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Ensuring Both Positivity and Stability Using
Sector-Bounded Nonlinearity for Systems
With Neural Network Controllers

Hamidreza Montazeri Hedesh* and Milad Siami

Abstract—This letter introduces a novel method for the
stability analysis of positive feedback systems with a class
of fully connected feedforward neural networks (FFNN) con-
trollers. By establishing sector bounds for fully connected
FFNNs without biases, we present a stability theorem
that demonstrates the global exponential stability of lin-
ear systems under fully connected FFNN control. Utilizing
principles from positive Lur'e systems and the positive
Aizerman conjecture, our approach effectively addresses
the challenge of ensuring stability in highly nonlinear
systems. The crux of our method lies in maintaining sector
bounds that preserve the positivity and Hurwitz property
of the overall Lur'e system. We showcase the practical
applicability of our methodology through its implementa-
tion in a linear system managed by a FFNN trained on
output feedback controller data, highlighting its potential
for enhancing stability in dynamic systems.

neural network
network bound,

Index Terms—Neural networks,
verification, positive systems, neural
stability analysis.

[. INTRODUCTION

ULTILAYER feedforward neural networks are univer-

sal approximators [1]. This fact has led to extensive
applications of neural networks (NN) across various fields. In
the field of control systems, there has been a longstanding
interest in using NNs as controllers in the feedback loop of
the systems. However, many challenges have emerged along
the way [2]. NN-controllers inherit many challenges due to
their complex and highly nonlinear structure. Input sensitivity,
lack of robustness, and lack of stability certificates are some
of the issues that pose severe risks in safety-critical systems.
Consequently, many recent studies have tried to address these
shortcomings and propose methods for verification of NNs in
closed loop.
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Control theory provides an arsenal of valuable tools con-
ducive to the verification of NN-controllers, such as Lyapunov
functions, robust control techniques, passivity analysis, and
Control Barrier Functions (CBFs), among others. Researchers
are actively exploring the integration of these tools to develop
robust verification methods. In a notable instance, the stud-
ies [3], [4] leverage Quadratic Constraints (QCs), combining
them with Lyapunov functions for a comprehensive verifica-
tion approach. The authors continued their work on Integral
Quadratic Constraint (IQC) for verification of NNs in [5]. The
authors of [6], [7] employ QCs along with the S-procedure
to establish stability conditions and address reachability con-
cerns. Some studies like [8] used passivity theorem. The
authors in [9] propose the use of CBF to address these chal-
lenges, presenting a distinctive perspective. The article [10]
used Lur’e systems, Circle, and Popov criteria to analyze
the stability of such systems. The study [11] used the Sum
of Squares (SOS) method to device Lyapunov functions for
stability assurance of NN-controllers in the feedback loop
of nonlinear systems. Many other creative methods have
been used to verify NN-controlled systems [12], [13], [14].
A comprehensive review of the methodologies used in this
domain is presented in [15].

These mathematical tools are very useful in the analysis
of the highly nonlinear structures inherent in NN-controlled
systems. However, they carry their limitations such as com-
plexity and lack of scalability to large systems. Some studies
have tried to tackle this drawback [16]. For example, [17], [18]
came up with algorithms to split the verification problem into
sub-problems and solve them more efficiently. Meanwhile, the
search for new mathematical tools is still ongoing, and there
exist many unexplored useful tools [19]. Recently, one of the
fundamental and simple methods for stability verification of
nonlinear systems came into light. Aizerman’s conjecture for
absolute stability was proven to be wrong universally [20].
However, very recently, the conjecture was proved to hold
for the class of positive systems [21]. These new findings
opened the way to developing a simple and scalable method
for the verification of NN-controllers. Our findings presented
in this letter are based on this method. The use of Lur’e
systems in the analysis of NNs is not a new concept,
and there is literature covering this method such as [22].
However, the use of the Aizerman conjecture was absent
due to the general disprove of it. In this letter, we use this
simple yet resourceful conjecture for positive NN-controlled
systems.

