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a b s t r a c t

This study addresses the challenge of selecting sensors for linear time-varying (LTV) systems dy-
namically. We present a framework that designs an online sparse sensor schedule with performance
guarantees using randomized algorithms for large-scale LTV systems. Our approach calculates each
sensor’s contribution at each time in real-time and immediately decides whether to keep or discard
the sensor in the schedule, with no possibility of reversal. Additionally, we provide new performance
guarantees that approximate the fully-sensed LTV system with a multiplicative approximation factor
and an additive one by using a constant average number of active sensors at each time. We
demonstrate the validity of our findings through several numerical examples.
© 2024 The Author(s). Published by Elsevier Ltd. This is an open access article under the CC BY-NC license

(http://creativecommons.org/licenses/by-nc/4.0/).
1. Introduction

Advancements in high-performance computing processors,
igh-capacity storage, and efficient algorithms have fueled in-
reasing interest among researchers and scientists in controlling
nd estimating complex interconnected systems (Chakrabortty
Ilić, 2011; Fitch & Leonard, 2016; Liu & Barabási, 2016;

Ruths & Ruths, 2014; Siami & Motee, 2018a, 2018b). Such
systems are ubiquitous, with applications ranging from smart
grids (Chakrabortty & Ilić, 2011) and social networks (Latora,
Nicosia, & Russo, 2017) to statistical physics (Liu & Barabási,
2016; Ruths & Ruths, 2014), multi-robot systems (Fitch &
Leonard, 2016; Tian, Khosoussi, & How, 2021), and computational
biology (Rajapakse, Groudine, & Mesbahi, 2012). However, in
many cases, it is not feasible to obtain individual measurements
from all sensors due to either their high cost or computational
limitations. To address this challenge, researchers have developed
sparse sensor selection techniques that can effectively estimate
the system state using a subset of available sensors. In this
paper, we address the problem of sparse sensor scheduling for
time-varying dynamics and propose a novel online approach
that can provide accurate estimates of the overall system state
while minimizing the cost of acquiring and processing sensor
measurements.

✩ The material in this paper was partially presented at the 61st IEEE
Conference on Decision and Control, Dec. 6–9, 2022, Cancún, Mexico. This paper
was recommended for publication in revised form by Associate Editor Solmaz
Kia under the direction of Editor Christos G. Cassandras.
∗ Corresponding author.

E-mail addresses: vafaee.r@northeastern.edu (R. Vafaee),
m.siami@northeastern.edu (M. Siami).
https://doi.org/10.1016/j.automatica.2024.111550
0005-1098/© 2024 The Author(s). Published by Elsevier Ltd. This is an open access arti
Selecting an optimal set of sensors is crucial for accurately
estimating the overall state of a complex system while managing
uncertainties. However, identifying this optimal set remains a
challenging and mostly unsolved problem. In the simplest sce-
nario, finding the optimal set requires a combinatorial approach,
which has been shown to be computationally intractable and NP-
hard for all but the simplest cases (Baraniuk, 2007). Therefore,
developing efficient algorithms for sparse sensor selection has
become a critical research area with numerous practical applica-
tions, as demonstrated by recent works such as Tzoumas, Carlone,
Pappas, and Jadbabaie (2020), Ye, Roy and Sundaram (2020) and
Ye, Woodford, Roy, Sundaram and Shreyas (2020).

Sparse sensor selection involves finding the optimal set
of sensors that optimize the performance measures based on
observability (Georges, 1995; Müller & Weber, 1972). Several
approaches have been proposed to solve this problem, in-
cluding submodular optimization (Summers, Cortesi, & Lygeros,
2015), nonlinear integer programming (Athans, 1972; Morari
& Stephanopoulos, 1980; Müller & Weber, 1972), and convex
relaxation (Vafaee & Siami, 2022a). These methods typically rely
on Gramian matrices to quantify the observability of the system.
Recent advancements in this area have led to the development of
systemic metrics that offer a more comprehensive and robust
approach to selecting an optimal set of sensors for linear
dynamical systems (Siami & Motee, 2018a). These metrics are
characterized by their monotonicity, convexity, and homogeneity
with respect to the Gramian matrix of the system and include
commonly used measures such as the determinant or trace of
inverse operators.

The problem of designing a time-varying sparse actuator
scheduling for linear dynamical systems has been addressed
cle under the CC BY-NC license (http://creativecommons.org/licenses/by-nc/4.0/).
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n the literature using both deterministic and randomized ap-
roaches (Siami, Olshevsky, & Jadbabaie, 2020). In a subsequent
tudy, the authors of Siami and Jadbabaie (2020) investigated the
esign of joint time-varying sparse sensor and actuator schedul-
ng by leveraging Hankel singular values of the linear system.
he performance of the resulting sparse systems was compared
o that of fully-actuated and fully-sensed systems. In another
ecent work, Vafaee and Siami (2022a) used a swapping regret
minimization algorithm to round the continuous solution of a
relaxed optimization to obtain a (1 + ϵ) approximation of the
actual optimal system for all systemic metrics. Other techniques
for selecting sensors and actuators to optimize the observability
and controllability of the system include balanced model reduc-
tion and greedy matrix QR pivoting (Manohar, Kutz, & Brunton,
2021).

The problem of finding the minimal set of sensors or actuators
for maintaining observability or controllability of a system is
another common challenge in the field (Olshevsky, 2014). This
problem, known as the Minimal Control Set problem, has been
shown to be NP-hard and cannot be efficiently solved or even
approximated in polynomial time (Tzoumas, 2018). Other related
challenges include optimal leader selection and control of for-
mation in multi-agent systems (Dong & Huang, 2014; Fitch &
Leonard, 2015).

Selecting the appropriate set of sensors or actuators in a
system can be challenging due to the limited accuracy of the
mathematical model. However, recent studies have sought to
address this issue by developing algorithms that enable sen-
sor/actuator selection even when the system model is not known
in advance. Such algorithms estimate the model during the design
process. For example, Fotiadis and Vamvoudakis (2021) proposed
an online actuator selection algorithm for unknown linear time-
invariant (LTI) dynamics, and Ye, Chi, Liu, and Gupta (2022)
investigated the simultaneous actuator selection and controller
design problem for finite-horizon Linear Quadratic Regulation
(LQR) when the system matrices are unknown.
Our Contributions: Finding a small representation of sensors
becomes challenging when the model of the system changes over
time or the t-step observability matrix is large and cannot be
stored in memory. To address these challenges, we develop a sim-
ple randomized framework for online selection and scheduling
of sensors. In our setup, the rows of the observability matrix are
considered one-by-one, and we immediately decide to keep or
discard each sensor without retracting our decisions. The pro-
posed framework is a Markov chain, meaning the probability
of choosing a sensor only depends on previous sensors in the
stream. The method is both simple and intuitive, and it ap-
proximates fully-sensed LTV systems up to a multiplicative and
additive factor in a certain observability sense, while sampling a
constant number of active sensors on average.

This paper builds on the findings presented in Vafaee and
Siami (2022b) by incorporating new results including Theorem 4,
Lemmas 3, 4, 5, and 6. The paper clearly defines the main problem
as Problem 1, and provides additional discussions and supple-
mentary materials in Appendix A.1.1 and Remarks 2 through
. Furthermore, the paper offers more detailed analysis of the
roofs for Propositions 1 and 2, Theorem 1, and Lemmas 1 and

2. The simulation results in Section 5 and future work outlined in
ection 6 are also presented.
To maintain a clear and focused narrative, certain elements

f the theoretical arguments, including proofs and lemmas, have

een relegated to the Appendix.

2

. Preliminaries and definitions

.1. Mathematical notations

ndices: Lowercase non-bold letters are used for scalars and
ndices (e.g. j). The discrete time index is denoted by k throughout
his paper.
ets: Sets of real numbers (R), non-negative real numbers (R+),
nd positive real numbers (R++), as well as their integer coun-
erparts (Z, Z+, and Z++), are represented, respectively. The set
f natural numbers {i ∈ Z++ : i ≤ n} is denoted by [n].
ectors: Lowercase bold letters are utilized to denote vectors
e.g., b). For a vector x ∈ Rn, diag(x) ∈ Rn×n is the diagonal matrix
ith elements of x sitting orderly on its diagonal. The i-th basis
ector is denoted by ei ∈ Rn, i.e. ei(j) = 0 for j ̸= i and ei(i) = 1.
ector norms ∥x∥0, ∥x∥1, and ∥x∥ return the total number of non-
ero elements, the sum of the absolute values of the elements,
nd the Euclidean norm of vector x, respectively. Both xi and x(i)
re used to denote the i-th entry of vector x.
atrices: Uppercase letters (e.g. A and A), stand for real-valued
atrices. For square matrix X ∈ Rn×n, diag(X) outputs the
iagonal elements of X . Furthermore, det X and Trace X refer to
he determinant and the summation of on-diagonal elements of
, respectively. Let I and 0 denote the identity matrix and a
atrix of all zeros, respectively, with dimensions specified by
ontext. The transpose of matrix A is represented by A⊤, and
he Moore–Penrose pseudoinverse of matrix A is denoted by A†,
ith A−1/2

= (A†)1/2. Symbol ∥ · ∥ denotes the spectral norm for
atrices. Both Ai,j and A(i, j) are used to denote the entries located

n the i-th row and j-th column of matrix A.
ositive Semidefinite Ordering: For symmetric matrices A, B ∈
n×n, we write A ⪯ B to denote the condition that x⊤A x ≤ x⊤B x,
or all x ∈ Rn. Notations ⪰, ≺, and ≻ can be defined analogously.
e say a symmetric matrix A ∈ Rn×n is positive semi-definite if
⪰ 0. Sn

+
(Sn

++
) is the positive semi-definite (positive definite)

one of n-by-n matrices.
isc: Lowercase non-bold letters are used for function names

e.g., ρ(·)). The symbol ⊕ denotes the operation of appending the
ows of one matrix to another. Given a matrix Z ∈ Rn×m, the
ectorized form of Z is represented as

ec(Z) = [z1,1, . . . , zn,1, z1,2, . . . , z1,m, . . . , zn,m]⊤,

hile vec−1 returns the inverse of this operation.

.2. Linear systems, controllability and observability

We start with a canonical LTV, discrete-time dynamics as
ollows:

(k+ 1) = A(k) x(k) + B(k) u(k), (1)

y(k) = C(k) x(k), (2)

here A(k) ∈ Rn×n, B(k) ∈ Rn×m, C(k) ∈ Rp×n, and k ∈ Z+. The
ime-varying matrix A(k) describes the underlying structure of the
ystem and the interaction strength between the agents/states
t time k. The input matrix B(k) identifies the nodes controlled
y an external controller at time k, and the output matrix C(k)
hows the relationship between the output vector y and the state
ector at time step k. Given the initial condition x(0) of the state
ariables and sequences of inputs u(0), . . . , u(t−1), according to
1), we have

(t) = Φ(t, 0) x(0) +

t−1∑
r=0

Φ(t, r + 1) B(r) u(r)
= Φ(t, 0) x(0) + R(t, 0) ũ(t, 0), (3)
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here Φ(t, r) is the state transition matrix, which relates the state
f the undriven system at time t to the state at an earlier time r ,
.e., x(t) = Φ(t, r) x(r) for all t ≥ r 1. The state transition matrix
s given by

(t, r) =
{
A(t − 1) A(t − 2) · · · A(r) , t > r ≥ 0

I , t = r.

atrix R(t, 0) =
[
Φ(t, 1) B(0) Φ(t, 2) B(1) · · · B(t − 1)

]
is

he t-step controllability matrix of the time-varying dynamics
1)–(2), and ũ(t, 0) =

[
u⊤(0) · · · u⊤(t − 1)

]⊤. To evaluate the
ontrollability of the system, we are interested in determining
hether there are any solutions for ũ(t, 0) within the context of
3).

