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Abstract
Stress-modified activated processes are analyzed using a model first proposed by Evans and Polanyi that uses transition-state 
theory to calculate the effect of some perturbation, described by an intensive variable, I , on the reaction rate. They suggested 
that the rate constant depended primarily on the equilibrium between the transition state and the reactant, which, in turn, 
depends on the effect of the perturbation I on the Gibbs free energy, G = U − TS + IC , where C is a variable conjugate to 
I . For example, in the case of a hydrostatic pressure P , the conjugate variable is the volume, −V  . This allows a pressure-
dependent rate to be calculated from the equilibrium constant between the reactant and transition state. Advantages to this 
approach are that the analysis is independent of the pathway between the two states and can simultaneously include the effect 
of multiple perturbations. These ideas are applied to the Prandtl–Tomlinson model, which analyses the force-induced transi-
tion rate over a surface energy barrier. The Evans–Polanyi analysis is independent of the shape of the sliding potential and 
merely requires the locations of the initial and transition states. It also allows the effects of both normal and shear stresses 
to be analyzed to identify the molecular origins of the well-known pressure-dependent shear stress: � = �

0
+ �

L
P , where �

0
 

is a pressure-independent stress. The analysis reveals that �
L
 depends on the molecular corrugation of the potential and that 

�
0
 is velocity dependent, in accord with an empirical equation proposed by Briscoe and Evans.

Keywords  Evans–Polanyi perturbation theory · Stress-induced processes · Pressure-induced shear stress · Thermodynamic 
analysis

1  Introduction

Identical physical principles underpin all stress-activated 
processes, for example, the Prandtl–Tomlinson model for 
friction [1–5], the Eyring model for viscosity [6, 7], and 
models for mechano- or tribochemical reaction rates [8]. 
They involve an applied force modifying the potential energy 
surface (PES) for the system, therefore changing the reac-
tion and transition-state energies. This, in turn, changes the 
reaction activation energy and, as a result, influences the rate 
[9]. This central concept, in principle, allows the molecular 
mechanisms that describe macroscale phenomena such as 

friction, wear [10], viscosity, or mechanochemistry [8] to be 
identified. Such theories are invariably framed in terms of a 
reaction pathway linking the transition-state to the reactant. 
This pathway can be either in the form of a simple analyti-
cal function, often just a sinusoid [1–4, 7, 8, 11–14], or can 
be derived from a force-modified potential energy surface 
(FMPES) [15–19].

A process occurring in the absence of an imposed stress is 
usually taken to follow the steepest-descent pathway (SDP) 
from a transition state to a reactant [20, 21]. However, an 
advantage of transition-state theory is that the rates do not 
depend on the reaction pathway, just the energy difference 
between the initial and transition states and their partition 
functions [22]. Efficient methods have been developed to 
calculate the structure and properties of the metastable acti-
vated complex of a transition state [23–25].

An approach to calculating the effect of an external per-
turbation such as a pressure on a reaction rate constant has 
been proposed by Evans and Polanyi [26, 27] based on the 
concepts of transition-state theory. Note that this theory is 
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different from the linear-free-energy relation, also named for 
Evans and Polanyi, that has been used to model catalytic reac-
tion kinetics [28–30].

As conventionally analyzed, transition-state theory 
assumes that the reactant and the transition-state (acti-
vated complex) structures are in thermodynamic equilib-
rium and uses statistical thermodynamics to calculate an 
equilibrium constant between them to obtain a reaction rate 
constant [22]. Instead, Evans and Polanyi used a thermo-
dynamic analysis to calculate the effect of a perturbation 
such as hydrostatic pressure P on the rate constant [31, 32]. 
In the following, we review the analysis used by Evans and 
Polanyi to describe the effect of hydrostatic pressure on the 
rate of a chemical reaction. In the section following that, 
we extend the analysis to investigating the influence of a 
general applied stress on a reaction rate, and finally we apply 
the model to sliding friction to illustrate how it can provide 
deeper insights into the molecular origins of friction than 
more conventional Prandtl–Tomlinson-type models.