In this letter, we introduce a sector bound for a fully
connected FFNN without biases. The sector bound is based
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on the properties of the activation function of the NN and its
weights. The establishment of sector bounds was necessitated
by their indispensability in our verification methodology.
Existing bounds such as IBP [23], Lipschitz constant [24],
and Quadratic Constraints as described in [3], [6] lacked the
requisite structure for verification via the Aizerman conjecture.
Consequently, we devised our own bounds. Our proposed
bound diverges significantly from the IBP method and the
Lipschitz constant of the NN. The IBP method involves
propagating the input through layers, identifying bounds for
the output polytopes of each layer. However, the resulting
output bound is a set that lacks explicit connection with
the input to the NN. Additionally, the Lipschitz constant,
being a scalar, may even exceed the sector bound of a given
nonlinear function. In contrast, sector bounds establish a direct
relationship between the output and input, potentially spanning
higher dimensions than a scalar. These characteristics make
sector bounds particularly valuable for nonlinear analysis of
NNs, notably in the context of the Aizerman and Kalman
conjecture. Previous works such as [3] and [6] also utilize
sector bounds, albeit restricting the nonlinearity to the NN’s
activation functions. In this letter, we introduce a sector bound
for the entire NN, motivated by its necessity in addressing the
Aizerman conjecture. Using the proposed sector bound, we
present our stability theorem.

The contribution of our work is twofold. First, an introduc-
tion of a sector bound for fully connected without biases which
can be used further in many applications, like forward reach-
able sets of NNs, or nonlinear control analysis of the closed
loop systems. Moreover, we present a simple verification test
for the stability of positive closed-loop systems consisting of
NN-controllers and linear time-invariant (LTI) systems. The
stability condition is simply based on the calculated sector
bounds. It only checks that the upper and lower bounds of the
system are Metzler and Hurwitz, respectively. The calculation
does not require a huge amount of memory and time, making
it suitable for extending to more complex systems and system
of systems. Another standout point of this research compared
to the literature is that it can handle continuous-time systems.
Moreover, this letter addresses global asymptototic stability
(within the context of positive systems) of NN-controlled
systems, while most of the available verification methods study
local stability.

A. Notation

The orders <, >, when applied to matrices and vectors, act
elementwise. The set of real numbers is denoted by R, and
the set of nonnegative real numbers by R,. The set of real
n-dimensional vectors and the set of real m x n-dimensional
matrices are denoted by R"” and R™*" respectively. For a
real matrix (vector) Q, the notation Q > 0 indicates that all
elements of Q are positive, Q > 0 indicates that all elements of
Q are nonnegative. < and < are defined similarly. We define
R = {v € R"™v > 0}. In addition, we define R with
obvious modifications. 0, and I,, denote a vector of zeros and
the Identity matrix of size n, respectively. Furthermore, given a
matrix A, the elementwise absolute value is denoted as |A|aps,
where

la1] laiz| -+ - laial

laz1] lax| - - - lazal
|A|abs =

|am1| |an12| s |amn|

y=Cx

(0]

Fig. 1. Lur'e system with plant G and nonlinear controller ®.

With this definition, it is evident that for two real matrices Q
and T of compatible dimensions, |QT |abs < |Qlabs|T |abs-

[l. PRELIMINARIES
A. Positive Systems

In the world of control theory, the concept of positive
systems plays an important role due to their widespread
applicability in various domains such as economics, biology,
and engineering. Positive systems are distinguished by their
intrinsic property that, given nonnegative initial conditions,
their state variables remain non-negative for all future times.
This section aims to succinctly define positive systems, out-
line the essential conditions for their positivity, and explain
technical terms. Consider the generic linear control system:

x(1) = Ax(®) + Bu(t),  y(1) = Cx(1), (D

where A € R™" B ¢ R™™ and C € RP*" are constant
matrices. In addition, u(r) € R™, x(t) € R”", and y(t) € RP
denote input, state, and output variables.

