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1. Introduction
1.1. The anti-atom problem

A numerical set T is a subset of Ny = {0, 1, 2, ...} that contains 0 and has a finite complement. The elements of Ng \ T
are called gaps. The set of gaps of T is denoted by #(T) and the number of gaps is the genus of T, denoted by g(T). The
largest gap is the Frobenius number of T, denoted by F(T). A numerical set S that is closed under addition is a numerical
semigroup. We say that nq, ..., n; € S is a set of generators of S if S is the set of all linear combinations of these elements
with nonnegative integer coefficients. That is,

S=(ny,....,n)={any+---+amn; | ar,...,a € No}.

A numerical semigroup S has a unique minimal set of generators and the cardinality of this set is the embedding dimension
of S, denoted by e(S). The smallest nonzero element of S is called its multiplicity, denoted by m(S).
The set of pseudo-Frobenius numbers of a numerical semigroup S is defined by

PF(S)={P e H(S)| P+ S\ {0} C S}.

Clearly F(S) is one of the pseudo-Frobenius numbers of S. The number of pseudo-Frobenius numbers of S is the type of
S, denoted by ¢(S).
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Antokoletz and Miller defined the atom monoid of a numerical set T in [1] as
AT)={xeNy |x+TCT}.

It is easy to see that A(T) is always a numerical semigroup contained in T. It is also referred to as the associated semigroup
of T. Marzuola and Miller raised the Anti-Atom problem [11].

Problem 1 (Anti-Atom Problem). Let S be a numerical semigroup. How many numerical sets T have A(T) = S?

This number is denoted by P(S). The numerical sets T for which A(T) = S are called numerical sets associated to S. In
this paper we focus on computing P(S).

Motivation for studying P(S) comes from the theory of integer partitions. A partition A has an associated multiset of
hook lengths, denoted H(A). Let H(A) denote the underlying set of hook lengths of A. For detailed definitions and for
a bijection between numerical sets and integer partitions, see [3, Section 2]. Keith and Nath show that H(A) is the set
of gaps of a numerical semigroup S and that numerical sets T associated to S are in bijection with partitions A with
H(A) = #H(S) [10, Corollary 1]. (See also [3, Proposition 3].) Therefore, Problem 1 is equivalent to the following.

Problem 2. Let S be a numerical semigroup. How many partitions A have H(A) = #(S)?

This correspondence between partitions and numerical semigroups has been studied in several recent papers
[3,7-9,14].

1.2. Previous results on P(S)

It is easy to see that T and A(T) have the same Frobenius number. Since there are 2f~! numerical sets with Frobenius
number F, it follows that

Z P(S)=2F".
S:F(S)=F

Marzuola and Miller consider numerical semigroups of the form N = {0,F + 1 —}, where the — indicates that all
positive integers greater than F + 1 are in Nr [11]. They prove that there is a positive constant y & 0.4844 such that

P(NF)

This means that nearly half of numerical sets T with Frobenius number F have A(T) = Ng. In [13], Singhal and Lin consider
similar families of numerical semigroups and prove a conjecture from [2]. Let D be a finite set of positive integers, take
F > 2max(D) and define

N(D,F)={0}U{F—1|leD}U{F+1—}.
They show that for each D, there is a positive constant yp such that

i PONDLF)

F—o0 2F7] =

Antokoletz and Miller define the dual of a numerical set T as
T"={xe€Z|F(T)—x¢T}

and show that A(T) = A(T*) [1]. Constantin, Houston-Edwards, and Kaplan interpret this construction in terms of
partitions. They show that if T corresponds to the partition A, then T* corresponds to the conjugate partition A. Since

H(A) = H(A), we see that H(A(T)) = H(A(T*)), which implies A(T) = A(T*) [3, Proposition 2].

Theorem 1.1 ([11, Proposition 1]). Let S be a numerical semigroup. If T is a numerical set with A(T) = S, then S C T C S*.
Moreover, A(S) = A(S*) = S.

Constantin, Houston-Edwards, and Kaplan define a missing pair of S to be a pair of gaps of S that sums to F(S)
[3, Section 7]. The set

M(S):={a:a &S, F(S)—a &S}

of gaps in missing pairs is the void of S. They show that $* = S U M(S) [3, Lemma 3]. It is easy to check that
IM(S)| = 2g(S) — F(S) — 1.

Theorem 1.1 implies that P(S) = 1 if and only if M(S) = @. A numerical semigroup S for which x € S if and only if
F(S)—x ¢ S is called symmetric. Therefore, P(S) = 1 if and only if S is symmetric [11, Corollary 2]. Fréberg, Gottlieb, and
Haggkvist prove that S is symmetric if and only if t(S) = 1 [5, Proposition 2].
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If S is symmetric, then F(S) is odd. There is a corresponding family of numerical semigroups with even Frobenius
numbers. A numerical semigroup S is called pseudo-symmetric if F(S) is even and M(S) = {%F(S)}. If S is pseudo-
symmetric, then t(S) = 2 [5]. Theorem 1.1 implies that if S is pseudo-symmetric, then P(S) = 2 [11, Corollary
2].

These two families could lead one to guess a close relationship between the size of the void |M(S)| and P(S). However
this relationship is subtle. A numerical semigroup with P(S) = 2 can have arbitrarily large |M(S)| [3, Proposition 16]. We
do have an upper bound on P(S) obtained from Theorem 1.1.

Corollary 1.2 ([3, Corollary 3]). For any numerical semigroup S,
P(S) < 2IMS) — 28(S)-F($)-1

1.3. The void poset and our main results

We define a partial ordering on the void of a numerical semigroup S. Given x,y € M(S), we say x < y wheny —x € S.
This poset is called the void poset of S and is denoted by (M(S), <). In Proposition 2.2, we show that the maximal elements
of (M(S), <) are precisely the pseudo-Frobenius numbers of S other than F(S).

It is known that every numerical semigroup S satisfies t(S) < 2g(S) — F(S) [12, Proposition 2.2]. If equality holds,
then S is called almost symmetric. Both symmetric and pseudo-symmetric numerical semigroups are almost symmetric.
In Proposition 2.9, we show that almost symmetric numerical semigroups are those for which the void poset has no
nontrivial relations.

