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Abstract—Design automation of analog circuits has long been
sought. However, achieving robust and efficient analog design
automation remains challenging. This paper proposes a learning
framework, RoSE-Opt, to achieve robust and efficient analog circuit
parameter optimization. RoSE-Opt has two important features. First,
it incorporates key domain knowledge of analog circuit design, such as
circuit topology, couplings between circuit specifications, and variations
of process, supply voltage, and temperature, into the learning loop.
This strategy facilitates the training of an artificial agent capable
of achieving design goals by identifying device parameters that are
optimal and robust. Second, it exploits a two-level optimization method,
that is, integrating Bayesian optimization (BO) with reinforcement
learning (RL) to improve sample efficiency. In particular, BO is used
for a coarse yet quick search of an initial starting point for optimization.
This sets a solid foundation to efficiently train the RL agent with
fewer samples. Experimental evaluations on benchmarking circuits
show promising sample efficiency, extraordinary figure-of-merit
in terms of design efficiency and design success rate, and Pareto
optimality in circuit performance of our framework, compared to
previous methods. Furthermore, this work thoroughly studies the
performance of different RL optimization algorithms, such as Deep
Deterministic Policy Gradients (DDPG) with an off-policy learning
mechanism and Proximal Policy Optimization (PPO) with an on-policy
learning mechanism. This investigation provides users with guidance
on choosing the appropriate RL algorithms to optimize the device
parameters of analog circuits. Finally, our study also demonstrates
RoSE-Opt’s promise in parasitic-aware device optimization for analog
circuits. In summary, our work reports a knowledge-infused BO-RL
design automation framework for reliable and efficient optimization
of analog circuits’ device parameters. Code implementation of our
method can be found at https://github.com/xz-group/RoSE.

I. INTRODUCTION

Integrated circuit (IC) technology advances human society by

powering numerous applications and infrastructures with micro-

electronic chips of a small footprint. Recent advances in deep

learning have shown great promise in transforming modern IC

design workflows [1]–[3]. By formulating each design stage as a
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learning problem, machine learning techniques can significantly

shorten IC development cycles compared to conventional Electronic

Design Automation (EDA) tools. For example, Google [2] and

Nvidia [3] have shown that deep learning methods can improve

design efficiency by an order of 100× at certain stages of the digital

IC design flow, such as floor planning and power estimation. Analog

circuit is an essential type of circuit that bridges our physical world

with the digital information realm [4]–[8]. Yet, unlike digital ICs that

benefit from well-established conventional EDA tools or emerging

efficient learning-based design automation methods, analog circuits

continue to rely on onerous human efforts and lack effective EDA

techniques at all stages [1], [9].

The pre-layout design of analog circuits can be represented as a

parameter-to-specification (P2S) optimization problem. Given the

topology of a circuit, the goal is to find optimal device parameters

(e.g., width and finger number of transistors) to meet the desired

specifications (e.g., power and bandwidth) of the circuit. This

problem is challenging due to several factors. First, it involves

searching for parameters of diverse devices in a large design space.

The complexity grows exponentially with an increase in both design

parameters and circuit specifications [4], [5]. Second, the actual

interactions between the device parameters and the circuit specifica-

tions are complicated [1], [9], depending on multiple variables, such

as circuit topology, variations in process, voltage, and temperature

(PVT) and post-layout parasitic effects. There are no exact analytical

rules to follow, which worsens the search process. Conventionally,

human designers use critical domain knowledge, such as circuit

topologies and couplings between circuit specifications, to manually

derive the device parameters. In particular, a human designer exerts

an intense effort to obtain empirical equations between the device

parameters and the circuit specifications based on a simplified

circuit topology. However, despite the simplification, tens and even

hundreds of iterative fine-tunings are still required to ensure the

accuracy and reliability of the design.

During the past several decades, there have been enormous explo-

rations on automating the design of analog circuit device parameters.

These methods generally fall into two categories, knowledge-based

techniques and optimization-based techniques. Knowledge-based

techniques are designer-centric [10]–[12]. They customize the

design steps for specific circuits based on domain knowledge

and embed them into procedural scripts that mimic the actions of

designers. These scripts allow designers to have full control over

the modification and debugging of circuits to guarantee design

reliability. However, design efficiency is significantly thwarted,

because designers, acting as optimization agents, are required to
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frequently interact with procedural scripts. In contrast, optimization-

based techniques are algorithm-centric. They consider each step of

analog circuit design as a black-box optimization problem and apply

optimization methods, such as Bayesian optimization [1], Genetic

algorithms [13], and emerging machine learning algorithms [9], [14]–

[18]. These algorithms can be run quickly to complete the design

of an analog circuit with high efficiency. Unfortunately, due to the

absence of knowledge from experienced designers, the reliability of

the design is not guaranteed, e.g., device parameters are not robust

to various non-idealities. These defects limit the efficiency and

reliability of state-of-the-art analog design automation techniques.

To bridge this gap, we propose a learning framework, RoSE-Opt,

to achieve robust and efficient analog circuit parameter optmization

by synergizing domain knowledge of analog circuits and learning

algorithms. Analog circuit design strongly relies on domain

knowledge, such as circuit topology, couplings between circuit

specifications, and PVT variations; thus, without adequately

considering these key domain knowledge in building learning-based

design automation frameworks, the device parameters discovered

by the algorithm are prone to suffer from inferior reliability issues

due to various non-idealities. Our previous work [19] follows

this principle and has explored the integration of this key domain

knowledge into the design framework. It also exploits a two-level

optimization method by integrating Bayesian optimization (BO)

and reinforcement learning (RL) to improve sample efficiency.

In this paper, we propose the RoSE-Opt framework which

advances the state-of-the-art method [19]. In particular: 1 We

analyze the failed cases in which our trained RL agent cannot

converge to the optimal device parameters. In these scenarios, the

RL agent can still help designers by offering optimized initial

points for manual tuning. 2 We study its ability to consider device

parasitic in parameter optimization. A direct mapping of an analog

circuit schematic with correctly-sized devices into a physical layout

can lead to performance degradation, mainly due to parasitics

from metal wires and electromagnetic effects, and needs tens of

iterations between the two for fine-tuning. This extended work

demonstrates the promise of RoSE-Opt in addressing this problem.

3 At the algorithm level, we thoroughly study the performance of

different RL optimization algorithms, such as Deep Deterministic

Policy Gradients (DDPG) with an off-policy learning mechanism

and Proximal Policy Optimization (PPO) with an on-policy

learning mechanism, to provide users with useful guidance in

choosing appropriate RL algorithms for device sizing. 4 Finally,

we showcase a Pareto optimization example, i.e., optimizing the

figure-of-merit (FoM) of a circuit. Our framework can facilitate the

identification of the optimal Pareto frontier. In summary, we present

a holistic BO-RL-based design automation framework to perform

the P2S optimization tasks of analog circuit design with high

robustness and efficiency. We make following key contributions.

• This paper proposes a comprehensive BO-RL-based design

automation framework, RoSE-Opt. Our learning framework

explores and exploits both the domain knowledge of analog

circuit design and the strong optimization ability of design

automation algorithms.

• We perform a failure analysis of our method and show how

to leverage the unsuccessful deployment trajectory to guide

the fine-tuning of manual efforts toward design success.

In addition, we study its effectiveness in the scenarios of

parasitic-aware device parameter optimization.

• We thoroughly characterize the performance of different RL

optimization algorithms (i.e., DDPG vs. PPO) to provide users

with useful insights in choosing appropriate RL algorithms

for device parameter optimization.

• Experimental evaluations on benchmarking circuits show that

our framework achieves 7.9×∼12× improvement in training

sample efficiency and a significant improvement in the design

success rate and efficiency compared to the state-of-the-art

methods for the same problem. In Pareto optimization, our

framework identifies the optimal Pareto frontier by minimizing

power consumption and maximizing the gain bandwidth

product (GBW), all within a minimal number of simulations.

II. BACKGROUND AND RELATED WORK

In this section, we first review the basics of Bayesian optimization

and reinforcement learning. We then introduce the key domain

knowledge that human experts commonly consider when addressing

the P2S problem. Finally, we discuss existing design automation

methodologies for analog circuits.

A. Bayesian Optimization

Bayesian optimization (BO) proves to be a valuable framework

to address challenging black-box optimization problems that

involve costly function evaluations. Fig. 1(a) shows an example of

BO with two iterations (t=2 and t=3). BO’s fundamental concept

is to construct an inexpensive surrogate model, such as a Gaussian

Process, by leveraging actual experimental data. This surrogate

model incorporates prior knowledge or beliefs about the objective

function, which is then used to make informed decisions in the

process of selecting a sequence of function evaluations through the

use of an acquisition function, such as expected improvement (EI).

It also balances exploration and exploitation. Exploration allows for

a broader exploration of the search space, potentially discovering

better solutions, while exploitation focuses on exploiting the known

promising areas to optimize the current best solution. Balancing

these two aspects is crucial to finding better solutions and refining

the best solution.

Given an arbitrary function f(÷x) for maximization, there are

several steps to follow for BO. Step 1: initial sampling. Here, a

limited set of sample points is randomly selected. Step 2: initializing

the model. These points in Step 1 are used to calculate a surrogate

function. Step 3: iterating. In particular, the acquisition function is

first used to get the next point; then, the surrogate function is re-

evaluated; third, the surrogate function is verified to see if it remains

stable or if the variance falls below a predetermined threshold, or

if f(·) is exhausted, depending on the specific design objective.

BO is well suited to optimizing hyperparameters of many

classification and regression models. It is also used for circuit

design automation [1], [20]–[22] (e.g., the P2S optimization tasks

for analog circuit design [1]).

