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Abstract—Design automation of analog circuits has long been
sought. However, achieving robust and efficient analog design
automation remains challenging. This paper proposes a learning
framework, RoSE-Opt, to achieve robust and efficient analog circuit
parameter optimization. RoSE-Opt has two important features. First,
it incorporates key domain knowledge of analog circuit design, such as
circuit topology, couplings between circuit specifications, and variations
of process, supply voltage, and temperature, into the learning loop.
This strategy facilitates the training of an artificial agent capable
of achieving design goals by identifying device parameters that are
optimal and robust. Second, it exploits a two-level optimization method,
that is, integrating Bayesian optimization (BO) with reinforcement
learning (RL) to improve sample efficiency. In particular, BO is used
for a coarse yet quick search of an initial starting point for optimization.
This sets a solid foundation to efficiently train the RL agent with
fewer samples. Experimental evaluations on benchmarking circuits
show promising sample efficiency, extraordinary figure-of-merit
in terms of design efficiency and design success rate, and Pareto
optimality in circuit performance of our framework, compared to
previous methods. Furthermore, this work thoroughly studies the
performance of different RL optimization algorithms, such as Deep
Deterministic Policy Gradients (DDPG) with an off-policy learning
mechanism and Proximal Policy Optimization (PPO) with an on-policy
learning mechanism. This investigation provides users with guidance
on choosing the appropriate RL algorithms to optimize the device
parameters of analog circuits. Finally, our study also demonstrates
RoSE-Opt’s promise in parasitic-aware device optimization for analog
circuits. In summary, our work reports a knowledge-infused BO-RL
design automation framework for reliable and efficient optimization
of analog circuits’ device parameters. Code implementation of our
method can be found at https://github.com/xz-group/RoSE.

I. INTRODUCTION

Integrated circuit (IC) technology advances human society by
powering numerous applications and infrastructures with micro-
electronic chips of a small footprint. Recent advances in deep
learning have shown great promise in transforming modern IC
design workflows [1]-[3]. By formulating each design stage as a
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learning problem, machine learning techniques can significantly
shorten IC development cycles compared to conventional Electronic
Design Automation (EDA) tools. For example, Google [2] and
Nvidia [3] have shown that deep learning methods can improve
design efficiency by an order of 100 at certain stages of the digital
IC design flow, such as floor planning and power estimation. Analog
circuit is an essential type of circuit that bridges our physical world
with the digital information realm [4]-[8]. Yet, unlike digital ICs that
benefit from well-established conventional EDA tools or emerging
efficient learning-based design automation methods, analog circuits
continue to rely on onerous human efforts and lack effective EDA
techniques at all stages [1], [9].

The pre-layout design of analog circuits can be represented as a
parameter-to-specification (P2S) optimization problem. Given the
topology of a circuit, the goal is to find optimal device parameters
(e.g., width and finger number of transistors) to meet the desired
specifications (e.g., power and bandwidth) of the circuit. This
problem is challenging due to several factors. First, it involves
searching for parameters of diverse devices in a large design space.
The complexity grows exponentially with an increase in both design
parameters and circuit specifications [4], [5]. Second, the actual
interactions between the device parameters and the circuit specifica-
tions are complicated [1], [9], depending on multiple variables, such
as circuit topology, variations in process, voltage, and temperature
(PVT) and post-layout parasitic effects. There are no exact analytical
rules to follow, which worsens the search process. Conventionally,
human designers use critical domain knowledge, such as circuit
topologies and couplings between circuit specifications, to manually
derive the device parameters. In particular, a human designer exerts
an intense effort to obtain empirical equations between the device
parameters and the circuit specifications based on a simplified
circuit topology. However, despite the simplification, tens and even
hundreds of iterative fine-tunings are still required to ensure the
accuracy and reliability of the design.

During the past several decades, there have been enormous explo-
rations on automating the design of analog circuit device parameters.
These methods generally fall into two categories, knowledge-based
techniques and optimization-based techniques. Knowledge-based
techniques are designer-centric [10]-[12]. They customize the
design steps for specific circuits based on domain knowledge
and embed them into procedural scripts that mimic the actions of
designers. These scripts allow designers to have full control over
the modification and debugging of circuits to guarantee design
reliability. However, design efficiency is significantly thwarted,
because designers, acting as optimization agents, are required to
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frequently interact with procedural scripts. In contrast, optimization-
based techniques are algorithm-centric. They consider each step of
analog circuit design as a black-box optimization problem and apply
optimization methods, such as Bayesian optimization [1], Genetic
algorithms [13], and emerging machine learning algorithms [9], [14]-
[18]. These algorithms can be run quickly to complete the design
of an analog circuit with high efficiency. Unfortunately, due to the
absence of knowledge from experienced designers, the reliability of
the design is not guaranteed, e.g., device parameters are not robust
to various non-idealities. These defects limit the efficiency and
reliability of state-of-the-art analog design automation techniques.

To bridge this gap, we propose a learning framework, RoSE-Opt,
to achieve robust and efficient analog circuit parameter optmization
by synergizing domain knowledge of analog circuits and learning
algorithms. Analog circuit design strongly relies on domain
knowledge, such as circuit topology, couplings between circuit
specifications, and PVT variations; thus, without adequately
considering these key domain knowledge in building learning-based
design automation frameworks, the device parameters discovered
by the algorithm are prone to suffer from inferior reliability issues
due to various non-idealities. Our previous work [19] follows
this principle and has explored the integration of this key domain
knowledge into the design framework. It also exploits a two-level
optimization method by integrating Bayesian optimization (BO)
and reinforcement learning (RL) to improve sample efficiency.

In this paper, we propose the RoSE-Opt framework which
advances the state-of-the-art method [19]. In particular: @ We
analyze the failed cases in which our trained RL agent cannot
converge to the optimal device parameters. In these scenarios, the
RL agent can still help designers by offering optimized initial
points for manual tuning. @ We study its ability to consider device
parasitic in parameter optimization. A direct mapping of an analog
circuit schematic with correctly-sized devices into a physical layout
can lead to performance degradation, mainly due to parasitics
from metal wires and electromagnetic effects, and needs tens of
iterations between the two for fine-tuning. This extended work
demonstrates the promise of RoSE-Opt in addressing this problem.
© At the algorithm level, we thoroughly study the performance of
different RL optimization algorithms, such as Deep Deterministic
Policy Gradients (DDPG) with an off-policy learning mechanism
and Proximal Policy Optimization (PPO) with an on-policy
learning mechanism, to provide users with useful guidance in
choosing appropriate RL algorithms for device sizing. @ Finally,
we showcase a Pareto optimization example, i.e., optimizing the
figure-of-merit (FoM) of a circuit. Our framework can facilitate the
identification of the optimal Pareto frontier. In summary, we present
a holistic BO-RL-based design automation framework to perform
the P2S optimization tasks of analog circuit design with high
robustness and efficiency. We make following key contributions.

o This paper proposes a comprehensive BO-RL-based design
automation framework, RoSE-Opt. Our learning framework
explores and exploits both the domain knowledge of analog
circuit design and the strong optimization ability of design
automation algorithms.

o We perform a failure analysis of our method and show how
to leverage the unsuccessful deployment trajectory to guide
the fine-tuning of manual efforts toward design success.
In addition, we study its effectiveness in the scenarios of

parasitic-aware device parameter optimization.

o We thoroughly characterize the performance of different RL
optimization algorithms (i.e., DDPG vs. PPO) to provide users
with useful insights in choosing appropriate RL algorithms
for device parameter optimization.

« Experimental evaluations on benchmarking circuits show that
our framework achieves 7.9 x ~ 12 x improvement in training
sample efficiency and a significant improvement in the design
success rate and efficiency compared to the state-of-the-art
methods for the same problem. In Pareto optimization, our
framework identifies the optimal Pareto frontier by minimizing
power consumption and maximizing the gain bandwidth
product (GBW), all within a minimal number of simulations.

II. BACKGROUND AND RELATED WORK

In this section, we first review the basics of Bayesian optimization
and reinforcement learning. We then introduce the key domain
knowledge that human experts commonly consider when addressing
the P2S problem. Finally, we discuss existing design automation
methodologies for analog circuits.

