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Distributed Adaptive Control of Disturbed
Interconnected Systems With High-Order Tuners
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Abstract—This letter addresses the challenge of network
synchronization under limited communication, involving
heterogeneous agents with different dynamics and various
network topologies, to achieve a consensus. We inves-
tigate the distributed adaptive control for interconnected
unknown linear subsystems with a leader and follow-
ers, with the presence of input-output disturbance. We
enhance the communication within multi-agent systems
to achieve consensus under the leadership’s guidance.
While the measured variable is similar among the fol-
lowers, the incoming measurements are weighted and
constructed based on their proximity to the leader. We
also explore the convergence rates across various bal-
anced topologies (Star-like, Cyclic-like, Path, Random),
featuring different numbers of agents, using distributed
first and high-order tuners. Moreover, we conduct several
numerical simulations across various networks, agents and
tuners to evaluate the effects of sparsity in the interaction
between subsystems using the L2−norm and L∞−norm.
Some networks exhibit a trend where an increasing number
of agents results in smaller errors, although this is not
universally the case. Additionally, patterns observed at
initial times may not reliably predict overall performance
across different networks. Finally, we demonstrate that
the proposed modified high-order tuners outperform its
counterpart, and we provide related insights along with our
conclusions.

Index Terms—Adaptive control, distributed control,
multi-agent systems, high-order tuners.

I. INTRODUCTION

MULTI-AGENT systems (MAS), spanning areas from
robotics, including unmanned ground [1], aerial [2], and

underwater vehicles [3], to large-scale societal dynamics [4],
have attracted considerable interest. The scope of challenges
these systems face extends from internal issues like achieving
consensus among agents for coordinated control and stabil-
ity, to external threats such as disturbances, environmental
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uncertainties, or attacks [5]. Furthermore, the interconnected
nature of networked systems necessitates insights from graph
theory. This is underscored by [6], which examines the limits
and trade-offs in networks facing stochastic disturbances, and
by [7], which explores how denser networks (with more links)
affect the number of agents.

In this letter, we explore distributed adaptive control as
a foundational element of MAS, sharing similarities with
distributed Model Reference Adaptive Control (MRAC). This
topic spans from theoretical frameworks aimed at achieving
consensus [8], [9] in complex networks to practical appli-
cations in large-scale systems [10], [11]. The distributed
adaptive control in this letter is adaptable to various agent
dynamics, influencing diverse control laws among agents, as
closely discussed in [12], [13]. Moreover, specific studies have
proposed solutions for nonlinear MAS and neural network-
based challenges [14], [15]. Furthermore, inspired from the
distributed optimization [16], our study incorporates high-
order tuners as adaptive laws to update the gains.

A newly developed algorithm for high-order tuners has been
introduced to optimize convex loss functions with time-varying
regressors in identification problems. This algorithm lever-
ages Nesterov’s method principles, ensuring that parameter
estimations stay within predefined bounds when confronted
with time-varying regressors [17]. It also accelerates the
convergence speed of the tracking error in scenarios where
the regressors are constant [18]. With the growing interest
in advancing tuners, we have adapted high-order tuners for
graph-related problems [18], [19], achieving marginally better
outcomes compared to gradient-based methods. Furthermore,
we offer insights on designing network weights and selecting
parameters in the tuners.

This letter makes the following four main contributions.
First, we integrate the concept of adaptive control into
networked problems with multiple agents, extending its appli-
cability to complex interconnected systems such as star-like,
cyclic-like, path, and random networks. Second, we address
the challenge of coordinating an arbitrary number of agents
with disturbances to follow a designated leader, similar to
distributed MRAC. Third, we compare the performance of
three distinct tuning algorithms: the gradient descent and
two accelerating tuners, providing a comprehensive evaluation
of their effectiveness in networked control systems (NCS).
Finally, we not only evaluate the effects of sparsity in sub-
system interactions using performance measures (L2−norm
and L∞−norm) across various network configurations and
tuners but also demonstrate that our proposed modified
high-order tuners significantly outperform the gradient-based

2475-1456 c⃝ 2024 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.
See https://www.ieee.org/publications/rights/index.html for more information.

Authorized licensed use limited to: Milad Siami. Downloaded on August 23,2024 at 18:46:23 UTC from IEEE Xplore.  Restrictions apply. 

https://orcid.org/0000-0002-2016-5721
https://orcid.org/0000-0001-7253-4464


1422 IEEE CONTROL SYSTEMS LETTERS, VOL. 8, 2024

tuner, offering novel insights for future research in
NCS.