A subset I C M(S) is an order ideal if for any x,y € M(S) satisfying x < y and x € I, we have y € I. If A(T) = S, then
T\ S € M(S). For an arbitrary subset I € M(S),  US is not necessarily a numerical set associated to S. In Proposition 2.4,
we show that the I € M(S) for which S € A(I US) are precisely the order ideals of (M(S), x).

In Section 3, we introduce the notion of Frobenius triangles of S and use this concept to characterize the order ideals
I of (M(S), x) for which T = I U S is a numerical set associated to S (Theorem 3.9). This is one of the main results of
this paper, as it yields an algorithm for computing P(S) (Algorithm 5.1). We also define the pseudo-Frobenius graph of a
numerical semigroup S and use it to give a lower bound for P(S) in Corollary 3.7.

We use these tools to analyze P(S) for numerical semigroups of small type. As mentioned above, t(S) = 1 if and only if
P(S) = 1. In Theorem 2.5 we show that if t(S) = 2, then P(S) = 2. In Section 6 we solve the much more difficult problem
of characterizing P(S) for numerical semigroups of type 3. In Theorem 6.5 we prove that if t(S) = 3, then P(S) € {2, 3, 4},
and we characterize in terms of the pseudo-Frobenius numbers of S when each value occurs.

The relationship between t(S) and P(S) is not as straightforward for numerical semigroups of larger type. In
Proposition 7.1, we show that a numerical semigroup of type 4 can have P(S) arbitrarily large. In Proposition 8.1 we
show that given t > 2, there is a numerical semigroup with t(S) =t and P(S) = 2.

A numerical semigroup S is said to be of maximal embedding dimension if e(S) = m(S). It is known that t(S) < m(S)— 1
[6, Corollary1.23], and that S has maximal embedding dimension if and only if t(S) = m(S)—1 [6, Corollary 2.2]. Therefore,
semigroups of maximal embedding dimension have a natural characterization in terms of their type. In Section 8, we
compute P(S) for a certain class of these semigroups.

2. The void poset

Recall that the void poset (M(S), <) of S is defined by x < y if and only if y — x € S. For x,y € M(S), we write x < y
if y —x € S\ {0}. In this section we use the structure of this poset to classify the numerical sets T for which S € A(T).
In the next section we determine when such a numerical set also satisfies A(T) C S, thus classifying the numerical sets
associated to S.

A poset (P, x) is self-dual if there exists a bijection ¢ : 7 — P such that a < b if and only if ¢(b) < ¢(a).

Lemma 2.1. For any numerical semigroup S, (M(S), ) is self-dual.
Proof. Define ¢ : M(S) — M(S) by ¢(x) = F(S) — x. By the definition of M(S), ¢ is well-defined. The result follows by
noting that y — x = ¢(x) — ¢(y). O

We refer to this map as conjugation on (M(S), <). For x € M(S), define x = F(S) — x.

Proposition 2.2. The set of maximal elements of (M(S), x) is

max(M(S), x) = PF(S) \ {F(S)}.
Proof. Let P be a maximal element of (M(S), <) and let F = F(S). Given s € S \ {0}, we know that P + s ¢ M(S), since
otherwise P < P + s. Thus, either P +5s € S or P + s € H(S) \ M(S). In the latter case, F — P — s € S, but this implies

F—P = (F—P—5s)+s €S, which contradicts the fact that P € M(S). We conclude that P +s € S and so P € PF(S).
Moreover, since P € M(S) we know that P # F.

220



A. Chen, N. Kaplan, L. Lawson et al. Discrete Applied Mathematics 341 (2023) 218-231

For the other direction, suppose P € PF(S) \ {F}. If F — P € S, then by the definition of PF(S) we see that
F = P + (F — P) € S, which is a contradiction. Therefore, F — P ¢ S and P € M(S). Next, if there is some x € M(S)
such that P < x, then x — P € S and x ¢ S. Since P € PF(S), the only way this could happen is if x — P = 0, that is, x = P.
We conclude that P is a maximal element of (M(S), <). O

Since (M(S), <) is self-dual it follows that its minimal elements are

min(M(S), <) = [ﬁ | P e PE(S)\ {F(S)}}.

Example 2.3. The void posets of S; = {0, 4, 8, 10 —} and S, = (6, 25, 29) are as follows:

Recall that an order ideal of a poset is a subset I such that ifx e  and x <y, theny € I.

Proposition 2.4. Let S be a numerical semigroup with M(S) = M and I C M. We have S C A(I US) if and only if I is an
order ideal of (M(S), <).

Proof. First suppose that I is an order ideal. We show that for each s € S, s +1 € S U I. Suppose x € I.

e Case 1: If s+ x € S, there is nothing else to check.
e Case 2: If s+ x € H(S)\ M(S), then F — s — x € S. Therefore,

F—x=(F—s—x)+seS.

This contradicts the fact that x € M(S), so this case does not occur.
e Case 3: If s+x € M(S), then x < s+ x in (M(S), <), s0s+x € I.

Conversely, suppose S € A(IUS). Consider x,y € M(S) withx € I and x < y. Then y—x € S and therefore y—x € A(SUI).
That is,

y—x)+SUlnC(SUI.

In particular this implies that y = (y — x) + x € SU I Since y € M(S), we know that y ¢ S and therefore, y € I. We
conclude that [ is an order ideal of (M(S), <). O

Theorem 2.5. Let S be a numerical semigroup of type 2. We have P(S) = 2.

Proof. Let T be a numerical set associated to S. By Proposition 2.4, T = S U I for some order ideal I of (M(S), ). We
prove that either | = M(S)and T =SUM(S)orI =@ and T =S.

Suppose PF(S) = {P, F} with P < F. We have PF(S)\ {F} = {P}, which means that P is the unique maximal element of
(M(S), x). This also implies that P = max(M(S)). Moreover, since (M(S), <) is self-dual we also see that it has a unique
minimal element P = F — P. We prove that if I # @, then P € I, which implies that I = M(S).

Since t(S) # 1, we know that P(S) > 2. Suppose T # S. We know that I = T\ S is a nonempty order ideal of (M(S), <).
Since (M(S), <) has a unique maximal element, we must have P € I. Since P ¢ A(T), there is some x € T for which
P +x & T. Since S = A(T), we know that x ¢ S. This means that x € I C M(S). We have seen that F — P is the unique
minimal element of (M(S), <), S0 F — P <x.

