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ABSTRACT This article delves into the challenges of ensuring stability (in some sense) and robustness in
large-scale second-order consensus networks (SOCNs) and autonomous vehicle platoons in the discrete-time
domain. We propose a graph-theoretic methodology for designing a state feedback law for these systems in a
discrete-time framework. By analyzing the behavior of the solutions of the networks based on the algebraic
properties of the Laplacian matrices of the underlying graphs and on the value of the update cycle (also
known as the time step) of each vehicle, we provide a necessary and sufficient condition for the stability of a
linear second-order consensus network in the discrete-time domain. We then perform an H2-based robustness
analysis to demonstrate the relationship between the H2-norm of the system, network size, connectivity, and
update cycles, providing insights into how these factors impact the convergence and robustness of the system.
A key contribution of this work is the development of a formal framework for understanding the link between
an H2-based performance measure and the restrictions on the update cycle of the vehicles. Specifically,
we show that denser networks (i.e., networks with more communication links) might require faster agents
(i.e., smaller update cycles) to outperform or achieve the same level of robustness as sparse networks (i.e.,
networks with fewer communication links) - see Fig. 1 . These findings have important implications for the
design and implementation of large-scale consensus networks and autonomous vehicle platoons, highlighting
the need for a balance between network density and update cycle speed for optimal performance. We finish
the article with results from simulations and experiments that illustrate the effectiveness of the proposed
framework in predicting the behavior of vehicle platoons, even for more complex agents with nonlinear
dynamics, using Quanser’s Qlabs and Qcars.

INDEX TERMS Graph theory, robustness, sparsity, stability consensus networks.

I. INTRODUCTION
Multi-agent systems are groups of autonomous agents that
work together to achieve a shared goal through collaboration,
feedback, and iteration [1], [2], [3], [4]. These systems have
gained significant attention in recent years due to their use
in a variety of real-world applications, such as smart power
grids [5], vehicle platooning [6], aerial drone displays [7],
epidemic networks [8], high-speed satellite internet [9], and
the Internet of Things (IoT) [10], which involve complex
dynamical networks. Additionally, distributed systems have

been extensively studied in the control community for their
numerous applications, from robotics [11], [12], [13] to bio-
logical and ecological networks [14], [15], [16].

One major challenge in multi-agent systems is the commu-
nication protocol used for information exchange; each agent
can share its state while following this protocol. All agents
can reach an agreement by designing an appropriate inter-
connection topology in which agents are only able to receive
and interact with their neighbors. Algebraic graph theory is a
well-known approach for studying the behavior of multi-agent
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dynamical systems and achieving consensus. Necessary and
sufficient algebraic conditions for achieving consensus and
robustness analysis for first-order and second-order systems
in continuous time have been provided in previous work such
as [17], [18], [19], [20], [21], [22], [23], [24], [25], [26], [27],
[28] for different assumptions and frameworks. In addition,
the consensus problem has been studied in the discrete-time
in [29], [30], [31], [32], [33], [34], [35]. For example, in [34],
the authors consider the problem of guaranteeing consen-
sus for first-order discrete-time linear time-varying networks.
In [35] the authors consider the second-order consensus prob-
lem for discrete-time networks with uncertain discretization
times and allow for different update cycles for each agent in
the network.

Previous studies have mainly focused on identical under-
lying graphs for the first and second integrator, where they
share the same information flow between neighbors. In this
article, we allow for a different structure of interrelation topol-
ogy in a second-order dynamical system. In this case, the
underlying graph for the agents’ positions is different from
the underlying graph for the agents’ velocities. Based on
this interconnection protocol, we study not only second-order
consensus networks but also vehicle platoon models, which
have received increasing attention in recent years due to their
potential contributions to road transportation.

This area of research poses several challenges, such as the
impact of delayed agents (i.e., long update cycles) and exter-
nal disturbances on the stability and performance of the entire
network. In [36], [37], the authors examine the robust con-
trol of the system when subjected to stochastic disturbances,
which can grow and propagate through the information ex-
change between vehicles. In [38], the stability of a vehicle
platoon network with a ring coupling graph and path graph
in the presence of time delays is studied. The spacing policy
in [39], [40] specifies the desired distance between vehicles
to ensure that all vehicles asymptotically track a group of
heterogeneous mobiles.

The performance of vehicle platoons, in which each agent
must maintain a certain agreement such as common velocity,
steering angle, or inter-vehicular spacing, can be degraded by
exogenous stochastic disturbances, which justifies the inter-
est in such class of disturbances. In [41], the performance
is measured in terms of the H2-norm, which captures the
notion of coherence, and the connection between performance
measures and the scale of a multi-dimensional vehicular for-
mation dynamical network is explored. Another performance
measure that quantifies the expected value of the steady-state
dispersion has been investigated in [42].

In this article we are interested in understanding the effects
of discretization on the stability and robustness of network-
based systems. We provide necessary and sufficient conditions
for guaranteeing the stability of discrete-time second-order
consensus networks (SOCNs) and vehicle platoon models
based on the algebraic properties of the Laplacian matrices
of the underlying graphs and the update cycles (also known
as time steps) of each vehicle. We then access the robustness

FIGURE 1. This graph illustrates one of the key observations of this article
in which denser networks might require faster agents (i.e. smaller update
cycles) to outperform less dense networks in terms of robustness. The
green curve is the performance loss of a dense network vs. the agent’s
update cycle and the red curve is the performance loss of a sparse
network vs. the agent’s update cycle.

of each network through an H2-based performance metric
and demonstrate the connection between such performance
metric, network size, connectivity, and update cycles. Funda-
mental trade-offs between the H2-norm and the restrictions on
vehicle update cycles are discussed in Section V and breaking
the design intuition derived from continuous-time consensus
network literature, as illustrated in Fig. 1. Unlike other stud-
ies in this field, our analysis accommodates a more general
set of second-order networks. Specifically, we permit distinct
position and velocity graph topologies within our theoretical
framework, provided they adhere to the assumption of sharing
the same set of eigenvectors.

This article extends the preliminary results presented
in [43], but includes the full proofs for the first time. The
manuscript also presents a more rigorous derivation of our
original result, new results, and numerical and experimental
examples. Our experiments were derived from a platoon of
scaled models of real cars, which introduces nonlinearities
and communication noise into the platoon dynamics. Despite
the case under consideration introducing certain complexities
beyond our initial assumptions, our results still demonstrate
the robustness and applicability of our theoretical formulation.

