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Abstract. The intention of this article is to illustrate the use of methods from symplectic geometry for practical
purposes. Our intended audience is scientists interested in orbits of Hamiltonian systems (e.g., the
three-body problem). The main directions pursued in this article are as follows: (1) given two
periodic orbits, decide when they can be connected by a regular family of periodic orbits; (2) use
numerical invariants from Floer theory which help predict the existence of orbits in the presence of a
bifurcation; (3) attach a sign \pm to each elliptic or hyperbolic Floquet multiplier of a closed symmetric
orbit, which generalizes the classical Krein--Moser sign to also include the hyperbolic case; and (4)
do all of the above in a visual, easily implementable, and resource-efficient way. The mathematical
framework is provided by the first and third authors in [U. Frauenfelder and A. Moreno, J. Symplectic
Geom., to appear], where, as it turns out, the ``Broucke stability diagram"" [R. Broucke, AIAA J., 7
(1969), pp. 1003--1009] was rediscovered, but further refined with the above signs and algebraically
reformulated in terms of quotients of the symplectic group. The advantage of the framework is
that it applies to the study of closed orbits of an arbitrary Hamiltonian system. We will carry
out numerical work based on the cell-mapping method as described in [D. Koh, R. L. Anderson,
and I. Bermejo-Moreno, J. Astronautical Sci., 68 (2021), pp. 172--196] for the Jupiter-Europa and
Saturn-Enceladus systems. These are currently systems of interest, falling in the agenda of space
agencies like NASA, as these icy moons are considered candidates for harboring conditions suitable
for extraterrestrial life.
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1. Introduction. The study of closed orbits of Hamiltonian systems and their bifurca-
tions is one of the central topics of Floer theory, as introduced by Floer in a series of papers
[4, 5, 6, 7, 8, 9], and of symplectic field theory (SFT), as proposed by Eliashberg, Givental,
and Hofer in [3]. Formidable in their depth and scope, both theories underlie many of the
powerful methods of modern symplectic geometry. On the other hand, the search of orbits
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entails significant practical interest. For instance, the restricted three-body problem (RTBP),
concerning the gravitational motion of a negligible mass around two larger masses, is a pro-
totypical problem in astronomy and is relevant for space mission design. In this context, the
influence on a satellite of a planet which comes with an orbiting moon can be approximated by
a three-body problem of restricted type. Finding families of orbits for placing such a satellite
around the target moon, which minimizes orbit corrections and risk of collisions, is then of
central importance for space exploration. The need for organizing all information pertaining
to known families of orbits naturally leads to the realm of big data, where the numerous mod-
ern methods of data analysis (e.g., machine learning) apply, and for which computationally
cheap methods are highly relevant. Our general direction is then encapsulated in the following
guiding questions:

(Classification) Can we tell when two orbits are qualitatively different?a

(Catalogue/data science) Can we resource-efficiently refine data bases of known
orbits, and use techniques from data science to study them (e.g., machine learning)?

(Practical tests) Can we use Floer-theoretical invariants to test the accuracy of the
algorithms, and to guide/organize the numerical work?

aWe say that two orbits are qualitatively different if there is no regular family joining them.

The first two questions were addressed in [10], where the mathematical framework was
set. In this article, we include numerical work, and we address the third question. We will
combine various tools, including the following:

(1) Floer numerical invariants: Euler characteristics of suitable Floer homology groups
(one for general closed orbits, and another one which applies for symmetric closed
orbits);

(2) The B-signature [10]: a generalization of the classical Moser--Krein signature [18, 19, 20,
21, 23], which originally applied only to elliptic Floquet multipliers,1 to also include
the case of hyperbolic multipliers, whenever the corresponding orbit is symmetric;

(3) Global topological methods: the GIT-sequence [10], which refines Broucke's stability
diagram [2] by adding the B-signature.

This paper is the outgrowth of an interdisciplinary dialogue, whose theme centers on
whether methods from modern symplectic geometry (e.g., Floer homology) can be of help
for engineering problems. While Floer homology was designed to prove statements about the
existence of periodic orbits for large classes of Hamiltonian systems, a mere existence statement
is of little interest for engineering. However, the situation changes when instead of looking
at global Floer homology one looks at local Floer homology, as it remains invariant under
bifurcations of orbits. If the orbits found so far do not satisfy this invariance requirement,
then one is sure that there are more families and it makes sense to invest man and computer

1Recall that the Floquet multipliers of a closed orbit are by definition the eigenvalues of the monodromy
matrix.
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3286 U. FRAUENFELDER, D. KOH, AND A. MORENO

power to actually detect them. While computing the full local Floer homology might be hard,
we instead focus on numerical invariants which are extracted from the full homology and which
are easy to implement. This is the motivation to consider the SFT-Euler characteristic, as
the Euler characteristic of local Floer homology, which can be computed with only knowledge
of the spectrum of the monodromy matrix. In the case where the system admits symmetries
in the form of involutions, one can consider a further numerical invariant for symmetric orbits,
the real Euler characteristic, which also stays invariant under a bifurcation. We remark
that many orbits which have been found via numerical explorations of classical problems are
actually symmetric. As we shall explain, the combination of these Floer numerical invariants
together with the B-signature provides good tools for deciding whether to look for periodic
orbits, and also gives useful hints concerning where to actually look for them.

From the side of applications, this dialogue was initiated by the need engineers have for a
firm mathematical groundwork in order to study bifurcations of orbits, for the purpose of space
mission design, in connection with real-life planetary systems. Such is the case of the Jupiter-
Europa or the Saturn-Enceladus system, as these icy moons are believed to be candidates
for harboring extraterrestrial life, which makes them of tremendous current interest for space
agencies such as NASA. We will therefore carry out numerical work for these systems. While
we have not attempted to find new orbits in this article, the numerical results in this paper
match the predictions of the mathematical framework.

2. Preliminaries.
Monodromy matrix and symmetric orbits. Recall that the monodromy matrix of a closed

orbit x, given byDx(0)\Psi T where T is the period of x and \Psi t is the flow, is a symplectic matrix.2

If the system of n+1 degrees of freedom is described by a time-independent Hamiltonian, the
eigenvalue 1 will appear twice in the monodromy matrix (one corresponding to the direction
of the flow, another for fixing the energy). We will ignore such trivial eigenvalues and consider
the remaining ones; i.e., we consider the reduced monodromy matrix obtained by restricting
the dynamics to a level set of the Hamiltonian and forgetting the direction of the flow.3

Consider a Hamiltonian H : R2n+2 \rightarrow R, defined on the phase-space R2n+2 of position-
momentum pairs (q, p) \in R2n+2, which comes with the standard symplectic form \omega =

\sum 
j dqj \wedge 

dpj . Consider also an antisymplectic involution \rho , i.e., a map of R2n+2 satisfying \rho 2 = id, \rho \ast \omega =
 - \omega . An example of such a map is

\rho :R6 \rightarrow R6, (q1, q2, q3, p1, p2, p3) \mapsto \rightarrow (q1, - q2, - q3, - p1, p2, p3).

Assume that H is invariant under \rho , i.e., H\circ \rho =H. A prototypical example is the Hamiltonian
for the restricted three-body problem; see section 6. A periodic orbit x : S1 \rightarrow R2n+2 of
H is symmetric if it satisfies x(t) = \rho (x( - t)), t \in S1, so that in particular x(0), x(12) \in 
L := Fix(\rho ) = \{ (q, p) \in R2n : \rho (q, p) = (q, p)\} lie in the fixed-point set of \rho , and we call them
the symmetric points.

2A symplectic matrix is a matrix M such that M tJM = J , where J is the standard rotation J = ( 0 I
 - I 0 ).

3In practice, it is admittedly simpler to work directly with the unreduced version and simply work with
the eigenvalues. We choose the reduced version for the purpose of exposition. Everything that follows can be
easily adapted to the nonreduced case.
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The reduced monodromy matrix along a symmetric point is a special type of 2n \times 2n
symplectic matrix M . If a basis of R2n is chosen so that the reflection is the standard one

\rho =

\biggl( 
I 0
0  - I

\biggr) 
\in M2n\times 2n(R),

where M2n\times 2n(R) denotes the space of 2n\times 2n real matrices, and I \in Mn\times n(R) is the identity
matrix, then in this basis M is of the form

M =MA,B,C =

\biggl( 
A B
C AT

\biggr) 
\in M2n\times 2n(R).(1)

Here, A,B,C are n\times n-matrices that satisfy the equations

B =BT , C =CT , AB =BAT , ATC =CA, A2  - BC = I,(2)

ensuring that M is symplectic. The expression for MA,B,C implies the choice of a basis for
the tangent space to the fixed-point locus along the symmetric point. A different choice of
basis amounts to acting with an invertible matrix R \in GLn(R), via

R\ast (A,B,C) =
\Bigl( 
RAR - 1,RBRT , (RT ) - 1CR - 1

\Bigr) 
,(3)

i.e., MA,B,C is replaced by MR\ast (A,B,C). Moreover, the eigenvalues of M are completely deter-
mined by those of the first block A; i.e., one can reduce the characteristic polynomial of M
to that of A (a fact which already appears in [2]).4 For n = 2, the distinct cases for eigen-
values of A are summarized in Figure 1, which shows the plane R2 parametrizing the point
p = (tr(A),det(A)) \in R2, the coefficients of the characteristic polynomial of A. This is ex-
plained in more detail in [10], where, moreover, preferred normal forms for each type of matrix
are provided (see also [2]). The purpose of the B-signature is to refine the data provided by
the point p, as follows.

B-signature for symmetric orbits. We now explain the notion of B-signature, introduced
in [10]. For the case n = 2, the following construction will assign a pair \epsilon = (\epsilon 1, \epsilon 2), the
B-signature, where \epsilon i =\pm is a ``plus"" or a ``minus"" label for i= 1,2, to the eigenvalues of the
2\times 2-block A of M = MA,B,C , assuming that they are real and different. We do not assign
a sign to the remaining cases, i.e., when they coincide or are complex, which correspond
respectively to p lying in \Gamma d or \scrN in Figure 1. If \mu 1 < \mu 2 are these eigenvalues, let vi be an
eigenvector of AT with eigenvalue \mu i, i.e., A

T vi = \mu ivi. The B-sign \epsilon i of \mu i is then defined as

\epsilon i = sign(vTi Bvi)\in \{ \pm \} ,

where we use the B-block of M . It is easily seen that \epsilon i is independent of the choice of vi.