Now if F — P < x, then F < P + x, which would contradict the fact that P + x ¢ T. Therefore F — P = x and hence
F — P € I. Finally, since the unique minimal element of (M(S), <) is in I, we conclude that [ = M(S). O

Example 2.6. Consider S = (19, 21, 24), which has t(S) = 2 and PF(S) = {98, 113}. Note that (M(S), <) has a unique
maximal element and a unique minimal element. If  US is a numerical set associated to S, then either I = @ or I = M(S)
(see Fig. 1).

Proposition 2.7. Let S be a numerical semigroup.

(1) We have M(S) = @ if and only if S is symmetric.
(2) We have |M(S)| = 1 if and only if S is pseudo-symmetric.
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Fig. 1. Void poset of S = (19, 21, 24).
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Proof. Recall that |M(S)| = 2g(S) — F(S) — 1. A numerical semigroup is symmetric if and only if F(S) = 2g(S) — 1
[5, Lemma 1]. This occurs if and only if M(S) = (. A numerical semigroup is pseudo-symmetric if and only if F(S) =
2g(S) — 2 [5, Lemma 3]. This happens if and only if [M(S)|=1. O
Proposition 2.8 ([12, Proposition 2.2]). We have

t(S) < 2g(S) — F(S) = IM(S)| + 1.

Proof. We know that PF(S) \ {F} € M(S). Therefore, t(S) — 1 <2g(S)—F(S)—1. O
Recall that S is almost symmetric if and only if t(S) = 2g(S) — F(S).

Proposition 2.9. A numerical semigroup S is almost symmetric if and only if (M(S), <) has no nontrivial relations, that is,
X <y impliesx = y.

Proof. Since |PF(S)\ {F(S)}| = t(S) — 1 and PF(S) \ {F(S)} € M(S), we see that S is almost symmetric if and only if
PF(S)\ {F} = M(S). Proposition 2.2 says that PF(S) \ {F(S)} is the set of maximal elements of (M(S), ). Thus, S is almost
symmetric if and only if all elements of (M(S), <) are maximal. This is equivalent to (M(S), <) having no nontrivial
relations. O

We end this section with a quick observation about the parity of P(S). Theorem 1.1 and the concept of the dual of a
numerical set leads directly to the following result.

Proposition 2.10. If F(S) is even, then P(S) is even.

Proof. Given a numerical set T with F(T) = F(S), note that @ € T if and only if @ ¢ T*. This means T # T*. Therefore,
we can divide the numerical sets associated to S into pairs. O

3. Classifying associated numerical sets

We have seen that if T is a numerical set associated to S, it is necessary that T \ S € M(S) and that T \ S is an order
ideal of (M(S), ). In this section we study a class of order ideals that always give rise to numerical sets associated to S.
This gives a lower bound for P(S). We also obtain a complete characterization of the order ideals that lead to numerical
sets associated to S.

Definition 3.1. We say a triple (P, x, y) € PF(S) x M(S)? satisfying P + x +y = F(S) is a Frobenius triangle of S, and let
Tr(S) = {(P,x,y) | P € PF(S), x,y € M(S), P +x+y =F(S)}

denote the set of Frobenius triangles of S. Given an order ideal I € M(S) and a Frobenius triangle (P, x, y), we say that
I satisfies the Frobenius triangle (P, x,y) if P, x € I and F(S) — y ¢ I. The pseudo-Frobenius graph of S, denoted by GPF(S),
is the graph with vertices PF(S) \ {F(S)} that has an edge between P, Q if and only if P + Q — F(S) € S. We denote the
number of connected components of GPF(S) by «(S).

An order ideal I of (M(S), <) is self-dual if x € I implies that x € I.
Proposition 3.2. If S is a numerical semigroup and I is a self-dual order ideal of (M(S), <), then I U S is a numerical set
associated to S.
Proof. By Proposition 2.4, S € A(I US). Since I is self-dual, x € I implies F(S) — x € I. However,
X+ (F(S)—x)=F(S)¢I1US.
Sox+ (TUS) € (IUS) and hence x € A(I US). We conclude that AUS)=S. O
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Since self-dual order ideals give numerical sets associated to S, the number of self-dual order ideals of (M(S), ) is a
lower bound for P(S). We now give a simpler description of self-dual order ideals.

Lemma 3.3. Let I be an order ideal of (M(S), <). If for each P € PF(S)N I we have P € I, then I is self-dual.

Proof. Consider x € I. Pick a maximal element above x, say P € PF(S)\ {F(S)} satisfies x < P. Since [ is an order ideal, we
have P € I. We are given that P € I. Since x < P, we see that P < X. This implies X € I. We conclude that I is self-dual. O

Lemma 34. Let I be a self-dual order ideal of (M(S), x). Ifx€l, ye M(S),andy < x, theny € I.

Proof. Since I is self-dual, we have x € I. Next, since X < y and I is an order ideal, we have y € I. Finally, since I is
self-dual, we conclude thaty e I. O

Lemma 3.5. If [y, I, are self-dual order ideals of (M(S), <) and
11 NPE(S) = I, N PF(S),
then I =1

Proof. Given x € I, pick a maximal element P above it, say P € PF(S) \ {F(S)} satisfies x < P. Since I; is an order ideal,
P € I;. Therefore P is in Iy N PF(S) and so P € I, also. By Lemma 3.4, x € I,. This shows that I; C I. By symmetry
L=hL O

Recall that the pseudo-Frobenius graph of S has vertex set PF(S) \ {F( )} and has an edge between P and Q when
P+ Q —F(S) € S. Note that there is an edge between P and Q if and only if P < Q. This is equivalent to Q < P. Also note
that GPF(S) may possibly have loops. See Example 3.8.

Theorem 3.6. Let S be a numerical semigroup. If I is a self-dual order ideal of (M(S), <) then INPF(S) is a union of connected
components of GPF(S).

Conversely, for any union of connected components of GPF(S) there is a unique self-dual order ideal that contains precisely
this set of pseudo-Frobenius numbers.