Definition 1 (Positive Linear System): A linear system, as
characterized by (1), is defined to be Positive if, for all ¢t > 0,
given initial conditions x(0) > 0 and input u(r) > 0, the state
x(#) remains non-negative.

Definition 2 (Metzler Matrix): A matrix M = [m;;] € R"™"
is defined as a Metzler matrix if all its off-diagonal elements
are non-negative; that is, m; > 0 for all i # ;.

Fact 1: Consider the linear differential equation X = Mx.
The system described above is positive if and only if the matrix
M is Metzler. Moreover, if M is also Hurwitz, there must
exist a vector v € R’i, v > 0 with all positive entries such
that v/ M < 0 has all negative entries. This fact is adopted
from [21] and detailed proofs of the claims can be found in
the references therein [25], [26].

Proposition 1: Given a system described by (1) and con-
sidering the definition of a positive system as per Definition 1,
the system is positive if and only if matrix A is Metzler, and
matrices B € R and C € R [27].

B. Lur’e Systems and Aizerman’s Conjecture

The classical framework of Lur’e systems and Aizerman’s
conjecture applies to Single Input Single Output (SISO)
systems. These involve a SISO linear system interconnected
with a nonlinearity in the feedback loop, as shown in Fig. 1.
Consider a closed-loop nonlinear control system described
by x(t) = Ax(t) + bd(0), o = cTx(r), where x € R" is
the state vector, A € R™ " is the system matrix, b,c € R"
are constant vectors. The nonlinearity ® : R +— R satisfies
®(0) = 0. Aizerman’s conjecture states that the system is
globally asymptotically stable if, for every linearization of ®
within a sector [k, k], where ki and kp are real constants,

the linearized system x(¢) = Ax(t) + bko, o = Ix@), ke
[k1, k2], is asymptotically stable. The sector condition is
o
) @)
o
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Fig. 2. ReLU and tanh sector-bounded in [0, 1].

Note that common NN activation functions, such as tanh and
ReLU, satisfy sector bounds within [0, 1]. Fig. 2(c) illustrates
these functions with the global sector [0, 1]. However, excep-
tions to Aizerman’s conjecture exist, with counterexamples
showing systems that meet the conjecture’s criteria but have
both a stable equilibrium and a stable periodic solution.
Nonetheless, under more stringent conditions, such as system
positivity, the conjecture’s validity is reinforced [21].

C. Positive Lur'e Systems

While the Aizerman conjecture was traditionally associated
with SISO systems, this discussion extends to encompass
Multi-Input Multi-Output (MIMO) systems. Consider the class
of Lur’e systems shown in Fig. 1. Assume the interconnection
of the linear system (1) and the static nonlinear feedback
u = ®(y,.). The dynamics of such an interconnection can be
succinctly represented by:

X = Ax(t) + BO(Cx, 1), 3)

where A € R™" B € R"™™ and C € RP*" are constant
matrices and the multivariate function ® : R? x R +— R™
is assumed to satisfy ®(0,7) = 0,Vr > 0, ensuring that
xx = 0 serves as an equilibrium point for (3). A fundamental
assumption in this letter is the well-posedness of the feedback
interconnection depicted in Fig. 1. We assume the existence of
a unique and locally absolutely continuous function x : Ry +—
R” that satisfies equation (3) almost everywhere, for any initial
condition x(0) € R". The well-posedness of the system is
predicated on standard conditions applied to the nonlinearity
®(z,1): it must be locally Lipschitz in z and measurable
in ¢, along with certain mild boundedness conditions. These
prerequisites ensure the existence and uniqueness of the
solution, as delineated in foundational control theory literature
such as [28].

Given the MIMO system context, the multivariable function
@ transcends the traditional sector bound definition as in (2).
Within the context of positive systems, defining a sector
bound for the multivariable function & is most coherently
articulated in terms of componentwise inequalities. For the
case of positive systems, we define a sector bound for ® as
following. Given two matrices X1, Xy € R™*P  with ¥; <
3,,! the function ® is considered to be within sector [}, Z»]
if:

1z <Dz, 1) <Xz, VzeRE,Ve>0. 4)

By establishing the sector bound within a MIMO system
framework, we introduce a lemma from [21] that presents
a necessary and sufficient condition for the positivity of a
Lur’e system. The lemma, provided below, is included here
for reference as it becomes essential later in this letter.

