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Distributed Adaptive Control of Disturbed
Interconnected Systems With High-Order Tuners

Moh. Kamalul Wafi

Abstract—This letter addresses the challenge of network
synchronization under limited communication, involving
heterogeneous agents with different dynamics and various
network topologies, to achieve a consensus. We inves-
tigate the distributed adaptive control for interconnected
unknown linear subsystems with a leader and follow-
ers, with the presence of input-output disturbance. We
enhance the communication within multi-agent systems
to achieve consensus under the leadership’s guidance.
While the measured variable is similar among the fol-
lowers, the incoming measurements are weighted and
constructed based on their proximity to the leader. We
also explore the convergence rates across various bal-
anced topologies (Star-like, Cyclic-like, Path, Random),
featuring different numbers of agents, using distributed
first and high-order tuners. Moreover, we conduct several
numerical simulations across various networks, agents and
tuners to evaluate the effects of sparsity in the interaction
between subsystems using the L,—norm and L.,—norm.
Some networks exhibit a trend where an increasing number
of agents results in smaller errors, although this is not
universally the case. Additionally, patterns observed at
initial times may not reliably predict overall performance
across different networks. Finally, we demonstrate that
the proposed modified high-order tuners outperform its
counterpart, and we provide related insights along with our
conclusions.

Index Terms—Adaptive control, distributed control,
multi-agent systems, high-order tuners.

|. INTRODUCTION

ULTI-AGENT systems (MAS), spanning areas from

robotics, including unmanned ground [1], aerial [2], and
underwater vehicles [3], to large-scale societal dynamics [4],
have attracted considerable interest. The scope of challenges
these systems face extends from internal issues like achieving
consensus among agents for coordinated control and stabil-
ity, to external threats such as disturbances, environmental
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uncertainties, or attacks [5]. Furthermore, the interconnected
nature of networked systems necessitates insights from graph
theory. This is underscored by [6], which examines the limits
and trade-offs in networks facing stochastic disturbances, and
by [7], which explores how denser networks (with more links)
affect the number of agents.

In this letter, we explore distributed adaptive control as
a foundational element of MAS, sharing similarities with
distributed Model Reference Adaptive Control (MRAC). This
topic spans from theoretical frameworks aimed at achieving
consensus [8], [9] in complex networks to practical appli-
cations in large-scale systems [10], [11]. The distributed
adaptive control in this letter is adaptable to various agent
dynamics, influencing diverse control laws among agents, as
closely discussed in [12], [13]. Moreover, specific studies have
proposed solutions for nonlinear MAS and neural network-
based challenges [14], [15]. Furthermore, inspired from the
distributed optimization [16], our study incorporates high-
order tuners as adaptive laws to update the gains.

A newly developed algorithm for high-order tuners has been
introduced to optimize convex loss functions with time-varying
regressors in identification problems. This algorithm lever-
ages Nesterov’s method principles, ensuring that parameter
estimations stay within predefined bounds when confronted
with time-varying regressors [17]. It also accelerates the
convergence speed of the tracking error in scenarios where
the regressors are constant [18]. With the growing interest
in advancing tuners, we have adapted high-order tuners for
graph-related problems [18], [19], achieving marginally better
outcomes compared to gradient-based methods. Furthermore,
we offer insights on designing network weights and selecting
parameters in the tuners.

This letter makes the following four main contributions.
First, we integrate the concept of adaptive control into
networked problems with multiple agents, extending its appli-
cability to complex interconnected systems such as star-like,
cyclic-like, path, and random networks. Second, we address
the challenge of coordinating an arbitrary number of agents
with disturbances to follow a designated leader, similar to
distributed MRAC. Third, we compare the performance of
three distinct tuning algorithms: the gradient descent and
two accelerating tuners, providing a comprehensive evaluation
of their effectiveness in networked control systems (NCS).
Finally, we not only evaluate the effects of sparsity in sub-
system interactions using performance measures (L —norm
and L.,—norm) across various network configurations and
tuners but also demonstrate that our proposed modified
high-order tuners significantly outperform the gradient-based
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tuner, offering novel insights for future research in { w,
NCS. i @ Ye

Notations: RP is the p—dimensional Euclidean space and
C~ refers the open left-half of the complex plane. A symbol
(s) shows the Laplace variable. /, denotes the identity matrix
of size R” and P = diag{p;} is the diagonal matrix with
entries p;, Vi. 1, =[1, ..., l]T is the vector of all ones in R”.
® denotes the Kronecker product and the operators of tr[A],
|A], ||All2, and ||A||r define the trace, the absolute value, the
Euclidean and the Frobenius norm of matrix A respectively.

