑐∕𝑚, we have
|𝑀𝑚(𝑧)|≪ (

𝑛𝑚

(𝑛)𝑚

)2(
𝑛!

𝑛𝑛

)3
.
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98 EBERHARD et al.

Proof. By the definition of 𝑀𝑚(𝑧), the triangle inequality, and Lemma 5.1, the quantity|𝑀𝑚(𝑧)|∕( 𝑛!𝑛𝑛 )3 is bounded by∑
|𝐴|⩽𝑚 𝑛

−|𝐴|( 𝑛|𝐴|
(𝑛)|𝐴|

)3 ∑
supp𝔓=𝐴

2𝑚
′(𝔓)|𝜇(𝔓)| |𝑧|cx(𝔓),

where𝑚′(𝔓) is the number of points of supp𝔓 contained in cells of 𝜋1 ∨ 𝜋2 ∨ 𝜋3 of size at least
3. This exact sumwas analyzed in [3, section 4.4], and we showed that it is𝑂(𝑛𝑚∕(𝑛)𝑚)2 provided|𝑧|1∕2 < 𝑐∕𝑚. The proposition follows. □

Corollary 5.3. There is a constant 𝑐 > 0 such that, for𝑚 < 𝑐𝑛1∕2,

|𝑀𝑚 −𝑀𝑚(0)|≪ (𝑚2∕𝑛)
(
𝑛!

𝑛𝑛

)3
.

Proof. By the residue theorem,

𝑀𝑚(𝑢) −𝑀𝑚(0) =
1

2𝜋𝑖 ∮|𝑧|=𝑅
𝑀𝑚(𝑧)𝑢

(𝑧 − 𝑢)𝑧
𝑑𝑧

as long as |𝑢| < 𝑅. Hence,
||𝑀𝑚(𝑢) −𝑀𝑚(0)|| ⩽ max|𝑧|=𝑅 |𝑀𝑚(𝑧)| |𝑢|∕𝑅

1 − |𝑢|∕𝑅 .
Take 𝑢 = 1∕𝑛 and 𝑅 = 𝑐2∕𝑚2, where 𝑐 is as in the previous proposition. Then as long as 1∕𝑛 <
𝑐2∕𝑚2, that is,𝑚 < 𝑐𝑛1∕2, we get

|𝑀𝑚 −𝑀𝑚(0)|≪ (1 + 𝑛−1∕2)2𝑚
(
𝑛𝑚

(𝑛)𝑚

)2(
𝑛!

𝑛𝑛

)3 𝑚2∕𝑛

1 − 𝑚2∕(𝑐2𝑛)
.

Hence, as long as say𝑚 < (𝑐∕2)𝑛1∕2 we get the claimed bound. □

5.3 The constant term𝑴𝒎(𝟎)

By definition,

𝑀𝑚(0) =
(
𝑛!

𝑛𝑛

)3 ∑
| supp𝔓|⩽𝑚
cx(𝔓)=0

(
𝑛| supp𝔓|
(𝑛)| supp𝔓|

)3

𝜇(𝔓)𝛾(𝔓)𝑛−| supp𝔓|.

As remarked, cx(𝔓) = 0 if and only if 𝔓 = (𝜋, 𝜋, 𝜋) for some matching 𝜋. In this case, if say| supp𝔓| = 2𝑘,
𝑛| supp𝔓|
(𝑛)| supp𝔓| =

𝑛2𝑘

(𝑛)2𝑘
= 1 + 𝑂(𝑘2∕𝑛),

𝜇(𝔓) = 𝜇(𝜋)3 = (−1)𝑘,

𝛾(𝔓) = (1 − 1∕𝑛)𝑘.
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TRANSVERSALS IN QUASIRANDOM LATIN SQUARES 99

The last identity holds by a direct calculation analogous to [3, Lemma 4.10]. The number of
matchings 𝜋 in [𝑛] of support size 2𝑘 is

(𝑛)2𝑘
2𝑘𝑘!

=
𝑛2𝑘

2𝑘𝑘!

(
1 + 𝑂(𝑘2∕𝑛)

)
.

Thus,

𝑀𝑚(0) =
(
𝑛!

𝑛𝑛

)3 ⌊𝑚∕2⌋∑
𝑘=0

𝑛2𝑘

2𝑘𝑘!
(−1)𝑘𝑛−2𝑘

(
1 + 𝑂(𝑘2∕𝑛)

)
=

(
𝑛!

𝑛𝑛

)3(
𝔖𝑚 + 𝑂(1∕𝑛)

)
.

By combining with Corollary 5.3, we have

𝑀𝑚 =
(
𝑛!

𝑛𝑛

)3(
𝔖𝑚 + 𝑂(𝑚

2∕𝑛)
)

provided𝑚 < 𝑐𝑛1∕2. This finishes the proof of (5.1).

6 SPARSEMINOR ARCS

To prove Theorem 2.3, we need a bound on Λ(|𝑃𝐴1𝑆|, |𝑃𝐴1𝑆|, |𝑃𝐴1𝑆|) for larger |𝐴|. Note that in
any latin square 𝖫′ ⊆ (𝑋′, 𝑌′, 𝑍′),

|Λ(𝑓, g , ℎ)| = |𝐄(𝑥,𝑦,𝑧)∈𝖫′𝑓(𝑥)g(𝑦)ℎ(𝑧)|
⩽ 𝐄𝑥∈𝑋′ |𝑓(𝑥)||||𝐄𝑦,𝑧∶ (𝑥,𝑦,𝑧)∈𝖫′g(𝑦)ℎ(𝑧)||| ⩽ ‖𝑓‖1‖g‖2‖ℎ‖2 (6.1)

using the latin square property and Cauchy–Schwarz, and similarly permuting 𝑓, g , ℎ. One
approach to Theorem 2.3 might be to find upper bounds on |𝑃𝐴1𝑆(𝑥)|, pointwise or in 𝐿1,
and simply apply (6.1). However, by itself this approach is too crude, even assuming optimal
upper bounds.
Another idea is to seek a majorant for |𝑃𝐴1𝑆| of the form

|𝑃𝐴1𝑆| ⩽ ∑
𝜋∈Π𝐴

𝑡𝜋𝑐𝜋 (6.2)

for some coefficients 𝑡𝜋 ⩾ 0. Then

Λ(|𝑃𝐴1𝑆|, |𝑃𝐴1𝑆|, |𝑃𝐴1𝑆|) ⩽ ∑
𝜋1,𝜋2,𝜋3∈Π𝐴

𝑡𝜋1𝑡𝜋2𝑡𝜋3Λ(𝑐𝜋1 , 𝑐𝜋2 , 𝑐𝜋3)

and Lemma 3.2, together with generating function techniques, gives a way to control the right-
hand side. This bound is particularly effective if 𝜋𝑖 ∈ Π

(2)
𝐴
, given Lemma 3.4.
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100 EBERHARD et al.

Again this approach does not succeed by itself. Our final argument works by decomposing|𝑃𝐴1𝑆| into two pieces and combining the two techniques discussed above.
6.1 A majorant for |𝑷𝑨𝟏𝑺|

Throughout this section, let 𝐶 > 0 be some large enough constant, 𝐴 ⊆ [𝑛] and |𝐴| = 𝑚 ⩽ 𝑛∕𝐶.
Additionally, we let

𝛿 ∶= (𝐶𝑚∕𝑛)1∕2.