1Sign conventions: This letter makes no assumptions about the signs of the
sector bounds X1 and %,.

Lemma 1: Consider the Lur’e system as described in (3),
assuming that both B, C > 0. The system (3) is a positive
system for any ® € Sector[X{, ¥,] if and only if the matrix
A + BYC is Metzler.

The proof of the lemma can be found in [21]. Finally we
address the positive Aizerman conjectur here. As outlined in
the work [21], the Aizerman conjecture is true for positive
systems. The authors introduce a theorem that establishes the
conditions for the global exponential stability of a positive
Lur’e system.

Theorem 1 (Positive Aizerman [21]): Consider a Lur’e-
type system (3) with B, C > 0, and ¥; and ¥7(Z; < Xj) of
appropriate dimension. If A4+ BXC is Metzler and A+ BX,C
is Hurwitz, then for every nonlinearity ® € Sector [X1, X] in
the sense of (4), the Lur’e system (3) is globally exponentially
stable.

This is a significant finding that underscores the viability
of Aizerman’s conjecture for positive systems. This theorem
is instrumental in analyzing the stability of systems controlled
by NN. However, a necessary step is to formulate such NN-
controlled systems within the Lur’e system framework. The
next part aims to precisely define the problem, framing it
within the context established by our discussion on positive
systems and their stability characteristics.

D. Problem Formulation

Building upon our discussion and the theoretical framework
established, we proceed to define a specific problem involving
an LTI system. The system is mathematically characterized as
follows:

Consider an LTI system defined by (1). For the control
policy u(¢) consider an output feedback controller 7 in the
feedback loop of the system as shown in Fig. 1. The controller
7w : RP — R™, is realized as a fully connected FFNN with ¢
layers, delineated by:

o) = Cx(0), (52)
D) =W =D +6D i=1,...,q (5b)
o0 =P (vO0).i=1,....q (5¢)

u(r) = WD @ (p) 4 plath, (5d)

where o € R/ are the output from the ith layer with Iy and
l4+1 being imposed by the input and output size to be p and m
respectively. v® e R/ is the vector of the preactivation logits
of the ith layer. The operations of each layer are characterized
by a weight matrix W® e R%x/i-1a bias vector b*) € R¥, and
an activation function ¢¥, applied in an elementwise manner.

e (U(i)> _ [(0(1)51'))’ ¢<v§i>), s (p(vl(li)>]T’ (6)

where ¢ : R — R is the scalar activation function of the NN.

We assume that the activation function ¢ is uniform
across all layers of the FFNN. This assumption simplifies
the presentation of the behavior of the NN; however, this
assumption can be relaxed with minor modifications to the
notation. We denote the equilibrium state of the system by the
set of (x«, Y4, uy) Where

0, = Ax, (1) + Bu (y+), y« (1) = Cx (1), and u (1) = 7w (Cx(1)).

Our objective is to study global stability of the equilibrium
state. To achieve this, we plan to transform the closed-loop
system, described by (1) and (5), into a Lur’e-type system.
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This transformation enables us to use the positive Aizerman
theorem as our tool for analyzing the stability of the system.

[1l. MAIN RESULTS

In this section, we take several steps to present our find-
ings on stability assurance of NN-controlled system. Initially,
we reconfigure the system into a Lur’e-type framework.
Consequently, the need for sector bounding the nonlinear
part urges us to find a sector bound for system’s nonlinear
component. We propose a sector bound based on the weights
of the NN and the sector bounds of scalar activation function
chosen for NN. These crucial steps set the groundwork
for applying the positive Lur’e theorem to analyze system
stability.