2 � Summary of Evans–Polanyi Analysis 
of Pressure‑Dependent Reaction Rates

The Evans–Polanyi analysis is based on the idea that 
the equilibrium constant of chemical reaction, K , can be 
obtained from the standard Gibbs free energy change per 
mole for the process, , as:

where R is the gas constant and T is the absolute temperature 
[33]. Note that, because the number of moles of reactant and 
p r o d u c t  a r e  e qu a l ,  K  i s  u n i t l e s s .  S i n c e 
ΔG = ΔU + PΔV − TΔS , the variation in equilibrium con-
stant with (hydrostatic) pressure is given by �lnK

�P

|||T = −
ΔV

RT
 , 

where here ΔV  has the units of volume per mole; it corre-
sponds to some molar volume change between the reactant 
and the product. Evans and Polanyi argued that, rather than 
using statistical thermodynamics to calculate the equilibrium 
constant between the transition state and the reactant [22], 
classical thermodynamic concepts could be used instead. As 
a result, a similar equation could be written for a rate con-
stant k as: �lnk

�P

|||T = −
ΔV‡

RT
 , where ΔV‡ is known as an activa-

tion volume, measured for one mole under standard condi-
tions. It has the units of volume per mole (or per molecule) 
and is formally a volume difference between the activated 
complex and the reactant. The physical interpretation of this 
volume change will be clarified below. Evans and Polanyi 
also pointed out that this idea could be extended to analyzing 
the effect of any external potential, f  , on the rate constant k 
of a chemical reaction [26, 27], and showed that 

(1)

dlnk

df
= −

(�−��)

RT
 , where � and �′ are factors such that (� − ��)f  

is the energy change of the system in passing from the initial 
to the transition state. That is, � is the intensive variable 
conjugate to f  . For example, if f = P , the hydrostatic pres-
sure, the conjugate variable is −V  . Thus, the variable conju-
gate to an imposed stress has the units of volume.

If the rate constant under a standard pressure is k
0
 , then 

k(P) = k
0
exp

(
−

PΔV‡

RT

)
 . This has been called the Bell equa-

tion [34] and was originally applied to analyzing cell adhe-
sion. Using the Arrhenius form of the rate constants shows 
that Eact(P) = E0

act
+ PΔV‡ , where E0

act
 is the activation bar-

rier in the absence of an applied pressure and Eact(P) is the 
pressure-dependent barrier. Thus, a decrease in volume of 
the activated complex compared to the reactant causes ΔV‡ 
to be negative, so that increasing the pressure reduces the 
activation barrier and increases the reaction rate. Conversely, 
a positive activation volume results in a decrease in rate with 
increasing pressure.

There are several advantages to using such an approach 
compared to those that use a force-modified potential energy 
surface [15, 35] or a one-dimensional periodic function. 
First, as a consequence of Hess’ law [33], such a thermody-
namic analysis does not depend on the pathway between the 
activated complex and the reactant [17]. This provides a sig-
nificant advantage for applications to real systems, because 
calculating the potential-energy surface is tedious, while 
obtaining just the reactant and transition-state energies and 
structures and their properties is much simpler [23–25, 36].

Second, analyses such as those used to describe the 
molecular origins of friction and viscosity invariably only 
use a single force, while both normal and shear stresses are 
invariably applied at the same time in real experiments. The 
Evans–Polanyi perturbation model can easily be extended 
to describe the effect of a combination of stresses as well as 
including the effects of other perturbations. This approach 
facilitate linking macroscale sliding phenomena to the 
molecular origins that underpin them.

