
Nonlinear Feedback Control Design via NEOC
Ayush Rai, Shaoshuai Mou, Brian D. O. Anderson

Abstract— Quadratic performance indices associated
with linear plants offer simplicity and lead to linear feed-
back control laws, but they may not adequately capture the
complexity and flexibility required to address various prac-
tical control problems. One notable example is to improve,
by using possibly nonlinear laws, on the trade-off between
rise time and overshoot commonly observed in classical
regulator problems with linear feedback control laws. To ad-
dress these issues, non-quadratic terms can be introduced
into the performance index, resulting in nonlinear control
laws. In this study, we tackle the challenge of solving
optimal control problems with non-quadratic performance
indices using the closed-loop neighboring extremal optimal
control (NEOC) approach and homotopy method. Building
upon the foundation of the Linear Quadratic Regulator
(LQR) framework, we introduce a parameter associated
with the non-quadratic terms in the cost function, which
is continuously adjusted from 0 to 1. We propose an iter-
ative algorithm based on a closed-loop NEOC framework to
handle each gradual adjustment. Additionally, we discuss
and analyze the classical work of Bass and Webber, whose
approach involves including additional non-quadratic terms
in the performance index to render the resulting Hamilton-
Jacobi equation analytically solvable. Our findings are sup-
ported by numerical examples.

Index Terms— Agents-based systems; Distributed con-
trol; Communication networks

I. INTRODUCTION

L INEAR optimal control offers numerous advantages
and serves as a foundational concept in optimal con-

trol theory. However, in many scenarios, non-linear con-
trollers are expected to outperform even the best linear
controllers. A particularly noteworthy scenario where
linear feedback control falls short is the common tradeoff
between rise time and overshoot observed in closed-loop
system step responses. It is observed that achieving a
faster rise time often leads to greater overshoot. Similarly,
when a closed-loop system in a non-zero initial state
needs to decay to zero without any external input, a
similar tradeoff arises: faster decay to zero results in a
potentially higher overshoot. Overshoot is one of the key
design requirements and poses significant challenges in
various applications.
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It is widely recognized that non-linear feedback con-
trollers offer a potential improvement in dealing with
the tradeoff problem, as demonstrated in [1]–[5]. These
controllers exhibit a unique behavior where the control
gain increases with larger errors and decreases with
smaller errors. Consequently, larger control gains lead to
reduced rise/decay times. By also dynamically adjusting
the gain based on the magnitude of the error, non-linear
controllers have the capability to mitigate overshoot.
The introduction of non-quadratic terms in the cost
function poses however a significant challenge, as it
transforms a Linear Quadratic Regulator (LQR) problem
into a general optimal control problem, often involving
partial differential equations. The theoretical foundations
for solving these problems may rely on constructing a
Lyapunov function for the system that is also the steady-
state solution of the Hamilton–Jacobi equation [1], [2],
[5], an often challenging task.

In seminal works such as [1], [2], researchers demon-
strated the analytical solvability of specific non-quadratic
control problems. This was accomplished by leveraging
the compositional structure of the non-quadratic terms,
which consist of finite or infinite series of non-negative
definite homogeneous multinomials. Nevertheless, while
this theoretical framework is compelling, it mandates the
incorporation of even more non-quadratic terms into the
performance index simply to secure an analytic solution
thereby rendering it somewhat artificial. [2].

In this paper, we provide a different approach to ad-
dress the optimal control problem with a non-quadratic
performance index. Instead of offering analytical so-
lutions, we propose a numerical algorithm to directly
tackle the resulting non-linear control challenge. Recent
studies by Rai et al. [6], [7] introduced a method to
handle neighboring extremal optimal control (NEOC) in
cases where the original control law is a closed-loop
feedback. This method revolves around adapting the
optimal control law to parameter changes within the
system dynamics or cost function without necessitating
the re-solution of the optimal control problem. Initially,
we formulate the problem as an LQR, using only the
quadratic term in the cost function to establish a baseline.
Subsequently, we introduce a parameter associated with
the non-quadratic terms in the cost function. We utilize
the NEOC and a homotopy approach to solve the non-
quadratic optimal control problem by adjusting the pa-
rameter from 0 to 1 in a series of small steps. In contrast
to prior methodologies [1], [2], [8], our contribution
encompasses two key aspects:
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1) We propose a numerical approach capable of han-
dling a wider array of non-quadratic terms in
the performance index for a given LQR problem,
extending beyond solely non-negative definite ho-
mogeneous multinomials.