II. PRELIMINARIES AND NOTATIONS
Throughout this article, we use the following notations: 1n
is the n-dimensional vector with all elements equal to one,
In denotes the n × n identity matrix, 0m×n shows the m × n
zero matrix, Jn presents the n × n matrix of all ones, and A†

represents the pseudo-inverse of matrix A.
All graphs are assumed to be finite, simple, undirected, and

connected. We denote an undirected graph as G = {V, E,w},
where V is the set of nodes, E ⊆ {(i, j) | i, j ∈ V, i ̸= j} is
the set of edges, and w : V × V → R+ is the weight function
with w(e) = 0 for all e = (i, j) ̸∈ E . An unweighted graph G
is a graph with a weight function w(e) = 1 for e ∈ E , and
zero otherwise. The adjacency matrix A = [ai j] of graph G
is defined by setting ai j = w(e).
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The Laplacian matrix L of graph G = (V, E,w) is defined
as L = D − A where A is the adjacency matrix defined as
above and D = diag(di ) with di =

∑
j,(i, j)∈E w((i, j)) being

the degree of node i. If G is connected and undirected then its
Laplacian has only one zero eigenvalue with multiplicity one
and associated eigenvector as the vector of all ones 1n.

III. MODELING AND STABILITY ANALYSIS
To facilitate the analysis, we refer to the first integrator state
as position states (x), and to the second integrator state as ve-
locity states (v). The reduced-order model of these dynamical
networks can be expressed using two state variables of each
agent: the i-th vehicle’s position xi and the i-th vehicle’s veloc-
ity vi for i ∈ V . We start by designing the feedback law based
on the communication topologies of the consensus networks.

A. SECOND-ORDER CONSENSUS NETWORK (SOCN)
We can write the dynamics of a collection of n independent
(disconnected) second-order agents in the discrete-time as:

[
x(k + 1)
v(k + 1)

]

=
[

I γ I
0 I

][
x(k)
v(k)

]

+
[

0
γ I

]

ū(k), (1)

where γ is the agent’s update cycle or the time step, and
ūi(k) = ui(k) + di(k) is the i-th element of vector ū(k) =
[ū1(k), ū2(k), . . . , ūn(k)]⊤, and quantifies external influences
over the i-th agent, composed of the cooperative feedback of
the network ui(k) and possible disturbance signals di(k).

Of primary interest for this article is a class of disturbances
characterized by Gaussian noises, which are prevalent due to
their practical implications. Let our system be influenced by
a continuous zero mean Gaussian noise. The discretization
effects of such noise become crucial in our model formulation
and can be achieved using the increments of the Brownian
motion, B(t ). For Gaussian noise with zero mean and unitary
covariance, the first-order discretization at the k-th timestep is
denoted as

d (k) = B(t + γ ) − B(t )
γ

,

where γ is the time interval between discrete steps, and
the difference B(t + γ ) − B(t ) represents the change in the
Brownian motion over that interval, effectively capturing the
Gaussian noise experienced by the system during the period
γ . From stochastic systems literature [44] it is established that

B(t + γ ) − B(t ) ∼ N (0, γ )

indicating it follows a Gaussian distribution with zero mean
and covariance γ . Given the unitary covariance of the orig-
inal disturbance, post-discretization, the disturbance signal
adheres to a Gaussian distribution with zero mean and covari-
ance 1/γ . With this information we can rewrite d (k) as

d (k) = 1
√

γ
ξ (k),

where ξ ∼ N (0,1n).

Next we look at the proposed cooperative feedback law,
which can be understood as virtually imposed springs and
dampers between the agents. This interaction induces an un-
derlying graph for both position and velocity, which are given
by Gx = (Vx, Ex, F ) and Gv = (Vv, Ev, G), respectively. The
proposed feedback law with underlying graphs Gx and Gv is,
then, as follows:

u(k) = −Lxx(k) − Lvv(k), (2)

where Lx and Lv are the Laplacian matrices of Gx and Gv

respectively.
The state space of this second-order discrete-time consen-

sus system, where all agents collaborate based on the shared
information from their neighbors, can then be rewritten as:
[

x(k + 1)

v(k + 1)

]

=
[

I γ I

−γLx I − γLv

][
x(k)

v(k)

]

+
[

0
√

γ I

]

ξ (k),

(3)
which is the model structure considered for our robustness
analysis of SOCNs. Notice that if we refer to the undisturbed
SOCN dynamics along the text, we are assuming ξ (k) ≡ 0,
otherwise ξ (k) ∼ N (0,1n).

B. VEHICLE PLATOONS
Next, we extend the idea of cooperative feedback in SOCNs
to formulate a vehicle platoon model. We make the following
basic assumption for all vehicle platoon systems in this article:

Assumption 1: All vehicles in the platoon have access to
their own states; that is, xi and vi are always available for
computing ẋi and v̇i, independently from the interconnection
topology under consideration.

Consider having all vehicles in the platoon follow a desired
trajectory while driving at a desired constant speed of vd

and maintaining certain spacing # between each other. The
desired trajectory xd for i-th vehicle is:

xd
i (k) := kγ vd + i#. (4)

The position/velocity deviations from the desired trajectory of
agent i are defined as

x̃i := xi − xd
i , and ṽi := vi − vd

i .
For each vehicle/node i, we can compose the feedback

control ui that satisfies the goal of following the desired
trajectory xd

i at a desired moving speed of vd while keep-
ing a desired distance from its neighbors into a vector u =
[u1; u2; . . . ; un] which is given by:

u(k) = −(I + Lx )x̃(k) − (I + Lv )ṽ(k). (5)

The vehicle platoons system in state space can be written as:
[

x̃(k + 1)

ṽ(k + 1)

]

=
[

I γ I

−γ (I + Lx ) I − γ (I + Lv )

]

︸ ︷︷ ︸
Avp

[
x̃(k)

ṽ(k)

]

+
[

0

γ I

]

d (k), (6)
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where ξ (.) is the external input/disturbance vector. Similarly
to the SOCN, if we refer to (6) as the undisturbed platoon
dynamics we are assuming ξ (k) ≡ 0. Also, notice that the
same analysis done for SOCNs under continuous Gaussian
disturbances holds here.

