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Centrality-Based Traffic Restriction in Delayed Epidemic Networks\ast 

Atefe Darabi\dagger and Milad Siami\dagger 

Abstract. In an epidemic network, lags due to travel time between populations, latent period, and recovery
period can significantly change the epidemic behavior and result in successive echoing waves of the
spread between various population clusters. Moreover, external shocks to a given population can
propagate to other populations within the network, potentially snowballing into waves of resurgent
epidemics. The main objective of this study is to investigate the effect of time delay and small
shocks/uncertainties on the linear susceptible-infectious-susceptible (SIS) dynamics of epidemic net-
works. In this regard, the asymptotic stability of this class of networks is first studied, and then its
performance loss due to small shocks/uncertainties is evaluated based on the notion of the \scrH 2 norm.
It is shown that network performance loss is correlated with the structure of the underlying graph,
intrinsic time delays, epidemic characteristics, and external shocks. This performance measure is
then used to develop an optimal traffic restriction algorithm for network performance enhancement,
resulting in reduced infection in the metapopulation. A novel epidemic-based centrality index is
also defined to evaluate the impact of every subpopulation on network performance, and its asymp-
totic behavior is investigated. It is shown that for specific choices of parameters, the output of the
epidemic-based centrality index converges to the results obtained by local or eigenvector centralities.
Moreover, given that epidemic-based centrality depends on the epidemic properties of the disease, it
may yield distinct node rankings as the disease characteristics slowly change over time or as different
types of infections spread. This node interlacing phenomenon is not observed in other centralities
that rely solely on network structure. This unique characteristic of epidemic-based centrality enables
it to adjust to various epidemic features. The derived centrality index is then adopted to improve
the network robustness against external shocks on the epidemic network. The numerical results,
along with the theoretical expectations, highlight the role of time delay as well as small shocks in
investigating the most effective methods of epidemic containment.
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restrictions
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1. Introduction. The large-scale spread of an infectious disease is a recurring phenomenon
may potentiallylead to severe crises before the disease eventually dies out or turns into an
endemic [53]. The extent to which a highly contagious disease continues propagating depends
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3166 ATEFE DARABI AND MILAD SIAMI

on several factors, such as intervention policies and the existence of an effective treatment.
The study of epidemic propagation by network models has shown great potential in designing
effective epidemic management methods as well as allocating treatment and immunization
resources [71, 74].

The macro-modeling (or metapopulation) representation of epidemic diseases is widely
studied in the literature [3, 5, 66]. Several studies have incorporated compartmental networked
models such as susceptible-infected-susceptible (SIS) [12, 32, 48, 65], Susceptible-infected-
removed (SIR) [36, 62], susceptible-infected-quarantined-susceptible (SIQS) [33], and
susceptible-exposed-asymptomatic-infectious-recovered (SEAIR) [31] to capture the epidemic
behavior at community levels. In many studies, the effect of internal time delays resulting
from the latent period of a disease has been included by considering an extra compartment
called exposed, e.g., susceptible-exposed-infected-removed (SEIR) model [34, 36, 39]. How-
ever, given that an infinite-dimensional system of delayed differential equations (DDEs) is
not representable by a set of ordinary differential equations (ODEs) with a finite dimension,
the behavior of models with an exposed compartment is not necessarily identical to models
that directly include the effect of internal time delays [28, 72]. Consequently, epidemic models
defined based on ODEs (with or without considering the exposed group) fail to show the
successive waves of epidemic, common in several epidemic diseases [4, 47], unless time-varying
epidemic rates are incorporated [2, 41]. Various models such as delayed SIR model [77], forced-
SIR-based (FSIR) model [30], SIR model with adjustable parameters [42], SEIR-based model
[61], and SIR-based model [11] have been employed to estimate the fluctuations in infection
progress. Unlike models that include a removed compartment, the SIS model allows for the
possibility of an endemic disease, which means that the disease persists in the population at
a low level over time. Therefore, it is considered a more appropriate model for studying the
impact of interventions. This situation is more realistic for many infectious diseases, especially
those that do not provide long-lasting immunity after infection or vaccination. This study is
based on the SIS model to gain clear insight into the effect of the proposed traffic restriction
policies on the epidemic's progress.

Network stability is another aspect of dynamic epidemic networks that requires special
attention when designing disease mitigation policies. The stability of linear networks with
time delay is widely studied in the literature [25, 26, 38, 40, 70]. More specifically for epi-
demic studies, the stability of networked SIS models without time delay has been extensively
investigated in the literature [17, 20, 35, 37, 58]. Regarding the delayed systems, an exact
numerical approach for determining the regions of stability for delayed linear systems is pro-
posed in [45]. The stability of linear networks with single or multiple delays has been studied
in [14, 44, 52]. We use the provided results in those references to acquire the delay-dependent
range of stability for the class of networks studied in this paper.

In addition to stability, a delayed network's robustness against external noises may be
dependent on internal delays as well, which makes it necessary to further investigate the role
of time delays on the network performance. From the network robustness point of view, the
performance of noisy linear consensus networks has been investigated in [59], where a perfor-
mance measure based on the \scrH 2 norm of the system is introduced and established for networks
with different types of input noise. The proposed performance measure is then adopted to
analyze the robustness of delayed networks with linear SIS dynamics against exogenous noises
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IDENTIFYING CENTRAL SUBPOPULATIONS 3167

[13]. The \scrH 2 norm of delayed linear time-invariant (LTI) systems has also been developed
by solving the delay Lyapunov equation, where a spectral discretization scheme is offered for
systems with commensurate and noncommensurate time delays [27]. The effect of microscopic
shocks on the robustness of economic networks has been studied, where component-level dis-
ruptions can potentially lead to macroscopic outcomes [1, 55, 56]. In our study, the effect
of small shocks, which might stem from unpredictable minor changes in the transportation
network, for instance, is considered and the performance of certain epidemic networks subject
to those disruptions is investigated to analyze the influence of network structure and epidemic
characteristics on the network robustness.

Identification of influential individuals within a network strongly depends on the centrality
measures used, which vary based on the specific application and the criteria under consid-
eration. Some studies have investigated the correlation between various centralities that are
defined based on network structure (adjacency matrix) [64]. For instance, it is shown that
parameterized centralities like Katz centrality and subgraph centrality can be ``tuned"" to in-
terpolate between walk-based centralities such as degree and eigenvector centrality [9]. It is
also shown that diffusion centrality [7] is proportional to other prominent indices like degree,
eigenvector, or Katz centrality for certain choices of parameters [8]. In an epidemic network,
in addition to network structure, the characteristics of epidemic disease will affect the role of
nodes, which makes it necessary to introduce customized centralities tailored to epidemic miti-
gation problems. There is a great body of research on epidemic elimination and disease spread
control [21, 57, 75, 76], where various methods such as node/edge removal [48, 49, 63, 67] or
intercity traffic restriction [50] are applied. However, to the best of our knowledge, the employ-
ment of centralities based on epidemic properties has received less attention, which motivated
us to introduce a novel epidemic-based centrality to rank the network nodes based on their
location and the status of epidemic disease.

Our contributions. This study is dedicated to the epidemiological investigation of
infectious diseases with the following main contributions:

i. Although the effect of latent period can be captured by introducing the exposed com-
partment to a model, we believe that time delay is an intrinsic property of epidemic
networks, capable of transforming their behavior in a unique manner. For instance,
to the best of our knowledge, the oscillatory behavior in the infection progress does
not appear when employing an SEIS model [15, 69]. While the SEIS model has been
extensively studied, there has been limited research on the impact of time delay on
epidemic networks. In this regard, we first present the SIS dynamics of epidemic
networks affected by time delay. The objective is to investigate the role of network
properties and time delays in emerging successive epidemic waves under linear SIS
dynamics (section 2).

ii. We then evaluate the stability and robustness of such delayed systems against external
shocks affecting the epidemic network. A metric of network performance is employed
to analyze performance sensitivity against noises and delays (section 3).

iii. A specific epidemic-based node centrality index is then defined to evaluate the role
of each node in epidemic progress when an exogenous noise is present. Unlike many
widely used centralities, e.g., degree or eigenvector centrality, this epidemic-based cen-
trality measure does not merely depend on network structure; it is affected by epidemi-
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3168 ATEFE DARABI AND MILAD SIAMI

ological properties of the disease, such as epidemic rates and internal time delays. This
unique characteristic makes the proposed centrality index an ideal candidate for iden-
tifying the key nodes in epidemic networks. The relationship between epidemic-based
centrality and some well-known centralities is also found. Because our epidemic-based
centrality is dependent on epidemic properties of the disease, for a given transportation
network (with a fixed structure) the epidemic-based centrality will result in different
rankings for different diseases. Therefore, in such cases, different node rankings, i.e.,
interlacing nodes, are expected when employing epidemic-based centrality. On the
other hand, when an infection remains in the network for a sufficiently long time, its
characteristics may change in a quasi-static manner. This phenomenon can also result
in having interlacing nodes in the network. It is, therefore, crucial to identify inter-
lacing nodes and modify traffic restriction measures accordingly to enable effective
mitigation of the epidemic (section 4).

iv. The proposed performance measure is next utilized to develop a traffic restriction
algorithm to prevent the epidemic network from losing performance while reducing
average infection among its nodes. Furthermore, a second optimization framework is
developed to investigate the effect of noise distribution on network performance and
provide a robust traffic restriction approach for the worst cases (section 5).

The simulation results for a core-periphery network and also for the network of busiest
U.S. airports are presented in section 6. It is worth mentioning that because the main purpose
of this study is to gain insight into the role of delays in epidemic progress by providing
analytical results, a simple 2-compartmental model like SIS is a suitable candidate for avoiding
unnecessary complications.

2. Delayed SIS model for epidemic networks.

2.1. Preliminaries and definitions.
Mathematical notation. Let \scrG = (\scrV ,\scrE ,w) represent an undirected and weighted graph,

where \scrV = \{ 1,2, . . . , n\} for n \in N shows the set of nodes in the graph. \scrE \subset \scrV \times \scrV denotes
the edge set, which provides the map of connection between pairs of nodes in \scrV with the
corresponding weight of w(e) = we \in R+ for all e = \{ i, j\} \in \scrE , where R+ is the set of non-
negative real numbers. w \in Rm is the vector of edge weights defined as w= [w1,w2, . . . ,wm],
where m = | \scrE | . Note that | .| denotes the cardinality of a set. The adjacency matrix of the
corresponding network is then defined by A= [aij ] \in Rn\times n, where aij =w(e) if e= \{ i, j\} \in \scrE .
The diagonal elements of A are defined next.

Epidemic network description. In the following subsections, we consider an epidemic
network comprising n subpopulations/nodes in \scrV , where each subpopulation can be in one
of two states, susceptible to the infectious disease or infected by the disease. The map of
connection between the subpopulations is given by set \scrE . The interpopulation connection
strength, i.e., traffic flow, is denoted by 0 < aij = we \leq 1 for all e \in \scrE . The disease progress
in each subpopulation of the network depends on its intrapopulation and interpopulation
connections as well as epidemic rates of the disease. While the effect of interpopulation
connections is reflected through the off-diagonal elements of the adjacency matrix, its diagonal
elements indicate the intensity of intrapopulation contacts. We project the final effect of local
social distancing between members of subpopulation i on aii, where aii \rightarrow 0 belongs to a
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IDENTIFYING CENTRAL SUBPOPULATIONS 3169

subpopulation following the local social distancing, and aii\rightarrow 1 indicates that the local social
distancing rules become less strict.