Notations: Rp is the p−dimensional Euclidean space and
C− refers the open left-half of the complex plane. A symbol
(s) shows the Laplace variable. Ip denotes the identity matrix
of size Rp and P = diag{pi} is the diagonal matrix with
entries pi,∀i. 1p = [1, . . . , 1]⊤ is the vector of all ones in Rp.
⊗ denotes the Kronecker product and the operators of tr[A],
|A|, ∥A∥2, and ∥A∥F define the trace, the absolute value, the
Euclidean and the Frobenius norm of matrix A respectively.

II. PRELIMINARIES AND PROBLEM FORMULATION

A. System Setup
We consider an interconnected network of subsystems

shown in Fig. 1, which consists of a leader and m unknown
unstable subsystems/agents. Let the unknown subsystems for
the followers be defined as follows,

Wi(s) ∼
{

ẋi(t) = Aixi(t) + Bi
(
ui(t) + vu

i

)
,

yi(t) = kpi Cixi(t) + vy
i ,

(1)

where xi ∈ Rn is the state vector, and ui, yi ∈ R denote the
input and output, respectively, for i = 1, 2, . . . , m. The control
input ui and the output measurement yi are disturbed by the
unknown yet constant vu

i , vy
i ∈ ! ⊂ R. The transfer function

from ui to yi is denoted by Wi(s). The dynamic of the leader
as the reference model is written as,

Wℓ(s) ∼
{

ẋℓ(t) = Aℓxℓ(t) + Bℓr(t),
yℓ(t) = kℓCℓxℓ(t),

(2)

in which r is the reference signal and that is a piecewise-
continuous function while xℓ ∈ Rnℓ and yℓ ∈ R represent the
reference state and output. Note that Ai, Bi, Ci, Aℓ, Bℓ, Cℓ are
constant real matrices with appropriate dimensions whereas
kpi and kℓ are the high frequency gains. The goal is to design
local control input ui so that the outputs yi,∀i follow that of
the known stable leader yℓ.

Assumption 1: The dynamics (1) are unknown and unstable
while (2) and the signs of kpi are known. The numerators of
Wi(s),∀i have roots in C− while the denominators of Wi(s),∀i
and Wℓ(s) are monic with relative degree nd = 1.

B. Communication Network
We describe the m followers and a leader ℓ connected via

weighted digraph G := {V = {1, 2, . . . , m} ∪ {ℓ}, E, w(·)}
where V , E , and w(·) represent the set of nodes, directed edges,
and the weight function in turn. For simplicity, we denote
w(i, j) = wij where (i, j) ∈ E . We call the induced subgraph on
m followers as Gm and the leader itself as Gℓ. Also, we assume
that there is a directed path from the leader ℓ to all followers.
The layering colors indicate the q−th group of systems from
the leader, where the least is the closest, as example shown
in Fig. 1 with q = {1, 2, 3}. The incoming arrows for i−th
system represent the measured neighborhood j with respected
weight wij. Note that, the measurement collected to system
i from its neighbors j is designed to be 1, where wi =∑

j wij = 1, so that the degree matrix for the whole agents is
D := diag{D1, . . . , Dm} = Im. The measured errors in Gm are
represented as linear operation of its outputs ȳ multiplied by
the Laplacian-like matrix of Gm, written as Lm := D−Am, and

Fig. 1. An example (random graph) of an interconnected network of
leader ℓ and m = 9 unknown unstable subsystems/followers.

subtracted by the leader ȳℓ using Aℓ, with later definition of ȳ
and ȳℓ. The matrices of Lm and Aℓ are formulated as follows,
⎡

⎢⎢⎣

w1 w12 · · · w1m
w21 w2 · · · w2m
...

...
. . .

...
wm1 wm2 · · · wm

⎤

⎥⎥⎦

︸ ︷︷ ︸
Lm:=D−Am

and

⎡

⎢⎢⎣

w1ℓ 0 · · · 0
0 w2ℓ · · · 0
...

...
. . .

...
0 0 · · · wmℓ

⎤

⎥⎥⎦

︸ ︷︷ ︸
Aℓ|wiℓ:=0,∀q>1

in which, Am denotes the adjacency matrix of Gm whereas
Aℓ ∈ Rm×m = diag{w1ℓ, . . . , wmℓ} is the diagonal matrix
containing the weights from the leader to the subsystems in
q = 1. Therefore, the error for system i is formulated as,

ei(t) :=
m∑

j=1

wij
[
yi(t) − yj(t)

]
− wiℓyℓ(t) (3)

and the goal is to ensure the boundedness of the errors in
Gm, where limt→∞ ē → 0, ē = [e1, . . . , em]⊤, leading to the
perfect tracking to the leader Gℓ.