A. Neural Network Controlled System as Lur'e System

In this letter, we assume the LTI system as in (1) as the
linear part of the Lur’e system and consequently include the
entire g-layer NN denoted by (5) as the nonlinear part. Now,
to complete the definition of the Lur’e system, it is required
to sector-bound its nonlinear section.

In our effort to sector bound the output of NN, we look
for ¥ and X, that satisfy the inequality (4). For a positive
system (z € R’}) we should have the following:

[Z1lmxnznxt < Timx1(@) < [Z2lmxnzaxi-

Note that the nonlinear activation function, ¢, as defined
in (6), acts elementwise on its argument.

Theorem 2: Suppose a fully connected FFNN controller
7 (.) with g layers, as defined in (5), with weights of each layer
shown by W® and the biases b set to zero. The NN takes
z € ]Ri as input and returns u(z) € R™. Assume identical
activation functions for all neurons and assume that the chosen
scalar activation function lies in sector [aq, a»], (a1 < a») and
let ¢ = max(|ay|, |az]). Define

q+1 q+1

Pi=—c[[]Wlas | To=c|[]IWlas |- )
i=1 i=1

The defined NN is sector-bounded in the following interval:
INz=<m(z) <TIsz (8)

Proof: The proof has two parts. First, it uses a math-
ematical induction to establish that the output of the gth
layer (5c) is sector-bounded in —c? (]_[?:1 [Wabs)z < m(2) <
c? (]—[iq:1 |Wi|aps)z. Then it adds the weights of the output layer
W@HD to the inequality to establish the theorem.

Base Case: The sector bounds for the output of the first
layer of the NN, defined in (5) with »©® = z, are given by:

— Wiz < p(W2) < W Vlipz, )

assuming the scalar activation function ¢ lies within the sector
[a, b] with ¢ = max(|a|, |b|) and y € R%. Note that both sides
of the inequalities are vectors of size R'! and the inequality is
elementwise. Here a sector bound for the output of first layer
is calculated.

Inductive Step: Assume the sector bounds hold for the

output of ith layer. Specifically, we have:

i i
— ] 1Whavs |2 < 0@C.) <[ ] 1Whas |z (10)

J=1 J=1

We seek to prove these bounds extend to output of the i + 1th
layer. Through multiplying the output of i-th layer by WU+D ¢
Rli+1¥li we get:

i+1 i+1
~d (]'[ |Wf|abs)z <WHeO( ) < (]‘[|wf|abs)z, (11)

J=1

J=1

with the inequalities being elementwise acting on vectors of
size Rli+1,

Feeding this preactivation logits to the activation function
¢™*1, and given ¢! (.) is in sector [aj, a3], we obtain:

— I WHFDGD (Y |ps < ¢<i+1>(W<i+1>¢<i> ‘ )

< WD Yaps.  (12)

As ¢XPlained in the notation section, we can use the property
(WD s < [WEHD g ¢ labs. and rewrite (12) as:

— WD 1D (L ) s < ¢“’+”(W“*”¢“) . )
< /WD sl @ (. ) abs. (13)
From (10) we deduce: [¢ (... )abs < [/ (TTi<; W/ ]abs)2labs-

Note that both ¢!,z > 0 can be moved out of |.|s. We use
the above inequality in (13) and write:

i+1
—eH [T Whas |2 < 6ED (W00 ())
j=1
i+1
5Cl+l l_[|Wj|abs z.
j=1

With the result of induction, the gth layer is sector-bounded
in [ = T[T [W'labs)z, (T [W'labs)2]-

In the second step of the proof, we simply multiply the
weights of the output layer W@+ to the nonlinearity. As a
result of the same operation in (11) we obtain:

q+1 q+1

= [T 1Wiabs |z 7@ <[] Wihaos |z m
i=1 i=1

Given the transformation of the NN-controlled system into a
Lur’e configuration (3), with sector-bounded nonlinearity, we
employ positive Aizerman’s theorem (Theorem 1) for stability
analysis. The conditions for stability assurance are succinctly
outlined in the following theorem.