Although we will always have this specific value of 𝛿 in mind, most of the results in this sec-
tion only rely on 𝛿 ⩽ 1. The next proposition gives a useful bound for |𝑃𝐴1𝑆|. For 𝛿 ∶= (𝐶𝑚∕𝑛)1∕2,
𝑟 ⩾ 1, and 𝜋 a partition define

𝜎(𝛿)𝑟 =

{
𝛿 ∶ 𝑟 = 1,

𝑟 − 1 ∶ 𝑟 > 1,

𝜎(𝛿)𝜋 =
∏
𝑝∈𝜋

𝜎(𝛿)|𝑝|.
Proposition 6.1. We have

|𝑃𝐴1𝑆(𝑥)| ⩽ 𝑛!

𝑛𝑛
𝑒𝛿𝑚𝜎(𝛿)

ker 𝑥
(𝑥 ∈ 𝑋𝐴).

Proof. From Lemma 4.4,

𝑃𝐴1𝑆(𝑥) = (−1)
rank(𝜋) 𝑛!

𝑛𝑛
𝑈𝜙,

where 𝜋 = ker 𝑥 and

𝜙 =
∏
𝑝∈𝜋

(|𝑝|𝑧 − 1) = ∑
𝜔⊆𝜋

𝑟𝜔(𝑧 − 1)
|𝜔|,

𝑟𝜔 =
∏

𝑝∈𝜋⧵𝜔

(|𝑝| − 1)∏
𝑝∈𝜔

|𝑝|.
From Proposition 4.6 and crude estimates (Stirling’s formula), for 0 ⩽ 𝑑 ⩽ 𝑚,

𝑈
(
(𝑧 − 1)𝑑

)
⩽ (𝐶𝑑∕𝑛)𝑑∕2 ⩽ (𝐶𝑚∕𝑛)𝑑∕2 = 𝛿𝑑

provided 𝐶 is large enough. Then

𝑈𝜙 ⩽
∑
𝜔⊆𝜋

𝑟𝜔𝛿
|𝜔|

=
∏
𝑝∈𝜋

(|𝑝| − 1 + |𝑝|𝛿)
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TRANSVERSALS IN QUASIRANDOM LATIN SQUARES 101

= 𝜎(𝛿)𝜋
∏

𝑝∈𝜋∶|𝑝|>1
(
1 +

|𝑝||𝑝| − 1𝛿
)

⩽ 𝜎(𝛿)𝜋 (1 + 2𝛿)𝑚∕2

⩽ 𝜎(𝛿)𝜋 𝑒𝛿𝑚

as required. □

In light of the proposition, to find majorants for |𝑃𝐴1𝑆| of the form (6.2) it suffices to find anal-
ogous bounds for 𝜎(𝛿)𝜋 . Recall that Π(𝑘)

𝐴
is the set of all 𝜋 ∈ Π𝐴 having no part of size greater than

𝑘. Let 𝑟𝑘(𝜋) be the number of 𝑘-cells in 𝜋 and let 𝑟3+(𝜋) =
∑
𝑘⩾3 𝑟𝑘(𝜋).

Lemma 6.2. Let 𝜋 be a partition.

(1)

𝜎(𝛿)𝜋 ⩽
∑{

𝜎(𝛿)
𝜋′
∶ 𝜋′ ⩽ 𝜋, 𝜋′ ∈ Π(3)

}
.

(2)

𝜎(𝛿)𝜋 ⩽
∑{

𝜎(𝛿)
𝜋′
∶ 𝜋′ ⩽ 𝜋, 𝜋′ ∈ Π(4), 𝑟3+(𝜋

′) = 𝑟3+(𝜋)
}
.

(3)

𝜎(𝛿)𝜋 ⩽ 𝛿−𝑟3+(𝜋)
∑{

𝜎(𝛿)
𝜋′
∶ 𝜋′ ⩽ 𝜋, 𝜋′ ∈ Π(2)

}
.

Proof. Consider the first inequality. Both sides are multiplicative across cells of 𝜋, so we may
assume 𝜋 is a single cell, say of size 𝑟. The inequality is trivial for 𝑟 ⩽ 3 (as 𝜎(𝛿)𝜋 is one of the
summands on the right-hand side), so we may assume 𝑟 ⩾ 4. Then it suffices to check

𝑟 − 1 ⩽
∑

2𝑎+3𝑏=𝑟

𝑟!

2!𝑎𝑎!3!𝑏𝑏!
2𝑏.

This is a calculation for 𝑟 ⩽ 10 (say) and an uninteresting exercise for 𝑟 > 10.
Now consider the second inequality. This time, the right-hand side is not itself multiplicative

over cells of 𝜋, but if we replace the condition 𝑟3+(𝜋′) = 𝑟3+(𝜋) by the stronger one

∀𝑝 ∈ 𝜋, |𝑝| ⩾ 3 ∶ there is exactly one 𝑝′ ∈ 𝜋′ with 𝑝′ ⊆ 𝑝 and |𝑝′| ⩾ 3
then it becomes so, and it suffices to prove the corresponding stronger inequality. Now we may
again assume that 𝜋 is an 𝑟-cell, and we may assume 𝑟 ⩾ 5. Then we must check

𝑟 − 1 ⩽
∑

2𝑎+3𝑏+4𝑐=𝑟
𝑏+𝑐=1

𝑟!

2!𝑎𝑎!3!𝑏𝑏!4!𝑐𝑐!
2𝑏3𝑐.

Again we omit further details.
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102 EBERHARD et al.

Now consider the third inequality. Again it suffices to consider the case of an 𝑟-cell, andwemay
assume 𝑟 ⩾ 3. Then the assertion is

𝑟 − 1 ⩽ 𝛿−1
∑

𝑎+2𝑏=𝑟

𝑟!

𝑎!2!𝑏𝑏!
𝛿𝑎.

As 𝛿 ⩽ 1, it suffices to check

𝑟 − 1 ⩽
∑

𝑎+2𝑏=𝑟
𝑎⩽1

𝑟!

𝑎!2!𝑏𝑏!
,

which is again essentially a calculation. □

Lemma 6.3. Let 𝑥 ∈ 𝑋𝐴. Then

|𝑃𝐴1𝑆𝐴(𝑥)| ⩽ 𝑛!

𝑛𝑛
𝑒𝛿𝑚

∑
𝜋∈Π(3)

𝐴

𝜎(𝛿)𝜋 𝑐𝜋(𝑥).

Proof. By Proposition 6.1,

|𝑃𝐴1𝑆𝐴(𝑥)| ⩽ 𝑛!

𝑛𝑛
𝑒𝛿𝑚𝜎(𝛿)

ker 𝑥
.

By Lemma 6.2(1),

𝜎(𝛿)
ker 𝑥

⩽
∑{

𝜎(𝛿)𝜋 ∶ 𝜋 ⩽ ker 𝑥, 𝜋 ∈ Π(3)
𝐴

}
=

∑
𝜋∈Π(3)

𝐴

𝜎(𝛿)𝜋 𝑐𝜋(𝑥).