2.2. Stochastic and deterministic SIS metapopulation model with time delay. In this
subsection, we introduce the stochastic SIS model of a delayed epidemic network with under-
lying graph \scrG and use the mean-field theory to develop the deterministic delayed SIS model.
Two sources of time delay are considered in this study: the time it takes for a susceptible indi-
vidual to become infectious, and the time required to recover from the disease. For simplicity,
we assume that both time delays have the same value and that all subpopulations/nodes ex-
perience the same time delay, denoted by \tau . The mean-field theory has been widely utilized
to develop the nondelayed SIS model [18, 19, 43, 68], and we use the results in [18, 66] to
develop the delayed version of the SIS model by mean-field approximation.

Let us consider a node i in the network \scrG . At time t, node i can be in one of two
states: susceptible or infected. We represent the state of node i at time t using a binary
random variable, denoted by xi(t), which takes the value 1 if node i is infected and 0 if it
is susceptible. As time evolves, the state of each node i changes according to a stochastic
process parameterized by epidemic properties of the disease and the internal time delay. The
probability of an infected individual infecting others while in contact with them, also known
as the infection rate of a disease, is denoted by \beta \in R+, and the probability of recovering from
the disease, also known as the recovery rate of a disease, is denoted by \delta \in R+.

If node i is susceptible at time t, it can become infected during the time interval (t, t+\Delta t]
with a probability that depends on the infection rate, the strength of node i's connections
to its infected in-neighbors, denoted by aij for j \in \scrN i, and the state of its in-neighbor nodes
at time t  - \tau , denoted by xj(t  - \tau ) for j \in \scrN i. We can express the probability of node i
transitioning from a susceptible state to an infected state by

Pr (xi(t+\Delta t) = 1 | xi(t) = 0,x(t - \tau ))\approx 
n\sum 

j=1

\beta aijxj(t - \tau )\Delta t.(2.1)

This approximation is valid when the infection rate is small. If node i is infected at time
t - \tau , its probability of recovering is dependent on the recovery rate \delta . The probability of i
transitioning to a susceptible state during (t, t+\Delta t] is

Pr (xi(t+\Delta t) = 0 | xi(t - \tau ) = 1, xi(t) = 1,x(t - \tau ))\approx \delta \Delta t.(2.2)

The state of an epidemic network consisting of n nodes is determined by all the possible
combinations of states in which the nodes can be at any given time. As a result, the size
of the state space increases exponentially as the network size grows, making the networked
SIS epidemic model difficult to analyze. To avoid this computational complexity, we apply
the mean-field theory to the described Markov chain and approximate it using a system of
differential equations.

Let the random variable qi(t) = 1\{ xi(t)=1\} be defined such that qi(t) = 1 when node i is
infected and 0 otherwise. Therefore, qi(t) changes according to the state xi(t) of node i at
each time step, which itself depends on the status of i and its neighbors \tau time steps before.
If node i is susceptible at t and has been in contact with its infected in-neighbors during
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3170 ATEFE DARABI AND MILAD SIAMI

[t - \tau , t - \tau +\Delta t], it transitions to an infected state with rate
\sum n

j=1 \beta aijxj(t - \tau )\Delta t during
(t, t+\Delta t]. If node i is infected at t - \tau , it will recover with rate \delta \Delta t during (t, t+\Delta t]. Using
(2.1) and (2.2), we can describe the change of qi(t) in a sufficiently small time interval \Delta t as
follows:

qi(t+\Delta t) - qi(t)
\Delta t

=
\bigl( 
1 - 1\{ xi(t - \tau )=1\} 

\bigr) n\sum 
j=1

\beta aijxj(t - \tau ) - 1\{ xi(t - \tau )=1\} \delta .(2.3)

Next, we denote the probability of infection at node i as pi(t). Then, pi(t) = Pr(xi(t) =
1) = E [qi(t)], and we have that the probability of infection pi(t) at node i evolves according
to

pi(t+\Delta t) - pi(t)
\Delta t

=

n\sum 
j=1

\beta aijpj(t - \tau ) - \delta pi(t - \tau ) - E

\left[  1\{ xi(t - \tau )=1\} \beta 

n\sum 
j=1

aij1\{ xj(t - \tau )=1\} 

\right]  .
(2.4)

Assuming that the probability of nodes i and j being infected at t - \tau is independent, we
have

E
\bigl[ 
1\{ xi(t - \tau )=1\} 1\{ xj(t - \tau )=1\} 

\bigr] 
=E

\bigl[ 
1\{ xi(t - \tau )=1\} \cap \{ xj(t - \tau )=1\} 

\bigr] 
=Pr(xi(t - \tau ) = 1, xj(t - \tau ) = 1)

=Pr (xi(t - \tau ) = 1)Pr (xj(t - \tau ) = 1) ,(2.5)

which then yields the following delayed Markov differential equation for node i:\Biggl\{ 
\.pi(t) = - \delta pi(t - \tau ) + \beta (1 - pi(t - \tau ))

\sum n
j=1 aijpj(t - \tau ); t\geq \tau ,

pi(t) = \phi i(t); t\leq \tau ,
(2.6)

where pi(t - \tau ) = E[qi(t - \tau )] = Pr(xi(t - \tau ) = 1), pj(t - \tau ) = E[qj(t - \tau )] = Pr(xj(t - \tau ) = 1),
and \phi i(t) is the initial history function of infection for node i. This approximation is valid for
small values of infection rate and time step.

Using (2.6), the n-intertwined SIS model of network can now be expressed as\Biggl\{ 
\.p(t) =\scrA p(t - \tau ) - \beta P (t - \tau )Ap(t - \tau ); t\geq \tau ,
p(t) =\bfitphi (t); t\leq \tau ,

(2.7)

where p(t) = [p1(t), . . . , pn(t)]
\top , and \bfitphi (t) = [\phi 1, . . . , \phi n]

\top is the vector of history function
and P (t  - \tau ) = diag (p(t - \tau )). A is the nonnegative adjacency matrix of network defined
in subsection 2.1, which can be decomposed by A = V UV \top , where V = [v1,v2, . . . ,vn] is an
orthogonal matrix and U = diag ([u1, u2, . . . , un]). \scrA is obtained by \scrA = \beta A  - \delta In, and its
eigenvalues are denoted by \lambda 1 \leq \lambda 2 \leq \cdot \cdot \cdot \leq \lambda n. The eigenvalues of adjacency matrix A can
therefore be found by ui =

\lambda i+\delta 
\beta for all i\in \scrV .

Remark 2.1. To evaluate the precision of the mean-field approximation applied to the
probabilistic delayed SIS model discussed in this section, we compare the stochastic dynamics
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IDENTIFYING CENTRAL SUBPOPULATIONS 3171

Algorithm 2.1 Probabilistic delayed SIS model with fully connected graph and
mean-field approximation.

1: Initialize
A: Adjacency matrix, n: Number of nodes, \beta : Infection rate, \delta : Recovery rate,
T : Simulation time, \Delta t: Time interval, \tau : Time delay, x(i,0 : \tau ): State history of
node i for 0\leq t\leq \tau 

2: for t\leftarrow \tau to T do
3: for i\leftarrow 1 to n do
4: if x(i, t) = 0 then
5: Compute sum check to consider time delay effect on the infection process
6: for j\leftarrow 1 to n do
7: if x(j, t - \tau ) = 1 and sum check= 0 then
8: if rand() <\beta \cdot A(i, j) \cdot \Delta t then
9: x(i, t+\Delta t) = 1
10: Break
11: end if
12: end if
13: end for
14: else
15: Compute product check to consider time delay effect in the recovery

process
16: if rand() < \delta \cdot \Delta t and product check= 1 then
17: x(i, t+\Delta t) = 0
18: else
19: x(i, t+\Delta t) = 1
20: end if
21: end if
22: end for
23: Update xT , total number of infected individuals during [0, t]
24: end for
25: Compute total number of infected individuals during [0, T ] by mean-field

approximation, pT , using (2.7)
26: Plot xT and pT over time

governed by (2.1) and (2.2) with the deterministic dynamics described by (2.7), for a single
population comprising n individuals. Algorithm 2.1 outlines the steps we followed to obtain
the results for the probabilistic model.

In this algorithm, we incorporate the influence of time delay associated with the infection
process by calculating the probability of x(i, t - \tau ) = x(i, t - \tau +\Delta t) = \cdot \cdot \cdot = x(i, t) = 0, denoted
as sum check. Thus, if sum check = 0, it indicates that node i has remained susceptible
during the time interval [t - \tau , t]. Consequently, node i has the potential to transition to an
infectious state at time t+\Delta t. Additionally, we account for the impact of time delay related
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3172 ATEFE DARABI AND MILAD SIAMI

Figure 1. Total expected number of infected individuals over time for a fully connected network with n =
5000, \beta = 0.04, \delta = 0.01, and \tau = 0.5. The blue line represents the expected number of infected individuals, while
the red line corresponds to the number of infected individuals obtained using the mean-field model. Simulation
time and time step are T = 500, \Delta t= 0.05, respectively.

to the recovery process by calculating the probability of node i remaining infected during the
time interval [t - \tau , t], which is denoted as product check. If product check = 1 for node i, it
indicates that node i has remained infected throughout that time interval. As a result, node
i has the potential to recover and transition to a susceptible state at time t+\Delta t.

Figures 1 and 2 depict the number of infected individuals over time in a population with
individuals interacting through a complete network with no self-loops. The simulation pa-
rameters for Figure 1 are specified as n = 5000, T = 500, \Delta t = 0.05, \beta = 0.04, \delta = 0.01, and
\tau = 0.5, and for Figure 2 are specified as n = 100, T = 2500, \Delta t = 0.05, \beta = 0.04, \delta = 0.01,
and \tau = 50. In both figures, the blue line corresponds to the expected value of infected
individuals, denoted by xT , which is computed as the sum of the expected values of the in-
dicator random variable qi(t) over all nodes i\in \{ 1,2, . . . , n\} and times t\in \{ 0,\Delta t,2\Delta t, . . . , T\} ,
i.e., xT =

\sum T
t=0

\sum n
i=1E [qi(t)]. The red line represents the number of infected individuals

predicted by the mean-field model, denoted by pT , which is obtained as the sum of the prob-
abilities of infection pi(t) over all nodes i\in \{ 1,2, . . . , n\} and times t\in \{ 0,\Delta t,2\Delta t, . . . , T\} , i.e.,
pT =

\sum T
t=0

\sum n
i=1 pi(t).
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IDENTIFYING CENTRAL SUBPOPULATIONS 3173

Figure 2. Total expected number of infected individuals over time for a fully connected network with n= 100,
\beta = 0.04, \delta = 0.01, and \tau = 50. The blue line represents the expected number of infected individuals, while the
red line corresponds to the number of infected individuals obtained using the mean-field model. Simulation time
and time step are T = 2500, \Delta t= 0.05, respectively.

Linearization of (2.6) around its disease-free equilibrium, p\ast i (t) = 0 gives the following
linear SIS dynamics [19]:\Biggl\{ 

\.pi(t) = - \delta pi(t - \tau ) + \beta 
\sum n

j=1 aijpj(t - \tau ); t\geq \tau ,
pi(t) = \phi i(t); t\leq \tau .