B. Reinforcement Learning

Reinforcement learning (RL) is a machine learning method

related to how intelligent agents take actions in an environment

to maximize cumulative returns based on states. As illustrated
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Fig. 1: (a) An illustration of Bayesian optimization to find the optima. Here, we
use the Gaussian Process (GP) as the surrogate model and show two iterations.
The plots show the mean and confidence intervals estimated with the GP model
of the objective function, f(x), which in practice is unknown. The plots also show
the acquisition (Acq) functions in the lower-shaded plots. The acquisition is high
where the model predicts a high objective (exploitation) and where the prediction
uncertainty is high (exploration). (b) A simplified illustration of reinforcement
learning. It includes five parts: agent, action, state, reward, and environment.

in Fig. 1(b), there are five essential elements in an RL problem:

Agent, Action, State, Reward, and Environment. The ‘Agent’ is

the learner and the decision maker who learns experiences from a

training process and makes decisions based on observations (states)

from the environment. The ‘Action’ is a set of operations that the

agent can perform. The ‘State’ is a representation of the current

environment (i.e., observations) in which the agent is staying. It can

be observed by the agent and contains all relevant information about

the environment that the agent needs to know to make a decision.

The ‘Reward’ is a scalar value returned by the environment after

the agent takes an action in a state. It is used to evaluate and guide

the actual learning behavior of the agent. The ‘Environment’ is the

physical world in which the agent operates.

In each episode, an agent starts from an initial state, then observes

the state ok and takes an action ak based on a policy. Meanwhile,

the environment updates a reward rk+1 for that particular action

and enters a new state ok+1. The agent iterates through the episode

in multiple steps, accumulating the reward at each step to obtain

the final return. With multiple episodes, the RL agent improves its

decision quality and finds the best policy to maximize the return.

Such a policy would be deployed for practical tasks, i.e., the agent

follows the trained policy to finish a given task.

RL algorithms have been extensively applied to many problems

such as game playing [23], robotics [24], computer vision [25], and

natural language processing [26]. RL has also been used to automate

the design of ICs, such as the placement of the digital IC chip [27],

and the P2S optimization of analog circuits [17], [18], [28].

C. Key Domain Knowledge of Analog Circuit Design

At the pre-layout stage, there are many considerations to be taken

by human experts to select reliable device parameters and meet the

design goals. These considerations are the domain knowledge, and

we introduce the major ones that are commonly used by human ex-

perts when they tackle the P2S optimization tasks, as shown in Fig. 2.

1) Circuit topology: When human experts manually find

the optimal device parameters, they first construct the circuit

small-signal model from the circuit topology, based on which they

obtain empirical equations that connect the device parameters to

the circuit specifications. With these equations, device parameters

can be derived by hand.

2) Couplings between circuit specifications: Due to design

trade-offs, circuit specifications often depend on each other. For

example, in the design of operational amplifiers, energy efficiency
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Fig. 2: Illustration of a manual design flow to tackle the P2S optimization tasks with
human domain knowledge.

often trades off with gain; that is, a higher amplification gain

requires a larger transconductance, which, however, demands

more power consumption and results in lower energy efficiency.

Therefore, in a conventional manual design process, human experts

use tens and even hundreds of iterative fine-tunings to find a group

of proper device parameters to satisfy all circuit specifications.

3) PVT variations: To ensure the robustness of analog circuits

in different harsh environments, a key design consideration is to

minimize the influence of variations in process (P), voltage (V),

and temperature (T). Process variation represents the deviation

of the manufactured devices from their ideal specification due to

manufacturing errors. It includes typical N-type transistor/typical

P-type transistor (TT), fast N-type transistor/fast P-type transistor

(FF), slow N-type transistor/slow P-type transistor (SS), slow N-type

transistor/fast P-type transistor (SF), and fast N-type transistor/slow

P-type transistor (FS). Voltage and temperature variations are due to

uncertain ambient changes. Typical deviation of the supply voltage

is ±10% from its nominal value VDD; and typical range of the

environmental temperature for circuits is [240,125]çC. A single

PVT corner is a combination of P, V, and T from their varying

ranges. All these variations are unavoidable and can cause the

circuit performance degeneration compared to its nominal case, i.e.,

{TT, VDD, 25çC}. Manual experts have to look for robust device

parameters to achieve the design goal in all PVT corners.

4) Parasitic effects of physical layouts: A complete flow of

analog circuit design includes the schematic design and the physical

layout design. The conversion of an analog circuit schematic, with

the correctly-sized components, into a physical layout can cause

performance degradation due to the parasitic effects of metal wires

and electromagnetic couplings. Experienced human designers often

make efforts to adjust the device parameters to ensure that the

post-layout simulation meets the desired objectives.

D. Existing Design Automation Methodologies

Various design automation techniques have been proposed for

the P2S tasks of analog circuits in recent years. They generally fall

into two categories: knowledge-based techniques and optimization-

based techniques. Knowledge-based techniques, such as BAG [10],

are designer-centric. They tailor the design steps for specific
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circuits with domain knowledge and embed these steps into the

procedural scripts that mimic designer actions. These scripts provide

designers with complete control over circuit modifications and

debugging to ensure design reliability. Yet, these approaches notably

affect design efficiency, as they demand frequent interactions

between designers and procedural scripts, with designers playing

the role of optimization agents. On the contrary, optimization-based

methods such as BO [1], Geometric Programming [29], Genetic

algorithms [13], and modern machine learning approaches [9], [14]–

[18], [28] are centered on algorithms. They treat each step in a

circuit design as a black-box optimization problem and can swiftly

perform optimization procedures to complete a circuit’s design with

high efficiency. Unfortunately, the lack of knowledge from seasoned

designers means that design reliability, such as the robustness of

device parameters to non-ideal conditions, is not assured. These

limitations significantly impact the widespread applications of state-

of-the-art analog design automation techniques, as they are unable

to achieve both high design efficiency and reliability. Thus, essential

to advance analog design automation is to adequately incorporate

design knowledge into optimization algorithms to ensure design

reliability while maintaining high optimization efficiency.

Learning-based optimization methods have recently emerged.

They show higher design efficiency and scalability in handling the

P2S task compared to classical optimization algorithms such as

BO [1], Geometric Programming [29], and Genetic algorithms [13]

that are limited to ad-hoc tasks and tackling simple circuits. As an

example, supervised learning methods [9], [14]–[16] have been used

to learn the complicated relations between device parameters and

circuit specifications. Once trained, they adopt one-step inference

to predict optimal device parameters for given design goals.

Nonetheless, these supervised learning methods cannot guarantee

a high design success rate and suffer from weak generalization

abilities [9], [14]–[16] due to their inherent approximation errors.

On the other hand, RL methods [17], [18], [28] learn an optimal

policy from the state space of circuit specifications to the action

space of device parameters, which solves a quasi-dynamic

programming problem. They often use multiple sequential decision

steps to find the optimal device parameters rather than just using

one-step prediction, thus achieving a higher design success rate and

better generalization abilities than supervised learning methods [9],

[14]–[16]. However, none of them has taken into account sufficient

domain knowledge of analog circuit design in the optimization loop,

leading to low design reliability.

In this work, we propose a learning-based framework, RoSE-Opt,

to achieve efficient and reliable parameter optimization of analog

circuit devices by harnessing the synergy between the knowledge

of human designers and RL algorithms (elaborated in Section III).

In particular, we leverage the rapid convergence of BO to identify

an optimized starting point, significantly improving the sampling

efficiency of the primary RL agent during its learning phase.

III. ROSE-OPT FRAMEWORK

In this section, we introduce the proposed RoSE-Opt framework

that automates P2S tasks. We start with the formulation of the

problem. Then, an overview of the RoSE-Opt framework is

presented, followed by an elaboration of the BO vanguard. Finally,

we introduce five essential parts of the RL backbone and show how

key domain knowledge is incorporated into the framework.

A. Problem Formulation

We target the P2S problem with a given circuit under stringent

PVT variations and parasitic effects of physical layout, formulated as

min
s

f(s,g),

s.t. s=F(x), where s*R
i×j, x*SP , g*SG.

(1)

Here, the function f(s,g) represents the difference between the

circuit specifications s and the design goal g. For example, for

operational amplifiers (Op-Amps), there are four main circuit speci-

fications, i.e., gain (G), power consumption (P), phase margin (PM),

and bandwidth (BW). F(·) is a circuit simulator environment to

obtain circuit specifications s based on a set of device parameters x,

e.g., width and finger numbers of transistors. s is essentially a matrix

where i represents the specification type (e.g., gain) and j represents

a PVT corner. Therefore, s*R
4×16, assuming 16 PVT corners for

the design of Op-Amps. The set of device parameters x is restricted

by the design space SP . The design goal g is restricted to a reason-

able sampling space SG that the circuit can achieve. Our objective

is to minimize f(s,g) by efficiently looking for a group of optimal

device parameters so that the circuit specifications can meet an arbi-

trarily given group of design goals under all PVT variations. Consid-

erations of parasitic effects are discussed in Section V-B as it is con-

sidered during the deployment stage rather than the training stage.

B. Framework Overview

We explore the synergy of BO and RL to achieve robust and

sampling-efficient device parameter optimization. Fig. 3 shows the

overview of the proposed RoSE-Opt framework, which contains two

parts: a BO Vanguard and an RL Backbone. BO is a well-known op-

timization algorithm that often achieves the fastest convergence [1]

to an optimum (or sub-optimum) for a given design goal, compared

to other optimization techniques [13], [30]. However, it needs to

be restarted from scratch if the given design goal is changed and is

often limited to tackling simple circuits with fewer dimensions.