Thus, the central concept that underpins Evans–Polanyi 
(E–P) perturbation theory is that the Gibbs Free Energy G 
of a system can include the effect of some perturbation of 
the system described by an intensive variable, I , by using an 
associated extensive conjugate variable, C , where IdC equals 
the reversible work, so that G = U − TS + IC [37]. In the 
case of a chemical process in which there are two states, we 
can define two values of the Gibbs free energies for each 
state under standard conditions of pressure and temperature 
so that . For constant values of tem-
perature T  and I ,  . 
This equation can be used to calculate the way in which the 
equilibrium constant ( K ) or the rate constant ( k ) of a chemi-
cal process depends on the perturbation I . Note that, in many 
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cases, the value of the conjugate variable, C , can itself 
depend on I , as was alluded to by Evans and Polanyi [26, 
27], so that the equation for the standard Gibbs free energy 
change becomes:

 can most conveniently be evaluated by carrying 
out a Taylor series expansion. The rate constant k is given 
by:

where again k
0
 is the rate constant for the process in the 

absence of the perturbation. In the following analysis, we 
will apply this general method to examining stress-modified 
surface processes but will neglect the variation of the vari-
able C , and this will be discussed in more detail elsewhere. 
The method will be used to analyze the molecular origins of 
pressure-dependent shear stresses within the general frame-
work of the Prandtl–Tomlinson friction model [3, 4, 11, 38].

3 � Application of Evans–Polanyi Perturbation 
Theory to Stress‑Modified Processes

In a reactive process, whether a chemical reaction or a slid-
ing contact, the atoms located at some initial, stable con-
figuration, ri(Reactant) , i = 1 to N , where N is the number 
of atoms in the molecular assembly, undergo a transforma-
tion by transiting an energy barrier which has a transition-
state structure (an activated complex) with atomic positions, 
ri(TS) , to yield a product with different atomic position vec-
tors, ri(Product) [22]. The reactants and products have local 
minima with positive normal mode eigenvalues, while the 
transition-state is metastable with one negative eigenvalue 
[25]. In this analysis, we are interested in calculating the 
Gibbs free energy change between the transition state and 
the reactant with a view to evaluating the stress depend-
ence of the reaction rate constant using the E–P perturbation 
method described above. The reaction involves motion of 
the ith atom given by ri(TS) − ri(Reactant) . These structures 
and their position vectors can be calculated using quantum 
mechanics [23–25, 36, 39].

Thermomechanical properties are analyzed using con-
tinuum mechanics by distorting some reference configura-
tion (typically the reactant state) so that it undergoes a 
transformation x = x(X) , to give the position x of the par-
ticle with original position X . This mapping is assumed to 
be continuous, differentiable and invertible. The transfor-
mation is described by the deformation gradient tensor F , 

(2)

(3)lnk(I) = lnk
0
−

ΔC‡

RT
I,

where Fij =
�xi

�Xj

 , and is represented by a 3 × 3 matrix. The 

deformation of a reference configuration with volume V
0
 

into a new configuration with volume V  is given by 
V = V

0
det(F) = V

0
J , where J = det(F) is the determinant 

of the deformation gradient tensor [40].
In order to implement the Evans–Polanyi perturbation 

method for mechanically induced processes, it is necessary 
to define the relevant conjugate variables C (strain) and I
(stress). Using the convention used in the analysis of the 
mechanical properties of materials of using a reference 
density �

0
 , the internal work per unit mass is given by: 

�
int

0
dt = �

0
dW

0
= IdC = JT ∶ dFF−1

= � ∶ dF = S ∶ dE , 
where �int

0
 is the stress power per unit reference vol-

ume [37] and T , � and S are the Cauchy and first and 
second Piola–Kirchhoff stress tensors, while E is the 
Green–Lagrange deformation tensor [40]. Here the dou-
ble dot: denotes the standard scalar product of two tensors; 
A ∶ B = tr(ABT

) = AijBij.
In  the  case  of  a  hydrosta t ic  pressure ,  P  , 

t he  Cauchy s t ress  T = −PI  ,  where  I  i s  t he 
unit  tensor,  and the internal work reduces to 
ρ
0
dW

0
= JT ∶ dF F

−1
= −PJtr

(
dF F

−1
)
= −PdJ = −PdV , 

which is used in the original E–P paper [26]. Here, the 
conjugate pair, (C, I) = (−V ,P) . Unfortunately, this is the 
only case in which the Cauchy stress tensor can be used to 
model stress-induced processes.