4Concretely, the characteristic polynomial of MA,B,C is given by

pA,B,C(t) = tnp - 2A( - t - 1
t
),

where p - 2A is the characteristic polynomial of the matrix  - 2A.
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Figure 1. The picture shows R2, the base of the GIT sequence for n = 2. This diagram is also referred
to as the ``Broucke stability diagram"" [2]. Each region corresponds to a configuration of eigenvalues of the
monodromy matrix. We depict a generic configuration for each region; see also Figure 3.

In the presence of a period-doubling bifurcation of a symmetric orbit, the B-signature
jumps either at t= 0 or at t= 1/2 (as in Figure 4). The orbit arising from a perioddoubling
bifurcations will be symmetric near the point where the B-sign did not jump. This will be
explicitly checked in numerical examples below, and serves as a hint as to where to expect
bifurcations.

Bifurcations and Floer numerical invariants. The Floer numerical invariants are, sim-
ply put, numbers which stay invariant before and after a bifurcation, when considering 1-
parameter families of periodic orbits for Hamiltonian systems. For instance, this family may
be parametrized by the energy of the system, i.e., it is of the form t \mapsto \rightarrow \gamma t where the energy
of the periodic orbit \gamma t is t. If at t = t0 the orbit \gamma t0 becomes degenerate, it may undergo
bifurcation, i.e., new families of orbits may appear or disappear. Before bifurcation (i.e., for
t = t0  - \epsilon for small \epsilon ) and after bifurcation (i.e., t = t0 + \epsilon ), we have a finite collection of
nondegenerate periodic orbits bifurcating from \gamma t0 ; see Figure 2 for a sketch. The associated
Floer numerical invariant is then

\chi  - =
\sum 
i

( - 1)CZbef
i = \chi + =

\sum 
j

( - 1)CZaft
j ,

where the sum on the left-hand side runs over (good) periodic orbits before bifurcation, and
the sum on the right-hand side runs over (good) periodic orbits after bifurcation; CZbef

i ,CZaft
j

denote the before/after Conley--Zehnder indices. These Floer numerical invariants can also
be recast as a count of the number of before/after orbits with suitable signs depending on
the Floquet multipliers of each orbit (see section 3 below). As above, the invariance of this

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited.
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energy
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bifurcation
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bef bef

aft aft aft
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2 3
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   orbit 

x

Figure 2. Given a bifurcation, the Floer numerical invariants (or Floer numbers), given by counting the
parities of the before/after Conley--Zehnder indices, stay invariant.

number means that the count of orbits agrees before and after bifurcation, i.e., if \chi \pm is the
before/after count, then \chi + = \chi  - . We make this fact explicit in the form of a theorem.

Theorem 2.1 (invariance). Let H :M \rightarrow R be a Hamiltonian on some phase-space M , and
t \mapsto \rightarrow \gamma t a family of periodic orbits with energy H(\gamma t) = t for t\in ( - \epsilon , \epsilon ), for small \epsilon > 0. Assume
\gamma t is nondegenerate for t \not = 0, and \gamma 0 is degenerate. Assume also that the level set H - 1(0) is
regular. For t < 0, let \scrP bef

t denote the (finite) set of good and nondegenerate periodic orbits

which bifurcate from \gamma 0, with energy t. The set \scrP aft
s for s > 0 is similarly defined. Then\sum 

\gamma \in \scrP bef
t

( - 1)CZ(\gamma ) =
\sum 

\gamma \in \scrP aft
s

( - 1)CZ(\gamma )

for every t < 0, s > 0, where CZ(\gamma ) is the Conley--Zehnder index of \gamma . The common value is
called the Floer number, or the SFT-Euler characteristic, of \gamma 0.

This invariance then implies that these numbers can be used as a practical test for the
algorithm used: if this number agrees before and after a bifurcation (as it should), one can rest
assured. If the numbers do not agree, one knows that there is at least one orbit missing. The
fact that these numbers are invariant is nontrivial and follows from results in Floer theory.
However, if one accepts this as a fact, then this can be used in practice. Of course, one
needs a simple way of computing such numbers. We will provide a more detailed guideline
in section 3. The formula for computing these numbers depends on the dimension, as this
determines the number of Floquet multipliers. For example, in dimension six, the dimension
relevant for the spatial three-body problem, the invariant \chi = \chi  - = \chi + of a periodic orbit x
of a time-independent Hamiltonian system (the SFT-Euler characteristic or Floer number as
above), coincides with

\chi SFT (x) =\#\{ \scrH  -  - ,\scrE \scrH  - ,\scrE 2 , good \scrH ++ ,\scrN \} 
 - \#\{ \scrH  - +, good \scrE \scrH +\} .

Here, \scrH \pm ,\scrE ,\scrN stand for positive/negative hyperbolic, elliptic, and nonreal orbit, and the
above count is over orbits appearing either before or after bifurcation. We have also ignored

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited.
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3290 U. FRAUENFELDER, D. KOH, AND A. MORENO

the eigenvalue 1 (which appears twice) and considered the remaining eigenvalues (two pairs of
them, which explains the notation). The ``good"" \scrE \scrH +/\scrH ++ orbits are those which respectively
are not even covers of \scrE \scrH  - /\scrH  - + ones. The four-dimensional case is simply given by

\chi SFT (x) =\#\{ good \scrH +\}  - \#\{ \scrE , \scrH  - \} ,

where the good \scrH + orbits are those which are not even covers of \scrH  - ones. In short, the
invariant is easily computable from the knowledge of the multipliers. It is important to note
that there is one such number for each cover of the orbit, and one should consider the one
corresponding to the bifurcating orbit. For instance, if x has a Floquet multiplier that is a
kth root of unit, then the bifurcating orbit is the k-fold cover xk, and so the relevant number
is \chi SFT (x

k). The nearby bifurcating orbits that need to be counted will be close to xk as
loops, but not to x, so they will have periods which are close to k times the period of x. See
Appendix B for concrete examples.

In the case where the orbit is symmetric, we will also consider the real Euler characteristic.
Note that symmetric orbits can be thought of as orbits, but also as Hamiltonian chords (i.e.,
not necessarily closed trajectories), by simply looking at half of the orbit, which starts and ends
at the symmetry locus. This invariant is then a count of chords before and after bifurcation,
rather than of orbits, again with suitable signs. It has the exact same invariance property as
the SFT-Euler characteristic, i.e., \chi +

L = \chi  - 
L , where \chi 

\pm 
L denotes the before/after count. The real

Euler characteristic then serves as a further test, as it can detect when the orbit bifurcates as
a chord, even when it does not bifurcate as a periodic orbit. Its definition is left for section 4.

Global topological methods. In practice, one would like to compare the orbits at hand
with those that have been found before. The natural notion of equivalence of two orbits is to
say that they are qualitatively the same, provided one can find a path of orbits joining them
which is regular, i.e., it does not undergo bifurcation (the parameter for the path is usually
the energy or, e.g., a mass parameter). For this purpose, we will illustrate the use of global
topological methods, via the GIT sequence introduced in [10] by the first and third authors.
This is a sequence of three spaces (``top,"" ``middle,"" and ``base"") consisting of equivalence
classes of symplectic matrices and concrete maps between them, which are also explicitly
computable. A closed orbit of an arbitrary Hamiltonian system induces a point in the ``base""
and ``middle"" spaces of this sequence. The ``base"" (for n= 2) is a copy of the plane R2, split
into components labelled according to the Floquet multipliers of the orbit; see Figure 1. The
resulting diagram, as we learned after rediscovering it in the context of the GIT sequence,
was originally introduced by Broucke in [2] (see also Howard and MacKay [15] for higher-
dimensional versions).

If the orbit is symmetric, and we choose one of its symmetric points, then there is an
associated point in the ``top"" space. A family of orbits induces a path in the corresponding
space of the sequence. These spaces also contain subsets corresponding to bifurcations of
orbits (which look like a pencil of lines tangent to a parabola; see Figure 3). A family of
orbits which bifurcates induces a path in the GIT spaces which crosses the component of the
bifurcation loci corresponding to the type of bifurcation. Therefore, if two orbits correspond
to points that lie in different regular components (each of the seven of Figure 1), there is no
regular family that joins them. In other words, the topology of these spaces can be used as an
obstruction to the existence of regular families of orbits, as well as the study of bifurcations,

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited.
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Γd

Γ1Γ-1

Γd

Γ1Γ-1

Γd

Γ1Γ-1

bifurcation
HE HE2E

period-doubling
  bifurcation

Figure 3. The picture shows R2, the base of the GIT sequence for n = 2. The parabola \Gamma d = \{ y = 1/4x2\} 
corresponds to matrices with double eigenvalues. The locus of matrices with a fixed eigenvalue is a line tangent
to \Gamma d. On the left, we have the elliptic pencil of lines \{ \Gamma \theta , \theta \in [0,2\pi )\} , where \Gamma \theta has slope cos(2\pi \theta ) and
corresponds to the eigenvalue e2\pi i\theta . On the right, we have the complete pencil, also containing the hyperbolic
pencil \{ \Gamma \lambda : \lambda \in R\setminus [ - 1,1]\} , where \Gamma \lambda has slope a(\lambda ) = 1

2
(\lambda + 1

\lambda 
) and corresponds to hyperbolic eigenvalue

\lambda . A family of orbits bifurcating induces a family of monodromy matrices whose eigenvalues cross 1, and
hence the family is seen as a path in R2 which crosses \Gamma 1; we sketch such a path in the bottom panel, where
one eigenvalue pair goes from elliptic to positive hyperbolic, while the other stays elliptic. We also sketch an
example of a period-doubling bifurcation, where one eigenvalue pair goes from elliptic to negative hyperbolic.

Similarly, a k-fold bifurcation, where \lambda = e2\pi i l
k (with \lambda k = 1) is being crossed, induces a path crossing \Gamma l/k for

some l. We will plot numerical examples in section 6 below.

in a concrete, visual manner. What is more, one can refine the obstructions provided by the
bifurcation loci by attaching the B-signature to the point corresponding to an orbit. Even
if two orbits induce points lying in the same regular component of the plane, there is no
regular family between them if they have different pairs of sign labels. See Appendix A for a
mathematical treatment of the GIT sequence.

Data base. The topological approach also serves the purpose of providing a data base for
orbits in the form of a cloud of dots in the plane with labels attached. The ``data point""
that is then associated to a symmetric orbit with monodromy matrix MA,B,C is the tuple
(p = (tr(A),det(A)), \epsilon = (\epsilon 1, \epsilon 2)), which is independent of all choices, except perhaps the
choice of symmetric point at which we linearize (here, \epsilon is empty for the complex or double-
eigenvalue case). For a given orbit, the data stored is relatively cheap, which makes the
approach resource-efficient.