Remark 1 (Threshold of Network): The leader weight
matrix is positive semi-definite Aℓ ≽ 0, having the eigenvalues
ranging from 0 to 1, denoted as λℓi = [0, 1],∀i = 1, . . . , m,
and ∃λℓj ̸= 0 for 1 ≤ j ≤ m. The Laplacian-like matrix of Gm
is positive definite Lm ≻ 0, ensuring λm

i > 0,∀i.
Remark 2 (Communication Network): The proposed

network is balanced (Lm − Aℓ)1m = 0. There is always
a directed path from the leader Gℓ to all followers in Gm,
otherwise either ∃λℓi = 0,∀i = 1, . . . , m or ∃λm

j = 0 for
1 ≤ j ≤ m, violating Remark 1.

III. DISTRIBUTED ADAPTIVE CONTROL

We consider the disturbed interconnected systems in (1) be,

W(s) ∼
{ ˙̄x(t) = Ax̄(t) + B(ū(t) + νu),

ȳ(t) = kpCx̄(t) + νy,
(4)

where x̄ = [x⊤
1 , . . . , x⊤

m]⊤ ∈ Rn̄ with n̄ = n × m defines the
set of the states, while ū = [u1, . . . , um]⊤ ∈ Rm and ȳ =
[y1, . . . , ym]⊤ ∈ Rm represent the set of inputs and outputs
respectively. The matrices

A = diag{A1, . . . , Am}, B = diag{B1, . . . , Bm},
C = diag{C1, . . . , Cm}, kp = diag{kp1 , . . . , kpm}, (5)

are diagonal blocks of Gm with high frequency gains kp.
The transfer function version of Gm is denoted as W(s) =
diag{W1(s), . . . , Wm(s)}. We design so that the persistent
excitation of ν̄ = [νu⊤, νy⊤]⊤, να = [vα1 , . . . , vαm]⊤, with α =
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{u, y} are less than that of the reference r̄, where sup(ν̄) < r̄.
We also expand the leader Gℓ in (2) as follows,

Wℓ(s) ∼
{ ˙̄xℓ(t) = Aℓx̄ℓ(t) + Bℓr̄(t),

ȳℓ(t) = kℓCℓx̄ℓ(t),
(6)

where x̄ℓ = 1m ⊗ xℓ, ȳℓ = 1m ⊗ yℓ and r̄ = 1m ⊗ r denote the
set of states, outputs and references of Gℓ while Aℓ, Bℓ, and
Cℓ are the diagonal matrices in the forms of,

Aℓ := Im ⊗ Aℓ, Bℓ := Im ⊗ Bℓ, Cℓ := Im ⊗ Cℓ, (7)

with the similar dimensions to A, B, and C respectively.
Likewise, the transfer function of Gℓ is defined as Wℓ(s) =
Im ⊗ Wℓ(s) with high frequency gains kℓ = Im ⊗ kℓ.

It is obvious that if Gm is known, then the control input ū
satisfying limt→∞ ē := [e1, . . . , em]⊤ = 0 is to choose ū =
M(s)(1m ⊗ r), where M(s) = Wℓ(s)W−1(s). However, for the
unknown Gm, the engineering for unknown constant kp, the
zeros and the poles of W(s) is required to be solved. Here,
we divide the problem into two parts:

1) the unknown kp of W(s)
2) the unknown kp, zeros and poles of W(s)

Regarding the first part, we assume W(s) = kpWα(s) and
Wℓ(s) = kℓWα(s), where Wα(s) is the transfer function of
Aℓ, Bℓ, Cℓ. The optimal estimate for the unknown kp is k∗ =
kℓk−1

p and with control input ū = (k∗ + k̃)(1m ⊗ r), then the
tracking errors ē := Lmȳ − Aℓȳℓ for the unknown kp only of
Gm are formulated as follows,

ē(t) =
[
LmkpWα(s)

(
k∗ + k̃

)
− AℓkℓWα(s)

]
(1m ⊗ r(t))

= LmkpWα(s)k̃(1m ⊗ r(t)), (8)

and due to D = Im =: wi,∀i, then (Lm − Aℓ)1m = 0. As
for the second case, we need the Meyer-Kalman-Yakubovic
lemma to opt the adaptive laws and guarantee the stability.