Moreover, according to (2) for k = 0, 1, . . . , t − 1, we have

(t, 0) = O(t, 0) x(0) + T (t, 0) ũ(t, 0), (4)

here ỹ(t, 0) =
[
y⊤(0) · · · y⊤(t − 1)

]⊤ is the vector of measure-
ent,

(t, 0) =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

c⊤1 (0)Φ(0, 0)
...

c⊤p (0)Φ(0, 0)
c⊤1 (1)Φ(1, 0)

...

c⊤p (1)Φ(1, 0)
...

c⊤1 (t − 1)Φ(t − 1, 0)
...

c⊤p (t − 1)Φ(t − 1, 0)

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

⎫⎪⎬⎪⎭ C(0)Φ(0, 0)

⎫⎪⎬⎪⎭ C(1)Φ(1, 0)

⎫⎪⎬⎪⎭ C(t − 1)Φ(t − 1, 0)

, (5)

s the t-step observability matrix, c⊤j (k)’s are the rows of matrix
(k) ∈ Rp×n, and T (t, 0) maps inputs to outputs and is known,
onstructed using input, output, and state transition matrices. The
econd term in (4) is a known quantity and can be subtracted
rom the vector of measurements to obtain

(t, 0) = O(t, 0) x(0). (6)

e refer to the system (1)–(2) as observable if, over some finite
ime horizon t , the knowledge of ũ(t, 0) and ỹ(t, 0) is sufficient
o uniquely determine x(0) from (6).

ssumption 1. In this paper, we assume that integer number
> 0 is the time horizon to control or estimate, also referred to
s the time-to-control or time-to-estimate.

From a numerical standpoint it might be better to characterize
ontrollability and observability in terms of the Gramian matrices
t time t , respectively defined as follows for the time-varying
ystem (1)–(2): W(t, 0) = R(t, 0)R⊤(t, 0), and

X (t, 0) = O⊤(t, 0)O(t, 0). (7)

Dynamics in (1)–(2) can also be expressed as follows:

x(k+ 1) = A(k) x(k) +

∑
i∈[m]

bi(k) ui(k), (8)

y(k) =
∑
j∈[p]

ej c⊤j (k) x(k), (9)

1 The undriven system is system (1) when u(k) = 0 for all k ∈ Z .
+

3

here bi(k)’s are the columns of the time-varying matrix B(k) ∈
Rn×m and c⊤j (k)’s are the rows of matrix C(k) ∈ Rp×n.

For brevity, we avoid discussing the controllability and
observability of dynamics (8)–(9) in terms of the defined con-
trollability and observability matrices and their Gramian coun-
terparts. Instead, we directly state the second assumption as
follows, including the necessary information from the missing
discussion:

Assumption 2. In this paper, we make the assumption that
the system described by (8)–(9) is an n-state minimal realization.
This implies that the system is controllable (with a controllability
matrix of full rank and a positive definite controllability Gramian)
and observable (with an observability matrix of full rank and a
positive definite observability Gramian).

2.3. Systemic controllability/observability metrics

Similar to the concept of systemic introduced in the literature
of Siami and Motee (2018b), Siami et al. (2020) and Vafaee and
Siami (2022a), we introduce various controllability/observability
metrics. These metrics are real-valued functions that quantify
various aspects of the energy required in the system when re-
ferred to as a controllability metric, or the degree of uncertain-
ties in estimation when designated as an observability metric.
They are defined on the set of linear dynamical systems de-
rived from (8)–(9). The metrics rely on the Gramian matrix’s
controllability/observability, which is a positive definite matrix.
Consequently, a systemic performance measure can be formu-
lated as a function that operates on the set of Gramian matrices
for all controllable/observable systems with n agents, which we
represent by Sn

++
.

Definition 1 (Systemic Performance Measure). A Gramian-based
metric ρ : Sn

++
→ R+ is systemic if and only if for allM,N ∈ Sn

++
,

it satisfies:

- (Positive) homogeneity criteria: ρ(γ M) = γ−1ρ(M), for any
γ > 02;

- Monotonicity criteria: If N ⪯ M , then ρ(N) ≥ ρ(M);
- Convexity criteria: ρ

(
αM + (1−α)N

)
≤ α · ρ(M)+ (1−α) ·

ρ(N), for all α ∈ [0, 1].

Several in-depth studies have been conducted in the works
of Siami and Motee (2018b) and Siami et al. (2020) regarding
this type of performance metrics. It has been demonstrated that
the set of criteria outlined in Definition 1 applies to many com-
mon measures. To provide an overview of these studies, we
discuss some of the well-known measures in Appendix A.1.1.
However, for brevity, we do not repeat all of them here and
instead, suggest interested readers refer to Siami and Motee
(2018a, Table I) and Siami and Motee (2018b, Table I) for a
comprehensive list of systemic performance
metrics.

While the discussions apply to both sensor and actuator schedu
ing, our paper exclusively tackles the sensor scheduling problem.
We include tools for analogous arguments in actuator scheduling
if required.

2 A function ρ is considered (positively) homogeneous of degree α if for all
γ > 0, ρ(γM) = γ−α

· ρ(M). In this paper, when we refer to a metric as
homogeneous, we mean it is homogeneous of degree 1.
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. Sensor scheduling

The sensor placement problem is to find the optimal sensor
ocations in an environment to minimize uncertainties and costs.
n the sensor scheduling problem, the objective is to determine
hen and for how long sensors should be active. Energy and
ost considerations limit the usage of all sensors at all times.
he online sensor scheduling refers to determining sensor activ-
ty in real-time based on the current state of the system. Our
aper focuses on an online sensor scheduling problem for LTV
ynamics.

Online Sensor Scheduling: In online sensor scheduling,
the selection of sensors is made dynamically over time, as
opposed to being predetermined in advance. At each time
step, the sensor set is evaluated based on the current state
of the system, and a decision is made on which sensors to
keep or discard.

The key characteristic of online sensor scheduling is its
causality, meaning the decisions made at each time step
are based only on the state knowledge up to the current
time, without knowing the future. This makes the problem
challenging because the scheduling decisions must account
for the uncertainty and changing dynamics of the system
without complete future information.

The objective of online sensor scheduling is to minimize
the use of sensors while maintaining the observability of the
system, as closely as possible to the fully-sensed dynamics.

Our use of the term ‘‘causality’’ is specific to our schedul-
ng problem. This concept differs from the general definition of
ausality, which involves outputs depending on past and present
nputs but not future inputs. In our case, causality means deci-
ions at each time step are based solely on the current knowledge
f system matrices without anticipating.
To begin, we will define sensor scheduling, and then provide a

lear explanation of online sensor scheduling. Despite the differ-
nce in meaning, the terms selection and sampling might be used
nterchangeably in the following sections.

.1. Sensor scheduling problem

The goal of the sparse sensor scheduling problem is to design
schedule for sensor outputs that ensures that the observabil-

ty performance metrics of the original (fully-sensed) and the
parse systems are similar in an appropriately defined sense,
hile keeping the number of active sensors much less than a

ully-sensed system in the resulting schedule. Specifically, given a
anonical discrete-time, LTV dynamics (8)–(9), with p sensors, ob-
ervability systemic metric ρ(·) that is aligned with the properties
addressed in Definition 1, and the t-step observability Gramian
matrix X (t, 0), the goal is to find a sensor schedule such that the
resulting system with the observability Gramian matrix X̃ (t, 0) is
well-approximated; that is⏐⏐⏐⏐ log ρ(X̃ (t, 0))

ρ(X (t, 0))

⏐⏐⏐⏐ ≤ ϵ′, (10)

here ϵ′ > 0 is the approximation factor.

3.2. Weighted sensor scheduling

A weighted sensor schedule can be obtained by scaling the
utput signal by a non-negative factor while keeping the scales
4

bounded. The scaling introduces an extra degree of freedom that
allows us to obtain a sparser set of outputs. With reference to
(9), we define a weighted sensor schedule by S = [sj,k+1] with
sj,k+1 ≥ 0, where j ∈ [p] and k + 1 ∈ [t]. The resulting output
equation with this schedule is

y(k) =
∑
j∈[p]

sj,k+1 · ej c⊤j (k) x(k), k ∈ Z+, (11)

here sj,k+1 ≥ 0 shows the strength of the j-th sensor output at
ime k. The t-step observability Gramian matrix (7) for the sparse
system (11) can be obtained as

X̃ (t, 0) = (Λs ·O(t, 0))⊤ (Λs · O(t, 0))  
:= Õ(t,0)

= O⊤(t, 0)Λ2
s O(t, 0), (12)

where the sparsification matrix Λs := diag(vec(S)) and Õ(t, 0) is
the t-step sparse observability matrix.

Our objective is to reduce the average number of active sen-
sors by d, where

d :=
1
t
· ∥vec(S)∥0, (13)

with the aim of maintaining close observability Gramian between
the fully-sensed and sparse systems. This approximation necessi-
tates horizon lengths that may exceed the state’s dimension. The
definition below formalizes this approximation.

Definition 2 ((ϵ, δ, d)-approximation). Given a time horizon t ≥ n,
system (11) with a sparse weighted sensor schedule S is (ϵ, δ, d)-
pproximation of system (9), if and only if

1− ϵ)X (t, 0)− δI ⪯ X̃ (t, 0) ⪯ (1+ ϵ)X (t, 0)+ δI, (14)

here X (t, 0) and X̃ (t, 0) are the observability Gramian matrices
or the fully-sensed and sparse system defined in (7) and (12),
espectively. Parameter d as defined in (13) is the average number
f active sensors, and finally ϵ ∈ (0, 1) and δ > 0 are the approxi-

mation factor and the additive approximation factor, respectively.
Succinctly, X̃ (t, 0) ≈ϵ,δ X (t, 0) denotes the same condition.

In Siami et al. (2020), a closely related approximation notation
as introduced for time-invariant networks referred to as the
ϵ, d)-approximation. This is given by

1− ϵ)X (t, 0) ⪯ X̃ (t, 0) ⪯ (1+ ϵ)X (t, 0), (15)

nd abbreviated as X̃ (t, 0) ≈ϵ X (t, 0).

Remark 1. When ϵ is small enough,3 we can elaborate (15)
o show that the (ϵ, d)-approximation system is in fact a well-
pproximated system. Identically, if X̃ (t, 0) ≈ϵ X (t, 0),

then⏐⏐⏐⏐ log ρ(X̃ (t, 0))
ρ(X (t, 0))

⏐⏐⏐⏐ ≤ ϵ, (16)

where ρ(·) is some observability systemic measure. To obtain
(16), we utilize the facts that e−β is almost 1 − β when β is
appropriately small, and 1 + β ≤ eβ for all β ∈ R. Similarly,
we can show if X̃ (t, 0) ≈ϵ,δ X (t, 0), then⏐⏐⏐⏐ log ρ(X̃ (t, 0)+ λI)

ρ(X (t, 0)+ λI)

⏐⏐⏐⏐ ≤ ϵ, (17)

here λ := δ/ϵ.

3 This condition almost holds in this paper since we will assume ϵ ∈ (0, 1).
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Finally, since there is a one-to-one correspondence between
a sensor at a specific time step and the rows of the t-step
observability matrix, row sparsification (sampling) and sensor
scheduling address the same process in the subsequent sections.
Next, we formulate the online sensor scheduling problem.

3.3. Online sensor scheduling

For the LTV dynamics (8)–(9), consider a causal regime where,
at each time step t , only the system matrices (A(k) and C(k)) for
k = 0, . . . , t are known. The causality assumption is realistic
because the system’s matrices in real scenarios often undergo
changes over time, and access to future matrices may not be guar-
anteed. The reasons for the changing matrices can vary, including
environmental changes, physical wear and tear, external forces,
sensor and battery failure, and software updates.

To obtain the observability matrix O(t, 0), a block matrix is
ppended to the observability matrix at the previous time step
(t−1, 0), i.e., O(t, 0) =

[
O⊤(t − 1, 0) | (C(t − 1)Φ(t − 1, 0))⊤

]⊤.
f we are given the sparse matrix Õ(t − 1, 0), two methods can
e used to obtain the sparse matrix Õ(t, 0). The first method is
o reapply the sparsification process used to obtain Õ(t − 1, 0)
o the new matrix O(t, 0). However, this can be computationally
ntensive and impractical for many applications as we progress in
ime.

The second method, known as online sensor scheduling in this
aper, relies on the previous sensor schedule, or the previous
parse matrix Õ(t−1, 0), and only sparsifies the newly appended
lock matrix. This approach involves making a single decision at
ach time step t to determine which subset of the newly added p
ows should be selected. Equivalently, it requires deciding which
ubset of the p available sensors at time t should be activated for
ata collection.
In this paper, this objective, however, is achieved by sequen-

ially evaluating each row of the appended block matrix and
ndividually deciding whether to retain or discard the corre-
ponding sensor. We choose to process the newly appended block
atrix sequentially because each row in the t-step observability
atrix contributes a simple rank-one matrix to the Gramian
atrix of the system, simplifying the analysis considerably. The
tility of rank-one matrices for sparsification purposes has been
he focus of several recent works (Siami & Jadbabaie, 2020; Siami
Motee, 2018a, 2018b; Siami et al., 2020). For instance in Siami

and Motee (2018a), each feedback link’s contribution is shown
to be rank-one, a property that is used when determining the
optimal subset of links to be added to a first-order consensus
network under a cardinality constraint.