(2.8)

The above linear dynamics can be expressed by the following compact form:\Biggl\{ 
\.p(t) =\scrA p(t - \tau ); t\geq \tau ,
p(t) =\bfitphi (t); t\leq \tau .

(2.9)

The basic reproduction number of an epidemic network, \scrR 0M , is a metric that provides the
expected number of neighbors that an infected subpopulation will infect. For a metapopulation
with dynamics (2.9), the network reproduction number is defined as

(2.10) \scrR 0M := 1 +
\lambda n
\delta 
.

It was previously shown that for the delay-free version of epidemic network (2.9), an initial
infection will converge to zero if \scrR 0M < 1 [51], which is equivalent to

(2.11) \lambda n \leq  - \epsilon , \epsilon > 0,
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3174 ATEFE DARABI AND MILAD SIAMI

for an undirected network with \lambda n being the largest eigenvalue of \scrA . This condition guarantees
the existence of an \alpha > 0 that satisfies \| pi(t)\| \leq \alpha \| pi(0)\| e - \epsilon t, and, as a result, the disease-free
equilibrium of the system will be globally exponentially stable with the rate of \epsilon [48].

The basic reproduction number of subpopulation i, on the other hand, determines the
progress of disease within that single population, which is found by

(2.12) \scrR 0S(i) :=
\beta aii
\delta 
.

where for \scrR 0S(i)< 1 for all i\in \scrV , the infection size will eventually converge to zero.
The investigation of stability in delayed LTI systems is challenging due to the existence

of infinitely many characteristic roots. One approach towards extracting the delay-dependent
stability regions of such systems is the conversion of time delay domain such that the ex-
ponential terms in the characteristic equation are eliminated. This conversion allows us to
evaluate the behavior of system by its finite characteristic roots in an alternative domain.
This approach is implemented by the Rekasius substitution [54] in [14], where it is shown that
for a network with dynamics (2.9) and \scrR 0M < 1, if 0< \tau < - \pi 

2\lambda 1
, then the asymptotic stability

is guaranteed. The same result can be obtained by implementing frequency domain analysis
on dynamics (2.9) [44].

Combining conditions (2.11) and (2.2) results in the following matrix inequality with
respect to the positive semidefinite cone Sn+,

(2.13) \epsilon In \preceq  - \scrA \preceq 
\pi 

2\tau 
In,

where In is the identity matrix of size n.

Remark 2.2. We consider the following examples to better demonstrate the impact of
internal time delays and interpopulation connections on the epidemic behavior of systems
with dynamics (2.7).

a. Consider a group of individuals in a closed population, indicated by the number 1.
These individuals may only have contact with other individuals inside population 1,
and there are no internal time delays involved. Starting from any initial infection,
e.g., complete infection (p1(0) = 1), for \scrR 0S = 2, a smooth transition to an endemic
with p1(\infty )\rightarrow 0.5 is expected. Given the properties of SIS dynamics (2.7), no peak of
infection appears in this case; see Figure 3(a).

b. Consider population 1 when it is experiencing \tau = 25 days of delay in the process
of spreading the disease among its members, who may only have contact with other
individuals inside population 1. While the steady-state properties of the network
remain unchanged, its transient behavior is different due to the presence of time delay;
see Figure 3(b).

c. Consider two connected subpopulations 1 and 2 with no intrapopulation social dis-
tancing, i.e., aij = 1 for i, j \in \{ 1,2\} . With no time delays in the epidemic network,
\tau = 0, even if 1 and 2 stay connected, there will be no fluctuations in their infection
size, see Figure 3(c).

d. Consider two connected subpopulations 1 and 2 with time delay \tau = 25 days. If 1
gets infected by the infectious subpopulation 2 at time t, it will become infectious at

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited.
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IDENTIFYING CENTRAL SUBPOPULATIONS 3175

Figure 3. Epidemic spread in (a) a single population with no time delay and \scrR 0S = 2; (b) a single population
with time delay \tau = 25 days and \scrR 0S = 2; (c) a network of two subpopulations with no time delay and \scrR 0M = 2;
and (d) a network of two subpopulations with time delay \tau = 25 days and \scrR 0M = 2. p1 and p2 denote the
fraction of infectious individuals in subpopulations 1 and 2, respectively.
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3176 ATEFE DARABI AND MILAD SIAMI

time t + \tau , and both subpopulations will experience multiple epidemic waves before
the disease reaches a steady state; see Figure 3(d).

Although for all cases above the steady-state epidemic behavior remains the same (due to
an equal reproduction number), ignoring internal time delays or network effect substantially
underestimates the peak of infection as well as the transient behavior of the epidemic.

3. Performance analysis in the presence of small shocks. In this section, we inves-
tigate the performance deterioration of linear network (2.9) subject to small shocks. We
model the effect of shock on the infection dynamics of subpopulation i by an additive white
noise such that \xi i(t) \sim \scrN (0, \sigma 2i ) and assume that the input noise for each subpopulation
is independent of the others [22, 59, 60], i.e., \bfitxi (t) = [\xi 1(t), \xi 2(t), . . . , \xi n(t)]

\top , where \bfitxi (t) \sim 
\scrN 

\bigl( 
0n,diag

\bigl( 
[\sigma 21, \sigma 

2
2, . . . , \sigma 

2
n]
\bigr) \bigr) 
. In what follows, the performance and robustness of network

(2.9) in the presence of such external disturbances are studied. An \scrH 2-based performance
measure is adopted from [59] to find an explicit representation for the network performance
loss, which will then be utilized for optimal traffic restriction purposes in the following sec-
tions. This \scrH 2 norm-based measure quantifies fluctuations in the average number of infected
people based on the steady-state variance of nodal state fluctuations.

Assume that the exogenous noise input described earlier is affecting the dynamics of
network (2.9) as \Biggl\{ 

\.p(t) =\scrA p(t - \tau ) + \bfitxi (t); t\geq \tau ,
p(t) =\bfitphi (t); t\leq \tau .

(3.1)

The \scrH 2 norm-based performance measure, \rho \mathrm{s}\mathrm{s}, of network (3.1) can then be found by

(3.2) \rho \mathrm{s}\mathrm{s} = lim
t\rightarrow \infty 

E
\Bigl[ 
p(t)\top p(t)

\Bigr] 
,

where \rho \mathrm{s}\mathrm{s} measures the performance loss of the network; therefore, smaller values of \rho \mathrm{s}\mathrm{s} result
in better performance. More details on the performance measure of a class of consensus
networks under the influence of exogenous white noises can be found in the reference papers
[6, 23, 60, 73]. According to [16], the performance of a stable system with transfer function
G(j\omega ) can be found by the frequency domain definition of its \scrH 2 norm as follows:

\rho \mathrm{s}\mathrm{s} =
1

2\pi 
Tr

\biggl[ \int +\infty 

 - \infty 
G\mathrm{H}(j\omega )G(j\omega )d\omega 

\biggr] 
,(3.3)

where G\mathrm{H}(j\omega ) corresponds to the complex conjugate transpose of G(j\omega ). For the network
system with dynamics (3.1), we define \^\xi i :=

\xi i
\sigma i

for all i\in \scrV . We then have

(3.4) \bfitxi =B\^\bfitxi ,

where \^\bfitxi = [\^\xi 1, \^\xi 2, . . . , \^\xi n] and B =diag ([\sigma 1, \sigma 2, . . . , \sigma n]). Note that \^\bfitxi is a vector of unit variance
and identically distributed Gaussian processes. Next, we define G(j\omega ) as the transfer function
from \^\bfitxi (t) to p(t) and present the following lemma.
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IDENTIFYING CENTRAL SUBPOPULATIONS 3177

Lemma 3.1. For epidemic network (3.1) the closed form solution of (3.3) is

(3.5) \rho ss =

n\sum 
i=1

 - \Phi i

2\lambda i

cos (\lambda i\tau )

1 + sin (\lambda i\tau )
,

in which \Phi i is the ith diagonal element of the matrix Q\top BB\top Q, where Q= [q1, . . . ,qn]\in Rn\times n

is the orthonormal matrix of eigenvectors of \scrA . \lambda i for all i \in \scrV is the ith eigenvalue of
matrix\scrA .

Proof. The transfer matrix of (3.1) from input noise to state is defined as

G(j\omega ) =
\bigl( 
j\omega In  - e - j\tau \omega \scrA 

\bigr)  - 1
B

=Qdiag

\biggl( \biggl[ 
1

j\omega  - \lambda 1e - j\tau \omega 
, \cdot \cdot \cdot , 1

j\omega  - \lambda ne - j\tau \omega 

\biggr] \biggr) 
Q\top B.(3.6)

For this transfer matrix we have

Tr
\bigl[ 
G\mathrm{H}(j\omega )G(j\omega )

\bigr] 
=Tr

\Bigl[ 
Q\top BB\top QD(j\omega )D( - j\omega )

\Bigr] 
,(3.7)

where D(j\omega ) = diag([ 1
 - \lambda 1ej\tau \omega  - j\omega , \cdot \cdot \cdot ,

1
 - \lambda nej\tau \omega  - j\omega ]).

Substituting (3.7) into (3.3), the performance measure will be

\rho \mathrm{s}\mathrm{s} =
1

2\pi 

n\sum 
i=1

\int +\infty 

 - \infty 

\Phi id\omega 

(j\omega + \lambda iej\tau \omega ) (\lambda ie - j\tau \omega  - j\omega )
.(3.8)

A proof follows by solving the integration above and finding the summation of its solution
for all the n nodes of the network.

Remark 3.2. The squared \scrH 2 norm of an exponentially stable delayed network (3.1) can
be calculated as the energy functional (3.2), where p(t) is the response to the Gaussian white
noise \xi i(t) \sim \scrN (0, \sigma 2i ) with \sigma i = 1 for all i \in \scrV . This metric (3.3) can also be interpreted as
the impulse response energy, \rho \mathrm{s}\mathrm{s}, which quantifies the L2 norm of the number of daily infected
cases; in this case, \xi i(t) is the Dirac delta function, a.k.a. the unit impulse. We should note
that \rho \mathrm{s}\mathrm{s} measures the performance loss of the network; therefore, smaller values of \rho \mathrm{s}\mathrm{s} result
in better performance.

4. Epidemic-based centrality index. In this section, we focus on an epidemic network
where subpopulation-level shocks remain small. This assumption allows us to linearize the
network's noisy dynamics around its disease-free equilibrium. A subpopulation's impact on
disease propagation depends on its strategic location in the epidemic network, which can be
captured using traditional node centralities. However, factors such as epidemic rates and
internal time delays can also influence a node's contribution to disease propagation, which
traditional centralities cannot capture. To address this, we introduce an epidemic-based cen-
trality index using the performance measure introduced earlier. We use this index to rank
subpopulations based on their contribution to network robustness against an exogenous distur-
bance/shock. In the following, we provide a formal definition for our epidemic-based centrality
measure.
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3178 ATEFE DARABI AND MILAD SIAMI

Definition 4.1. Consider system (3.1) with an additive Gaussian white noise, \xi i(t) \sim 
\scrN (0, \sigma 2i ) for all i \in \scrV . We define the epidemic-based centrality of subpopulation i by the
rate of network performance measure (3.5) with respect to the following noise variance:

\eta i :=
\partial \rho ss
\partial \sigma 2i

.(4.1)

Corollary 4.2. The epidemic-based centrality index of ith subpopulation in network (3.1) is

\eta i = - 
1

2

\Bigl[ 
\scrA  - 1 cos(\tau \scrA ) (In + sin(\tau \scrA )) - 1

\Bigr] 
ii

for all i \in \scrV . Note that \scrA = \beta A - \delta In, and operator [.]ii returns the ith diagonal element of
its matrix argument.