Theorem 3: Consider a closed-loop system governed by a
linear dynamic model described in (1) and controlled by a
NN-based policy u(-) = w(Cx) as defined in (5). The NN
7 (-) comprises g layers, with weights of the ith layer denoted
by W@, and biases b® set to zero. All neurons employ
an identical scalar activation function sector bounded within
a1, a2], where ¢ = max(|ay], |az|). Define the sector bounds
I'1 and T'; as (7). The combined system dynamics are given
by:

() = Ax(1) 4+ B (Cx(1)). (14)

Assume that B, C > 0. Additionally, let the system reach
equilibrium at (x, ys, us) = 0. If A + BI'1C is Metzler and
A + BI';C is Hurwitz, then the closed-loop system exhibits
global exponential stability.

For the proof of Theorem 3, we follow the steps of the proof
of Theorem 1 as in [21].
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Proof: Given x(0) € R’} and the NN controller 7 € Sector
[T, I'2], Lemma 1 guarantees that x(¢) > 0 for all + > 0. This
permits us to reformulate and approximate equation (14) as:

%= (A +BI0O)x + B(®(Cx, ) — ToCx) < Mx, (15)

where M = A + BI';C is Metzler and Hurwitz. From Fact 1,
it follows that there exists a vector v € R}, with v > 0, and a
scalar € > 0 such that:

viM < —eVT. (16)

Given that v is strictly positive, we get:

T

vmllzll = viz <wylzll, VzeRY a7)

where v,, and vy, are the minimum and maximum elements of
v, respectively. Simple calculations using (16) and (15) yield
the result that for almost all ¢ > 0:

d
aegvTx(t) = eV x(t) + eV i(r) < eel(evT + vTM)x(t) <0.

Since ¢ — ¢V x(7) is nonnegative, (17) yields:
e omllx(] < eV x(t) < v x(0) < vy llx(O)], Ve > 0

from which the global exponential stability is deduced. |

IV. EXAMPLES

In this section, we provide an example to demonstrate the
applicability of our theorem. Consider the following system:

#(1) = [‘35 _ls}ca) + [Oﬂua), ¥(0) = Io2x(1).

The controller is parameterized by an fully connected FFNN
with 4 layers, containing 10, 15, 15, 1 neurons in each hidden
layer. The activation function tanh, sector-bounded in [0, 1],
is selected for all neurons. Biases are set to zero, therefore,
(X4, Y4, ux) = 0 is an equilibrium point. NN controller is
trained to mimic an LQR controller with Q = I, and
R = 1. Upon completion of training, the NN m serves as a
deterministic controller u(f) = m(Cx). As the result of training,
the weights of the NN yield —I'1 = ', = [2.75,1.47]. In
Fig. 3, the validity of the sector bounds defined by (8) is
demonstrated. Fig. 3 shows the NN output for a set of 100
random inputs to lie between the functions I'1z and I'yz. As
demonstrated in Fig. 3, the bounds obtained by the widest
possible X1 and ¥, in Theorem 1 encompass those obtained
by I'y and I'; for two different NNs. As seen in Fig. 3(a)
our obtained bound can be tight, depending on the neural
network’s parameters.

—5.41 0.40

Now, given that A + BI'1C = | 517 (¢

and A + BI',C is Hurwitz with eigenvalues (—6.69, —1.70),
we anticipate the global exponential stability of the closed-
loop system. Figs. 4(a) and 4(b) demonstrate stability. In
Fig. 4(a), the trajectories of the input of the system are
shown for 50 random initial conditions. All of the trajectories
remain inside the sector and finally converge to equilibrium.
Furthermore, Fig. 4(b) shows the trajectories of the states
of the system, for the same random initial conditions. The
exponential stability is foreseeable from Fig. 4(b). In order
to demonstrate the scalability of the approach, we compared
the average run-time of our method against the well-known

is Metzler

—XZ2 —%z —Tz T2 —xz()

—Xz —%z —Tz T,z —gz)

Output
S N S R

20 40 60 80 100
Random Positive Input
(b) 4-layer NN trained on LQR
with @ =I and R = 1.