C. STABILITY ANALYSIS OF SOCNS
It is shown in [17] that for undisturbed continuous-time
SOCNs with the same connected underlying graphs for posi-
tion and velocity (i.e., Gx = Gv), all agents in the system will
asymptotically reach an agreement. When considering these
dynamical networks in the discrete-time framework, the up-
date cycle γ starts to play an important role in the stability of
the system. The undisturbed SOCNs (3) and vehicle platoons
(6) can be unstable or fragile with inappropriate choices for
the update cycle (i.e., γ ), therefore, in this article, we first
investigate the conditions on γ that guarantee marginally sta-
ble systems. As a starting point, we state the same consensus
definition as the one presented in [17], but for discrete-time
SOCN:

Definition 1 ([17]): An undisturbed discrete-time SOCN
with dynamics as presented in (3) with ξ (k) ≡ 0 is said to
have reached consensus if and only if, for any initial condition,
we have

lim
k→∞

∥xi(k) − x j (k)∥ = 0, and

lim
k→∞

∥vi(k) − v j (k)∥ = 0, (7)

for all pairs of agents i, j = 1, 2, . . . , n.
We then present the following condition for a discrete-time

SOCN to reach consensus:
Lemma 1: The undisturbed discrete-time SOCN with dy-

namics as presented in (3) reaches consensus for any initial
condition if and only if its eigenvalue with the largest mag-
nitude has algebraic multiplicity two and lies on the unitary
circle in C.

The proof of this Lemma follows very closely to the proof
of Lemma 2 of [17]. First one can notice that if the position
and velocity graphs are connected then the resulting ASOCN
will always have at least one zero eigenvalue with an algebraic
multiplicity of two. For sufficiency we apply the Jordan block
decomposition of ASOCN to the limit limk→∞[x(k); v(k)] =
Ak

SOCN [x(0); v(0)] and observe that a consensus is reached.
The proof of necessity also follows the same line of argu-
ment as in [17]. Specifically, Ak

SOCN converges to a matrix
of rank higher than two if the eigenvalue at the unit circle
has an algebraic multiplicity greater than two, or if there are
additional distinct eigenvalues on the unit disc. This implies
that our solution converges to a subset of the state-space of
dimension larger than two, contradicting the assumption that
a second-order consensus is guaranteed to be reached.

Differently from the results for continuous time, however,
the magnitude of the eigenvalues of ASOCN depend not only on
the graph Laplacians Lx and Lv , but also on the update cycle

γ of the system. In the following lemma, we present neces-
sary and sufficient conditions for a second-order consensus
network (SOCN) to reach consensus. This result provides a
quantitative method for evaluating the stability of SOCN in a
discrete-time framework.

Lemma 2: For a given undisturbed discrete-time second-
order consensus network (3), let the Laplacian matrices of the
position and velocity graphs share the same set of eigenvec-
tors, and let both graphs be connected. Then, the discrete-time
SOCN is guaranteed to reach a consensus for any initial con-
dition if and only if for all i = 2, 3, . . . , n

⎧
⎪⎪⎨

⎪⎪⎩

0 < γ <
λ

(v)
i

λ
(x)
i

, if
(
λ

(v)
i

)2
− 4λ

(x)
i < 0

0 < γ < 4

λ
(v)
i +

√(
λ

(v)
i

)2
−4λ

(x)
i

, otherwise (8)

where λ
(x)
i and λ

(v)
i are the nonzero eigenvalues of Lx and Lv ,

that share the same eigenvectors.
Proof: In order to find the eigenvalues of the state matrix

ASOCN , let det (ASOCN − µI ) = 0, then we have:

det

([
(1 − µ)I γ I

−γLx (1 − µ)I − γLv

])

= det
(
(1 − µ)2I − γ (1 − µ)Lv + γ 2Lx

)

=
n∏

i=1

(
(1 − µ)2 − γ (1 − µ)λ(v)

i + γ 2λ
(x)
i

)
= 0, (9)

where λ
(x)
i is the i-th eigenvalue of Lx and λ

(v)
i is the i-th

eigenvalue of Lv , respectively and following the same order
for the basis of eigenvectors.

By solving the quadratic equation:

(1 − µ)2 − γ (1 − µ)λ(v)
i + γ 2λ

(x)
i = 0, (10)

one can find the eigenvalues of matrix A:

µi± = 1 −
γ λ

(v)
i

2
±

γ

√(
λ

(v)
i

)2
− 4λ

(x)
i

2
. (11)

From Lemma 1, µi± should be inside a unit disk, i.e., ∥µi±∥ <

1 and the update cycle γ ∈ R+. Also, since we assumed the
graphs are connected, the Laplacian matrices Lx,v have a sim-
ple zero eigenvalue λ

(x,v)
1 = 0 associated with the eigenvector

of all ones v
(x,v)
1 = 1 and all the other eigenvalues have posi-

tive real parts. If (λ(v)
i )2 − 4λ

(x)
i < 0, for i = 2, 3, . . . , n, then

we know µi± ∈ C. Let j =
√

−1 and ℜ(µi±) = 1 − γ λ
(v)
i

2 ,

ℑ(µi±) = ±
γ

√
4λ

(x)
i −(λ(v)

i )2

2 , s.t. ∥µi±∥ < 1.

∥µi±∥2 =

∥∥∥∥∥∥∥∥
1 −

γ λ
(v)
i

2
±

γ

√
4λ

(x)
i −

(
λ

(v)
i

)2

2
j

∥∥∥∥∥∥∥∥

2
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=
(

1 −
γ λ

(v)
i

2

)2

+

⎛

⎜⎜⎝
γ

√
4λ

(x)
i −

(
λ

(v)
i

)2

2

⎞

⎟⎟⎠

2

= 1 − γ λ
(v)
i + γ 2λ

(x)
i < 1. (12)

Then, we get −γ λ
(v)
i + γ 2λ

(x)
i < 0; thus, it follows that

0 < γ <
λ

(v)
i

λ
(x)
i

. (13)

If (λ(v)
i )2 − 4λx

i ≥ 0, we have ∥µi±∥ = |1 − γ λ
(v)
i

2 ±
γ

√
(λ(v)

i )2−4λ
(x)
i

2 | < 1, where µi± ∈ R. After some calculation,
one can find that:

0 < γ <
4

λ
(v)
i +

√(
λ

(v)
i

)2
− 4λ

(x)
i

, for i = 2, 3, . . . , n,

(14)
completing the proof. !

Remark 1: Notice that the interpretation of this condition
in general is hard and not immediately intuitive. However, if
we restrict our analysis to the set of graphs considered for our
simulations and experiments, that is graphs such that Lx =
ζLv for some ζ ∈ R, then the meaning becomes clearer, and
the results from the Lemma simplifies to

{
0 < γ < ζ , if λmax ≤ 4

ζ 2

0 < γ < 4
ζλmax+

√
ζ 2λ2

max−4λmax
, otherwise.