Lemma 1: Consider the networked system in (4) where
the pairs (A, B) and (A, C) are stabilizable and detectable,
assuming the strictly positive realness of the transfer function
Wβ(s) ! C(sIn̄ − A)−1B. Moreover, let the controller be
ū := '⊤(t)η̄(t) where ηi : R+ → Rp, η̄ = [η⊤

1 , . . . , η⊤
m ]⊤,

and ȳ : R+ → Rm be the measured time-varying func-
tions while ' ∈ Rp̄×m with p̄ = p × m be the adaptive
term of,

'̇⊤(t) = −sign
(
kp

)
ȳ(t)η̄⊤(t), (9)

then the equilibrium (x̄,') := 0 is uniformly stable in large.
Proof: Since Wβ(s) is strictly positive real (SPR), then

∃Q = Q⊤ ≻ 0, P = P⊤ ≻ 0 such that,

A⊤P + PA = −Q, PB = C⊤, (10)

and choosing the positive definite Lyapunov function of
V(x̄,') > 0 leads to the negative semi-definite function
of its time derivative V̇(x̄,') ≤ 0, as written in the
following,

V = x̄⊤(t)Px̄(t) + tr
[
'(t)|k−1

p |'⊤(t)
]

V̇ = x̄⊤(t)
[
A⊤P + PA

]
x̄(t) + 2x̄⊤(t)PB'⊤(t)η̄(t)

−2tr
[
η̄(t)ȳ⊤(t)|k−1

p |'⊤(t)
]

=: −x̄⊤(t)Qx̄(t) ≤ 0,

considering (10) and if we choose '̇⊤ as in (9). Note that, it
is required to show that Wβ(s) be SPR.

Now, for the unknown kp, zeros and poles of Gm, let us
define (N(s), D(s)), (Nℓ(s), Dℓ(s)) be the diagonal matrices
containing the set of numerators and denominators of Gm and
Gℓ in turn,

N(s) = diag{n1(s), . . . , nm(s)}, Nℓ(s) = Im ⊗ nℓ(s),
D(s) = diag{d1(s), . . . , dm(s)}, Dℓ(s) = Im ⊗ dℓ(s),

where the transfer functions are W(s) = kpN(s)D−1(s) and
Wℓ(s) = kℓNℓ(s)D−1

ℓ (s). The feed-forward and feedback
mechanism to adjust the unknown N(s) and the unknown D(s)
are written as follows,

)∗⊤
d H

[
ū(t) + vu] = )∗⊤

d z̄(t) (11)
[
*∗⊤

d H + T∗
d

]
ȳ(t) = *∗⊤

d ω̄(t) + T∗
d ȳ(t) (12)

where the optimal matrices of )∗⊤
d = diag{ψ∗⊤

1 , . . . ,ψ∗⊤
m },

*∗⊤
d = diag{φ∗⊤

1 , . . . ,φ∗⊤
m }, and T∗

d = diag{τ ∗
1 , . . . , τ ∗

m} show
the adaptive terms with ψ∗

i ,φ∗
i ∈ Rn−1, τ ∗

i ∈ R,∀i. The
known systems H(s) are defined as,

H(s) =
(
sIm(n−1) −/m(n−1)

)−1
ϑm(n−1) (13)

in which the pair matrices of /m(n−1) = Im ⊗ /n−1 and
ϑm(n−1) = Im ⊗ ϑn−1 are the stable systems where the pair
(/n−1,ϑn−1) is of order n − 1,∀i. Note that, the vectors z̄ ∈
Rq̄ = [z⊤

1 , . . . , z⊤
m]⊤ and ω̄ ∈ Rq̄ = [ω⊤

1 , . . . ,ω⊤
m ]⊤ with q̄ =

(n − 1) × m can be also represented as,

˙̄z(t) = /m(n−1)z̄(t) + ϑm(n−1)

[
ū(t) + vu], (14)

˙̄ω(t) = /m(n−1)ω̄(t) + ϑm(n−1)ȳ(t), (15)

therefore, the control is then defined as,

ū(t) = '⊤(t)η̄(t) (16)

where η̄ = [η⊤
1 , . . . , η⊤

m ]⊤, ηi = [ri, z⊤
i ,ω⊤

i , yi]⊤,∀i =
1, . . . , m. Now, we need to show that ē, z̄, w̄ are bounded such
that by considering (4), (11)–(16) the parameter error ' =
'∗ + '̃, the outputs of Gm are denoted as,