Proof. Suppose Cy, ..., C, are the connected components of GPF(S). Let I be a self-dual order ideal of (M(S), ). Suppose
P € INPF(S) and P, Q € G for some i. There is a path P = Py, Py, P,, ..., Py_1, P, = Q in GPF(S) from P to Q. If P; € I,
then since I is self-dual, we have P; e I. Moreover, we know that P; < P, since there is an edge between P; and Pi;; in
GPF(S). This implies P;,; € I. By induction, we conclude that Q € I. We have shown that if | N G # @, then G C I. This
means that [ N PF(S) is a union of connected components of GPF(S).

Conversely, let | be a subset of {1, 2,...,«}. Let

I={xeM(S)|3Jie]and P e ( with x 5 P}.

It is clear that I N PF(S) = U,EJ C;. We now show that [ is an order ideal. Suppose a € I, b € M(S) and a < b. Since a € I,
we know that3ie J,P € G such that a < P. Also consider a minimal element below a. Such an element is of the form
Q where Q € PF(S). Since Q < a < P, there is an edge between Q and P in GPF(S). In particular, Q € . Next, consider
a maximal element above b, say R € PF(S) \ {F(S)} satisfies b < R. Note that Q < R, which implies that there is an edge
between Q and R in GPF(S). Therefore, R € C;, and since b < R we cgnclude that b € I and I is an order ideal.

We now show that I is self-dual. Let a, P, Q be as above. Since Q < a < P we have P < d < Q. Since Q € G; it follows
that @ € I. We conclude that I is a self-dual order ideal with

1nPrS)={_Jc.
i€/
Lemma 3.5 implies that I is the unique self-dual order ideal with this set of pseudo-Frobenius numbers. O

Corollary 3.7. We have P(S) > 2¢©),

Example 3.8. Consider S = {0,5 —}, so F(S) = 4 and M(S) = {1, 2, 3}. The poset (M(S), <) has no nontrivial relations.
Therefore PF(S) = {1, 2, 3,4} and S is almost symmetric. See Fig. 2 for the poset (M(S), <) and the graph GPF(S). The
graph GPF(S) has 2 connected components. The self-dual order ideals of (M(S), <) give 4 numerical sets associated to S:
Ty =S,T, ={1,3}US, T3 = {2}US and T, = {1, 2, 3} US = S*. There are two more numerical sets associated to S, which
come from order ideals that are not self-dual: Ts = {1} U S, T = {1, 2} US. We have P(S) = 6.

Next we give a complete characterization of the order ideals that lead to numerical sets associated to S. Given
P € PF(S) \ {F(S)}, define

Trp(S) = {(P, x,y) | x,y € M(S) with P +x +y = F(S)} C Tr(S).
223
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ololo

(a) Void poset (b) GPF graph

Fig. 2. Void poset and GPF graph of {0,5 —}.

Note that given P € PF(S) \ {F(S)} and x,y € M(S), (P, x,y) is a Frobenius triangle if and only if P 4+ x = y. Recall that
given an order ideal I and a Frobenius triangle (P, x, y), I satisfies the Frobenius triangle (P,x,y)if P,x el andy ¢ I.

Theorem 3.9. Let S be a numerical semigroup, I € M(S), and T =1US. Then T is a numerical set associated to S if and only

if

(1) I is an order ideal of (M(S), <), and
(2) for each P € I N PF(S), one of the following conditions is satisfied: 2P ¢ S, F(S) — P € I, or there is a Frobenius triangle
(P, x, y) that is satisfied by I.

Moreover, if I US is a numerical set associated to S, then for all P € I N PF(S) either P € I or there is a Frobenius triangle
(P, x, y) that is satisfied by I.

Proof. If T is a numerical set associated to S, then Proposition 2.4 implies that I is an order ideal of (M(S), <). Suppose
P € I N PF(S). We know that P ¢ A(T) = S, that is, P + T & T. This means that there is some x € T for which P + x € T.
Since S = A(T), we know that x ¢ S and hence x € I.

e Case 1: Suppose P + x € M(S) \ T. Then (P, x, P+ x) is a Frobenius triangle and I satisfies it.

e Case 2: Suppose P +x € H(S)\ M(S). This means that F — P —x € S. Now suppose F — P —x # 0. Then since P € PF(S),
we see that

F—x=P+(F—-P—Xx)€eS.
This contradicts the fact that x € I € M(S). Therefore F — P —x = 0, that is, P = x € I.

Next we prove the other direction. Suppose that I satisfies (1) and (2) in the theorem statement. By Proposition 2.4,
S C A(T). Assume for the sake of contradiction that S ¢ A(T). Let P = max(A(T) \ S). Since F(S) ¢ T, we know that
P # F(S). Given s € S\ {0}, we know that P +s € A(T) as A(T) is closed under addition. Since P = max(A(T)\ S) it follows
that P 4+ s € S. This means that P € I N PF(S). Similarly 2P € A(T), and since 2P > P, we conclude that 2P € S. By (2) we
know that either P € I or there is some Frobenius triangle that I satisfies.

e Case 1: Suppose P € I. Then P + P = F ¢ T. This contradicts the fact that P € A(T).
e Case 2: Suppose that [ satisfies the Frobenius triangle (P, x, y). This means that x € I and P + x = y ¢ I. This again
contradicts the fact that P € A(T).

We get a contradiction in both cases. Therefore, S = A(T), that is, T is a numerical set associated to S. O

A numerical semigroup S is called P-minimal if P(S) = 2¢©),

Corollary 3.10. If S is a numerical semigroup for which Tr(S) = @, then S is P-minimal.

Note that the converse of Corollary 3.10 is not true. For example, for S = (8, 12, 13, 23, 30) we have «(S) = 1 and
P(S) =2, so S is P-minimal. However, (17,5, 5) € Tr(S), so Tr(S) # @.

4. Structure among frobenius triangles

This section consists of some technical lemmas concerning Frobenius triangles. These will be useful in computing P(S)
for certain classes of numerical semigroups. If P, Q € PF(S) \ {F(S)} and P — Q € M(S), then (Q,P — Q,F(S) —P)isa
Frobenius triangle in Try(S). Our main result in this section is the following.

Proposition 4.1. Let Q € PF(S)\ {F(S)}. We have Trq(S) # @ if and only if 3 P € PF(S) \ {F(S)} such that P — Q € M(S).
Before proving this statement we need some preliminary results.