In contrast, well-trained RL agents can reach general design goals

without retraining based on a deployment trajectory from a starting

point. Unfortunately, for robust analog circuit design, which is a

more complex problem, RL methods demand more data points from

time-consuming circuit-level simulations (i.e., PVT simulations)

to sufficiently explore design space, leading to a low sampling

efficiency toward the convergence. With this key insight in mind,

we propose to leverage BO as a vanguard to first search coarsely for

a suboptimal starting point (i.e., initial device parameters) for our

RL agent. On this basis, the RL agent can be trained to find optimal

solutions with much fewer interactions with time-consuming circuit-

level simulations, improving the sampling efficiency. As conceptu-

ally shown in the left subset of Fig. 3 (i.e., BO vanguard), an opti-

mized starting point can help the RL agent reach design goals with

a shorter trajectory compared to a randomly selected one. Hence, it

can guide the RL agent to converge faster with fewer training data.

The RL backbone has five essential components similar to

typical RL methods (refer to Section II-B): reward, action space,

state space, environment, and agent. To train an excellent RL agent

for a given task, there are several critical factors to pay attention

to. The first is to develop a comprehensive environment that could

expose environmental information about the task to the RL agent

as much as possible. The second is to capture sufficient exposed
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Fig. 3: Overview of our RoSE-Opt framework for automated design of analog circuits by complementing BO vanguard and RL backbone. At its core, the framework
leverages BO’s rapid convergence to identify an optimized starting point for RL, significantly enhancing its sample efficiency throughout the learning or optimization
process. This strategy combines the efficient exploration capabilities of BO with the robust optimization power of RL to ensure both design robustness and efficiency.
The RL backbone is based on an actor-critic method. The environment consists of a netlist of an analog circuit with a given topology, a circuit simulator, and a data processor.
At each time step k, the agent automatically produces an action ak to update device parameters with its policy network according to the state ok and then receives the
reward rk from the environment. Our customized policy network is composed of a circuit topology-based GNN (i.e., GAT) and an FCNN.

observations (states) relevant to the task from the environment into

the learning loop. The third is to design a proper reward function

that is closely related to the optimization goal and stimulates the

learning of the RL agent. Finally, the agent (i.e., policy network)

itself should be an expressive and powerful model that can distill the

underlying domain knowledge and generalize it to unseen design

goals. With these key factors in mind, we briefly introduce here

(i) how to develop the majority of these five components below and

(ii) how to distribute the domain knowledge of analog circuit design

presented in Section II-C to the reward function and the customized

policy network. More details will be discussed in Section III-D.

Comprehensive Environment. First of all, we develop a

thorough circuit design environment for the P2S task, which

includes the full circuit netlist of the given task and commercial

simulation/verification tools (e.g., Cadence Spectre) for simulating

circuit specifications (under PVT variations) and extracting

post-layout parasitics.

Sufficient Observations. Second, the circuit design is a dynamic

process that needs sufficient observation from its simulation environ-

ment. In particular, for a robust analog design, full PVT corner sim-

ulations are essential to ensure training stability. Thus, our RL’s state

consists of dynamic intermediate circuit specifications from all PVT

corners and the corresponding circuit topology/device parameters.

Custom Reward Function. Third, PVT variations and parasitic

of post-layouts affect the circuit specifications, which are directly

related to the optimization goal. We thus use a custom reward

function to take into account PVT variations (refer to Eq. (3) for

details). By infusing key domain knowledge (e.g., PVT variations)

into the RoSE-Opt framework through the reward function, an

excellent RL agent can be trained and make good decisions to

search for reliable device parameters that meet the design goals.

Customized expressive policy network model. Lastly, we

customize a policy model architecture to enhance its expressiveness

by taking in sufficient observations. In particular, we tailor a novel

circuit topology-based GNN and an FCNN to incorporate into the

learning loop of an RL agent. This policy network can effectively

capture the essential physical features (e.g., device parameters and

interactions) embedded in a circuit graph with the GNN and extract

the couplings (i.e., design trade-offs) between circuit specifications

with the FCNN, which better models the relations between the

circuit parameters and the design targets.

During the training of an RL agent, in each episode, the agent

starts from an initial state o0 with a group of initial device parameters

optimized by the BO vanguard and a group of randomly-sampled

desired specifications g from sampling space SG. The end of an

episode occurs when the design goals are achieved or a predefined

maximum step T is reached. At each time step k, the agent begins

using a neural network to observe a state ok and take discrete

action ak based on the probability distribution of the output of the

neural network. The agent then arrives in a new state ok+1 and

receives a reward rk from the environment. The discrete action

ak can update simultaneously all the device parameters for the

given circuit. The agent iterates through the episode with multiple

steps and accumulates the reward at each step until the end of the

episode. In the next episode, the agent randomly samples another

design goal g from the sampling space SG and resets the parameter

back to the starting point o0. Then repeat the same process again.

Once the policy network is well trained, we can save the weight of

the neural network for deployment. During the deployment, since

the weight has already been trained, the agent uses only the actor

to take actions based on the state it observed. The purpose of the

deployment part is to show the generalization capability of our

trained policy network to different specifications without retraining

like BO. Thus, we are interested to see how many specifications

the decision policy can reach within the predefined maximum step

T and what is the average deployment length for each run.

A key point is that BO is only required once in our framework

if the sampling space SG of the design goals and the design space

SP of each circuit device are defined. The RL agent then uses

the same optimized starting point o0 during all training episodes

and the deployment stage. Note that in the context of robust device

sizing, the designs of both the BO vanguard and the RL backbone

are non-trivial and are elaborated in the following.

C. BO Vanguard

We rely on BO to find an optimized initial search point for

our RL agent to improve its sampling efficiency during training.

However, a crucial initial question is how to define such an

optimized starting point. This starting point should not only speed

up the design for a specific set of goals but should also help, in

general, to efficiently design any arbitrary group of design goals

from the entire sampling space SP .

To solve the problem, we think that from this starting point,

the RL agent should generally take the least deployment steps
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to achieve a general design. Thus, we let the device parameters

found by BO that achieve as closely as possible the arithmetic

mean of the maximum/minimum of each design goal in the entire

sampling spaceSG, i.e., (PMmax+PMmin)/2, (Gmax+Gmin)/2,

(BWmax + BWmin)/2, and (Pmax + Pmin)/2, be the starting

point of our RL agent. Here, taking a two-stage Op-Amp as an

example, G, B, PM, P are the circuit specifications, i.e., gain (G),

bandwidth (B), phase margin (PM), and power consumption (P ).

Another important question is how to balance the simulation budget

between BO and RL. Our strategy is to monitor the improvement

of the reward function every 10 iterations and stop BO optimization

if the improvement falls below a specified threshold (i.e., 0.002).

Users can also adjust the maximum number of simulations assigned

to BO, typically set to 50, to ensure efficient resource management.

BO is stopped when either is reached. Both hyperparameter values

are set based on our empirical study.

We use a typical set-up of BO to search for the optimized starting

point, which includes two essential parts: the surrogate model and

the acquisition function [1]. The whole optimization depends on how

accurately the surrogate model estimates the black-box function. In

particular, we adopt the widely used Gaussian process (GP) model

as our surrogate model to predict the underlying black function with

uncertainty. We use a Monte-Carlo-based Expected Improvement

(EI) acquisition function to balance exploration and exploitation

during the optimization by offering the next sampling point as below:

EI(X)j
1

Z

Z
∑

i=1

max
j=1,...,n

{max(¿ij2f(s,g)best,0)},

¿i>P(f(X) |D).

(2)

Here, the expectation, EI(X), is computed by approximating

the integrals over the posterior distribution over Z points using

Monte-Carlo sampling. P(f(X) | D) is the posterior distribution

of our function f(s, g) at X where X = (x1,...,xn) from the

sampling in our design space SP . D is our data set. The parameter

¿ determines the amount of exploration during optimization.

D. RL Backbone

The five key components of the RL backbone are detailed below.

1) Variation-aware reward function: We connect the objective in

Eq. (1) to our reward function so that our RL agent can be directly

optimized considering PVT variations. Particularly, the reward

rk at each time step k is designed by taking PVT variations into

consideration, i.e.,

rk=Mean
(

j=M−1
∑

j=0

rj
)

; if #j* [0, M21], rj<0;

or rk=R, if "j* [0, M21], rj=0.

(3)

Here, rj =
∑N−1

i=0 wi × min{(sji2gi)/(s
j
i+gi), 0} is the sub-

reward of the jth corner, calculated based on a weighted sum of the

normalized difference between ith intermediate circuit specification

of the jth corner sji and ith design goal gi. All types of circuit

specifications are equally important, i.e., wi = 1. M represents

the number of PVT corners and N indicates the number of circuit

specifications. In order not to over-optimize the specification, we set

the upper bound of rj to be 0. Only when the circuit specifications

Circuit topology

Power node

P-type transistor

Capacitor

N-type transistor

Differential pair

Current mirror

VP

VGND

Multi-head
attention

Fig. 4: Mapping circuit topologies to graphs and illustrating the tailored GAT in the
policy network for analog circuit design, using a two-stage Op-Amp as an example.

in all PVT corners meet the design goal, a large stimulated reward

of R = 10 is given to encourage the agent for the successful

design; otherwise, the reward in each time step is the average of

sub-rewards of all PVT corners. Finally, the accumulative reward

for a training episode is Rs,g=
∑T

k=1rk, where T is a pre-defined

maximum step for an episode. Intermediate circuit specifications

matrix s is obtained from our high-fidelity simulation environment

F(·) based on the updated device parameters x at each time step.