This condition on the value of the maximum eigenvalue of
our Laplacian can be understood as a local density since the
eigenvalues are upper-bounded by two times the largest node
degree of the graph. A conclusion that can be taken is that
if, for a set of possible graphs, the maximum node degree is
smaller or equal to 2/ζ 2 then all graphs are stable for the same
band of discretization time.

D. STABILITY ANALYSIS OF PLATOONS OF VEHICLES
Differently from SOCNs, platoons of vehicles are expected
to follow a pre-specified formation. As such, we would like
the solution of the error dynamics given by (6) to converge
to zero as time passes, rather than reaching a consensus. For
this, the traditional notion of stability for discrete-time linear
time-invariant systems is sufficient, without needing to ana-
lyze consensus. Based on this, consider the following Lemma:

Lemma 3: For a given undisturbed discrete-time vehicle
platoon system (6), let the Laplacian matrices of the position
and velocity graphs share the same set of eigenvectors, and
let both graphs be connected. Then, the vehicle platoon is
guaranteed to asymptotically track reference (4) for any initial

condition if and only if for all i = 1, 2, . . . , n:
⎧
⎪⎨

⎪⎩

0 < γ <
λ

(v)
i +1

λ
(x)
i +1

, if (λ(v)
i + 1)2 − 4(λ(x)

i + 1) < 0

0 < γ < 4

λ
(v)
i +1+

√
(λ(v)

i +1)2−4(λ(x)
i +1)

, otherwise
(15)

where λ
(x)
i and λ

(v)
i are the eigenvalues of Lx and Lv , respec-

tively with matching eigenvectors.
Proof: The proof of this Lemma follows very closely to

the one of Lemma 2, and as such is omitted due to space
limitations. !

With Lemmas 2 and 3 we now have an understanding of
how the update cycle affects the stability of both SOCNs
and vehicle platoons. We next look at how we can use this
understanding to characterize the robustness of our networks
as a function of the update cycle and how that affects the
optimal topologies.

E. ON OUR MODELING ASSUMPTIONS
Before delving further, we will briefly discuss the assumptions
of our model and their implications.

The first assumption we address concerns the graph be-
ing undirected. Our findings on stability and robustness do
not readily apply to directed networks, since the proofs of
Lemmas 2 and 3, and Theorems 1 and 2 rely on the or-
thogonality of the basis of eigenvectors. In order to extend
this result, one would need to approach the estimation of the
eigenvalues and of the H2-norm differently. Beyond this, the
merits of using undirected graphs as a framework become
evident in our simulations and experiments. By confining our
analysis to a subset of undirected graphs that meet our as-
sumptions, we can interpret our design choice as determining
the optimal spring and damper constants to dictate agent in-
teractions. Such an interpretation would be less intuitive in a
directed setting, where interactions would need to be viewed
as unidirectional springs.

Another fundamental assumption across all the Lemmas
and Theorems in this article is that both the position and
velocity graphs share the same set of eigenvectors. While this
assumption remains the most generic condition under which
our results are valid, the authors have not identified any nec-
essary and sufficient graph-theoretical conditions that ensure
that the Laplacians of two graphs share the same eigenvector
set. This absence makes it challenging to offer an intuitive
interpretation of this assumption concerning its application.
Consequently, we have concentrated on pinpointing sufficient
conditions that validate this assumption.

In our simulations and experiments, we opted to examine
the set of position and velocity graphs that are proportional to
one another, implying that Lx = ζLv for some real value ζ .
This condition ensures that both graphs share the same eigen-
vector set. However, these are not the sole graph types meeting
this criterion. For example, any pair consisting of a graph
and its complementary graph, given by Lv = nI − J − Lx ,
results in a pair of Laplacians that share the same eigenvec-
tors. Factoring in this assumption in our analysis alters our
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interpretation, yet it remains consistent with our theoretical
findings.

IV. ROBUSTNESS ANALYSIS
Robustness analysis is a key concern in improving the behav-
ior or dynamics of a system with uncertainties, particularly in
the context of vehicle platoons where it is related to safety,
traffic capacity, and passenger comfort. Many studies have
focused on addressing robustness issues in noisy consensus
networks, with some using the H∞ measure to evaluate the
frequency response magnitude of vehicle platoons [24], [45],
[46]. Other works have employed the H2-norm as a robustness
index to capture the steady-state dispersion of the states of the
entire system [41], [42], [47], [48].

In this section, we use the H2-norm of the system, which
quantifies the values of disturbances from input to output
as a scalar performance measure, to provide a quantitative
approach to evaluating the expected value of the steady-state
variance of the output of the entire system in response to
zero-mean stochastic disturbances as input. We show that this
performance measure can be quantified using the eigenvalues
of the Laplacian matrices of the corresponding underlying
graphs associated with the time step in the discrete-time do-
main.

A. H2-BASED ROBUSTNESS MEASURES
We begin this section with a general discrete-time LTI sys-
tem subject to persistent stochastic disturbances (white noise)
with zero mean and unitary covariance, resulting in the states
fluctuating around the equilibrium:

{
z(k + 1) = A z(k) + B ξ (k)
y(k) = C z(k),

(16)

where ξ (k) ∼ N (0, I ), and y(k) is the output of the networks.
Matrix C = [Cx, Cv] is the output matrix of the system, where
Cx and Cv ∈ Rn×n indicate which nodes are measured for
position and velocity, respectively.

Definition 2: Given a zero mean, unitary covariance Gaus-
sian disturbance ξ (k), and an output matrix C = [Cx, Cv], the
average steady-state variance of the output of the network is
given by

ρss(A,C) = lim
k→∞

E
[
y(k)⊤y(k)

]
, (17)

and is considered a performance metric of the system.
Remark 2: For a system with dynamics as given in (16), we

can compute the performance metric given in Definition 2 as

ρss(A,C) := 1
2π

∫ π

−π

Trace(H (e jω )⊤H (e jω ))dω, (18)

where H is the transfer function of (16).
Notice that both Definition 2 and Remark 2 are common

results in the literature about the H2-norm of linear systems.
Also, it is well known that since matrix A is not necessarily
Hurwitz, our performance metric might not be well defined
for any choice of output matrix C. If any of the unstable

modes of the system is present in the transfer function H ,
the performance measure is not well defined. One can ensure
this does not happen when selecting the output of the system.
Specifically in this article, C is selected between two different
options C ∈ {[0, Mn], [Mn, 0]}, where Mn = I − (1/n)Jn, is
called the centering matrix. All of these choices of output
matrix can be verified to produce a stable transfer function for
either SOCNs or vehicle platoons. Intuitively, for the context
of SOCNs, by choosing one of these matrices as the output
matrix, we are defining the output of our system to lie on
orthogonal spaces to the consensus set (generated by the span
of the eigenvectors associated with the unitary eigenvalue).