Lemma 4.2. Let P = max_(M(S)). We have P € PF(S) \ {F(S)} and Trp(S) = @.
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Proof. If P = max_(M(S)), then P is a maximal element of (M(S), ). Therefore, P € PF(S) \ {F(S)}. Moreover,
min_(M(S)) =F(S)—P,so Trp(S) =¢. O

Lemma 4.3. Suppose Q € PF(S)\ {F(S)} and (Q, x,y) € Trq(S).

(1) If a € M(S) satisfies a < x, then a < y.
(2) If b € M(S) satisfies y < b, then x < b.

Proof. We know that Q +x +y = F(S), thatis,y —x =Q.If x —a € S\ {0}, we have
y—a={F—-x)+Ex—-a)=Q+(x—a)eSs,

since Q € PF(S). If b—y € S\ {0}, we have
b—x=0b-y)+¥—-x=Q+((b-y)esS. O

Corollary 44. IfP,Q € PF(S)\ {F(S)}, a € M(S), and P — Q € M(S), then a < P — Q implies a < P.

Proof. Note that (Q,P — Q, F(S)—P) € Tro(S). O

Lemma 4.5. Suppose I is an order ideal of (M(S), <) and (Q, X, y) € Trq(S) is satisfied by I. Then x is a minimal element of
I and y is a maximal element of M(S) \ I.

Proof. By assumption, Q,x € I and y ¢ I. If a € M(S) satisfies a < x, then Lemma 4.3 implies that a < y. Therefore, a ¢ I.
If b € M(S) satisfies y < b, then Lemma 4.3 implies that x < b. Therefore, b € I. O

Lemma 4.6. Suppose Q € PF(S)\ {F(S)} and (Q,x,y) € Tro(S). If P <y for some P € PF(S)\ {F(S)}, then P — Q € M(S)
and x < P — Q.
Proof. We want to show that P — Q € M(S). If this is not the case then either P—Q € Sor F(S)— (P —Q) € S.

e Suppose P — Q € S. Then P < Q in (M(S), <). Since P is a maximal element of (M(S), <) we see that P = Q. Since
P <y we have y — (F(S) — P) € S. But y + P — F(S) = x, which contradicts the fact that x € M(S).
e Suppose F(S)— (P — Q) e S.Sincey — P =y —F(S)+ P €S, we have

(FS)=P+Q)+(y—F(©S)+P)=Q+ye€S.
But Q 4+ y = F(S) — x, which contradicts the fact that x € M(S).
We conclude that P — Q € M(S). Finally,

(P=Q)=x=P—-(Q+x)=P—(F(S)-y)=y-PeS,
andsox<P—Q. O
Proof of Proposition 4.1. If (Q,x,y) € Tro(S) then y would be above some minimal element of (M(S), <), say
P € PF(S) \ {F(S)} satisfies P < y. Lemma 4.6 implies that P — Q € M(S).
Conversely, if there is a P € PF(S) \ {F(S)} such that P — Q € M(S), then (Q,P — Q, F(S) —P) € Tro(S). O

Definition 4.7. A numerical semigroup S is triangle-free if whenever Py, P, € PF(S) satisfy P; — P, € M(S), then P; = F(S).

Proposition 4.1 implies that Tr(S) = ¢ if and only if S is triangle-free.
Proposition 4.8. If S is triangle-free, then it is P-minimal.

Proof. If S is triangle-free then by Proposition 4.1, Tr(S) = @. By Corollary 3.10, S is P-minimal. O

5. Algorithm to determine P(S)

In this section, we present an algorithm to compute P(S) given a numerical semigroup S. The algorithm essentially
works by computing, for each Frobenius triangle (P, x, y), the list of order ideals that satisfy (P, x, y) (Theorem 3.9), as
well as using Lemma 4.5 to further restrict the list of elements considered.
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Table 1

Runtimes for P(S) computations, each using GAP and the package numericalsgps [4].

S e(S) t(S) P(S) Algorithm 5.1 Recursive
(271, 309, 352, 422) 4 4 2 0.63 s 0.61 s
(871, 909, 952, 1022) 4 4 2 23 s 23 s
(603, 608, 613,..., 653) 11 2 2 21s 21s
(49, 342, 349, 350) 4 13 2 725.0 s 04 s
(10, 101, 102,..., 109) 10 9 126905 60 s 14.7 s

Algorithm 5.1. Computes P(S) for a numerical semigroup S using Frobenius triangles.
function AsSOCIATEDNUMERICALSETS(S)
Cp < {(P, F(S)— P, 0)} UTrp(S) for each P € PF(S) \ {F(S)}
R« ¥
for all A € PF(S)\ {F(S)} and a € [ [, Cr do
G« {zeM(S)|z—xeS for some ap = (P, x, y)}
By < {z € M(S) | F(S)—y —z €S for some ap = (P, X, y)}
By < {z € M(S)| P —z € S for some P € PF(S) \ A}
if GNBy =@ and GN B, = ¢ then
Add to R the numerical set AUGUY US for each order ideal Y of (Z, x)
end if
end for
return R
end function

Algorithm 5.1 works as follows. Each numerical set T associated to S is enumerated by first choosing the set A =
PF(S) N T of pseudo-Frobenius numbers in T, followed by choosing, for each P € A, either a Frobenius triangle (P, x, y)
satisfied by the order ideal I = T \ S or having P € I as in Theorem 3.9. Since I is an order ideal, every element of the
set G must lie in I. Moreover, every element of B; must lie outside of I by Lemma 4.5, and any element of B, must lie
outside of I since A contains all maximal elements of I. By Theorem 3.9, these are the only conditions on T, so any such
order ideal I of (M(S), <) containing G and avoiding B; and B, yields a numerical set I U S.

We may obtain a slight improvement on the main loop in Algorithm 5.1 by using a recursive implementation. Rather
than trying all possible collections a of Frobenius triangles, recursively add Frobenius numbers to a one at a time, each time
growing G, By, and B, appropriately. This allows one to break out whenever a newly added Frobenius triangle renders
G N By or G N B, nonempty, thereby saving iterations of the main loop. Table 1 contains sample runtimes for a Sage
implementation of Algorithm 5.1, both with and without utilizing this recursive enhancement.