˙̄xa(t) = Aax̄a(t) + Ba

[
'̃⊤(t)η̄(t) + k∗(t)r̄(t)

]
,

ȳ(t) = Cax̄a(t), (17)

where x̄a = [x̄⊤ z̄⊤ ω̄⊤]⊤ and,

Aa =

⎡

⎣
A + BT∗

d k∗C B)∗⊤
d B*∗⊤

d
ϑT∗

d k∗C /+ ϑ)∗⊤
d ϑ*∗⊤

d
ϑk∗C 0 /

⎤

⎦,

Ba =
[
B⊤ ϑ⊤ 0

]⊤
, Ca =

[
k∗C 0 0

]
. (18)

It also follows that the leader of Gℓ can be constructed using
the optimal gains of k∗, )∗

d , *∗
d, and T∗

d , such that it is equal
to ȳℓ := kℓCℓ(sIn̄ − Aℓ)−1Bℓ, therefore

˙̄x∗
a(t) = Aax̄∗

a(t) + Bak∗(t)r̄(t),
ȳℓ(t) = Cax̄∗

a(t), (19)

in which by considering the state error ēa = L̂mx̄a − Âℓx̄∗
a

and the output error ē := Lmȳ − Aℓ(yℓ ⊗ 1m), where L̂m =
diag{(Lm ⊗ In), Iq̄, Iq̄} and Âℓ = diag{(Aℓ ⊗ In), Iq̄, Iq̄},
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˙̄ea = Aaēa(t) + L̂mBa'̃
⊤(t)η̄(t) (20a)

ē = LmCa(sIa − Aa)
−1Ba

[
'̃⊤(t)η̄(t) + k∗(t)r̄(t)

]

−AℓCa(sIa − Aa)
−1Bak∗(t)r̄(t) (20b)

= LmCa(sIa − Aa)
−1Ba'̃

⊤(t)η̄(t) = Caēa(t). (20c)

We can generate the adaptive laws using Lemma 1 in which
∃Qa = Q⊤

a ≻ 0, Pa = P⊤
a ≻ 0 such that, A⊤

a Pa + PaAa =
−Qa, and PaBa = C⊤

a since Wγ (s) ! Ca(sIa − Aa)
−1Ba

is SPR. The stability can be guaranteed from the following
Lyapunov function V(ēa, '̃),

V = ē⊤
a (t)Pēa(t) + tr

[
'̃(t)2−1

a '̃⊤(t)
]

(21a)

V̇ = −ē⊤
a (t)Qaēa(t) + 2ē⊤

a (t)PaL̂mBa'̃
⊤(t)η̄(t)

−2tr
[
η̄(t)ē⊤(t)Lm2a2

−1
a '̃⊤(t)

]
(21b)

= −ē⊤
a (t)Qaēa(t) ≤ 0 (21c)

if we design the adaptive laws as follows,

'̇⊤(t) = −sign
(
kp

)
2aL⊤

mē(t)η̄⊤(t). (22)

Remark 3: The matrix Ca makes Lm in (20c) sufficient
to capture ēa(t) containing L̂m in (20b). Also, the cancel-
lation in (21b) occurs due to the fact that ē⊤

a (t)PaL̂mBa =
ē⊤

a (t)L̂mC⊤
a = ē⊤(t)Lm, considering PaBa = C⊤

a . Given nd =
1 in Assumption 1, and since H(s) is stable and strictly proper,
ν̄ is cancelled out and (17) is valid. This is due to a pole in the
feedforward transfer function at s = 0, where the disturbance-
term decays exponentially to zero.

Furthermore, we provide one lemma and three theorems
with some remarks so that the outputs (4) and the errors ē of
the balanced connected networks are bounded while (17) has
a solution and guarantees the tracking of the leader Gℓ.