Nonsymmetric orbits and Krein theory. In practice, it may not be apparent whether a
given orbit is symmetric. However, in order to refine the data proved by the point p, we can
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still appeal to classical Krein theory, as proposed by Krein [19, 20, 21, 22] and rediscovered
by Moser [23], which associates a sign only to the elliptic eigenvalues. It turns out that in the
elliptic case, the notion of B-signature coincides with the more classical one of Krein signature;
see [10]. In the case when the orbit is not symmetric, one may still compute the associated
point p= (tr(A),det(A)) via the expressions

det(A) =
a

4
 - 1

2
, tr(A) =

b

2
,

where, if \lambda p
1, \lambda 

p
2, \lambda 

s
1, \lambda 

s
2 are the eigenvalues of M (satisfying \lambda s

1\lambda 
s
2 = \lambda p

1\lambda 
p
2 = 1), then a, b are

given by the symmetric polynomials

a= \lambda p
1\lambda 

s
1 + \lambda p

1\lambda 
s
2 + \lambda p

2\lambda 
s
1 + \lambda p

2\lambda 
s
2 + 2

and

b= \lambda p
1 + \lambda p

2 + \lambda s
1 + \lambda s

2 = tr(M).

Note that these expressions can be computed directly from the eigenvalues of M without need
of conjugating M to be of the form MA,B,C . If one or both pairs of the eigenvalues are elliptic
(and distinct), i.e., p lies in a region of Figure 1 with at least one \scrE label on it, we attach a
sign to each of them as follows. We first complexify, i.e., we now work over C. Consider the
matrix

G= - iJ =

\biggl( 
0  - iId
iId 0

\biggr) 
which we think of as acting on C4 by left-multiplication (each block is 2\times 2). Let \lambda = ei\theta , \lambda =
e - i\theta be an elliptic pair of eigenvalues of M , with im(\lambda )> 0. Given v \in C4 an eigenvector for
\lambda , the Krein sign of \lambda is

\kappa (\lambda ) = sign(vtGv).

It is easy to check that vtGv is a nonzero real number, whose sign is independent of v.5 We
have the property \kappa (\lambda ) = - \kappa (\lambda ).

3. The SFT-Euler characteristic of a periodic orbit. The SFT-Euler characteristic of a
closed orbit can be defined in any dimension, as the Euler characteristic of its so-called local
Floer homology (which we will not treat here). If the orbit is degenerate and good (i.e., not an
even multiple cover of a negative hyperbolic orbit), then this invariant is \pm 1, depending on the
parity of its so-called Conley--Zehnder index; if it is nondegenerate and bad, it is zero (we shall
not need the definition of the Conley--Zehnder index, but the interested reader can consult,
e.g., [11]). The interesting case is when it is degenerate, and hence may undergo bifurcation. If
one adds a small perturbation, it might bifurcate into a finite collection of other nondegenerate
orbits. One then defines the SFT-Euler characteristic as the number of good orbits with even
Conley--Zehnder index, minus the number of good orbits with odd Conley--Zehnder index,
where the orbits are taken among the orbits that appear after perturbation. The remarkable
fact is that this number is independent of the perturbation. In particular, it remains invariant
before and after a bifurcation. In what follows, we shall explain this in more concrete terms,
in dimensions four and six.

5Indeed, since \lambda is simple, any other vector is of the form w= \mu \cdot v with \mu \not = 0, and so wtGw= | \mu | 2vtGv.
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NUMERICAL INVARIANTS, GIT QUOTIENTS, BIFURCATIONS 3293

3.1. The four-dimensional case. In the four-dimensional case, the reduced monodromy
matrix M is a 2 \times 2-matrix. Since it is symplectic, its determinant is 1, and therefore its
spectrum is completely determined by its trace. The trace of the reduced monodromy matrix
can as well be obtained from the trace of the nonreduced monodromy matrix \widetilde M by the formula

tr(M) = tr(\widetilde M) - 2.

We distinguish the following cases.

Negative hyperbolic case. In this case,

tr(M)\leq  - 2.

If tr(M) <  - 2, the spectrum of M contains two negative real eigenvalues which are
inverse to each other. If tr(M) =  - 2, then the only eigenvalue of M is  - 1 having
algebraic multiplicity two.

Elliptic case. In this case,

 - 2< tr(M)< 2.

The spectrum of M contains two nonreal eigenvalues on the unit complex circle which
are inverse to each other.

Degenerate case. In this case,

tr(M) = 2.

The spectrum of M only contains 1.
Positive hyperbolic case. In this case,

tr(M)> 2.

The spectrum of M contains two positive real eigenvalues different from 1 which are
inverse to each other.

We can now explain the parity of the Conley--Zehnder index, which is, roughly speaking, a
rotation number associated to M and its relationship to good/bad orbits. In the negative
hyperbolic as well as the elliptic case the parity of the Conley--Zehnder index is odd, while it
is even for the positive hyperbolic case. A bifurcation occurs in the degenerate case, and we
do not define the parity of the Conley--Zehnder index. To define the SFT-Euler characteristic,
we additionally need the distinction of periodic orbits into good and bad ones. In the four-
dimensional case, periodic orbits whose Conley--Zehnder index has odd parity are always
good, i.e., negative hyperbolic and elliptic orbits are always good. On the other hand, positive
hyperbolic ones can be bad. To explain what this means, we need to recall that a periodic
orbit gives rise to multiple covers of itself. The monodromy matrix of the k-fold cover is then
Mk, and if \lambda is an eigenvalue of M , then \lambda k is an eigenvalue of Mk. In particular, if Mk is
negative hyperbolic or elliptic, the same is true for M . On the other hand, nondegenerate
even covers of negative hyperbolic ones are positive hyperbolic. If a positive hyperbolic orbit
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3294 U. FRAUENFELDER, D. KOH, AND A. MORENO

is an even cover of a negative hyperbolic one, it is called bad. Therefore, in dimension four,
the SFT-Euler characteristic of an orbit x is defined by

\chi \mathrm{S}\mathrm{F}\mathrm{T}(x) =\#\{ good orbits with even CZ-index\} 
 - \#\{ orbits with odd CZ-index\} 

=\#\{ good positive hyperbolic orbits\} 
 - \#\{ elliptic and negative hyperbolic orbits\} .

That the SFT-Euler characteristic before and after a bifurcation does not change follows from
the invariance of local Floer homology. In Appendix B, we explicitly check this for generic
and some nongeneric examples.

3.2. The six-dimensional case. In the six-dimensional case, the reduced monodromy
matrix M is a 4\times 4-matrix. Since it is symplectic, its characteristic polynomial

p(x) = x4 + c3x
3 + c2x

2 + c1x+ 1

is a palindrome, i.e., c1 = c3. In particular, there exists a quadratic matrix

q(y) = y2 + b1y+ b0

such that

p(x) = x2q(x+ 1
x).

Let \mu 1 and \mu 2 be the roots of the quadratic polynomial q. Since the polynomial q is a real
polynomial, its roots are both real or complex conjugate to each other. We now distinguish
several cases with the help of the roots of q.

Nonreal case (\bfscrN ) The two roots \mu 1 and \mu 2 are not real. In this case, the eigenvalues of
the monodromy matrix M are neither real nor lie on the unit circle. They appear as
a quadruple (\lambda , 1\lambda , \lambda ,

1
\lambda 
).

The real case has to be subdivided into several subcases. If \mu 1 and \mu 2 are real and distinct,
then maybe after a symplectic change of coordinates the reduced monodromy matrix splits as

M =

\biggl( 
M1 0
0 M2

\biggr) 
,

where M1 and M2 are symplectic 2\times 2-matrices satisfying

tr(M1) = \mu 1, tr(M2) = \mu 2.

The roots \mu 1 and \mu 2 hence determine if M1, respectively, M2 is elliptic, negative hyperbolic,
positive hyperbolic, or degenerate. In the real case we order the roots such that

\mu 1 \leq \mu 2.
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Doubly negative hyperbolic case \bfscrH  -  - . In this case, we have

\mu 1 \leq  - 2, \mu 2 \leq  - 2.

Elliptic/negative hyperbolic case \bfscrE \bfscrH  - . In this case, we have

\mu 1 \leq  - 2,  - 2<\mu 2 < 2.

Negative/positive hyperbolic case \bfscrH  - +. In this case, we have

\mu 1 \leq  - 2, \mu 2 > 2.

Doubly elliptic case \bfscrE \bftwo . In this case, we have

 - 2<\mu 1 < 2,  - 2<\mu 2 < 2.

Elliptic/positive hyperbolic case \bfscrE \bfscrH +. In this case, we have

 - 2<\mu 1 < 2, \mu 2 > 2.

Doubly positive hyperbolic case \bfscrH ++. In this case, we have

\mu 1 > 2, \mu 2 > 2.

Degenerate case \bfscrD . In this case, we have \mu 1 = 2 or \mu 2 = 2.
The parity of the Conley--Zehnder index is additive. For example, since the parity of the

Conley--Zehnder index in the elliptic case is odd and in the positive hyperbolic case is even,
it follows that in the \scrE \scrH +-case it is odd again. The following table displays the parity in the
various cases.

Type Parity of Conley--Zehnder index

\scrH  -  - even

\scrE \scrH  - even

\scrH  - + odd

\scrE 2 even

\scrE \scrH + odd

\scrH ++ even

\scrN even

The only periodic orbits which can be bad are the ones of \scrE \scrH + and \scrH ++ type. Namely a
periodic orbit of \scrE \scrH + type is bad if it is an even cover of one of \scrE \scrH  - type. Similarly, a
periodic orbit of \scrH ++ type is bad if it is an even cover of an \scrH  - + orbit. Otherwise orbits
are good. For example, if an \scrH ++ orbit is an even cover of a \scrH  -  - orbit, it is good. The
SFT-Euler characteristic of the orbit x is now

\chi SFT (x) =\#\{ good orbits with even CZ-index\} 
 - \#\{ good orbits with odd CZ-index\} 
=\#\{ \scrH  -  - ,\scrE \scrH  - ,\scrE 2 , good \scrH ++ ,\scrN \} 

 - \#\{ \scrH  - +, good \scrE \scrH +\} .
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3296 U. FRAUENFELDER, D. KOH, AND A. MORENO

4. The real Euler characteristic of a symmetric orbit. In this section, we focus on the
particular case of symmetric orbits, i.e., orbits that are invariant under an antisymplectic
involution which preserves the Hamiltonian as defined in the introduction. We will follow the
exposition of [12], where the H\"ormander index is introduced.