A. Bayesian Optimization

Bayesian optimization (BO) proves to be a valuable framework
to address challenging black-box optimization problems that
involve costly function evaluations. Fig. 1(a) shows an example of
BO with two iterations (t=2 and t=3). BO’s fundamental concept
is to construct an inexpensive surrogate model, such as a Gaussian
Process, by leveraging actual experimental data. This surrogate
model incorporates prior knowledge or beliefs about the objective
function, which is then used to make informed decisions in the
process of selecting a sequence of function evaluations through the
use of an acquisition function, such as expected improvement (EI).
It also balances exploration and exploitation. Exploration allows for
a broader exploration of the search space, potentially discovering
better solutions, while exploitation focuses on exploiting the known
promising areas to optimize the current best solution. Balancing
these two aspects is crucial to finding better solutions and refining
the best solution.

Given an arbitrary function f(Z) for maximization, there are
several steps to follow for BO. Step 1: initial sampling. Here, a
limited set of sample points is randomly selected. Step 2: initializing
the model. These points in Step 1 are used to calculate a surrogate
function. Step 3: iterating. In particular, the acquisition function is
first used to get the next point; then, the surrogate function is re-
evaluated; third, the surrogate function is verified to see if it remains
stable or if the variance falls below a predetermined threshold, or
if f(-) is exhausted, depending on the specific design objective.

BO is well suited to optimizing hyperparameters of many
classification and regression models. It is also used for circuit
design automation [1], [20]-[22] (e.g., the P2S optimization tasks
for analog circuit design [1]).

B. Reinforcement Learning

Reinforcement learning (RL) is a machine learning method
related to how intelligent agents take actions in an environment
to maximize cumulative returns based on states. As illustrated
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Fig. 1: (a) An illustration of Bayesian optimization to find the optima. Here, we
use the Gaussian Process (GP) as the surrogate model and show two iterations.
The plots show the mean and confidence intervals estimated with the GP model
of the objective function, f(z), which in practice is unknown. The plots also show
the acquisition (Acq) functions in the lower-shaded plots. The acquisition is high
where the model predicts a high objective (exploitation) and where the prediction
uncertainty is high (exploration). (b) A simplified illustration of reinforcement
learning. It includes five parts: agent, action, state, reward, and environment.

in Fig. 1(b), there are five essential elements in an RL problem:
Agent, Action, State, Reward, and Environment. The ‘Agent’ is
the learner and the decision maker who learns experiences from a
training process and makes decisions based on observations (states)
from the environment. The ‘Action’ is a set of operations that the
agent can perform. The ‘State’ is a representation of the current
environment (i.e., observations) in which the agent is staying. It can
be observed by the agent and contains all relevant information about
the environment that the agent needs to know to make a decision.
The ‘Reward’ is a scalar value returned by the environment after
the agent takes an action in a state. It is used to evaluate and guide
the actual learning behavior of the agent. The ‘Environment’ is the
physical world in which the agent operates.

In each episode, an agent starts from an initial state, then observes
the state oy, and takes an action a;, based on a policy. Meanwhile,
the environment updates a reward 7 for that particular action
and enters a new state oy 1. The agent iterates through the episode
in multiple steps, accumulating the reward at each step to obtain
the final return. With multiple episodes, the RL agent improves its
decision quality and finds the best policy to maximize the return.
Such a policy would be deployed for practical tasks, i.e., the agent
follows the trained policy to finish a given task.

RL algorithms have been extensively applied to many problems
such as game playing [23], robotics [24], computer vision [25], and
natural language processing [26]. RL has also been used to automate
the design of ICs, such as the placement of the digital IC chip [27],
and the P2S optimization of analog circuits [17], [18], [28].

C. Key Domain Knowledge of Analog Circuit Design

At the pre-layout stage, there are many considerations to be taken
by human experts to select reliable device parameters and meet the
design goals. These considerations are the domain knowledge, and
we introduce the major ones that are commonly used by human ex-
perts when they tackle the P2S optimization tasks, as shown in Fig. 2.

1) Circuit topology: When human experts manually find
the optimal device parameters, they first construct the circuit
small-signal model from the circuit topology, based on which they
obtain empirical equations that connect the device parameters to
the circuit specifications. With these equations, device parameters
can be derived by hand.

2) Couplings between circuit specifications: Due to design
trade-offs, circuit specifications often depend on each other. For
example, in the design of operational amplifiers, energy efficiency
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Fig. 2: Tlustration of a manual design flow to tackle the P2S optimization tasks with
human domain knowledge.
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often trades off with gain; that is, a higher amplification gain
requires a larger transconductance, which, however, demands
more power consumption and results in lower energy efficiency.
Therefore, in a conventional manual design process, human experts
use tens and even hundreds of iterative fine-tunings to find a group
of proper device parameters to satisfy all circuit specifications.

3) PVT variations: To ensure the robustness of analog circuits
in different harsh environments, a key design consideration is to
minimize the influence of variations in process (P), voltage (V),
and temperature (T). Process variation represents the deviation
of the manufactured devices from their ideal specification due to
manufacturing errors. It includes typical N-type transistor/typical
P-type transistor (TT), fast N-type transistor/fast P-type transistor
(FF), slow N-type transistor/slow P-type transistor (SS), slow N-type
transistor/fast P-type transistor (SF), and fast N-type transistor/slow
P-type transistor (FS). Voltage and temperature variations are due to
uncertain ambient changes. Typical deviation of the supply voltage
is £10% from its nominal value Vpp; and typical range of the
environmental temperature for circuits is [—40,125]°C'. A single
PVT corner is a combination of P, V, and T from their varying
ranges. All these variations are unavoidable and can cause the
circuit performance degeneration compared to its nominal case, i.e.,
{TT, Vpp, 25°C’}. Manual experts have to look for robust device
parameters to achieve the design goal in all PVT corners.

4) Parasitic effects of physical layouts: A complete flow of
analog circuit design includes the schematic design and the physical
layout design. The conversion of an analog circuit schematic, with
the correctly-sized components, into a physical layout can cause
performance degradation due to the parasitic effects of metal wires
and electromagnetic couplings. Experienced human designers often
make efforts to adjust the device parameters to ensure that the
post-layout simulation meets the desired objectives.

D. Existing Design Automation Methodologies

Various design automation techniques have been proposed for
the P2S tasks of analog circuits in recent years. They generally fall
into two categories: knowledge-based techniques and optimization-
based techniques. Knowledge-based techniques, such as BAG [10],
are designer-centric. They tailor the design steps for specific
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circuits with domain knowledge and embed these steps into the
procedural scripts that mimic designer actions. These scripts provide
designers with complete control over circuit modifications and
debugging to ensure design reliability. Yet, these approaches notably
affect design efficiency, as they demand frequent interactions
between designers and procedural scripts, with designers playing
the role of optimization agents. On the contrary, optimization-based
methods such as BO [1], Geometric Programming [29], Genetic
algorithms [13], and modern machine learning approaches [9], [14]-
[18], [28] are centered on algorithms. They treat each step in a
circuit design as a black-box optimization problem and can swiftly
perform optimization procedures to complete a circuit’s design with
high efficiency. Unfortunately, the lack of knowledge from seasoned
designers means that design reliability, such as the robustness of
device parameters to non-ideal conditions, is not assured. These
limitations significantly impact the widespread applications of state-
of-the-art analog design automation techniques, as they are unable
to achieve both high design efficiency and reliability. Thus, essential
to advance analog design automation is to adequately incorporate
design knowledge into optimization algorithms to ensure design
reliability while maintaining high optimization efficiency.

Learning-based optimization methods have recently emerged.
They show higher design efficiency and scalability in handling the
P2S task compared to classical optimization algorithms such as
BO [1], Geometric Programming [29], and Genetic algorithms [13]
that are limited to ad-hoc tasks and tackling simple circuits. As an
example, supervised learning methods [9], [14]-[16] have been used
to learn the complicated relations between device parameters and
circuit specifications. Once trained, they adopt one-step inference
to predict optimal device parameters for given design goals.
Nonetheless, these supervised learning methods cannot guarantee
a high design success rate and suffer from weak generalization
abilities [9], [14]-[16] due to their inherent approximation errors.
On the other hand, RL methods [17], [18], [28] learn an optimal
policy from the state space of circuit specifications to the action
space of device parameters, which solves a quasi-dynamic
programming problem. They often use multiple sequential decision
steps to find the optimal device parameters rather than just using
one-step prediction, thus achieving a higher design success rate and
better generalization abilities than supervised learning methods [9],
[14]-{16]. However, none of them has taken into account sufficient
domain knowledge of analog circuit design in the optimization loop,
leading to low design reliability.