Another advantage of sequential processing is its flexibility,
as it does not require a fixed number of sensors (p) at each
time step. This adaptability makes our approach suitable for real-
world scenarios where sensor sets and their numbers can change
dynamically. In fact, our main goal is to intelligently activate the
most informative sensor set at each time step, regardless of the
available sensor count. However, for simplicity in notation, we
present results for a time-varying system with a fixed p sensors
at each time step.

In the online sensor scheduling approach, the goal is to select
fewer sensors than are available at each time step. Starting from
time step zero and advance in time, the algorithm systematically
evaluates the rows of the observability matrix, one-by-one. In
particular, it begins with the first row from the initial set of p
available rows in the block observability matrix at time zero and
continues through to the p-th row of the observability-appended
block at time t .
5

Problem 1 (Online Sensor Scheduling). Consider the t-step
observability matrix O(t, 0), as defined in (5), for the
discrete-time, linear time-varying dynamics described in
(8)–(9). Consider the rows of the matrix one-by-one, and the
goal is to make an individual decision for each row to either
keep or discard its corresponding sensor (i.e., assigning a
positive weight), which cannot be changed afterward. Let
Oi(t, 0) denote the portion of the observability matrix that
includes its first i rows. The objective is to find a sensor
schedule S such that, for a given approximation factor ϵ ∈

(0, 1) as well as an additive approximation factor δ > 0, and
for any i ≤ tp, the approximation

Õ⊤

i (t, 0)Õi(t, 0) ≈ϵ,δ O⊤

i (t, 0)Oi(t, 0), (18)

is satisfied, where Õi(t, 0) = diag(vec(S)(0 : i)) · Oi(t, 0)
and vec(S)(0 : i) is the first i entries of the vector vec(S).
Additionally, the overall number of active sensors should
not exceed td (i.e., ∥vec(S)(0 : tp)∥0 ≤ td), where d is the
desired average number of active sensors as defined in (13).

It is evident that the solution to Problem 1 guarantees an
approximation of the system at every time step i ≤ t due to (18).

Remark 2. In this setting, at each time step, after the system
matrices become available, the sparsification unit determines the
set of sensors to be selected (by processing the rows of the
newly appended block observability matrix one-by-one). Then,
only the selected sensors are activated to collect measurements.
This provides advantages such as reduced power usage, decreased
bandwidth for communication, and enhanced data privacy.

Remark 3. We distinguish our problem from the issue of dynam-
ically optimizing a schedule, as discussed in Badanidiyuru, Mirza-
soleiman, Karbasi, and Krause (2014). While the configuration
might appear similar in its sequential data processing approach,
our problem seeks a sparse sensor schedule that approximates
the observability of the system with a full complement of sensors,
rather than trying to get close to the optimal set.

In the remainder of this paper, we will frequently refer to the
rows of the observability matrix. To simplify this, we use ooo⊤i to
denote the i-th row c⊤j (k)Φ(k, 0), where i = kp + j, j ∈ [p], and
k + 1 ∈ [t]. In a time-invariant system, Φ(k, 0) is equivalent to
Ak, and the variable k representing the time instant in the output
matrices will be omitted.

4. Online sensor scheduling result

Randomized algorithms have seen great success in solving
subset selection and related problems (Cohen et al., 2015; Cohen,
usco, & Pachocki, 2020; Siami et al., 2020; Vafaee & Siami,
022b). A sampling scheme for randomly selecting sensors is
ypically formulated as follows.

ampling Scheme: For any set of sampling probabilities p1,
2, . . . , ptp include the i-th row, ooo⊤i , in the sparse observability
atrix Õ(t, 0) with probability pi and re-weight the row by
/
√
pi, then

E[Õ⊤(t, 0)Õ(t, 0)  
X̃ (t,0)

] =

tp∑
i=1

pi ·
( 1
pi
oooiooo

⊤

i

)
= O⊤(t, 0)O(t, 0)  

X (t,0)

. (19)

To achieve proper concentration in the sparse observability
Gramian matrix, it is important to select unique rows with high
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robabilities. As a result, the sensor sampling problem is re-
uced to determining the uniqueness of different rows in the
bservability matrix.
Our findings on online sensor scheduling, presented in the fol-

owing section, are based on recent advancements in randomized
inear algebra and online sampling (Cohen et al., 2020).

.1. Leverage score as the uniqueness measure

In Theorem 2 of Siami et al. (2020), the leverage scores of
the columns in the controllability matrix are used to determine
their uniqueness and construct a sparse actuator schedule for
LTI systems (see Appendix A.1.3 for comprehensive details and
characteristics of the leverage score). By utilizing this definition
of uniqueness, it is demonstrated that, on average, choosing a
modest amount of actuators randomly at each time results in
a sparse schedule with a controllability Gramian matrix W̃(t, 0)
such that W̃(t, 0) ≈ϵ W(t, 0), where W(t, 0) represents the
controllability of the system in the absence of sparsification.

The dual algorithm of Siami et al. (2020) can be used to
sample sensors with probability proportional to their leverage
scores to obtain an (ϵ, d)-approximation of the fully-sensed sys-
tem. However, computing the exact leverage scores is compu-
tationally expensive. The following theorem shows that using
approximations of the leverage scores is sufficient to obtain the
(ϵ, d)-approximation.

Note that τ(O(t, 0)) is the vector of diagonal elements of the
projection matrix O(t, 0)X †(t, 0)O⊤(t, 0), and τi refers to the i-th
element of this vector.

Theorem 1 (Overestimate for (ϵ, d)-approximation). Given an ap-
proximation factor ϵ ∈ (0, 1), time horizon t ≥ n, and the dynamics
(9), let u = [ui] be a vector of overestimates of the leverage scores
of the rows of the observability matrix, i.e., ui ≥ τ(O(t, 0))(i) for
all i ∈ [tp]. Let c > 3 be a fixed constant and let the diagonal
elements of the sparsification matrix Λs be Λs(i, i) = 1/

√
pi with

robability pi = min
(
c · ui · log n/ϵ2, 1

)
, and zero otherwise. Then,

ith probability at least 1 − n1−c/3, this sparsification matrix Λs
esults in a scheduling S that is an (ϵ, d)-approximation of (9).
he average number of active sensors at each time d is at most
· ∥u∥1 · log n/tϵ2.

Theorem 1 shows that a rough overestimate of the leverage
scores of the rows of the observability matrix is sufficient to
achieve an (ϵ, d)-approximation of the fully-sensed system. How-
ever, these results cannot be easily adapted to more restrictive
settings, such as the semi-streaming or online setting, as the en-
tire observability matrix must be available beforehand to obtain
these rough overestimates.

In restrictive settings, however, the straightforward approach
s to use the existing partial data to estimate the leverage scores.
elner et al. in Kelner and Levin (2013) exploit a similar concept
o obtain a spectral approximation of a graph in a semi-streaming
etting. The algorithm receives the rows of the vertex edge inci-
ence matrix (edges) one-by-one and rejects each row based on
ts leverage score relative to the edges seen so far. As more rows
re received, better estimates can be obtained for the leverage
cores, so the algorithm adjusts accordingly. The algorithm adds
he incoming rows of the vertex edge incidence matrix to a small
et of previously sampled rows called the sparsifier set. When the
parsifier set becomes too large, it gets resparsified, considering
ot only the incoming rows but also the rows already in the
parsifier set. However, as pointed out by Cohen et al. in Cohen
t al. (2020), the probability of sampling a row also depends
n pruning steps and not just earlier rows in the stream. This
ependence seems to break the argument made in Kelner and
 s

6

evin (2013) that the distribution of their algorithm is the same
s one round of sampling by leverage scores. Hence, a spectral
pproximation may not be guaranteed.
Similar to Cohen et al. (2020), we tackle the issue of de-

endency by adopting an online sampling approach. When a
ow (sensor’s contribution) is encountered, a decision to either
ample or not sample is made and never updated. As a result, our
lgorithm is a true Markov chain, with the sampling of ooo⊤i only

dependent on the choices made for ooo⊤j with j < i, and not on the
choices for ooo⊤j with j ≥ i.

4.2. Main result

In this section, we employ the ridge leverage score to ob-
tain an (ϵ, δ, d)-approximation. Our approach allows for online
sampling and eliminates the need for resparsification, as the
sampling probability of a sensor only depends on the previ-
ously sampled sensors. The ridge leverage score has already been
utilized for purposes such as approximate kernel ridge regres-
sion (El Alaoui & Mahoney, 2014), spectral approximation and
online sampling (Cohen et al., 2020; Kapralov, Lee, Musco, Musco,
& Sidford, 2017), and iterative regular leverage score computa-
tion (Li, Miller, & Peng, 2013). We broaden its application to
online sensor scheduling.

In ridge leverage scores, the focus is on computing leverage
scores for Q⊤Q+λI rather than just Q⊤Q , where λ > 0 is a small
constant. These scores are also referred to as λ-ridge leverage
scores in machine learning literature (Alaoui & Mahoney, 2015)
and defined as

τ λi := q⊤i (Q
⊤Q + λI)−1qi, (20)

for the i-th row, q⊤i , of matrix Q ∈ Rr×n.
One can modify Theorem 1 to work with λ-ridge leverage

scores to achieve an (ϵ, δ, d)-approximation of the dynamics (9).
This is formally stated in the following theorem.

Theorem 2 (Overestimate for (ϵ, δ, d)-approximation). Consider the
dynamics in (9) and an approximation factor ϵ ∈ (0, 1), additive
approximation factor δ > 0, λ := δ/ϵ, and time horizon t ≥ n.
Let ℓ = [ℓi] be a vector of overestimates of the λ-ridge leverage
scores of the rows of the observability matrix, i.e., ℓi ≥ ooo⊤i (X (t, 0)+
λI)−1oooi for all i ∈ [tp]. Let c > 3 be a constant and the diagonal
elements of the sparsification matrix Λs be Λs(i, i) = 1/

√
pi with

probability pi = min(c · ℓi · log n/ϵ2, 1), and zero otherwise.
Then, this sparsification matrix Λs specifies scheduling (11) that
is an (ϵ, δ, d)-approximation of (9) with probability at least 1 −

n1−c/3, i.e., O⊤(t, 0)Λ2
sO(t, 0) ≈ϵ,δ O⊤(t, 0)O(t, 0). Additionally,

he average number of active sensors at each time d is at most
· ∥ℓ∥1 · log n/tϵ2.

roof. Theorem 1 states that if we sample the rows of the
bservability matrix with probabilities proportional to their over-
stimated leverage scores, we can obtain an (ϵ, d)-approximation
ith high probability. This means

1−ϵ)O⊤(t, 0)O(t, 0) ⪯ Õ⊤(t, 0)Õ(t, 0) ⪯ (1+ϵ)O⊤(t, 0)O(t, 0).

e define Oλ(t, 0) = O(t, 0)⊕
√
λ · I , so

Oλ⊤(t, 0)Oλ(t, 0) = O⊤(t, 0)O(t, 0)+ λI.

If we sample the rows of Oλ(t, 0) with their overestimated lever-
age scores, we get

(1− ϵ)(X (t, 0)+ λI) ⪯ X̃ (t, 0)+ λI ⪯ (1+ ϵ)(X (t, 0)+ λI). (21)

t is worth noting that all the rows of
√
λ · I are sampled, as their

everage scores are one. Finally, subtracting λI from the sides and
ubstituting λ = δ/ϵ completes the proof of the theorem. □
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Theorem 2 demonstrates that using λ-ridge leverage scores
will not result in significantly different performance bounds.
However, its implications cannot yet be applied to sensor sam-
pling. This is due to two reasons: the method for computing the
overestimates of the λ-ridge leverage scores remains unknown,
and the sum of these overestimate scores, ∥ℓ∥1, is also unknown.
We will address these issues one at a time and demonstrate how
the proposed solutions provide a framework for designing an
online sensor scheduling.

The current definition of λ-ridge leverage scores given in (20)
cannot be used in an online setting to obtain even the exact
values of the scores, as the entire observability matrix is not
available beforehand. To align this definition with the online
objective, we modify and redefine it in an online fashion as the
following:

Definition 3 (Online λ-ridge Leverage Score, τ λi ). Let Oi−1(t, 0)
epresent the fraction of the observability matrix including its
irst i − 1 rows for i ∈ [tp]. The online λ-ridge leverage score is
efined as

τ λi = min
(
ooo⊤i (Xi−1(t, 0)+ λI)−1oooi, 1

)
, (22)

where Xi−1(t, 0) = O⊤

i−1(t, 0)Oi−1(t, 0) is the observability
ramian matrix of the first i− 1 rows considered.