A symmetric periodic x can be seen both as a periodic orbit, as well as a chord between
the Lagrangian fixed-point locus of the involution. Therefore, it has a Conley--Zehnder index
\mu CZ(x) and a Lagrangian Maslov index \mu L(x), which is a half -integer, i.e., it takes values in
1
2Z (again, its definition will not be needed but can be found, e.g., in [24]). The difference of
these two indices, as introduced in [12], is the H\"ormander index

s(x) = \mu CZ(x) - \mu L(x)\in 
1

2
Z,

also a half-integer. One can use this index to detect when x bifurcates as a chord, even when
it doesn't bifurcate as an orbit; we will explain this in the next section via concrete examples.

We note that the iterates of a symmetric periodic orbit xk for k \in N are symmetric orbits
as well. We say that a symmetric periodic orbit is nondegenerate if for any k \in N we have
det(\Phi k  - I) \not = 0, where \Phi is the monodromy matrix of x, i.e., 1 is not an eigenvalue of any
iterate of \Phi . Moreover, the Chebyshev polynomials of the first kind are recursively defined by

T0(x) = 1,

T1(x) = x,

Tk+1(x) = 2xTk(x) - Tk - 1(x).

The Chebyshev polynomials of the second kind are similarly defined by

U0(x) = 1,

U1(x) = 2x,

Uk+1(x) = 2xUk(x) - Uk - 1(x).

The following gives a formula for computing the H\"ormander index of the iterates of a sym-
metric orbit in terms of the monodromy matrix, which in particular is easy to implement
numerically and does not make use of the definition of the Conley--Zehnder index or the
Lagrangian Maslov index.

Theorem 4.1 (see [12]). Let x be a nondegenerate, symmetric periodic orbit with a mon-
odromy matrix

M =MA,B,C =

\biggl( 
A B
C AT

\biggr) 
,

satisfying (2) given in the introduction. Then the H\"ormander indices of its iterates are given
by

s(xk) =
1

2
sign

\bigl( 
(Id - Tk(A))Uk - 1(A) - 1C - 1

\bigr) 
,(4)

k \in N. For k= 1, we have in particular that
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s(x) =
1

2
sign

\bigl( 
(Id - A)C - 1

\bigr) 
.(5)

Here, sign denotes the signature of a matrix (the number of positive eigenvalues, minus
the number of negative eigenvalues). We have also used the fact that C is invertible if x is
nondegenerate [12, Lemma 3.2].

Real Euler characteristic. Similar to the Conley--Zehnder index (which induces the SFT-
Euler characteristic), one can consider the Euler characteristic of the so-called local Lagrangian
Floer homology of a symmetric orbit x, when viewed as a chord. We call the resulting quantity
the real Euler characteristic \chi L(x). More concretely, this works as follows. Before or after a
bifurcation, one obtains a collection of nondegenerate symmetric orbits for which one computes
the parity of the Maslov index \mu L(x). By this, if \mu L(x) =

1
2mL(x), we mean the parity of

mL(x)\in Z; note that mL(x) is even if and only if \mu L(x) is an integer. Note that, in practice,
without needing to know the definition of this index, its parity can be determined from the
following:

\bullet the monodromy matrix;
\bullet the formula \mu L(x) = \mu CZ(x) - s(x);
\bullet formula (4) (or (5)) of Theorem 4.1, which in particular gives the parity of s;
\bullet the table above giving the parity of the CZ-index (which is always an integer) in terms

of the eigenvalue classification of the monodromy matrix.
The real Euler characteristic \chi L(x) is then defined as

\chi L(x) =
\sum 
j

( - 1)\mu L(xj) =
\sum 
i

( - 1)\mu CZ(xj)( - 1) - s(xj) =
\sum 
i

imL(xj) \in C,

where the sum runs over the collection xj of nondegenerate chords arising after perturbation
of x. Note that \chi L(x) is complex-valued by definition. Its invariance under bifurcation follows
from invariance of the local Lagrangian Floer homology of x.

5. Symmetric period-doubling. In this section, we discuss period-doubling of symmetric
orbits in dimension four, corresponding to the case where two eigenvalues collide at  - 1. This
will illustrate the use of the invariants and Krein-type signatures that we have discussed. While
the discussion is general, we will illustrate it in concrete numerical examples in section 6.

Symmetric period-doubling. We study the case corresponding to [1, p. 599] but in the
symmetric case. Consider a simple symmetric periodic orbit x which intersects the Lagrangian
fixed-point locus at time t = 0 and t = 1/2 and which belongs to a family whose reduced
monodromy matrix goes from elliptic to negative hyperbolic; see Figure 4(A). As a simple
orbit, there is no bifurcation since there is no eigenvalue 1 in the reduced monodromy matrix.
However, we can interpret this orbit as a chord from the Lagrangian to itself, where x(0)
happens to agree with x(1); now, as a chord, it might bifurcate.6 If this happens, we can
apply the symmetry again to the red chord in Figures 4(B) and (C) to obtain the green
chord in the same figure. So, two chords bifurcate. This is compatible with the real Euler
characteristic. Indeed, the Lagrangian Maslov index of x before and after bifurcation (thought

6Such a chord bifurcation takes place if and only if the Lagrangian Maslov index jumps, which happens if
and only if the H\"ormander index jumps. See section 4 for definitions.
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L L L
t=0 t=1/2

A B C

symmetric points

symmetric points fake points symmetric pointsfake points

Figure 4. (A) A simple symmetric orbit; we indicate the intersection with L=Fix(\rho ) (i.e., the symmetric
points) with right angles. (B) A period-doubling bifurcation, only intersecting L near x(0) (we also indicate the
``fake"" intersection points near x(1/2), at which the new orbit misses L). (C) The alternative version of (B),
intersecting L only near x(1/2).

of as a chord) differ by one. The green and red chords have the same Maslov index, say k,
as they are symmetric to each other, and this coincides with that of x before bifurcation.
This makes sure that the real Euler characteristic stays invariant. Indeed, before bifurcation
we have \mu L(x) = k and so \chi L(x) = ( - 1)k; and after bifurcation, \mu L(x) = k + 1, so \chi L(x) =
2( - 1)k + ( - 1)k+1 = 2( - 1)k  - ( - 1)k = ( - 1)k, which explicitly shows invariance. Note that
travelling through the red chord and then through the green chord gives another symmetric
periodic orbit of double period (as expected in a period-doubling bifurcation, in which the
double cover x2 of x bifurcates).

This can be understood within the framework provided by the GIT sequence (see Appen-
dix A). All monodromy matrices for different base-points along a periodic orbit are symplec-
tically conjugated,7 and hence the two reduced monodromy matrices of x at t= 0 and t= 1/2
induce the same element in the GIT quotient Sp(2)//Sp(2). However, in Sp(2)\scrI //GL1(R)
they differ. Therefore we can apply the B-signature that we discussed above, to decide in
practice whether the period-doubling bifurcations happen at t = 0 or t = 1/2. Namely, the
B-signature jumps either at t = 0 or at t = 1/2. The period-doubling bifurcations will be
symmetric at the point where the B-sign did not jump. In particular, the B-signs of the neg-
ative hyperbolic critical point at the two different symmetric points of x have to differ after
bifurcation, precisely since only one of the points of the double cover can be symmetric, while
the other one is fake symmetric. This is illustrated in section 6 with a numerical example, in
the Jupiter-Europa system.

6. Numerical Analysis. In this section, we give examples of orbit bifurcations found nu-
merically and illustrate the use of the various invariants discussed above. The circular re-
stricted three-body problem (CRTBP) shown in Figure 5 describes the motion of an infinites-
imal mass with two primaries (e.g., Jupiter and Europa) under mutual gravitational attraction.
A dimensionless rotating coordinate system (XR-Y R-ZR) is defined at the barycenter of the
two primaries with respect to the inertial frame (XI -Y I -ZI), rotating about ZI with true
anomaly \nu . The X-axis of the rotating coordinate system is aligned with the vector from the

7Indeed, if T is the period of the orbit x, and \Psi t is the Hamiltonian flow, the monodromy matrix at x(t)
is Dx(t)\Psi T =Dx(0)\Psi t \circ Dx(0)\Psi T \circ Dx(t)\Psi  - t =Dx(0)\Psi t \circ Dx(0)\Psi T \circ (Dx(0)\Psi t)

 - 1.
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NUMERICAL INVARIANTS, GIT QUOTIENTS, BIFURCATIONS 3299

Figure 5. A schematic CRTBP configuration showing x1 =m1, x2 =m2, and two of the libration points in
a nondimensional rotating coordinate system XR-Y R-ZR are in the out-of-plane direction.

larger primary body (m1) to the second primary body (m2). The Z-axis is perpendicular to
the primaries' orbital plane, and the Y -axis completes the right-handed coordinate system.
The position vector r points from the barycenter to the spacecraft in the rotating frame. The
nondimensional mass of the second primary is defined as

\mu =
m2

m1 +m2
=m2,(6)

and then the larger body's mass is

1 - \mu =
m1

m1 +m2
=m1.(7)

Define the unit of time so that the mean motion of the primary orbit is n= 1 (see Szebehely
[25]). Then the equations of motion for the infinitesimal mass are written as

\"x= 2 \.y+ x - (1 - \mu )
x+ \mu 

r31
 - \mu 

x - 1 + \mu 

r32
,

\"y= - 2 \.x+ y - (1 - \mu )
y

r31
 - \mu 

y

r32
,

\"z = - (1 - \mu )
z

r31
 - \mu 

z

r32
,

(8)

where r21 = (x+ \mu )2 + y2 + z2, r22 = (x - 1 + \mu )2 + y2 + z2. No closed form general solution is
possible for the model.

The Hamiltonian is given by

H : T \ast R3\setminus \{ M,P\} = (R3 \setminus \{ M,P\} )\times R3 \rightarrow R,

H(q, p) =
1

2
\| p\| 2  - \mu 

\| q+M\| 
 - 1 - \mu 

\| q+ P\| 
+ p1q2  - p2q1,

where q = (q1, q2, q3) is the position of a satellite, p = (p1, p2, p3) is its momentum, the mass
of the secondary body m2 is fixed at M = (1 - \mu ,0,0), and the mass of the primary body m1
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is fixed at P = ( - \mu ,0,0). The Jacobi constant c is then defined by the convention H \equiv  - c/2.
The Hamiltonian H is invariant under the antisymplectic involutions

\rho : (q1, q2, q3, p1, p2, p3) \mapsto \rightarrow (q1, - q2, - q3, - p1, p2, p3),

\widetilde \rho : (q1, q2, q3, p1, p2, p3) \mapsto \rightarrow (q1, - q2, q3, - p1, p2, - p3),

with corresponding Lagrangian fixed-point loci given by

L=Fix(\rho ) = \{ q2 = q3 = p1 = 0\} ,

\widetilde L=Fix(\widetilde \rho ) = \{ q2 = p1 = p3 = 0\} .