Therefore, our reward is a direct measurement from the circuit

simulator, which can help train a high-quality RL policy network.

2) Fine-grained action: Inspired by human designers who

rely on multiple fine-grained tuning steps to find optimal device

parameters, we use a discrete action space to tune device parameters.

For each tunable parameter x of a device (e.g., the width and finger

number of transistors, the capacitance of capacitors), there are

three possible actions: increasing (x+·x), keeping (x+ 0), or

decreasing (x2·x) the parameter, where “·x” is the smallest

unit used to update the parameter within its bound x* [xmin, xmax].
With the total parameters of M devices1, the output of the policy

network is a matrix of probability distribution M×3 in any state

where each row corresponds to a parameter. The action is taken

based on the probability distribution.

3) Circuit physics-related state: RL belongs to representation

learning. Capturing adequate state information from the environment

is key to training an excellent RL agent. We leverage the domain

knowledge of analog circuits, i.e., intermediate circuit specifications

and circuit topology, as our state, which covers the most essential

observations from a circuit design environment. In particular, we

take care of intermediate circuit specifications in all PVT corners,

in contrast to the previous work [31] which only considers partial

PVT corners. We create a state vector to represent the intermediate

circuit specifications. To better use the observations of the circuit

itself, we use a graph G(V, E) to model the circuit according

to its topology, where each node in the set V is a device and the

connections between the devices constitute the edge set E.

Fig. 4 shows the mapping between the circuit topology and a

graph taking a two-stage Op-Amp as an example. For a circuit with

n nodes, the state of the ith node is defined as its node feature (t, ÷p),
where t is the binary representation of the type of node and÷p is the

parameter vector of the node. Note that the parameters of the circuit

device reflect the physical information of the circuit. For transistors,

the parameters are the width (xW) and the number of fingers (xF).

For capacitors, resistors, or inductors, the parameters are scalar

values (e.g., capacitance, resistance, or inductance) of each device.

For example, for a circuit with five different types of devices, the

state of a N type transistor can be expressed as [0, 0, 1, xW, xF].
4) SPICE simulation environment: In our work, a high-fidelity

circuit design environment with PVT variations and post-layout

parasitics is used. It consists of the netlist of a given analog circuit,

1We often use differential pairs to reduce the number of design variables.

This article has been accepted for publication in IEEE Transactions on Computer-Aided Design of Integrated Circuits and Systems. This is the author's version which has not been fully edited and 

content may change prior to final publication. Citation information: DOI 10.1109/TCAD.2024.3435692

© 2024 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.

See https://www.ieee.org/publications/rights/index.html for more information.
Authorized licensed use limited to: Northeastern University. Downloaded on August 23,2024 at 19:11:28 UTC from IEEE Xplore.  Restrictions apply. 



7

a commercial circuit simulator, e.g., Cadence Spectre for CMOS

analog circuits or Keysight Advanced Design System (ADS) for

RF power circuits, and a data processing module (DPM). As shown

in Fig. 3, the simulator obtains intermediate circuit specifications

at each time step. The DPM then deals with the simulated results

to return a reward to the agent using Eq. (3). Meanwhile, it also

updates the device parameters to rewrite the circuit netlist based

on the actions of the agent (i.e., policy network).

Previous methods [31] assume that the circuit simulation time

scales linearly with the number of simulations, i.e., the simulation

time for 16 PVT corners is 16× of the one with a single PVT corner.

We use the Cadence Spectre Accelerated Parallel Simulator (APS) to

accelerate our simulation. At each time step, we obtain circuit speci-

fications for all PVT corners. Compared to a single PVT corner time,

the batch simulation manner for 16 PVT corners only brings 0.17×
time overhead as compared to a single PVT simulation. In other

words, our circuit environment can achieve a sampling efficiency of

at most 14× when collecting data points during training compared

to previous RL methods. With this co-design loop, we are able to si-

multaneously achieve both high sample efficiency and robust design

by taking advantage of BO, RL, and the simulation environment.

5) Circuit-aware policy network: We adopt an Actor-Critic

method [32] to design our agent. To capture sufficient observations

from the environment to the learning loop, we tailor a novel

multimodal policy network for the Actor by integrating several

unique features, as shown in Fig. 3. (i) We customize a new network

architecture consisting of two different networks, a GNN based

on the circuit topology and an FCNN. It is termed a GNN-FC-

based policy network. Specifically, the GNN is used to distill the

underlying physics (e.g., device types, parameters, and interactions)

of a circuit graph into a low-dimensional vector embedding. The

FCNN utilizes the design objectives and intermediate circuit specifi-

cations across all PVT corners as input to reveal their interconnected

relationships, i.e., design trade-offs. The graph embedding and the

FCNN embedding are then concatenated for further processing by

the final FC layers to update the actions. The value network (Critic)

has the same architecture as the policy network except for the last

layer. It is used to evaluate the quality of the actor’s decision by

giving an estimate of the expected reward, Q, for the execution of

the current policy. (ii) We use dynamic device parameters to encode

node features. Yet, the node features of the previous GNN-based

method [18] are composed solely of static technological data, such

as threshold voltage and electron mobility. The exclusion of crucial

dynamic device parameters from the node features complicates the

process of learning the relationships between device parameters and

design goals and leads to divergence of learning in our study. (iii) We

choose the graph attention network (GAT) [33] as the backbone of

the GNN part, whereas previous work [18] often applies the graph

convolutional network (GCN) to solve the problem. The multi-

head attention mechanism of GAT helps to learn more complex

and higher-dimensional interactions between a circuit node and its

neighbors (refer to Fig. 4). Our empirical studies (elaborated in

Section V) show that GAT often performs better than other GNNs

such as the GCN [34] in the P2S task. Note that we customize

the GAT to model circuit topologies and apply them to the P2S

task rather than inventing novel GNN structures. The fundamental

operations underlying the proposed GAT follow those of the original

publications [33] and, therefore, are omitted here. With this unique

policy network architecture, each circuit has its specific state

representation: a vector consists of its design specifications (used

as the input for the FCNN part) and a matrix with the circuit node

feature encoding (used as the input for the GNN part). We perform

thorough experimental studies in Section V-A to show that the

customized network architecture is superior to other methods.

E. Optimization Methods for Policy Training

Combining the GAT and FCNN forms the policy network

Ãθ(a|s) parameterized by »={WGAT,WFC}. Here, WGAT, WFC are

the learnable parameters for the GAT and FCNN. Our goal is to

make the RL agent gain rich circuit design experiences and generate

higher-quality decisions by interacting with the environment. We

can formally define the objective function of automated design of

analog circuits as follows.

J(»,G)=1/H ·
∑

g∼G
Eg,s∼πθ

[Rs,g]. (4)

Here, H is the the space size of all desired specifications G and

Rs,g is the episode reward. Given the cumulative reward for each

episode, we use Proximal Policy Optimization (PPO) [35] to update

the parameters of the policy network with a clipped objective:

LCLIP(»)=Êk[min(bi(»),clip(bk(»),12÷,1+÷))Âk], (5)

where Êk represents the expected value at time step k; bk is the

probability ratio of the new policy and the old policy, and Âk is

the estimated advantage at time step k.

Previous RL-based methods [17], [18] for P2S tasks mainly

explore Deep Deterministic Policy Gradients (DDPG) to train RL

agents and have shown promising performance. However, the lack

of a detailed comparison between different RL algorithms makes it

difficult to determine which is better for P2S tasks. DDPG is an off-

policy RL method that uses two separate policies for exploration and

updates, a stochastic behavior policy for exploration, and a determin-

istic policy for the target update. The “deterministic” in DDPG refers

to the fact that the agent computes the action directly instead of a

probability distribution over actions. DDPG is specifically designed

for environments with continuous action spaces and continuous state

spaces, making it an equally valid choice for continuous control

tasks applicable to fields such as robotics or autonomous driving.

On the other hand, PPO is an on-policy RL method, that is, it

involves collecting a small batch of experiences by interacting with

the environment according to the latest version of its stochastic

policy and using that batch to update its decision-making policy. The

“stochastic” in PPO refers to the fact that the agent computes the

action as a probability distribution instead of directly over actions.

PPO can often work with both discrete and continuous action

spaces, making it suitable for a wide range of reinforcement learning

tasks in various domains, e.g., training ChatGPT. In particular, we

use RL with discrete action space to build our framework due to:

(i) experienced human designers also use fine-grained tuning (i.e.,

adjusting device parameters with several discrete tuning steps) to

tackle the P2S task; (ii) the thorough study in Section V-D shows

that PPO with discrete action space achieves better performance.

IV. EXPERIMENTAL METHODOLOGY

In this section, we present the experimental methodology

for evaluating the proposed framework. First, we introduce the
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TABLE I: Design space, sampling space, and PVT corners for four benchmark circuits.