Proof. Using Lemma 3.1, the performance measure can be expressed by the following
compact matrix operator form:

\rho \mathrm{s}\mathrm{s} = - 
1

2
Tr

\Bigl[ 
BB\top \scrA  - 1 cos(\tau \scrA ) (In + sin(\tau \scrA )) - 1

\Bigr] 
.(4.2)

Substituting (4.2) into (4.1), the proof is obtained.

Network performance measure \rho \mathrm{s}\mathrm{s} can now be retrieved using Corollary 4.2 as follows:

(4.3) \rho \mathrm{s}\mathrm{s} =
\sum 
i\in \scrV 

\eta i\sigma 
2
i .

The series expansion of epidemic-based centrality \eta i can be obtained by

\eta i = - 
1

2

\Bigl[ 
\scrA  - 1 cos(\tau \scrA ) (In + sin(\tau \scrA )) - 1

\Bigr] 
ii

= c0(\delta \tau ) +
\beta 

\delta 
c1(\delta \tau )[A]ii +

\beta 2

\delta 2
c2(\delta \tau )[A

2]ii + \cdot \cdot \cdot 

=

\infty \sum 
k=0

\beta k

\delta k
ck(\delta \tau )[A

k]ii,(4.4)

where

c0(\delta \tau ) =
cos(\delta \tau )

2\delta (1 - sin(\delta \tau ))
, c1(\delta \tau ) =

cos(\delta \tau ) - \delta \tau 
2\delta (1 - sin(\delta \tau ))

,

and

c2(\delta \tau ) =
2(cos(\delta \tau ) - \delta \tau )(1 - sin(\delta \tau ))2 + \delta 2\tau 2 cos(\delta \tau )(cos(\delta \tau ) - sin(\delta \tau ) + sin2(\delta \tau ))

4\delta (1 - sin(\delta \tau ))3
.

We will use the expanded form of epidemic-based centrality later.
While the proposed epidemic-based centrality considers more than just the location of

nodes in the network to rank them, it is worthwhile to explore its relationship with other
centralities that solely rely on the network structure (adjacency matrix). We aim to investigate
whether well-known centralities like resolvent, local, and eigenvector can produce the same
results as epidemic-based centrality. If so, we seek to determine the range of epidemic rates
and time delays that yield similar rankings. In the subsequent subsections, we will endeavor
to answer these queries.
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IDENTIFYING CENTRAL SUBPOPULATIONS 3179

4.1. Correlation with resolvent centrality. We define the resolvent centrality (a.k.a. re-
solvent subgraph centrality) of undirected network (3.1) with weighted adjacency matrix A
by1

RCi(\alpha ) =
\bigl[ 
(In  - \alpha A) - 1

\bigr] 
ii

= 1+ \alpha [A]ii + \alpha 2[A2]ii + \cdot \cdot \cdot + \alpha k[Ak]ii + \cdot \cdot \cdot =
\infty \sum 
k=0

\alpha k[Ak]ii,(4.5)

where [A]ii indicates the weight of self-loop for node i. [A2]ii =
\sum n

i=1 a
2
ij provides the sum

of weighted closed walks with length 2 starting from i. [Ak]ii computes the sum of weighted
closed walks of length k starting from i. \alpha is bounded from above by the inverse of A's largest
eigenvalue to ensure that In - \alpha A is invertible and that its power series converges to its inverse.
Note that the largest eigenvalue of A is denoted by un; therefore, 0 < \alpha < 1

un
. Resolvent

centrality of node i presents the sum of weighted closed walks of length k for k = 0,1,2, . . . ,
where weighted closed walks of length k are penalized by \alpha k. When the underlying graph is
unweighted and has no self-loops, RCi(\alpha ) counts the total number of closed walks beginning at
node i while weighting walks of length k by \alpha k. The following theorem presents a correlation
between epidemic-based and resolvent centralities.

Theorem 4.3. For undirected epidemic network (3.1) over a weighted (or unweighted) graph
\scrG with adjacency matrix A = [aij ] \in Rn\times n, infection rate \beta , recovery rate \delta , and time delay
\tau \rightarrow 0, node ranking obtained by epidemic-based centrality \eta i is equivalent to that provided by
resolvent centrality RCi, where \alpha = \beta 

\delta .

Proof. When \tau \rightarrow 0, the epidemic-based centrality reduces to

lim
\tau \rightarrow 0

\eta i = lim
\tau \rightarrow 0
 - 1

2

\Bigl[ 
\scrA  - 1 cos(\tau \scrA ) (In + sin(\tau \scrA )) - 1

\Bigr] 
ii

= - 1

2

\bigl[ 
\scrA  - 1

\bigr] 
ii

= - 1

2

\bigl[ 
(\beta A - \delta In) - 1

\bigr] 
ii

=
1

2\delta 

\Biggl[ \biggl( 
In  - 

\beta 

\delta 
A

\biggr)  - 1
\Biggr] 
ii

=
1

2\delta 
RCi

\biggl( 
\beta 

\delta 

\biggr) 
.(4.6)

1The resolvent-based centrality measure, introduced by Katz [29], penalizes long walks of length k from
node i through multiplication by a fixed factor \alpha k for each edge used, and these measures capture the ability of
node i to initiate walks to all nodes in the network. Originally, Katz proposed using the row sums of (I - \alpha A) - 1

as a centrality measure CKi(\alpha ) = \bfe \top 
i (I  - \alpha A) - 1\bfone n, where \bfe i is the ith standard basis vector and \bfone n is the

vector of all ones. However, the resolvent-based subgraph centrality [9] uses the diagonal entries of (I - \alpha A) - 1

instead.
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3180 ATEFE DARABI AND MILAD SIAMI

Since RCi is only rescaled by a constant value 1
2\delta , the node ranking provided by resolvent

centrality for \alpha = \beta 
\delta converges to that found by epidemic-based centrality when \tau \rightarrow 0.

4.2. Correlation with local centralities. We define the following local centrality for epi-
demic network (3.1) with adjacency matrix A= [aij ]:

(4.7) oi := [A]ii = aii,

which is dependent on local social distancing status (self-loops) in the network. We also
introduce another local centrality for epidemic network (3.1) as follows:

(4.8) li := [A2]ii =

n\sum 
j=1

a2ij ,

which returns the sum of weighted closed walks with length 2 starting from node i. Note
that for an unweighted undirected network with no self-loops, li returns the degree centrality
of node i, which is a special version of local centrality. We denote the output of rankings
obtained using centrality measures \eta i, oi, and li by \scrI e, \scrI o, and \scrI l, respectively. In other
words, \scrI e, \scrI o, and \scrI l present the set of nodes ranked in descending order based on the value of
their corresponding centrality index. In what follows, the reverse order of a set \scrI is denoted
by R(\scrI ). In the following theorem, we propose a correlation between local centralities and
epidemic-based centrality when the ratio of infection rate to recovery rate is close to zero, i.e.,
the disease is not highly contagious.

Theorem 4.4. For epidemic network (3.1) over a weighted undirected graph \scrG with adja-
cency matrix A= [aij ] \in Rn\times n, infection rate \beta , recovery rate \delta , and time delay 0< \tau <  - \pi 

2\lambda 1
,

if \beta 
\delta \rightarrow 0+, then the following statements hold:
(i) When all subpopulations follow local social distancing (graph \scrG with adjacency matrix

A is loopless), i.e., aii = 0 for all i\in \scrV , then

\scrI e = \scrI l.(4.9)

(ii) When some subpopulations follow local social distancing (graph \scrG with adjacency ma-
trix A contains loops), i.e., aii \not = 0 for some i\in \scrV , then

\scrI e =

\left\{     
\scrI o if 0< \delta \tau < z1,

\scrI l if \delta \tau = z1,

R(\scrI o) if z1 < \delta \tau <
\pi 
2 ,

(4.10)

where z1 \approx 0.739 is the numerical solution to c1(z1) = 0 such that z1 <
\pi 
2 (see (4.4)).

Proof. According to the stability criterion (2.2), when \beta 
\delta \rightarrow 0+ the feasible range of \delta \tau is

0< \delta \tau < \pi 
2 . In other words, for epidemic network (3.1), \delta \tau > \pi 

2 results in instability when the
infection rate is significantly lower than the recovery rate.

To prove (i), we define \mu i as

(4.11) \mu i :=
\delta 2

\beta 2c2(\delta \tau )
[\eta i  - c0(\delta \tau )] = 0+ [A2]ii +

\beta 

\delta 

c3(\delta \tau )

c2(\delta \tau )
[A3]ii +

\beta 2

\delta 2
c4(\delta \tau )

c2(\delta \tau )
[A4]ii + \cdot \cdot \cdot .
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IDENTIFYING CENTRAL SUBPOPULATIONS 3181

For any \delta and \beta , node rankings based on \eta i and \mu i are equal if c2(\delta \tau )> 0. c2(\delta \tau ), defined
in (4.4), is positive for various ranges of \delta \tau ; however, only 0 < \delta \tau < \pi 

2 belongs to the range

of stability found by (2.2). Thus, when \beta 
\delta \rightarrow 0+, the rankings based on \eta i and \mu i are always

equal. When \beta 
\delta \rightarrow 0+, we have

lim
\beta 

\delta 
\rightarrow 0+

\mu i = [A2]ii =

n\sum 
j=1

a2ij = li,(4.12)

which results in (4.9).
To prove (ii), we define \gamma i :=

\delta 
\beta c1(\delta \tau )

[\eta i  - c0(\delta \tau )] as a centrality index for ranking network
nodes. The centrality of node i based on \gamma i index is then obtained by

\gamma i =
\delta 

\beta c1(\delta \tau )
[\eta i  - c0(\delta \tau )] = [A]ii +

\beta 

\delta 

c2(\delta \tau )

c1(\delta \tau )
[A2]ii +

\beta 2

\delta 2
c3(\delta \tau )

c1(\delta \tau )
[A3]ii + \cdot \cdot \cdot ,(4.13)

which yields

(4.14) lim
\beta 

\delta 
\rightarrow 0+

\gamma i = [A]ii = aii = oi.

For any \delta and \beta , node rankings based on \eta i and \gamma i are equal if c1(\delta \tau )> 0, since \eta i is only
scaled by a constant positive value and shifted by a constant value. Combining conditions
c1(\delta \tau ) > 0 and 0 < \delta \tau < \pi 

2 , returns 0 < \delta \tau < z1, where z1 \approx 0.739, as the only feasible range
for \delta \tau . We therefore have \scrI e = \scrI o for 0< \delta \tau < z1.

If c1(\delta \tau )< 0, then a reverse order of ranking will be provided by \gamma i, which happens only
for z1 < \delta \tau <

\pi 
2 , z1 \approx 0.739. We therefore have \scrI e =R(\scrI o) for z1 < \delta \tau < \pi 

2 .
In a more specific case when \delta \tau = z1, the first and second terms in (4.4) are zero, and the

same procedure as in the proof of part (i) can be followed, which yields \scrI e = \scrI l.
As a result of this theorem, when all the subpopulations follow local social distancing, and

the infection rate is comparatively low with respect to recovery rate, instead of an epidemic-
based ranking, the local ranking li can be used to reduce the computation complexities. In
other words, for network (3.1), when the spreading disease is not highly contagious, using
local centralities to identify the central nodes is sufficient.