From the above equation, two candidates for the com-
binations of strain and stress are (F,�) and (S,E) . The 
first conjugate pair is generally not appropriate because 
the elastic constitutive equation, �(F) cannot be inverted 
to yield F(�) , thus making it impossible to define a 
Gibbs free energy G(�) . In contrast, (C, I) = (E,S) can be 
inverted and can thus provide an appropriate conjugate 
pair to define a Gibbs free energy change occurring during 
a chemical transformation. The disadvantage to this choice 
is that, while the Green–Lagrange strain tensor, E , has a 
clear physical meaning, the second Piola–Kirchhoff stress 
tensor, S, does not.

For the sake of simplicity in the following, it will be 
assumed that the deformation is constrained to have an 
invariant plane coincident with the sliding plane. Other 
deformations can be included quite easily, if necessary. 
However, this is the most common occurrence in tribologi-
cal problems, where a normal stress is exerted along the 
perpendicular x

3
 ( z ) direction combined with shear within 

the x
1
x
2
 ( xy ) plane so that the transformation is: 

x
1
= X

1
, x

2
= X

2
, x

3
= �

1
X
1
+ �

2
X
2
+ f

3
X
3
 (Fig. 1) and the 

gradient tensor is  given by F =

⎛⎜⎜⎝

1 0 �
1

0 1 �
2

0 0 f
3

⎞⎟⎟⎠
 with 
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detF = J = f
3
 . Its inverse is F−1

=

⎛⎜⎜⎝

1 0 −�
1
∕f

3

0 1 −�
2
∕f

3

0 0 1∕f
3

⎞⎟⎟⎠
 , so that 

dFF
−1

=

⎛⎜⎜⎝

0 0 d�
1

0 0 d�
2

0 0 df
3

⎞⎟⎟⎠

⎛⎜⎜⎝

1 0 −�
1
∕f

3

0 1 −�
2
∕f

3

0 0 1∕f
3

⎞⎟⎟⎠
=

⎛⎜⎜⎝

0 0 d�
1
∕f

3

0 0 d�
2
∕f

3

0 0 df
3
∕f

3

⎞⎟⎟⎠
 . In the 

case of a general Cauchy stress � = T =

⎛⎜⎜⎝

�
1
�
12

�
13

�
12

�
2
�
23

�
13

�
23

�
3

⎞⎟⎟⎠
 . It 

is appropriate to use molar quantities in the case of a 
molecular transformation so that the work is given by 
dW

0

V
0

= JT ∶ dFF−1
= �

13
d�

1
+ �

23
d�

2
+ �

3
df

3
 , where V0 is 

the molar volume in the reactant state which, in the fol-
lowing, is taken to be the reference configuration. This 
leads to the conjugate pair I =

(
�
3
, �

13
, �

23

)
 and 

C = V
0

(
f
3
, �

1
, �

2

)
 , and the resulting Gibbs free energy 

change between the transition state and the reactant under 
standard conditions is:

We note that the same result could have been 
obtained more directly by calculating the work done 
by a force F =

(
F

1
,F

2
,F

3

)
 exerted on an invari-

ant surface, x
3
= Constant. This, in fact, also corre-

sponds to the alternative form � ∶ dF since in this 
case �

i3
= Ti3, i = 1… 3 . More generally, it can also be 

shown that, after some computation using the particu-
lar structure of the deformation gradient, the C − I  term 
in the Gibbs free energy can equally well be written as 
IC = �

13
�
1
+ �

23
�
2
+ �

3
f
3
= F ∶ � = S ∶ E.

(4)

4 � Molecular Origins of Sliding Friction; 
Evans–Polanyi Analysis of the Prandtl–
Tomlinson Friction

The above concept will be used to calculate the fric-
tion force within the framework of the Prandtl–Tomlin-
son model for constant-force sliding, but could readily 
be extended to analyzing compliant sliding in atomic-
force microscopy (AFM) and nanoscale [41] friction  
measurements. Furthermore, we will initially ignore the 
effect of an applied stress on the activation volume; this 
is formally equivalent to the Bell model in mechanochem-
istry [34].

