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ABSTRACT: The global COVID-19 pandemic has highlighted the need for rapid, reliable, and efficient detection of biological 
agents and the necessity of tracking changes in genetic material as new SARS-CoV-2 variants emerge. Here we demonstrate that 
RNA-based, single-molecule conductance experiments can be used to identify specific variants of SARS-CoV-2. To this end, we i) 
select target sequences of interest for specific variants, ii) utilize single-molecule break junction measurements to obtain conduct-
ance histograms for each sequence and its potential mutations, and iii) employ the XGBoost machine learning classifier to rapidly 
identify the presence of target molecules in solution with a limited number of conductance traces. This approach allows high-
specificity and high-sensitivity detection of RNA target sequences less than 20 base pairs in length by utilizing a complementary 
DNA probe capable of binding to the specific target. We use this approach to directly detect SARS-CoV-2 variants of concerns 
B.1.1.7 (Alpha), B.1.351 (Beta), B.1.617.2 (Delta), and B.1.1.529 (Omicron) and further demonstrate that the specific sequence 
conductance is sensitive to nucleotide mismatches, thus broadening the identification capabilities of the system. Thus, our experi-
mental methodology detects specific SARS-CoV-2 variants, as well as recognizes the emergence of new variants as they arise.  

Since the SARS-CoV-2 virus was identified in December 2019 
it has spread worldwide, caused nearly seven million fatalities as 
of October 2023, and has remained a geopolitical, economic, and 
health issue globally.1 Much effort during this time has been de-
voted to developing vaccines to trigger an immune response to the 
SARS-CoV-2 spike glycoprotein’s receptor-binding domain 
(RBD).2–8 Unfortunately, as the virus continues to thrive in the 
human ecosystem new variants of the SARS-CoV-2 virus are 
continuing to emerge around the globe. Among the emerging 
variations B.1.1.7 (Alpha), B.1.351 (Beta), B.1.617.2 (Delta), and 
B.1.1.529 (Omicron) are in the class identified as variants of con-
cern (VOCs).9–11 Moreover, as modifications to the genome com-
pound in the VOCs, the efficacy of the initial vaccines, which 
were designed to combat the virus’s original genome, has dimin-
ished. The quantity, position, and type of mutations on the recep-
tor-binding domain can affect vaccine efficacy over time, and 

some strains may eventually evade the vaccine induced immunity 
and trigger another pandemic wave.12–19 Thus, it is important to 
monitor circulating variants to track the spread of the disease and 
implement containment measures in the event of an outbreak. 
Currently, testing relies heavily on reverse transcription polymer-
ase chain reaction (RT-PCR) and whole-genome sequencing tech-
niques to detect, identify, and track VOCs.20–23 However, this 
technique requires significant time and resources for diagnosis 
and mutation detection. Thus, the COVID-19 pandemic has em-
phasized the need for fast, sensitive, and cost-effective methods 
for both diagnostics and variant surveillance, and a new genera-
tion of techniques is emerging in an attempt to supplement con-
ventional methods. These include Cas-based assays24–27, electro-
chemical biosensors28–30, FET-based biosensors31–34, and oth-
ers.35–39 Here we present an electrical biosensor based on single-
molecule conductance measurements that allow for sensitive, 



 

robust, and cost-effective detection and identification of the 
VOCs. 

The sensing platform is based on the single-molecule break 
junction (SMBJ) technique (Figure 1g), which has previously 
been used to demonstrate that: (i) the conductance of double-
stranded RNA:DNA hybrids can be measured at the single mole-
cule level39–44, (ii) the conductance is sensitive to both sequence 
and base-pair mismatches41,42, (iii) it is possible to detect and 
identify pathogenic bacterial strains using RNA sequences down 
to attomolar concentrations41, and (iv) detection is possible in 
complex environments.42 Thus, in light of the emergence of 
VOCs, here we examine the utility of single-molecule conduct-
ance measurements to identify specific SARS-CoV-2 variants, 
and to explore how this approach can be generalized to identify 
multiple targets simultaneously.  