In this work, we propose a learning-based framework, RoSE-Opt,
to achieve efficient and reliable parameter optimization of analog
circuit devices by harnessing the synergy between the knowledge
of human designers and RL algorithms (elaborated in Section III).
In particular, we leverage the rapid convergence of BO to identify
an optimized starting point, significantly improving the sampling
efficiency of the primary RL agent during its learning phase.

III. ROSE-OPT FRAMEWORK

In this section, we introduce the proposed RoSE-Opt framework
that automates P2S tasks. We start with the formulation of the
problem. Then, an overview of the RoSE-Opt framework is
presented, followed by an elaboration of the BO vanguard. Finally,
we introduce five essential parts of the RL backbone and show how
key domain knowledge is incorporated into the framework.

A. Problem Formulation

We target the P2S problem with a given circuit under stringent
PVT variations and parasitic effects of physical layout, formulated as

min - f(s.9),

o ey
st. s=F(x),where seR’ zeSp,gecSa.

Here, the function f(s,g) represents the difference between the
circuit specifications s and the design goal g. For example, for
operational amplifiers (Op-Amps), there are four main circuit speci-
fications, i.e., gain (G), power consumption (P), phase margin (PM),
and bandwidth (BW). F(-) is a circuit simulator environment to
obtain circuit specifications s based on a set of device parameters =,
e.g., width and finger numbers of transistors. s is essentially a matrix
where ¢ represents the specification type (e.g., gain) and j represents
a PVT corner. Therefore, s € R**16, assuming 16 PVT corners for
the design of Op-Amps. The set of device parameters x is restricted
by the design space Sp. The design goal g is restricted to a reason-
able sampling space S that the circuit can achieve. Our objective
is to minimize f(s,g) by efficiently looking for a group of optimal
device parameters so that the circuit specifications can meet an arbi-
trarily given group of design goals under all PVT variations. Consid-
erations of parasitic effects are discussed in Section V-B as it is con-
sidered during the deployment stage rather than the training stage.

B. Framework Overview

We explore the synergy of BO and RL to achieve robust and
sampling-efficient device parameter optimization. Fig. 3 shows the
overview of the proposed RoSE-Opt framework, which contains two
parts: a BO Vanguard and an RL Backbone. BO is a well-known op-
timization algorithm that often achieves the fastest convergence [1]
to an optimum (or sub-optimum) for a given design goal, compared
to other optimization techniques [13], [30]. However, it needs to
be restarted from scratch if the given design goal is changed and is
often limited to tackling simple circuits with fewer dimensions.

In contrast, well-trained RL agents can reach general design goals
without retraining based on a deployment trajectory from a starting
point. Unfortunately, for robust analog circuit design, which is a
more complex problem, RL methods demand more data points from
time-consuming circuit-level simulations (i.e., PVT simulations)
to sufficiently explore design space, leading to a low sampling
efficiency toward the convergence. With this key insight in mind,
we propose to leverage BO as a vanguard to first search coarsely for
a suboptimal starting point (i.e., initial device parameters) for our
RL agent. On this basis, the RL agent can be trained to find optimal
solutions with much fewer interactions with time-consuming circuit-
level simulations, improving the sampling efficiency. As conceptu-
ally shown in the left subset of Fig. 3 (i.e., BO vanguard), an opti-
mized starting point can help the RL agent reach design goals with
a shorter trajectory compared to a randomly selected one. Hence, it
can guide the RL agent to converge faster with fewer training data.

The RL backbone has five essential components similar to
typical RL methods (refer to Section II-B): reward, action space,
state space, environment, and agent. To train an excellent RL agent
for a given task, there are several critical factors to pay attention
to. The first is to develop a comprehensive environment that could
expose environmental information about the task to the RL agent
as much as possible. The second is to capture sufficient exposed
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Fig. 3: Overview of our RoSE-Opt framework for automated design of analog circuits by complementing BO vanguard and RL backbone. At its core, the framework
leverages BO’s rapid convergence to identify an optimized starting point for RL, significantly enhancing its sample efficiency throughout the learning or optimization
process. This strategy combines the efficient exploration capabilities of BO with the robust optimization power of RL to ensure both design robustness and efficiency.
The RL backbone is based on an actor-critic method. The environment consists of a netlist of an analog circuit with a given topology, a circuit simulator, and a data processor.
At each time step k, the agent automatically produces an action ay, to update device parameters with its policy network according to the state oy, and then receives the
reward . from the environment. Our customized policy network is composed of a circuit topology-based GNN (i.e., GAT) and an FCNN.

observations (states) relevant to the task from the environment into
the learning loop. The third is to design a proper reward function
that is closely related to the optimization goal and stimulates the
learning of the RL agent. Finally, the agent (i.e., policy network)
itself should be an expressive and powerful model that can distill the
underlying domain knowledge and generalize it to unseen design
goals. With these key factors in mind, we briefly introduce here
(i) how to develop the majority of these five components below and
(ii) how to distribute the domain knowledge of analog circuit design
presented in Section II-C to the reward function and the customized
policy network. More details will be discussed in Section II-D.
Comprehensive Environment. First of all, we develop a
thorough circuit design environment for the P2S task, which
includes the full circuit netlist of the given task and commercial
simulation/verification tools (e.g., Cadence Spectre) for simulating
circuit specifications (under PVT variations) and extracting
post-layout parasitics.
Sufficient Observations. Second, the circuit design is a dynamic
process that needs sufficient observation from its simulation environ-
ment. In particular, for a robust analog design, full PVT corner sim-
ulations are essential to ensure training stability. Thus, our RL’s state
consists of dynamic intermediate circuit specifications from all PVT
corners and the corresponding circuit topology/device parameters.
Custom Reward Function. Third, PVT variations and parasitic
of post-layouts affect the circuit specifications, which are directly
related to the optimization goal. We thus use a custom reward
function to take into account PVT variations (refer to Eq. (3) for
details). By infusing key domain knowledge (e.g., PVT variations)
into the RoSE-Opt framework through the reward function, an
excellent RL agent can be trained and make good decisions to
search for reliable device parameters that meet the design goals.
Customized expressive policy network model. Lastly, we
customize a policy model architecture to enhance its expressiveness
by taking in sufficient observations. In particular, we tailor a novel
circuit topology-based GNN and an FCNN to incorporate into the
learning loop of an RL agent. This policy network can effectively
capture the essential physical features (e.g., device parameters and
interactions) embedded in a circuit graph with the GNN and extract
the couplings (i.e., design trade-offs) between circuit specifications
with the FCNN, which better models the relations between the
circuit parameters and the design targets.

During the training of an RL agent, in each episode, the agent

starts from an initial state oy with a group of initial device parameters
optimized by the BO vanguard and a group of randomly-sampled
desired specifications g from sampling space Sg. The end of an
episode occurs when the design goals are achieved or a predefined
maximum step 7" is reached. At each time step &, the agent begins
using a neural network to observe a state o, and take discrete
action ay, based on the probability distribution of the output of the
neural network. The agent then arrives in a new state oy, and
receives a reward rj from the environment. The discrete action
aj, can update simultaneously all the device parameters for the
given circuit. The agent iterates through the episode with multiple
steps and accumulates the reward at each step until the end of the
episode. In the next episode, the agent randomly samples another
design goal g from the sampling space S and resets the parameter
back to the starting point 0. Then repeat the same process again.
Once the policy network is well trained, we can save the weight of
the neural network for deployment. During the deployment, since
the weight has already been trained, the agent uses only the actor
to take actions based on the state it observed. The purpose of the
deployment part is to show the generalization capability of our
trained policy network to different specifications without retraining
like BO. Thus, we are interested to see how many specifications
the decision policy can reach within the predefined maximum step
T and what is the average deployment length for each run.

A key point is that BO is only required once in our framework
if the sampling space S¢ of the design goals and the design space
Sp of each circuit device are defined. The RL agent then uses
the same optimized starting point oy during all training episodes
and the deployment stage. Note that in the context of robust device
sizing, the designs of both the BO vanguard and the RL backbone
are non-trivial and are elaborated in the following.