Experimentally, the shear stress � has been found to have 
a contribution that depends on the normal stress (the contact 
pressure P ) and a term that is independent of the normal stress 
[42–45]:

where �
0
 is a pressure-independent stress. The associated 

friction coefficient � =
�

P
=

�
0

P
+ �L , and if �

0
 is small, 

the friction coefficient obeys Amontons’ law [46]. Both 
macroscopic and microscopic explanations have been 
proposed for this behavior. For example, Barquins pro-
posed that the friction stress is the sum of adhesive and 
ploughing contributions [47], while an alternative postu-
late suggests that, according to Greenwood and William-
son theory [48], when randomly rough surfaces contact 
only at the tips of the highest asperities, the real contact 
area increases in direct proportion to the normal applied 
load to give a load-dependent shear stress [48]. The effect 
of roughness on the pressure-dependent contribution to 
friction stress was also highlighted and discussed in Ref. 
[44] where the coupling with the molecular architecture 

of the adsorbed nanometric layers was investigated. Der-
jaguin ascribed �

0
 to adhesion between the contacting 

surfaces [49, 50] and Briscoe and Evans [51] proposed a 
formula for the velocity and temperature dependences of 
self-assembled monolayers (SAMs) that agreed well with 
experiment [52, 53]. It has also recently been suggested 
that the relative values of �

0
 and �L , and thus how well 

a system obeys Amontons’ law, depends on the scale of 
the contact [54].

(5)� = �
0
+ �LP,

Fig. 1   Depiction of the deformation of a unit cube with an invariant 
xy plane
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5 � Results and Discussion

5.1 � Velocity Dependence of Shear‑Modified 
Processes

As explained by Prandtl [1] and by Eyring [7, 14], the velocity 
dependence of sliding friction is established by equating the 
stress-dependent rate constant for the transit over an activation 
barrier, k(�) , to the velocity-dependent transit time, t = Δx‡

v
 , 

where the distance from the reactant to the activated complex 
along the sliding direction is an activation length, Δx‡ , and v 
is the sliding velocity. This yields the equation k(�) = v∕Δx‡ 
where k(�) is calculated using Evans–Polanyi perturbation 
theory.

5.2 � Normal‑Stress‑Dependent Shear Stresses

The following illustrates the ability of Evans–Polanyi pertur-
bation theory to simultaneously analyze the effects of nor-
mal and shear stresses on Prantl–Tomlinson friction. We 
analyze the effect of a combined normal stress, �z ≡ P for 

sliding along the x direction with a shear stress �xz ≡ � . Note 
here that �z and the z axis of �xz are directed along +z . This 
yields a Cauchy stress tensor:

The energy profile depicted in Fig. 2a shows that the ini-
tial (reactant) state is located at 

(
xI , zI

)
 and the transition 

state is at 
(
xT , zT

)
. That is, going from the initial- to the 

transition-state involves motion both along the x and z direc-
tions. Note that the value of the energy barrier is not required 
for the analysis, just the rate in the absence of a stress, k

0
 . 

Considering a volume element of initial thickness h
0
 and an 

area AC over which the stresses act, the components of the 
(2 × 2) deformation gradient tensor, F , as illustrated in 

Fig. 2b, are given by F =

(
1 Δx‡∕h

0

0 1 + Δz‡∕h
0

)
. Applying the 

results obtained above where  I =
(
�z, �xz

)
 and  

C = V
0
(1 + Δz∕h

0
,Δx‡∕h

0
)  f i n a l l y  y i e l d s : 

G = ΔU − TΔS + V
0
(�xz

(
Δx‡

h
0

)
+ �z

(
Δz‡

h
0

)
) . This empha-

sizes the idea that the activation volume depends on the 
direction of the stress relative to the surface. If we take the 
V
0
 to be the initial volume of the system so that V0

h
0

= AC, the 
activation volumes in the x and z directions can be written 
as ΔV‡

x
= A

C
Δx‡ and ΔV‡

z
= A

C
Δz‡ , in accord with a pro-

posal made by Stearn and Eyring [14]. These have the units 
of volume and are the product of an area ( AC ) and a dis-
placement along x and z given by Δx‡ = xT − xI  and 
Δz‡ = zT − zI . This formula for the stress-dependent Gibbs 
free energy change between the reactant and transition state 
can be used to calculate a stress-dependent rate constant. 
The change in the rate constant due to pressure and shear is 

given by: �lnk(�,P) = �lnk(�,P)