In the following section, we first discuss the design considera-
tions involved in selecting DNA probes that are compatible with 
our measurement system and align with our objectives. Specifical-
ly, we examine the conductance of RNA:DNA hybrids designed 
to detect the wild-type (WT) SARS-CoV-2 virus, and the Alpha, 
Beta, Delta, and Omicron variants, focusing on spike protein mu-
tations N501Y, E484K, and T478K respectively. We demonstrate 
that these target variants can be accurately identified even in the 
presence of interfering sequences. Furthermore, we highlight the 
potential for improvement in target identification by employing a 
machine learning model, XGBoost, which effectively identifies 
the presence of these targets within complex solutions containing 
off-target sequences. Notably, our approach achieves reliable 
results with a limited number of samples reads (<100), signifi-
cantly reducing the overall processing time from sample input to 
obtaining results to mere seconds. 

EXPERIMENTAL SECTION 

To begin, we use genomic data from GISAID45 to identify the 
mutations present in the VOCs. The genomic data indicates that 
each VOC has a unique set of mutations within the receptor bind-
ing domain (RBD) given in Table S1, and by targeting a subset of 
these mutations we can unambiguously identify the VOCs of in-
terest. From this analysis we determine that detecting point muta-
tions at residues 501, 484, and 478 within the spike protein allows 
us to identify wild-type (WT) SARS-CoV-2, and the Alpha, Beta, 
Delta, and Omicron VOCs (Table S2), provided the conductance 
values between perfectly matched and mismatched target se-
quences are distinguishable.  

Thus, the next step is to identify target RNA sequences around 
each mutation (and thereby the corresponding DNA probe se-
quence) that would maximize our probability of identifying both 
the perfectly matched and mismatched sequences. An example of 
this process is shown in Figure 1a for the mutation at the 501st 
codon of the spike protein, where a Tyrosine (Y, UAU codon) has 
mutated into an Asparagine (N, AAU codon). As shown in Figure 
1b, we focus on short (12 nucleotides) sequences that are well 
within the capture and measurement capabilities of the SMBJ 
approach41–44,46–48, and then aim to (i) maximize the G:C content, 
as higher GC content in hybrids of a given length correlates with 
increased conductivity42, (ii) centralize the mutation point within 
the sequence to ensure structural stability even when a mismatch 
is present and (iii) minimize the number of probable confounding 
sequences within the entire SARS-CoV-2 genome. Based on these 
criteria, we chose the RNA sequence CCC ACU UAU GGU as 
our target (Figure 1c) to identify the 501Y mutation, which is 
present in Alpha, Beta, and Omicron. Next, we chose the com-
plementary DNA sequence as our probe, which we refer to as 
probe 501. This probe is also able to bind to the RNA sequence 
CCC ACU AAU GGU (501N, Figure 1d), which is present in WT 

and Delta, as a second target. In addition, we searched for this 12 
bp target sequence within the rest of the genome and found no 
confounding sequences.  Finally, since we must also be sensitive 
to other potential mutations that may occur in this sequence, we 
chose CCC ACU UAC GGU (Figure 1e) as an additional control 
sequence. In this case, the UAC codon still codes for Tyrosine 
(Y), so we refer to it as target 501Y’. Thus, the 501 DNA probe is 
able to bind to RNA targets 501Y, 501Y’, and 501N. A similar 
approach is utilized for mutations at the 484 and 478 positions, 
and the amino acid and nucleotide sequences for these are given 
in Figs. S1 and S2, respectively.  