Lemma 2: Let the stable systems (13) be shown as H(s) :=
N/(s)D−1

/ (s), where N⊤
/(s) = diag{n⊤

λ1
(s), . . . , n⊤

λm
(s)} and

D/(s) = diag{dλ1(s), . . . , dλm(s)}. There exist the optimal
gains k∗, )∗

d , *∗
d, and T∗

d , so that the following matching
condition is achieved, where

)∗⊤
d N/D +

(
*∗⊤

d N/ + T∗
d D/

)
kpN

= D/

[
D − k∗

(
kℓNℓD−1

ℓ

)−1
kpN

]
. (23)

Proof: The complete proof is given in the arXiv [20].
Theorem 1: Given k∗, )∗

d , *∗
d, and T∗

d satisfying (23) and
' ≡ '∗ in (22), then the controller ū = '∗⊤η̄ ensures the
boundedness of all the signals in the closed-loop form and

ē := Lmȳ(t) − Aℓȳℓ(t) = 1m ⊗ ϵ0 (24)

where ϵ0 denotes the exponentially decaying initial condition.
Proof: Considering the stable systems of both D/ and N,

and operating both sides of (23) with Lmȳ, then

Lmū(t) = Lm)
∗⊤
d Hū(t) + Lm*

∗⊤
d Hȳ(t) + LmT∗

d ȳ(t)

+Lmk∗W−1
ℓ ȳ(t) + (1m ⊗ ϵ1), (25)

and let ' ≡ '∗, then ū = '∗⊤η̄, such that by adding the zero
term (Lm − Aℓ)k∗r̄ := 0 into (25), we have

k∗W−1
ℓ (s)

[
Lmȳ(t) − Aℓȳℓ(t)

]
+ (1m ⊗ ϵ1) = 0. (26)

Since Wℓ is stable and using (4), then ȳ ∈ L∞, ū ∈ L∞, while
z̄ and ω̄ are bounded.

Let 2a ∈ Rm×m ≻ 0, Qa = Q⊤
a ≻ 0, and Pa = P⊤

a ≻ 0
such that A⊤

a Pa + PaAa = −Qa, and PaBa = C⊤
a then the

following theorem holds.
Theorem 2: Consider the networked system (4) of Gm

and (6) of Gℓ with the Laplacian-like Lm and the leader weight
Aℓ satisfying Remarks 1 and 2 along with the disturbance-
term in Remark 3. The pair (A, B) is stabilizable satisfying
Assumption 1 and let the controller be ū := '⊤(t)η̄(t) where
ηi : R+ → Rp, η̄ = [η⊤

1 , . . . , η⊤
m ]⊤, and ȳ : R+ → Rm be

the measured time-varying functions while ' ∈ Rp̄×m with
p̄ = p × m be the adaptive term of the form (22), then the
boundedness of ē, z̄, ω̄ in Gm is guaranteed, leading to the
asymptotic tracking to the leader Gℓ.

Proof: Using (4), (14), (15), (16), and the parameter error
' = '∗ + '̃, then (17) is obtained to describe Gm while Gℓ is
defined in (19), showing the perfect matching of (4) and (5),
using ū∗ as in (23). Considering the errors of ēa = L̂mx̄a−Âℓx̄∗

a
and ē := Lmȳ − Aℓȳℓ, then (20b)-(20c) is bounded, proven
by (21b)-(21c) if the adaptive law in (22) is chosen.

IV. DISTRIBUTED HIGH-ORDER TUNERS

We discuss two common errors in adaptive system, the
tracking error ē between the leader Gℓ and the followers Gm
and the parameter estimation error '̃ = '−'∗. We propose
two high-order tuners, '1,'2 ∈ Rmpi×m inspired by [18],
against the gradient-based tuner in (22). The two tuners come
from the Bregman Lagrangian L('⊤

j , '̇⊤
j , t) in the form of,

L(·) = eᾱj−γ̄j
[
Db

(
f ('⊤

j ),'⊤
2

)
− eβ̄j L

(
'⊤

j

)]
(27)

where f ('⊤
j ) = '⊤

j + e−ᾱj'̇⊤
j and the Bregman divergence

is denoted as Db(y, x) = b(y) − b(x) − tr[(y − x)∇b(x)⊤] with
b(x) = 0.5∥x∥2

F for all j = 1, 2. Moreover, L(·) defines the
time-varying loss function from (20b), where

L(·) = 1
2

(
d
dt

ē⊤
a (t)Paēa(t) + ē⊤

a (t)Qaēa(t)
)

(28)

resulting the update laws for specific '̇⊤
j as 2γ∇'jL('j).