2) Our approach provides freedom to specify the cost
functions arbitrarily and does not necessitate the
inclusion of additional terms of unknown conse-
quence in the performance index to obtain the
solution.

II. PROBLEM FORMULATION

We first recall the standard linear result, see e.g. [9].
Consider the linear time-invariant (LTI) system

ẋ = Ax + Bu x(0) = x0 (1)

where x ∈ Ω ⊂ Rn, A ∈ Rn×n, B ∈ Rn×m, and u ∈ Rm.
We assume that Ω is a compact set and that the system is
controllable. Consider also a nominal performance index
to be optimized

V
(
x0, u(·)

)
= lim

T→∞

∫ T

0
[∥u(t)∥2 + x⊤(t)Qx(t)]dt (2)

where Q = Q⊤ is non-negative definite, and such
that [A, Q1/2] is observable. With P the unique positive
definite solution of the steady state Riccati equation

PA + A⊤P − PBB⊤P + Q = 0, (3)

the control law given by u = −B⊤Px is optimal, linear,
and provably stabilizing. The optimal performance in-
dex is x⊤(0)Px(0). As explained in [9], this result is a
particular example of the applicability of a Hamilton-
Jacobi equation to solve the optimal control problem.
The optimal performance expressed as a function of the
(initial) state, call it ϕ(x0), satisfies, with m(x) = x⊤Qx,
the steady-state Hamilton-Jacobi equation which is

[∇ϕ(x)]⊤Ax − 1
4
[∇ϕ(x)]⊤BB⊤∇ϕ(x) + m(x) = 0 (4)

and in this case, ϕ(x) = x⊤Px. Further, the optimal
control law is given by the Hamilton-Jacobi theory as

u∗ = −1
2

B⊤∇ϕ(x). (5)

It is well known that the optimal control law for the
nominal performance index (2) can result in significant
overshoots in variables of interest. Motivated by [1],
we introduce non-quadratic terms into an otherwise
quadratic performance index in order to reduce the
overshoot. We consider the new performance index

V
(

x0, u(·)
)
= lim

T→∞

∫ T

0
[∥u(t)∥2 + x⊤(t)Qx(t) +

N

∑
ν=2

ξ2ν(x(t))]dt

(6)

where ξ2ν(x) is an arbitrary non-negative definite ho-
mogenous multinomial of degree 2ν in the entries of x.
The purpose of the arbitrary ξ2ν(x) forms (which are of
fourth or higher even degree) is to give extra weighting
to certain components of x, at least when they are large.

Remark 1: We restrict the non-quadratic terms to ho-
mogeneous multinomials to facilitate a comparative
analysis with [1]. For the NEOC approach, we only
need to assume that the non-quadratic term is a smooth,
Lipschitz continuous on Ω, non-negative definite, ra-
dially increasing function that is strictly convex (i.e.,
has a positive definite Hessian) at the origin. These
conditions are used to ensure the existence of a stable
and optimal control law and in the development of the
NEOC approach [6].

Our objective here is to find the admissible control
law1 that minimizes the performance index given in (6).
Note that an admissible control law results in a finite
integral in (6) for all x(0).

III. INCLUDING NONLINEAR CONTROL TERMS

In this section, we will review a result due to [1]
that shows how the introduction of non-quadratic terms
(including but not limited to ξ2ν(x)) into an otherwise
quadratic performance index for a linear system can
result in an analytically computable feedback control law
consisting of a linear part (due to the quadratic-only
terms in the performance index) and a nonlinear part
associated with the non-quadratic terms.