□

6.2 A splitting of |𝑷𝑨𝟏𝑺|

We can use the bound on |𝑃𝐴1𝑆| given in the previous section to bound the 𝐿1 norm of 𝑃𝐴1𝑆 , but
the bound would not be strong enough for what we need. To go further, we break up 𝑅 ∶= |𝑃𝐴1𝑆|
into two parts, a part whose 𝐿1 norm we can control better, and a part we can analyze separately.
Fix 𝜖 ⩾ 0 and let

Π♯ = {𝜋 ∈ Π𝐴 ∶ 𝑟3+(𝜋) < 𝜖𝑚}.

Let Π♭ = Π𝐴 ⧵ Π♯. Define

𝑅♯(𝑥) = 1Π♯(ker 𝑥)𝑅(𝑥),

𝑅♭(𝑥) = 1Π♭(ker 𝑥)𝑅(𝑥).

Clearly, 𝑅 = 𝑅♯ + 𝑅♭.
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TRANSVERSALS IN QUASIRANDOM LATIN SQUARES 103

Lemma 6.4. We have

𝑅♭ ⩽
𝑛!

𝑛𝑛
𝑒𝛿𝑚

∑
𝜋∈Π♭∩Π(4)

𝜎(𝛿)𝜋 𝑐𝜋,

𝑅♯ ⩽
𝑛!

𝑛𝑛
𝑒𝛿𝑚

∑
𝜋∈Π♯∩Π(4)

𝜎(𝛿)𝜋 𝑐𝜋,

𝑅♯ ⩽
𝑛!

𝑛𝑛
𝑒𝛿𝑚𝛿−𝜖𝑚

∑
𝜋∈Π(2)

𝜎(𝛿)𝜋 𝑐𝜋.

Proof. By Proposition 6.1,

𝑅(𝑥) ⩽
𝑛!

𝑛𝑛
𝑒𝛿𝑚𝜎(𝛿)

ker 𝑥
.

Suppose ker 𝑥 ∈ Π♭. Then by Lemma 6.2(2),

𝜎ker 𝑥 ⩽
∑
{𝜎𝜋 ∶ 𝜋 ⩽ ker 𝑥, 𝜋 ∈ Π

(4), 𝑟3+(𝜋) ⩾ 𝜖𝑚}.

This proves the bound on 𝑅♭. The first bound on 𝑅♯ is proved identically. The second is proved in
the same way using instead Lemma 6.2(3). □

Corollary 6.5. We have

‖𝑅♭‖1 ≪ 𝑛!

𝑛𝑛
𝑒𝑂(𝑚)(𝑚∕𝑛)(1+𝜖)𝑚∕2.

Proof. Using the previous lemma, 𝛿 ⩽ 1 and ‖𝑐𝜋‖1 = 𝑛−rank(𝜋),
‖𝑅♭‖1 ⩽ 𝑛!

𝑛𝑛
𝑒𝑚

∑
𝜋∈Π♭∩Π(4)

𝜎(𝛿)𝜋 𝑛− rank(𝜋).

Let

𝛼𝑟(𝑥, 𝑤) =
∑

𝜋∈Π(4)𝑟

𝜎(𝛿)𝜋 𝑥rank(𝜋)𝑤𝑟3+(𝜋).

Then, for real 𝑤 ⩾ 1, ∑
𝜋∈Π♭∩Π(4)

𝜎(𝛿)𝜋 𝑛− rank(𝜋) ⩽ 𝑤−𝜖𝑚𝛼𝑚(1∕𝑛,𝑤).

Using the exponential formula (3.1) with 𝑥𝑘 = 𝜎
(𝛿)
𝑘
𝑥𝑘−1𝑦𝑘 for 𝑘 = 1, 2, 𝑥𝑘 = 𝜎

(𝛿)
𝑘
𝑤𝑥𝑘−1𝑦𝑘 for 𝑘 =

3, 4, and 𝑥𝑘 = 0 for 𝑘 ⩾ 5, we obtain∑
𝑟⩾0

1

𝑟!
𝛼𝑟(𝑥, 𝑤)𝑦

𝑟 = exp(𝛿𝑦 + 𝑥𝑦2∕2 + 𝑤𝑥2𝑦3∕3 + 𝑤𝑥3𝑦4∕8).
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104 EBERHARD et al.

Hence, for real 𝑦 > 0,

𝑤−𝜖𝑚𝛼𝑚(𝑥,𝑤) ⩽
𝑚!

𝑤𝜖𝑚𝑦𝑚
exp(𝛿𝑦 + 𝑥𝑦2∕2 + 𝑤𝑥2𝑦3∕3 + 𝑤𝑥3𝑦4∕8).

Putting 𝑥 = 1∕𝑛, 𝑦 = (𝑚𝑛)1∕2, and 𝑤 = (𝑛∕𝑚)1∕2, we get

𝑤−𝜖𝑚𝛼𝑚(1∕𝑛,𝑤) ⩽
𝑚!

(𝑛∕𝑚)𝜖𝑚∕2(𝑚𝑛)𝑚∕2
𝑒𝑂(𝑚).

This proves what we want. □

Corollary 6.6. We have

Λ(𝑅, 𝑅, 𝑅) ⩽ Λ(𝑅♯, 𝑅♯, 𝑅♯) +
(
𝑛!

𝑛𝑛

)3
𝑂(1)𝑚(𝑚∕𝑛)(1+𝜖∕2)𝑚.

Proof. We have ‖𝑅♯‖2 ⩽ ‖𝑅‖2 because 0 ⩽ 𝑅♯ ⩽ 𝑅 pointwise. Hence, from (6.1),

Λ(𝑅, 𝑅, 𝑅) = Λ(𝑅♭, 𝑅, 𝑅) + Λ(𝑅♯, 𝑅♭, 𝑅) + Λ(𝑅♯, 𝑅♯, 𝑅♭) + Λ(𝑅♯, 𝑅♯, 𝑅♯)

⩽ Λ(𝑅♯, 𝑅♯, 𝑅♯) + 3‖𝑅‖22‖𝑅♭‖1.
From sparseval (Lemma 4.5 and Proposition 4.6),

‖𝑅‖22 ≪ (
𝑛!

𝑛𝑛

)2
𝑒𝑂(𝑚)(𝑚∕𝑛)𝑚∕2.

Combining with Corollary 6.5 gives the bound. □

6.3 The contribution from 𝑹♯

Finally, we must bound Λ(𝑅♯, 𝑅♯, 𝑅♯). From Lemma 6.4,

𝑅♯ ⩽
𝑛!

𝑛𝑛
𝑒𝛿𝑚𝛿−𝜖𝑚𝑄 ⩽

𝑛!

𝑛𝑛
𝑒𝑂(𝑚)(𝑚∕𝑛)−𝜖𝑚∕2𝑄, (6.3)

where

𝑄 =
∑

𝜋∈Π(2)

𝜎(𝛿)𝜋 𝑐𝜋.

Hence, it suffices to bound Λ(𝑄,𝑄,𝑄). The key ingredient for this is the knowledge of the exact
value of combinatorial rank for 𝜋1, 𝜋2, 𝜋3 ∈ Π(2) (Lemma 3.4).

Lemma 6.7.