6. Numerical semigroups of type 3

Recall that a numerical semigroup S has type 1 if and only if P(S) = 1. In Theorem 2.5, we proved that t(S) = 2 implies
P(S) = 2. In this section we show that t(S) = 3 implies P(S) € {2, 3, 4} and give conditions on S that characterize when
each possibility occurs. Throughout this section, S is a numerical semigroup of type 3 with pseudo-Frobenius numbers
P <Q <F.

Lemma 6.1. IfS is a numerical semigroup with t(S) = 3 and GPF(S) has two connected components, then P(S) = 4.

Proof. By Theorem 3.6 we know that there are 4 self-dual order ideals of (M(S), <), which lead to 4 numerical sets
associated to S. Assume for the sake of contradiction that there is an order ideal I of (M(S), <), that is not self-dual, for
which I U S is a numerical set associated to S. If GPF(S) has two connected components, then P 4 Q — F ¢ S. This is
equivalent to P £ Q and also to Q £ P. The maximal element above P is not Q, so P < P. Similarly Q < Q. By Lemma 4.2,
Trq(S) = . Theorem 3.9 implies that if Q € I, then Q € I.

Since I is not self-dual, Lemma 3.3 implies that P € I and P ¢ I. By Theorem 3.9, I must satisfy a Frobenius triangle
(P,x,y) € Trp(S). We have P +x+y = F,so X,y < x+y = P. This means that P £ x,y and so Q < x,y < Q. Since |
satisfies the Frobenius triangle (P, x, y), we know that x e I and y ¢ I. Therefore Q € I and so Q € I. Since y < Q, we see
that Q < y and therefore y € I. This contradicts the fact that I satisfies the Frobenius triangle (P, x,y). O

Lemma 6.2. If GPF(S) is connected and Q — P ¢ M(S), then P(S) = 2.
Proof. In this case S is triangle-free, so Proposition 4.8 implies that P(S) =2. O

Lemma 6.3. Suppose Q — P € M(S). If a € M(S) satisfies a £ Q, then Q — P < a.
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Proof. Since a £ Q we know thata < P, thatis,P—a € S.Now Q —a ¢ S, so either Q —a € M(S) or Q —a € #(S)\ M(S).

e Case 1: Suppose Q —a € M(S). NowQ — (Q —a) = a € S, which means Q —a £ Q, and so Q — a < P. We have
P+a—Q €8S, which implies Q — P < a.
e Case 2: Suppose Q — a € H(S) \ M(S). This means that F +a — Q € S. But then,

F-(Q—-P)=(F+a—Q)+(P—a)eS.
This contradicts the fact that Q — P € M(S). O

Lemma 6.4. Suppose GPF(S) is connected and Q — P € M(S). If F + P = 2Q then P(S) = 3. If F + P # 2Q then P(S) = 4.

Proof. Since GPF(S) is connected there are 2 self-dual order ideals of (M(S), x). Proposition 4.1 implies that Trp(S) # ¢
and Tr(S) = @. Suppose [ is an order ideal for which I U S is a numerical set associated to S and [ is not self-dual. By
Theorem 3.9, if Q € I then Q € I. Since I is not self-dual, Lemma 3.3 implies that P € I and P ¢ I. Therefore I must satisfy
a Frobenius triangle (P, x, y) € Trp(S). This means that P,x e I and y & I. _ .

_ The minimal elements of (M(S), <) are P and Q, so we must have either P < y or Q < y. Lemma 4.6 implies that if
P <y, then P — P = 0 € M(S), which is not true. Therefore, P £ y, so Q < y. Lemma 4.6 implies that x < Q — P. Since
xel,weseethatQ — P e I.

e Case 1: Suppose x =Q — P.Inthiscasey=P+x=0Q,s0Q &1I. Let
I ={aeM(S)|Q—P<a}

Since Q — P € I we know that Iy € I. On the other hand given a € I, we know that a £ Q. Lemma 6.3 implies that

Q — P < q, that is, a € I;. We conclude that I = I;.

e Case 2: Suppose x < Q — P. Corollary 4.4 implies that x < Q, and so Q € I. Since Tro(S) = @, Theorem 3.9 implies that

Qel _ _ _

__Since P — P ¢ M(S) and Q — P € M(S), Lemma 4.6 implies that P £ x and Q < x. If Q < x, then Lemma 4.3 implies

Q < y. However, this is impossible since Q € I and y ¢ I. Therefore Q =x. We havey=P+x=P+F—-Q =Q —P.
Let

L ={aeM(S)|Q < al

Since Q € I we see that I, C I. On the other hand if a € M(S) \ I, then Q #£ a. This means that @ £ Q. Lemma 6.3 implies
that Q —P xaandsoa<Q —P.Since Q — P =y ¢ I, we see that a ¢ I. We conclude that [ = I,.

__ We have seen that if US is a numerical set associated to S then I € {#J, M(S), I1, I,}. We see that I; = I if and only if
Q = Q — P, or equivalently, F 4+ P = 2Q. Therefore F + P = 2Q implies P(S) = 3, and F 4+ P # 2Q implies P(S) =4. O

Note that S* =S U M(S) and (SU I;)* = S U [,. We summarize the results of this section.

Theorem 6.5. Let S be a numerical semigroup of type 3. Suppose PF(S) = {P,Q,F} withP < Q < F.

IfP+Q —F ¢S, then P(S) = 4.

IfP4+Q —FeSand Q — P ¢ M(S), then P(S) = 2.

IfP+Q —FeS,Q—PeM(S)and F + P = 2Q, then P(S) = 3.
IfP+Q—Fe€S,Q—PeM(S)and F + P # 2Q, then P(S) = 4.

Corollary 6.6. Let S be a numerical semigroup of type 3. Suppose PF(S) = {P, Q, F} with P < Q < F. Then S is P-minimal if
and only if Q — P ¢ M(S).

Proof. If Q — P ¢ M(S), then S is triangle-free and Proposition 4.8 implies that S is P-minimal.

Conversely, suppose S is P-minimal. By Theorem 6.5 either GPF(S) is connected and Q — P ¢ M(S) or GPF(S) has two
connected components. In the first case we have nothing to prove.

Suppose GPF(S) has two connected components, so P(S) = 4. Assume for the sake of contradiction that Q — P € M(S).
ThenQ —(Q —P) =P ¢ S, thatis,Q — P £ Q, and so Q — P < P. Since GPF(S) is not connected P + Q — F ¢ S, which
means Q # P. This implies Q # Q — P, and so P < Q — P. However this is impossible since (Q —P) —P =Q —F < 0.
Therefore Q — P ¢ M(S). O

Example 6.7.