An alternative, often more convenient way, of computing
the H2-norm of an LTI system is through its controllability
(P) and observability (Q) Gramians

Remark 3: If a stable, discrete-time LTI system is con-
trollable, there is a unique positive definite solution P to the
equation APA⊤ − P = −BB⊤. This solution can be expressed
as P =

∑∞
k=0 AkBkB⊤(A⊤)k . Similarly, if the stable system is

observable, there is a unique positive definite solution Q to the
equation A⊤QA − Q = −C⊤C. This solution can be written
as Q =

∑∞
k=0(Ak )⊤C⊤CAk .

Notice, however, that for the existence and uniqueness of
the solution of the Lyapunov Equation, we need the stability
of the system, which is not the case for SOCNs. Later in this
article, there will be ways in which one can deal with this
problem and use the Lyapunov equation to compute the H2-
norm of a SOCN.

We next consider three different scenarios and review the
interpretations of the H2-norm presented in [41], [49]. In the
first scenario, the input ξ is a stochastic noise with zero mean
and unitary covariance, and the H2-norm of the system is the
steady-state total variance of all of the output components. For
the vehicle platoon system, this disturbance can be expressed
as the stochastic noise received by each vehicle, which may
stem from uncertainties in the states of each agent. The H2-
norm quantifies the expected values of the output deviation
of all vehicles from the desired trajectory in the presence of
noise:

∥H∥2
2 = lim

k→∞
E{y(k)⊤y(k)}. (19)

In the second scenario, we consider a random initial
condition z0 with correlation E(z0z⊤

0 ) = BB⊤ and no in-
put/disturbance. The H2-norm is the sum of the resulting
response y(k). For the vehicle platoon system, since

BB⊤ =
[

0 0
0 γ I

]

,

the response to the random initial condition implies that each
vehicle is only subject to a random initial velocity stochastic
perturbation. Therefore, the H2-norm evaluates the expected
values of the total energy required to steer all vehicles in the
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formation to follow the desired velocity v̄(k), i.e.,

∥H∥2
2 =

∞∑

k=0

E{y(k)⊤y(k)}. (20)

In the third scenario, we consider N experiments in which the
ith agent is subjected to an impulse in each experiment, i.e.,
eiδ(k) where ei is a basis vector with a 1 in the ith compo-
nent and zeros everywhere else. The corresponding output is
yei (k) ∈ RN . The H2-norm is the total sum of the resulting
response y(k) of the N experiments. For the vehicle platoon
system, this scenario represents a disturbance that affects only
one vehicle at a time. The H2-norm captures the expected
values of the total energy required to steer the formation back
to the desired trajectory after each disturbance, i.e.,

∥H∥2
2 =

N∑

i=1

∞∑

k=1

E{yi(k)⊤yi(k)}. (21)

We then evaluate these robustness measures for SOCN (3)
concerning their corresponding outputs.

Theorem 1: For a given discrete-time SOCN under Gaus-
sian noise (3), let the Laplacian matrices of the position and
velocity graphs share the same set of eigenvectors, and let both
graphs be connected. Then the performance measure of the
system defined as in Definition 2 can be computed as:

ρss(A; [Mn, 0]) =
n∑

i=2

γ λ
(v)
i − γ 2λ

(x)
i − 2

λ
(x)
i MSOCN

i

(22)

ρss(A; [0, Mn]) =
n∑

i=2

−2
MSOCN

i

(23)

where

MSOCN
i = γ 3

(
λ

(x)
i

)2
+ 2γ

(
λ

(v)
i

)2
+ 4γ λ

(x)
i

− 3γ 2λ
(x)
i λ

(v)
i − 4λ

(v)
i .

Proof: To prove the Theorem, we begin by defining the
disagreement state as

xd (k) =
(

I − 1
n

Jn

)
x(k) = Mnx(k)

vd (k) =
(

I − 1
n

Jn

)
v(k) = Mnv(k).

After some analysis of the equations above, one quickly con-
cludes that the disagreement variables are simply the original
variable minus its average. The disagreement dynamics is
given by:

[
xd (k + 1)
vd (k + 1)

]

=
[

Mn 0
0 Mn

][
x(k + 1)
v(k + 1)

]

=
[

Mn γ Mn

−γLx Mn − γLv

][
xd (k)
vd (k)

]

+
[

0
√

γ Mn

]

ξ (k),

with output given by either

y(k) = Mnx(k) = xd (k) = Mnxd (k),

or

y(k) = Mnv(k) = vd (k) = Mnvd (k),

since Lx,v = Lx,vMn, and MnMn = Mn.
Notice that the original dynamics in (3) and the disagree-

ment dynamics have, for the same input, the same output.
As a consequence, one can conclude that both have the same
H2-norm after consulting Definition 2.

The disagreement dynamics is a useful tool for computing
the H2-norm of the original SOCN because, unlike the origi-
nal system, it is stable. This can be verified by computing the
eigenvalues of the system as the values of µ ∈ C for which:

det

([
Mn γ Mn

−γLx Mn − γLv

]

− µ

[
I 0
0 I

])

= 0.

By exploring the block and diagonal structure and performing
an eigendecomposition on the four blocks of our matrices, one
can write the equation above as

(
n∏

i=2

(1 − µ)2 − γ (1 − µ)λ(v)
i + γ 2λ

(x)
i

)

µ2 = 0,

which has a double root at µ = 0 and remaining roots at

µi± = 1 −
γ λ

(v)
i

2
±

γ

√(
λ

(v)
i

)2
− 4λ

(x)
i

2
, (24)

for nonzero eigenvalues λ
(x)
i and λ

(v)
i . This recovers the

consensus condition from Lemma 2 and implies that if the
original SOCN is such that it reaches consensus, then the cor-
responding disagreement dynamics is asymptotically stable.