Circuit types Single-stage Op-Amp Two-stage Op-Amp Folded-cascode Op-Amp Nested Miller compensation Op-Amp

Technology GlobalFoundries 130/65/28 nm

16 PVT conditions Process:{SS, SF, FS, FF} Voltage:{1.1V, 1.3V} Temperature:{240çC, 125çC}
Design space 1024 values 1031 values 1017 values 1039 values
Width (nm) mp1-4:[200, 2000, 10] mp1-2:[1000, 100000, 1000] mp1-2:[1000, 10000, 200] mp1-3&mn4:[10000, 50000, 1000]

mn1-3:[2000, 10000, 10] mn1-4: [1000, 100000, 1000] mn1-3:[160, 1000, 20] mp4: [50000, 250000, 10000]
mn1-3:[2000, 20000, 1000]

Capacitance (pF) CL: 0.12 c:[0.1, 10, 0.1] / CL: 1 c:[0.1, 10.0, 0.2] / CL: 1 c1:[25, 50, .5]/c2:[1, 25, .5]/CL: 100

Sampling space

Gain (dB) / I (A) [40,45] / [1025, 1024] [10,20] / [1023, 1022] [20,30] / [1024,1023] [40,45] / [1023,1022]
PM (ç) / BW (MHz) [>50] / [0.5, 1] [>60] / [1, 20] [>85] / [4, 6] [>55] / [1, 2]

circuit benchmarks used in our evaluations. Then, baselines for

comparisons are briefly discussed. Finally, we show the training

platform and configurations of our framework.

A. Benchmarks and Performance Metrics for Evaluation

Operational amplifiers (Op-Amps) are commonly used as circuit

benchmarks in prior art [15], [16], [18], [28], [31], [36] and are also

widely used as essential building blocks in many analog subsystems.

Therefore, we take multiple Op-Amps to evaluate the proposed

framework. In particular, we adopt a single-stage cascode Op-

Amp, a two-stage Op-Amp, a folded-cascode Op-Amp [37], and a

three-stage nested Miller compensation Op-Amp with feedforward

transconductance stage [38] (NMCF) in our benchmark. These

circuits have diverse topologies and design complexities. The

detailed schematics of these circuits were shown in previous

work [15], [16], [18], [28], [31], [36] and are thereby omitted here.

The design space for the device parameters, the sampling space for

the circuit specifications, and the PVT corners are listed in Table I.

There are 4× 2× 2 = 16 extreme PVT conditions, including 4

process variations, 2 voltage variations, and 2 temperature variations.

With the circuit benchmark, we examine mainly the sampling

efficiency, design success rate, and design efficiency of our

framework. We show the sampling efficiency of RoSE-Opt by using

a control experiment, that is, to train the RL agent with/without the

BO vanguard. The sampling efficiency is defined as the number

of SPICE simulations saved to achieve the same training quality

(i.e., training reward) compared to the control group. To allow

a reasonable comparison between different design automation

methods, we also propose a FoMdeploy defined as the ratio

between the design success rate (Nsuccess) and the design efficiency

(Nstep ·Tsim): FoMdeploy=Nsuccess/(Nstep ·Tsim). Here, Nsuccess is the

design success rate of policy deployment by giving 200 groups

of design goals randomly sampled from the specification space.

Nstep is the average number of required deployment steps (i.e., the

number of circuit-level simulations) to achieve a group of design

goals sampled from the specification space. Tsim is the simulation

time for each simulation run at the circuit level. Note that the

training time for learning-based methods is not included here, as it

can be amortized during the deployment phase once the models are

well trained (similar to the inference stage in supervised learning).

B. Experiment Platform, Configurations, and Baselines

Our framework is built on Python. We create the circuit

graph using the Deep Graph Library [39] and use Ray [40], a

well-developed hyperparameter tuning package, to train RL agents.

We implement all methods with PyTorch and BoTorch [41]. All

experiments were carried out on a 16-core Intel CPU. We train

separate RL agents for each circuit. Note that we only need to

run BO once at the beginning since we can reuse the starting

point optimized by the BO vanguard in each RL’s training and

deployment phases. To achieve a more reliable and reproducible

experiment result, we decided to run our BO vanguard 50 times

and choose the starting point with a mean reward to minimize the

variation caused by the initial random sampling. To provide detailed

performance comparisons of different RL algorithms, we choose

PPO [35] and DDPG [42] as two representatives of the study and

also use their default configurations to train policy networks.

Although various previous methods have been proposed to

address P2S tasks, such as BO [1], Genetic Algorithm [43], and

RL methods [18], [28], they do not consider PVT variations

and post-layout parasitics in the optimization process of device

parameters. As a result, we modify all of these previous works to

include all PVT corners for a direct comparison. We also compare to

the most recent work, RobustAnalog [31], which solves the P2S task

considering the effect of partial variations in PVT. Despite several

major differences between RobustAnalog and RoSE-Opt, we care

most about the efficacy of RobustAnalog in robust design, as it uses

task pruning with reduced PVT corners for RL training, while our

RL backbone considers all PVT corners. We follow this strategy

to implement RobustAnalog by modifying our RL backbone.

V. EXPERIMENTAL EVALUATIONS

In this section, we show the evaluation results and compare the

performance of our proposed framework with previous methods.

First, we present the efficacy of incorporating domain knowledge

into the learning loop. Second, we show our framework’s sampling

efficiency and robustness against PVT variations. Third, we

show our framework’s capability to achieve reliable device

sizing by taking into account post-layout parasitics. Fourth, we

show how the trained RL agent of our framework assists human

designers in finding optimized device parameters, even if it fails

in deployment in some cases. Fifth, we present the performance

of different RL algorithms in training RL agents for the P2S task.

Finally, we also show the performance of our proposed method

in Pareto optimization. The section ends with a summarization of

comprehensive comparisons between our work and the prior arts.

A. Efficacy, Robustness, and Sampling Efficiency

1) Efficacy of incorporating domain knowledge and customizing

a multi-modal policy network: We conducted comprehensive

experimental studies to show the effectiveness of incorporating

domain knowledge and customizing a multi-modal policy network.

First, we present the importance of integrating domain knowledge
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Single-stage Op-Amp Two-stage Op-Amp

Fig. 5: A comparison between our customized policy network and prior methods’
policy networks (GCN [18], FCNN [28]) for the variation-aware P2S task.

into the learning process (e.g., taking PVT variations as an example).

Existing methods [18], [28] often overlook PVT variations and par-

asitic effects in the layout when designing reward functions, leading

to failures during deployment in variable environments. In contrast,

our proposed framework with a tailored variation-aware reward

function achieves a design success rate that exceeds 90% in non-

ideal environments with PVT variations as listed in Table IV. Second,

we show the superiority of customizing a multi-modal policy

network. We compared different policy networks used by previous

methods [18], [28] with a consistent variation-aware reward function.

Specifically, the work [28] uses a simple FCNN as a policy network

and does not exploit circuit topologies. The work [18] introduces

a GCN policy network based on a partial circuit topology and uses

static semiconductor technology information as observations. Our

study reveals that the GCN-based network could experience training

divergence, necessitating adjustments based on our methodology

(e.g., using node features with dynamic device parameters) for a

reliable comparison. The comparisons between different methods

are illustrated in Fig. 5. Our customized GNN-FCNN policy network

demonstrates superior performance, yielding higher rewards with the

two circuits. In particular, the GAT-FCNN-based policy surpasses

the GCN-FCNN-based policy, highlighting the effectiveness of our

proposed policy network architecture. Unless otherwise specified,

GAT-FCNN will be the default learning model for the remainder

of this section, generally referred to as GNN-FCNN. These exper-

imental studies demonstrate the effectiveness of integrating domain

knowledge and tailoring a multi-modal policy network.

2) Robust design with full PVT incorporation: We then show the

robust design enabled by our RL backbone against PVT variations

by deploying our RL agent in an environment taking full account

of PVT variations. Policy deployment applies a trained policy to

automatically find the device parameters for given design goals.

The left column of Fig. 6 shows the deployment trajectories under

several representative PVT corners by taking the phase margin

of the Folded-cascode Op-Amp as an example, where each color

represents a PVT corner. It can be seen that although each trajectory

under a specific PVT corner is smooth, the worst corner can be

quickly replaced by another corner due to the competition between

different corners. Here, the worst case indicates the corner where

the circuit specification deviates the most from the design goal.

This phenomenon shows that device sizing with PVT variations

is much more complex compared to the nominal case. Notably, by

incorporating PVT variations into our method, our RL agent can

achieve a robust design by finding optimal device parameters that

can satisfy the design goal in all PVT corners.

To investigate the impact of this corner competition on actual RL

training, we train three RL backbones with different levels of PVT

Competing with each other

85

Folded-cascode Op-Amp Nested Miller compenation Op-Amp

Fig. 6: Left: illustration of the competing phenomenon between PVT corners. Right:
comparison between different levels of PVT incorporation for RL backbone training.
Dashed lines are the actual nominal/partial corner training curve. Solid lines are
the training curve evaluated under full PVT corners.
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Fig. 7: An example to show the comparison of the training sample efficiency by
using the RL Backbone with or without pre-optimization of its starting state.

incorporation. As shown in the right column of Fig. 6, although the

RL backbone trained with the nominal corner (or partial PVT corner)

achieves convergence with high reward, it completely (or partially)

diverges when deployed in an environment with full PVT variations

(i.e., the dashed curves). The result verifies that device sizing with

full PVT variations is much more complex compared to the nominal

case. It also suggests that previous work, RobustAnalog [31], which

uses the K-means clustering to prune the PVT corners during

the training process, is not sufficient to ensure robustness in an

environment with full variations of PVT. It can delay the training

process because the RL algorithm needs more training steps to repeat

the clustering whenever the device parameters reach the design goal

under partial PVT corners, but fail in the setup of full PVT corners.

3) Efficient sampling with BO Vanguard: Thirdly, we show

that the BO vanguard can improve sampling efficiency to train

our RL backbone. Fig. 7 illustrates the example training curves

of our RL backbone to design two types of Op-Amps with two

different starting points, one is from BO searching (labeled as “BO

Vanguard”) and the other is a randomly selected value from the

device parameter design space SP , e.g., median value (labeled as

“Random pick”). It shows that the RL agent without an optimized

starting point often needs more circuit-level simulations to achieve

the same reward as the one with an optimized starting point from

BO (e.g., in this case, 3.5× for Folded-cascode Op-Amp and 2.3×

for three-stage nested Miller compensation Op-Amp). Thus, by

optimizing the starting point, the RL agent converges faster with

fewer sampling data (that is, fewer circuit-level simulations).