Lemma 1 demonstrates that the online λ-ridge leverage score
s precisely what is required to determine the overestimates.

emma 1. The online λ-ridge leverage scores (τ λi ) overestimate the
egular λ-ridge leverage scores (τ λi ) for all i = 1, . . . , tp, meaning:

τ λi ≥ τ λi . (23)

Lemma 1 gives us the overestimates, so we only need to
approximate the sum of these scores to apply Theorem 2 in the
nline setting. Lemma 2 provides this approximation and bounds
he sum.

emma 2. Let ℓ = [ℓi] be a vector of λ-ridge leverage score
verestimates obtained by computing the online λ-ridge leverage
cores τ λi for the rows of the observability matrix. The sum of these
verestimates can be bounded as ∥ℓ∥1 =

∑
i∈[tp] ℓi ≤ 2n · log(1 +

O(t, 0)∥2/λ).

Finally, in the last theorem of this paper, we demonstrate how
o design a sampling strategy that utilizes online λ-ridge leverage
cores to construct a sensor schedule, S, on-the-fly. This results in
igorous guarantees on the quality of the approximation achieved
or the dynamics described by (9).

heorem 3 (Online Sampling). Assuming the dynamics of (8)–(9), a
ime horizon t ≥ n, an approximation factor ϵ ∈ (0, 1), an additive
pproximation factor δ > 0, and a fixed positive constant c are
iven, Algorithm 1 produces a scheduling of (11) that solves Problem
with a probability of at least 1−n−c/3 for d ≤ (2cn/(tϵ2)) · log n ·

og(ϵ · ∥O(t, 0)∥2/δ + 1), where d is the average number of active
ensors.

roof. This theorem combines the results in Theorem 2, Lem-
as 1, and 2. □

emark 4. To guarantee that Theorem 3 holds with high proba-
bility, the positive constant c should be chosen sufficiently large
to make the term n−c/3 negligible. If we have an estimate of the
spectral norm of O(t, 0), c can be adjusted such that Algorithm
1 solves Problem 1 for an adjustable average number of active
sensors d.
7

Algorithm 1 OnTheFly-Schedule({ooo⊤i }
tp
i=1,ϵ,δ,c)

Input: Rows {ooo⊤i }
tp
i=1 of the observability matrix (5), an approximation

factor ϵ ∈ (0, 1), additive approximation factor δ > 0, and a positive
constant c .

Output: Weighted sparse sensor schedule S such that ∥vec(S)∥0 =

O(n log n · log(ϵ · ∥O(t, 0)∥2/δ)/ϵ2).
1: Initialization: vec(S) = 0;
2: λ = δ/ϵ;
3: X0(t, 0) = 0;
4: O0(t, 0) = [ ];
5: for i = 1 to tp do
6: τ λi = min(ooo⊤i (Xi−1(t, 0)+ λI)−1oooi, 1);
7: pi = min(c · τ λi · log n/ϵ

2, 1);

8: vec(S)(i) =
{

1/
√
pi with probability pi,

0 otherwise;

9: Oi(t, 0) =
[

Oi−1(t, 0)
ooo⊤i

]
;

10: Xi(t, 0) = O⊤

i (t, 0)Oi(t, 0);
11: end for
12: return S.

Remark 5. The upper bound on the average number of active
sensors simplifies to O(log n · log(1+κ(X (n, 0)))), assuming t = n
and λ = σ 2

min(O(n, 0)) in Algorithm 1. Here, κ(·) is the condition
umber, σmin(·) finds the minimum singular value, and X (n, 0)
s the n-step observability Gramian matrix. To achieve a O(log n)
ound, the condition number κ(X (n, 0)) must remain bounded
s n increases, preventing certain states from becoming nearly
nobservable as the system size grows. In practice, when t ≥ n
nd λ does not precisely equal σ 2

min(O(t, 0)), we can introduce
wo positive constant factors to the sample complexity, but the
onclusion remains the same. In summary, with a bounded con-
ition number, only O(log n) sensors are required for a reliable
pproximation.

emark 6. Theorem 3 shows a correlation between the average
umber of active sensors d and the time horizon to estimate t
n terms of approximation factors ϵ and δ. To achieve the same
pproximation factors, a decrease in d results in an increase in t ,
nd vice versa. Increasing d requires more active sensors, while
ncreasing t requires longer time horizon.

emark 7. As stated in Siami et al. (2020, Theorem 2), to
chieve an (ϵ, d)-approximation of an LTI system, we need to
ample O(n log n/ϵ2) rows of the observability matrix. In contrast,
n the online setting, we demonstrate that we need to sample
(n log n · log(ϵ ·∥O(t, 0)∥2/δ+1)/ϵ2) rows to achieve an (ϵ, δ, d)-
pproximation of an LTV system. The factor log(ϵ · ∥O(t, 0)∥2/δ+
) represents the cost of online row sampling and is not an
rtifact of our analysis.

The following theorem confirms that the number of sampled
ows suggested by our online result is nearly tight, up to a
onstant and a logarithmic factor

heorem 4 (Optimal Row Size). Suppose ϵ · ∥O(t, 0)∥2 ≥ c1δ
and ϵ ∈ [c2/

√
n, 1), where c1 and c2 are fixed constants. Then,

in order to achieve an (ϵ, δ, d)-approximation for the LTV dynamics
(8)–(9) with probability at least 0.5, any online algorithm for sparse
sensor scheduling must include at least Ω

(
n log(ϵ∥O(t,0)∥2/δ)

ϵ2

)
sensors

in expectation.

We would like to emphasize that the lower bounds in Theo-
rem 4 on ϵ∥O(t, 0)∥2 and ϵ are very minor. They simply ensure
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Fig. 1. These plots depict snapshots of the evolving underlying graph for a dynamic network of 100 randomly distributed agents within a unit square space, connected
via a proximity graph. Every agent is connected to all of its spatial neighbors within a closed ball of radius r = 0.06 (Plot (a)), r = 0.24 (Plot (b)), r = 0.42 (Plot
c)), and r = 0.6 (Plot (d)). (For interpretation of the references to color in this figure legend, the reader is referred to the web version of this article.)
hat log(ϵ∥O(t, 0)∥2/δ) ≥ 1, and that ϵ is not so small that all
ensors in space and time are essentially sampled.
Due to space limitations, we only discuss the sketch of the

roof for Theorem 4. To obtain the result, we apply Yao’s min-
max principle and construct a distribution on inputs O(t, 0)
ith ∥O(t, 0)∥2 ≤ ϕ for any large enough ϕ. This distribution
nsures that any deterministic online sensor scheduling algo-
ithm that succeeds with probability at least 0.5 must include(

n log(ϵ · ϕ/δ)/ϵ2
)

active sensors on average. Consequently,
the best possible randomized algorithm that works with prob-
ability 0.5 on any input matrix with ∥O(t, 0)∥2 ≤ ϕ must
contain at least Ω

(
n log(ϵ · ϕ/δ)/ϵ2

)
sensors in expectation on

the worst-case input.
By using Algorithm 1 for online sensor scheduling, the prun-

ing routines described in Kelner and Levin (2013) are avoided,
thereby eliminating the dependency issues since the sampling
probability of a sensor depends only on earlier sensors considered
so far. However, we may miss the opportunity to have a lower
number of sampled sensors, as seen in the streaming setup de-
scribed in Kelner and Levin (2013). To ensure that the sampling
probabilities are bounded in the online setting, we add λI to the
process, but this modification adds an additive approximation
factor, δ, to the performance guarantee compared to Siami et al.
(2020).

5. Numerical examples

We demonstrate the results of the OnTheFly-Schedule al-
gorithm through several numerical examples to showcase its
efficiency.

Consider a dynamic networks including n = 100 agents/nodes,
which are randomly distributed in a 1 × 1 square-shape area and
are coupled over a proximity graph. Every agent will be connected
to all of its spatial neighbors within a closed ball of radius r =

0.06k where k ∈ Z+. The radius increases with time, causing the
graph to become increasingly dense as we move forward in time.
This phenomenon is illustrated in Fig. 1 which depicts the graphs
of the network for the early time steps k = 1, 4, 7, and 10. It can
be observed that the graph rapidly becomes connected and dense
even in these early stages of k. The time-varying state matrix A(k)
and the output matrix C(k) for this system are given by

A(k) = I − ϑL(k), and C(k) := I, (24)

where L(k) represents the Laplacian matrix of the underlying
graph during the k-th time step, and ϑ denotes the time reso-
lution. To ensure the (marginal) stability of the networks, which
are almost connected over time, we set the time resolution to 1/n.

Let us consider the online sensor scheduling problem dis-
cussed in Section 3.3 for the network (24). The OnTheFly-
chedule algorithm is applied to sequentially pick both sensor
8

Fig. 2. This plot shows the weighted sparse sensor schedule based on Algorithm
1 for the time-varying dynamics (8)–(9) with the system matrices (24) where
only ≈13% of the sensors on the average are active at each time between 0
to n − 1 = 99. The network has p = 100 sensors, and the color of element
(j, k) demonstrates the normalized weight s̄j,k+1 obtained by normalizing the
resulting schedule S = [sj,k+1] of Algorithm 1 such that

∑
k
∑

j s̄j,k+1 = nd, where
j ∈ [100], k+1 ∈ [100], and d is the average number of nonzero elements in the
schedule S. (For interpretation of the references to color in this figure legend,
the reader is referred to the web version of this article.)

outputs and activation times in an online setting. For the purpose
of this experiment, the time-to-estimate t is set to n without
loss of generality. This problem, in a static sense, appears similar
to problems in undirected consensus networks, where a pre-
determined number of active agents are selected as leaders to
minimize certain controllability measures (cf. Rahmani, Ji, Mes-
bahi, and Egerstedt (2009)). The OnTheFly-Schedule algorithm
simultaneously uses both non-structural information (i.e., sensor
outputs c⊤j (k), where j ∈ [p] and k + 1 ∈ [t]) and structural
information (i.e., A(k)) of the network to design a weighted sparse
sensor schedule S. This design leads to an (ϵ, δ, d)-approximation
of the fully-sensed dynamics (8)–(9). The sparse schedule pro-
duced by Algorithm 1 with ϵ = 0.5, δ = 0.2, and c = 8 is shown
in Fig. 2.

Table 1 presents the comparative results for the A-optimality
performance measure or TraceX−1(t, 0). The offline randomized
algorithm, (Siami et al., 2020, Algorithm 6), is used to obtain
the offline results. We assume that the complete set of system
matrices is accessible during the offline computation to calculate
the leverage scores, with an approximation factor of 0.5 and a
constant of 0.94 set in the offline algorithm. One may expect
slightly better performance and fewer sampled sensors for the
offline algorithm because it provides an (ϵ, d)-approximation of
the system and uses exact values for the leverage scores. To
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Table 1
Observability performance measure results.