 

 
 
Figure 1. Mutation selection and conductance measurements. 

a) The section of the genome including the 501 mutation. b) 12 
base pair sequence windows around each mutation and the corre-
sponding GC content of each, the selected target is shown in red 
(S4). c) Designed DNA probe and RNA target for the 501Y muta-
tion, d) the 501N wild-type RNA target, and e) the interfering 
501Y’ target sequence. f) 3D molecular representations from MD 
simulations of 501 DNA probe and 501Y, 501N and 501Y’ RNA 
targets g) schematic of 501:501Y DNA:RNA hybrid between Au 
electrodes, h) Conductance histograms for the 501 DNA probe 
hybridized to 501Y, 501N and 501Y’ RNA targets, i) Conduct-
ance values for the individual molecules, with error bars indicat-
ing standard error of the mean with N=4.  

 



 

Previously, we showed that structural instability in RNA:DNA 
hybrids can result in unmeasurable conductance values41. There-
fore, the stability of each selected sequence is a crucial factor in 
obtaining a reliable measurement. Thus, once the probe and tar-
gets are identified for a given point mutation, we examine the 
structural stability of each hybrid using molecular dynamics (MD) 
simulations. We perform 50 ns MD simulations, analyze the tra-
jectories in terms of root mean square deviation (RMSD), and 
examine the change in hydrogen bonding over time. MD analyses, 
whose details are available in section 2 of the supplementary in-
formation, show that the selected probe-target hybrids are stable 
over the course of the simulations. In mismatched sequences, the 
RNA can still hybridize with its corresponding DNA probe, alt-
hough forming the structure deviates from the perfectly matched 
case. Additionally, the melting temperatures of the molecules 
have been calculated and are presented in SI Table S3, indicating 
that the RNA:DNA hybrids remain stable at room temperature. 

Finally, to ensure that the selected targets can be detected and 
measured we perform conductance measurements on each using 
the SMBJ approach (Fig. 1g). Here, 1000s of break-junction cy-
cles are repeated, and then conductance traces with identifiable 
step regimes (SI: Figure S7) are combined to produce a conduct-
ance histogram. As can be seen in this case, each target gives a 
distinct conductance peak, though the 501:501N and the 
501:501Y’ hybrids have similar conductance values (Figure 1h 
and 1i), a point we will return to below. The unique conductance 
values observed can be attributed to the impact of mismatches on 
the conformation of RNA:DNA hybrids, as documented in litera-
ture.41 The conductance axes are presented in terms of G0 where 
G0 is the conductance quantum 2𝑒𝑒

2

ℎ
 (e is an electron charge and h 

is the Planck constant). 
RNA target sequences and the DNA probes for 484 and 478 

mutations are shown in Figure 2a. The conductance results are 
shown in Figure 2b and 2c along with the conductance histograms 
resulting from the SMBJ measurements. Details of the SMBJ 
technique are provided in section 3 of the supplementary infor-
mation. The 478 probe is designed to detect the 478K mutation, 
which is present in the Delta and Omicron VOCs, but can also 
detect the presence of the 478T target (mismatch) which exists in 
the WT. We also added an additional RNA target to the list which 
is named 478K’ to examine possible interference. Similarly, for 
the 484 DNA probe, we have 484E (mismatch) present in Alpha, 
Delta, and WT (Table 1), and 484K (perfectly matched) that per-
sists in Beta. In this case, we include 484K’ as a possible mis-
matched interfering sequence and found a sequence in the SARS-
CoV-2 genome that represents a second interference point with a 
single mismatch to the designed DNA probe (at the end of the 
sequence) from the Orf1ab protein. As such, we also test for this 
possibility. 

RESULTS AND DISCUSSION 

The conductance results from each of these sequences verify 
that we can distinguish between the perfectly matched comple-
ment to our probe sequence, and any of the tested mismatches 
(Figure 1h and 1i for 501 probe, Figure 2b and 2c for the 484 and 
478 probes). Control experiments utilizing single-stranded DNA 
probe and RNAs indicate the absence of conductance peaks in the 
histograms within the designated conductance region (refer to 
Supplementary Information, Figure S10). Figures featuring 
Gaussian fits have been included in the SI section 3.5 to improve 
visual clarity. From these sequences, we can readily identify the 
perfectly matched cases allowing us to unambiguously detect 
specific VOCs (Figure 3). For example, if we test a sample with 
the three probes and find the perfectly matched 501Y but not the 
perfectly matched 484K or 478K we would conclude that the 