[ 20 40 60 80
Random Positive Input

=
o

(a) 3-layer NN trained on LQR
with Q = diag(0.3,3) and R = 0.3

Fig. 3. The sector bounds vs NN output for two different NNs.

Output
°
State Variables

0
-50 X 05 1 15 2 25 3
X 2 Time

(a) Trajectories of input and states. (b) Trajectories of states.

Fig. 4. Trajectory of system for 50 random initial conditions.

TABLE |
COMPARISON OF COMPUTATION TIME AND BOUNDS. 10/10/1
DENOTES A 3-LAYER NN WITH 10, 10, 1 NEURONS, RESPECTIVELY

Method Network Architecture | C ion Time (s) Bounds
Our method 10/10/1 2.5 x10~° +[2.65,1.61]
Our method 10/15/15/1 2.6 x 10~° +[2.75,1.47]
1QC method* [3] 10/10/1 0.68
Product of Norms ** [24] 10/10/1 JE— 5.83
Product of Norms ** [24] 10/15/15/1 — 6.45

*TQC does not explicitly provide bounds for entire NN. Therefore, bounds
are not reported. ** Not a method to verify stability; only for comparing
bounds. Therefore, computation time is not reported.

IQC method presented in [3]. Both codes were run on a same
benchmark with MATLAB. The result is shown in the first
row of Table I. In the second and third columns, we compared
our sector bounds with one of the conservative bounds from
the literature [24] to assess the level of conservatism in our
sector bounds. As observed, our sector bounds exhibit better
performance. Furthermore, since our sector bound highly
depends on each entry of weight matrices, we can leverage
this characteristic to train a NN with an additional layer and
almost the same sector bounds. An example of such capability
is shown in Table I. The addition of a layer had minimal
impact on our bound, while increased the other conservative
bound.

V. DISCUSSION & CONCLUSION

In this section, we discuss our results and conclude this
letter. Our analysis uncovers several critical observations. We
expect that increasing the number of layers in the neural
network will naturally expand its sector bounds, potentially
making it more challenging to verify the stability of a broader
range of systems. However, while this is generally the case,
the structure of our sector bounds provides some flexibility to
offset this expansion, as illustrated in Table 1. Moreover, the
addition of more layers does not add complexity or difficulty
to our verification method.

To contextualize our findings, we compare them with
previous studies in the field. We note that most studies
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focus on using Lyapunov functions and solving Linear Matrix
Inequalities (LMIs) for stability. These methods are less prac-
tical for large systems due to their complexity. Our approach,
based on the Aizerman conjecture, offers a simpler alternative
that results in a huge improvement of run-time and scalability
to larger systems.

While interpreting the results, it is essential to acknowledge
certain limitations. A notable instance is that our bounds can
become conservative in some cases. Two examples are shown
in Fig. 3 for both conservative and quite precise bounds.
One way to overcome this limitation is to adopt local sector
bounds, as explained in [3]. This essentially means restricting
the inputs to the activation functions, or in another word,
reducing the level of stability to local stability of the closed-
loop system. Another limitation is the restriction of our sector
bound in handling NN with biases. This limitation carries over
to our analysis. While our sector bounds can be extended to
include biases with some modifications, detailing this would
exceed the scope of the current paper. We plan to explore this
extension in future work. Another less restrictive assumption
is that C, B > 0 as the state transition matrix A is not restricted
in the positive Aizerman theorem. Matrix A does not need
to be Metzler, and therefore the LTI system does not need
to be positive. A verification method based on the positive
Aizerman theorem only requires the combined LTI system and
NN controller to be positive.

This study encourages the exploration of basic theorems like
the Aizerman and Kalman conjectures for verification of NNs.
It opens the door for further investigations into refining sector
bounds for NNs to enhance stability analysis. The potential
for investigating local sector bounds and the local stability
of systems, and examining other NN architectures, such as
recurrent neural networks, within the framework of the positive
Aizerman theorem presents an intriguing avenue for further
study.
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