Reference [1] introduces a modification to the perfor-
mance index, which becomes for an arbitrary integer
N ≥ 2:

V
(
x0, u(·)

)
= lim

T→∞

∫ T

0
[∥u(t)∥2 + x⊤(t)Qx(t)+

N

∑
ν=2

ξ2ν(x(t)) +
1
4
[

N

∑
ν=2

B⊤∇ϕ2ν(x(t))]2]dt, (7)

where ϕ2ν(x) is also a non-negative definite multinomial
and homogeneous of degree 2ν in the entries of x, and
is defined by

[∇ϕ2ν(x)]⊤[A − BB⊤P]x = −ξ2ν(x) (8)

or, what is equivalent,

ϕ2ν(x) =
∫ ∞

0
ξ2ν(y(t))dt (9)

where ẏ = (A − BB⊤P)y and y(0) = x.
The purpose of the fourth summand in the perfor-

mance index (7) is to adjust the performance index so
as to allow a closed-form solution of the steady-state
Hamilton-Jacobi equation. Including both the original
and the supplementary non-quadratic terms in the per-
formance index introduces nonlinear terms of odd de-
grees in the optimal control law. The following theorem
summarizes the solution to this modified optimal control
problem. The claims of the theorem, excluding those re-
ferring to bounded-input and bounded-state stability, are
developed throughout the paper [1] but are consolidated
in a concise manner in our proof.

1A control law is admissible if it is continuous on Ω, u(0, α) = 0,
it stabilizes the system, in the sense that x(t) → 0 as t → ∞, while also
ensuring that x(t, α) ∈ Ω ∀t, and it results in a finite integral in (6) for
all x(0, α) in Ω.

This article has been accepted for publication in IEEE Control Systems Letters. This is the author's version which has not been fully edited and 

content may change prior to final publication. Citation information: DOI 10.1109/LCSYS.2024.3417891

© 2024 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.  See https://www.ieee.org/publications/rights/index.html for more information.
Authorized licensed use limited to: Purdue University. Downloaded on August 23,2024 at 18:33:27 UTC from IEEE Xplore.  Restrictions apply. 



Theorem 1: Consider the system (1) with [A, B] con-
trollable and associated performance indices (2), where
Q is nonnegative definite and such that [A, Q1/2] is
observable, and (7), where ξ2ν(x) is a nonnegative ho-
mogeneous multinomial form of degree 2ν. With P the
unique positive definite solution of the Riccati equation
associated with the linear quadratic problem, the non-
negative homogeneous form of degree 2ν designated
by ϕ2ν(x) is defined by (8) and (9), and the optimal
performance index ϕ(x0) is given by

ϕ(x) = x⊤Px +
N

∑
ν=2

ϕ2ν(x) (10)

while the optimal control law is given by

u∗ = −1
2

B⊤∇ϕ(x) = −B⊤Px − 1
2

B⊤
N

∑
ν=2

∇ϕ2ν(x).

The associated closed-loop system is globally asymptot-
ically stable, and exponentially stable over an arbitrarily
large bounded set containing the origin; the associated
forced system with external input v(·)

ẋ = Ax − BB⊤Px − 1
2

BB⊤
N

∑
ν=2

∇ϕ2ν(x) + Bv (11)

is bounded-input, bounded-state (BIBS) stable [10], i.e.
there exists KL-function β and K-function γ such that

∥x(t)∥ ≤ β(∥x0∥, t) + γ(∥v∥). (12)
Proof : To prove the theorem, we shall first show that

the Hamilton-Jacobi equation (4) is satisfied with m(x)
corresponding to the last three summands in the index
(7). Then the different stability claims will be addressed.

Observe using the definition of ϕ(x) in the theorem
statement and the Hamilton-Jacobi equation that

[∇ϕ(x)]⊤Ax − 1
4
[∇ϕ(x)]⊤BB⊤[∇ϕ(x)]

=x⊤[PA + A⊤P − PBB⊤P]x

+
N

∑
ν=2

[∇ϕ2ν(x)]⊤[A − BB⊤P]x − 1
4
[B⊤

N

∑
ν=2

∇ϕ2ν(x)]2,

=− x⊤Qx −
N

∑
ν=2

ξ2ν(x)− 1
4
[B⊤

N

∑
ν=2

∇ϕ2ν(x)]2.