Similarly, the output of epidemic-based centrality, \scrI e, and the output of local centralities,
\scrI o and \scrI l, can be used interchangeably based on (4.10) when some subpopulations do not follow
local social distancing guidelines and the infection rate is comparatively low with respect to
recovery rate.

4.3. Correlation with eigenvector centrality. The eigenvector centrality for epidemic net-
work (3.1) with adjacency matrix A= [aij ] is obtained by

(4.15) evi := e\top i vn = vn(i),

where ei is the ith standard basis vector, and vn is the dominant eigenvector of matrix A
associated with its largest eigenvalue un. Since network (3.1) is undirected, we can decompose
its nonnegative adjacency matrix by A= V UV \top , where V = [v1,v2, . . . ,vn] is orthogonal and
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3182 ATEFE DARABI AND MILAD SIAMI

U = diag ([u1, u2, . . . , un]). Note that, based on the Perron--Frobenius theorem, a connected
graph with nonnegative adjacency matrix A has a nonnegative real eigenvalue, which has
the maximum absolute value among all eigenvalues, that is, | u1| \leq \cdot \cdot \cdot \leq | un - 1| < un. The
eigenvector associated with un can be chosen to have nonnegative real entries, i.e., vn > 0.

We denote the output of node ranking based on eigenvector centrality evi by \scrI ev and pres-
ent the following theorem to connect the epidemic-based centrality and eigenvector centrality
for certain ranges of epidemic rates.

Theorem 4.5. For epidemic network (3.1) over a weighted undirected graph \scrG with adja-
cency matrix A = [aij ] \in Rn\times n, infection rate \beta , recovery rate \delta , and time delay \tau \rightarrow 0+, if
\beta 
\delta \rightarrow 

1
un

 - 
, the ranking provided by epidemic-based centrality, \scrI e, converges to that obtained by

eigenvector centrality, \scrI ev.
Proof. For undirected network (3.1), the diagonal elements of the kth power of its adja-

cency matrix can be obtained in terms of its eigenvalues and eigenvectors as follows:

[Ak]ii =

n\sum 
j=1

ukjv
2
j (i),(4.16)

where uj and vj are the jth eigenvalue and normalized eigenvector of A, respectively. vj(i)
corresponds to the ith entry of vj .

Based on (4.4), as \tau \rightarrow 0+ we have ck(\delta \tau )\rightarrow 1
2\delta . Using (4.16) in (4.4) with \tau \rightarrow 0+, we

have the following expansion of epidemic-based centrality:

lim
\tau \rightarrow 0+

\eta i =

\infty \sum 
k=0

\beta k

2\delta k+1

n\sum 
j=1

ukjv
2
j (i)

=

n\sum 
j=1

\infty \sum 
k=0

\beta k

2\delta k+1
ukjv

2
j (i).(4.17)

The internal summation with respect to index k can be defined as
\sum \infty 

k=0
\beta k

2\delta k+1ukj =
f(\beta , \delta ,uj). \eta i is then expressed as

lim
\tau \rightarrow 0+

\eta i =

n\sum 
j=1

f(\beta , \delta ,uj)v
2
j (i)

= f(\beta , \delta ,un)v
2
n(i) +

n - 1\sum 
j=1

f(\beta , \delta ,uj)v
2
j (i).(4.18)

Next, we define

\psi i :=
1

f(\beta , \delta ,un)
lim
\tau \rightarrow 0+

\eta i = v2
n(i) +

n - 1\sum 
j=1

f(\beta , \delta ,uj)

f(\beta , \delta ,un)
v2
j (i).(4.19)

Note that for un > 0, f(\beta , \delta ,un) > 0. Thus, when \tau \rightarrow 0+, \xi i will provide same ranking
results as \eta i, given that the centrality measures produced by \eta i are all rescaled by the same
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IDENTIFYING CENTRAL SUBPOPULATIONS 3183

positive value 1
\mathrm{f}(\beta ,\delta ,un)

. We now apply the result of Lemma 3 in [9] to find \psi i as
\beta 
\delta \rightarrow 

1
un

 - 
. The

radius of convergence, R, for series f(\beta , \delta ,uj) is R = | \delta \beta | , which converges to u+n as \beta 
\delta \rightarrow 

1
un

 - 
.

Since un > | uj | for j = 1,2, . . . , n - 1, | uj | <R; therefore we have

(4.20) lim
\beta 

\delta 
\rightarrow 1

un

 - 

f(\beta , \delta ,uj)

f(\beta , \delta ,un)
= 0 for j = 1,2, . . . , n - 1,

which leads to

lim
\beta 

\delta 
\rightarrow 1

un

 - 
\psi i = v2

n(i).(4.21)

Since vn(i) > 0, it will produce the same node rankings as v2
n(i). According to (4.15),

vn(i) also provides the eigenvector centrality for network (3.1). We therefore conclude that if

network (3.1) is not experiencing delays, then \scrI e\rightarrow \scrI ev as \beta 
\delta \rightarrow 

1
un

 - 
.

Theorems 4.3 and 4.5 demonstrate that resolvent centrality and eigenvector centrality only
consider epidemic rates for node ranking when there is no delay. This limitation significantly
reduces the applicability of these centralities in many epidemic processes that involve delay.

4.4. Interlacing nodes in epidemic-based centrality. The purpose of this subsection is to
investigate the effect of disease characteristics on the epidemic-based node ranking of network
(2.9) when \tau = 0. As shown in the previous subsections, rankings obtained by epidemic-based
centrality are subject to change when different types of infections are considered or when
epidemic properties of a certain disease undergo slow changes over time. The interlacing
problem for a special case is studied in this subsection. Note that this subsection does not
consider time-varying epidemic parameters or a linear time-varying (LTV) system but only
involves an interlacing analysis for network (3.1) when \tau = 0.

Definition 4.6. Two nodes i and j of graph \scrG are cospectral if for every integer k \geq 0, we
have [Ak]ii = [Ak]jj.

2

Definition 4.7. Two noncospectral nodes i and j of graph \scrG interlace at \beta 
\delta if \eta i| \beta 

\delta 

= \eta j | \beta 
\delta 

;
\beta 
\delta is an interlacing value.

We should note that two cospectral nodes also have the same degree, eigenvector, and
epidemic-based centrality measures. The following theorem provides an upper bound on the
number of interlacing values for every pair of nodes in the nondelayed version of network (3.1)
when epidemic-based centrality is incorporated.

Theorem 4.8. Consider the epidemic network (3.1) over graph \scrG . When \tau = 0, for any two
noncospectral nodes i, j \in \scrV , there can be at most n - 1 interlacing values for epidemic-based
centrality.

2Equivalently, two vertices i and j in a graph \scrG are cospectral if the node-removed subgraphs \scrG \setminus \{ i\} and
\scrG \setminus \{ j\} have the same characteristic polynomial (cf. [9, 24]).
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3184 ATEFE DARABI AND MILAD SIAMI

Proof. We use contradiction to prove this theorem. Using Cramer's rule, we have

\eta i

\bigm| \bigm| \bigm| 
\tau =0

=
1

2\delta 

\Biggl[ \biggl( 
In  - 

\beta 

\delta 
A

\biggr)  - 1
\Biggr] 
ii

=
1

2\delta 

det
\Bigl( 
In  - \beta 

\delta A[ii]

\Bigr) 
det

\Bigl( 
In  - \beta 

\delta A
\Bigr) ,(4.22)

where A[ii] is found by removing the ith row and column of A. Next, we define g(\beta \delta ) :=
\eta i| \tau =0  - \eta j | \tau =0 and use Cramer's rule as follows:

g

\biggl( 
\beta 

\delta 

\biggr) 
=

1

2\delta 

det
\Bigl( 
In  - \beta 

\delta A[ii]

\Bigr) 
 - det

\Bigl( 
In  - \beta 

\delta A[jj]

\Bigr) 
det

\Bigl( 
In  - \beta 

\delta A
\Bigr) .(4.23)

Assume that there can be n or more interlacing values for any two noncospectral nodes
i, j \in \scrV when nondelayed epidemic-based centrality is considered. In other words, there are at
least n pairs of (\beta , \delta ) that satisfy g(\beta \delta ) = 0, which consists of two polynomials of degree n - 1

in \beta 
\delta . If (4.23) has n or more zeros, then the two polynomials of degree n - 1 coincide in n

or more points, which means they are identical polynomials with equivalent coefficients, i.e.,
when \tau = 0, \eta i = \eta j for any \beta 

\delta . On the other hand, based on

\eta i

\bigm| \bigm| \bigm| 
\tau =0

=
1

2\delta 

\Biggl[ \biggl( 
In  - 

\beta 

\delta 
A

\biggr)  - 1
\Biggr] 
ii

=
1

2\delta 
+

\beta 

2\delta 2
[A]ii +

\beta 2

2\delta 3
[A2]ii +

\beta 3

2\delta 4
[A3]ii + \cdot \cdot \cdot ,(4.24)

\delta \eta i and \delta \eta j are polynomials of \beta 
\delta with kth coefficient as [Ak]ii and [Ak]jj , respectively. This

therefore implies that if \eta i = \eta j , then [Ak]ii = [Ak]jj for any k \geq 0, which means i and j
are cospectral (see Definition 4.6). This contradicts our assumption; therefore, there must
be at most n  - 1 interlacing values for nodes i and j when epidemic-based centrality is
applied.

5. Epidemic containment by traffic flow optimization. Monitoring and regulation of
traffic volume are some of government interventions enacted to potentially mitigate an epi-
demic threat. Regarding the underlying epidemiological network, traffic restriction between
two subpopulations i and j will directly modify their corresponding edge weight, we = aij .
Therefore, the stability around a disease-free state can be obtained by monitoring and manage-
ment of the transportation network and traffic volume restriction between the highly infectious
and highly susceptible subpopulations. In this section, we propose two approaches for traffic
restriction in a metapopulation with noisy and delayed linear SIS dynamics (3.1).

5.1. Optimal traffic restriction. Consider a delayed epidemic network with dynamics
(3.1) which is experiencing a normal distribution of input noise in all of its nodes, i.e., \sigma i \sim 
\scrN (0,1) for i = 1,2, . . . , n (which means B = In in (4.2)). This external noise/shock might
originate from modifications in the transportation network, which are not modeled in the
dynamics. The goal is to design a traffic restriction policy to prevent network performance
deterioration due to exogenous noises and time delay. In this regard, the following traffic
optimization method is designed to determine the optimal traffic flow between the nodes by
reducing network performance loss, \rho \mathrm{s}\mathrm{s}:
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IDENTIFYING CENTRAL SUBPOPULATIONS 3185

minimize
we,\forall e\in \scrE 

\rho \mathrm{s}\mathrm{s}

subject to we \leq we \leq we,\sum 
e\in \scrE 

we = c,

\scrA = \beta 
\sum 
e\in \scrE 

weAe + \beta diag (A) - \delta In,

 - \pi 

2\tau 
In \preceq \scrA \preceq  - \epsilon In.