Λ(𝑄,𝑄,𝑄) ⩽ (𝑚∕𝑛)3𝑚∕2𝑒𝑂(𝑚+𝑛∕𝑚).
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TRANSVERSALS IN QUASIRANDOM LATIN SQUARES 105

Proof. Let 𝐴 ⊆ Π
(2)
𝐴

be the set of matchings (partitions all of whose cells have size 2). For
𝜋1, 𝜋2, 𝜋3 ∈ Π

(2)
𝐴
, let 𝑘(𝜋1, 𝜋2, 𝜋2) be the number of cells 𝑝 ∈ 𝜋1 ∨ 𝜋2 ∨ 𝜋3 such that 𝜋𝑖|𝑝 ∈𝑝

for each 𝑖 ∈ [3]. Then, from Lemmas 3.2 and 3.4,

Λ(𝑐𝜋1 , 𝑐𝜋2 , 𝑐𝜋3) ⩽ 𝑛
𝑘(𝜋1,𝜋2,𝜋3)−rank(𝜋1)−rank(𝜋2)−rank(𝜋3).

Hence,

Λ(𝑄,𝑄,𝑄) =
∑

𝜋1,𝜋2,𝜋3∈Π
(2)
𝐴

𝜎(𝛿)𝜋1 𝜎
(𝛿)
𝜋2
𝜎(𝛿)𝜋3 Λ(𝑐𝜋1 , 𝑐𝜋2 , 𝑐𝜋3)

⩽
∑

𝜋1,𝜋2,𝜋3∈Π
(2)
𝐴

𝜎(𝛿)𝜋1 𝜎
(𝛿)
𝜋2
𝜎(𝛿)𝜋3 𝑛

𝑘(𝜋1,𝜋2,𝜋3)−rank(𝜋1)−rank(𝜋2)−rank(𝜋3)

=
∑
𝜋∈Π𝐴

∏
𝑝∈𝜋

∑
𝜋1,𝜋2,𝜋3∈Π

(2)
𝑝

𝜋1∨𝜋2∨𝜋3={𝑝}

𝑛𝑘(𝜋1,𝜋2,𝜋3)
∏
𝑖∈[3]

𝜎(𝛿)𝜋𝑖 𝑛
−rank(𝜋𝑖).

In the last sum above, as 𝜋1 ∨ 𝜋2 ∨ 𝜋3 = {𝑝}, 𝑘(𝜋1, 𝜋2, 𝜋3) is 0 or 1 according to whether
𝜋1, 𝜋2, 𝜋3 ∈𝑝. Splitting the sum according to these cases,

Λ(𝑄,𝑄,𝑄) ⩽
∑
𝜋∈Π𝐴

∏
𝑝∈𝜋

⎛⎜⎜⎜⎜⎜⎝
∑

𝜋1,𝜋2,𝜋3∈Π
(2)
𝑝

𝜋1∨𝜋2∨𝜋3={𝑝}

∏
𝑖∈[3]

𝜎(𝛿)𝜋𝑖 𝑛
−rank(𝜋𝑖) +

∑
𝜋1,𝜋2,𝜋3∈𝑝

𝜋1∨𝜋2∨𝜋3={𝑝}

𝑛
∏
𝑖∈[3]

𝜎(𝛿)𝜋𝑖 𝑛
−rank(𝜋𝑖)

⎞⎟⎟⎟⎟⎟⎠
.

In the second sum, we will ignore the constraint 𝜋1 ∨ 𝜋2 ∨ 𝜋3 = {𝑝}; in the first sum we will use
only rank(𝜋1) + rank(𝜋2) + rank(𝜋3) ⩾ rank(𝜋1 ∨ 𝜋2 ∨ 𝜋3) = |𝑝| − 1.
Fix parameters 𝑤𝑟 ⩾ 1 for all 𝑟 ⩾ 1. Define

𝛼𝑟(𝑥) =
∑

𝜋∈Π(2)𝑟

𝜎(𝛿)𝜋 𝑥rank(𝜋),

𝛼′𝑟(𝑥) =
∑
𝜋∈𝑟

𝜎(𝛿)𝜋 𝑥rank(𝜋) = |𝑟|𝑥𝑟∕2,
𝛽𝑟(𝑥) =

∑
𝜋∈Π𝑟

∏
𝑝∈𝜋

(
𝑤
−(|𝑝|−1)|𝑝| 𝛼|𝑝|(𝑤|𝑝|𝑥)3 + 𝑥−1𝛼′|𝑝|(𝑥)3

)
.

Then, by the discussion above,

Λ(𝑄,𝑄,𝑄) ⩽ 𝛽𝑚(1∕𝑛).

Three applications of the exponential formula (3.1) give

∑
𝑟⩾0

𝑦𝑟

𝑟!
𝛼𝑟(𝑥) = exp(𝛿𝑦 + 𝑥𝑦2∕2), (6.4)
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106 EBERHARD et al.

∑
𝑟⩾0

𝑦𝑟

𝑟!
𝛼′𝑟(𝑥) = exp(𝑥𝑦2∕2), (6.5)

∑
𝑟⩾0

𝑦𝑟

𝑟!
𝛽𝑟(𝑥) = exp

(∑
𝑟⩾1

𝑦𝑟𝑤−𝑟+1𝑟 𝛼𝑟(𝑤𝑟𝑥)
3

𝑟!
+

∑
𝑟⩾2 even

𝑦𝑟𝑥−1𝛼′𝑟(𝑥)
3

𝑟!

)
. (6.6)

From (6.4), for real 𝑦 > 0,

𝛼𝑟(𝑥) ⩽
𝑟!

𝑦𝑟
exp(𝛿𝑦 + 𝑥𝑦2∕2).

Replacing 𝑥 with 𝑤𝑟𝑥, putting 𝑤𝑟 = 𝛿2∕(𝑥𝑟) (we will ensure later that 𝑤𝑟 ⩾ 1 for 1 ⩽ 𝑟 ⩽ 𝑚) and
𝑦 = 𝑟∕𝛿 gives

𝑤−𝑟+1𝑟 𝛼𝑟(𝑤𝑟𝑥)
3 ⩽ 𝑒𝑂(𝑟)𝑟𝑟𝛿𝑟+2𝑥𝑟−1.

From (6.5) with 𝑦 = (𝑟∕𝑥)1∕2, we have

𝛼′𝑟(𝑥) ⩽
𝑟!

𝑦𝑟
exp(𝑥𝑦2∕2) ≍ 𝑟1∕2(𝑟𝑥∕𝑒)𝑟∕2

(alternatively, this follows directly from 𝛼′𝑟(𝑥) = |𝑟|𝑥𝑟∕2). Hence, from (6.6) for 𝑥, 𝑦 > 0,

𝛽𝑚(𝑥) ⩽
𝑚!

𝑦𝑚
exp 𝑏(𝑥, 𝑦), (6.7)

where 𝑏 is the truncated sum

𝑏(𝑥, 𝑦) =

𝑚∑
𝑟=1

𝑦𝑟𝑤−𝑟+1𝑟 𝛼𝑟(𝑤𝑟𝑥)
3

𝑟!
+

𝑚∑
𝑟=2

𝑦𝑟𝑥−1𝛼′𝑟(𝑥)
3

𝑟!