With this, and by easily verifying controllability with the
Popov-Belevitch-Hautus (PBH) test, we can write the control-
lability Lyapunov equation for the disagreement dynamics as

[
Mnγ Mn

−γLx Mn − γLv

][
P11 P12

P⊤
12 P22

][
Mn −γLx

γ Mn Mn − γLv

]

−
[

P11 P12

P⊤
12 P22

]

= −
[

0 0
0 γ Mn

]

. (25)

We then test for a solution in which the blocks of the
controllability Gramian have the same eigenvalues as the
Laplacian matrices. From the uniqueness of the solution of
the Lyapunov equation, we know that if a solution that shares
the same eigenvectors exists, then it is the only solution to
the equation. Since we assume that the blocks of the Gramian
share the same eigenvectors, we can write Pi j = U⊤P̄i jU
where P̄i j is a diagonal matrix with the eigenvalues of that
specific submatrix.
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Writing the Lyapunov equation as a system of equations
results in

Mn
(
P11 + 2γ P12 + γ 2P22

)
Mn = P11 (26)

Mn
(
−P11γLx + P12

(
Mn − γLv − γ 2Lx

)

+P22
(
γ Mn − γ 2Lv

))
= P12 (27)

γ 2LxP11Lx − 2(γ Mn − γ 2Lv )P12Lx

+ (Mn − γLv )P22(Mn − γLv ) − P22 = −γ Mn (28)

The H2-norm of the system is given by:

ρss(ASOCN; [Mn, 0]) = Trace([Mn, 0]P[Mn, 0]⊤)

= Trace(P̄11).

ρss(ASOCN; [0, Mn]) = Trace([0, Mn]P[0, Mn]⊤)

= Trace(P̄22).

therefore, one only needs to compute the value of the two
diagonal blocks to complete the proof.

By leveraging the assumption that all matrices in (26), (27)
and (28) share the same set of eigenvectors we can rewrite
them in terms of only their eigenvalues as follows

P̄11 + 2γ P̄12 + γ 2P̄22 = P̄11 (29)

p11 = 0 (30)

− P̄11γ *̄x + P̄12
(
I − γ *̄v − γ 2*̄x

)

+ P̄22
(
γ I − γ 2*̄v

)
= P̄12 (31)

p12 = 0 (32)

γ 2*̄xP̄11*̄x − 2(γ I − γ 2*̄v )P̄12*̄x

+ (I − γ *̄v )P̄22(I − γ *̄v ) − P̄22 = −γ I (33)

p22 = 0 (34)

Simplifying the equations above gives

P̄12 = − γ

2
P̄22 (35)

P̄11 = *−1
x

(
−γ

2
*̄v + γ 2

2
*̄x + I

)
P̄22 (36)

P̄22 = − 2
(
2γ *̄2

v − 3γ 2*̄v*̄x − 4*̄v + γ 3*2
x + 4γ *̄x

)−1

(37)

which then recovers the Theorem statement as:

ρss(A; [Mn, 0]) =
n∑

i=2

−2 + γ λ
(v)
i − γ 2λ

(x)
i

λ
(x)
i MSOCN

i

ρss(A; [0, Mn]) =
n∑

i=2

−2
MSOCN

i

,

where

MSOCN
i = γ 3(λ(x)

i )2 − 3γ 2λ
(x)
i λ

(v)
i + 2γ (λ(v)

i )2

FIGURE 2. An illustration of an undirected star graph consisting of 5
agents.

+ 4γ λ̄
(x)
i − 4λ

(v)
i ,

which concludes the proof. !
Theorem 2: For a given discrete-time vehicle platoon sys-

tem (6), let the Laplacian matrices of the position and velocity
graphs share the same set of eigenvectors, and let both graphs
be connected. Then, the performance measure of the system
as defined in Definition 2 can be quantified as:

ρss(A; [Mn, 0]) =
n∑

i=2

γ (λ(v)
i + 1) − γ 2(λ(x)

i + 1) − 2

(λ(x)
i + 1)MVP

i
(38)

ρss(A; [0, Mn]) =
n∑

i=2

−2
MVP

i
(39)

where MVP
i = γ 3(λ(x)

i + 1)2 + 2γ (λ(v)
i + 1)2 + 4γ (λ(x)

i +
1) − 3γ 2(λ(x)

i + 1)(λ(v)
i + 1) − 4(λ(v)

i + 1).
Proof: The proof is similar to the proof of Theorem 1,

therefore, it is not repeated here. !

V. NUMERICAL SIMULATIONS
In this section, we present several numerical examples to
illustrate and validate the theoretical results obtained in this
article. These examples aim to provide insight into specific
behaviors of the proposed control laws and the impact of
different design parameters on the stability and robustness
of the system. To present these observations in an orderly
manner, unless explicitly specified otherwise, we did not con-
sider disturbances for this section, focusing on the behavior of
our system as specific parameters are changed. We consider
different scenarios with varying network sizes, connectivity,
and update cycles to evaluate the performance of the control
laws under different operating conditions. The results of these
examples provide evidence for the effectiveness of the pro-
posed control approaches, while the experimental results in
the next section demonstrate their practical value in real-world
applications.

Example 1: Consider a five-node discrete-time vehicle pla-
toon model (6) with both underlying graphs Gx and Gv being
star graphs with edge weights F ((i, j)) = 2 and G((i, j)) =
1.5, for (i, j) being an edge of the star graph (see Fig. 2 ).

VOLUME 2, 2023 471



HUANG ET AL.: BALANCING AGILITY AND COMMUNICATION: DENSER NETWORKS REQUIRE FASTER AGENTS

FIGURE 3. In this figure, a discrete-time vehicle platoon dynamic with
n = 5 vehicles and a star graph as underlying position and velocity graphs
is considered. The update cycle (time step) of the system is varied around
the theoretical upper bound, illustrating its effects on the stability of the
system. In the first two plots, (a-1) and (a-2), the update cycle is chosen
slightly below the theoretical upper bound; in the middle two plots (b-1)
and (b-2) it is exactly at the upper bound; and for the last two plots (c-1)
and (c-2) it is slightly above the upper bound.

Their corresponding Laplacian matrices are given by

Lx =

⎡

⎢⎢⎢⎢⎢⎢⎣

8 −2 −2 −2 −2
−2 2 0 0 0
−2 0 2 0 0
−2 0 0 2 0
−2 0 0 0 2

⎤

⎥⎥⎥⎥⎥⎥⎦
,

Lv =

⎡

⎢⎢⎢⎢⎢⎢⎣

6 −1.5 −1.5 −1.5 −1.5
−1.5 1.5 0 0 0
−1.5 0 1.5 0 0
−1.5 0 0 1.5 0
−1.5 0 0 0 1.5

⎤

⎥⎥⎥⎥⎥⎥⎦
,

and their eigenvalues by

λ(Lx ) =
[
0 2 2 2 10

]
,

and

λ(Lv ) =
[
0 1.5 1.5 1.5 7.5

]
.