(1) Consider S; = (10, 19, 21, 36, 47), which has PF(S;) = {37, 53, 64}. Since 37 4+ 53 — 64 ¢ S, this belongs to the
first case of Theorem 6.5 and P(S;) = 4. We see that GPF(S;) is not connected.

(2) Consider S; = (8,9, 15, 21, 28), which has PF(S,) = {19, 20, 22}. Since 19420 —22 € S; and 20 — 19 ¢ M(S;), this
belongs to the second case of Theorem 6.5 and P(S;) = 2. We see that GPF(S,) is connected and Tr(S;) = 4.
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Fig. 3. Void poset and GPF graph of S; = (10, 19, 21, 36, 47), S, = (8,9, 15, 21, 28), S = (8, 13, 22,27) and S; = (25, 29, 32, 45).
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Fig. 4. Void poset and GPF graph of S¢ = (5, 31, 32, 33, 34).

(3) Consider S3 = (8, 13,22, 27), which has PF(S3) = {31, 36, 41}. Since 31 + 36 — 41 € S3, 36 — 31 € M(S;) and
41+ 31 =2 - 36, it belongs to the third case of Theorem 6.5 and P(S3) = 3.

(4) Consider S4 = (25, 29, 32, 45), which has PF(S4) = {71, 142, 155}. Since 71 4+ 142 — 155 € S4, 142 — 71 € M(S4)
and 71 + 155 # 2 - 142, it belongs to the fourth case of Theorem 6.5 and P(S4) = 4.

Fig. 3 shows the void poset and the GPF graph for Sy, S, S3 and S4.

7. Numerical semigroups of type 4

In this section we show that there is a significant change in the behavior of P(S) as we move from numerical semigroups

of type 3 to numerical semigroups of type 4. We show that there exist numerical semigroups S with t(S) = 4 and P(S)
arbitrarily large.

Proposition 7.1. Let
S» =1{0,5,10,15,...,5n —}.
We have t(S,;) = 4 and P(S,) = 2n+ 4.

Proof. We see that F(S,;) =5n— 1 and
M(S,) ={1,6,...,5n—4}U{2,7,...,5n -3} U({3,8,...,5n — 2}.
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The void poset (M(S,), <) is the union of 3 chains 1 x6 < ---x5n—4,2<x7<---x5n—3and3 <8< ---x5n—2.
See Fig. 4 for a depiction of (M(Sg), <).

Since x € PF(S,) implies that 5 + x € S, it is easy to check that PF(S,) = {5n — 4,5n — 3,5n — 2, 5n — 1}, and so
t(Sp)=4.letP=5n—4, Q =5n—3, R=5n—2,and F = F(S;) = 5n — 1. It is easy to check that GPF(S,) has an edge
between P and R and a loop on Q. So, GPF(S,) has two connected components, and so there are 4 self-dual order ideals
of (M(Sn), <)-

Lemma 4.2 implies that Trg(S,) = @. From the description of M(S,), we can check that

Tr(Sy) = {(5n — 3,1, 1), (5n—4,1,2), (5n— 4,2, 1)}.

Suppose I is an order ideal of (M(S;), <) that is not self-dual and I U S is a numerical set associated to S. Lemma 3.3
implies that either P e land P ¢ [,or Q e [ and Q ¢ I.

e Case 1: Suppose Q = 5n —3 € I and Q = 2 ¢ I. Theorem 3.9 implies that I has to satisfy a Frobenius triangle in
Tro(Sn), and therefore I must satisfy (5n — 3,1, 1). This means 1 € I and 1 = 5n — 2 ¢ I. Since 1 € [, we see that
{1,6,...,5n —4} C 1. Since 5n — 2 ¢ I, we see that {3,8,...,5n =2} NI = 0.

Since P € N PF(S;) and P ¢ I, Theorem 3.9 implies that I satisfies a Frobenius triangle in Trp(S,). We see that I does

not satisfy (5n — 4, 1, 2) because 2 = 5n — 3 € I. We see that I does not satisfy (5n — 4, 2, 1) because 2 ¢ I. This is a
contradiction.
e Case 2: Suppose P =5n—4 el and P = 3 ¢ I. Theorem 3.9 implies that I satisfies a Frobenius triangle in Trp(S,). First
consider the case when [ satisfies (5n — 4, 1, 2). This means 1 € I and 2 = 5n — 3 ¢ [. This implies {1,6,...,5n—4} C |
and {2,7,...,5n—3}NI = (. The remaining elements of M(S,) are {8, 11, ..., 5n — 2}. Once we decide the first element
in this list to include in I then all larger elements must also be in I. This gives n choices including the choice to not include
any elements from this list. Since 5n — 2 = 1 € I, Theorem 3.9 implies that each of these choices leads to a numerical set
associated to S.

Next consider the case when I satisfies (5n — 4,2, 1). This means 2 € I and 1 = 51 — 2 ¢ I. This implies
{2,7,...,5n— 3} C I and {3,8,...,5n — 2} NI = (. Note that Q = 2 € I. The remaining elements of M(S,) are
{1,6,...,5n—9}. As above, once we decide the first element in this list to include in I then all larger elements must also

be in I. Each of these n choices leads to a numerical set associated to S.
We have seen that (M(S,), <) has 4 self-dual order ideals and 2n order ideals I that are not self dual for which TUS is a
numerical set associated to S. Therefore, P(S;,) =2n+4. O
8. Numerical semigroups of large type
In this section we focus on two families of numerical semigroups of large type.

8.1. Numerical semigroups with P(S) = 2 and large type

We first describe a family of numerical semigroups where every member has P(S) = 2 that includes semigroups of
arbitrarily large type.

Proposition 8.1. Letn > 1, m =2n+ 1, and
Sh=1{0,2m -}U{m+2k|0<k<n-—1}.
Then S, is a numerical semigroup with t(S,) = n+ 1 and P(S,) = 2.

The family we consider is a subset of the family in [3, Proposition16]. They show that each member of the family has
P(S) = 2 and |[M(S)| can be arbitrarily large. They do not discuss the pseudo-Frobenius numbers or the type of these
semigroups.