Given 2γ := γ Im,2β := βIm ∈ Rm×m ≻ 0 such that tr[2γ ] :=
γ × m = γm, tr[2β ] := β × m = βm and the normalization
N = 1 + µη̄⊤η̄, such that by substituting ᾱ1 = ln(2βN−1),
ᾱ2 = 0, β̄1 = ln(2γ2

−1
β N−1), β̄2 = ln(2γ2βN−1),

and

γ̄1 =
∫ t

t0
2βN ds, γ̄2 = 2β(t − t0) (29a)

then we have,

L1(·) = eγ̄1

(
1
2
2−1
β N−1∥∥'̇1(t)

∥∥2
F − 2γ L('1(t))

)
(30a)

L2(·) = eγ̄2

(
1
2

∥∥'̇2(t)
∥∥2

F − 2γ2βN−1L('2(t))
)

. (30b)

The Lagrangian functions in (30a)-(30b) act as the basis of
high-order tuners in this letter. Using a cost function J('j)
as the integral of the functions for some time interval tθ ,
the Euler-Lagrangian equation of d

dt ∇'̇j
L(·) = ∇'jL(·) and

Authorized licensed use limited to: Milad Siami. Downloaded on August 23,2024 at 18:46:23 UTC from IEEE Xplore.  Restrictions apply. 



WAFI AND SIAMI: DISTRIBUTED ADAPTIVE CONTROL OF DISTURBED INTERCONNECTED SYSTEMS 1425

neglecting the time derivative of the normalization Ṅ , the
high-order tuners yield in,

'̈⊤
1 (t) + 2βN '̇⊤

1 (t) = −2γ2βN∇'1 L('1(t)) (31a)

'̈⊤
2 (t) + 2β'̇

⊤
2 (t) = −2γ2βN−1∇'2 L('2(t)) (31b)

or similarly for (31a), we can rewrite it in the following fashion
using a new variable 51,

'̇⊤
1 (t) = −2βN

[
'⊤

1 (t) −5⊤
1 (t)

]
. (32)

Remark 4: The normalization N in (31a)-(31b) is required
for stability proof with µ ≥ 2(γm/βm)∥B⊤

a L̂mPa∥2
F while 2β

and 2γ show the damping and the forcing term of the methods,
respectively. Also, ∃Qa = Q⊤

a ≽ 2Ia that solves A⊤
a Pa +

PaAa = −Qa and PaBa = C⊤
a .

Theorem 3: Using the followers Gm in (17), the leader Gℓ
in (19), the adaptive laws of 5̇1 = '̇ in (22) and (32), and the
controller (16) for the given N , µ,2β ,2γ , Qa, in Remark 4
results in bounded solutions ēa ∈ L∞, ē ∈ L∞, 5̃1 := (51 −
'∗

1) ∈ L∞, ('1−5) ∈ L∞ for arbitrary initial conditions with
limt→∞ ēa = 0. Also, if η, η̇ ∈ L∞, then limt→∞ 5̇1 = 0,
limt→∞ '̇1 = 0, and limt→∞'1 −51 = 0.

Proof: Let us introduce (22) into different fashion as
follows,

5̇⊤
1 (t) = −sign

(
kp

)
2γL⊤

mē(t)η̄⊤(t). (33)

and by defining '̃1 := '1 − '∗
1 and 5̃1 = 51 − '∗

1, then
using tuner in (32), the Lyapunov candidate V(ēa,'1,51) is
chosen as,

V = ē⊤
a (t)Pēa(t) + tr

[
'̃1(t)2−1

γ '̃1(t)⊤
]

(34)

having the time derivative along the trajectory of (20b)-(20c),

V̇ ≤ −
(
∥ēa∥ − 2

∥∥∥B⊤
a L̂mPa

∥∥∥
F

∥∥∥('1 −51)
⊤η̄

∥∥∥
F

)2

−∥ēa∥2 − 2βm

γm

∥∥∥('1 −51)
⊤
∥∥∥

2

F
≤ 0 (35)

using Cauchy–Schwarz inequality ∥AB∥F ≤ ∥A∥F∥B∥2. It
concludes that the boundedness in Theorem 3 holds. The
complete proof is given in the arXiv version [20].

Remark 5: A complementary proof for (31b) using 5̇2 =
−2γN−1∇L(5̃2), N−1 = Nm and modifying (20b) to
accommodate N , with V2(ēa,'2,52) similar to (34), results
in bounded solutions in which the time derivative of (34)
along the trajectory of (20b)-(20c) using 52, yields in
V̇2 ≤ NmV̇ ≤ 0. Also, given the tuners of '1 and '2 in (31a)
and (31b), the values of 2β and 2γ should be chosen larger
as systems becoming far away (q > 2) from the leader Gℓ.