B. Parasitic-Aware Device Parameter Optimization

We continue to study how to apply RoSE-Opt to optimize

parasitic-aware device parameters. Without considering the parasitic

effect of physical layouts at the pre-layout design stage, the obtained

device parameters cannot guarantee the circuit specifications after

the schematic is directly transferred into a physical design. In
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TABLE II: Comparison of device parameters before and after physical design with design goals of gain = 45 dB, bandwidth = 800 kHz, phase margin = 50ç, and power = 15µW.

Device mp1 mp2 mp3 mp4 mn1 mn2 mn3 Gain BW PM Power

Schematic design 1.02 µm 1.02 µm 1.02 µm 1.02 µm 6.2 µm 4.94 µm 6.2 µm 47.3 dB 862 kHz 52ç 12 µW

Layout design 1.02 µm 1.02 µm 1.02 µm 1.02 µm 5.26 µm 5.26 µm 5.26 µm 46.91 dB 897 kHz 53.52ç 12 µW
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Fig. 8: The flow RoSE-Opt used for the parasitic-aware sizing. Please refer to Fig. 2
for the parasitic aware experiment’s schematic and layout.

practice, there are often tens of iterations between schematic design

and physical design performed by human designers to fine-tune

the device parameters to ensure that the circuit under design meets

the design goals.

Several previous works have explored learning-based methods to

address this parasitic-aware optimization problem [28], [44], [45].

An early RL-based method [28] aims to tackle it by deploying the

trained RL agent in a parasitic-aware environment. In particular,

this method uses the BAG tool [10] to automatically generate a

physical layout for the circuit based on the device parameters at

each deployment step and exploits the reward from post-layout

simulation to guide the search process for the trained RL agent. This

process continues until the agent meets the target when parasitics are

considered or it has reached the maximumly allocated deployment

steps. Another work [44] attempts to tackle the problem by

combining supervised learning and BO. The idea is to train a graph

neural network to predict the parasitics of an analog circuit with its

device parameters and then back-annotate the parasitics to the circuit

schematic. With this processing step, BO is applied to search for

optimal device parameters through the parasitic-aware schematic.

These previous efforts have shown good performance in finding

reliable device parameters to meet design goals after post-layout

simulation. However, the physical design of analog circuits is quite

flexible. Even for the same circuit, different human designers can

construct different physical layouts. The BAG tool is limited to

generating a few fixed layouts for some typical circuits. Training

a GNN to predict parasitics requires a huge amount of data and

suffers from approximation error. Therefore, the previous methods

do not apply to general cases.

We explore another method to solve the same problem with

much higher flexibility. Our method relies on two key observations

from the human design loop. First, human experts often construct

an initial physical layout of the circuit with an initial set of device

parameters and fine-tune the device parameters by following

the same placement of the device as the one used in the initial

physical layout. Second, circuit specifications from the post-layout

simulation of this initial physical layout are often degraded

compared to the desired goals but are not far from them. Therefore,

the optimal final device parameters to meet the design goals also

fall in the neighborhood of the initial set of device parameters.

With these key observations in mind, our method can apply to

parasitic-aware device parameter optimization by following the

essential steps shown in Fig. 8. We begin by initializing all discount

factors to 1. These discount factors are explained in 4 . The other
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Fig. 9: Failed policy deployment in the two-stage Op-Amp example. The highest
reward appears in the 28th step. After slight manual adjustment from that step, a
set of optimal device parameters can often be easily obtained as shown in Table III.

steps are as follows:

1 Deploy the trained RL agent to find the set of optimal device

parameters that satisfy the design goals in the pre-layout stage and

perform simulations to obtain the circuit specifications with this

set of device parameters; the ith specification of the jth corner is

marked as sji,pre.

2 Construct a physical layout with the device parameters found

in Step 1 .

3 Extract the circuit specifications (i.e., sji,post) of this physical

layout by performing a post-layout simulation and compare them

with the design goals; if satisfied, the design is successful; otherwise,

jump to Step 4 .

4 Adjust the discount factor based on the ratio between pre- and

post- layout specifications, e.g., if sji,pre≥sji,post, α
j

i =sji,post/s
j

i,pre.

After the first iteration, we repeat the flow using the set of device

parameters xpre found in Step 1 as the new starting point st of

the trained RL agent for another deployment and the intermediate

circuit specification in 1 will be discounted by the discount factor

as αj

i ·s
j

i,pre, until the optimal final device parameters that satisfy

the design goals in the pre-layout stage are found. This method

essentially follows a dynamic over-design strategy that can alleviate

the challenge of estimating a static over-design value derived from

domain knowledge for complex circuits. Our experiments with

the single-stage Op-Amp illustrated in Fig. 2 show that our method

generally takes no more than two rounds to reach a set of device

parameters with which the circuit specifications of a physical layout

can also meet the design goal. Table II shows optimized device

parameters with/without consideration of parasitic effects. The final

physical layout is similar to that shown in Fig. 2 and is omitted here.

C. Analysis of Failed Deployment Cases

Our trained RL agent achieves a high design success rate with

policy deployment (i.e., >90% across different circuits as reported

by our prior work [19]). We find that for these failed cases, some

circuit specifications are able to reach the design goals, while the

others converge to a neighborhood of the desired ones at some

deployment steps, but after which they deviate a bit from the goals.

This article has been accepted for publication in IEEE Transactions on Computer-Aided Design of Integrated Circuits and Systems. This is the author's version which has not been fully edited and 

content may change prior to final publication. Citation information: DOI 10.1109/TCAD.2024.3435692

© 2024 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.

See https://www.ieee.org/publications/rights/index.html for more information.
Authorized licensed use limited to: Northeastern University. Downloaded on August 23,2024 at 19:11:28 UTC from IEEE Xplore.  Restrictions apply. 



11

TABLE III: Detailed device parameters during the policy deployment for the
two-stage Op-Amp.

Parameter Step 27 Step 28 Step 29 Manual tuning

mpl (µm) 11 10 10 10

mn1 (µm) 35 34 34 35

mp3 (µm) 81 83 85 83

mn3 (µm) 17 16 15 17

mn4 (µm) 5 4 4 4

mn5 (µm) 45 47 49 47

c1 (pF) 4.4 4.3 4.5 3.6

Reward -0.105 -0.057 -0.071 10

Fig. 9 shows such a failed policy deployment in the two-stage

Op-Amp example, where the desired circuit specifications given

are gain (G= 360), bandwidth (B = 2.0 ·107 Hz), phase margin

(PM = 56ç), power consumption (P = 6.93 · 1023 W). It is

observed that around the 28th step, the bandwidth, phase margin,

and power consumption are satisfied, but the gain is still lower

than the design goal. We examine the detailed device parameters2

around the 28th step as shown in Table III. It shows that the reward

achieves the highest value in the 28th step. We then select the

device parameter values reached at this step and proceed with a

slight manual tuning starting from these values. With less than five

manual tuning iterations, a set of optimal device design parameters

can often be easily obtained3. The last row of Table III shows the

device parameters obtained after slight manual adjustment.

D. Comparisons between Different RL Algorithms

Different RL algorithms have shown different performance in

solving practical problems. PPO and DDPG are two primary RL

algorithms used in current RL-based methods [17], [18], [28] for

P2S tasks. Here, we perform detailed experiments to compare their

performance in tackling the P2S task by using the design of a two-

stage Op-Amp as an example. Fig. 10 illustrates our evaluation

results, where we train RL agents with PPO using both “discrete”

and “continuous” actions, as well as DDPG with “continuous”

action. Each curve in Fig. 10 is based on 6 random seeds with

3× 106 simulations4 budget for training. All the RL algorithms

perform batch training by collecting 6 simulation results in parallel.

Note that we also observe similar results for other types of Op-Amps.

1) PPO-continuous vs. DDPG-continuous: Compared to DDPG-

continuous, we find that PPO-continuous has a lower sample effi-

ciency during the training process. This is because PPO-continuous

adopts an on-policy learning mechanism that samples actions

according to its latest stochastic policy. The on-policy characteristic

introduces variance, since each estimate of an expectation over a

finite set of samples may vary, which necessitates a large number

of samples for accurate mean calculations, thereby leading to low

sampling efficiency. In contrast, DDPG-continuous utilizes an off-

policy learning mechanism, which involves a replay buffer to store

transitions from the previous policy and relies on the current policy

only to replenish the buffer, improving the sampling efficiency.

2Note that here we do not show the finger numbers of transistors because they
generally remain unchanged around the 28th step.

3Note that due to the limitations of current deep learning techniques, learning-
based methods (along with other approaches) cannot guarantee a 100% success
rate. Addressing these failures requires the intervention of human designers. We
anticipate that future advances in deep learning will address this issue.

4While training results for other methods are based on millions of simulations,
our RoSE-Opt method achieves rapid convergence and high design success rates
within just tens of thousands of simulations, indicating its practical promise.

(a) (b)

(c)

BO-PPO discrete

PPO discrete

BO-DDPG

DDPG

BO-PPO continuous

PPO continuous

BO-PPO discrete converge

BO-PPO discrete converge

BO-PPO discrete converge

Fig. 10: Comparisons between DDPG and PPO when applied to train RL agents
and deploy trained checkpoints for 200 randomly sampled design goals. (a) mean
episode reward for training, (b) mean deployment simulation cost (c) mean design
success rate. Each curve is based on 6 random seeds. The vertical dashed line is
the convergent point for BO-PPO discrete (our method).