C. BO Vanguard

We rely on BO to find an optimized initial search point for
our RL agent to improve its sampling efficiency during training.
However, a crucial initial question is how to define such an
optimized starting point. This starting point should not only speed
up the design for a specific set of goals but should also help, in
general, to efficiently design any arbitrary group of design goals
from the entire sampling space Sp.

To solve the problem, we think that from this starting point,
the RL agent should generally take the least deployment steps
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to achieve a general design. Thus, we let the device parameters
found by BO that achieve as closely as possible the arithmetic
mean of the maximum/minimum of each design goal in the entire
sampling space S¢, i.e., (PMmax+PM min)/2, (Gmax+Gmin) /2,
(BW max + BWmin)/2, and (Ppax + Pumin)/2, be the starting
point of our RL agent. Here, taking a two-stage Op-Amp as an
example, G, B, PM, P are the circuit specifications, i.e., gain (G),
bandwidth (), phase margin (PM), and power consumption (P).
Another important question is how to balance the simulation budget
between BO and RL. Our strategy is to monitor the improvement
of the reward function every 10 iterations and stop BO optimization
if the improvement falls below a specified threshold (i.e., 0.002).
Users can also adjust the maximum number of simulations assigned
to BO, typically set to 50, to ensure efficient resource management.
BO is stopped when either is reached. Both hyperparameter values
are set based on our empirical study.

We use a typical set-up of BO to search for the optimized starting
point, which includes two essential parts: the surrogate model and
the acquisition function [1]. The whole optimization depends on how
accurately the surrogate model estimates the black-box function. In
particular, we adopt the widely used Gaussian process (GP) model
as our surrogate model to predict the underlying black function with
uncertainty. We use a Monte-Carlo-based Expected Improvement
(EI) acquisition function to balance exploration and exploitation
during the optimization by offering the next sampling point as below:

A
EI(X) ~ %ngllaxn{max(gu 7f(5ag)best70)}7

&~P(f(X)|D).

Here, the expectation, EI(X), is computed by approximating
the integrals over the posterior distribution over Z points using
Monte-Carlo sampling. P(f(X) | D) is the posterior distribution
of our function f(s,g) at X where X = (y,...,z,) from the
sampling in our design space Sp. D is our data set. The parameter
& determines the amount of exploration during optimization.

@

D. RL Backbone

The five key components of the RL backbone are detailed below.
1) Variation-aware reward function: We connect the objective in
Eq. (1) to our reward function so that our RL agent can be directly
optimized considering PVT variations. Particularly, the reward
7 at each time step k is designed by taking PVT variations into

consideration, i.e.,

j=M—1
rk:Mean( Z rj); if 3j€[0, M —1], r; <0;
§=0

orre =R, if Vj €[0, M—1], r; =0.

©))

Here, r; = Zi]\gl w; x min{(s? —g;)/ (s +gi),0} is the sub-

reward of the j" corner, calculated based on a weighted sum of the
normalized difference between ™ intermediate circuit specification
of the j® corner s} and i design goal g;. All types of circuit
specifications are equally important, i.e., w; = 1. M represents
the number of PVT corners and /V indicates the number of circuit
specifications. In order not to over-optimize the specification, we set
the upper bound of 7; to be 0. Only when the circuit specifications
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Fig. 4: Mapping circuit topologies to graphs and illustrating the tailored GAT in the
policy network for analog circuit design, using a two-stage Op-Amp as an example.
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in all PVT corners meet the design goal, a large stimulated reward
of R = 10 is given to encourage the agent for the successful
design; otherwise, the reward in each time step is the average of
sub-rewards of all PVT corners. Finally, the accumulative reward
for a training episode is R, ;= Zgzlrk, where T is a pre-defined
maximum step for an episode. Intermediate circuit specifications
matrix s is obtained from our high-fidelity simulation environment
F(-) based on the updated device parameters x at each time step.
Therefore, our reward is a direct measurement from the circuit
simulator, which can help train a high-quality RL policy network.

2) Fine-grained action: Inspired by human designers who
rely on multiple fine-grained tuning steps to find optimal device
parameters, we use a discrete action space to tune device parameters.
For each tunable parameter x of a device (e.g., the width and finger
number of transistors, the capacitance of capacitors), there are
three possible actions: increasing (z + Ax), keeping (x + 0), or
decreasing (z — Ax) the parameter, where “Ax” is the smallest
unit used to update the parameter within its bound € [Zmin, Zmax)-
With the total parameters of M devices', the output of the policy
network is a matrix of probability distribution M X 3 in any state
where each row corresponds to a parameter. The action is taken
based on the probability distribution.

3) Circuit physics-related state: RL belongs to representation
learning. Capturing adequate state information from the environment
is key to training an excellent RL agent. We leverage the domain
knowledge of analog circuits, i.e., intermediate circuit specifications
and circuit topology, as our state, which covers the most essential
observations from a circuit design environment. In particular, we
take care of intermediate circuit specifications in all PVT corners,
in contrast to the previous work [31] which only considers partial
PVT corers. We create a state vector to represent the intermediate
circuit specifications. To better use the observations of the circuit
itself, we use a graph G(V, E) to model the circuit according
to its topology, where each node in the set V' is a device and the
connections between the devices constitute the edge set E.

Fig. 4 shows the mapping between the circuit topology and a
graph taking a two-stage Op-Amp as an example. For a circuit with
n nodes, the state of the ™ node is defined as its node feature (t, D),
where ¢ is the binary representation of the type of node and 7 is the
parameter vector of the node. Note that the parameters of the circuit
device reflect the physical information of the circuit. For transistors,
the parameters are the width (zw) and the number of fingers ().
For capacitors, resistors, or inductors, the parameters are scalar
values (e.g., capacitance, resistance, or inductance) of each device.
For example, for a circuit with five different types of devices, the
state of a IV type transistor can be expressed as [0, 0, 1, zw, f].

4) SPICE simulation environment: In our work, a high-fidelity
circuit design environment with PVT variations and post-layout
parasitics is used. It consists of the netlist of a given analog circuit,

'We often use differential pairs to reduce the number of design variables.
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a commercial circuit simulator, e.g., Cadence Spectre for CMOS
analog circuits or Keysight Advanced Design System (ADS) for
RF power circuits, and a data processing module (DPM). As shown
in Fig. 3, the simulator obtains intermediate circuit specifications
at each time step. The DPM then deals with the simulated results
to return a reward to the agent using Eq. (3). Meanwhile, it also
updates the device parameters to rewrite the circuit netlist based
on the actions of the agent (i.e., policy network).

Previous methods [31] assume that the circuit simulation time
scales linearly with the number of simulations, i.e., the simulation
time for 16 PVT corners is 16x of the one with a single PVT corner.
We use the Cadence Spectre Accelerated Parallel Simulator (APS) to
accelerate our simulation. At each time step, we obtain circuit speci-
fications for all PVT corners. Compared to a single PVT corner time,
the batch simulation manner for 16 PVT corners only brings 0.17x
time overhead as compared to a single PVT simulation. In other
words, our circuit environment can achieve a sampling efficiency of
at most 14 x when collecting data points during training compared
to previous RL methods. With this co-design loop, we are able to si-
multaneously achieve both high sample efficiency and robust design
by taking advantage of BO, RL, and the simulation environment.

5) Circuit-aware policy network: We adopt an Actor-Critic
method [32] to design our agent. To capture sufficient observations
from the environment to the learning loop, we tailor a novel
multimodal policy network for the Actor by integrating several
unique features, as shown in Fig. 3. (i) We customize a new network
architecture consisting of two different networks, a GNN based
on the circuit topology and an FCNN. It is termed a GNN-FC-
based policy network. Specifically, the GNN is used to distill the
underlying physics (e.g., device types, parameters, and interactions)
of a circuit graph into a low-dimensional vector embedding. The
FCNN utilizes the design objectives and intermediate circuit specifi-
cations across all PVT corners as input to reveal their interconnected
relationships, i.e., design trade-offs. The graph embedding and the
FCNN embedding are then concatenated for further processing by
the final FC layers to update the actions. The value network (Critic)
has the same architecture as the policy network except for the last
layer. It is used to evaluate the quality of the actor’s decision by
giving an estimate of the expected reward, @, for the execution of
the current policy. (ii) We use dynamic device parameters to encode
node features. Yet, the node features of the previous GNN-based
method [18] are composed solely of static technological data, such
as threshold voltage and electron mobility. The exclusion of crucial
dynamic device parameters from the node features complicates the
process of learning the relationships between device parameters and
design goals and leads to divergence of learning in our study. (iii) We
choose the graph attention network (GAT) [33] as the backbone of
the GNN part, whereas previous work [18] often applies the graph
convolutional network (GCN) to solve the problem. The multi-
head attention mechanism of GAT helps to learn more complex
and higher-dimensional interactions between a circuit node and its
neighbors (refer to Fig. 4). Our empirical studies (elaborated in
Section V) show that GAT often performs better than other GNNs
such as the GCN [34] in the P2S task. Note that we customize
the GAT to model circuit topologies and apply them to the P2S
task rather than inventing novel GNN structures. The fundamental
operations underlying the proposed GAT follow those of the original
publications [33] and, therefore, are omitted here. With this unique

policy network architecture, each circuit has its specific state
representation: a vector consists of its design specifications (used
as the input for the FCNN part) and a matrix with the circuit node
feature encoding (used as the input for the GNN part). We perform
thorough experimental studies in Section V-A to show that the
customized network architecture is superior to other methods.