≪

𝑚∑
𝑟=1

𝑒𝑂(𝑟)𝛿𝑟+2𝑥𝑟−1𝑦𝑟 +

𝑚∑
𝑟=2

𝑟𝑂(1)(𝑒−1∕2𝑟1∕2𝑥3∕2𝑦)𝑟𝑥−1.

Inserting 𝑥 = 1∕𝑛 and 𝛿 = (𝐶𝑚∕𝑛)1∕2,

𝑏(1∕𝑛, 𝑦) ≪

𝑚∑
𝑟=1

𝑂(𝑚1∕2𝑦∕𝑛3∕2)𝑟𝑚 +

𝑚∑
𝑟=2

𝑟𝑂(1)(𝑒−1∕2𝑟1∕2𝑦∕𝑛3∕2)𝑟𝑛.

Note that𝑤𝑟 = 𝐶𝑚∕𝑟, and this is indeed at least 1 for 𝑟 ⩽ 𝑚 becausewemay assume𝐶 ⩾ 1. Finally,
let 𝑦 = 𝑐𝑛3∕2∕𝑚1∕2 for a sufficiently small constant 𝑐 > 0. Then

𝑏(1∕𝑛, 𝑦) ≪ 𝑚 + 𝑛∕𝑚.

Hence, from (6.7),

Λ(𝑄,𝑄,𝑄) ⩽ 𝛽𝑚(1∕𝑛) ⩽
𝑚!

𝑦𝑚
exp 𝑏(1∕𝑛, 𝑦) ≪ (𝑚∕𝑛)3𝑚∕2𝑒𝑂(𝑚+𝑛∕𝑚),

as claimed. □
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TRANSVERSALS IN QUASIRANDOM LATIN SQUARES 107

F IGURE 1 A transition (𝑥, 𝑦) ↦ (𝑥′, 𝑦′) in the Markov chain.

Putting the last few results together, we have the following theorem, which clearly implies
Theorem 2.3.

Theorem 6.8. We have

Λ(|𝑃𝐴1𝑆|, |𝑃𝐴1𝑆|, |𝑃𝐴1𝑆||) ⩽ (
𝑛!

𝑛𝑛

)3
(𝑚∕𝑛)9𝑚∕8𝑒𝑂(𝑚+𝑛∕𝑚).

Proof. From Corollary 6.6,

Λ(𝑅, 𝑅, 𝑅) ⩽ Λ(𝑅♯, 𝑅♯, 𝑅♯) +
(
𝑛!

𝑛𝑛

)3
𝑒𝑂(𝑚)(𝑚∕𝑛)(1+𝜖∕2)𝑚.

By (6.3) and the previous lemma, the main term is

Λ(𝑅♯, 𝑅♯, 𝑅♯) ⩽
(
𝑛!

𝑛𝑛

)3
𝑒𝑂(𝑚)(𝑚∕𝑛)−3𝜖𝑚∕2Λ(𝑄,𝑄, 𝑄)

⩽
(
𝑛!

𝑛𝑛

)3
(𝑚∕𝑛)(1−𝜖)3𝑚∕2𝑒𝑂(𝑚+𝑛∕𝑚).

Set 𝜖 = 1∕4. □

7 DENSEMINOR ARCS

Define aMarkov chain on𝑋 × 𝑌 as follows. If the current state is (𝑥, 𝑦), pick uniformly at random
𝑧 ∈ 𝑍. The next state is (𝑥′, 𝑦′), where 𝑥′ and 𝑦′ are the unique solutions to

(𝑥, 𝑦′, 𝑧), (𝑥′, 𝑦, 𝑧) ∈ 𝖫

(see Figure 1). Let be the transition operator for this Markov chain:

(𝑓)(𝑥, 𝑦) = 1

𝑛

∑
(𝑥,𝑦′,𝑧),(𝑥′,𝑦,𝑧)∈𝖫

𝑓(𝑥′, 𝑦′).
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108 EBERHARD et al.

The Markov chain is reversible with uniform stationary distribution, so is self-adjoint and has
the constant function on 𝑋 × 𝑌 as a 1-eigenvector. Let be the projection to constants:

 (𝑓)(𝑥, 𝑦) =
1

𝑛2

∑
𝑥′,𝑦′

𝑓(𝑥′, 𝑦′).

Definition 7.1. We say 𝖫 is -quasirandom with parameter 𝜌 if  − has spectral radius at
most 𝜌.

In particular, 𝜌 < 1 if and only if the Markov chain is connected, and in general 𝜌measures the
rate of mixing.

Remark 7.2. For a finite set 𝑇, let 𝐿2(𝑇)0 denote the subspace
{
𝑓 ∈ 𝐿2(𝑇)∶ 𝐄𝑓 = 0

}
. Then equiv-

alently, 𝖫 is -quasirandom with parameter 𝜌 if the restriction |𝐿2(𝑋×𝑌)0 has spectral radius at
most 𝜌.

All our applications of quasirandomness go through the following lemma.

Lemma 7.3. Assume 𝖫 is-quasirandom with parameter 𝜌 and† let𝑚 ⩾ 1. Then

|Λ(𝑓, g , ℎ)| ⩽ 𝜌𝑚∕2‖𝑓‖2‖g‖2‖ℎ‖2 (7.1)

for all 𝑓 ∈ 𝐿2(𝑋)⊗𝑚
0

, g ∈ 𝐿2(𝑌)⊗𝑚
0

, ℎ ∈ 𝐿2(𝑍)⊗𝑚
0

.

Remark 7.4. Identifying 𝐿2(𝑋)⊗𝑚 with 𝐿2(𝑋𝑚) in the usual way, 𝐿2(𝑋)⊗𝑚
0

is identified with the
subspace im𝑃[𝑚] ⊆ 𝐿

2(𝑋𝑚); see (2.2).

Proof of Lemma 7.3. By Cauchy–Schwarz,

|Λ(𝑓, g , ℎ)| = |||𝐄(𝑥,𝑦,𝑧)∈𝖫𝑚𝑓(𝑥)g(𝑦)ℎ(𝑧)|||
⩽

(
𝐄𝑧

|||𝐄𝑥,𝑦∶(𝑥,𝑦,𝑧)∈𝖫𝑚𝑓(𝑥)g(𝑦)|||2
)1∕2‖ℎ‖2

=
(
𝐄𝑧,𝑥,𝑦,𝑥′,𝑦′∶(𝑥,𝑦,𝑧),(𝑥′,𝑦′,𝑧)∈𝖫𝑚𝑓(𝑥)g(𝑦)𝑓(𝑥

′)ḡ(𝑦′)
)1∕2‖ℎ‖2

= ⟨⊗𝑚(𝑓 ⊗ ḡ), 𝑓 ⊗ ḡ⟩1∕2‖ℎ‖2.
Note ‖𝑓 ⊗ ḡ‖2 = ‖𝑓‖2‖g‖2, and that 𝑓 ⊗ g ∈ 𝐿2(𝑋 × 𝑌)⊗𝑚

0
. As|𝐿2(𝑋×𝑌)0 has spectral radius at

most 𝜌, the tensor power⊗𝑚|𝐿2(𝑋×𝑌)⊗𝑚
0

has spectral radius (and hence operator norm) at most

𝜌𝑚, so the last expression above is bounded by 𝜌𝑚∕2‖𝑓‖2‖g‖2‖ℎ‖2. □

Remark 7.5. As stated in the introduction, while Definition 7.1 has some nice properties (e.g., the
spectral radius of − can be computed efficiently), it is chosen formainly practical rather than