II. PRELIMINARIES AND PROBLEM FORMULATION
A. System Setup

We consider an interconnected network of subsystems
shown in Fig. 1, which consists of a leader and m unknown
unstable subsystems/agents. Let the unknown subsystems for
the followers be defined as follows,

xi(t) = Aixi(1) + Bi(u; (1) +vY),

yi(t) = kp,Cixi(t) + v, (1)

Wi(s) ~ {
where x; € R” is the state vector, and u;, y; € R denote the
input and output, respectively, for i = 1, 2, ..., m. The control
input u; and the output measurement y; are disturbed by the
unknown yet constant v;-‘, 191-’ € Q C R. The transfer function
from u; to y; is denoted by W;(s). The dynamic of the leader
as the reference model is written as,

Xe(t) = Agxe (1) + Ber(D),
Ye(®) = keCoxe(t),

in which r is the reference signal and that is a piecewise-
continuous function while x, € R™ and y, € R represent the
reference state and output. Note that A;, B;, Ci, A¢, Bg, Cy are
constant real matrices with appropriate dimensions whereas
kp; and k, are the high frequency gains. The goal is to design
local control input u; so that the outputs y;, Vi follow that of
the known stable leader yy.

Assumption 1: The dynamics (1) are unknown and unstable
while (2) and the signs of k,, are known. The numerators of
Wi(s), Vi have roots in C~ while the denominators of W;(s), Vi
and W, (s) are monic with relative degree ng; = 1.

We(s) ~ { 2)

B. Communication Network

We describe the m followers and a leader ¢ connected via
weighted digraph G = {(V = {1,2,....,m} U {£}, &, w(")}
where V, £, and w(-) represent the set of nodes, directed edges,
and the weight function in turn. For simplicity, we denote
w(i, j) = wjj where (i, j) € £. We call the induced subgraph on
m followers as G,, and the leader itself as G,. Also, we assume
that there is a directed path from the leader ¢ to all followers.
The layering colors indicate the g—th group of systems from
the leader, where the least is the closest, as example shown
in Fig. 1 with ¢ = {1, 2, 3}. The incoming arrows for i—th
system represent the measured neighborhood j with respected
weight w;;. Note that, the measurement collected to system
i from its neighbors j is designed to be 1, where w; =
Zj wij = 1, so that the degree matrix for the whole agents is
D = diag{Dy, ..., Dy} = I,,. The measured errors in G,, are
represented as linear operation of its outputs y multiplied by
the Laplacian-like matrix of G, written as LL,,, := D—A,,,, and

+ Unknown

i Mininimize the error

i Subject to:
unknown plant W,
constant disturbance }

Fig. 1. An example (random graph) of an interconnected network of
leader ¢ and m = 9 unknown unstable subsystems/followers.

subtracted by the leader y, using A,, with later definition of y
and y;. The matrices of I, and A are formulated as follows,

wi o w2 Wim wie 0 - 0
w21 W2 Wom 0wy - 0
and
Wm1 Wm2 Wm 0 0 Wme
Ly:=D—-A,, Aglwip:=0,Vg>1

in which, A, denotes the adjacency matrix of G, whereas
Ay € R™M = diag{wyy, ..., wye} is the diagonal matrix
containing the weights from the leader to the subsystems in
q = 1. Therefore, the error for system i is formulated as,

ei(0) =Y wiyi®) — yi (0] = wieye () 3)

J=1

and the goal is to ensure the boundedness of the errors in
G, where lim,,o0e — 0, e = [e1,...,em]", leading to the
perfect tracking to the leader G,.

Remark 1 (Threshold of Network): The leader weight
matrix is positive semi-definite A, > 0, having the eigenvalues
ranging from O to 1, denoted as Af =[0,1],Vi=1,...,m,
and EI)\f # 0 for 1 < j < m. The Laplacian-like matrix of G,
is positive definite L,, > 0, ensuring )»;” > 0, Vi.