We will look at two relevant systems: the Jupiter-Europa system, which corresponds
to CRTBP with mass ratio \mu = 2.5266448850435e - 05, and the Saturn-Enceladus system,
corresponding to \mu = 1.9002485658670e - 07. We will then study orbits symmetric under these
two symmetries, for specific cases of parameter \mu . The numerical method used to find orbits
is the cell-mapping method, as discussed at length in [16].

Remark 6.1. In what follows, the numerics were carried out in long format in MATLAB,
which is higher precision than what is shown here, where for readability we have truncated to
six digits after the decimal. The monodromy matrices are computed using a standard library
function in MATLAB (ode45). The figures representing a moon at the origin are to scale.
The coordinates used for points are the Lagrangian ones (q1, q2, q3, \.q1, \.q2, \.q3), and those for
the monodromy matrices are the Hamiltonian ones (q1, p2, q3, p1, - q2, p3). See Appendix C for
more details.

Jupiter-Europa system: Period-doubling of prograde orbits (H2 family) [16]. As the Jacobi
constant c decreases, the H2 family orbit depicted in Figure 6 undergoes period-doubling, i.e.,
a spatial prograde orbit of double the period appears. We denote by \gamma bef and \gamma aft the simple
orbit before and after the bifurcation and by \beta the orbit with double period appearing after
bifurcation. This is a doubly symmetric period-doubling, where all orbits (i.e., \gamma bef , \gamma aft, and
\beta ) are invariant under \rho and \widetilde \rho . Here, \gamma bef is of type \scrE 2, and \gamma aft is of type \scrE \scrH  - . We have,
for each orbit, two \rho -symmetric points, where the orbit intersects L; similarly, we have two\widetilde \rho -symmetric ones, where the orbit intersects \widetilde L.

As shown in Figure 7, the symmetric points for \gamma bef are numerically found to be

P1(\gamma bef ) = (1.016776,0,0,0,0.0130372,0),

P2(\gamma bef ) = (0.997370,0,0,0, - 0.125493,0).

Note that P1(\gamma bef ), P2(\gamma bef ) \in L \cap \widetilde L, i.e., they are both \rho -symmetric and \widetilde \rho -symmetric. The
(nonreduced) monodromy matrix of \gamma bef at P1(\gamma bef ) is numerically computed to be
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NUMERICAL INVARIANTS, GIT QUOTIENTS, BIFURCATIONS 3301

Figure 6. The prograde planar orbit \gamma bef (before bifurcation) is the dotted orange line; the Jacobi constant
is c= 3.00357414, and its period is T0 = 2.1215. The spatial orbit \beta of double period (after bifurcation) is the
blue one; the Jacobi constant is now c = 3.003571774, with period T1 = 4.245 \approx 2T0 (up to small error). We
call this the ``snitch"" configuration.

P(γ )2 bef

P(γ )bef1

Figure 7. The two doubly symmetric points P1(\gamma bef ), P2(\gamma bef ) of the planar prograde orbit \gamma bef .

M1(\gamma bef ) =

\left(       
2.930464 1.567115 0 0.416572  - 0.859311 0
 - 3.982191  - 2.232667 0  - 0.859311 1.772599 0

0 0  - 0.999948 0 0 0.000320
17.398921 6.866933 0 2.930464  - 3.982191 0
6.866933 2.056350 0 1.567115  - 2.232667 0

0 0  - 0.326763 0 0  - 0.999948

\right)       .
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3302 U. FRAUENFELDER, D. KOH, AND A. MORENO

Up to small numerical rounding errors, M1(\gamma bef ) is of the form MA,B,C . The eigenvalues
different from 1 (which always has multiplicity 2), denoted \lambda p(\gamma bef ) for planar and \lambda s(\gamma bef )
for spatial, are

\lambda p(\gamma bef ) = - 0.302203 + i0.953244, \lambda p(\gamma bef ) = - 0.302203 - i0.953244,

\lambda s(\gamma bef ) = - 0.999948 + i0.010225, \lambda s(\gamma bef ) = - 0.999948 - i0.010225.

Both come in elliptic conjugate pairs. Similarly, the monodromy matrix of \gamma bef at P2(\gamma bef ) is

M2(\gamma bef )=

\left(       
 - 286.401882  - 9.995795 0 0.342004  - 9.788843 0
8226.036901 287.100358 0  - 9.788864 280.176894 0

0 0  - 0.999948 0 0 0.001776
266456.859528 9329.998723 0  - 286.402124 8226.024432 0
9329.998751 326.685501 0  - 9.995804 287.099922 0

0 0  - 0.058878 0 0  - 0.999948

\right)       .

Again one sees that up to small errors, this is of the form MA,B,C . By construction, M2(\gamma bef )
is symplectically conjugated to M1(\gamma bef ), and hence their eigenvalues need agree (we have
checked that this is indeed the case, again up to small error).

After bifurcation, the symmetric points of \gamma aft are

P1(\gamma aft) = (1.016787,0,0,0,0.013014,0),

P2(\gamma aft) = (0.997377,0,0,0, - 0.125701,0).

Again, P1(\gamma aft), P2(\gamma aft)\in L\cap \widetilde L are doubly symmetric. The nonreduced monodromy matrix
of \gamma aft at P1(\gamma aft) is

M1(\gamma aft) =

\left(       
2.921879 1.570836 0 0.412068  - 0.847786 0
 - 3.954059  - 2.231824 0  - 0.847786 1.744227 0

0 0  - 1.000378 0 0  - 0.002449
17.374784 6.880740 0 2.921879  - 3.954059 0
6.880740 2.065818 0 1.570836  - 2.231824 0

0 0  - 0.308948 0 0  - 1.000378

\right)       ,

and that at P2(\gamma aft) is

M2(\gamma aft)=

\left(       
 - 290.249559  - 10.091019 0 0.343062  - 9.857004 0
8368.287012 290.938771 0  - 9.856979 283.215067 0

0 0  - 1.000378 0 0 0.001672
271816.526762 9480.654623 0  - 290.249258 8368.302559 0
9480.654594 330.669844 0  - 10.091008 290.939312 0

0 0 0.452540 0 0  - 1.000378

\right)       .

The eigenvalues of M1(\gamma aft), which up to small error coincide with those of M2(\gamma aft), are

\lambda p(\gamma aft) = - 0.309945 + i0.950755, \lambda p(\gamma aft) = - 0.309945 - i0.950755,
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NUMERICAL INVARIANTS, GIT QUOTIENTS, BIFURCATIONS 3303

Figure 8. The \rho -symmetric points P1(\beta ), P2(\beta ) and the \rho -fake points P3(\beta ), P4(\beta ) of the spatial orbit \beta .
The roles are reversed when \rho is replaced by \~\rho .

Figure 9. The spatial eigenvalues, before and after bifurcation, in two scales.

\lambda s(\gamma aft) = - 0.972874,
1

\lambda s(\gamma aft)
= - 1.027883.

Note that the planar eigenvalues stay elliptic, but the spatial ones are now a negative
hyperbolic pair, as expected in a planar-to-spatial subtle division. The spatial eigenvalues,
i.e., the bifurcating ones, are plotted in Figure 9. Now, as we discussed in the previous section,
bifurcation can happen at only one of the symmetric points of \gamma bef , for one fixed involution.
So how can we tell? Note that it is unclear just by looking at the plot in Figure 8. However,
since in this case we have two symmetries, things become rather interesting.

We can do the same analysis for the orbit \beta as we did for \gamma bef and \gamma aft. The intersections
of \beta with the fixed-point loci are computed via the MATLAB odeset function:
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3304 U. FRAUENFELDER, D. KOH, AND A. MORENO

P1(\beta ) = (0.997372,0,0.000126,0, - 0.125462,0),
P2(\beta ) = (0.997372,0, - 0.000126,0, - 0.125462,0),
P3(\beta ) = (1.016772,0,0,0,0.013029, - 0.001706),
P4(\beta ) = (1.016772,0,0,0,0.013029,0.001706).

If we compute the linearizations at the corresponding points, we obtain

M1(\beta )=

\left(       
 - 395.432864  - 13.811767 17.771296  - 0.211344 6.057227 0.014285
11341.304295 396.130733  - 508.406671 6.057163  - 173.608235  - 0.414298
12.283601 0.426822 0.450370 0.014285  - 0.414300  - 0.004380

862435.117023 30173.612241  - 38842.035995  - 395.434620 11341.21522 12.283685
30173.612275 1055.671763  - 1358.951208  - 13.811828 396.127616 0.426825
 - 38842.035970  - 1358.951205 1749.703885 17.771376  - 508.402659 0.450367

\right)       ,

M2(\beta )=

\left(       
 - 395.431847  - 13.811731  - 17.771251  - 0.211345 6.05724  - 0.014285
11341.356017 396.132542 508.409001 6.057139  - 173.607555 0.414297
 - 12.283564  - 0.426821 0.450372  - 0.014285 0.414301  - 0.004380

862435.117287 30173.612173 38842.036019  - 395.434622 11341.215308  - 12.283680
30173.612368 1055.671764 1358.951212  - 13.811828 396.127619  - 0.426825
38842.035946 1358.951201 1749.703883  - 17.771376 508.402662 0.450367

\right)       ,

M3(\beta ) =

\left(       
3.627485 2.161445 0.112788  - 0.263329 0.530080  - 0.043867
 - 5.494768  - 3.488476  - 0.147292 0.530087  - 1.077505 0.091340
0.635462 0.324308 1.004404 0.043867  - 0.091341  - 0.010501
46.989814 23.776561 0.445743 3.627469  - 5.494827  - 0.635463
23.776552 12.319463 0.124572 2.161436  - 3.488507  - 0.324309
 - 0.445745  - 0.124573 0.657275  - 0.112788 0.147292 1.004404

\right)       ,

M4(\beta ) =

\left(       
3.6274951 2.161448  - 0.112789  - 0.263328 0.530079 0.043867
 - 5.494706  - 3.488442 0.147291 0.530093  - 1.077514  - 0.091339
 - 0.635462  - 0.324308 1.004405  - 0.043867 0.091341  - 0.010501
46.98982 23.776554  - 0.445741 3.627469  - 5.494835 0.635463
23.776556 12.31946  - 0.12457 2.161439  - 3.488517 0.324308
0.445748 0.124574 0.657275 0.112789  - 0.147293 1.004404

\right)       .