†Note that the 𝑚 = 1 case of (7.1) does not obviously imply the general case: the operator-type norm for trilinear forms
does not behave well under taking tensor powers.
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TRANSVERSALS IN QUASIRANDOM LATIN SQUARES 109

philosophical reasons, and there are similar but qualitatively inequivalent conditions that would
work equally well.
One notable criticism of this definition is that latin squares associated to Steiner triple sys-

tems (i.e., where𝑋 = 𝑌 = 𝑍 and 𝖫 contains the diagonal {(𝑥, 𝑥, 𝑥)∶ 𝑥 ∈ 𝑋} and is invariant under
the 𝑆3-action on triples) always fail to be -quasirandom with parameter 𝜌 < 1 (as the diagonal
{(𝑥, 𝑥) ∶ 𝑥 ∈ 𝑋} of 𝑋 × 𝑋 is a closed set for the Markov chain). On the other hand, a random
Steiner triple system is far from having algebraic structure and presumably satisfies (7.1) for
𝜌 = 𝑜(1) with high probability as 𝑛 → ∞.
One point of view is that (7.1) itself is the more natural quasirandomness condition (but harder

to verify), and Definition 7.1 is a convenient sufficient condition.

Proof of Theorem 2.4. Let 𝐴 ⊆ [𝑛] and |𝐴| = 𝑚. By Lemma 7.3 and Remark 7.2,
|Λ(𝑃𝐴1𝑆, 𝑃𝐴1𝑆, 𝑃𝐴1𝑆)| ⩽ 𝜌𝑚∕2‖𝑃𝐴1𝑆‖32 ⩽ 𝜌𝑚∕2‖1𝑆‖32 = 𝜌𝑚∕2( 𝑛!𝑛𝑛 )3.

Hence, for 𝜌 ⩽ 1,

∑
|𝐴|⩾𝑚 |Λ(𝑃𝐴1𝑆, 𝑃𝐴1𝑆, 𝑃𝐴1𝑆)| ⩽ 2𝑛𝜌𝑚∕2( 𝑛!𝑛𝑛 )3.

Taking𝑚 = 𝜖𝑛 and 𝜌 so that 2𝜌𝜖∕2 ⩽ 1∕10, the result follows. □

8 QUASIRANDOMNESS

In this section, we will verify that two natural classes of latin squares are -quasirandom with
parameter 𝑜(1):

∙ multiplication tables of quasirandom groups;
∙ uniformly random 𝑛 × 𝑛 latin squares, with high probability as 𝑛 → ∞.

In the case of a group, we can compute the whole spectrum of using representation theory. In
the case of a random latin square, we will use the bound

1 + 𝜌6 ⩽ tr6

which holds because the spectrum of is real and 6 is even. By interpreting 𝑛6 tr6 as counting
certain kinds of configuration in 𝖫 (and using a recent result of [7]) we will show that tr6 =

1 + 𝑜(1)with high probability, which implies that 𝜌 = 𝑜(1). (Using the samemethod one can show
that tr4 = 3 + 𝑜(1) with high probability, so 6 is the smallest even integer that we can use for
this argument.)

8.1 Quasirandom groups

The following proposition shows that our quasirandomness condition generalizes the definition
of a quasirandom group (see [5]), implying Theorem 1.4.
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110 EBERHARD et al.

Proposition 8.1. Suppose 𝖫 is themultiplication table of a group𝐺. Then the spectrum of consists
of 𝑑3(𝑑 + 1)∕2 copies of 1∕𝑑 and 𝑑3(𝑑 − 1)∕2 copies of −1∕𝑑 for every 𝑑-dimensional irreducible
representation of 𝐺, and 𝑛2 −

∑
𝜒∈Irr(𝐺) 𝜒(1)

4 zeros. In particular, 𝜌 = 1∕𝐷 where 𝐷 is the minimal
dimension of a nontrivial representation of 𝐺.

Proof. Here 𝑋 = 𝑌 = 𝑍 = 𝐺 and 𝖫 = {(𝑥, 𝑦, 𝑧) ∈ 𝐺3 ∶ 𝑥𝑦 = 𝑧}, so 𝐿2(𝑋 × 𝑌) = 𝐿2(𝐺 × 𝐺) and
is the operator defined by

(𝑓)(𝑥, 𝑦) = 1

𝑛

∑
𝑧∈𝐺

𝑓(𝑧𝑦−1, 𝑥−1𝑧).

By representation theory, 𝐿2(𝐺) has an orthogonal basis consisting of the functions of the
form 𝑥 ↦ ⟨𝜌(𝑥)𝑒𝑖, 𝑒𝑗⟩, where 𝜌∶ 𝐺 → 𝑈(𝑉) is an irreducible unitary representation of 𝐺 and
𝑒1, … , 𝑒dim𝑉 is an orthonormal basis of 𝑉.
It follows that 𝐿2(𝐺 × 𝐺) ≅ 𝐿2(𝐺) ⊗ 𝐿2(𝐺) has an orthogonal basis consisting of functions of

the form

𝑓𝜌,𝜌′,𝑖,𝑗,𝑘,𝓁(𝑥, 𝑦) =
⟨
𝜌(𝑥)𝑒𝑖, 𝑒𝑗

⟩⟨
𝑒′𝓁 , 𝜌

′(𝑦)𝑒′
𝑘

⟩
,

where 𝜌∶ 𝐺 → 𝑈(𝑉) and 𝜌′ ∶ 𝐺 → 𝑈(𝑉′) are two irreducible unitary representations of 𝐺 and
1 ⩽ 𝑖, 𝑗 ⩽ dim𝑉, 1 ⩽ 𝑘,𝓁 ⩽ dim𝑉′.
To find(𝑓𝜌,𝜌′,𝑖,𝑗,𝑘,𝓁), we recall the Schur orthogonality relation for matrix coefficients, which

states that for irreducible 𝑉, 𝑉′ as above, 𝑎, 𝑏 ∈ 𝑉 and 𝑎′, 𝑏′ ∈ 𝑉′,

1

𝑛

∑
𝑧∈𝐺

⟨𝜌(𝑧)𝑎, 𝑏⟩⟨𝑏′, 𝜌′(𝑧)𝑎′⟩ ={
0 ∶ (𝜌, 𝑉) ≇ (𝜌′, 𝑉′)
1

dim𝑉
⟨𝑎, 𝑎′⟩⟨𝑏′, 𝑏⟩ ∶ (𝜌, 𝑉) = (𝜌′, 𝑉′),

and thereby compute

(𝑓𝜌,𝜌′,𝑖,𝑗,𝑘,𝓁)(𝑥, 𝑦) = 1

𝑛

∑
𝑧∈𝐺

⟨
𝜌(𝑧)𝜌(𝑦−1)𝑒𝑖, 𝑒𝑗

⟩⟨
𝜌(𝑥)𝑒′𝓁 , 𝜌(𝑧)𝑒

′
𝑘

⟩
=

{
0 ∶ (𝜌, 𝑉) ≇ (𝜌′, 𝑉′)
1

dim𝑉

⟨
𝜌(𝑥)𝑒𝓁 , 𝑒𝑗

⟩⟨
𝑒𝑖, 𝜌(𝑦)𝑒𝑘

⟩
∶ (𝜌, 𝑉) = (𝜌′, 𝑉′)

=

{
0 ∶ (𝜌, 𝑉) ≇ (𝜌′, 𝑉′)
1

dim𝑉
𝑓𝜌,𝜌,𝓁,𝑗,𝑘,𝑖(𝑥, 𝑦) ∶ (𝜌, 𝑉) = (𝜌′, 𝑉′).