Remark 2 (Communication Network): The proposed
network is balanced (L,, — A¢)1,, = 0. There is always
a directed path from the leader Gy to all followers in G,
otherwise either Elkf =0,Vi=1,...,m or EM;” = 0 for
1 <j < m, violating Remark 1. '

I1l. DISTRIBUTED ADAPTIVE CONTROL

We consider the disturbed interconnected systems in (1) be,

_ | x(®) = AX(0) + B + v,
W hm=@@m+w @
where x = [xlT, ...,x;;]T € R" with i = n x m defines the

set of the states, while # = [u,...,un] € R™ and y =

V1, ..., ym]" € R™ represent the set of inputs and outputs
respectively. The matrices

A = diag{Aq, ..., An}, B =diag{By, ..., By},

C = diag{Cy, ..., Cu}, ky, = diaglk,,, ..., k),  (5)

are diagonal blocks of G,, with high frequency gains K.
The transfer function version of G,, is denoted as W(s) =
diag{Wi(s), ..., Wy(s)}. We design so that the persistent
excitation of b = [v*T, wWT]T, v¥ = b, .. v‘;‘n]T, with o =
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{u, y} are less than that of the reference 7, where sup(v) < r.
We also expand the leader Gy in (2) as follows,

Xe (1) = Ak (1) + By (D),
Ye(®) = keCoxe (1),

where xy = 1,, ® x¢, y¢ = 1,, ® y¢ and ¥ = 1,, ® r denote the
set of states, outputs and references of G, while Ay, By, and
C; are the diagonal matrices in the forms of,

Ap =1, Ay, Co=1,0C, (N

with the similar dimensions to A, B, and C respectively.
Likewise, the transfer function of G, is defined as Wy(s) =
I, ® Wy(s) with high frequency gains ky = I, ® ky.

It is obvious that if G,, is known, then the control input u
satisfying lim;. € = [eq, ..., em]T = 0 is to choose u =
M(s)(1,, ® r), where M(s) = W, (s)W~!(s). However, for the
unknown G,,, the engineering for unknown constant k,, the
zeros and the poles of W(s) is required to be solved. Here,
we divide the problem into two parts:

1) the unknown k, of W(s)

2) the unknown k,, zeros and poles of W(s)

Regarding the first part, we assume W(s) = k,Wg(s) and
We(s) = k¢W,(s), where Wy (s) is the transfer function of
A, By, Cy. The optimal estimate for the unknown k, is k* =
k(kljl and with control input z = (k* + K1, ® r), then the
tracking errors e := L,y — A,y for the unknown k,, only of
G are formulated as follows,

&(0) = [Linky Wa (5) (K + K) = Ak Wa(5) | (1 @ r(0))
= Linky We (9)K(Ly ® (1), (8)

and due to D = [, = w;, Vi, then (IL,, — Ay)1,, = 0. As
for the second case, we need the Meyer-Kalman-Yakubovic
lemma to opt the adaptive laws and guarantee the stability.

Lemma 1: Consider the networked system in (4) where
the pairs (A, B) and (A, C) are stabilizable and detectable,
assuming the strictly positive realness of the transfer function
Wg(s) £ C(sl; — A)~'B. Moreover, let the controller be
i = O (1)i(r) where n; : Rt — RP, ij = [n],....n}]",
and y : RT — R” be the measured time-varying func-
tions while ® € RP*™ with p = p x m be the adaptive
term of,

Wo(s) ~ { ©)

BZ =1, ® By,

O () = —sign(k,)3O7 " (), ©9)

then the equilibrium (x, ®) := 0 is uniformly stable in large.
Proof: Since Wg(s) is strictly positive real (SPR), then

30=0" > 0,P=P" > 0 such that,
A'TP+PA=-0, PB=CT, (10)

and choosing the positive definite Lyapunov function of
V(x,®) > 0 leads to the negative semi-definite function
of its time derivative V()"c, ®) < 0, as written in the
following,

V = 5T ()Px(1) + tr[@(t)|k;1 |®T(t)]
V=30 [ATP + PA])_C(I) + 2T (HPBOT (1) (1)
—2u]i@T 0l '107 0] =~ (0ex0) <0,

considering (10) and if we choose ®T as in (9). Note that, it
is required to show that Wg(s) be SPR. |