(5.1)

Here, the first constraint determines the lower and upper bounds on the edge weights of
the network. This constraint is to ensure the resulting traffic volume between a pair of sub-
populations is not less than a certain volume, we, that is imposed by economic considerations,
for instance. It also does not let the resulting traffic flow exceed a certain capacity, we. The
second constraint determines the total weight of network edges or the overall traffic volume,
which might acquire any desired value, c, depending on the intensity of isolation. Smaller
values of c are associated with conservative lockdown policies. It is preferable to keep c as
close as possible to its pre-epidemic value (overall traffic volume with no restrictions) while
enforcing a traffic policy to control the epidemic. The third constraint, in which Ae is the
adjacency matrix of link e, provides the definition of \scrA with respect to edge weights. The last
constraint will guarantee that the network remains stable (see (2.13)) through the alternation
of its edge weights.

In the following steps, we use convex optimization tools to solve (5.1). Let us consider a
general optimization problem with the following form:

(5.2)

minimize
z

f0(z)

subject to fi(z)\leq bi, i= 1, . . . , q,

hi(z) = 0, i= 1, . . . , r.

It is considered a convex optimization problem if f0, . . . , fq are convex functions of z and
all the equality constraints h1, . . . , hr are affine with respect to variable z [10]. According to
this definition, problem (5.1) does not fall into the category of convex problems, as its cost
function (see (4.2)) is nonconvex with respect to we. Hence, some modifications of the original
optimal problem (5.2) are required to convert it into a convex optimization setup which is
easier to evaluate. In this regard, an approximation of the derived performance measure
in (4.2) when B = In has been offered by [23], which converts the product of nonconvex
trigonometric functions in \rho \mathrm{s}\mathrm{s} to a linear function of \scrA and its inverse. The approximated
network performance measure is

\rho \mathrm{s}\mathrm{s} \simeq  - 
1

2
Tr

\biggl[ 
\scrA  - 1  - 4\tau 

\pi 

\Bigl( \pi 
2
In + \tau \scrA 

\Bigr)  - 1
+ c1\tau 

2\scrA  - c0
2
\tau In

\biggr] 
,(5.3)

where constant parameters c0 = 0.1873 and c1 =  - 0.01 are estimated to minimize the mean
squared error of the approximated performance measure. Note that (5.3) is still not a convex

function due to the nonconvex inverse functions \scrA  - 1 and
\bigl( 
\pi 
2 In + \tau \scrA 

\bigr)  - 1
. We now introduce

the epigraph variables X1 and X2 as follows:
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3186 ATEFE DARABI AND MILAD SIAMI

\scrA  - 1  - X1 \preceq 0,\Bigl( \pi 
2
In + \tau \scrA 

\Bigr)  - 1
 - X2 \preceq 0.(5.4)

The inequalities are convertible into linear matrix inequalities (LMI) using the Schur
complement condition for positive semidefiniteness of a block matrix [10]. Applying (5.3) and
(5.4) on the optimization problem (5.1), the problem can be cast as

minimize
X1;X2;we,\forall e\in \scrE 

Tr

\biggl[ 
 - X1 +

4\tau 

\pi 
X2  - c1\tau 2\scrA 

\biggr] 
subject to we \leq we \leq we,\sum 

e\in \scrE 
we = c,

\scrA = \beta 
\sum 
e\in \scrE 

weAe + \beta diag (A) - \delta In,

 - \pi 

2\tau 
In \preceq \scrA \preceq  - \epsilon In,\biggl[ 

X1 In
In \scrA 

\biggr] 
\succeq 0,\biggl[ 

X2 In
In

\pi 
2 In + \tau \scrA 

\biggr] 
\succeq 0.

(5.5)

A solution (X1,X2,we) is optimal for (5.5) if and only if we is optimal for (5.1) when
approximation (5.3) is applied [10]. Note that the objective function in (5.5) is a linear
function of optimization variables X1, X2, and we.

This approach provides the optimal vector of edge weights \bfitw \ast to minimize the performance
loss when all the nodes are subject to a normal noise distribution. Next, we will present a
robust optimization algorithm for the case where noise distribution is not necessarily normal.

5.2. Robust traffic restriction. In what follows, we consider the epidemic network with
dynamics (3.1) when the input noise of subpopulation i is \xi i \sim \scrN (0, \sigma 2i ) for i= 1,2, . . . , n. We
assume that 0\leq \sigma 2i \leq 1 and let

\sum 
i\in \scrV \sigma 

2
i = n. We then develop a new traffic control algorithm

such that the highest performance loss with respect to the noise variance, \sigma i, is minimized.
In other words, this is a min-max problem which is cast as

minimize
we,\forall e\in \scrE 

maximize
\sigma i,\forall i\in \scrV 

\rho \mathrm{s}\mathrm{s}

subject to
\sum 
i\in \scrV 

\sigma 2i = n,

we \leq we \leq we,\sum 
e\in \scrE 

we = c,

\scrA = \beta 
\sum 
e\in \scrE 

weAe + \beta diag (A) - \delta In,

 - \pi 

2\tau 
In \preceq \scrA \preceq  - \epsilon In.

(5.6)
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IDENTIFYING CENTRAL SUBPOPULATIONS 3187\sum 
i\in \scrV \sigma 

2
i = n is a constraint on the sum of noise variance for all the agents, which allows

for a nonuniform noise distribution between them. The rest of the constraints are the same
as explained for problem (5.1). The solution to the inner optimization loop is

S =maximize
\sigma i,\forall i\in \scrV 

\rho \mathrm{s}\mathrm{s}

subject to
\sum 
i\in \scrV 

\sigma 2i = n,
(5.7)

which allows for comparing network performance loss with different noise distribution scenarios
and identifying the noise distribution that results in the highest performance loss among them.
Using the performance definition in (4.3), the optimization problem (5.7) can be rewritten as

S =maximize
\sigma i,\forall i\in \scrV 

\sum 
i\in \scrV 

\eta i\sigma 
2
i

subject to
\sum 
i\in \scrV 

\sigma 2i = n.
(5.8)

Since the objective and constraint in problem (5.8) are linear functions of \sigma 2i , the maximum
performance loss occurs in the boundaries of

\sum 
i\in \scrV \sigma 

2
i = n, where for one subpopulation with

highest centrality we have \sigma 2i = n, while for the rest of the subpopulations we have \sigma 2i = 0.
We denote this case as an extreme noise distribution and present the solution, \sigma \ast i , to problems
(5.7) and (5.8) as follows:

\sigma i
\ast :=

\Biggl\{ \surd 
n if i= argmaxj\in \scrV \eta j ,

0 otherwise.
(5.9)

Using the node centrality measure found in Corollary 4.2 and employing (5.9) in the
performance measure found in (4.2), the solution to problem (5.7) is equal to

S =max

\biggl\{ 
s

\bigm| \bigm| \bigm| \bigm| s= n\eta i, i\in \scrV 
\biggr\} 

=max

\biggl\{ 
s

\bigm| \bigm| \bigm| \bigm| s= - n2 \Bigl[ 
\scrA  - 1 cos(\tau \scrA ) (In + sin(\tau \scrA )) - 1

\Bigr] 
ii
, i\in \scrV 

\biggr\} 
.(5.10)

Note that this solution is a nonconvex function of we, the optimization variable of problem
(5.6). Therefore, its approximation found in (5.3) will be used.

Problem (5.6) can now be expressed in the following convex form:

minimize
X1;X2

S;we,\forall e\in \scrE 

S

subject to we \leq we \leq we,\sum 
e\in \scrE 

we = c,
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3188 ATEFE DARABI AND MILAD SIAMI

\scrA = \beta 
\sum 
e\in \scrE 

weAe + \beta diag (A) - \delta In,

 - \pi 

2\tau 
In \preceq \scrA \preceq  - \epsilon In,

S \geq n

2

\biggl[ 
 - X1 +

4\tau 

\pi 
X2  - c1\tau 2\scrA 

\biggr] 
ii

,\biggl[ 
X1 In
In \scrA 

\biggr] 
\succeq 0,\biggl[ 

X2 In
In

\pi 
2 In + \tau \scrA 

\biggr] 
\succeq 0.

(5.11)

The fifth constraint is the approximated version of (5.10) for any i\in \scrV obtained by (5.3).
This constraint should hold for all i\in \scrV , which results in obtaining the highest approximated
performance loss by finding the first central node with respect to the epidemic-based centrality.

Remark 5.1. While the solution to optimization problem (5.5) depends on the performance
measure of the entire network, the robust problem (5.11) incorporates the epidemic-based cen-
trality of the most important node in the network to establish a policy that can potentially
improve the entire network's robustness against extreme noise distributions. The node central-
ity index contains important network and epidemic information, i.e., transportation network
structure as well as epidemic delays and rates. It therefore enables finding a criterion for
ranking nodes based on not only their location in the transportation network but also the
epidemic characteristics.

Remark 5.2. Let SA be the solution to problem (5.7) obtained from epidemic-based cen-
trality, and let SB be the solution obtained from other centralities. The following lemma
compares the optimal solutions of problem (5.7).

Lemma 5.3. Consider epidemic network (3.1) over a weighted undirected graph \scrG with
adjacency matrix A = [aij ] \in Rn\times n, infection rate \beta , recovery rate \delta , and time delay 0 < \tau <
 - \pi 
2\lambda 1

. The solution obtained for problem (5.7) is suboptimal when using any centrality measure,
except for epidemic-based centrality.

Proof. The optimization problem (5.7) can be expressed as

S =maximize
\sigma i,\forall i\in \scrV 

 - 1

2
Tr

\Bigl[ 
BB\top \scrA  - 1 cos(\tau \scrA ) (In + sin(\tau \scrA )) - 1

\Bigr] 
subject to

\sum 
i\in \scrV 

\sigma 2i = n.
(5.12)

As found by (5.10), one approach for determining S is to rewrite \rho ss using the definition
of epidemic-based centrality, which yields SA = n\eta k, where k is the node with the highest
epidemic-based centrality \eta k.

Using any other centrality measure, such as degree, betweenness, or eigenvector, will
result in having either the same node j = k with the highest centrality, or a different node
j \in \scrV \setminus k as the most central node. In such cases, the performance loss can be expressed as
\rho ss =

\sum 
j\in \scrV \eta j\sigma 

2
j \leq n\eta k, which implies that SB, the maximum value of \rho ss obtained using any

other centrality measure, will be less than or equal to SA.
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IDENTIFYING CENTRAL SUBPOPULATIONS 3189

Remark 5.4. In this section, we presented optimization problems that could also be solved
using numerical optimization techniques, such as the interior-point method, which can be
implemented using optimizers like fmincon in MATLAB, provided that an accurate initial
point for the decision variables (i.e., network edge weights) is available. However, through
approximating performance measures and convexifying the robust optimization problems in
section 5, we gained insight into the significance of epidemic-based centrality in identifying an
optimal traffic flow for epidemic containment. Although we can use numerical optimizers to
solve (5.11), this would not provide clear intuition about the importance of epidemic-based
centrality.

6. Simulation results. In this section, the theoretical results obtained in previous sections
will be implemented on a core-periphery network and a network of the 15 busiest U.S. airports.

We use the following notation in the presented results:
\bullet Network A1: The core-periphery network with no traffic restrictions.
\bullet Network A2: The core-periphery network when the optimal traffic restriction is

implemented.
\bullet Network A3: The core-periphery network when the robust traffic restriction by

epidemic centrality is implemented.
\bullet Network B1: The U.S. airport network with no traffic restrictions.
\bullet Network B2: The U.S. airport network when the optimal traffic restriction is imple-

mented.
\bullet Network B3: The U.S. airport network when the robust traffic restriction by epidemic-

based centrality is implemented.
\bullet Network B4: The U.S. airport network when the robust traffic restriction by degree

centrality is implemented.
It is worth mentioning that for both the core-periphery network and the network of 15

busiest U.S. airports, we utilized fmincon with LMI constraints to identify the optimal net-
work. When an appropriate initial guess for edge weights was provided, we obtained the same
results as with convex optimization.