Now, M1(\beta ),M2(\beta ) are, up to small error, of the form MA,B,C , whereas M3(\beta ),M4(\beta ) are not
(we have checked this numerically). We then conclude that P1(\beta ), P2(\beta ) are the \rho -symmetric
points, whereas P3(\beta ), P4(\beta ) are \rho -fake ones. However, these matrices implicitly assume the
choice of basis, and we have chosen the basis so that \rho is the standard antisymplectic invo-
lution. The roles are reversed after a change of basis for which \~\rho becomes the standard such
involution (cf. Appendix C). After this change, one sees that P1(\beta ), P2(\beta ) are \widetilde \rho -fake ones, and
P3(\beta ), P4(\beta ) are the \widetilde \rho -symmetric ones. So, from the perspective of \rho , bifurcation happened at
P1(\beta ), P2(\beta ), whereas from the perspective of \~\rho , it happened at P3(\beta ), P4(\beta ). This situation
is an artifact of the fact that the orbit families are doubly symmetric.

The eigenvalues of M1(\beta ) (which agree with those of Mj(\beta ) up to small error for all j)
are the two elliptic conjugate pairs
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side view

over view

side view

over view

Figure 10. Left: The first period-tripling family \gamma 1 after bifurcation. Applying \~\rho , we obtain the family \gamma 2.
Right: The second period-tripling family \gamma 3 after bifurcation. Applying \rho , we obtain its symmetric version \gamma 4.

\lambda p(\beta ) = 0.965396 + i0.260789, \lambda p(\beta ) = 0.965396 - i0.260789,

\lambda s(\beta ) = - 0.819634 + i0.572887, \lambda s(\beta ) = - 0.819634 - i0.572887.

This is, of course, compatible with the general discussion of symmetric period-doubling of
section 5, where the Floer numerical invariants have been used to predict what we have
checked explicitly in this example.

Jupiter-Europa: Period tripling of prograde orbit (H 2 family) [16]. The following is an
example of a period tripling bifurcation of a H2 family orbit \gamma , which again is doubly symmet-
ric; see Figure 10. The 3-fold cover \gamma 3 is of type \scrE 2, and bifurcates into four orbits \gamma 1, . . . , \gamma 4,
related by the symmetries \widetilde \rho (\gamma 1) = \gamma 2, \widetilde \rho (\gamma 3) = \gamma 4, \rho (\gamma 1) = \gamma 3, \rho (\gamma 2) = \gamma 4. The orbits \gamma 1, \gamma 2 are
in \scrE 2 and bifurcate from the symmetric point of \gamma corresponding to \widetilde \rho ; the orbits \gamma 3, \gamma 4 are
in \scrE \scrH + and bifurcate from the symmetric point corresponding to \rho . This is compatible with
the SFT-Euler characteristic: indeed, before bifurcation there is only the 3-fold cover and so
we have \chi SFT (\gamma 

3) = 1. After bifurcation, the contribution of \gamma 1, \gamma 2 is 2, which cancels that
of \gamma 3, \gamma 4, which is  - 2, and we still have the contribution of the 3-fold cover, which is 1. So
we again see that \chi SFT (\gamma 

3) = 1 after bifurcation. This is also compatible with the real Euler
characteristic: none of the \gamma i is symmetric, while \gamma 3 is; therefore \chi L(\gamma 

3) = ( - 1)\mu L(\gamma 3) before
and after.

6.1. Numerical plots in the GIT quotient. In the following, we illustrate the numerical
use of the GIT quotients via numerical plots, where we include B-signature computations.

Snitch configuration. We again consider the snitch configuration in the Jupiter-Europa
system. Figure 11 shows a numerical plot of this period-doubling bifurcation, as seen in the
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3306 U. FRAUENFELDER, D. KOH, AND A. MORENO

Figure 11. GIT plot of the period-doubling bifurcation of the snitch configuration.

base R2 of the GIT sequence, in three different scales. The time parameter is the Jacobi
constant. Red dots correspond to \gamma bef , and blue dots to \gamma aft. The bifurcation takes place
when the period-doubling branch locus separating the doubly elliptic region \scrE 2 and the elliptic-
negative hyperbolic region \scrE \scrH  - is crossed. The plot also contains the B-signatures of the
simple orbit, before and after the bifurcation, which were computed as follows.

The AT -block of M1(\gamma bef ), at P1(\gamma bef ), is given by

AT
1 (\gamma bef ) =

\left(  2.930464  - 3.982191 0
1.567115  - 2.232667 0

0 0  - 0.999948

\right)  .

Its two nontrivial eigenvalues are

\mu 1(\gamma bef ) = - 0.999948, \mu 2(\gamma bef ) = - 0.302203,

ordered so that \mu 1(\gamma bef )<\mu 2(\gamma bef ), with corresponding eigenvectors

v1(P1(\gamma bef )) = (0,0,1), v2(P1(\gamma bef )) = (0.776387,0.630256,0).

Using the B-block of M1(\gamma bef ), given by

B1(\gamma bef ) =

\left(  0.416572  - 0.859311 0
 - 0.859311 1.772599 0

0 0 0.00032

\right)  ,

we simply compute

\epsilon 1(P1(\gamma bef )) = sign(vT1 (P1(\gamma bef )) \cdot B1(\gamma bef ) \cdot v1(P1(\gamma bef ))) = sign(0.00032) =+,

\epsilon 2(P1(\gamma bef )) = sign(vT2 (P1(\gamma bef )) \cdot B1(\gamma bef ) \cdot v2(P1(\gamma bef ))) = sign(0.114256) =+,

and so the B-signature before bifurcation at the symmetric point P1(\gamma bef ) is \epsilon (P1(\gamma bef )) =
(+,+) (as depicted in Figure 11). The same procedure applied to M1(\gamma aft) gives

\mu 1(P1(\gamma aft)) = - 1.00038, \mu 2(P1(\gamma aft)) = - 0.309942,

with corresponding eigenvectors
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NUMERICAL INVARIANTS, GIT QUOTIENTS, BIFURCATIONS 3307

Figure 12. Jupiter-Europa system: A symmetric planar-to-planar period-tripling bifurcation of a distant
retrograde orbit (DRO) family. Top: The planar simple orbit at bifurcation, the DRO, c= 2.9999, T0 = 2.504.
Middle: The planar triple period orbit after bifurcation c\gtrsim 2.9999, T = 7.3\approx 3T0. Bottom: GIT plot, including
B-signs.

v1(P1(\gamma aft)) = (0,0,1), v2(P1(\gamma aft)) = (0.774275,0.632849,0),

and corresponding B-signs

\epsilon 1(P1(\gamma aft)) = sign(vT1 (P1(\gamma aft)) \cdot B1(\gamma aft) \cdot v1(P1(\gamma aft))) = sign( - 0.00245) = - ,

\epsilon 2(P1(\gamma aft)) = sign(vT2 (P1(\gamma aft)) \cdot B1(\gamma aft) \cdot v2(P1(\gamma aft))) = sign(0.114766) =+,
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3308 U. FRAUENFELDER, D. KOH, AND A. MORENO

Figure 13. Jupiter-Europa system: A symmetric planar-to-spatial 5-fold bifurcation of the DRO family.
Top: The planar simple orbit at bifurcation, a DRO in the same family of Figure 12, but with c = 3.0005,
T0 = 1.705. Middle: The spatial 5-fold period orbit after bifurcation, c\gtrsim 3.0005, T = 8.52\approx 5T0. Bottom: GIT
plot, including B-signs.

and so the B-signature after bifurcation at the symmetric point P1(\gamma aft) is \epsilon (P1(\gamma aft)) = ( - ,+)
(also depicted in Figure 11).

We check explicitly in this example the fact, alluded to in the general discussion of sec-
tion 5, that the B-signature at different symmetric points will differ after bifurcation in a
symmetric period-doubling. Indeed, replacing P1 by P2, the eigenvalues of the corresponding

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited.
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2E
2E

HEHE HEHE

Figure 14. Jupiter-Europa system: A symmetric spatial-to-spatial period-doubling bifurcation. Top: The
spatial simple orbit at bifurcation, c = 3.0028, T0 = 4.62. Middle: The spatial period-doubling orbit after
bifurcation, c\gtrsim 3.0028, T = 9.23\approx 2T0. Bottom: GIT plot, including B-signs.

AT -blocks AT
2 (\gamma bef ),A

T
2 (\gamma aft) need respectively coincide with the \mu i(\gamma bef ), \mu i(\gamma aft) for i= 1,2

(checked up to numerical error), and the corresponding eigenvectors are

v1(P2(\gamma bef )) = (0,0,1), v2(P2(\gamma bef )) = ( - 0.999396, - 0.0347591,0).

v1(P2(\gamma aft)) = (0,0,1), v2(P2(\gamma aft)) = ( - 0.9994, - 0.0346264,0),

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited.
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Period doubling orbit (over view)

 doublingbifurcationsimple orbit (over view)

Period doubling orbit (front view)

cafter

Period tripling orbit (front view)

Period tripling orbit (over view)

 triplingbifurcationc=3.001

Figure 15. Saturn-Enceladus system: Two symmetric planar-to-spatial bifurcations of the same family of
planar orbits, one period-doubling and one period-tripling. Top: T1 = 1.2, T2 = 1.6, T3 = 2, respectively. Middle:
T = 4.2\approx 2T3 after bifurcation. Bottom: T = 4.85\approx 3T2 after bifurcation.
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NH
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HHE
HHE

Sp(4)//GL (R)

Sp(4)//Sp(4)

2
I

2

E HE2
E N2

HHE

R2

FIGURE 16. This picture shows the branches of SpI(4)//GL2(R) and Sp(4)//Sp(4),
which are 2-dimensional “sheets” covering the different regions of the plane de-
picted in Figure 1 (we drop one dimension for visualization). The signs on each
branch correspond to B-positivity/negativity of the corresponding eigenvalues
(a priori there are 4 possibilities, since there are two eigenvalues). The first vi-
gnette shows how they come together when crossing from E2 to N . On the sec-
ond, when crossing from H−− to N ; the picture is the same for H++ to N , and
so on. All branches come together to a single point along each of the three sin-
gular points (2, 1), (0,−1), (−2, 1). The map SpI(4)//GL2(R) → Sp(4)//Sp(4)
in the GIT sequence collapses branches together, as shown. For example, B-
positivity/negativity over the hyperbolic eigenspace of matrices of type EH+ is
not invariant under symplectic conjugation, and hence the corresponding branches
come together in Sp(4)//Sp(4).

APPENDIX B. INVARIANCE OF THE SFT-EULER CHARACTERISTIC

While in general invariance of χSFT is non-trivial, for the generic bifurcations in dimension four,
we can check it directly, as follows. Note that the burst bifurcation is not considered, as in this case
the level set of the Hamiltonian is singular, and there is no well-defined Euler characteristic.

B.1. Generic four-dimensional bifurcations. We follow the cases as listed in the book by Abraham
and Marsden [1].