In the case 𝜌 ≠ 𝜌′, we get an eigenfunction with eigenvalue 0. When 𝜌 = 𝜌′ and 𝑖 = 𝓁 we get a
(1∕ dim𝑉)-eigenfunction. Finally, when 𝜌 = 𝜌′ and 𝑖 ≠ 𝓁, the functions

𝑓𝜌,𝜌,𝑖,𝑗,𝑘,𝓁 ± 𝑓𝜌,𝜌,𝓁,𝑗,𝑘,𝑖

are eigenfunctions of with eigenvalues ±1∕ dim𝑉, respectively.
Altogether we have 𝑑3 + 𝑑3(𝑑 − 1)∕2 = 𝑑3(𝑑 + 1)∕2 copies of 1∕𝑑 and 𝑑3(𝑑 − 1)∕2 copies of

−1∕𝑑, and the rest 0, as claimed. □
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TRANSVERSALS IN QUASIRANDOM LATIN SQUARES 111

8.2 Random latin squares

We will use a recent result of Kwan, Sah, Sawhney, and Simkin [7] on configuration counts in
random latin squares. A triple system is a 3-uniform 3-partite hypergraph 𝖧 ⊆ 𝑋𝖧 × 𝑌𝖧 × 𝑍𝖧 with
vertex classes 𝑋𝖧, 𝑌𝖧, 𝑍𝖧. The number of vertices is 𝑣 = |𝑋𝖧| + |𝑌𝖧| + |𝑍𝖧| and the number of
triples (hyperedges) is 𝑒 = |𝖧|. We say 𝖧 is latin if every pair of vertices is in at most one triple. (A
latin square of order 𝑛 is then a latin triple system with three classes of 𝑛 vertices and 𝑛2 triples.)
Let 𝖧 be a fixed triple system. A copy of 𝖧 in a triple system 𝖫 is a triple of injective maps

𝑋𝖧 → 𝑋𝖫, 𝑌𝖧 → 𝑌𝖫, 𝑍𝖧 → 𝑍𝖫

which maps triples to triples. Let 𝑁𝖧(𝖫) denote the number of copies of 𝖧 in 𝖫.
Let 𝖡𝑛 denote the random triple system 𝖡𝑛 ⊆ [𝑛] × [𝑛] × [𝑛] in which each possible triple is

present independently with probability 1∕𝑛. Note that 𝐄[𝑁𝖧(𝖡𝑛)] = (1 − 𝑜(1))𝑛𝑣−𝑒 (when 𝖧 is
fixed and 𝑛 is large). We say 𝖧 is 𝛼-stable if 𝛼 ⩾ 𝑣 − 𝑒 and

𝐄[𝑁𝖧(𝖡𝑛) ∣ 𝖰 ⊆ 𝖡𝑛] − 𝐄[𝑁𝖧(𝖡𝑛)] = 𝑜(𝑛
𝛼)

for any latin triple system 𝖰 ⊆ [𝑛] × [𝑛] × [𝑛] with at most 𝑛(log 𝑛)3 triples.

Theorem 8.2 [7, Theorem 7.2]. Fix an 𝛼-stable latin triple system 𝖧with 𝑣 vertices and 𝑒 triples. Let
𝖫 be a uniformly random latin square. Then

𝑁𝖧(𝖫) ⩽ 𝑛
𝑣−𝑒 + 𝑜(𝑛𝛼)

with high probability as 𝑛 → ∞.

To use this theorem effectively, we need a computable form of stability. Let 𝖧 be a latin triple
system. A subset of the vertices 𝑆 ⊆ 𝑋𝖧 ∪ 𝑌𝖧 ∪ 𝑍𝖧 is called closed if whenever two vertices of a
triple of 𝖧 is in 𝑆, so is the third. The closure ⟨𝑆⟩𝖧 of a subset 𝑆 if the smallest closed set containing
it. If 𝖥 ⊆ 𝖧 let𝑋𝖥, 𝑌𝖥, 𝑍𝖥 denote the vertices incident with at least one member of 𝖥, and let 𝑣(𝖥) =|𝑋𝖥| + |𝑌𝖥| + |𝑍𝖥| and 𝑒(𝖥) = |𝖥|. We say 𝖥 ⊆ 𝖧 generates 𝖧 if

⟨𝑋𝖥 ∪ 𝑌𝖥 ∪ 𝑍𝖥⟩𝖧 = 𝑋𝖧 ∪ 𝑌𝖧 ∪ 𝑍𝖧.
Let

𝑑(𝖧) = min{𝑒(𝖥) ∶ 𝖥 generates 𝖧}.

For example, if 𝖧1 is the latin triple system shown in Figure 2, one generating set consists of
both triples containing 𝑧1, one triple containing 𝑧3, and one triple containing 𝑧5, and there is no
smaller generating set, so 𝑑(𝖧1) = 4.

Lemma 8.3. Let 𝖧 be a latin triple system with 𝑣 vertices and 𝑒 triples. Then 𝖧 is 𝛼-stable provided
𝛼 ⩾ 𝑣 − 𝑒 and

𝛼 > 𝑣 − 𝑒 + max
∅≠𝖥⊆𝖧

(
𝑑(𝖥) − 𝑣(𝖥) + 𝑒(𝖥)

)
.
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112 EBERHARD et al.

F IGURE 2 The chain (𝑥0, 𝑦0), … , (𝑥6, 𝑦6) and the latin triple system 𝖧1 defined by identifying 𝑥0 with 𝑥6 and
𝑦0 with 𝑦6.

Remark 8.4. Amuch simpler model problem is the following: given a fixed graph𝐻 and a random
graph 𝐺𝑛,𝑝, does 𝐺 contain 𝑛𝑣(𝐻)𝑝𝑒(𝐻)(1 + 𝑜(1)) copies of 𝐻 (i.e., close to the expected number)
with high probability? The answer might be no if 𝐻 contains a subgraph 𝐻′ with much greater
density than 𝐻 in some sense: indeed, if 𝑛𝑣(𝐻′)𝑝𝑒(𝐻′) = 𝑜(1) then with high probability 𝐺(𝑛, 𝑝)
contains zero copies of𝐻′, and hence of𝐻. However, this is essentially all that can go wrong. The
condition for 𝛼-stability in the lemma captures a similar intuition.