��z

||||�xz
��z +

�lnk(�,P)

��xz

||||�z
��xz . Using 

Evans and Polanyi per turbation theory gives  
�ln(k(�,P))

��xz

||||T ,�z
= −

ACΔx
‡

kBT
 and �ln(k(� ,P))

��z

||||T ,�xz
= −

ACΔz
‡

kBT
 so that 

�lnk(�,P) = −
ACΔz

‡

kBT
��z −

ACΔx
‡

kBT
��xz . Putting �z = −P and 

�xz = −�  a n d  i n t e g r a t i n g  g i v e s : 
lnk(�,P) = lnk

0
+

ACΔz
‡

kBT
P +

ACΔx
‡

kBT
� . This enables a value of 

the rate constant as a function of shear stress and pressure, 
k(�,P) to be calculated and equated to the sliding velocity v 
as:

for sliding along the x direction, where the transition rate is 
dictated by the time for the system to move from the initial 

(6)� =

(
0 �xz

�zx �z

)
.

(7)k(�,P) = k
0
exp

(
+

Ac

(
�Δx‡ + PΔz‡

)
kBT

)
= v∕Δx‡,

Fig. 2   a Plot of the potential energy profile for analyzing a pressure-
dependent shear strength from an initial state to a transition state. b 
An illustration of the deformations from the initial-state structure to 
the transition state used in the analytical model
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state to the transition state. Straightforward manipulation of 
this equation gives:

where v
0
= k

0
Δx‡ . Comparison with Eq. (5) reveals that:

so that �
0
 depends on temperature and the sliding velocity, 

while �L depends only on the nanoscale topography of the 
sliding interface through the ratio of the activation volumes 
for motion in the z direction relative to the motion along the 
x direction. The activation volume along the x direction, 
ΔV‡

x
 should be negative for the shear stress to reduce the 

energy barrier to yield the same temperature dependences 
as found for an analysis of the Prandtl–Tomlinson model 
for constant-force sliding using a sinusoidal potential [9]. 
It should be mentioned that other temperature dependences 
have been found experimentally but have been ascribed to 
additional effects such as an activated attachment of the tip 
to the surface [55], by unusual properties of a compliant 
atomic force microscope tip Manzi [11], or to the forma-
tion thermally activated capillary bridges between the tip 
and substrate [56]. Note that here k

0
 is a rate constant and 

thus depends on theactivation  energy, Eact , of the process, 
however, the Evans–Polanyi perturbation method directly 
calculates a rate constant. This depends on the activation 
energy and the temperature, T  , through the Arrhenius equa-
tion: k

0
= Aexp

(
−Eact∕kBT

)
 , where A is a pre-exponential 

factor and kB is the Boltzmann constant. Substituting for 
k
0
 in the formula for v

0
 yields the following form of Eq. 8:

where now vC = AΔx‡ . It is instructive to compare this equa-
tion with that derived and compared with experiment by 
Briscoe and Evans for SAM friction [51], where we maintain 
their nomenclature as:

where � is known as the stress activation volume and Ω is 
the pressure activation volume. Q′ is the barrier height and 
V
0
 is a velocity factor. It is clear that the equation derived 

from Evans–Polanyi theory and that obtained semi-empir-
ically and confirmed experimentally by Briscoe and Evans 
are identical; � ≡ ΔV‡

x
= A

C
Δx‡ ,  Ω = −ΔV‡

z
= A

C
Δz‡ so 

that ratio Ω∕� is expected to be a constant and quite small. 

(8)� = −

(
ΔV‡

z

ΔV
‡

x

)
P −

kBT

ΔV
‡

x

ln

(
v

v
0

)
,

(9)�
0
= −

kBT

ΔV
‡

x

ln

(
v

v
0

)
and�L = −

(
ΔV‡

z

ΔV
‡

x

)
,

(10)� = −
kBT

ΔV
‡

x

ln

(
v

vC

)
−

Eact

ΔV
‡

x

−

(
ΔV‡

z

ΔV
‡

x

)
P,

(11)� =
kBT

�
ln

(
v

V
0

)
+

1

�

(
Q

�
+ PΩ

)
,

Briscoe and Evans found it to be 0.038 for stearic acid 
(C18H37COOH) and 0.036 for behenic acid (C21H43COOH). 
The velocity factor V

0
= vC = AΔx‡.