Now, for the unknown k,, zeros and poles of G, let us
define (N(s), D(s)), (N¢(s), D¢(s)) be the diagonal matrices
containing the set of numerators and denominators of G,, and
Gy in turn,

N(s) = diag{ni(s), ..., nu(s)}, Ne(s) = L, @ ng(s),
D(s) = diag{di(s), ..., dm(s)}, De(s) = Iy ® de(s),

where the transfer functions are W(s) = k,,N(s)D_l(s) and
We(s) = k¢Ng (s)DZ1 (s). The feed-forward and feedback
mechanism to adjust the unknown N(s) and the unknown D(s)
are written as follows,

WETH[u() +v"] = Wi Tz() a1
[cbj;TH + T;;]y(;) = &3 o) + T35(1) (12)
where the optimal matrices of W} = diag{y/f", ..., ¥},
GDZT = diag{¢} ", ..., 95"}, and T; = diag{z{, ..., 7} show

the adaptive terms with ¥, ¢f € R 7 e R,Vi. The
known systems H(s) are defined as,

-1
H(s) = (slnti—-1) — Amn—1)) Om(n—1) (13)

in which the pair matrices of Apu—1) = I ® Ap—1 and
Pmn—1) = In ® U1 are the stable systems where the pair
(An—1,¥p—1) is of order n — 1, Vi. Note that, the vectors z €
Ri=[z],...,z]" and ® € R = [0], ..., 0] with g=
(n — 1) x m can be also represented as,

Z(t) = Am(n—l)Z(t) + ﬁm(n—l)[’:‘(t) + VM]7 (14)

Lb(l) = Am(n—l)a)(t) + ﬁm(n—l))_)(t), (15)
therefore, the control is then defined as,

iu(t) = 0" (i) (16)

where n o= [771Tv BREE) UJ;]T, ni = lIn, Z[T’ w;rv )’i]T, Vi =
1, ..., m. Now, we need to show that e, z, w are bounded such
that by considering (4), (11)—~(16) the parameter error ©® =

®* + O, the outputs of G, are denoted as,

fal) = Adka(0) + Bo| 6T 070 + K 070,
(1) = Caxo(1), (17)

where X, = [x" z" @']" and,

A+BTik*C  BY:T  BoyT
Ag=| 9TK'C  A+0¥;T 9o |,
9k*C 0 A

T

B,=[B" »" 0], C,=[kK"C 0 0]. (18)

It also follows that the leader of G, can be constructed using
the optimal gains of k*, W, ®%, and T}, such that it is equal
to ¢ := keCy(sl; — A¢) "' By, therefore

XE(1) = AGXE(t) + BK* (D7 (1),

ye(t) = CoXj (1), (19)

in which by considering the state error e, = Iﬁm)_ca — Ag}‘cj
and the output error e = Iﬁ:m)') —A¢(ye ® 1,,), where L,,, =
diag{(]Lm ®1I,), I‘_I’ 1[]} and A, = diag{(Ag ®1I,), I[], 1;]},
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éq = Auea(t) + L,B.OT (07(1) (20a)
¢ = LuCalsla = A)™'Ba| O 07i(0) + K* (07 (1)

—AgCu(sl, — Ag) ' BoK* (1)7(D) (20b)

= Ly Colsly — Ag) 'BoOT (0)71(1) = Cyea(t).  (20c)

We can generate the adaptive laws using Lemma 1 in which
30, = Q] = 0,P, = P > 0 such that, A} P, + P,A, =
—Qq, and P,B, = C/ since W, (s) £ Cu(sl, — A,)"'B,
is SPR. The stability can be guaranteed from the following
Lyapunov function V (e, (:)),

V=2 (t)Peu(t) + tr[(:)(t)Fa_](:)T(t)] (21a)
V = —2) (00u2a(t) + 2¢, ()P LuB® T (1)7](1)
—2tr[ﬁ(t)éT (t)]LmFaFa_lC:)T(t)] 21b)
= —&, (0Qua(1) <0 (2lc)
if we design the adaptive laws as follows,
O (1) = —sign(k,)T.L, e (©). (22)

Remark 3: The matrix C, makes L, in (20c) sufficient
to capture e,(f) containing L, in (20b). Also, theA cancel-
lation in (21b) occurs due to the fact that é;r(t)Pa]LmBa =
é;r (t)]I:mCI = &' (t)L,y, considering P,B, = CI. Given ng =
1 in Assumption 1, and since H(s) is stable and strictly proper,
v is cancelled out and (17) is valid. This is due to a pole in the
feedforward transfer function at s = 0, where the disturbance-
term decays exponentially to zero.