Alg. 1 (Fig. 2) Offline alg. Uniform sampling Fully sensed

TraceX−1(t, 0) 78.47 75.80 1360.3 20.23
Average number of active sensors (d) 12.53 10.30 25 100
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Fig. 3. This figure shows a comparison between Algorithm 1 (in blue) and the
ffline algorithm (in red) in terms of the sum of normalized weights of activated
ensors over time. The weights used in this analysis are the same as those used
n Table 1 which were normalized for the resulting average number of active
ensors. Both algorithms exhibit a similar front-loaded behavior, but the offline
lgorithm shows higher variance due to repeated sampling of certain sensors.
For interpretation of the references to color in this figure legend, the reader is
eferred to the web version of this article.)

nsure a fair comparison, we normalize the resulting schedules
f both our algorithm and the offline algorithm such that the
um of the non-zero elements in the resulting sparse schedule S
quals nd, where d is the average number of non-zero elements as
eported in the table. The performance of our proposed algorithm
nd the randomized offline algorithm is comparable to that of a
ully-sensed system, with the offline algorithm expectedly per-
orming slightly better. For uniform sampling, we randomly select
sensors from the total of p available sensors at each time step
between 0 and 99. To obtain comparable results, we perform

he entire sampling process 50 times and report the one with the
inimum objective value in Table 1.
Fig. 3 illustrates the sum of the normalized weights of the

ctivated sensors at each time step for both our algorithm (Algo-
ithm 1) in the top and the offline algorithm in the bottom. These
eights are the same ones used to obtain the results in Table 1.
e observe that the two algorithms behave almost similarly. Both
emonstrate a ‘‘front-loaded’’ behavior, with more active sensors
arly in the time horizon, followed by sampling of only those that
re significantly different later on. However, due to the nature
f sampling in the offline algorithm that allows for replacement,
ne can observe that the algorithm is interested in repeating
he sampling of particular sensors, leading to zero sums as well
s several spikes in various places of the figure for the offline
lgorithm. These phenomena lead to a variance of 189.97 in the
ums obtained by the offline algorithm, which is higher than the
ariance of 174.28 for our algorithm. The averages of the sums
re listed in Table 1.
To gain some visual insights about which agents are sensed

ore and which less, we color the nodes of the underlying graph
n Fig. 4 based on the total number of active steps during time
teps 0 to 99 from least (white) to greatest (red). Remark that the
ctive steps are generated based on Algorithm 1 and normalized
 T

9

Fig. 4. For clarity and ease of visual interpretation, the underlying graph for the
network in Fig. 2 is displayed at time k = 6 here, as the edge set of the graph at
ime k = 99 is too dense and obscures the nodes. Node colors indicate the sum
f the normalized weights of Fig. 2 (the total number of active steps) for each
ode, i.e.,

∑99
k=0 s̄j,k+1 , from least (white) to greatest (red). Note that the weights

re extracted by Algorithm 1 and normalized for the resulting d. According to
he simulation, on average, only around 13% of the nodes/agents are sensed at
ach time. (For interpretation of the references to color in this figure legend,
he reader is referred to the web version of this article.)

or resulting d, the average number of nonzero entries in the out-
ut schedule (same as Fig. 2). Additionally, in order to maintain
he clarity of the figure, we do not plot the underlying graph in
he final step (k = 99), and instead show the edges generated for
he network at an earlier step, k = 6.

To demonstrate the practicality of the bounds obtained in The-
rem 3, we consider a time-invariant version of the network (24)
here the underlying structure does not change over time. We
xamine three different scenarios for this time-invariant network.
n the first scenario, we assume that the underlying graph only
onsists of unweighted self-loops for each node and set the time
esolution to (n − 1)/n. In the second scenario, we consider a
onnected underlying graph for the network and set ϑ = 1/n.
inally, in the third scenario, we set the time resolution for the
onnected structure such that the dynamics become unstable. We
se the same values for ϵ, δ, and c as we used previously.
In the first scenario, setting the estimation time horizon to n

ields a spectral norm of the t-step observability matrix equal
o 1−n−2n

1−n−2 , which remains close to one when n is greater than or
equal to six. According to Theorem 3, this implies a theoretical
upper bound of 34.8 · log n on the average number of active
ensors. In the second scenario, the spectral norm is always equal
o n when t = n, regardless of the underlying connected graph.
herefore, the theoretical upper bound is 64 · log(2.5 ·n+1) · log n.
n the third scenario, the spectral norm is greater than n and is
etermined by the maximum eigenvalue of the Laplacian matrix
f the graph and the time resolution. For simplicity, let us assume
hat the spectral norm is γ ·n for γ > 1. Therefore, the theoretical
pper bound is 64 · log(2.5 · γ · n+ 1) · log n.
Fig. 5 shows the three theoretical upper bounds and the num-

er of available sensors as functions of the number of nodes n.
hese bounds are practical and effective when they are less than
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Fig. 5. Comparison of theoretical upper bounds on the average number of
sampled sensors for three different network scenarios and the available sensor
set, plotted as a function of the number of nodes n. Scenario 1 corresponds to
nweighted self-loops with time resolution (n − 1)/n, Scenario 2 corresponds
o connected underlying graphs with time resolution 1/n, and Scenario 3
orresponds to connected graphs with unstable dynamics and spectral norm
· n with γ = 50. It can be observed that when the system is stable (Scenario
), the bound becomes effective sooner in terms of the number of nodes than
or marginally stable and unstable network scenarios (Scenarios 2 and 3). (For
nterpretation of the references to color in this figure legend, the reader is
eferred to the web version of this article.)

he number of available sensors. The practicality of the bounds
ppears to be directly related to the stability of the system.
pecifically, in Scenario 1 (stable), the bound is effective for a
etwork size less than 100, while in the marginally and unstable
cenarios (Scenarios 2 & 3), it is effective for network sizes greater
han 600 and 1000, respectively.

. Future steps

This work represents one of the first endeavors to design a
parse schedule for LTV dynamics in an online setting. To further
dvance this novel field of research and assist the community, we
rovide insights into some of the open questions related to our
ork as follows:
atch Processing: Algorithm 1 processes the input stream of row
ectors from the observability matrix one-by-one. However, the
ull set of sensors is available at each time step of the dynamic
ystem. To improve performance, a possible extension of the
nTheFly-Schedule algorithm is to modify it for batch pro-
essing of rows/sensors. Specifically, at time step k, the sensor
et C(k) or the observability rows Okp+1:(k+1)p(t, 0) = C(k)Φ(k, 0)
s accessible. To speed up computation, one could calculate the
ampling probabilities for these rows simultaneously using a
ystem solver for (O⊤

kp+1:(k+1)p(t, 0)Okp+1:(k+1)p(t, 0)+ λI).
Semi-streaming Algorithm: We observe that a less restrictive set-
ting, semi-streaming, would potentially offer to sample fewer
sensors and even provide better performance guarantees than
our online algorithm. Furthermore, as the nature of the network
dynamics confirms, the semi-streaming algorithm might be bet-
ter suited to the structure of our on-the-fly sensor sparsification
problem. Therefore, an interesting extension of our work would
be developing an algorithm that is capable of designing a sensor
schedule in a streaming setting. A streaming algorithm typically
divides data into small chunks for efficient processing, while an
online algorithm processes data one item at a time in real-time.
Memory Reduction: It is clear from Algorithm 1 that to calculate
τ λi , we must store all previous rows of the observability matrix
that have been processed so far in memory. This might not be
ideal for many applications that aim to reduce memory usage
10
through sensor sampling. This raises two important questions: is
it possible to use the contribution of the sample sensors stored
so far as an approximation of Oi−1(t, 0) while computing τ λi and
still obtain the same or similar performance guarantees and row
sample size? Can we go further and instead of storing all previous
sampled rows in memory, only retain a smaller subset of rows
from the observability matrix, while still achieving acceptable
guarantees and row sample size?

Our ongoing research is devoted to answering some of these
open questions.

7. Concluding remarks

In this paper, we present a new framework for randomly
selecting a constant number of active sensors on-the-fly in order
to approximate certain observability measures. The framework
is inspired by recent advancements in online algorithms for ma-
chine learning and big data analysis. In the proposed algorithm,
each row of the observability matrix of a given large-scale LTV
system considers one-by-one, and we irrevocably decide whether
to keep the corresponding sensor at each time in the sensor
scheduling or not. The selected sensor is added to the schedule
by assigning it a weight and does not discard or re-weight later.
Our framework is simple and intuitive, and it represents new
theoretical properties of the leverage score. Similar results can
be developed for the actuator selection problem.
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Appendix

A.1. Definition of terms and further discussions

In this section, we have the objective of gathering and ex-
plaining the definitions of key concepts that are central to un-
derstanding the paper. Additionally, we will present new findings
and results that add further depth to the ideas and arguments
presented.

A.1.1. Why systemic performance measure
Here, we will discuss the reasons for using the systemic per-

formance metrics introduced in Section 2.3 to characterize the
performance of sparse sensor scheduling.

In real-world scenarios, it is probable that measurements will
be corrupted by noise. To account for this, the updated output
dynamics y(k) = C(k) x(k) + ξ(k), will be studied where ξ is the
vector of sensor noise or error.

The system of Eqs. (6) can then be updated to
(t, 0) = O(t, 0) x(0) + ξ̃(t, 0) where ξ̃(t, 0) :=[
ξ⊤(0) ξ⊤(1) · · · ξ⊤(t − 1)

]⊤
.

Suppose we have independent and identically distributed ran-
dom variables ξ(0), . . . , ξ(t − 1) with a normal distribution
N (0, σ 2I). In an estimation problem, the goal is to estimate
the initial state vector x(0). If ooo , . . . ,ooo span Rn, indicating
1 tp
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bservability of the system’s dynamics, the maximum-likelihood
stimate of x(0), which is the same as the minimum variance

estimate, is given by the least-squares solution

x̂(0) =
( tp∑

i=1

oooiooo
⊤

i

)−1 tp∑
i=1

y(i)oooi,

where y(i) is the i-th entry of the vector of measurement y(t, 0).
he associated estimation error e = x(0) − x̂(0) has zero mean
nd covariance matrix

= E ee⊤ = σ 2
( tp∑

i=1

oooiooo
⊤

i

)−1
= σ 2X−1(t, 0), (A.1)

where X (t, 0) is the t-step observability Gramian matrix. The
matrix Σ characterizes the precision of the estimation or the
informative value of the measurements. As indicated by A.1.1, the
covariance matrix is inversely proportional to the observability
Gramian matrix. The objective of sparse sensor scheduling in this
study is to select a limited number of vectors oooi from the available
ptions, in order to approximate the error covariance matrixΣ as

closely as possible to the scenario in which all vectors are utilized.
The β-confidence ellipsoid for e is the minimum volume el-

lipsoid that contains e with a probability of β . This ellipsoid
represents the region in which x(0)− x̂(0) lies with β confidence
and is given by

Eα =
{
z ∈ Rn

: z⊤X (t, 0) z ≤ α
}
, (A.2)

where α = F−1
χ2
n
(β), with Fχ2

n
being the cumulative distribution

function of a χ-squared random variable with n degrees of free-
dom, and for simplicity, we assume that the variance σ is equal
to one.

A metric that quantifies the accuracy of an estimation ac-
cording to the covariance matrix is the size of the β-confidence
ellipsoid

Volume(Eα) =
(απ )n/2

Γ ( n2 + 1)
detX−1/2(t, 0), (A.3)

here Γ (·) is the Gamma function. We are generally interested
n volume ratios, so it is more convenient to work with the
ogarithm of the volume

log Volume(Eα) = η −

(1
2

)
log detX (t, 0), (A.4)

here constant η only depends on n and β . The logarithm of the
olume of the confidence ellipsoid, as stated in (A.4), provides
quantitative measure of the information content of the set of
easurements (i.e., the set of the observability matrix rows). This
etric is referred to as D-optimality (Joshi & Boyd, 2008).
Another commonly used metric is the norm of the error co-

ariance matrix, which is equal to the smallest eigenvalue of
he t-step observability Gramian matrix X (t, 0). The size of the
confidence ellipsoid Eα is proportional to ∥Σ∥

1/2, thus controlling
the value of ∥Σ∥ can be understood as adjusting the size of the
ellipsoid. This approach is referred to as E-optimality, as outlined
in Boyd and Vandenberghe (2004).

In contrast, A-optimality focuses on controlling the trace of the
error covariance matrix, TraceΣ . The trace represents the sum
of the eigenvalues of the covariance matrix, which determine the
lengths of the semi-axes of the confidence ellipsoid. As a result, an
A-optimal design can be interpreted as controlling the volume of
the ellipsoid. This objective is equivalent to the expected squared
norm of the error, as expressed by the equation: E ∥e∥2 =

Trace(ee⊤) = TraceΣ .

There are additional optimality criteria such as T-, V-, and G-

ptimality, which we will not discuss here. It can be seen that all q

11
the optimality criteria discussed so far are ways to quantify differ-
ent aspects of the error covariance matrix and, by extension, the
observability Gramian matrix. In the context of sensor selection,
the objective is to choose a subset of rows from the observability
matrix that results in a system that is as close as possible to
the system with the complete set of rows, based on one of
the discussed metrics for the confidence ellipsoid. The paper in-
troduces two approximations, (ϵ, d)-approximation and (ϵ, δ, d)-
approximation, to quantify the proximity of the sparse system
to the fully sensed system based on the resulting covariance
(observability Gramian) matrix.

It can be easily demonstrated that all the properties listed in
the definition of the systemic performance measure, Definition 1,
hold for these optimality measures. As a result, these optimality
measures are commonly used examples of the larger class of sys-
temic performance measures. We encourage interested readers to
review the comprehensive works (Siami & Motee, 2018a, 2018b)
for a complete list of widely recognized systemic performance
measures.