6.1. Core-periphery network. Consider the network presented in Figure 4(a) with three
connected star graphs consisting of | \scrV A| = 20 nodes and | \scrE A| = 19 weighted edges. The
edge weights are randomly associated with a value in [0.2, 1], which is specified by the color
of the edges. Nodes are ranked based on their epidemic-based centrality index, \eta i, which
is reflected through the size of their indicating circles. We denote the defined network by
Network A1 (see Figure 4(a)). In this network, when local social distancing is followed, i.e.,
aii = 0 for i \in \scrV A, the eigenvalues of the adjacency matrix are arranged as ui \in [ - 2.52,2.52],
resulting in a stability range of \tau \in [0,17.39] days for the time delay. On the other hand,
if none of the subpopulations follows local social distancing, i.e., aii = 1 for i \in \scrV A, the
stability range of time delay will extend to 22.04 days. Assume that all the subpopulations
are experiencing 17 days of delay, which will result in a stable network regardless of the status
of local social distancing. A combination of multiple star graphs is a good candidate for an
epidemic network, as in reality some of the subpopulations are the hubs. while the others
connect to the rest of the subpopulations through these hubs. In this network, nodes 1, 2,
and 15 are the hubs.
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3190 ATEFE DARABI AND MILAD SIAMI

Figure 4. (a) Network A1 with \scrR 0M = 0.806. (b) Network A2 with \scrR 0M = 0.607. (c) Network A3 with
\scrR 0M = 0.603. All the networks are following local social distancing and experiencing \tau = 17 days of time delay.
The nodes are ranked based on their epidemic-based centrality index, \eta i, which is reflected through the size of
their indicating circle. The interconnections are ranked by their corresponding traffic volume, which is specified
by the color of the edges.
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IDENTIFYING CENTRAL SUBPOPULATIONS 3191

Figure 5. Edge weight (traffic volume) comparison between Networks A1 - A3 with \tau = 17 days and complete
local social distancing for all i\in \scrV A.

Note that Figures 4--8 are obtained based on Network A1 with dynamics (3.1) when a
complete local social distancing is followed. When applying the convex optimization method
(5.5) with c equal to the overall traffic volume, the network structure changes into Network
A2, shown in Figure 4(b). The implemented traffic optimizer has successfully reduced the
network performance loss due to exogenous noises by reducing the centrality index of nodes
that are highly contributing to disease propagation. Figure 4(c) presents Network A3, which
is the result of implementing robust optimization approach (5.11) for the same value of c
on Network A1 with dynamics (3.1) and complete local social distancing. The robust opti-
mization is designed to consider the worst-case scenario, where the extreme noise distribution
amplifies the effect of hub node 2 with the highest centrality. Hence, the robust optimizer
is more conservative in manipulating the traffic volumes and reducing the centrality of hubs.
More detailed comparisons of optimal and robust networks are presented in the following
figures.

The comparison between edge weights and node centrality indices of Networks A1--A3 in
Figure 4 can be found in the bar diagrams of Figures 5 and 6, respectively.

Figure 7(a) presents the logarithmic performance measure of Networks A1--A3 with respect
to the desired traffic volume, c, when the network is experiencing a uniform noise distribution.
The results indicate that with the same noise distribution, the nondelayed versions of Networks
A1--A3 maintain a higher performance compared to the delayed networks. This result can
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3192 ATEFE DARABI AND MILAD SIAMI

Figure 6. Epidemic-based centrality index comparison between Networks A1 - A3 with \tau = 17 days and
complete local social distancing for all i\in \scrV A.

be verified by (4.2). As the desired traffic volume increases to its nominal value (e.g., traffic
volume with no restrictions), the performance loss will monotonically increase for both delayed
and nondelayed networks. When reaching the nominal traffic volume, the traffic restriction on
one edge has to be compensated by increasing the traffic capacity on another, less important
edge, which results in a significant loss of performance. Given a desired traffic volume, both
the optimal and robust traffic controllers will aim to decrease the performance loss, while the
optimal approach results in a slightly better performance due to its less conservative weight
distribution algorithm.

To emphasize the importance of considering worst cases while determining the intensity
of traffic restriction, a comparison between the maximum performance measure of both op-
timization methods is presented in Figure 7(b). In the case of extreme noise distribution,
Network A3 is expected to experience less performance loss, as it is specifically designed to
be robust against extreme noise distributions.

As shown in Figure 8, the performance loss of networks in Figure 4 increases monotonically
as the time delay increases.

The effect of time delay on the epidemic evolution of Network A1 with dynamics (2.7) when
local social distancing is followed (aii = 0 for i = 1,2, . . . , n) is illustrated in Figure 9. When
the network is experiencing a time delay, it might undergo multiple infection fluctuations
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IDENTIFYING CENTRAL SUBPOPULATIONS 3193

Figure 7. (a) Performance loss comparison between nondelayed and delayed (\tau = 17 days) versions of
Networks A1 - A3 in the case of uniform noise distribution and complete local social distancing for all i \in \scrV A.
(b) Performance loss comparison between nondelayed and delayed (\tau = 17 days) versions of Networks A1 - A3
in the case of extreme noise distribution and complete local social distancing for all i\in \scrV A.

before reaching a steady state, while a network with no time delay will experience a smooth
transition. As the intrinsic time delays increase, the network will experience a more extreme
epidemic peak with multiple pulses. The time delay also shows a correlation with the onset
of the epidemic peak, which is a decisive factor in designing the proper traffic restriction
policies. Note that the selected reproduction number is set significantly high in order to
emphasize the effect of time delay. If an infection with a reproduction number of \scrR 0M = 4.7
spreads within one subpopulation at time t, it is expected to directly infect approximately 4.7
other subpopulations at time t+ \tau .

The average infection size of the networks in Figure 4(a)--(c), where 10\% of the network
is initially infectious and there is no local social distancing in subpopulations, i.e., aii =
1 for all i \in \scrV , is shown in Figure 10. Unlike Network A1 with no delay, which shows
no fluctuations, the delayed version of Network A1 is experiencing multiple pulses. When
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3194 ATEFE DARABI AND MILAD SIAMI

Figure 8. Logarithmic performance measure of Networks A1 - A3 with respect to time delay when complete
local social distancing is followed by all i\in \scrV A.

applying the proposed traffic restriction policies on this network, which results in Networks
A2 and A3, the epidemic will eventually die out after about 500 days, while in Network A1 it
will take longer for the infection to become extinct.

More details on performance improvement through optimal and robust traffic controllers
are presented in Table 1. Case 1 indicates a uniform noise distribution, i.e., \sigma i = 1 for
i= 1,2, . . . , n. Case 2 indicates an extreme noise distribution (see (5.9)).

Remark 6.1. The delayed SIS model introduced in this paper is potentially relevant to
the spread of COVID-19 or other diseases with similar transmission characteristics, for which
a clear immunity is not guaranteed. In particular, the 11-day delay we incorporated in sim-
ulating the network of the 15 busiest U.S. airports could represent the latent period of the
disease, during which the infected individual may not show symptoms but may still be capable
of transmitting the disease to others. However, it is important to note that our model has
several limitations and simplifying assumptions. For example, we did not consider the effects
of interventions such as vaccination or contact tracing, which can greatly impact the dynamics
of disease transmission.
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IDENTIFYING CENTRAL SUBPOPULATIONS 3195

Figure 9. Average infection size, \=p(t) = 1
n

\sum 
i\in \scrV pi(t), of Network A1 with nonlinear dynamics (2.7) when

complete local social distancing is followed by all i\in \scrV A. Fifty percent of the metapopulation is initially infectious
and \scrR 0M = 4.7.

6.2. Network of the 15 busiest U.S. airports. Air transportation plays an important role
in introducing a new disease to a metapopulation and spreading infection within its subpop-
ulations. In this study, a group of the busiest U.S. airports is selected as the representation
of an epidemic network. The original network shown in Figure 11(a) consists of | \scrV B| = 15
airports connected by | \scrE B| = 104 weighted edges, which represent air traffic flow between the
airports. In this network, when local social distancing is followed, i.e., aii = 0 for i \in \scrV B, the
eigenvalues of the adjacency matrix are arranged as ui \in [ - 1.58,6.64], resulting in a stability
range of \tau \in [0,11.30] days for the time delay. On the other hand, if none of the subpopulations
follows local social distancing, i.e., aii = 1 for i\in \scrV B, the eigenvalues of the adjacency matrix
are arranged as ui \in [ - 0.58,7.64], and the stability range of time delay will extend to 12.71
days. We assume that the airports are experiencing 11 days of delay, which will result in a
stable network regardless of the status of local social distancing. In Figure 11(a), the airports
are ranked based on their epidemic-based centrality index, \eta i, which is indicated by the size of
the circles located in the geographical position of each airport. The interconnection between
every pair of nodes is ranked based on the air traffic volume between them, which is specified
by the color of the links. The U.S. air traffic data used in this study can be found in [46].
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Figure 10. Average infection size of Network A1 with no delay and Networks A1 - A3 with \tau = 17 days,
\scrR 0M = 0.98, and initial infection of 10\%. All the networks are following dynamics (2.9) with no effective local
social distancing for all i\in \scrV A.

Table 1
The values and percentages of performance enhancement for Networks A1 - A3 (Figure 4) and Network A4.

Case 1 Case 2

Network A1 (Figure 4(a)) 862 (0\%) 3514 (0\%)
Network A2 (Figure 4(b)) 606 (+29\%) 898 (+74\%)
Network A3 (Figure 4(c)) 607 (+29\%) 835 (+76\%)

We assume that one of the subpopulations is initially infected. The infectious population
of its neighbors will gradually increase due to their connection through air transportation.
Applying the proposed optimal traffic control method (5.5) on this network results in the
network of Figure 11(b) with a lower range of centrality for all the nodes. Furthermore,
implementing the robust optimization approach (5.11) on Network B1 will change the network
structure to that in Figure 11(c) with smaller centrality values. Note that the robust controller
has considered an extreme noise distribution and has therefore adjusted the traffic volume
around highly centered nodes to reduce their centrality index significantly.

Figure 12 represents the average infection size of Network B1 with a complete local social
distancing and \tau = 12 days of delay. The dashed blue and solid black lines display, respectively,
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IDENTIFYING CENTRAL SUBPOPULATIONS 3197

Figure 11. (a) Network B1 with \scrR 0M = 0.892. (b) Network B2 with \scrR 0M = 0.875. (c) Network B3 with
\scrR 0M = 0.868. All the subpopulations are following local social distancing and experiencing \tau = 11 days of time
delay. Each hub is ranked based on its epidemic-based centrality index, \eta i, which is reflected through the size of
its indicating circle. The interconnections are ranked by their corresponding traffic volume, which is specified
by the color of the edges.

\=p(t) for dynamics (2.9) without any noise, and dynamics (3.1) with exogenous noise input of
zero mean and \sigma 2i = 0.01 for all i \in \scrV B. The solid red line displays the average of \=p(t) of the
noisy network over 1000 simulations with different random noises, and the red shaded area
represents the standard deviation of simulations. This figure illustrates the impact of both
small shocks and time delays on the occurrence of successive waves of infection.