The state-space matrices of the system are built as in (6).
To observe numerically the behavior of the system around

the theoretical upper bound of γ ≤ 0.2895 (as given by
Lemma 3), the simulations (6) are done for random initial
states and three values of the update cycle: γ = 0.2885,
γ = 0.2895, and γ = 0.2905. Fig. 3 shows that when the
update cycle is slightly smaller than the upper bound (γ =
0.2885), the system is stable, since the velocity output con-
verges asymptotically to the desired velocity, and all vehicles
keep a spacing of # = 1 between each other. The system

FIGURE 4. This figure illustrates, for the six Erdős-Rényi graphs depicted,
the relationship between the density of connections and performance
metric for different values of the update cycle. This simulation illustrates
one of the most interesting observations of this work, where for networks
with the same number of nodes and following the same model structure,
more densely connected networks might be outperformed in terms of
robustness by a less densely connected network if the update cycle is large
enough.

becomes marginally stable when we are at our upper bound
(γ = 0.2895), and in the simulation, one can observe both po-
sition and velocity values fluctuating around the equilibrium
value. When the update cycle is slightly larger than the upper
bound (γ = 0.2905), the system is unstable, and both position
output and velocity output diverge.

Example 2: The next set of simulations investigates the
relationship between connectivity and the performance met-
ric for varying values of the update cycle. To perform this
analysis we consider a set of 20 agents and an Erdös-Rényi
model [50] for the underlying position and velocity graphs. By
varying the parameters that generate the network, six graphs
with different values of edge density are obtained and their
behavior is compared in terms of the performance metric.
From Fig. 4 one can notice that for any pair of graphs with dif-
ferent edge densities, the performance metric graphs cross for
some value of the update cycle, indicating a trade-off between
robustness and connectivity between networks following the
same structure. Notice that this happens because, for the same
network model, more densely connected networks have higher
values of the maximum eigenvalue, which from Lemma 3
means their discretized dynamics will become unstable for
smaller values of the update cycle.

Interestingly, this contradicts the traditional intuition from
continuous-time consensus networks, where the more con-
nected the networks, the more coherent or better performance
measures the system has (see [42], [49], [51] and references
therein). As a result, these networks are more capable of re-
ducing the influence of stochastic disturbance by increasing
the number of connections/edges. However, in the discrete-
time domain, one can see from Fig. 4 that denser networks
require faster agents (i.e., smaller update cycles) to achieve
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FIGURE 5. This figure illustrates, for the six ring graphs depicted, the
relationship between network size and performance metric for different
values of the update cycle. As pointed out in Remark 1, the crossing of the
performance metric functions between two different graphs is highly
dependable on the largest eigenvalue of the Laplacian of the graphs,
which is upper-bounded by twice the largest node degree of the network.
In this case, where ring graphs are considered, no trade-off is observed
between robustness and the considered models for varying values of the
update cycle because they all have the same value of node degree,
independently of the size of each network.

the same level of robustness as sparse networks (see Fig. 1).
Moreover, the subplots in Fig. 4 show that the values of per-
formance measure dramatically increase where the time step
γ is approaching the condition of marginally stable discussed
in Section III-C.

Example 3: In this final set of simulations, we study the
effect of the size of a network on the performance metric of
the system. We fix our network topologies as ring graphs and
vary the number of nodes from 5 to 55 by increments of 10,
as depicted in Fig. 5 . Notice that in this set of simulations,
the order of the graphs remains unchanged, and all systems
become unstable for the same value of the update cycle. This
happens because the chosen graph topology is very sparse,
and all graphs satisfy the same condition for instability when
analyzed in terms of Lemma 2.

In this section we provided three sets of simulations that
investigate the behavior of our system as different parameters
vary. These findings suggest that it is important to carefully
consider the size and update cycle of a second-order con-
sensus network to optimize its performance and robustness.
We next investigate how this framework performs in a more
realistic application, with simulations and experiments of a
platoon of vehicles.

VI. EXPERIMENTAL RESULTS
Our experimental approach involves two phases: a set of
simulations executed on a third-party nonlinear platform, the
Qlabs; and real-world experiments using QCars [52]. These
are remotely controlled cars that operate autonomously under
the supervision of a control station. The goal of these exper-
iments is to test the application of our theoretical framework

FIGURE 6. A vehicle platoon of multiple autonomous robots. The
converted 1/10-scale RC cars are equipped with LiDAR, a stereo camera,
an inertial measurement unit, and embedded GPUs. The interaction
between the cars is modeled as a virtual spring-damper on their angular
state inside the circle, as indicated.

in more general applications where the real system is not the
same as the design model and noise is inherent to the hardware
implementation.

As discussed before, we assume during our experiments
that the position graph is a multiple of the velocity graph, i.e.,
Lx = ζLv for some ζ ∈ R. This is a way of complying with
the assumptions from the theory part about both graphs having
the same eigenvectors while also maintaining some intuition
on the meaning of our choices of parameters: The position
and velocity graph gains represent the “spring and damper
constants” imposed by our feedback law, as depicted in Fig. 6.
That is, by assuming this structure we are imposing a virtual
spring-damper as the interaction between our agents with the
freedom of finding the best set of parameters with respect to
our performance metric.

Furthermore, the code used for this section of the article is
available in a GitHub repository [53].

A. VIRTUAL CAR SIMULATIONS
The virtual simulations are run on Quanser’s Qlabs. We can
determine the position of the cars using the built-in GPS
module. The velocity and steering commands for the QCars
are issued using Python. We configure the QCars to follow a
fixed circular trajectory with a radius of 20 meters.

The experiments are set up as follows: Initially, we apply
a lane-keeping control to ensure that the cars remain within
the pre-specified manifold, while still allowing for varying
velocities within it. Subsequently, each agent receives and
tracks a desired trajectory that evolves according to their ini-
tial position and a fixed desired velocity that applies to all cars.
All control methods described thus far operate locally for each
agent, independent of their neighbors. This is indicated by the
“Augmented System” block in Fig. 7, which can be thought of
as a collection of independently actuated augmented agents. In
the next step, each augmented agent receives the desired ac-
celeration from a formation control strategy, which focuses on
maintaining a safe distance from its neighbors per a specific
network structure. Additionally, it is important to highlight
that, while we did not introduce any Gaussian noise into the
simulation, the inherent non-linearity of the actual system
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FIGURE 7. Block diagram of the control structure implemented for the
experiments. Notice that all control efforts inside the augmented system
are done on a node level and use no information of possible neighbors.
One could think of the augmented system as a collection of independently
augmented nodes.

introduces uncertainty from the feedback law’s perspective,
which in turn serves as a validation of its robustness

To recover a consensus network, we look at the dynamics
of the error between the state of each node and their desired
values, similarly to how it is described in Section III-B. We
define x̃ = x − xr and ˙̃x = ẋ − ẋr , and during our experiments
we imposed a ramp reference for xr which means that ẋr :=
vr , and xr

i = xr
i0 + vrt for all nodes i = 1, 2, . . . , n.