A.1.2. (ϵ, δ, d) to (ϵ, d) approximation
The following result demonstrates how an (ϵ, δ, d)-

approximation can be simplified to an (ϵ, d)-approximation.

Proposition 1. Taking the additive approximation factor δ = ϵ ·
2
min(O(t, 0)) transforms the (ϵ, δ, d)-approximation into an (ϵ, d)-
pproximation, with σmin(O(t, 0)) denoting the minimum singular
alue of the observability matrix O(t, 0).

roof. By setting δ = ϵ · σ 2
min(O(t, 0)), we have the following:

· I ⪯ ϵ · X (t, 0). (A.5)

s a result, we obtain (1 + ϵ)X (t, 0) + δI ⪯ (1 + 2ϵ)X (t, 0).
alving ϵ (which only affects the bounds by a constant factor)
ields (1+ϵ/2)X (t, 0)+δI ⪯ (1+ϵ)X (t, 0). To complete the proof,
e can also show that (1− ϵ)X (t, 0) ⪯ (1− ϵ/2)X (t, 0)− δI. □

Proposition 1 requires some estimate of σmin(O(t, 0)) before-
and which is not available in an online setup.

.1.3. Leverage score

efinition 4 (Leverage Score, τi). The leverage score of the i-th row
f matrix Q ∈ Rr×n is the solution of the following optimization
roblem

i = τ (q⊤i ) = minimize
w∈Rr

∥w∥
2

subject to Q⊤w = qi

(A.6)

here q⊤i is the i-th row of matrix Q . τi measures how important
i is in composing range of Q⊤.

Optimization (A.6) is a least norm optimization, where the
nique optimal solution can be obtained by introducing Lagrange
ultipliers. For a full-row rank matrix Q , the solution is in the

orm of ŵ = Q (Q⊤Q )−1qi, and hence τi = q⊤i (Q
⊤Q )−1qi. If Q is

ot a full-rank matrix, then τi = q⊤i (Q
⊤Q )†qi.

emark 8. The maximum value of τi is one, which can be
chieved by selecting w as the i-th basis vector in Rr . However, τi
ill be less than one if other rows have a similar alignment with
⊤

i or if ∥qi∥ is small.

roposition 2. For all matrices Q ∈ Rr×n and for every i ∈ [r],
he leverage score τ (q⊤i ) is defined as the smallest α satisfying:

⊤ ⊤
iqi ⪯ α · Q Q . (A.7)
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roof. This proposition can be established through two steps.
irstly, we demonstrate that the outer product of any row q⊤i by
tself is bounded above by a factor of α times Q⊤Q in the semi-
efinite sense. Secondly, we prove that the minimum value of this
actor is precisely the leverage score of the row. To prove the first
tep, we begin by utilizing the definition of Loewner ordering as
ollows:

x ∈ Rn
: x⊤qiq

⊤

i x ≤ α · x⊤Q⊤Qx. (A.8)

e claim that, without loss of generality, we can assume x lies
n the range space of Q⊤Q . This can be justified by noting that if
˜ is the component of x that belongs to the null space of Q⊤Q ,
t can be disregarded as Q⊤Q x̃ = x̃⊤Q⊤Q x̃ = x̃⊤q⊤i qix̃ = 0. If x
ies in the range space, it can be represented as x = (Q⊤Q )−1/2y
for some y, where (Q⊤Q )−1/2

= VΣ−1V⊤ if UΣV⊤ is the SVD
decomposition of the matrix Q . Therefore, the left-hand side
of (A.8) can be rewritten as y⊤(Q⊤Q )−1/2qiq⊤i (Q

⊤Q )−1/2y. The
middle term M = (Q⊤Q )−1/2qiq⊤i (Q

⊤Q )−1/2 is a rank-one matrix,
so its Trace and its only eigenvalue are equal. Therefore,

λmax(M) = Trace q⊤i (Q
⊤Q )−1qi = τ (q⊤i ),

or equivalently we have (Q⊤Q )−1/2qiq⊤i (Q
⊤Q )−1/2

⪯ α · I, for
some α ≥ λmax(M). This implies for any y ∈ Rn,

y⊤(Q⊤Q )−1/2qiq
⊤

i (Q
⊤Q )−1/2y ≤ α · ∥y∥2,

hich gives the proof for the first step. Since τ (q⊤i ) = λmax(M),
he second step will be proven automatically. □

.1.4. Essential lemmas
This subsection provides a compilation of essential lemmas

ecessary for the paper.

emma 3. For any symmetric matrix Z ∈ Rn×n satisfying Z ⪰ I , it
follows that Z−1

⪯ I .

Proof. Suppose the eigenvalues of Z ∈ Rn×n are λ1, . . . , λn. Then,
he eigenvalues of Z − I are λ1 − 1, . . . , λn − 1 because if vi is
he eigenvector associated with λi, then (Z − I)vi = Zvi − vi =

ivi − vi = (λi − 1)vi. The condition Z ⪰ I implies that Z − I ⪰ 0,
hich means all eigenvalues of Z− I are non-negative, i.e., λi ≥ 1

or all i ∈ [n]. The eigenvalues of Z−1 are 1
λ1
, . . . , 1

λn
. Given

hat λi ≥ 1, it follows that 1
λi

≤ 1, which further implies that
−1

⪯ I . □

To prove Lemma 2 (one of the main results of the paper), we
will utilize two mathematical concepts: the relationship between
the determinant of a matrix and its rank-one perturbation and
an upper bound for detQ⊤Q . These concepts are addressed in
Lemmas 4 and 5, respectively.

Lemma 4 (Lemma 1.1 of Ding and Zhou (2007)). Suppose P ∈ Rn×n

is an invertible matrix and u, v ∈ Rn are column vectors, then

det(P + uv⊤) = (1+ v⊤P−1u) det P . (A.9)

Lemma 5. Suppose Q ∈ Rr×n such that Q⊤Q ⪰ 0, then
detQ⊤Q ≤ (∥Q∥

2)n.

A.2. Missing proofs

The following sections present supplementary proofs for the
theoretical findings discussed in the main text of this paper.
 p
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A.2.1. Proof of Theorem 1
To prove this theorem, we need the following generalization

of the Chernoff bound for matrices (which is a variant of Tropp
(2012, Corollary 5.2)).

Lemma 6 (Matrix Chernoff Bound). Suppose a sequence of indepen-
dent random matrices Mi ∈ Sn

+
is given. Define M =

∑
i Mi and

D = E[M]. If Mi ⪯ R · D, then

P
[
M ⪯ (1− ϵ)D

]
≤ n · e

−ϵ2
2R , (A.10)

nd[
M ⪰ (1+ ϵ)D

]
≤ n · e

−ϵ2
3R . (A.11)

Now, let us prove Theorem 1.

roof. To utilize the outcome of Lemma 6, we assign matrix Mi =
1
pi
oooiooo

⊤

i to each row of the observability matrix with a probability
of pi, and zero otherwise. According to 4, D = E[

∑tp
i=1 Mi] =

X (t, 0). Additionally, we need to calculate R in order to apply the
Chernoff lemma. It is evident that when pi < 1, R can be obtained
easily through the properties of Loewner ordering:

Mi =
oooiooo

⊤

i

c · ui · log n/ϵ2
⪯

oooiooo
⊤

i

c · τi · log n/ϵ2
, ∀i ∈ [tp], (A.12)

(this is correct since τi ≤ ui), and applying the results of
roposition 2, i.e., oooiooo

⊤
i

τi
⪯ X (t, 0), so

Mi ⪯
1

c · log n/ϵ2  
R

X (t, 0). (A.13)

If pi = 1, Mi = oooiooo
⊤

i with certainty, and therefore (A.13) does not
apply in this case. However, choosing a random matrix Mi with a
probability of one is equivalent to selecting and summing several
new random matrices, each with a probability of one, or

Mi = oooiooo
⊤

i =

c·log n/ϵ2∑
j=1

oooiooo
⊤

i

c · log n/ϵ2
=

c·log n/ϵ2∑
j=1

M (j)
i ,

where M (j)
i ⪯

τi
c·log n/ϵ2

X (t, 0) ⪯ 1
c·log n/ϵ2

X (t, 0). In fact, viewing
Mi as the sum of these new random matrices does not alter the
expected value of M (i.e., D), so for the purpose of proof, one can
assume that Mi has been replaced by the sum of these smaller
random matrices. This assumption gives the concentration with
R =

1
c·log n/ϵ2

, and thus

1− ϵ)X (t, 0) ⪯
∑

i

Mi ⪯ (1+ ϵ)X (t, 0), (A.14)

ith probability at least 1−n ·e−
ϵ2
3R = 1−n ·e−

c·log n
3 = 1−n1−c/3.

quivalently (A.14) can be written as

1− ϵ)X (t, 0) ⪯ O⊤(t, 0) Λ2
s O(t, 0)  

X̃ (t,0)

⪯ (1+ ϵ)X (t, 0),

here Λs is a diagonal matrix whose diagonal entries

s(i, i) =
{
1/
√
pi with probability pi,

0 otherwise.

Finally, using the standard Chernoff bound, it can be demon-
strated that the sparsification matrix Λs has, at most,

∑
min(c ·

ui · log n/ϵ2, 1) ≤ c · ∥u∥1 · log n/ϵ2 non-zero elements with high
robability. □
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.2.2. Proof of Lemma 1
We begin the proof by considering the fact that for any ob-

servable time-varying system (8)–(9) (see Assumption 2), and for
a time horizon t ≥ n, we have 0 ⪯ Xi−1(t, 0) ⪯ X (t, 0); therefore,

0 ≺ Xi−1(t, 0)+ λI  
Q

⪯ X (t, 0)+ λI  
P

,

here Xi−1(t, 0) represents the observability Gramian matrix cal-
ulated using the first i−1 rows. Suppose that Q = UΛU⊤ is the
igen decomposition of the symmetric matrix Q . Since Q ≻ 0,
hen Λ ≻ 0, and therefore Q−1/2

= Q−⊤/2
= UΛ−1/2U⊤ exists.

y congruence, P −Q ⪰ 0 implies that Q−⊤/2 (P −Q )Q−1/2
⪰ 0,

r equivalently Q−⊤/2 P Q−1/2
− I ⪰ 0. Taking Z = Q−⊤/2 P Q−1/2,

ne can use the result of Lemma 3 to get (Q−⊤/2 P Q−1/2)−1
− I ⪯

0, or Q 1/2P−1Q⊤/2
− I ⪯ 0. Again by congruence this implies

Q−1/2(Q 1/2P−1Q⊤/2
− I)Q−⊤/2

⪯ 0,

or equivalently P−1
⪯ Q−1. Substituting the original expressions

for Q and P , we get

(Xi−1(t, 0)+ λI)−1
⪰ (X (t, 0)+ λI)−1. (A.15)

By definition, (A.15) means that for any real vector a ∈ Rn the
following inequality holds

a⊤(Xi−1(t, 0)+ λI)−1a ≥ a⊤(X (t, 0)+ λI)−1a.

By setting a = oooi for any i ∈ [tp], the proof is completed.

A.2.3. Proof of Lemma 2
Suppose the process has just begun, and the first row (corre-

sponding to a sensor) of the expanded observability matrix (5)
has just been considered. Using (A.9), one can write

det(λI + c1(0)c⊤1 (0)) = det(λI) · (1+ c⊤1 (0)(λI)
−1c1(0)  

τλ1

). (A.16)

sing the fact that for any x ∈ [0, 1], 1 + x ≥ e
x
2 , we can lower

ound the right-hand side of (A.16) by

et(λI) · (1+ τ λ1) ≥ det(λI) · eτ
λ
1/2. (A.17)

ow, suppose the second row, c⊤2 (0), is considered, then,

et(λI+
[
c⊤1 (0)
c⊤2 (0)

]⊤ [
c⊤1 (0)
c⊤2 (0)

]
  

O⊤
2 (t,0)·O2(t,0)

)

= det(λI + c1(0)c⊤1 (0)+ c2(0)c⊤2 (0))
= det(λI + c1(0)c⊤1 (0)) · (1+ τ λ2)

≥ det(λI) · e
1
2 (τ

λ
1+τλ2 ).