The lower sampling efficiency of PPO-continuous also impacts the

training quality of the policy. As shown in Fig. 10, with the same

number of training samples, the mean design simulation cost (design

accuracy) of the trained policy with PPO-continuous (green line) is

higher (lower) than that of the one with DDPG-continuous (red line).

2) PPO-discrete vs. DDPG-continuous: With the setting of

discrete action space, PPO-discrete demonstrates superior training

sample efficiency and more consistent results compared to its contin-

uous counterpart and DDPG-continuous. In a discrete environment,

the action choices of an RL agent at each step are simplified to adjust

the parameter upward/downward with a small increment/decrement,

or to maintain its current value. This simplicity makes the training

process smoother and improves the quality of the policy to find the

optimal device parameters during the deployment process, as shown

in Fig. 10 (blue line). In a complex continuous environment where

the agent has a plethora of parameter choices, the off-policy mech-

anism of DDPG-continuous could suffer from biases, where some

of the updates are based on prior (potentially incorrect) expectation

estimates. This leads to irreversible incorrect estimates in the end and

causes training instability due to its inherent low-variance but high-

bias nature. As shown in Fig. 10 (red line), there is a sudden change

with respect to the mean episode reward and design accuracy/cost.

However, there is a caveat to using PPO-discrete: the discrete

environment constrains the policy’s design efficiency. Its mean

design cost (i.e., simulation steps) is influenced by the granularity

of the step in the discrete space and the distance between the initial

state and the target solution. Thus, more design steps are required to

find the optimal device parameters. In a continuous environment, the

action at each step corresponds to the normalized device parameters

in the design space, thereby demanding fewer design steps.

3) BO-PPO-discrete vs. PPO-discrete: To address the issue

of the low design efficiency of PPO-discrete, we introduce BO

to optimize the starting point of PPO-discrete, thus positioning

the initial state closer to the solution space. As illustrated in

Fig. 10 (yellow line), this strategy could optimize the starting point,
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Fig. 11: Comparisons between our proposed framework RoSE-Opt, our RL
Backbone, RobustAnalog [31], BO [1], and GA [43] for variation-aware device
sizing problem by taking the design of nested Miller compensation Op-Amp as an
example. Left: mean design success rate. Right: mean design simulation cost.

allowing PPO-discrete to reach the desired specifications without

too much meaningless exploration, accelerating the trajectory

formulation towards the solution. Ultimately, this integration of BO

with PPO-discrete, termed BO-PPO discrete, demonstrates superior

performance in both design accuracy and sampling efficiency,

and achieves commendable results in design efficiency. For other

continuous BO-RL algorithms (i.e., BO-DDPG-continuous vs.

DDPG-continuous), we also observe performance improvement

compared to its RL baseline by producing more consistent results.

This novel approach showcases the potential of combining classical

optimization techniques to improve the effectiveness of RL in

complex analog circuit design. As optimization techniques continue

to evolve, the combined strengths of different optimization methods,

such as BO and RL, underscore the importance of hybrid strategies

in complex optimization scenarios of analog circuit parameters.

4) Training Reward Is Not Always A Good Metric for Comparing

Different RL Policies: One last thing to note is that DDPG-

continuous is able to achieve a much larger episode reward compared

to PPO-discrete during the training process but suffers from worse

design accuracy during the deployment process. This discrepancy is

due to the nature of the episode reward function, which accumulates

intermediate rewards throughout the search process for each training

episode. PPO-discrete leverages fine-grained action to search for

optimal device parameters through multiple steps. Due to this

fine-grained mechanism, the improvement of intermediate rewards

in a training episode is slow, resulting in a smaller episode return.

In contrast, DDPG-continuous adopts continuous action, allowing

it to find a suboptimal solution earlier in the search process and

even within a single step, thereby leading to a larger accumulated

reward. However, since it suffers from biases as discussed above,

DDPG-continuous does not achieve a high design success rate in the

deployment stage. This finding shows that leveraging the training

reward as a metric to compare design automation methods based

on different RL algorithms, as done in many previous work [17],

[18], could be misleading. We recommend employing deployment

accuracy and design efficiency as metrics for fair and reasonable

comparisons across various methods.

E. Comparisons between Different Methods and Summary

Finally, we compare our proposed RoSE-Opt method with

previous RL methods [18], [28], [31] and conventional optimization

methods, such as BO [1] and Genetic Algorithm [43]. In addition

to a general variation-aware device sizing task that we introduced

in Section III, we also study a specific task of analog design, i.e.,

Pareto optimization. The goal is to optimize a particular circuit

RoSE_Opt RobustAnalog RL Backbone BOGA

3.812

2.935

1.664

1.054

0.814

Fig. 12: Comparisons between our proposed framework RoSE-Opt, our RL
Backbone, RobustAnalog [31], BO [1], and GA [43] for Pareto optimization problem
by taking the design of nested Miller compensation Op-Amp as an example. Left:
FoMOp-Amp result. Right: Pareto frontier. Each curve is based on 6 random seeds.

specification or a figure-of-merit (FoM) that consists of multiple

circuit specifications [46]. Here, we use the standard FoM of

Op-Amp defined as FoMOp-Amp(MHz·pF/ µW)=(GBW·CL)/P
to customize a reward function and train RL agents (or use

BO/Genetic Algorithm) to maximize it. Note that we also observe

similar results for the nominal corner experiment.

1) Variation-aware device sizing: Fig. 11 illustrates the results.

With the benchmark circuit, RoSE-Opt can achieve a design success

rate of 96.5% and an average deployment length of 12 simulation

costs within 20000 simulations5 for training6. In contrast, with

the same number of simulations, the RL Backbone attains a lower

design success rate and a longer deployment length. The comparison

again shows that the BO vanguard indeed improves sample effi-

ciency. RobustAnalog is even less competitive to the RL Backbone

due to the incorporation of only partial PVT variations into the learn-

ing framework. Traditional ad-hoc optimization methods such as

BO and GA cannot solve the variation-aware device sizing problem

with high accuracy and efficiency. Thus, our RoSE-Opt framework

achieves the best sampling efficiency, design efficiency, and design

success rate by considering all PVT variations in the learning loop

and adopting the two-level optimization method at the same time.

2) Pareto optimization: Fig. 12 shows the Pareto frontier of

different methods. Compared to baselines, our RoSE-Opt achieves

the highest FoMOp-Amp and defines the optimal Pareto frontier by

achieving the lowest power consumption while maintaining the

highest GBW within the fewest simulations.

In the end, we summarize RoSE-Opt together with previous

comparisons in Table IV. In particular, we use BO [1] and GA [43]

as representatives of prior optimization-based methods and use Ro-

bustAnalog [31], RL1 [28], and RL2 [18] as representatives of pre-

vious learning-based methods. Additionally, we use the FoMdeploy

defined previously to evaluate the overall performance of a design

automation method in the P2S problem and use the FoMOp-Amp

for Pareto optimization evaluation. The comparisons show that our

proposed RoSE-Opt framework, which uses BO as pre-optimization

and a domain-knowledge-infused RL agent as the main optimization

backbone, can significantly improve training sample efficiency,

design efficiency, and design success rate for the PVT-aware design

and improve Pareto optimization. Note that BO is performed only

5Our method aims to achieve high generality with learning-based methods and
thus demands more data for training compared to conventional ad-hoc optimization
methods such as BO.

6For P2S problem, the total optimization time is dominated by simulation time.
The average simulation time of nested Miller compensation Op-Amp is around 10
seconds for each run. RoSE-Opt takes 20000 simulations to train its RL agent. After
the training, RoSE-Opt takes an average of 12 simulation costs (2 minutes) for one
unseen design goal.
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TABLE IV: Summary of comparison with existing learning and optimization methods.

Domain Starting P2S problem FoMOp-Amp opt problem
Methods knowledge point Training sample efficiency FoMdeploy FoMOp-Amp value

Multimodal PVT optimization folded-cascode NMCF folded-cascode NMCF NMCF

RobustAnaloga [31] Yes Partial No 1× 1× 1.14 0.625 0.814

BOb [1] No Full N/Ac N/Ac N/Ac 0.46 0.044 2.935

GAb [43] No Full N/Ac N/Ac N/Ac 0.067 0.005 1.054

RL1b [28] No Full No 1.3× 1.32× 1.24 0.9 1.378

RL2b [18] No Full No 1.35× 1.4× 1.25 1.1 1.436

RL Backbone Yes Full No 2× 2.5× 1.42 1.26 1.664

RoSE-Opt Yes Full Yes 12× 7.9× 20.51 6.87 3.812

a Original work [31] only uses normal 4-layer multilayer perceptions. We modify its network to the same multi-modality network we used in our RL backbone.
b Previous methods [1], [18], [28], [43] without considering PVT variations fail in the robust design with zero design accuracy and close to 0 FoMOp-Amp. As a result, we modify

their work to include full PVT incorporation.
c Traditional optimization methods [1], [43] do not need pre-optimized starting points and training (BO [1] is still considered as an ad-hoc optimization method since it only

uses active learning for improving its optimization sample efficiency without generalization to unseen design goals). Thus, some metrics are not applicable here.

once at the very beginning, thereby incurring minimal overhead.

In summary, our knowledge-infused RoSE-Opt framework that

takes advantage of the complementary benefits of learning and

optimization algorithms (i.e., combining BO and RL) can achieve

the best FoM for the challenging reliable device sizing problem.