Furthermore, we provide one lemma and three theorems
with some remarks so that the outputs (4) and the errors e of
the balanced connected networks are bounded while (17) has
a solution and guarantees the tracking of the leader G,.

Lemma 2: Let the stable systems (13) be shown as H(s) :=
Na(s)D'(s), where NJ(s) = diag{n] (s).....n] ()} and
Da(s) = diag{d,,(s),...,dy,(s)}. There exist the optimal
gains K*, \Il;l“, CIDZ, and T;, so that the following matching
condition is achieved, where

WTNAD + (57N + 75D )k, N
—1
-D, [D K (nggDZI) kpN]. (23)

Proof: The complete proof is given in the arXiv [20]. M

Theorem 1: Given K*, W3, @7, and T satisfying (23) and
® = O* in (22), then the controller u = ®*Tﬁ ensures the
boundedness of all the signals in the closed-loop form and

e =Lny(®) — Agye(r) =1, ® €0 24)

where €p denotes the exponentially decaying initial condition.
Proof: Considering the stable systems of both D, and N,
and operating both sides of (23) with L,,y, then

Lypit(t) = Ly W THia(f) 4 L, @5 TH (1) + Ly TH(0)
+LaK*W, 50 + 1y ® €1),

and let ® = O*, then u = @*Tﬁ, such that by adding the zero
term (L,, — Ay)K*7 := 0 into (25), we have

KW, (9)[Ln3(0) — Acie (0] + (1, ® €1) = 0.

(25)

(26)

Since Wy is stable and using (4), then y € L%, u € £*°, while
z and @ are bounded. [ |

Let T, € R™™ »~ 0,0, = Q) ~0,and P, =P} >~ 0
such that A;—Pa + P,A, = —Q,, and P,B, = C; then the
following theorem holds.

Theorem 2: Consider the networked system (4) of G,
and (6) of G, with the Laplacian-like L,,, and the leader weight
Ay satisfying Remarks 1 and 2 along with the disturbance-
term in Remark 3. The pair (A, B) is stabilizable satisfying
Assumption 1 and let the controller be u := @' (r)7j(f) where
ni:RT > R, 5 =1[n/,....n01", and y : RT — R” be
the measured time-varying functions while ® € RP*" with
p = p x m be the adaptive term of the form (22), then the
boundedness of e, z,® in G, is guaranteed, leading to the
asymptotic tracking to the leader G,.

Proof: Using (4), (14), (15), (16), and the parameter error
® = ©*+ 0, then (17) is obtained to describe G,, while Gy is
defined in (19), showing the perfect matching of (4) and (5),
using #* as in (23). Considering the errors of e, = LL,,X,—A X}
and e := L,y — Ay, then (20b)-(20c) is bounded, proven
by (21b)-(21c) if the adaptive law in (22) is chosen. [ |

IV. DISTRIBUTED HIGH-ORDER TUNERS

We discuss two common errors in adaptive system, the
tracking error e between the leader~gg and the followers G,
and the parameter estimation error ® = ® — ®*. We propose
two high-order tuners, ®;, @, € R inspired by [18],
against the gradient-based tuner in (22). The two tuners come
from the Bregman Lagrangian £(©, @J-T, t) in the form of,

L0) = e&f—ff[m (f(@]), ®] ) — eEfL((OJT)] @7)
where f (®jT) = ®jT +e % @; and the Bregman divergence
is denoted as Dy (y, x) = b(y) — b(x) — tr[(y —X)Vb(x) "] with
b(x) = O.5||x||% for all j = 1, 2. Moreover, L(-) defines the
time-varying loss function from (20b), where
1/d _+ _ T -