sample is COVID positive, and that it is the Alpha VOC. Similar-
ly, (i) Beta can be identified if 501Y and 484K are present, (ii) for 
Delta only 478K would be detected, and (iii) for Omicron both the 
501Y and 478K peaks would be present (shown as a representa-
tive case in Figure 3). Thus, by focusing only on the perfectly 
matched sequences that are designed to target specific mutations 
we can positively identify specific VOCs and as new VOCs 
emerge, new probes can be developed to directly target those 
(Figure S5).  

 

 
Figure 2. Sequences and conductance measurements for the 

484K and 478K mutations. a) The 484 & 478 DNA probes and 
their complementary and interfering RNA targets, mismatched 
bases are highlighted. b) Conductance histograms of the 
DNA:RNA hybrids, color-coded by corresponding hybrids, and c) 
conductance values from a Gaussian fit of N=3 samples with error 
bars given by the standard error of the mean. 

 
Although we can positively identify the targeted VOCs based 

on the perfectly matched sequences, the fact that we get well-
defined conductance peaks from the mismatched test sequences 
(501Y’, 484K’, and 478K’) that represent known variations 
(501N, 484E, and 478T), and the Orf1ab target raises three im-
portant questions. Can we positively identify other variants (e.g. 
WT) based on these results? Can we ensure a COVID positive 
result even if the new variants arise? And can we positively iden-
tify VOCs even if multiple strains are present in a sample (e.g. in 
wastewater samples)? 

The primary issue in answering these questions is that in some 
cases the conductance values of the mismatches are not signifi-
cantly different from one another (e.g., 501N and 501Y’, Fig. 1h 
and 1i). However, if instead of focusing on the dominant peak 
value alone, we look at the conductance histogram as a “finger-
print” for a specific sequence, we can utilize machine learning 
techniques to try to distinguish between all possible variations for 
a given probe sequence. In this approach we note that while con-
ductance values may be similar, the overall distributions of the 
conductance histograms are different for each case.  Thus, we 
organize our machine learning algorithm to create histograms 



 

from a limited number of traces, and then predict which sample it 
came from. This is repeated for a number of different traces per 
histogram. While it is not possible to determine exactly what fea-
tures of the histogram the algorithm fits to, a generalized way of 
thinking of this approach is: how many traces does it take to cre-
ate a histogram that can be identified as being similar to one of the 
“original” complete histograms? 

Thus, to differentiate between all possible targets including the 
complementary and mismatched ones, and to automate and speed 
up the diagnosis process, we apply a machine learning algorithm 
previously developed by our group based on the XGBoost algo-
rithm.49–51 This approach decreases the number of conductance 
measurements required for identification while improving the 
detection and differentiation accuracy. Here, we design our classi-
fier to detect each of the target sequences independently. To im-
plement the algorithm, we first remove the SMBJ current traces 
that do not represent a molecular junction from the data sets by 
implementing an exponential curve fitting test. Therefore, any 
current traces that have an R2 value larger than a set threshold 
(0.95) are discarded. This removes a sufficient number of traces 
without plateaus to enable the machine learning algorithm to ac-
curately identify sequences. Next, we randomly sample H traces 
and construct 1000 probability histograms for each dataset, with 
600 bins over the conductance range from 10−7.5 G0 to 10−1.5 G0. 
For each dataset, we use a train/test split ratio of 70/30, which 
uses 70% of traces to construct histograms and train the 
XGBoost50 classifier, while 30% are used for testing. After train-
ing, the classifier can distinguish between each of the sequence 
targets with accuracy > 88.7% (484E vs. Orf1ab) or > 98.5% (the 
remaining 8 targets) with as only H = 100 randomly chosen raw 
current traces (Fig. 4a). Thus, instead of collecting thousands of 
traces as is typically done in SMBJ measurements to develop a 
conductance histogram (see Figs. 1 and 2), we can positively 
identify the target present with only 100 sample reads (conduct-
ance vs. time traces). To determine the minimum number of sam-
ples needed we examine the correlation between the accuracy of 
prediction for every probe:target hybrid and the number of raw 
current traces (H), as shown in Fig. 4b. Our findings suggest that 
by independently testing with 3 different probes and their corre-
sponding sequences using 100 individual current traces each (H =
 100), we can accurately verify not just the presence of the target-
ed VOCs, but also identify WT and Orf1ab. The results obtained 
from the three different probes for the ten targets considered are 
summarized in Table 1. The decision matrix produced by the 0s 
and 1s in this table uniquely determines the target. Note that the 
Orf1ab producing gene in the target list (gives a 0 only if COVID 
negative). However, positively identifying the new variant type 
would likely require a new probe, with the VOC detection strate-
gy, which is discussed above. 