Remark 8.5. Given a triple system 𝖧 ⊆ 𝑋𝖧 × 𝑌𝖧 × 𝑍𝖧, one can construct a partition triple 𝔓 =

(𝜋1, 𝜋2, 𝜋3) ∈ Π
3
𝖧
in the sense of Subsection 3.1 (i.e., the ground set has size 𝑒(𝖧)) where two triples

(𝑥, 𝑦, 𝑧), (𝑥′, 𝑦′, 𝑧′) ∈ 𝖧 lie in the same cell of 𝜋1 if and only if 𝑥 = 𝑥′, and similarly for 𝜋2 and
𝑦 = 𝑦′, and 𝜋3 and 𝑧 = 𝑧′.
The construction can be reversed (up to the issue of repeated edges). In other words, triple

systems and partition triples are more-or-less the same objects. Under this analogy, the notion of
closure here coincides with that in Definition 3.1, and crank(𝔓) = 2𝑒(𝖧) − 𝑑(𝖧).
Although using both languages is strictly speaking redundant, it is useful to keep the two

notions separate, partly for minor technical reasons, but mainly because using partition systems
follows our previous work in [2, 3] while using triple systems follows [7].

Proof of Lemma 8.3 [7, p. 15]. Let 𝖰 ⊆ [𝑛]3 be a latin triple system with at most 𝑛1+𝑜(1) triples. For
a copy of 𝖧 in 𝖡𝑛, say one of its triples is forced if it appears in 𝖰. The difference

𝐄[𝑁𝖧(𝖡𝑛) ∣ 𝖰 ⊆ 𝖡𝑛] − 𝐄[𝑁𝖧(𝖡𝑛)] (8.1)
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TRANSVERSALS IN QUASIRANDOM LATIN SQUARES 113

arises from copies of 𝖧 with at least one forced triple. Let 𝖥 ⊆ 𝖧 be a nonempty subsystem and
consider copies of 𝖧 whose forced triples are precisely the images of those in 𝖥. Let 𝖥0 ⊆ 𝖥 be a
generating subsystem of size 𝑑(𝖥). Because 𝖰 satisfies the latin property, any copy of 𝖥 in 𝖰 is
determined by the image of 𝖥0. Therefore, the number of copies of 𝖥 in 𝖰 is at most |𝖰||𝖥0|. There
are 𝑣 − 𝑣(𝖥) vertices of 𝖧 outside 𝖥, each with 𝑛 possible images in [𝑛]3, and the image of each of
the 𝑒 − 𝑒(𝖥) triples outside 𝖥 has probability 1∕𝑛 (independently) of being present in 𝖡𝑛. Hence,
the contribution to (8.1) from 𝖥 is bounded by

|𝖰||𝖥0|𝑛𝑣−𝑣(𝖥)(1∕𝑛)𝑒−𝑒(𝖥) = 𝑛𝑣−𝑒+𝑑(𝖥)−𝑣(𝖥)+𝑒(𝖥)+𝑜(1).
This is 𝑜(𝑛𝛼) provided the stated condition is satisfied. □

Nowwe can show that random latin squares are-quasirandomwith parameter 𝑜(1)with high
probability (Theorem 1.3). This follows from the following proposition and the bound 1 + 𝜌6 ⩽
tr6.

Proposition 8.6. For a uniformly random latin square 𝖫,

tr6 = 1 + 𝑜(1)

with high probability as 𝑛 → ∞.

Proof (Computer-assisted). For (𝑥0, 𝑦0) ∈ 𝑋 × 𝑌, let (𝑥𝑖, 𝑦𝑖) denote the iterates of (𝑥0, 𝑦0) under
the Markov chain defining. Then

tr6 =
∑
𝑥0,𝑦0

𝐏
(
(𝑥6, 𝑦6) = (𝑥0, 𝑦0)

)
= 𝑁∕𝑛6,

where 𝑁 is the number of configurations in 𝖫 of the form shown in Figure 2 with 𝑥0 = 𝑥6 and
𝑦0 = 𝑦6. We do not assume the other vertices are distinct.
Let 𝖧1 be the latin triple system depicted in Figure 2 and let 𝖧2, … , 𝖧𝑘 (where 𝑘 is bounded)

be all the degenerations obtainable by identifying some (like-colored) vertices and identifying
triangles as necessary to preserve the latin property.
Formally, we consider all triples of partitions (𝜋𝑋, 𝜋𝑌, 𝜋𝑍)where 𝜋𝑋 ∈ Π𝑋𝖧1 , 𝜋𝑌 ∈ Π𝑌𝖧1 , 𝜋𝑍 ∈

Π𝑍𝖧1
satisfying the following closure property: if (𝑥, 𝑦, 𝑧) and (𝑥′, 𝑦′, 𝑧′) are two triples of 𝖧1 and

two of the pairs (𝑥, 𝑥′), (𝑦, 𝑦′), (𝑧, 𝑧′) are in the same cell of 𝜋𝑋 , 𝜋𝑌 , 𝜋𝑍 , respectively, then so is the
third. Number such triples of partitions 1, … , 𝑘, where 1 corresponds to three copies of the discrete
partition. Then 𝖧𝑖 denotes the quotient hypergraph of 𝖧1 with respect to partition 𝑖.
Let 𝑁𝑖 = 𝑁𝖧𝑖 (𝖫). Then 𝑁 = 𝑁1 +⋯ +𝑁𝑘. Let 𝑣𝑖 = 𝑣(𝖧𝑖) and 𝑒𝑖 = 𝑒(𝖧𝑖). Then 𝑣1 − 𝑒1 = 18 −

12 = 6. Now the proposition follows from Theorem 8.2, Lemma 8.3, and the following two
claims:

(1) 𝑣𝑖 − 𝑒𝑖 ⩽ 5 for each 𝑖 > 1,
(2) 𝑣𝑖 − 𝑒𝑖 + max∅≠𝖥⊆𝖧

(
𝑑(𝖥) − 𝑣(𝖥) + 𝑒(𝖥)

)
⩽ 5 for each 𝑖 ⩾ 1.

Indeed, provided (1) and (2) hold, Lemma 8.3 shows that 𝖧𝑖 is 6-stable for each 𝑖 ⩾ 1, so Theo-
rem 8.2 implies that𝑁𝑖 ⩽ 𝑛𝑣𝑖−𝑒𝑖 + 𝑜(𝑛6)with high probability for each 𝑖, so𝑁 ⩽ (1 + 𝑜(1))𝑛6 with
high probability.
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114 EBERHARD et al.

F IGURE 3 Degenerations of 𝖧1 with 𝑣𝑖 − 𝑒𝑖 = 5 and 𝑒𝑖 < 12. Some triangles are shown flat.

Both claims can be verified by exhaustive search. We find 𝖧2, … , 𝖧𝑘 by starting with 𝖧1 and
iteratively identifying pairs of vertices, using breadth-first search. Thus, we verify (1). Now for
each 𝖧𝑖 we check all subsystems 𝖥 ⊆ 𝖧𝑖 and compute 𝑑(𝖥) by checking all 𝖥0 ⊆ 𝖥, and thus we
verify (2).
It turns out 𝑘 = 1206, and there are 154 distinct isomorphism classes among the degenerations

𝖧𝑖 . The quantity in (2) turns out to be at most 4 in all cases except 𝖧1, for which it is 5. There are
just eight degenerations 𝖧𝑖 (up to isomorphism) for which 𝑣𝑖 − 𝑒𝑖 = 5. Of these, four are just 𝖧1
with a single pair of vertices identified (so 𝑣𝑖 = 17 and 𝑒𝑖 = 12). The other four cases are shown in
Figure 3. These cases are therefore the dominant contributors to the error term. □
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