Figure 13 shows the infection size of Network B1 with nonlinear dynamics (2.7) and dif-
ferent time delays when 5050\% of the metapopulation is initially infectious. All the nodes are
following local social distancing, and \scrR 0M = 2.3. When there is no delay (\tau = 0) or only a
small delay, the epidemic dynamics of the network do not show fluctuations. However, as the
delay increases, epidemic pulses start to appear. For instance, a delay of 12 days leads to an
approximately 2\% increase in the average infection size within the first 30 days of the epidemic,
which corresponds to a considerable number of individuals within the U.S. population. As
mentioned earlier, the system remains stable for delays of up to 11.30 days. Therefore, when
there is a 12-day delay, the average infection size will continue to increase without bounds as
time passes.

Consider Networks B1--B4 with dynamics described as in (3.1) and a time delay of \tau = 11
days. To determine the average infection size of Networks B1--B4 when only the epidemic-
based central node, New York, experiences a small shock, we conducted 1000 simulations
with different random noises. The results are presented in Figure 14, where the solid lines
represent the average of \=p(t), and the shaded area represents the standard deviation of the
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3198 ATEFE DARABI AND MILAD SIAMI

Figure 12. Average infection size of Network B1 with no noise (dashed blue), and a random noise (solid
black) over time. The solid red line represents the average of \=p(t) over 1000 simulations with different random
noises. The red shaded area represents the standard deviation of the simulations. In all the simulations the
network follows linear dynamics (3.1) with complete local social distancing. Time delay is \tau = 12 days, \scrR 0M =
0.96, and initial infection is 10\% .

simulations. It was found that Network B4, which used the degree centrality to rank the
nodes and optimize the traffic volume to minimize highest performance loss, was less effective
in reducing the average infection size over time. This is in contrast to the other networks,
including Network B1 with no traffic restrictions, and Networks B2--B3 with traffic restrictions
based on epidemic factors and delays.

Figure 15 shows the logarithmic performance loss of Networks B1--B3 with respect to time
delay. As expected, the network experiences a lower performance loss when applying traffic
restriction methods. Figure 16 displays the normalized epidemic-based centrality index of
nodes for Networks B1--B3, as well as the normalized degree centrality index of nodes for
Networks B1 and B4. There is a significant difference in the epidemic-based centrality index
of nodes between Networks B1, B2, and B3. When comparing the implementation of robust
control using epidemic-based centrality (Network B3) and degree centrality (Network B4), it
is found that the former isolates the epidemic-based central airport, New York, to a greater
extent than the latter; Los Angeles is not the most isolated airport in Network B4.
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IDENTIFYING CENTRAL SUBPOPULATIONS 3199

Figure 13. Average infection size of Network B1 with nonlinear dynamics (2.7) and complete local social
distancing for different time delays. Fifty percent of the metapopulation is initially infectious, and \scrR 0M = 2.3.

The epidemic-based centrality difference between two nodes in the network, Atlanta and
Chicago, with respect to basic reproduction number, is shown in Figure 17. When \tau =
11 days, one interlacing between the selected nodes is observed. In other words, as the
disease progresses and\scrR 0M increases slowly enough over time, Atlanta becomes a more central
subpopulation compared to Chicago, requiring more restrictive traffic control measures.

Furthermore, the detailed results of the performance improvement through optimal and
robust epidemic controls are represented in Table 2 for Case 1 with uniform noise distribution,
i.e., \sigma i = 1 for i= 1, . . . , n, and for Case 2 with extreme noise distribution (see (5.9)).

Table 3 presents a comparison between the top three central nodes based on the epidemic-
based centrality defined in Corollary 4.2, degree centrality, and eigenvector centrality when
\tau = 11 days. While degree and eigenvector centralities identify the same two nodes as most
central ones, two of the three nodes based on epidemic-based centrality (4.1) are not captured
by other centralities, due to its fundamental differences described in Remark 5.1. However,
according to Theorem 4.4, when \tau \rightarrow 0, the result of epidemic-based centrality, \scrI e, is expected
to converge to that of local centrality, \scrI o, as \beta 

\delta \rightarrow 0+. On the other hand, when \tau \rightarrow 0, the
output of epidemic-based centrality, \scrI e, will converge to that of eigenvector centrality, \scrI ev,
as \beta 

\delta \rightarrow 
1
un

 - 
; see Theorem 4.5. Table 4 presents the top four ranking results for different

ranges of \scrR 0M when \tau \rightarrow 0 and aii \in [0,1] for all i \in \scrV . When only the top central nodes
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Figure 14. Average of \=p(t) for Networks B1 - B4 with \tau = 11 days, \scrR 0M = 0.97, and initial infection of 10\%.
All the networks follow the linear dynamics (3.1) with no effective local social distancing for all i\in \scrV B. Results
are obtained over 1000 simulations with different random noises on New York, the most central node according
to epidemic-based centrality. The solid lines represent the average of \=p(t), while the shaded area represents the
standard deviation of the simulations.

are considered in the decision-making process, the rankings for \scrR 0M \rightarrow 0+ and \scrR 0M \rightarrow 1 - 

indicate that the effect of epidemic properties on the results is negligible. In such cases, a
node's location in the network will determine its impact on the spread of disease. On the
other hand, for 0.06<\scrR 0M < 0.92, the epidemic properties of disease will also contribute to
the rankings provided by epidemic-based centrality, which leads to a different output.

7. Discussion. In this study, the linear SIS dynamics of an epidemic network subject to
time delay and small shocks has been investigated. The network robustness against small
shocks to its subpopulations is then analyzed using an \scrH 2-based metric. A customized
epidemic-based node centrality is presented to rank the nodes based on their effect on the
network performance while they are exposed to an external node-level shock. The introduced
epidemic-based centrality is a function of adjacency matrix, epidemic rates, and time delay,
which enables adaptive identification of central nodes as the disease progresses within the
network. The performance measure and epidemic-based centrality index are then employed
to develop optimal and robust traffic restriction methods, respectively. The objective is to
improve network performance in the presence of time delay and external shocks, which are
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Figure 15. Logarithmic performance measure of Networks B1 - B3 with respect to time delay when complete
local social distancing is followed by all i\in \scrV B.

modeled by additive Gaussian white noise input. The proposed methods are designed based on
convexifying the original optimization problem to guarantee a global solution. The implemen-
tation of the proposed traffic restriction methods on a core-periphery network and a network
of busiest U.S. airports indicates significant performance improvement along with mitigating
successive waves of infection. Future research could expand on our model by incorporating
existing epidemic datasets and considering the effects of interventions, such as vaccination,
testing, and contact tracing.

7.1. Supplemental notes. The following animations are provided as supplementary ma-
terial to help further clarify some of the notions presented in this study.
\bullet This video (M150776 01.mov [local/web 22.0 MB]) shows the airport rankings of Network

B1 for different values of \scrR 0M \in (0,1) (2.10) when \tau \rightarrow 0+. The rankings are obtained using
epidemic-based centrality (4.1) for the network of the 15 busiest U.S. airports with dynamics
(2.9). Each airport is indicated by its International Air Transport Association (IATA) code
(a unique three-letter code), and its location is initially shown on the map. The size of the
red circles is correlated with the epidemic-based centrality index of each airport, which is
changing as \scrR 0M increases. The colored links are indicators of normalized air traffic flow we

between the airports. As proposed by Theorems 4.4 and (4.5), and also indicated in Table 4,
the rankings provided by epidemic-based centrality slide between the rankings based on local
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Figure 16. Normalized epidemic-based and normalized degree centrality comparison between Networks
B1 - B4 with \tau = 11 days. All the networks follow the linear dynamics (3.1) with complete local social dis-
tancing.

and eigenvector centralities; for \scrR 0M \rightarrow 0+ we have \scrI e = \scrI o, and for \scrR 0M \rightarrow 1 - we have
\scrI e = \scrI ev. As the network reproduction number increases from near zero values, the less
central airports begin to interlace (compare the rankings for \scrR 0M \rightarrow 0+ and \scrR 0M = 0.06),
while for higher reproduction numbers, interlacing happens in most central airports as well
(compare the rankings for \scrR 0M = 0.5 and \scrR 0M = 0.92). As \scrR 0M reaches its upper limit, the
top-ranked airports no longer interlace (compare the rankings for \scrR 0M = 0.92 and\scrR 0M \rightarrow 1 - ).
\bullet This video (M150776 02.mov [local/web 10.5 MB]) presents the airport rankings for

Network B1 with different values of time delay when its reproduction number is near zero.
The rankings are obtained using epidemic-based centrality (4.1) for the network of the 15
busiest U.S. airports with dynamics (2.9). Each airport is indicated by its International Air
Transport Association (IATA) code (a unique three-letter code), and its location is initially
shown on the map. The size of the red circles is correlated with the epidemic-based centrality
index of each airport, which is changing as \scrR 0M increases. The colored links are indicators
of normalized air traffic flow we between the airports. As proposed by Theorem 4.4, for time
delays in 0 < \tau < z1

\delta , the output of local centrality oi defined in (4.7) converges to that of
epidemic-based centrality etai (4.1). On the other hand, when \tau = z1

\delta , a completely different
ranking will be provided by epidemic-based centrality, which is identical to that found by local
centrality li (4.8). As time delay increases in its feasible range z1

\delta < \tau < \pi 
2\delta , the airports that

were identified as less central for 0 < \tau < z1
\delta turn into the most central ones, leading to an

entirely reversed ranking result. The sudden and discrete variation of rankings with respect
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Figure 17. Epidemic-based centrality difference between nodes 1 (Atlanta) and 3 (Chicago) of Network B1
with linear dynamics (3.1) and complete local social distancing versus network basic reproduction number \scrR 0M

for \tau = 11 days. The epidemic-based centrality of the two nodes interlaces once.

Table 2
The values and percentages of performance enhancement for Networks B1 - B3 (Figure 11).

Case 1 Case 2

Network B1 (Figure 11(a)) 741 (0\%) 1227 (0\%)
Network B2 (Figure 11(b)) 549 (+25\%) 590 (+51\%)
Network B3 (Figure 11(c)) 554 (+25\%) 549 (+55\%)

Table 3
Top three hubs based on different centralities when \tau = 11 days.

\bfE \bfp \bfi \bfd \bfe \bfm \bfi \bfc -\bfb \bfa \bfs \bfe \bfd \bfc \bfe \bfn \bft \bfr \bfa \bfl \bfi \bft \bfy (\bffour .\bfone ) \bfD \bfe \bfg \bfr \bfe \bfe \bfc \bfe \bfn \bft \bfr \bfa \bfl \bfi \bft \bfy \bfE \bfi \bfg \bfe \bfn \bfv \bfe \bfc \bft \bfo \bfr \bfc \bfe \bfn \bft \bfr \bfa \bfl \bfi \bft \bfy 

New York Los Angeles Los Angeles
Los Angeles Denver Denver
San Francisco Atlanta Charlotte

to time delay indicates the importance of employing customized centrality indices, such as
proposed epidemic-based centrality, which are capable of incorporating different factors of an
epidemic disease into the decision-making process.
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Table 4
Top four airport rankings by epidemic-based centrality for different values of \scrR 0M when \tau \rightarrow 0.

Ranking 0<\scrR 0M \leq 0.06 \scrR 0M = 0.5 0.92\leq \scrR 0M < 1

1 Las Vegas San Francisco San Francisco
2 San Francisco Las Vegas Denver
3 Denver Denver Las Vegas
4 Miami Phoenix Los Angeles
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