Finally, to answer the third question above and determine 
whether SMBJ tests can positively identify specific targets even in 
the presence of multiple different strains in pooled samples (e.g. 
wastewater testing), we examine whether a target of interest can 
be identified in a sample containing both the perfectly matched 
target and other interfering RNA targets. To test this capability, 
we add each probe to a solution containing all the target RNA 
sequences relevant to that probe (Fig. 5a). In the 501 and 484 
probe cases, because of the dispersion of the conductance histo-
gram for each of the sequences, it is not possible to extract a spe-
cific peak for each of the RNA sequences in the sample. However, 
there is a significant shift in the peak position and overall con-
ductance dispersion when the VOC target is present in the sample, 
and when it is not (Fig. 5a). This shift is attributed to an increase 
in counts in the conductance histogram, particularly around the 
conductance value position of the matching RNA. For instances 
like 501 and 484, where the conductance values are closely 

aligned, the shift is discernible primarily through statistical analy-
sis. Examples of the fits are available in the SI section 3.6. A sta-
tistical T-test analysis indicates p-values of 0.005 (501) and 0.011 
(484) for distinguishing between the cases when the perfectly 
matched target is present in the mixture and when it is not. In the 
case of the 478 probe, the peak at 1.65×10-3 G0 appears only in a 
mixed sample where the perfectly matched sequence is present. 

 



 

 
Figure 3. Envisioned process for variant identification using SMBJ conductance values. On the left, a sample is divided into three test 

samples, one with each of the DNA probes. If the conductance peak corresponding to the perfectly matched sequence for that probe is 
present, we can use the aggregated data to identify specific VOCs as shown in the table on the right. 

 

 
Figure 4. Envisioned process for variant identification using SMBJ conductance values. On the left, a sample is divided into three test 

samples, one with each of the DNA probes. If the conductance peak corresponding to the perfectly matched sequence for that probe is 
present, we can use the aggregated data to identify specific VOCs as shown in the table on the right. 

 

While these p-values suggest robust detection of the perfectly 
matched sequences (and the corresponding VOCs) using conduct-
ance measurements with good confidence intervals, it would be 
preferable to limit the total number of break-junction cycles re-
quired to distinguish between cases where the mismatches and 
targets are both present and cases where only the mismatches are 
present. Thus, to automate and speed up the diagnostic process 
and to see if the confidence levels can be improved, we apply the 
machine learning approach discussed above to distinguish be-
tween these cases. Here, we train the classifier using two sets of 

samples: a mixed sample containing all target sequences for a 
given probe (both the matched and mismatched sequences) and 
samples with only the mismatches present. The same 70/30 
train/test split ratio is applied to both sets of samples. Using 
H=100 current traces, the ML system achieves reasonable accura-
cy in identifying the presence of different targets in mixed sam-
ples. For the case of the 501Y target, the system correctly identi-
fies its presence with 97.8% accuracy. Similarly, it achieves 
99.7% accuracy for the 484K target of 484 probe and 99.7% for 
the 478K target (Fig. 5b).  



 

Table 1. Table showing how each of the variants can be identified using results from the XGBoost ML approach.