Upon receipt of all tp rows, the observation shows that we have:

det(λI + O⊤(t, 0)O(t, 0)) ≥ det(λI) · e
1
2
∑

i∈[tp] τ
λ
i

= λn
· e

1
2
∑

i∈[tp] τ
λ
i . (A.18)

q. (A.18) shows that the lower bound of det(λI+O⊤(t, 0)O(t, 0))
s directly related to

∑
i∈[tp] τ

λ
i . Then, applying Lemma 5 will

complete the proof as

λn
· e

1
2
∑

i∈[tp] τ
λ
i ≤ det(λI + O⊤(t, 0)O(t, 0)) ≤ (∥O(t, 0)∥2 + λ)n

o
n
· e

1
2
∑

i∈[tp] τ
λ
i ≤ (∥O(t, 0)∥2 + λ)n.

aking the logarithm of both sides results in

log λ+
1
2

∑
τ λi ≤ n log(∥O(t, 0)∥2 + λ),
i∈[tp]

13
r

ℓ∥1 =
∑
i∈[tp]

τ λi ≤ 2n log(∥O(t, 0)∥2/λ+ 1).

References

Alaoui, Ahmed, & Mahoney, Michael W. (2015). Fast randomized kernel ridge re-
gression with statistical guarantees. Advances in Neural Information Processing
Systems, 28.

Athans, Michael (1972). On the determination of optimal costly measurement
strategies for linear stochastic systems. IFAC Proceedings Volumes, 5(1),
303–313.

Badanidiyuru, Ashwinkumar, Mirzasoleiman, Baharan, Karbasi, Amin, &
Krause, Andreas (2014). Streaming submodular maximization: Massive
data summarization on the fly. In Proceedings of the 20th ACM SIGKDD
international conference on knowledge discovery and data mining (pp.
671–680).

araniuk, Richard G. (2007). Compressive sensing [lecture notes]. IEEE Signal
Processing Magazine, 24(4), 118–121.

oyd, S. P., & Vandenberghe, L. (2004). Convex optimization. Cambridge University
Press.

hakrabortty, Aranya, & Ilić, Marija D. (2011). Vol. 3, Control and optimization
methods for electric smart grids. Springer.

ohen, Michael B, Lee, Yin Tat, Musco, Cameron, Musco, Christopher,
Peng, Richard, & Sidford, Aaron (2015). Uniform sampling for matrix approx-
imation. In Proceedings of the 2015 conference on innovations in theoretical
computer science (pp. 181–190).

ohen, Michael B., Musco, Cameron, & Pachocki, Jakub (2020). Online row
sampling. Theory of Computing, 16(1), 1–25.

ing, Jiu, & Zhou, Aihui (2007). Eigenvalues of rank-one updated matrices with
some applications. Applied Mathematics Letters, 20(12), 1223–1226.

ong, Yi, & Huang, Jie (2014). Leader-following connectivity preservation
rendezvous of multiple double integrator systems based on position
measurement only. IEEE Transactions on Automatic Control, 59(9), 2598–2603.

l Alaoui, Ahmed, & Mahoney, Michael W. (2014). Fast randomized kernel
methods with statistical guarantees. Stat, 1050, 2.

itch, Katherine, & Leonard, Naomi Ehrich (2015). Joint centrality distinguishes
optimal leaders in noisy networks. IEEE Transactions on Control of Network
Systems, 3(4), 366–378.

itch, Katherine, & Leonard, Naomi Ehrich (2016). Optimal leader selection for
controllability and robustness in multi-agent networks. In 2016 European
control conference (pp. 1550–1555). IEEE.

otiadis, Filippos, & Vamvoudakis, Kyriakos G. (2021). Learning-based actuator
placement for uncertain systems. In 2021 60th IEEE conference on decision
and control (pp. 90–95). IEEE.

eorges, Didier (1995). The use of observability and controllability gramians
or functions for optimal sensor and actuator location in finite-dimensional
systems. Vol. 4, In Proceedings of 1995 34th IEEE conference on decision and
control (pp. 3319–3324). IEEE.

oshi, Siddharth, & Boyd, Stephen (2008). Sensor selection via convex
optimization. IEEE Transactions on Signal Processing, 57(2), 451–462.

apralov, Michael, Lee, Yin Tat, Musco, CN, Musco, Christopher Paul, & Sid-
ford, Aaron (2017). Single pass spectral sparsification in dynamic streams.
SIAM Journal on Computing, 46(1), 456–477.

elner, Jonathan A., & Levin, Alex (2013). Spectral sparsification in the
semi-streaming setting. Theory of Computing Systems, 53(2), 243–262.

atora, Vito, Nicosia, Vincenzo, & Russo, Giovanni (2017). Complex networks:
principles, methods and applications. Cambridge University Press.

i, Mu, Miller, Gary L., & Peng, Richard (2013). Iterative row sampling. In 2013
IEEE 54th annual symposium on foundations of computer science (pp. 127–136).
IEEE.

iu, Yang-Yu, & Barabási, Albert-László (2016). Control principles of complex
systems. Reviews of Modern Physics, 88(3), Article 035006.

anohar, Krithika, Kutz, J. Nathan, & Brunton, Steven L. (2021). Optimal sensor
and actuator selection using balanced model reduction. IEEE Transactions on
Automatic Control, 67(4), 2108–2115.

orari, Manfred, & Stephanopoulos, George (1980). Minimizing unobservability
in inferential control schemes. International Journal of Control, 31(2), 367–377.

üller, P. C., & Weber, H. I. (1972). Analysis and optimization of certain qualities
of controllability and observability for linear dynamical systems. Automatica,
8(3), 237–246.

lshevsky, Alex (2014). Minimal controllability problems. IEEE Transactions on
Control of Network Systems, 1(3), 249–258.

ahmani, Amirreza, Ji, Meng, Mesbahi, Mehran, & Egerstedt, Magnus (2009).
Controllability of multi-agent systems from a graph-theoretic perspective.
SIAM Journal on Control and Optimization, 48(1), 162–186.

ajapakse, Indika, Groudine, Mark, & Mesbahi, Mehran (2012). What can systems
theory of networks offer to biology? PLoS Computational Biology, 8(6), Article
e1002543.

http://refhub.elsevier.com/S0005-1098(24)00042-6/sb1
http://refhub.elsevier.com/S0005-1098(24)00042-6/sb1
http://refhub.elsevier.com/S0005-1098(24)00042-6/sb1
http://refhub.elsevier.com/S0005-1098(24)00042-6/sb1
http://refhub.elsevier.com/S0005-1098(24)00042-6/sb1
http://refhub.elsevier.com/S0005-1098(24)00042-6/sb2
http://refhub.elsevier.com/S0005-1098(24)00042-6/sb2
http://refhub.elsevier.com/S0005-1098(24)00042-6/sb2
http://refhub.elsevier.com/S0005-1098(24)00042-6/sb2
http://refhub.elsevier.com/S0005-1098(24)00042-6/sb2
http://refhub.elsevier.com/S0005-1098(24)00042-6/sb3
http://refhub.elsevier.com/S0005-1098(24)00042-6/sb3
http://refhub.elsevier.com/S0005-1098(24)00042-6/sb3
http://refhub.elsevier.com/S0005-1098(24)00042-6/sb3
http://refhub.elsevier.com/S0005-1098(24)00042-6/sb3
http://refhub.elsevier.com/S0005-1098(24)00042-6/sb3
http://refhub.elsevier.com/S0005-1098(24)00042-6/sb3
http://refhub.elsevier.com/S0005-1098(24)00042-6/sb3
http://refhub.elsevier.com/S0005-1098(24)00042-6/sb3
http://refhub.elsevier.com/S0005-1098(24)00042-6/sb4
http://refhub.elsevier.com/S0005-1098(24)00042-6/sb4
http://refhub.elsevier.com/S0005-1098(24)00042-6/sb4
http://refhub.elsevier.com/S0005-1098(24)00042-6/sb5
http://refhub.elsevier.com/S0005-1098(24)00042-6/sb5
http://refhub.elsevier.com/S0005-1098(24)00042-6/sb5
http://refhub.elsevier.com/S0005-1098(24)00042-6/sb6
http://refhub.elsevier.com/S0005-1098(24)00042-6/sb6
http://refhub.elsevier.com/S0005-1098(24)00042-6/sb6
http://refhub.elsevier.com/S0005-1098(24)00042-6/sb7
http://refhub.elsevier.com/S0005-1098(24)00042-6/sb7
http://refhub.elsevier.com/S0005-1098(24)00042-6/sb7
http://refhub.elsevier.com/S0005-1098(24)00042-6/sb7
http://refhub.elsevier.com/S0005-1098(24)00042-6/sb7
http://refhub.elsevier.com/S0005-1098(24)00042-6/sb7
http://refhub.elsevier.com/S0005-1098(24)00042-6/sb7
http://refhub.elsevier.com/S0005-1098(24)00042-6/sb8
http://refhub.elsevier.com/S0005-1098(24)00042-6/sb8
http://refhub.elsevier.com/S0005-1098(24)00042-6/sb8
http://refhub.elsevier.com/S0005-1098(24)00042-6/sb9
http://refhub.elsevier.com/S0005-1098(24)00042-6/sb9
http://refhub.elsevier.com/S0005-1098(24)00042-6/sb9
http://refhub.elsevier.com/S0005-1098(24)00042-6/sb10
http://refhub.elsevier.com/S0005-1098(24)00042-6/sb10
http://refhub.elsevier.com/S0005-1098(24)00042-6/sb10
http://refhub.elsevier.com/S0005-1098(24)00042-6/sb10
http://refhub.elsevier.com/S0005-1098(24)00042-6/sb10
http://refhub.elsevier.com/S0005-1098(24)00042-6/sb11
http://refhub.elsevier.com/S0005-1098(24)00042-6/sb11
http://refhub.elsevier.com/S0005-1098(24)00042-6/sb11
http://refhub.elsevier.com/S0005-1098(24)00042-6/sb12
http://refhub.elsevier.com/S0005-1098(24)00042-6/sb12
http://refhub.elsevier.com/S0005-1098(24)00042-6/sb12
http://refhub.elsevier.com/S0005-1098(24)00042-6/sb12
http://refhub.elsevier.com/S0005-1098(24)00042-6/sb12
http://refhub.elsevier.com/S0005-1098(24)00042-6/sb13
http://refhub.elsevier.com/S0005-1098(24)00042-6/sb13
http://refhub.elsevier.com/S0005-1098(24)00042-6/sb13
http://refhub.elsevier.com/S0005-1098(24)00042-6/sb13
http://refhub.elsevier.com/S0005-1098(24)00042-6/sb13
http://refhub.elsevier.com/S0005-1098(24)00042-6/sb14
http://refhub.elsevier.com/S0005-1098(24)00042-6/sb14
http://refhub.elsevier.com/S0005-1098(24)00042-6/sb14
http://refhub.elsevier.com/S0005-1098(24)00042-6/sb14
http://refhub.elsevier.com/S0005-1098(24)00042-6/sb14
http://refhub.elsevier.com/S0005-1098(24)00042-6/sb15
http://refhub.elsevier.com/S0005-1098(24)00042-6/sb15
http://refhub.elsevier.com/S0005-1098(24)00042-6/sb15
http://refhub.elsevier.com/S0005-1098(24)00042-6/sb15
http://refhub.elsevier.com/S0005-1098(24)00042-6/sb15
http://refhub.elsevier.com/S0005-1098(24)00042-6/sb15
http://refhub.elsevier.com/S0005-1098(24)00042-6/sb15
http://refhub.elsevier.com/S0005-1098(24)00042-6/sb16
http://refhub.elsevier.com/S0005-1098(24)00042-6/sb16
http://refhub.elsevier.com/S0005-1098(24)00042-6/sb16
http://refhub.elsevier.com/S0005-1098(24)00042-6/sb17
http://refhub.elsevier.com/S0005-1098(24)00042-6/sb17
http://refhub.elsevier.com/S0005-1098(24)00042-6/sb17
http://refhub.elsevier.com/S0005-1098(24)00042-6/sb17
http://refhub.elsevier.com/S0005-1098(24)00042-6/sb17
http://refhub.elsevier.com/S0005-1098(24)00042-6/sb18
http://refhub.elsevier.com/S0005-1098(24)00042-6/sb18
http://refhub.elsevier.com/S0005-1098(24)00042-6/sb18
http://refhub.elsevier.com/S0005-1098(24)00042-6/sb19
http://refhub.elsevier.com/S0005-1098(24)00042-6/sb19
http://refhub.elsevier.com/S0005-1098(24)00042-6/sb19
http://refhub.elsevier.com/S0005-1098(24)00042-6/sb20
http://refhub.elsevier.com/S0005-1098(24)00042-6/sb20
http://refhub.elsevier.com/S0005-1098(24)00042-6/sb20
http://refhub.elsevier.com/S0005-1098(24)00042-6/sb20
http://refhub.elsevier.com/S0005-1098(24)00042-6/sb20
http://refhub.elsevier.com/S0005-1098(24)00042-6/sb21
http://refhub.elsevier.com/S0005-1098(24)00042-6/sb21
http://refhub.elsevier.com/S0005-1098(24)00042-6/sb21
http://refhub.elsevier.com/S0005-1098(24)00042-6/sb22
http://refhub.elsevier.com/S0005-1098(24)00042-6/sb22
http://refhub.elsevier.com/S0005-1098(24)00042-6/sb22
http://refhub.elsevier.com/S0005-1098(24)00042-6/sb22
http://refhub.elsevier.com/S0005-1098(24)00042-6/sb22
http://refhub.elsevier.com/S0005-1098(24)00042-6/sb23
http://refhub.elsevier.com/S0005-1098(24)00042-6/sb23
http://refhub.elsevier.com/S0005-1098(24)00042-6/sb23
http://refhub.elsevier.com/S0005-1098(24)00042-6/sb24
http://refhub.elsevier.com/S0005-1098(24)00042-6/sb24
http://refhub.elsevier.com/S0005-1098(24)00042-6/sb24
http://refhub.elsevier.com/S0005-1098(24)00042-6/sb24
http://refhub.elsevier.com/S0005-1098(24)00042-6/sb24
http://refhub.elsevier.com/S0005-1098(24)00042-6/sb25
http://refhub.elsevier.com/S0005-1098(24)00042-6/sb25
http://refhub.elsevier.com/S0005-1098(24)00042-6/sb25
http://refhub.elsevier.com/S0005-1098(24)00042-6/sb26
http://refhub.elsevier.com/S0005-1098(24)00042-6/sb26
http://refhub.elsevier.com/S0005-1098(24)00042-6/sb26
http://refhub.elsevier.com/S0005-1098(24)00042-6/sb26
http://refhub.elsevier.com/S0005-1098(24)00042-6/sb26
http://refhub.elsevier.com/S0005-1098(24)00042-6/sb27
http://refhub.elsevier.com/S0005-1098(24)00042-6/sb27
http://refhub.elsevier.com/S0005-1098(24)00042-6/sb27
http://refhub.elsevier.com/S0005-1098(24)00042-6/sb27
http://refhub.elsevier.com/S0005-1098(24)00042-6/sb27