The last equality is obtained from the defining equation
(8) and the Riccati equation satisfied by P as given in (3).
Since the right-hand side is precisely −m(x), this shows
that the Hamilton-Jacobi equation is satisfied.

To establish global asymptotic stability, observe first
that the function ϕ(x) is positive definite, since x⊤Px has
this property and the definition of the ϕ2ν(x) functions
ensures they are nonnegative. Adopt ϕ(x) as a trial
Lyapunov function for the closed-loop system obtained
with the optimal law, which is

ẋ = Ax − 1
2

BB⊤∇ϕ(x) = Ax − BB⊤Px − 1
2

BB⊤
N

∑
ν=2

∇ϕ2ν(x)

(13)

It is readily established that along trajectories of the
closed loop system, there holds

d
dt

ϕ(x(t) = −m(x(t))− 1
4
[∇ϕ(x)]⊤BB⊤[∇ϕ(x)],

=− x⊤(t)Qx(t)−
N

∑
ν=2

ξ2ν(x(t))− 1
2
[

N

∑
ν=2

B⊤∇ϕ2ν(x(t))]2.

This expression is clearly nonpositive, and from it, the
required global asymptotic stability follows (the Lasalle
theorem being used in case Q is not positive definite).

Exponential stability on an arbitrarily large bounded
set follows if the origin, which is the only equilibrium
point, is locally exponentially stable. This is equivalent
to the property that the closed-loop system linearized
around the origin is exponentially stable. From (13), this
closed-loop system is simply ẋ = (A − BB⊤P)x, the
stability of which follows from standard linear-quadratic
theory. For more details refer to Theorem 4.3 in [6].

The BIBS property comes as an immediate conse-
quence of the exponential stability claim. Consider rx >
0 and ru > 0 such that {∥x(0)∥ ≤ rx} ∈ Dx and
{∥v∥ ≤ rv} ∈ Dv. Given we have exponential stability at
the origin, there exists a Lyapunov function V(x) such
that c1∥x∥2 ≤ V(x) ≤ c2∥x∥2. Using the fact that B is
bounded and Bu is a Lipschitz map, we can directly
conclude from Theorem 5.1 in [11] that the system (11)
is BIBS stable and (12) holds. ■

Remark 2: We note that this approach imposes a higher
penalty than initially intended. While the ξ2ν term pe-
nalizes states with a degree of 2ν, the additional terms
introduced (refer to (7)) penalize states with a degree of
(2ν − 1)2, and in a nontransparent manner.

We remark that [1] notes that the analytic solution of
(8) is possible. Since both ξ2ν(x) and ϕ2ν(x) are homoge-
neous multinomials, (8) results in L equations with L =
n(n+1)...(n+2ν−1)

(2ν)! , which can be solved for L unknowns by
using the inversion of a square matrix. However, it was
pointed out that even for n = 6 and 2ν = 6, then L = 462.
An alternative calculation in [1] was also proposed that
requires the knowledge of the eigenvalues and left eigen-
vectors of A − BB⊤P to construct the eigenfunctions
of the operator ((A − BB⊤P)x)⊤∇(·). This approach
includes representing or expanding ξ2ν(x) in terms of
these eigenfunctions and using obtained coefficients and
eigenvalues of the operator to construct ϕ2ν(x). This
alternative approach is appropriate for simple examples,
but it is not scalable and becomes challenging to solve
when A − BB⊤P has complex eigenvalues.

IV. CLOSED-LOOP NEOC
In this section, we revisit the principles of closed-loop

NEOC, which were originally introduced in [6], [7]. The
concept of neighboring extremal optimal control involves
determining the adjustments needed in an existing op-
timal control law due to changes in parameters, such as
initial conditions, dynamics, or performance index. This
concept was initially explored in the 1960s and has since
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undergone substantial development, particularly focus-
ing on open-loop optimal control laws. The framework
of NEOC for closed-loop laws was introduced in [7],
where the authors addressed the problem by utilizing
the first variation of the Hamilton-Jacobi equation and
subsequently solving the resulting linear partial differ-
ential equation.