Probe 501 484 478 All 

Target 501Y 501N 484K 484E Orf1ab 478K 478T 
501Y', 

484K' or 
478K' 

New 
Peak 

V
O

C
 

Wild-Type 0 1 0 1 1 0 1 0 0 
Alpha 1 0 0 1 1 0 1 0 0 
Beta 1 0 1 0 1 0 1 0 0 
Delta 0 1 0 1 1 1 0 0 0 
Omicron 1 0 0 0 1 1 0 0 0 

New Variant ? ? ? ? 1 ? ? ? ? 

COVID-19 Negative 0 0 0 0 0 0 0 0 0 
 
 

 
Figure 5. Mutation detection in mixed sample a) distinct conductance peaks in three probe cases, histograms include conductance of the 

mix of the corresponding RNA targets of each DNA probe, and one excluding the complementary target RNA molecule from sample b) 
XGBoost classifier confusion matrices based on H=100 raw current traces illustrate the classifier's ability to detect the variant in mixed 
samples. 

 
To test the robustness of the classifier, we systematically vary 

the number of samples examined (Fig. S10). This analysis reveals 
that by increasing the number of samples, the accuracy of the ML 
system could be improved to the desired threshold. For example, 
to achieve 98% accuracy, H = 100 histograms are required for the 
501Y case, while H = 50 histograms are sufficient for the 484K 
and 478K cases (Fig. S10). This indicates that even in complex 
samples, we are still able to positively identify specific VOCs that 
are perfectly matched with their probes, and to positively identify 
COVID infections regardless of the variant type. Furthermore, 
these findings demonstrate the potential of the ML approach to be 
adapted to emerging cases and to improve the accuracy by adjust-
ing the number of current traces examined. By carefully selecting 
the appropriate number of current traces, the system can achieve 
high accuracies even in the presence of other targets in a complex 

environment. Overall, our ML approach offers fast processing 
capabilities for sample diagnostics with minimal data collection 
requirements, once sufficient training data has been generated.  

 

CONCLUSION 

In conclusion, this study presents the successful utilization of 
the single molecule break junction (SMBJ) technique as an elec-
trical biosensor for the detection and identification of genetic 
material related to specific SARS-CoV-2 VOCs. By leveraging 
the specificity of the RNA sequences relative to the VOCs, we 
designed specific probes targeting key regions of the virus’s ge-
nome, enabling the detection of specific mutants. The inherent 
resilience of the hybrids' conductance values to mismatches al-



 

lows for differentiation between multiple targets in mixed sam-
ples, thus expanding the capability to detect a wider range of mu-
tations. This finding highlights the potential of the SMBJ tech-
nique to effectively identify and distinguish between various 
VOCs in complex sample environments. Furthermore, the study 
demonstrates the application of the XGBoost machine learning 
technique to enhance the diagnostic process. By utilizing 
XGBoost, we reduced the number of current traces required from 
the SMBJ system to allow accurate identification of the VOCs 
and broaden the detection capabilities. This reduction in data col-
lection not only streamlines the diagnosis process but also paves 
the way for real-time applications for SMBJ-biosensors, enabling 
faster and more efficient detection of SARS-CoV-2 VOCs or 
other pathogens. 

This combined experimental and data analysis approach greatly 
expands detection capabilities and reduces the possibility of both 
false negatives and false positives, which is important when at-
tempting to track variants globally. The strategy is of potential use 
in scenarios where quick and accurate identification of variants is 
crucial, such as in clinical settings. The ability to detect specific 
sequences and identify or exclude specific variants with a small 
number of samples also reduces the time and resources needed for 
analysis, enabling prompt decision-making and potentially early 
intervention. Thus, this detection system enables the identification 
of specific VOCs, the ability to track their spread against previous 
variants, and has the potential to identify the emergence of new 
VOCs.  

ASSOCIATED CONTENT  
Supporting Information 
Method for choosing the target regions of the genome, MD simu-
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