E. Optimization Methods for Policy Training

Combining the GAT and FCNN forms the policy network
mg(a|s) parameterized by 0 = {Wgar,Wgc }. Here, Wiar, Wi are
the learnable parameters for the GAT and FCNN. Our goal is to
make the RL agent gain rich circuit design experiences and generate
higher-quality decisions by interacting with the environment. We
can formally define the objective function of automated design of
analog circuits as follows.

J(@,G) - I/H‘ZgNGEg,SNﬂe [R&Q]' (4)

Here, H is the the space size of all desired specifications G and
R, 4 is the episode reward. Given the cumulative reward for each
episode, we use Proximal Policy Optimization (PPO) [35] to update
the parameters of the policy network with a clipped objective:

LY (0) =y, [min(b; (0) clip(br(0),1 —e,14+€)) Ax],  (5)

where [, represents the expected value at time step k; by is the
probability ratio of the new policy and the old policy, and Ay is
the estimated advantage at time step k.

Previous RL-based methods [17], [18] for P2S tasks mainly
explore Deep Deterministic Policy Gradients (DDPG) to train RL
agents and have shown promising performance. However, the lack
of a detailed comparison between different RL algorithms makes it
difficult to determine which is better for P2S tasks. DDPG is an off-
policy RL method that uses two separate policies for exploration and
updates, a stochastic behavior policy for exploration, and a determin-
istic policy for the target update. The “deterministic” in DDPG refers
to the fact that the agent computes the action directly instead of a
probability distribution over actions. DDPG is specifically designed
for environments with continuous action spaces and continuous state
spaces, making it an equally valid choice for continuous control
tasks applicable to fields such as robotics or autonomous driving.

On the other hand, PPO is an on-policy RL method, that is, it
involves collecting a small batch of experiences by interacting with
the environment according to the latest version of its stochastic
policy and using that batch to update its decision-making policy. The
“stochastic” in PPO refers to the fact that the agent computes the
action as a probability distribution instead of directly over actions.
PPO can often work with both discrete and continuous action
spaces, making it suitable for a wide range of reinforcement learning
tasks in various domains, e.g., training ChatGPT. In particular, we
use RL with discrete action space to build our framework due to:
(1) experienced human designers also use fine-grained tuning (i.e.,
adjusting device parameters with several discrete tuning steps) to
tackle the P2S task; (ii) the thorough study in Section V-D shows
that PPO with discrete action space achieves better performance.

IV. EXPERIMENTAL METHODOLOGY

In this section, we present the experimental methodology
for evaluating the proposed framework. First, we introduce the
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TABLE I: Design space, sampling space, and PVT corners for four benchmark circuits.

Circuit types Single-stage Op-Amp [ Two-stage Op-Amp [ Folded-cascode Op-Amp [ Nested Miller compensation Op-Amp
Technology GlobalFoundries 130/65/28 nm

16 PVT conditions Process:{SS, SE, FS, FF} Voltage:{1.1V, 1.3V} Temperature:{—40°C, 125°C}
Design space 10%* values 1037 values 1077 values 10% values
Width (nm) mp1-4:[200, 2000, 10] mp1-2:[1000, 100000, 1000] | mp1-2:[1000, 10000, 200] mp1-3&mn4:[10000, 50000, 1000]

mn1-3:[2000, 10000, 10] | mnl-4: [1000, 100000, 1000] mn1-3:[160, 1000, 20] mp4: [50000, 250000, 10000]
mn1-3:[2000, 20000, 1000]
Capacitance (pF) Cr:0.12 c:[0.1,10,0.11/Cp: 1 ¢:[0.1,10.0,0.2]/ Cp,: 1 cl:[25, 50, .5]/c2:[1, 25, .5)/C't,: 100
Sampling space
Gain (dB) /I (A) [40,451/[1075, 10~ [10,20]/[1073, 1072 [20,30]/[10~4,10~3] [40,45]/[1073,1072]
PM (o) / BW (MHz) [>50]/10.5, 1] [>60]/1, 20] [>85]/1[4,6] [>55]1/11,2]

circuit benchmarks used in our evaluations. Then, baselines for
comparisons are briefly discussed. Finally, we show the training
platform and configurations of our framework.

A. Benchmarks and Performance Metrics for Evaluation

Operational amplifiers (Op-Amps) are commonly used as circuit
benchmarks in prior art [15], [16], [18], [28], [31], [36] and are also
widely used as essential building blocks in many analog subsystems.
Therefore, we take multiple Op-Amps to evaluate the proposed
framework. In particular, we adopt a single-stage cascode Op-
Amp, a two-stage Op-Amp, a folded-cascode Op-Amp [37], and a
three-stage nested Miller compensation Op-Amp with feedforward
transconductance stage [38] (NMCF) in our benchmark. These
circuits have diverse topologies and design complexities. The
detailed schematics of these circuits were shown in previous
work [15], [16], [18], [28], [31], [36] and are thereby omitted here.
The design space for the device parameters, the sampling space for
the circuit specifications, and the PVT corners are listed in Table 1.
There are 4 X 2 x 2 = 16 extreme PVT conditions, including 4
process variations, 2 voltage variations, and 2 temperature variations.

With the circuit benchmark, we examine mainly the sampling
efficiency, design success rate, and design efficiency of our
framework. We show the sampling efficiency of RoSE-Opt by using
a control experiment, that is, to train the RL agent with/without the
BO vanguard. The sampling efficiency is defined as the number
of SPICE simulations saved to achieve the same training quality
(i.e., training reward) compared to the control group. To allow
a reasonable comparison between different design automation
methods, we also propose a FoMgepoy defined as the ratio
between the design success rate (/Ngccess) and the design efficiency
(N, step “Tim): FOMdeploy = Nyuccess / (N step “Tiim). Here, Ngyccess 1 the
design success rate of policy deployment by giving 200 groups
of design goals randomly sampled from the specification space.
Nitep 1s the average number of required deployment steps (i.e., the
number of circuit-level simulations) to achieve a group of design
goals sampled from the specification space. T, is the simulation
time for each simulation run at the circuit level. Note that the
training time for learning-based methods is not included here, as it
can be amortized during the deployment phase once the models are
well trained (similar to the inference stage in supervised learning).

B. Experiment Platform, Configurations, and Baselines

Our framework is built on Python. We create the circuit
graph using the Deep Graph Library [39] and use Ray [40], a
well-developed hyperparameter tuning package, to train RL agents.
We implement all methods with PyTorch and BoTorch [41]. All

experiments were carried out on a 16-core Intel CPU. We train
separate RL agents for each circuit. Note that we only need to
run BO once at the beginning since we can reuse the starting
point optimized by the BO vanguard in each RL’s training and
deployment phases. To achieve a more reliable and reproducible
experiment result, we decided to run our BO vanguard 50 times
and choose the starting point with a mean reward to minimize the
variation caused by the initial random sampling. To provide detailed
performance comparisons of different RL algorithms, we choose
PPO [35] and DDPG [42] as two representatives of the study and
also use their default configurations to train policy networks.