Le) =3 7 (DPaeq(1) + e, (1)Qaa(t) (28)
resulting the update laws for specific G)]—r as I'y Vg, L(0)).
Given I'y := yl,,, I'g := Bl € R™™ > 0 such that tr[I", ] :=
Y Xm = yy, tr[['g] = B x m = B, and the normalization
N=1+ wfﬁ, such that by substituting @ = ln(FﬁN_l),
& =0, fi = (TN, g = In(T, TN,
and
(29a)

t
7= / CoN ds, 7= Talt— 1o)
1

0

then we have,
L1() = el (%FEINI 16107 - FyL(®1(t))> (30a)
Lo() = e” (% |6:0]7 T, FﬂNlL(Gz(t))). (30b)
The Lagrangian functions in (30a)-(30b) act as the basis of
high-order tuners in this letter. Using a cost function J(®;)

as the integral of the functions for some time interval 7y,
the Euler-Lagrangian equation of %V@/L(J = Ve,£(-) and
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neglecting the time derivative of the normalization A/, the
high-order tuners yield in,

O] (1) +TpNO[ (1) = T, TN Ve, L(O1(1))  (31a)
O, (1) +T0, () = —T', TN Ve, L(Oa(1)) (31b)

or similarly for (31a), we can rewrite it in the following fashion
using a new variable Eq,

Of (1) = —FﬁN[®1T(z) — ElT(t)]. (32)

Remark 4: The normalization N in (312)-(31b) is required
for stability proof with > 2(¥m/Bm) B, LnPall% while I'g
and I', show the damping and the forcing term of the methods,
respectively. Also, 30, = QaT > 21, that solves AaTPa +
P,A, =—Q, and P,B, =C/.

Theorem 3: Using the followers G,, in (17), the leader G,
in (19), the adaptive laws of El =0 in (22) and (32), and the
controller (16) for the given N, i, I'g, 'y, Q4, in Remark 4
results in bounded solutions &, € £, ¢ € L, & = (& —
) € L®, (01 —E) € L for arbitrary initial conditions with
limy_ o0 2, = 0. Also, if 7,7 € £, then limy;_o0 21 = 0,
lim;— 00 ©1 = 0, and lim,, O] — & = 0.

Proof: Let us introduce (22) into different fashion as

follows,
8] (1) = —sign(k,) T, Lei (1). (33)

and by defining ©; == ©; — ©% and & = E; — ©%, then
using tuner in (32), the Lyapunov candidate V(e,, ®1, E1) is
chosen as,

V=2 (Pea(t) + tr[@l(z)r;‘ (:)1(I)T] (34)
having the time derivative along the trajectory of (20b)-(20c),
B, L,.P,
2ﬁ)’l‘l

m

=~ 2wt o573 )

S 2
—lleall” =

2
. (335)

©-2n'| <o

using Cauchy-Schwarz inequality ||[AB||r < |[AlF|Bl2. It
concludes that the boundedness in Theorem 3 holds. The
complete proof is given in the arXiv version [20]. u
Remark 5: A complementary proof for (31b) using By =
-T',N-'VL(E;), N7!' = N, and modifying (20b) to
accommodate N, with V> (e,, ©,, B;) similar to (34), results
in bounded solutions in which the time derivative of (34)
along the trajectory of (20b)-(20c) using Ej, yields in
V2 < N,V < 0. Also, given the tuners of ®; and ®; in (31a)
and (31b), the values of I'g and I', should be chosen larger
as systems becoming far away (¢ > 2) from the leader G,.

V. NUMERICAL SIMULATIONS AND FINDINGS

In this section, we simulate four different networks as
shown in Fig. 1 and Fig. 3, namely: Random, Star-like,
Cyclic-like, and Path, with m numbers of agents where m €
{1,3,5,7,9, 11, 13}. The leader ¢ has a transfer function
Wy (s) and meanwhile, the m followers are characterized by
individual unstable transfer functions, each W;(s) defined as
follows:

s+k+4
G-1-kG—-2—k

— 5 . =, £ Wi(s) =
N N

o
—— Star-like

o

= | ——Cyclic-like

? Path

11
s
‘ ‘ —Ertor © — Error ©, — Error 0,

% 7 [\
fet o o
: o SN~ ]
° 1 3 5 7 9 13 [ 1 2 3 4 5 6 7 8 9 10
Number of agents (m) Time (second)
(a) La—norm and Lo —norm (b) m=9

Fig. 2. (a) Performance measures of various m in Fig. 3; and
(b) Random graph given by Fig. 1 with various tuners.