Creation [1, p. 598]: In this case initially there was no periodic orbit at all. Hence χSFT = 0. Af-
ter the creation there is a simple elliptic and positive hyperbolic orbit. In particular, the SFT-Euler

29

Figure 16. This picture shows the branches of Sp\scrI (4)//GL2(R) and Sp(4)//Sp(4), which are two-
dimensional ``sheets"" covering the different regions of the plane depicted in Figure 1 (we drop one dimension
for visualization). The signs on each branch correspond to B-positivity/negativity of the corresponding eigen-
values (a priori there are four possibilities, since there are two eigenvalues). The first vignette shows how
they come together when crossing from \scrE 2 to \scrN . In the second, when crossing from \scrH  -  - to \scrN ; the picture
is the same for \scrH ++ to \scrN , and so on. All branches come together to a single point along each of the three
singular points (2,1), (0, - 1), ( - 2,1). The map Sp\scrI (4)//GL2(R)\rightarrow Sp(4)//Sp(4) in the GIT sequence collapses
branches together, as shown. For example, B-positivity/negativity over the hyperbolic eigenspace of matrices of
type \scrE \scrH + is not invariant under symplectic conjugation, and hence the corresponding branches come together
in Sp(4)//Sp(4).

with associated B-signs

\epsilon 1(P2(\gamma bef )) = sign(vT1 (P2(\gamma bef )) \cdot B2(\gamma bef ) \cdot v1(P2(\gamma bef ))) = sign(0.001776) =+,

\epsilon 2(P2(\gamma bef )) = sign(vT2 (P2(\gamma bef )) \cdot B2(\gamma bef ) \cdot v2(P2(\gamma bef ))) = sign(6.86473\times 10 - 6) =+,

\epsilon 1(P2(\gamma aft)) = sign(vT1 (P2(\gamma aft)) \cdot B2(\gamma aft) \cdot v1(P2(\gamma aft))) = sign(0.001672) =+,

\epsilon 2(P2(\gamma aft)) = sign(vT2 (P2(\gamma aft)) \cdot B2(\gamma aft) \cdot v2(P2(\gamma aft))) = sign(7.10883\times 10 - 6) =+.

We see that the B-signatures are \epsilon (P2(\gamma bef )) = \epsilon (P2(\gamma aft)) = (+,+), and therefore the B-
sign of the eigenvalue \mu 1 (the one undergoing bifurcation) indeed differs after bifurcation for
different choices of symmetric point. As pointed out in the general case, the fact that there is
a sign jump at P1 and not at P2 indicates that P2 gives rise to the \rho -symmetric points, and
not P1, where \rho is the involution which is standard in the current choice of basis.

We conclude this section with a series of plots (see Figures 12--16), including examples in
the Saturn-Enceladus system, some of which are also discussed in [16] and [17].
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3312 U. FRAUENFELDER, D. KOH, AND A. MORENO

Appendix A. GIT sequence. We now explain the notion of the GIT sequence. The rough
idea is to understand the topology of the configuration space consisting of the collection of
all possible pairs (p, \epsilon ) of point p= (det(A), tr(A)) and B-signature \epsilon = (\epsilon 1, \epsilon 2), together with
the structure of the projection (p, \epsilon ) \mapsto \rightarrow p \in R2. This is illustrated in Figure 16, where the
configuration space lies on the top and has different ``branches"" corresponding to different B-
signatures \epsilon , which get collapsed on top of each other under the projection. The plus/minus
labels in the branches of the ``middle"" space of Figure 16 record precisely the Krein sign over
elliptic components. Whenever an orbit is symmetric and we choose a symmetric point, it may
be ``lifted"" uniquely from the ``middle"" space to the top one. One can do this more formally,
as follows. The treatment will assume some mathematical background and is included for
completeness.

Remark A.1 (GIT quotient). To give the definition of the GIT sequence, we need to
introduce some terminology. Recall that if a group G acts on a topological space X, the
geometric quotient X/G is the space of G orbits, i.e., a point in X/G is a set of the form
\{ g \cdot x : x\in X\} \subset X. In general, this space might not be Hausdorff, i.e., there might be points
which cannot be separated from other points. To fix this, one considers the GIT quotient, the
space X//G obtained by identifying two points of X if the closures of their G orbits intersect
(and this space is indeed Hausdorff). We shall consider only GIT quotients in what follows,
although the reader might choose to ignore this technicality.

The GIT sequence consists of the sequence of maps

Sp\scrI (2n)//GLn(R)\rightarrow Sp(2n)//Sp(2n)\rightarrow Mn\times n(R)//GLn(R)\sim =Rn,(9)

given by

[MA,B,C ] \mapsto \rightarrow [[MA,B,C ]] \mapsto \rightarrow [A].

Here, Sp(2n) is the symplectic group, which acts on itself by conjugation, i.e., via A \cdot B =
ABA - 1, and GLn(R) also acts by conjugation on the space of matrices Mn\times n(R). Above we
denote by [MA,B,C ] the equivalence class of the matrix MA,B,C \in Sp\scrI (2n) in the GIT quotient
Sp\scrI (2n)//GLn(R), by [[MA,B,C ]] the equivalence class in the GIT quotient Sp(2n)//Sp(2n),
and by [A] the equivalence class of the first block A \in Mn\times n(R) in Mn\times n(R)//GLn(R). We
have used the fact that mapping the equivalence class of a matrix A \in Mn\times n(R) to the
coefficients of its characteristic polynomial, we get an identification Mn\times n(R)//GLn(R)\sim =Rn;
see [10, Appendix A].

In the examples above, where the spaces consist of matrices, the transition from the
geometric quotient to the GIT quotient basically means, in practice, to ignore Jordan factors,
replacing them with diagonal blocks. The resulting matrices, while not necessarily equivalent
in the original quotient, become so in the GIT one; see [10, Appendix A]. In [10], the cases
n = 1 and n = 2 (for instance, relevant for the planar and the spatial three-body problems,
respectively) are studied in detail. In particular, the topology of these GIT quotients is fully
determined, as well as the maps. In this article, we will make use of the case n= 2, where the
base of the GIT sequence is the plane R2, together with the structure of its bifurcation loci,
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NUMERICAL INVARIANTS, GIT QUOTIENTS, BIFURCATIONS 3313

as shown in Figure 3. The maps of the sequence are also very concrete and therefore simple
to implement, i.e., given by

Sp\scrI (4)//GL2(R)\rightarrow Sp(4)//Sp(4)\rightarrow R2,

[MA,B,C ] \mapsto \rightarrow [[MA,B,C ]] \mapsto \rightarrow (tr(A),det(A)) = p,

which motivates the construction of p that we explained above. Indeed, as follows from [10],
the GIT quotient Sp\scrI (4)//GL2(R) is precisely the configuration space for the pairs (p, \epsilon ).

Appendix B. Invariance of the SFT-Euler characteristic. While in general invariance of
\chi SFT is nontrivial, for the generic bifurcations in dimension four, we can check it directly, as
follows. Note that the burst bifurcation is not considered, as in this case the level set of the
Hamiltonian is singular, and there is no well-defined Euler characteristic.

B.1. Generic four-dimensional bifurcations. We follow the cases as listed in the book by
Abraham and Marsden [1].

Creation [1, p. 598]: In this case initially there is no periodic orbit at all. Hence \chi SFT = 0.
After the creation there is a simple elliptic and positive hyperbolic orbit. In particular, the
SFT-Euler characteristic remains zero.

Subtle division [1, p. 599]: In this case the double cover of an elliptic orbit bifurcates. We
consider the SFT-Euler characteristic for the simple orbit, which we denote by \chi 1

SFT , as well
as for the double cover, denoted \chi 2

SFT . Before the transition there is one simple elliptic orbit.
Therefore \chi 1

SFT =  - 1. After the transition the simple orbit becomes negative hyperbolic.
There is no bifurcation of the simple periodic orbit, just its double cover bifurcates. Hence
\chi 1
SFT remains  - 1. For invariance of \chi 2

SFT , note that the double cover of an elliptic orbit is
elliptic as well. Therefore \chi 2

SFT =  - 1. After the transition the simple elliptic orbit becomes
negative hyperbolic. Its double cover is therefore a bad positive hyperbolic orbit and does not
contribute to the SFT-Euler characteristic. The orbit which bifurcates is elliptic and hence
the SFT-Euler characteristic remains  - 1.

Murder [1, p. 600]: We consider the SFT-Euler characteristic \chi 1
SFT of the simple orbit

as well as the one for the double cover \chi 2
SFT . The case for the simple orbit is completely

analogous as in the subtle division. An elliptic periodic orbit becomes negative hyperbolic
and therefore \chi 1

SFT =  - 1. However, the case of the double cover is different. Here before
bifurcation we have a double covered elliptic one and a simple positive hyperbolic one. A
simple positive hyperbolic orbit is good and the double cover of an elliptic orbit is elliptic as
well. Therefore \chi 2

SFT = 0. After bifurcation just the double cover of the negative hyperbolic
orbit is left. This is a bad positive hyperbolic orbit and therefore does not contribute to the
SFT-Euler characteristic. Then \chi 2

SFT remains zero after the transition.
Phantom kiss [1, p. 602]: We discuss the 3-kiss, via the SFT-Euler characteristic of the

3-fold cover \chi 3
SFT . Before the bifurcation we have a 3-fold covered elliptic orbit and a simple

positive hyperbolic one. Therefore \chi 3
SFT = 0. After bifurcation we still have a 3-fold covered

elliptic orbit and a positive hyperbolic one, so that the SFT-Euler characteristic does not
change. The discussion for the 4-kiss is similar, when one considers the SFT-Euler character-
istic of the 4-fold cover \chi 4

SFT .
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3314 U. FRAUENFELDER, D. KOH, AND A. MORENO

Emission [1, p. 603]: We discuss here the case p= 4 as illustrated in the figure in [1, p. 603].
We consider the SFT-Euler characteristic for the 4-fold cover \chi 4

SFT . Before bifurcation there
is one 4-fold covered elliptic orbit. Therefore \chi 4

SFT = - 1. After bifurcation there are a 4-fold
covered elliptic orbit, a simple elliptic orbit, and a simple positive hyperbolic orbit. We see
again that the SFT-Euler characteristic does not change.

B.2. Nongeneric four-dimensional bifurcations. There are relevant problems in celestial
mechanics where there are bifurcations which do not fall in the generic classification. We now
discuss some of them.