The stress activation volume � has been interpreted as the 
volume of molecules that are moved during shear [57–61] 
but the above analysis indicates that it is due to the lateral 
motion of the system during sliding. This comparison shows 
how an Evans–Polanyi analysis in this case of Prandtl–Tom-
linson sliding can reveal the nature of the molecular-scale 
processes that lead to the appearance of macroscale tribo-
logical phenomena.

Similar pressure-dependent shear stresses have been 
found for solid sliding [43] and in particular for thin potas-
sium chloride films on various metal substrates [62, 63], 
where the properties of the film were analyzed using den-
sity functional theory (DFT) [64]. This revealed that the 
friction coefficient did depend on the contact pressure and 
correlated with the corrugation of the surface topology, i.e., 
Δz‡ , calculated by DFT in accord with the model outlined 
here [65, 66].

The scale of the contact has been suggested to influence 
the relative sizes of �

0
 and �L [54] with nanoscale contacts 

suggested to have 𝜏
0
> 𝜇LP and macroscale contacts are 

proposed to have the opposite behavior, of 𝜏
0
< 𝜇LP . Equa-

tion 10 predicts that �L depends only on materials properties 
while �

0
 also depends on the experimental conditions (slid-

ing velocity and temperature). Thus, Eq. 10 predicts that 
the lower sliding velocities used for nanoscale experiments 
would lead to relatively lower the value of �

0
 , while experi-

ments at the macroscale should have larger �
0
 values. This 

may suggest that an alternative explanation may be due to 
disparities in the sliding velocity between the regimes. Other 
interpretations based on the location of the shear plane in the 
contact might also explain this contradiction [45].

6 � Conclusion

This work illustrates the use of a perturbation method devel-
oped by Evans and Polanyi to analyze the rates of stress-
accelerated processes using the Prandtl–Tomlinson model, 
initially focusing on analyzing the molecular origins of fric-
tion. The approach consists of a thermodynamic analysis 
of the way in which the equilibrium constant between the 
initial state and the transition state (activated complex) in 
transition-state theory is influenced by an external perturba-
tion, here an applied stress. An important property of such a 
thermodynamic analysis is that it is independent of the path 
between the two states and only depends on the locations of 
the transition state relative to the reactant. This makes the 
approach straightforward to apply to real systems because 
the energies, positions and properties of the initial state and 
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the transition state are relatively straightforward to calculate 
[23–25].

We note that there have been previous attempts to carry 
out thermodynamic analyses of friction and wear [67, 68] 
using the concepts of non-equilibrium thermodynamics [69]. 
Since tribo- and mechanochemical processes occur by an 
applied stress modifying the activation energy [9], we con-
tend that the Evans–Polanyi perturbation method is a more 
appropriate method for analyzing these processes,

The method is illustrated for sliding friction that allows 
the molecular-scale energy dissipation processes that control 
friction to be identified. We analyze the effect of combined 
normal and shear stresses to identify the molecular origins 
of the pressure-dependent shear stress using just the linear 
stress-dependent change in Gibbs free energy, which depends 
on the volume difference between the reactant and transition 
state structures. We show that the calculated activation vol-
ume is consistent with a proposal made by Stearn and Eyring 
[14] and equals the distance from the initial to the transition 
state along the sliding direction (an activation length), multi-
plied by the area over which the stress acts, and thus has the 
requisite units of volume. The analysis leads to a value of �

0
 

that depends on the temperature and sliding velocity, while 
a �

0
 that is due to adhesion should be independent of both 

parameters. Such analyses can be straightforwardly extended 
to more complex sliding interfaces; to those in which the 
initial- and transition-states are compliant, and to other dis-
sipation processes such as fluid shear or tribochemistry.
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