VI. CONCLUSION

We propose a BO-RL-based framework to automate the P2S

task for analog circuit design, by incorporating domain knowledge

(e.g., circuit topology, specification trade-offs, PVT variations,

layout parasitics) for design robustness and leveraging BO to

enhance RL’s starting point for training efficiency. We show that

such a framework is superior in designing various analog circuits

with higher accuracy, efficiency, and reliability. We expect that

our method would assist human designers in accelerating analog

chip design with artificial agents that master massive circuitry

optimization experiences via learning.
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“Graph Attention Networks,” in International Conference on Learning

Representations, 2018.

[34] T. N. Kipf and M. Welling, “Semi-Supervised Classification with Graph
Convolutional Networks,” in International Conference on Learning

Representations, 2017.

[35] J. Schulman, F. Wolski, P. Dhariwal, A. Radford, and O. Klimov, “Proximal
Policy Optimization Algorithms,” 2017.

[36] Y. Li, Y. Lin, M. Madhusudan, A. Sharma, S. Sapatnekar, R. Harjani, and
J. Hu, “A Circuit Attention Network-Based Actor-Critic Learning Approach
to Robust Analog Transistor Sizing,” in 2021 ACM/IEEE 3rd Workshop on

Machine Learning for CAD (MLCAD), 2021, pp. 1–6.

[37] B. Razavi, Design of Analog CMOS Integrated Circuits, 1st ed. USA:
McGraw-Hill, Inc., 2000.

[38] K. N. Leung and P. Mok, “Analysis of multistage amplifier-frequency
compensation,” IEEE Transactions on Circuits and Systems I: Fundamental

Theory and Applications, vol. 48, no. 9, pp. 1041–1056, 2001.

[39] M. Wang, D. Zheng, Z. Ye, Q. Gan, M. Li, X. Song, J. Zhou, C. Ma, L. Yu,
Y. Gai, T. Xiao, T. He, G. Karypis, J. Li, and Z. Zhang, “Deep graph library:
A graph-centric, highly-performant package for graph neural networks,” 2020.

[40] P. Moritz, R. Nishihara, S. Wang, A. Tumanov, R. Liaw, E. Liang, M. Elibol,
Z. Yang, W. Paul, M. I. Jordan, and I. Stoica, “Ray: A distributed framework
for emerging ai applications,” in Proceedings of the 13th USENIX Conference

on Operating Systems Design and Implementation, ser. OSDI’18. USA:
USENIX Association, 2018, p. 561–577.

[41] M. Balandat, B. Karrer, D. R. Jiang, S. Daulton, B. Letham, A. G. Wilson,
and E. Bakshy, “BoTorch: A Framework for Efficient Monte-Carlo Bayesian
Optimization,” in Advances in Neural Information Processing Systems 33, 2020.

[42] T. P. Lillicrap, J. J. Hunt, A. Pritzel, N. Heess, T. Erez, Y. Tassa, D. Silver, and
D. Wierstra, “Continuous control with deep reinforcement learning,” 2015.

[43] B. Liu, Y. Wang, Z. Yu, L. Liu, M. Li, Z. Wang, J. Lu, and F. V. Fernández,
“Analog Circuit Optimization System Based on Hybrid Evolutionary
Algorithms,” Integration, vol. 42, no. 2, pp. 137 – 148, 2009.

[44] M. Liu, W. J. Turner, G. F. Kokai, B. Khailany, D. Z. Pan, and H. Ren,
“Parasitic-aware analog circuit sizing with graph neural networks and bayesian
optimization,” in 2021 Design, Automation & Test in Europe Conference &

Exhibition (DATE), 2021, pp. 1372–1377.

[45] A. F. Budak, K. Zhu, and D. Z. Pan, “Practical layout-aware analog/mixed-
signal design automation with bayesian neural networks,” in 2023 IEEE/ACM

International Conference on Computer Aided Design (ICCAD). IEEE, 2023,
pp. 1–8.

[46] W. Cao, M. Benosman, X. Zhang, and R. Ma, “Domain knowledge-infused
deep learning for automated analog/radio-frequency circuit parameter
optimization,” in Proceedings of the 59th ACM/IEEE Design Automation

Conference, 2022, pp. 1015–1020.

Weidong Cao Dr. Weidong Cao (S’16) is an Assistant
Professor with the Department of Electrical and Com-
puter Engineering, The George Washington University,
Washington, DC, USA. Before that, he was a Principal
Engineer with TSMC Corporate Research, San Jose, CA,
USA. His research interests focus on VLSI Design, Com-
puter Architecture, EDA, and Quantum Computing. Dr.
Cao is the recipient of IEEE/ACM ISLPED Best Paper
Award in 2022 and his work has also been nominated for
Best Paper Award at DATE 2019 and DAC 2022.

Jian Gao Jian Gao (S’24) is a first-year Ph.D student in
the Department of Electrical & Computer Engineering
at Northeastern University. He received his B.S. and
M.S. degrees in Electrical Engineering from Washington
University in St. Louis in 2023. His research interest lies
in design automation for analog and mixed-signal circuits.

Tianrui Ma Tianrui Ma (S’22) received the B.S.
(Hons) degree in Electrical Engineering from Beihang
University, Beijing, China, in 2019, and the M.S. degree
in Electrical Engineering from Washington University
in St. Louis, St. Louis, MO, USA, in 2023, where he
is currently pursuing the Ph.D. degree. He is interested
in systematic design and architectural optimization of
CMOS image sensor-based vision systems. Mr. Ma is
a recipient of ISLPED 2022 Best Paper Award.

Rui Ma Dr. Rui Ma is a Director of mmWave PA
systems at Psemi, A muRata company. He was a
Senior Principal research scientist at Mitsubishi Electric
Research Scientist, Cambridge MA before joining
Psemi in 2022. He is an IEEE Distinguished Microwave
Lecturer and was an Associate Editor of IEEE
Transaction on Microwave Theory and Technology.

Mouhacine Benosman Dr. Mouhacine Benosman
earned his Ph.D. in applied mathematics from Ecole
Centrale de Nantes, France. He is a Senior Principal
Research Scientist in the Mitsubishi Electric Research
Laboratories (MERL), Cambridge, USA. His research
interests include nonlinear robust and fault tolerant
control, multi-agent control with applications to robotics,
estimation and control of partial differential equations
with applications to thermo-fluid models, learning- based
adaptive control for nonlinear systems, control-theory
based optimization algorithms, and physics informed

machine learning. He currently serves as the Senior Editor of the International
Journal of Adaptive Control and Signal Processing.

Xuan Zhang Dr. Xuan ‘Silvia’ Zhang (S’08, M’15,
SM’22) is an Associate Professor in the Electrical
and Computer Engineering Department at Northeastern
University. She works across the fields of integrated cir-
cuits/VLSI design, computer architecture, and electronic
design automation. Dr. Zhang is an IEEE Women in
Engineering (WiE) Distinguished Lecturer for 2023-2024,
IEEE Circuits and Systems Society (CAS) Distinguished
Lecturer for 2022-2023, and the recipient of NSF CA-
REER Award in 2020. She currently serves as the As-
sociate Editor-in-Chief at IEEE Transactions on Circuits

and Systems I (TCAS-I) and Associate Editor at IEEE Transactions on Computer-
Aided Designs (TCAD). Her work has received numerous best paper awards and
nominations including ISLPED Best Paper Award in 2022, AsianHOST Best Paper
Award in 2020, DATE Best Paper Award in 2019, and nomination for Best Paper
Awards at DAC 2022, ASP-DAC 2021, MLCAD 2020, DATE 2019, and DAC 2017.

This article has been accepted for publication in IEEE Transactions on Computer-Aided Design of Integrated Circuits and Systems. This is the author's version which has not been fully edited and 

content may change prior to final publication. Citation information: DOI 10.1109/TCAD.2024.3435692

© 2024 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.

See https://www.ieee.org/publications/rights/index.html for more information.
Authorized licensed use limited to: Northeastern University. Downloaded on August 23,2024 at 19:11:28 UTC from IEEE Xplore.  Restrictions apply. 


	Introduction
	Background and Related Work 
	Bayesian Optimization
	Reinforcement Learning
	Key Domain Knowledge of Analog Circuit Design
	Circuit topology
	Couplings between circuit specifications
	PVT variations
	Parasitic effects of physical layouts

	Existing Design Automation Methodologies

	RoSE-Opt Framework
	Problem Formulation
	Framework Overview
	BO Vanguard
	RL Backbone
	Variation-aware reward function
	Fine-grained action
	Circuit physics-related state
	SPICE simulation environment
	Circuit-aware policy network

	Optimization Methods for Policy Training

	Experimental Methodology
	Benchmarks and Performance Metrics for Evaluation
	Experiment Platform, Configurations, and Baselines

	Experimental Evaluations
	Efficacy, Robustness, and Sampling Efficiency
	Efficacy of incorporating domain knowledge and customizing a multi-modal policy network
	Robust design with full PVT incorporation
	Efficient sampling with BO Vanguard

	Parasitic-Aware Device Parameter Optimization
	Analysis of Failed Deployment Cases
	Comparisons between Different RL Algorithms
	PPO-continuous vs. DDPG-continuous
	PPO-discrete vs. DDPG-continuous
	BO-PPO-discrete vs. PPO-discrete
	Training Reward Is Not Always A Good Metric for Comparing Different RL Policies

	Comparisons between Different Methods and Summary
	Variation-aware device sizing
	Pareto optimization


	Conclusion
	References
	Biographies
	Weidong Cao
	Jian Gao
	Tianrui Ma
	Rui Ma
	Mouhacine Benosman
	Xuan Zhang