TABLE |
L>—NORM AND Lo, —NORM OF THE RANDOM GRAPH IN FIG. 1

Lo-Norm Lo-Norm
(S (CHh S} (S Ch G2}
Random Graph 104.76 97.72 98.26 5845 37.61 39.79
where i = 1,2,...,m, when m = 1, k = 9i is used; when

m=3,k=4i—3is used; when m =5, k = 2i — 1 is used;
when m = 7, k = (4i — 1)/3 is used; when m = 9, k = i
is used; when m = 11, k = (4i + 1)/5 is used; and when
m =13, k = (2i + 1)/3 is used. We design the weights w;;
for the incoming measurements of node i from its neighbors
Jj based on the level of g where agents in ¢ := 1 gain more
weights than those of ¢ = {2,3,...}, with the disturbances
v =1[5,0.5]" @ 1,n, @ = {u, y}.

For m = 1, this is the classic adaptive problem with weights
of L, = Ay = I, while for other m, we simulate three
networks (Star-like, Cyclic-like, and Path) because they are
comparable and the topologies are unchanged for various m.
Furthermore, we compete three methods of tuners; first-order
tuner ® in (22), high-order tuners ®1 in (31a) and ®; in (31b).
One should note that, due to Remark 5, we adjust the constants
of I'g and I'y, to be higher as W; becomes worse for the
three tuners. Finally, we discuss the results using L, —norm

and Ly,—norm of,
If1I3 = / F@OPdt,  lfllo = suplf()]
T teT

in three different parts; (a) Fig. 4 for m = 9; (b) Fig. 2(a) for
various m; and (¢) Fig. 2(b) and Table. I for three tuners.
Part (a). Among the networks, Star is the best since the
whole agents connect directly to the leader with w;; = 0.5, Vi
and w; = 0.25,Vj # ¢ weights. Regarding random graph,
the performance lies in the closeness to the leader (level of
q) and the weights, with the most outer agents as the worst.
It is confirmed for cyclic-graph that Wy, Ws, and Wg are the
worst and the latest to reach the consensus with the largest
q. Furthermore, Path-graph has the highest Lo,—norm since
the consensus should wait for the preceding agents to be the
same as leader W,. However, the highest Lo,—norm happens
for some initial time, and does not guarantee the overall
performance, ensured by the better Ly —norm for various m.
Part (b). For m = 1, any networks define the classic MRAC
problem, resulting the same errors. For the Star, it is interesting
as m is increasing, it yields the smaller L, —norm because the
systems in between (W;, Wo) are becoming less apart which
do not happen to the other networks. Regarding Path, even
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(a) Star-like (b) Cyclic-like

(c) Path

Fig. 3. Three connected (not strongly connected) balanced networks
(D = Im) used in the simulations (in addition to the graph in Fig. 1).

I
Time (second)

(b) Cyclic-like

N
Time (second)

(a) Star-like

O]
Time (second)

(d) Random

T e
Time (second)

(c) Path

Fig. 4. Simulation results from four graphs with m = 9.

though for some initial time the Lo,—norm for Path is more
than that of the Cyclic, the Lo—norm for various m of Path
outperforms its counterpart. This is due to the fact that the
measurement gained for W; is w;; = 1 from the starting W,
while for the Cyclic, the consensus is slightly slower due to
many communications from non-leader agents.

Part (c¢). The advantages of high-order tuners (HT) lies
in 1) the stability with time-varying regressors and 2) an
accelerated method with O(1/./€) for a convex loss function,
as opposed to the classic gradient descent O(1/€) [19]. The
result shows that the modified high-order tuners, ®; and ©-,
perform better than the standard gradient-based ®. Note that,
for Parts (a) and (b), we use ® in (22).

VI. CONCLUSION AND FUTURE WORK

We study the distributed adaptive control with network
perspective using different agents and tuners. We provide the
mathematical foundation, the designs, and the comparative
illustrations. The results conclude some interesting trends
based on the topologies and the increasing agents. There exists
a stable network in Star-like while the highest L,,—norm of
Path does not reflect the overall performance, outperforming
Cyclic-like with lower L, —norm. Moreover, we also show that
the modified high-order tuners outperform the gradient-based
method. Finally, the future research focuses on adding the
delays using the control-oriented learning [21].
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