Recall that our objective is to find the optimal control
law that minimizes (6). Since directly solving the new
non-quadratic optimal control problem is challenging,
we adopt an iterative approach by gradually transition-
ing the solution from the LQR case (2) to the new
problem (6). We introduce a scalar parameter α that
serves as the means for this transition. To utilize the
iterative framework of NEOC and in preparation for
introducing a homotopy in the next section, we modify
the performance index (6) with the scalar parameter α
as

V
(

x0, u(·), α
)
= lim

T→∞

∫ T

0
[∥u∥2 + x⊤Qx + α

N

∑
ν=2

ξ2ν(x)]dt, (14)

where α ∈ [0, 1]. We note that α = 0 corresponds to the
originally designed LQR cost functional (2), whereas α =
1 corresponds to the desired performance index (6). For
a specific value of α, the minimum performance index
ϕ(x, α) can be defined as the minimum value of the cost
function at the optimal u, expressed as:

ϕ(x, α) = min
u

V(x, u(·), α). (15)

Observe that one can rewrite (4) in parametrized form:

[∇ϕ(x, α)]⊤Ax+m(x, α)−1
4
[∇ϕ(x, α)]⊤BB⊤∇ϕ(x, α)=0,

(16)
where m(x, α) = x⊤Qx + α ∑N

ν=2 ξ2ν(x), and the optimal
control law is given by u∗ = − 1

2 B⊤∇ϕ(x, α).
To study the consequence of small perturbation in the

parameter, we define a vector function ξ(x, α) by

ξ(x, α) =
∂ϕ(x, α)

∂α
, (17)

which also means that ∇ξ(x, α) = ∂∇ϕ(x,α)
∂α . Differen-

tiating the parameterized steady-state Hamilton-Jacobi
equation (16), we obtain:

∇ξ(x, α)⊤
[

Ax − 1
2

BB⊤∇ϕ(x, α)

]
= −∂m(x, α)

∂α
(18)

This means that formally there holds ξ(x, α) =∫ ∞
0

∂m(y,α)
∂α dt, with y(·) defined2 by ẏ = Ay −

1
2 BB⊤∇ϕ(y, α); y(0, α) = x.

The variation in optimal performance resulting from
a small adjustment δα away from the initial value α is
represented by ξ(x, α)⊤δα and the change in optimal
control law is given by

δu(x, α, δα) = −1
2

B⊤∇ξ(x, α)δα. (19)

2The stabilizing property of the control law is crucial here.

The NEOC law is derived by incorporating this adjust-
ment into the original feedback law, resulting in:

uNE(x, α̂) = −B⊤Px − 1
2

B⊤∇ξ(x, α)δα. (20)

Here α̂ = α + δα is the perturbed system parameter.

V. NUMERICAL ALGORITHM

In this section, we first introduce a numerical algo-
rithm to obtain the NEOC solution for the modified
closed-loop optimal control problem (14) for a specific
value of α. This involves determining how the optimal
control law changes when the value of α is adjusted by
δα. Then, through the use of a homotopy, we gradually
vary α from 0 to 1, transitioning from LQR to solve the
original optimal control problem (6).

We model the minimum performance index of (14),
ϕ(x, α), as a sum of an infinite series. This series con-
sists of smoothly differentiable, linearly independent
weighted basis functions {ψi(x)}∞

i=1, each multiplied by
their respective coefficients {bi(α)}∞

i=1, which vary with
the parameter α. That means there exists some coeffi-
cients {bi(α)}∞

i=1 such that ϕ(x, α) = ∑∞
i=1 bi(α)ψi(x).

Note that these basis functions are chosen to ensure
that ϕ(x, α) belongs to the Hilbert space L2(Ω), ensuring
square integrability.