H\'enon families in Hill's lunar problem. Although in theory the probability to have a non-
generic bifurcation is basically zero, in practice nongeneric bifurcations occur quite often. The
reason is that the Hamiltonians one usually considers are invariant under various symmetries.
A nongeneric bifurcation was described by H\'enon in [14] while studying Hill's lunar problem,
a limit case of the RTBP where the massless body is assumed very close to the small primary.
Hill's lunar problem can therefore be considered as an approximation to the Jupiter-Europa
or Saturn-Enceladus system, when one lets the mass of Europa, respectively, Enceladus, go to
zero. While the potential of the RTBP is invariant under reflection at the x-axis, i.e., the axis
on which the two primaries lie, Hill's lunar problem is additionally invariant under reflection
at the y-axis. The family of the direct or prograde periodic orbit is referred to as family g.
The direct orbit is invariant under reflection at the x-axis as well as under reflection at the
y-axis. For small energy the direct orbit is elliptic. However, for higher energy it becomes
positive hyperbolic. At the bifurcation point two new families, referred to as g\prime , appear. These
two families are still invariant under reflection at the x-axis but not anymore under reflec-
tion at the y-axis. Instead of that, reflection at the y-axis maps one branch of the g\prime -family
to the other branch. As explained by H\'enon [14], at their birth, the two g\prime -branches are
elliptic.

We can now check the invariance of the SFT-Euler characteristic for this nongeneric bifur-
cation. Before the bifurcation the direct orbit was elliptic. Therefore the SFT-Euler charac-
teristic is  - 1. After the bifurcation the direct periodic orbit is positively hyperbolic. Since it
is simple, it is a good positive hyperbolic orbit and therefore contributes +1 to the SFT-Euler
characteristic. However, after bifurcation we have to take into account in addition the two
g\prime -periodic orbits which are both elliptic and therefore each contribute  - 1 to the SFT-Euler
characteristic. So their sum 1 - 1 - 1 = - 1 remains  - 1.

Appendix C. Basis changes. In this appendix, we review some basic conventions con-
cerning the Lagrangian and Hamiltonian coordinate systems, and the change of basis relating
the two systems. These conventions are useful to keep in mind when checking the accuracy
of numerical work.

Consider the RTBP in a rotating frame, where the primaries are at rest. We assume
that in the original inertial frame the primaries were rotating clockwise around their common
center of mass, so that our frame is rotating counterclockwise. We choose our time unit such
that the angular frequency of the rotation is equal to one. We consider the monodromy matrix
of a periodic orbit. While the similarity class of the monodromy matrix only depends on the
periodic orbit, the monodromy matrix itself depends additionally on the starting point on the
periodic orbit as well as the choice of coordinates. In symplectic coordinates the monodromy
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NUMERICAL INVARIANTS, GIT QUOTIENTS, BIFURCATIONS 3315

matrix is a symplectic matrix. In the unregularized spatial RTBP we have two natural sets
of global coordinates. The first set are the Lagrangian coordinates

L= [x, y, z, \.x, \.y, \.z],

while the second one are the Hamiltonian coordinates

H= [x, y, z, px, py, pz].

The coordinates H are symplectic, while the coordinates L are not. Therefore the monodromy
matrix ML with respect to the Lagrangian coordinates is in general not symplectic. However,
it is conjugated to a symplectic matrix and therefore shares many properties of a symplectic
matrix, like having determinant one and the fact that if \lambda is an eigenvalue, then so are \lambda  - 1, \lambda ,

and \lambda 
 - 1

. By our assumptions on the rotating frame, the two coordinate systems are related
to each other by the linear transformation

px = \.x - y, py = \.y+ x, pz = \.z.

The basis change matrix from the coordinates H to the coordinates L is therefore

PL
H =

\left(        

1 0 0 0 1 0
0 1 0  - 1 0 0
0 0 1 0 0 0
0 0 0 1 0 0
0 0 0 0 1 0
0 0 0 0 0 1

\right)        .

The coordinate change matrix from the Lagrangian coordinates L to the Hamiltonian coordi-
nates H is then given by

PH
L = (PL

H ) - 1 =

\left(        

1 0 0 0  - 1 0
0 1 0 1 0 0
0 0 1 0 0 0
0 0 0 1 0 0
0 0 0 0 1 0
0 0 0 0 0 1

\right)        .

Therefore the monodromy matrix ML with respect to the coordinates L and the monodromy
matrix MH with respect to the coordinates H are related to each other by

MH = PH
L MLP

H
L .

In particular, MH and ML have the same characteristic polynomial, but MH is symplectic,
while ML in general is not.

If one writes a 2n\times 2n-symplectic matrix M into four blocks of n\times n-matrices

M =

\biggl( 
A B
C D

\biggr) 
,
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3316 U. FRAUENFELDER, D. KOH, AND A. MORENO

then the blocks satisfy the equations

ABT =BAT , CDT =DCT , ADT  - BCT = I,(10)

where I is the n\times n-identity matrix. Moreover, the inverse of M is given by

M - 1 =

\biggl( 
DT  - BT

 - CT AT

\biggr) 
.(11)

In particular, the monodromy matrix MH has to satisfy this for n = 3, which gives the
opportunity to double check the accuracy of numerical computations.

The RTBP is invariant under various symmetries. Given an orbit of the RTBP, one obtains
another orbit by combining one of the transformations

(x, y, z, \.x, \.y, \.z)\rightarrow (x, - y, z, - \.x, \.y, - \.z), (x, y, z, \.x, \.y, \.z)\rightarrow (x, - y, - z, - \.x, \.y, \.z)

with time reversal. The above two transformations give rise to the following two linear anti-
symplectic involutions on phase-space:

\rho 1 : T
\ast R3 \rightarrow T \ast R3, (x, y, z, px, py, pz) \mapsto \rightarrow (x, - y, z, - px, py, - pz)

and

\rho 2 : T
\ast R3 \rightarrow T \ast R3, (x, y, z, px, py, pz) \mapsto \rightarrow (x, - y, - z, - px, py, pz).

The fixed-point sets

L1 =Fix(\rho 1) = \{ (x, y, z, px, py, pz)\in T \ast R3 : y= px = pz = 0\} 

and

L2 =Fix(\rho 2) = \{ (x, y, z, px, py, pz)\in T \ast R3 : y= z = px = 0\} 

are Lagrangian subspaces of T \ast R3. They coincide with the eigenspaces of the two antisym-
plectic involutions with respect to the eigenvalue one. Moreover, the eigenspaces of the two
antisymplectic involutions to the eigenvalue  - 1 are Lagrangian subspaces of T \ast R3 as well.
They are given by

L\bot 
1 = \{ (x, y, z, px, py, pz)\in T \ast R3 : x= z = py = 0\} 

and

L\bot 
2 = \{ (x, y, z, px, py, pz)\in T \ast R3 : x= py = pz = 0\} .

In particular, we have the following two Lagrangian splittings:

T \ast R3 =L1 \oplus L\bot 
1 , T \ast R3 =L2 \oplus L\bot 

2 .
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NUMERICAL INVARIANTS, GIT QUOTIENTS, BIFURCATIONS 3317

In the RTBP we have two kinds of symmetric periodic orbits, namely periodic orbits which
are invariant under the composition of the antisymplectic involution \rho 1 and time reversal, and
periodic orbits which are invariant under the composition of \rho 2 with time reversal. We begin
with the first case. Such periodic orbits will pass at two different points through the fixed-
point set L1 of \rho 1. The consecutive times where the orbit passes the fixed-point set differ by
half the period of the periodic orbit. We choose one of the intersection points of the periodic
orbit with L1 and consider the monodromy matrix at this point. The basis H is not so well
compatible with the symmetry. To make the monodromy matrix more compatible with the
symmetry we consider a different symplectic basis, namely

S1 = [x,py, z, px, - y, pz].

Different from the basis H, the first three basis vectors of S1 build a basis of L1, while the
last three basis vectors build a basis of L\bot 

1 . The basis change matrix from the basis S1 to the
basis H is the symplectic matrix

PH
S1

=

\left(        

1 0 0 0 0 0
0 0 0 0  - 1 0
0 0 1 0 0 0
0 0 0 1 0 0
0 1 0 0 0 0
0 0 0 0 0 1

\right)        ,

and the basis change matrix from H to S1 reads

PS1

H = (PH
S1

) - 1 =

\left(        

1 0 0 0 0 0
0 0 0 0 1 0
0 0 1 0 0 0
0 0 0 1 0 0
0  - 1 0 0 0 0
0 0 0 0 0 1

\right)        .

With the help of these matrices, the monodromy matrix MH with respect to the basis H is
related to the monodromy matrix MS1

with respect to the basis S1 by

MS1
= PS1

H MHP
H
S1

.

The monodromy matrix M =MS1
is symplectic again, since the basis S1 is still symplectic.

However, in the basis S1, the antisymplectic involution \rho 1 is represented by the matrix

R=

\biggl( 
I 0
0  - I

\biggr) 
.

The fact that M is the monodromy matrix of a symmetric periodic orbit at a fixed point of
the antisymplectic involution \rho 1 translates into

RMR=M - 1,
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3318 U. FRAUENFELDER, D. KOH, AND A. MORENO

which in view of (11) translates into\biggl( 
A  - B
 - C D

\biggr) 
=

\biggl( 
DT  - BT

 - CT AT

\biggr) 
.

Therefore we have

D=AT , B =BT , C =CT ,(12)

i.e., the matrices B and C are symmetric and D is just the transpose of A. In particular, (10)
simplifies to

AB =BAT , CA=ATC, A2  - BC = I.(13)

A similar phenomenon happens for periodic orbits which are invariant under the composition
of the antisymplectic involution \rho 2 and time reversal. The only difference is that in this case
the required basis change has to be adjusted. We assume that M\scrH is the monodromy matrix
for such a symmetric periodic orbit at a point in L2, the fixed-point set of the antisymplectic
involution \rho 2. As a new symplectic basis compatible with the antisymplectic involution \rho 2 we
choose

S2 = [x,py, pz, px, - y, - z].

Note that the first three basis vectors build a basis of the Lagrangian subspace L2 and the
last three basis vectors build a basis of the Lagrangian subspace L\bot 

2 . As basis change matrix
from the basis S2 to the basis H we obtain the symplectic matrix

PH
S2

=

\left(        

1 0 0 0 0 0
0 0 0 0  - 1 0
0 0 0 0 0  - 1
0 0 0 1 0 0
0 1 0 0 0 0
0 0 1 0 0 0

\right)        
with inverse

PS2

H = (PH
S2

) - 1 =

\left(        

1 0 0 0 0 0
0 0 0 0 1 0
0 0 0 0 0 1
0 0 0 1 0 0
0  - 1 0 0 0 0
0 0  - 1 0 0 0

\right)        .

If we consider the monodromy matrix with respect to the basis S2,

MS2
= PS2

H MHP
H
S2

,

its blocks again satisfy (1) and (13).
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