Proof. Note that F = F(S,) = 2m — 1 = 4n + 1. We see that S, is a numerical semigroup since all nonzero elements of
S, are larger that g The void of S, is

M) ={2i+1|0<i<n—-1}U{2i|n+1<i<2n}

Forke[0,n—1], 2k+ 1, 2(k+n+ 1) € M(S,) and
2k+n+1)—2k+1)=2n+1=meSs,.

This means that 2k + 1 < 2(k +n + 1) in (M(S,), <), and so 2k + 1 ¢ PF(S,). On the other hand, for k € [n + 1, 2n],
2k+m>2n+1)+2n+1=4n+3 > F.
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Fig. 5. (M(S3), <) and GPF(S3) where S3 = {0,7,9, 11, 14 —}.

Since m is the smallest nonzero element of S,, we see that 2k + S, \ {0} C S;,, and so 2k € PF(S,). Therefore,
PE(S))\{F} = {2k | n+1 <k < 2n},

which means t(S,) =n+ 1.

A main idea for the rest of the proof is to show that each S, is triangle-free and that GPF(S,) is connected. Proposition 4.8
then implies that P(S,) = 2. See Fig. 5 for the poset (M(Ss3), <) and GPF(S3).

Let P, Q € PF(S)\{F} with P < Q. Since P and Q are both even sois P—Q,and 0 < P—Q < 2n. Therefore, P—Q ¢ M(S,).
Proposition 4.1 implies that Tr(S,) = @, or equivalently, that S, is triangle-free. By Proposition 4.8, P(S,) = 2¢ where « is
the number of connected components of GPF(S,,). To complete the proof, we need only show that GPF(S,) is connected.

Suppose that k € [n + 1, 2n]. We have that 2k, 4n € PF(S,) and

2k+4n—-F=2k—1=2n+14+2(k—n—-1) € S,.

We see that there is an edge between 2k and 4n in GPF(S,). We conclude that GPF(S,) is connected, completing the
proof. O

Propositions 7.1 and 8.1 make it clear that for semigroups of type at least 4, the connection between the set of
pseudo-Frobenius numbers PF(S) and P(S) is not so clear.

8.2. Maximal embedding dimension numerical semigroups

Recall that S has maximal embedding dimension if and only if its number of minimal generators is equal to its
multiplicity, that is, e(S) = m(S). We characterize P(S) for numerical semigroups S that have maximal embedding
dimension and are triangle-free.

Theorem 8.2. Suppose S is a triangle-free numerical semigroup with maximal embedding dimension. Let m = m(S) and
F = F(S).

(1) Suppose x,y € M(S) withn)qc =Y. Then x < y in (M(S), <) if and only if m | (y — x).
(2) If misodd then P(S)=2"7.

(3) If m is even and F is odd then P(S) = 2:7_2,
(4) If m and F are both even then P(S) = 22

Proof. Since S is of maximal embedding dimension, |PF(S)| = m — 1. For distinct P, Q € PF(S), we know that P — Q ¢ S.
This implies that P % Q (mod m). Moreover since pseudo-Frobenius numbers are gaps, none of them is 0 modulo m.
Therefore we can label PF(S) = {Py, ..., Py_1} with P; =i (mod m).

If x,y € M(S) satisfy x < y and m | (y — x), then clearly x < y. Assume for the sake of contradiction that there are
X,y € M(S) satisfying x <y, m{ (y — x), and x < y. Note that none of y, F —x, and y — x is divisible by m. Suppose that
P; =y (mod m), Pj=F —x (mod m), and P, =y — x (mod m). Since y,F —x ¢ S, we know thaty < P;and F —x < P;.
Since y — x € S, we know that y —x > Py. Now P; = F — (P; — P;) (mod m) and

F—Pi—P)<P+x)—y+—x)=p,

so F — (P — P¢) ¢ S. Since P;, P; € PF(S), we have P; — P; ¢ S. This means that P; — P; € M(S), but this contradicts the fact
that S is triangle-free. This completes the proof of (1).

Since S is triangle-free, Proposition 4.8 implies that P(S) = 2¢), where «(S) is the number of connected components
of GPF(S). Suppose P;, P; € PF(S)\ {F}. We see that F—P; < P; if and only if P;+P; = F (mod m). This means that the graph
GPF(S) mostly consists of components of size 2 except when 2P; = F (mod m), in which case P; is its own component
has a loop on it. The description of PF(S) given above shows that GPF(S) has m — 2 vertices.

e If m is odd then there is exactly one i for which 2P; = F (mod m). Therefore, «(S) =1+ ’"7’3

e If m is even and F is odd then there is no i for which 2P; = F (mod m). Therefore, «(S) = "’T’z

e If m and F are both even then there are two i for which 2P; = F (mod m). Therefore, «(S) = 2 + ’"T“‘. O
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Example 8.3. For m > 2, let S, be the numerical semigroup generated by
fmuU{mm+k—-1)+k|1<k<m-2}U{m2m—1)4+m— 1}.

We can check that F(S;,) = m(2m — 2)+ m — 1 and
PF(Sp)={m(m+k—-2)+k|1<k<m-2}U{m2m-2)+m— 1}.

We see that S;; has maximal embedding dimension since t(S,,) = m — 1. Next we check that S, is triangle-free. Suppose
P;, P; € PF(Sm) \ {F(Sm)} with P; =j (mod m), P; =i (mod m)and 1 <i <j <m — 2. Then

P — Py =m(m +j —2) +j — (m(m +i—2) +1i) = m( — i) +j — i.
Letk=m—1—(j —i). We have
F(Sm)—(Pi—P))=m(m+k—1)+k € Sp.

This means that P; — P; ¢ M(Sp) and so Sy, is triangle-free. When m is odd we have P(S,,) = 2"7". When m is even, we
see that F(Sy,) is odd and P(Sp) = 2"

When S has maximal embedding dimension and is triangle-free, (M(S), <) is a union of m — 2 chains, one for each
nonzero residue class modulo m except the one containing F(S). When S has maximal embedding dimension and is not
triangle-free, for example when

S = (15, 34, 38,57, 61, 80, 84, 103, 107, 126, 130, 149, 153, 172, 176),

the structure of (M(S), <) can be much more complicated.
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