Although various previous methods have been proposed to
address P2S tasks, such as BO [1], Genetic Algorithm [43], and
RL methods [18], [28], they do not consider PVT variations
and post-layout parasitics in the optimization process of device
parameters. As a result, we modify all of these previous works to
include all PVT corners for a direct comparison. We also compare to
the most recent work, RobustAnalog [31], which solves the P2S task
considering the effect of partial variations in PVT. Despite several
major differences between RobustAnalog and RoSE-Opt, we care
most about the efficacy of RobustAnalog in robust design, as it uses
task pruning with reduced PVT corners for RL training, while our
RL backbone considers all PVT corners. We follow this strategy
to implement RobustAnalog by modifying our RL backbone.

V. EXPERIMENTAL EVALUATIONS

In this section, we show the evaluation results and compare the
performance of our proposed framework with previous methods.
First, we present the efficacy of incorporating domain knowledge
into the learning loop. Second, we show our framework’s sampling
efficiency and robustness against PVT variations. Third, we
show our framework’s capability to achieve reliable device
sizing by taking into account post-layout parasitics. Fourth, we
show how the trained RL agent of our framework assists human
designers in finding optimized device parameters, even if it fails
in deployment in some cases. Fifth, we present the performance
of different RL algorithms in training RL agents for the P2S task.
Finally, we also show the performance of our proposed method
in Pareto optimization. The section ends with a summarization of
comprehensive comparisons between our work and the prior arts.

A. Efficacy, Robustness, and Sampling Efficiency

1) Efficacy of incorporating domain knowledge and customizing
a multi-modal policy network: We conducted comprehensive
experimental studies to show the effectiveness of incorporating
domain knowledge and customizing a multi-modal policy network.
First, we present the importance of integrating domain knowledge
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Fig. 5: A comparison between our customized policy network and prior methods’
policy networks (GCN [18], FCNN [28]) for the variation-aware P2S task.

into the learning process (e.g., taking PVT variations as an example).
Existing methods [18], [28] often overlook PVT variations and par-
asitic effects in the layout when designing reward functions, leading
to failures during deployment in variable environments. In contrast,
our proposed framework with a tailored variation-aware reward
function achieves a design success rate that exceeds 90% in non-
ideal environments with PVT variations as listed in Table IV. Second,
we show the superiority of customizing a multi-modal policy
network. We compared different policy networks used by previous
methods [18], [28] with a consistent variation-aware reward function.
Specifically, the work [28] uses a simple FCNN as a policy network
and does not exploit circuit topologies. The work [18] introduces
a GCN policy network based on a partial circuit topology and uses
static semiconductor technology information as observations. Our
study reveals that the GCN-based network could experience training
divergence, necessitating adjustments based on our methodology
(e.g., using node features with dynamic device parameters) for a
reliable comparison. The comparisons between different methods
are illustrated in Fig. 5. Our customized GNN-FCNN policy network
demonstrates superior performance, yielding higher rewards with the
two circuits. In particular, the GAT-FCNN-based policy surpasses
the GCN-FCNN-based policy, highlighting the effectiveness of our
proposed policy network architecture. Unless otherwise specified,
GAT-FCNN will be the default learning model for the remainder
of this section, generally referred to as GNN-FCNN. These exper-
imental studies demonstrate the effectiveness of integrating domain
knowledge and tailoring a multi-modal policy network.

2) Robust design with full PVT incorporation: We then show the
robust design enabled by our RL backbone against PVT variations
by deploying our RL agent in an environment taking full account
of PVT variations. Policy deployment applies a trained policy to
automatically find the device parameters for given design goals.
The left column of Fig. 6 shows the deployment trajectories under
several representative PVT corners by taking the phase margin
of the Folded-cascode Op-Amp as an example, where each color
represents a PVT corner. It can be seen that although each trajectory
under a specific PVT corner is smooth, the worst corner can be
quickly replaced by another corner due to the competition between
different corners. Here, the worst case indicates the corner where
the circuit specification deviates the most from the design goal.
This phenomenon shows that device sizing with PVT variations
is much more complex compared to the nominal case. Notably, by
incorporating PVT variations into our method, our RL agent can
achieve a robust design by finding optimal device parameters that
can satisfy the design goal in all PVT corners.

To investigate the impact of this corner competition on actual RL
training, we train three RL backbones with different levels of PVT

Folded-cascode Op-Amp Nested Miller compenation Op-Amp

g 1004 Competing with each other g
2 85 | 2
o - IS
~ 80 A ©
£ 1 °
2 i D 3
) I a .
£ 60 - —e— {SF,1.1V,-40°C} © -30 1 =™ Nominal corner
a {FF,1.1V,-40°C} § _40 | — Partial corner
£ 40+ —e— {FF,1.3V,-40°C} = 0l Full corner
1 5 10 0 10000 20000 30000 40000

Deployment steps # of simulations for training

Fig. 6: Left: illustration of the competing phenomenon between PVT corners. Right:
comparison between different levels of PVT incorporation for RL backbone training.
Dashed lines are the actual nominal/partial corner training curve. Solid lines are
the training curve evaluated under full PVT corners.
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Fig. 7: An example to show the comparison of the training sample efficiency by
using the RL Backbone with or without pre-optimization of its starting state.

incorporation. As shown in the right column of Fig. 6, although the
RL backbone trained with the nominal corner (or partial PVT corner)
achieves convergence with high reward, it completely (or partially)
diverges when deployed in an environment with full PVT variations
(i.e., the dashed curves). The result verifies that device sizing with
full PVT variations is much more complex compared to the nominal
case. It also suggests that previous work, RobustAnalog [31], which
uses the K-means clustering to prune the PVT corners during
the training process, is not sufficient to ensure robustness in an
environment with full variations of PVT. It can delay the training
process because the RL algorithm needs more training steps to repeat
the clustering whenever the device parameters reach the design goal
under partial PVT corners, but fail in the setup of full PVT corners.
3) Efficient sampling with BO Vanguard: Thirdly, we show
that the BO vanguard can improve sampling efficiency to train
our RL backbone. Fig. 7 illustrates the example training curves
of our RL backbone to design two types of Op-Amps with two
different starting points, one is from BO searching (labeled as “BO
Vanguard”) and the other is a randomly selected value from the
device parameter design space Sp, e.g., median value (labeled as
“Random pick”™). It shows that the RL agent without an optimized
starting point often needs more circuit-level simulations to achieve
the same reward as the one with an optimized starting point from
BO (e.g., in this case, 3.5% for Folded-cascode Op-Amp and 2.3x
for three-stage nested Miller compensation Op-Amp). Thus, by
optimizing the starting point, the RL agent converges faster with
fewer sampling data (that is, fewer circuit-level simulations).

B. Parasitic-Aware Device Parameter Optimization

We continue to study how to apply RoSE-Opt to optimize
parasitic-aware device parameters. Without considering the parasitic
effect of physical layouts at the pre-layout design stage, the obtained
device parameters cannot guarantee the circuit specifications after
the schematic is directly transferred into a physical design. In
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TABLE II: Comparison of device parameters before and after physical design with design goals of gain =45 dB, bandwidth = 800 kHz, phase margin = 50°, and power =15 uW.

Device mpl mp2 mp3 mp4 mnl mn2 mn3 Gain BW PM Power
Schematic design | 1.02pm | 1.02pum | 1.02pm | 1.02pum | 62pum | 494 pum | 6.2 um 473 dB 862 kHz 52° 12 uW
Layout design 1.02pm | 1.02pm | 1.02pm | 1.02pum | 526 um | 526 um | 526 um | 4691dB | 897kHz | 53.52° 12 uW
400 k107 ~
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Fig. 8: The flow RoSE-Opt used for the parasitic-aware sizing. Please refer to Fig. 2 § 60156 e T 30 "
for the parasitic aware experiment’s schematic and layout. % a0 g 25 20x107 A ’: : '; s| )
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and physical design performed by human designers to fine-tune 3 o 7

the device parameters to ensure that the circuit under design meets
the design goals.

Several previous works have explored learning-based methods to
address this parasitic-aware optimization problem [28], [44], [45].
An early RL-based method [28] aims to tackle it by deploying the
trained RL agent in a parasitic-aware environment. In particular,
this method uses the BAG tool [10] to automatically generate a
physical layout for the circuit based on the device parameters at
each deployment step and exploits the reward from post-layout
simulation to guide the search process for the trained RL agent. This
process continues until the agent meets the target when parasitics are
considered or it has reached the maximumly allocated deployment
steps. Another work [44] attempts to tackle the problem by
combining supervised learning and BO. The idea is to train a graph
neural network to predict the parasitics of an analog circuit with its
device parameters and then back-annotate the parasitics to the circuit
schematic. With this processing step, BO is applied to search for
optimal device parameters through the parasitic-aware schematic.