For any fixed α, we aim to find an appropriate choice
of the coefficient vector {wi(α)}r

i=1 that is a least squares
approximation over the whole set Ω for a given choice
of basis function of the following equation3

w(α)⊤∇Ψ(x)Ax + m(x, α)

− 1
4

w(α)⊤∇Ψ(x)BB⊤∇Ψ(x)⊤w(α) ≈ 0, (21)

where w(α) = [w1(α), ..., wr(α)]⊤ ∈ Rr, Ψ(x) =
[ψ1(x), ..., ψr(x)]⊤ ∈ Rr, and ∇Ψ(x) ∈ Rr×n. The best
least squares approximate solution is obtained by choos-
ing the coefficient vector w(α) to ensure that the error
between the left and right sides is orthogonal to the basis
functions [12]. Hence there holds〈

w(α)⊤∇Ψ(x)Ax, ψi(x)
〉

Ω
+ ⟨m(x, α), ψi(x)⟩Ω

− 1
4

〈∥∥∥B⊤∇Ψ(x)⊤w(α)
∥∥∥2

, ψi(x)
〉

Ω
= 0, (22)

for each i = 1, 2, . . . , r, where the inner product between
two continuous functions is defined as the integral of
the product of the two functions over the entire space
Ω. These equations constitute r linear equations in r
unknowns, which are the entries of w(α).4 The associ-
ated optimal control law approximation is obtained as
u(x, α) = − 1

2 B⊤∇Ψ(x)⊤w(α).
To determine the sensitivity of the optimal perfor-

mance index and its corresponding control law (17), we

3To make the computation manageable, we truncate the infinite
series to a finite number of r terms.

4In [13], it is confirmed that the equation set is nonsingular,
ensuring that w(α) is well-defined.
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employ a calculation similar to (18). By differentiating
equation (22) with respect to α, we incorporate deriva-
tives of the weighting coefficients with respect to the
parameters, yielding r linear equations as follows:(

∂w(α)

∂α

)⊤

Ei = Fi, (23)

for i = 1, 2, . . . , r, where Ei and Fi are defined as

Ei =
〈
∇Ψ(x)Ax, ψi(x)

〉
Ω

− 1
2

〈
∇Ψ(x)BB⊤∇Ψ(x)⊤w(α), ψi(x)

〉
Ω

,

Fi =−
〈

N

∑
ν=2

ξ2ν(x), ψi(x)

〉
Ω

.

We have used here the definition of m(x, α) = x⊤Qx +
α ∑N

ν=2 ξ2ν(x). The variation in optimal control law can
be obtained using (19) under small perturbation δα:

δu(x, α, δα) = −1
2

B⊤∇Ψ(x)⊤
∂w(α)

∂α
δα.

Finally, we introduce the homotopy approach to de-
compose the parameter change (α : 0 → 1) into K dis-
tinct equal steps, each corresponding to a small adjust-
ment. To initialize the algorithm, we first determine the
coefficient vector w0 that best approximates the equation
w⊤

0 Ψ(x) = x⊤Px. This approximation will be accurate
if the basis functions are multinomials. The coefficient
vector updates at each step as follows:

wk+1 = wk +

(
∂w(α)

∂α

)
1
K

.

After completing K iterations, the algorithm yields wK,
which provides an approximation of the minimum per-
formance index ϕ(x) of the original optimal control
problem (6). It is worth noting that the choice of K
depends on the complexity of the non-quadratic terms.

VI. SIMULATIONS

In this section, we provide two examples to illustrate
the design of nonlinear controllers using closed-loop
NEOC and homotopy. Specifically, we demonstrate their
application in reducing overshoot without significantly
increasing the rise/decay time.

Example 1: We first consider the simple example from
[1], where the system is governed by dynamicsẋ1

ẋ2
ẋ3

 =

0 1 0
0 0 1
0 0 0


x1

x2
x3

+

0
0
1

 u,

where x1, x2, and x3 represent the position, velocity,
and acceleration, respectively. We consider a regulator
problem where the task is to drive the position to zero
(from some initial value x1(0)). Compared to an LQR
controller, the objective is to design a non-linear feedback
controller that reduces the overshoot of x2 while ensur-
ing it does not significantly increase the decay time of

0 1 2 3 4 5 6 7 8 9 10
t
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Fig. 1: Example 1. Comparison of the overshoots in (a)
velocity, acceleration, and (b) position for linear and
non-linear feedback controllers with the initial state
[x1(0), x2(0), x3(0)] = [5, 0, 0].

x1. Overshoot of x3 is not explicitly specified as a design
objective, but the designs also result in its improvement.