R. Vafaee and M. Siami Automatica 163 (2024) 111550

R

S

S

S

S

S

T

T

T

T

V

V

Y

Y

Y
uths, Justin, & Ruths, Derek (2014). Control profiles of complex networks.
Science, 343(6177), 1373–1376.

iami, Milad, & Jadbabaie, Ali (2020). A separation theorem for joint sensor and
actuator scheduling with guaranteed performance bounds. Automatica, 119,
Article 109054.

iami, Milad, & Motee, Nader (2018a). Growing linear dynamical networks
endowed by spectral systemic performance measures. IEEE Transactions on
Automatic Control, 63(8).

iami, Milad, & Motee, Nader (2018b). Network abstraction with guaranteed
performance bounds. IEEE Transactions on Automatic Control, 63(11).

iami, Milad, Olshevsky, Alexander, & Jadbabaie, Ali (2020). Deterministic and
randomized actuator scheduling with guaranteed performance bounds. IEEE
Transactions on Automatic Control, 66(4), 1686–1701.

ummers, Tyler H., Cortesi, Fabrizio L., & Lygeros, John (2015). On submodularity
and controllability in complex dynamical networks. IEEE Transactions on
Control of Network Systems, 3(1), 91–101.

ian, Yulun, Khosoussi, Kasra, & How, Jonathan P. (2021). A resource-aware
approach to collaborative loop-closure detection with provable performance
guarantees. International Journal of Robotics Research, 40(10–11), 1212–1233.

ropp, Joel A. (2012). User-friendly tail bounds for sums of random matrices.
Found. Comput. Math., 12(4), 389–434.

zoumas, Vasileios (2018). Resilient submodular maximization for control and
sensing (Ph.D. thesis), University of Pennsylvania.

zoumas, Vasileios, Carlone, Luca, Pappas, George J, & Jadbabaie, Ali (2020). Lqg
control and sensing co-design. IEEE Transactions on Automatic Control, 66(4),
1468–1483.

afaee, Reza, & Siami, Milad (2022a). Learning-based sensor selection with
guaranteed performance bounds. In 2022 American control conference (pp.
1459–1465). IEEE.

afaee, Reza, & Siami, Milad (2022b). On-the-fly sensor scheduling with perfor-
mance guarantees. In 2022 IEEE 61st conference on decision and control (pp.
6018–6025). IEEE.

e, Lintao, Chi, Ming, Liu, Zhi-Wei, & Gupta, Vijay (2022). Online actuator
selection and controller design for linear quadratic regulation over a finite
horizon. arXiv preprint arXiv:2201.10197.

e, Lintao, Roy, Sandip, & Sundaram, Shreyas (2020). Resilient sensor placement
for Kalman filtering in networked systems: Complexity and algorithms. IEEE
Transactions on Control of Network Systems, 7(4), 1870–1881.
14
e, Lintao, Woodford, Nathaniel, Roy, Sandip, & Sundaram, Shreyas (2020).
On the complexity and approximability of optimal sensor selection and
attack for Kalman filtering. IEEE Transactions on Automatic Control, 66(5),
2146–2161.

Reza Vafaee is a Ph.D. candidate in the Department
of Electrical and Computer Engineering at Northeastern
University (NEU) in Boston, MA. His research focuses
on the mathematical and algorithmic foundations of
network optimization and control, with applications in
robotics and power systems. Prior to joining NEU, he
earned his second master’s degree with highest distinc-
tion in pure and applied mathematics from Montclair
State University, NJ, in 2020.

Milad Siami received his dual B.Sc. degrees in elec-
trical engineering and pure mathematics from Sharif
University of Technology in 2009, M.Sc. degree in elec-
trical engineering from Sharif University of Technology
in 2011. He received his M.Sc. and Ph.D. degrees in
mechanical engineering from Lehigh University in 2014
and 2017 respectively. He was a postdoctoral associate
in the Institute for Data, Systems, and Society at MIT,
from 2017 to 2019. He is currently an Assistant Pro-
fessor with the Department of Electrical and Computer
Engineering, Northeastern University, Boston, MA. His

research interests include distributed control systems, distributed optimization,
and applications of fractional calculus in engineering. Dr. Siami has received
several awards and fellowships, including a Gold Medal at the National Mathe-
matics Olympiad in Iran, the Best Student Paper Award at the 5th IFAC Workshop
on Distributed Estimation and Control in Networked Systems, and the Rossin
College Doctoral Fellowship at Lehigh University.

http://refhub.elsevier.com/S0005-1098(24)00042-6/sb28
http://refhub.elsevier.com/S0005-1098(24)00042-6/sb28
http://refhub.elsevier.com/S0005-1098(24)00042-6/sb28
http://refhub.elsevier.com/S0005-1098(24)00042-6/sb29
http://refhub.elsevier.com/S0005-1098(24)00042-6/sb29
http://refhub.elsevier.com/S0005-1098(24)00042-6/sb29
http://refhub.elsevier.com/S0005-1098(24)00042-6/sb29
http://refhub.elsevier.com/S0005-1098(24)00042-6/sb29
http://refhub.elsevier.com/S0005-1098(24)00042-6/sb30
http://refhub.elsevier.com/S0005-1098(24)00042-6/sb30
http://refhub.elsevier.com/S0005-1098(24)00042-6/sb30
http://refhub.elsevier.com/S0005-1098(24)00042-6/sb30
http://refhub.elsevier.com/S0005-1098(24)00042-6/sb30
http://refhub.elsevier.com/S0005-1098(24)00042-6/sb31
http://refhub.elsevier.com/S0005-1098(24)00042-6/sb31
http://refhub.elsevier.com/S0005-1098(24)00042-6/sb31
http://refhub.elsevier.com/S0005-1098(24)00042-6/sb32
http://refhub.elsevier.com/S0005-1098(24)00042-6/sb32
http://refhub.elsevier.com/S0005-1098(24)00042-6/sb32
http://refhub.elsevier.com/S0005-1098(24)00042-6/sb32
http://refhub.elsevier.com/S0005-1098(24)00042-6/sb32
http://refhub.elsevier.com/S0005-1098(24)00042-6/sb33
http://refhub.elsevier.com/S0005-1098(24)00042-6/sb33
http://refhub.elsevier.com/S0005-1098(24)00042-6/sb33
http://refhub.elsevier.com/S0005-1098(24)00042-6/sb33
http://refhub.elsevier.com/S0005-1098(24)00042-6/sb33
http://refhub.elsevier.com/S0005-1098(24)00042-6/sb34
http://refhub.elsevier.com/S0005-1098(24)00042-6/sb34
http://refhub.elsevier.com/S0005-1098(24)00042-6/sb34
http://refhub.elsevier.com/S0005-1098(24)00042-6/sb34
http://refhub.elsevier.com/S0005-1098(24)00042-6/sb34
http://refhub.elsevier.com/S0005-1098(24)00042-6/sb35
http://refhub.elsevier.com/S0005-1098(24)00042-6/sb35
http://refhub.elsevier.com/S0005-1098(24)00042-6/sb35
http://refhub.elsevier.com/S0005-1098(24)00042-6/sb36
http://refhub.elsevier.com/S0005-1098(24)00042-6/sb36
http://refhub.elsevier.com/S0005-1098(24)00042-6/sb36
http://refhub.elsevier.com/S0005-1098(24)00042-6/sb37
http://refhub.elsevier.com/S0005-1098(24)00042-6/sb37
http://refhub.elsevier.com/S0005-1098(24)00042-6/sb37
http://refhub.elsevier.com/S0005-1098(24)00042-6/sb37
http://refhub.elsevier.com/S0005-1098(24)00042-6/sb37
http://refhub.elsevier.com/S0005-1098(24)00042-6/sb38
http://refhub.elsevier.com/S0005-1098(24)00042-6/sb38
http://refhub.elsevier.com/S0005-1098(24)00042-6/sb38
http://refhub.elsevier.com/S0005-1098(24)00042-6/sb38
http://refhub.elsevier.com/S0005-1098(24)00042-6/sb38
http://refhub.elsevier.com/S0005-1098(24)00042-6/sb39
http://refhub.elsevier.com/S0005-1098(24)00042-6/sb39
http://refhub.elsevier.com/S0005-1098(24)00042-6/sb39
http://refhub.elsevier.com/S0005-1098(24)00042-6/sb39
http://refhub.elsevier.com/S0005-1098(24)00042-6/sb39
http://arxiv.org/abs/2201.10197
http://refhub.elsevier.com/S0005-1098(24)00042-6/sb41
http://refhub.elsevier.com/S0005-1098(24)00042-6/sb41
http://refhub.elsevier.com/S0005-1098(24)00042-6/sb41
http://refhub.elsevier.com/S0005-1098(24)00042-6/sb41
http://refhub.elsevier.com/S0005-1098(24)00042-6/sb41
http://refhub.elsevier.com/S0005-1098(24)00042-6/sb42
http://refhub.elsevier.com/S0005-1098(24)00042-6/sb42
http://refhub.elsevier.com/S0005-1098(24)00042-6/sb42
http://refhub.elsevier.com/S0005-1098(24)00042-6/sb42
http://refhub.elsevier.com/S0005-1098(24)00042-6/sb42
http://refhub.elsevier.com/S0005-1098(24)00042-6/sb42
http://refhub.elsevier.com/S0005-1098(24)00042-6/sb42

	Real-time sensor selection for time-varying networks with guaranteed performance
	Introduction
	Preliminaries and Definitions
	Mathematical Notations
	Linear Systems, Controllability and Observability
	Systemic Controllability/Observability Metrics

	Sensor Scheduling
	Sensor Scheduling Problem
	Weighted Sensor Scheduling
	Online Sensor Scheduling

	Online Sensor Scheduling Result
	Leverage Score as the Uniqueness Measure
	Main Result

	Numerical Examples
	Future Steps
	Concluding Remarks
	Acknowledgments
	Appendix
	Definition of Terms and Further Discussions
	Why Systemic Performance Measure
	(ε, δ, d) to (ε, d) approximation
	Leverage Score
	Essential Lemmas

	Missing Proofs
	Proof of Theorem 1 
	Proof of Lemma 1 
	Proof of Lemma 2 


	References