These previous efforts have shown good performance in finding
reliable device parameters to meet design goals after post-layout
simulation. However, the physical design of analog circuits is quite
flexible. Even for the same circuit, different human designers can
construct different physical layouts. The BAG tool is limited to
generating a few fixed layouts for some typical circuits. Training
a GNN to predict parasitics requires a huge amount of data and
suffers from approximation error. Therefore, the previous methods
do not apply to general cases.

We explore another method to solve the same problem with
much higher flexibility. Our method relies on two key observations
from the human design loop. First, human experts often construct
an initial physical layout of the circuit with an initial set of device
parameters and fine-tune the device parameters by following
the same placement of the device as the one used in the initial
physical layout. Second, circuit specifications from the post-layout
simulation of this initial physical layout are often degraded
compared to the desired goals but are not far from them. Therefore,
the optimal final device parameters to meet the design goals also
fall in the neighborhood of the initial set of device parameters.

With these key observations in mind, our method can apply to
parasitic-aware device parameter optimization by following the
essential steps shown in Fig. 8. We begin by initializing all discount
factors to 1. These discount factors are explained in @. The other

Epiggde steps N

Fig. 9: Failed policy deployment in the two-stage Op-Amp example. The highest
reward appears in the 28™ step. After slight manual adjustment from that step, a
set of optimal device parameters can often be easily obtained as shown in Table III.

20
Episode steps

steps are as follows:
@ Deploy the trained RL agent to find the set of optimal device
parameters that satisfy the design goals in the pre-layout stage and
perform simulations to obtain the circuit specifications with this
set of device parameters; the i™ specification of the 5™ corner is
marked as s ..
@ Construct a physical layout with the device parameters found
in Step @. '
@ Extract the circuit specifications (i.e., siposl) of this physical
layout by performing a post-layout simulation and compare them
with the design goals; if satisfied, the design is successful; otherwise,
jump to Step @.
O Adjust the discount factor based on the ratio between pre- and
post- layout specifications, e.g., if 5] . > 57 oo & =5 1o /51 e
After the first iteration, we repeat the flow using the set of device
parameters . found in Step @ as the new starting point st of
the trained RL agent for another deployment and the intermediate
circuit specification in @) will be discounted by the discount factor
as a; -5 . until the optimal final device parameters that satisfy
the design goals in the pre-layout stage are found. This method
essentially follows a dynamic over-design strategy that can alleviate
the challenge of estimating a static over-design value derived from
domain knowledge for complex circuits. Our experiments with
the single-stage Op-Amp illustrated in Fig. 2 show that our method
generally takes no more than two rounds to reach a set of device
parameters with which the circuit specifications of a physical layout
can also meet the design goal. Table II shows optimized device
parameters with/without consideration of parasitic effects. The final
physical layout is similar to that shown in Fig. 2 and is omitted here.

C. Analysis of Failed Deployment Cases

Our trained RL agent achieves a high design success rate with
policy deployment (i.e., >90% across different circuits as reported
by our prior work [19]). We find that for these failed cases, some
circuit specifications are able to reach the design goals, while the
others converge to a neighborhood of the desired ones at some
deployment steps, but after which they deviate a bit from the goals.
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TABLE III: Detailed device parameters during the policy deployment for the
two-stage Op-Amp.

Parameter | Step 27 | Step28 | Step29 | Manual tuning
mpl (pm) 11 10 10 10
mnl (pm) 35 34 34 35
mp3 (um) 81 83 85 83
mn3 (pm) 17 16 15 17
mn4 (pm) 5 4 4 4
mn5 (pm) 45 47 49 47
cl (pF) 44 43 45 3.6
Reward -0.105 -0.057 -0.071 10

Fig. 9 shows such a failed policy deployment in the two-stage
Op-Amp example, where the desired circuit specifications given
are gain (G = 360), bandwidth (B = 2.0- 107 Hz), phase margin
(PM = 56°), power consumption (P = 6.93 - 1073 W). It is
observed that around the 28" step, the bandwidth, phase margin,
and power consumption are satisfied, but the gain is still lower
than the design goal. We examine the detailed device parameters?
around the 28" step as shown in Table III. It shows that the reward
achieves the highest value in the 28" step. We then select the
device parameter values reached at this step and proceed with a
slight manual tuning starting from these values. With less than five
manual tuning iterations, a set of optimal device design parameters
can often be easily obtained?. The last row of Table III shows the
device parameters obtained after slight manual adjustment.

D. Comparisons between Different RL Algorithms

Different RL algorithms have shown different performance in
solving practical problems. PPO and DDPG are two primary RL
algorithms used in current RL-based methods [17], [18], [28] for
P2S tasks. Here, we perform detailed experiments to compare their
performance in tackling the P2S task by using the design of a two-
stage Op-Amp as an example. Fig. 10 illustrates our evaluation
results, where we train RL agents with PPO using both “discrete”
and “continuous” actions, as well as DDPG with “continuous’
action. Each curve in Fig. 10 is based on 6 random seeds with
3 x 10° simulations* budget for training. All the RL algorithms
perform batch training by collecting 6 simulation results in parallel.
Note that we also observe similar results for other types of Op-Amps.

1) PPO-continuous vs. DDPG-continuous: Compared to DDPG-
continuous, we find that PPO-continuous has a lower sample effi-
ciency during the training process. This is because PPO-continuous
adopts an on-policy learning mechanism that samples actions
according to its latest stochastic policy. The on-policy characteristic
introduces variance, since each estimate of an expectation over a
finite set of samples may vary, which necessitates a large number
of samples for accurate mean calculations, thereby leading to low
sampling efficiency. In contrast, DDPG-continuous utilizes an off-
policy learning mechanism, which involves a replay buffer to store
transitions from the previous policy and relies on the current policy
only to replenish the buffer, improving the sampling efficiency.

s

2Note that here we do not show the finger numbers of transistors because they
generally remain unchanged around the 28™ step.

3Note that due to the limitations of current deep learning techniques, learning-
based methods (along with other approaches) cannot guarantee a 100% success
rate. Addressing these failures requires the intervention of human designers. We
anticipate that future advances in deep learning will address this issue.

4While training results for other methods are based on millions of simulations,
our RoSE-Opt method achieves rapid convergence and high design success rates
within just tens of thousands of simulations, indicating its practical promise.
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Fig. 10: Comparisons between DDPG and PPO when applied to train RL agents
and deploy trained checkpoints for 200 randomly sampled design goals. (a) mean
episode reward for training, (b) mean deployment simulation cost (c) mean design
success rate. Each curve is based on 6 random seeds. The vertical dashed line is
the convergent point for BO-PPO discrete (our method).

The lower sampling efficiency of PPO-continuous also impacts the
training quality of the policy. As shown in Fig. 10, with the same
number of training samples, the mean design simulation cost (design
accuracy) of the trained policy with PPO-continuous (green line) is
higher (lower) than that of the one with DDPG-continuous (red line).

2) PPO-discrete vs. DDPG-continuous: With the setting of
discrete action space, PPO-discrete demonstrates superior training
sample efficiency and more consistent results compared to its contin-
uous counterpart and DDPG-continuous. In a discrete environment,
the action choices of an RL agent at each step are simplified to adjust
the parameter upward/downward with a small increment/decrement,
or to maintain its current value. This simplicity makes the training
process smoother and improves the quality of the policy to find the
optimal device parameters during the deployment process, as shown
in Fig. 10 (blue line). In a complex continuous environment where
the agent has a plethora of parameter choices, the off-policy mech-
anism of DDPG-continuous could suffer from biases, where some
of the updates are based on prior (potentially incorrect) expectation
estimates. This leads to irreversible incorrect estimates in the end and
causes training instability due to its inherent low-variance but high-
bias nature. As shown in Fig. 10 (red line), there is a sudden change
with respect to the mean episode reward and design accuracy/cost.

However, there is a caveat to using PPO-discrete: the discrete
environment constrains the policy’s design efficiency. Its mean
design cost (i.e., simulation steps) is influenced by the granularity
of the step in the discrete space and the distance between the initial
state and the target solution. Thus, more design steps are required to
find the optimal device parameters. In a continuous environment, the
action at each step corresponds to the normalized device parameters
in the design space, thereby demanding fewer design steps.