V. NUMERICAL SIMULATIONS AND FINDINGS

In this section, we simulate four different networks as
shown in Fig. 1 and Fig. 3, namely: Random, Star-like,
Cyclic-like, and Path, with m numbers of agents where m ∈
{1, 3, 5, 7, 9, 11, 13}. The leader ℓ has a transfer function
Wℓ(s) and meanwhile, the m followers are characterized by
individual unstable transfer functions, each Wi(s) defined as
follows:

Wℓ(s) := 3s + 3
s2 + 5s + 6

, Wi(s) := s + k + 4
(s − 1 − k)(s − 2 − k)

Fig. 2. (a) Performance measures of various m in Fig. 3; and
(b) Random graph given by Fig. 1 with various tuners.

TABLE I
L2−NORM AND L∞−NORM OF THE RANDOM GRAPH IN FIG. 1

where i = 1, 2, . . . , m, when m = 1, k = 9i is used; when
m = 3, k = 4i − 3 is used; when m = 5, k = 2i − 1 is used;
when m = 7, k = (4i − 1)/3 is used; when m = 9, k = i
is used; when m = 11, k = (4i + 1)/5 is used; and when
m = 13, k = (2i + 1)/3 is used. We design the weights wij
for the incoming measurements of node i from its neighbors
j based on the level of q where agents in q := 1 gain more
weights than those of q = {2, 3, . . . }, with the disturbances
να = [5, 0.5]⊤ ⊗ 1m, α = {u, y}.

For m = 1, this is the classic adaptive problem with weights
of Lm = Aℓ = Im while for other m, we simulate three
networks (Star-like, Cyclic-like, and Path) because they are
comparable and the topologies are unchanged for various m.
Furthermore, we compete three methods of tuners; first-order
tuner ' in (22), high-order tuners '1 in (31a) and '2 in (31b).
One should note that, due to Remark 5, we adjust the constants
of 2β and 2γ to be higher as Wi becomes worse for the
three tuners. Finally, we discuss the results using L2−norm
and L∞−norm of,

∥f ∥2
2 =

∫

T
|f (t)|2 dt, ∥f ∥∞ = sup

t∈T
|f (t)|

in three different parts; (a) Fig. 4 for m = 9; (b) Fig. 2(a) for
various m; and (c) Fig. 2(b) and Table. I for three tuners.

Part (a). Among the networks, Star is the best since the
whole agents connect directly to the leader with wiℓ = 0.5,∀i
and wij = 0.25,∀j ̸= ℓ weights. Regarding random graph,
the performance lies in the closeness to the leader (level of
q) and the weights, with the most outer agents as the worst.
It is confirmed for cyclic-graph that W4, W5, and W6 are the
worst and the latest to reach the consensus with the largest
q. Furthermore, Path-graph has the highest L∞−norm since
the consensus should wait for the preceding agents to be the
same as leader Wℓ. However, the highest L∞−norm happens
for some initial time, and does not guarantee the overall
performance, ensured by the better L2−norm for various m.

Part (b). For m = 1, any networks define the classic MRAC
problem, resulting the same errors. For the Star, it is interesting
as m is increasing, it yields the smaller L2−norm because the
systems in between (W1, W9) are becoming less apart which
do not happen to the other networks. Regarding Path, even
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Fig. 3. Three connected (not strongly connected) balanced networks
(D = Im) used in the simulations (in addition to the graph in Fig. 1).

Fig. 4. Simulation results from four graphs with m = 9.

though for some initial time the L∞−norm for Path is more
than that of the Cyclic, the L2−norm for various m of Path
outperforms its counterpart. This is due to the fact that the
measurement gained for Wi is wij = 1 from the starting Wℓ

while for the Cyclic, the consensus is slightly slower due to
many communications from non-leader agents.

Part (c). The advantages of high-order tuners (HT) lies
in 1) the stability with time-varying regressors and 2) an
accelerated method with O(1/

√
ϵ) for a convex loss function,

as opposed to the classic gradient descent O(1/ϵ) [19]. The
result shows that the modified high-order tuners, '1 and '2,
perform better than the standard gradient-based '. Note that,
for Parts (a) and (b), we use ' in (22).

VI. CONCLUSION AND FUTURE WORK

We study the distributed adaptive control with network
perspective using different agents and tuners. We provide the
mathematical foundation, the designs, and the comparative
illustrations. The results conclude some interesting trends
based on the topologies and the increasing agents. There exists
a stable network in Star-like while the highest L∞−norm of
Path does not reflect the overall performance, outperforming
Cyclic-like with lower L2−norm. Moreover, we also show that
the modified high-order tuners outperform the gradient-based
method. Finally, the future research focuses on adding the
delays using the control-oriented learning [21].
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