For the benchmark, we employ an LQR with Q = I3.
To mitigate the overshoots in x2, we introduce the term
x2

1x2
2 in the performance index (6). This term penalizes

high values of x2 (velocity) especially when the position
error x1 is large, while also balancing the decay time
of x1. For comparative analysis, we examine trajectories
from three controllers: the LQR, the Bass and Webber
controller, and the NEOC control law (with basis func-
tions of even-degree multinomials, up to degree 4). Both
non-linear controllers employ the same additional non-
quadratic term. Trajectories of the states are illustrated
in Fig. 1a and Fig. 1b. Notably, both non-linear feedback
controllers yield similar trajectories despite employing
different methodologies. They effectively reduce over-
shoots in both x2 and x3 while extending the decay time
of x1. It is noteworthy that both non-linear controllers
are cubic in the state. Subsequently, we adjust the non-
quadratic term in the performance index to x2

1x4
2 for

both the non-linear controllers. For NEOC, we restrict
the choice of basis functions to degree 4. As illustrated
in Fig. 1a, this adjustment further reduces the overshoot
without significantly affecting the decay time for NEOC,
while no substantial change is observed for the Bass
and Webber approach. Note that the NEOC controller
retains a cubic degree in states. Conversely, employing
Bass and Webber’s method for this non-quadratic term
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Fig. 2: Example 2. Comparison of the overshoot in
pendulum angle and cart position for linear and
non-linear feedback controllers with the initial state
[x(0), ẋ(0), θ(0), θ̇(0)] = [0, 0, 0, 5].

necessitates additional computations for a 6th-degree
multinomial, resulting in a feedback controller of poly-
nomial degree 5 in the state.

Example 2: Next, we consider [11, Chap. 1] the lin-
earized dynamics of an inverted pendulum mounted on
a motorized cart given by

ẋ
ẍ
θ̇
θ̈

 =


0 1 0 0

0 −(I+ml2)b
p

m2gl2

p 0
0 0 0 1
0 −mlb

p
mgl(M+m)

p 0




x
ẋ
θ
θ̇

+


0

I+ml2

p
0
ml
p

 u,

where x and θ denote the cart position and pendulum
angle from the vertically upward position, respectively.
The masses of the cart and the pendulum are M = 0.5
and m = 0.2, respectively. The coefficient of friction for
the cart is b = 0.1. The length of the pendulum is l = 0.3,
and the mass moment of inertia of the pendulum is
I = 0.006. For the LQR design, the performance index
used is x2 + θ2. To reduce the overshoot in position
and pendulum angle, we introduce the non-quadratic
term of x4 + θ4 in the performance index. For NEOC,
the choice of basis functions consists of even-degree
multinomials, up to degree 4. The resulting trajectories
with all three controllers are depicted in Fig. 2a and
Fig. 2b, respectively. We note that regarding the cart

position (Fig. 2a), the non-linear controllers effectively
decrease the overshoot while also reducing the decay
time. Conversely, concerning the pendulum angle, they
lead to an increase in overshoot but a decrease in decay
time. Interestingly, in this particular example, the NEOC
method achieves the same decay time as Bass and Web-
ber’s approach, yet it yields a lower overshoot.

VII. CONCLUSIONS

In this work, we investigate the design of non-linear
control strategies by applying the principles of closed-
loop NEOC. This entails incorporating a non-quadratic
term into the performance index, tailored to address
the specific problem at hand. We propose a numerical
approach to tackle this challenge by iteratively solving an
approximation of the Hamilton-Jacobi equation, using a
combination of homotopy and NEOC methodologies. We
introduce a parameter associated with the non-quadratic
term in the performance index, which is adjusted from
0 to 1 in a series of steps. To contextualize our work,
we compare our methodology with that of Bass and
Webber, who utilized a Lyapunov-based approach for
specific types of non-quadratic terms. Looking ahead,
our research interests include expanding the application
of nonlinear controllers for non-quadratic performance
indices in set-point control problems.
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