The dynamics of the output reference tracking and the for-
mation control block can be expressed respectively as,
[

x̃(k + 1)
˙̃x(k + 1)

]

=
[

I γ I
−γ a(L + I ) I − γ b(L + I )

][
x̃(k)
˙̃x(k)

]

.

(40)
where L is the Laplacian matrix of a n-node unweighted,
undirected network graph, and a and b are the spring and
damper coefficients of our virtual interactions.

Let us consider the SOCN (40) consisting of n = 5 agents
(Qcars) in which the underlying connecting graphs Gx and
Gv are unweighted complete graphs. When the update cycle
is 0.1 seconds (10 Hz), the SOCN is stable and both the
position and velocity converge asymptotically to its steady-
state. The velocity reaches a steady-state value of 12.5 m/sec,
and the positions of each node reach a consensus state of 0
(maintaining a constant spacing amongst other nodes). Now,
when the update cycle is increased to 0.25 seconds (4 Hz),
the underlying system becomes unstable, and the velocity and
position outputs both diverge.

Next, we implement the same experiment with n = 5
(Qcars), but having the underlying connecting graphs, Gx and
Gv as unweighted path graphs. We can observe that when the
update cycle is 0.1 seconds (10 Hz), the SOCN is stable and
both the position and velocity graph converge to its steady-
state. Now, when we increase the update cycle to 0.25 seconds
(4 Hz), we can observe that the system is still stable, and the
velocity and position graphs converge to their steady-state.

The experimental results thus far, depicted in Fig. 8, indi-
cate that there lies a trade-off between faster agents and net-
work density. We can observe that while increasing the num-
ber of nodes, the path graph lies stable for higher update cy-
cles, while the complete graph breaks and becomes unstable.

FIGURE 8. This figure depicts the consensus states reached in position,
Gx , (sub-plots in rows 1 and 2) and for velocity Gv , (sub-plots in rows 3
and 4) for a set of 5 nodes, and when the update cycle is 0.1 seconds
(sub-plots in rows 1 and 3) and 0.25 seconds (sub-plots in rows 2 and 4)
correspondingly. The left sub-plots depict the consensus states reached in
position and velocity when the underlying formation is in complete graph
topology and the right sub-plots depict the consensus states reached
when the underlying formation in the network is of path graph topology. It
can be seen that while the nodes remain stable for a path graph topology
for higher update cycles (0.25 seconds), the complete graph topology loses
consensus.

B. SIMULATION STUDIES OF MINIATURE SELF-DRIVING
CARS
In this section, we aim to examine the real-time applications of
our theoretical advancements using QCars [52]. Throughout
the experiments presented in this section, the QCars were
operated remotely via Wi-Fi.

For our experiments, we place the QCars in a room
equipped with six Opti-Track motion capture cameras. The
vehicles are programmed to follow a circular trajectory with a
radius of 0.85 meters. We use Quanser’s QCars as autonomous
ground vehicles to execute this trajectory, and the control ar-
chitecture for these experiments is implemented using Matlab
Simulink.

The overall architecture of the experiments is the same as
the previous section as depicted in Fig. 7, except that now,
we also include an internal PI controller for tracking veloc-
ity references given to each car, and the parameters were
tuned so that each car follows a step reference on the speed
with zero steady-state error and with approximately the same
rising time, accounting for each car’s unique behavior. The
cars reach a reference velocity in about one second, limiting
how quickly we can enforce consensus to the system before
higher-order behavior related to the dynamics of the motors
starts being noticeable.

While our car formation comprises a system that is struc-
turally distinct from a linear consensus network, we assert that
insights derived from considering the structure of our inter-
connections remain applicable to our system. Fig. 9 displays
the experimental results when the underlying interconnection
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FIGURE 9. Full Experimental Data for a Ring Graph: Following a brief
initialization period (approximately 1 s), all cars are brought to an initial
velocity before the formation control is initiated, and a new desired
velocity is set. This procedure ensures non-zero initial conditions for the
system during the period considered for model fitting (from 25 seconds to
75 seconds).

FIGURE 10. The figure above presents sampled data from our experiments
with a Path Graph (blue), alongside the simulation results for the fitted
consensus network (red). The quality of the fit suggests that a consensus
network offers a robust linear approximation for the system’s dynamics.

is selected to be a ring graph. As can be observed, this approx-
imation allows us to reproduce the platoon dynamics for the
cars as described in Section III-B. The resulting fit models, in
comparison with the actual data, are illustrated in Fig. 10 for
the path graph.

VII. CONCLUDING REMARKS
This article focuses on the distributed consensus and vehi-
cle platoon control problems in discrete-time systems. We
propose a graph-theoretic approach to design the feedback
laws for these systems and provide a necessary and suffi-
cient condition for their stability based on the structure of
the underlying graphs and the update cycles (time steps) of
the autonomous agents. Additionally, we use algebraic graph
theory to study the robustness and performance of cooperative
control methods in discrete-time vehicle platoons. We employ
a H2-based metric as a performance measure that captures
the coherence of the system [41] and quantifies the expected
values of output dispersion in the presence of stochastic dis-
turbances. This measure is shown to increase monotonically

with network size and decrease with network connectivity. We
also observe a fundamental tradeoff between graph connectiv-
ity and the update cycle, illustrating this through experimental
results. During our experimental results section we argue that
despite the dynamics of real cars being nonlinear, the results
of this article can still be relevant through the choice of control
structure. Key contributions of this article include:! Necessary and sufficient conditions for stabilizing a

discrete-time vehicle platoon model;! A quantitative method for evaluating the performance
measures of vehicular formation dynamical systems in
a discrete-time framework;! An analysis of the relationship between performance
measures, network size, connectivity, and update cycles;! A discussion of fundamental tradeoffs between perfor-
mance measures and the restrictions on vehicle update
cycles; and! Experimental validation of our theoretical observations.

As a potential future direction, we suggest casting the
feedback design problem as a convex optimization problem
to improve both the stability and robustness of second-order
consensus networks simultaneously, similar to the approach
taken in [54].
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