3) BO-PPO-discrete vs. PPO-discrete: To address the issue
of the low design efficiency of PPO-discrete, we introduce BO
to optimize the starting point of PPO-discrete, thus positioning
the initial state closer to the solution space. As illustrated in
Fig. 10 (yellow line), this strategy could optimize the starting point,
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Fig. 11: Comparisons between our proposed framework RoSE-Opt, our RL
Backbone, RobustAnalog [31], BO [1], and GA [43] for variation-aware device
sizing problem by taking the design of nested Miller compensation Op-Amp as an
example. Left: mean design success rate. Right: mean design simulation cost.

allowing PPO-discrete to reach the desired specifications without
too much meaningless exploration, accelerating the trajectory
formulation towards the solution. Ultimately, this integration of BO
with PPO-discrete, termed BO-PPO discrete, demonstrates superior
performance in both design accuracy and sampling efficiency,
and achieves commendable results in design efficiency. For other
continuous BO-RL algorithms (i.e., BO-DDPG-continuous vs.
DDPG-continuous), we also observe performance improvement
compared to its RL baseline by producing more consistent results.
This novel approach showcases the potential of combining classical
optimization techniques to improve the effectiveness of RL in
complex analog circuit design. As optimization techniques continue
to evolve, the combined strengths of different optimization methods,
such as BO and RL, underscore the importance of hybrid strategies
in complex optimization scenarios of analog circuit parameters.

4) Training Reward Is Not Always A Good Metric for Comparing
Different RL Policies: One last thing to note is that DDPG-
continuous is able to achieve a much larger episode reward compared
to PPO-discrete during the training process but suffers from worse
design accuracy during the deployment process. This discrepancy is
due to the nature of the episode reward function, which accumulates
intermediate rewards throughout the search process for each training
episode. PPO-discrete leverages fine-grained action to search for
optimal device parameters through multiple steps. Due to this
fine-grained mechanism, the improvement of intermediate rewards
in a training episode is slow, resulting in a smaller episode return.
In contrast, DDPG-continuous adopts continuous action, allowing
it to find a suboptimal solution earlier in the search process and
even within a single step, thereby leading to a larger accumulated
reward. However, since it suffers from biases as discussed above,
DDPG-continuous does not achieve a high design success rate in the
deployment stage. This finding shows that leveraging the training
reward as a metric to compare design automation methods based
on different RL algorithms, as done in many previous work [17],
[18], could be misleading. We recommend employing deployment
accuracy and design efficiency as metrics for fair and reasonable
comparisons across various methods.

E. Comparisons between Different Methods and Summary

Finally, we compare our proposed RoSE-Opt method with
previous RL methods [18], [28], [31] and conventional optimization
methods, such as BO [1] and Genetic Algorithm [43]. In addition
to a general variation-aware device sizing task that we introduced
in Section III, we also study a specific task of analog design, i.e.,
Pareto optimization. The goal is to optimize a particular circuit

RoSE_Opt [l RobustAnalog [l RLBackbone [l GA [l BO
44 04
3.812 o
e
a 31 L -1000 -
% 2.935 s
28 24 1.664 G -2000 -
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Fig. 12: Comparisons between our proposed framework RoSE-Opt, our RL
Backbone, RobustAnalog [31], BO [1], and GA [43] for Pareto optimization problem
by taking the design of nested Miller compensation Op-Amp as an example. Left:
FoMop_amp result. Right: Pareto frontier. Each curve is based on 6 random seeds.

specification or a figure-of-merit (FoM) that consists of multiple
circuit specifications [46]. Here, we use the standard FoM of
Op-Amp defined as FoMop-amp(MHz-pF/ /W) =(GBW-C1,)/P
to customize a reward function and train RL agents (or use
BO/Genetic Algorithm) to maximize it. Note that we also observe
similar results for the nominal corner experiment.

1) Variation-aware device sizing: Fig. 11 illustrates the results.
With the benchmark circuit, RoSE-Opt can achieve a design success
rate of 96.5% and an average deployment length of 12 simulation
costs within 20000 simulations® for trainingﬁ. In contrast, with
the same number of simulations, the RL Backbone attains a lower
design success rate and a longer deployment length. The comparison
again shows that the BO vanguard indeed improves sample effi-
ciency. RobustAnalog is even less competitive to the RL Backbone
due to the incorporation of only partial PVT variations into the learn-
ing framework. Traditional ad-hoc optimization methods such as
BO and GA cannot solve the variation-aware device sizing problem
with high accuracy and efficiency. Thus, our RoOSE-Opt framework
achieves the best sampling efficiency, design efficiency, and design
success rate by considering all PVT variations in the learning loop
and adopting the two-level optimization method at the same time.

2) Pareto optimization: Fig. 12 shows the Pareto frontier of
different methods. Compared to baselines, our ROSE-Opt achieves
the highest FoMop.amp and defines the optimal Pareto frontier by
achieving the lowest power consumption while maintaining the
highest GBW within the fewest simulations.

In the end, we summarize RoSE-Opt together with previous
comparisons in Table IV. In particular, we use BO [1] and GA [43]
as representatives of prior optimization-based methods and use Ro-
bustAnalog [31], RL1 [28], and RL2 [18] as representatives of pre-
vious learning-based methods. Additionally, we use the FoMeploy
defined previously to evaluate the overall performance of a design
automation method in the P2S problem and use the FoMop amp
for Pareto optimization evaluation. The comparisons show that our
proposed RoSE-Opt framework, which uses BO as pre-optimization
and a domain-knowledge-infused RL agent as the main optimization
backbone, can significantly improve training sample efficiency,
design efficiency, and design success rate for the PVT-aware design
and improve Pareto optimization. Note that BO is performed only

5Qur method aims to achieve high generality with learning-based methods and
thus demands more data for training compared to conventional ad-hoc optimization
methods such as BO.

®For P2S problem, the total optimization time is dominated by simulation time.
The average simulation time of nested Miller compensation Op-Amp is around 10
seconds for each run. RoSE-Opt takes 20000 simulations to train its RL agent. After
the training, ROSE-Opt takes an average of 12 simulation costs (2 minutes) for one
unseen design goal.
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TABLE IV: Summary of comparison with existing learning and optimization methods.

Domain Starting P2S problem FoMop-amp Opt problem
Methods knowledge point Training sample efficiency FoMeplo FoMop-amp value

Multimodal PVT optimization | folded-cascode | NMCF | folded-cascode | NMCF NMCF

RobustAnalog® [31] Yes Partial No 1x 1x 1.14 0.625 0.814
BOP[1] No Full N/AC N/A® N/A® 0.46 0.044 2.935
GAP[43] No Full N/A® N/A¢ N/AC 0.067 0.005 1.054
RLIP[28] No Full No 1.3x 1.32x 1.24 0.9 1.378
RL2P[18] No Full No 1.35x 1.4x 1.25 1.1 1.436

RL Backbone Yes Full No 2X 2.5% 1.42 1.26 1.664
RoSE-Opt Yes Full Yes 12x 7.9x 20.51 6.87 3.812

# Original work [31] only uses normal 4-layer multilayer perceptions. We modify its network to the same multi-modality network we used in our RL backbone.
® Previous methods [1], [18], [28], [43] without considering PVT variations fail in the robust design with zero design accuracy and close to 0 FoMopamp. As a result, we modify

their work to include full PVT incorporation.

¢ Traditional optimization methods [1], [43] do not need pre-optimized starting points and training (BO [1] is still considered as an ad-hoc optimization method since it only
uses active learning for improving its optimization sample efficiency without generalization to unseen design goals). Thus, some metrics are not applicable here.

once at the very beginning, thereby incurring minimal overhead.
In summary, our knowledge-infused RoSE-Opt framework that
takes advantage of the complementary benefits of learning and
optimization algorithms (i.e., combining BO and RL) can achieve
the best FoM for the challenging reliable device sizing problem.

VI. CONCLUSION

We propose a BO-RL-based framework to automate the P2S
task for analog circuit design, by incorporating domain knowledge
(e.g., circuit topology, specification trade-offs, PVT variations,
layout parasitics) for design robustness and leveraging BO to
enhance RLs starting point for training efficiency. We show that
such a framework is superior in designing various analog circuits
with higher accuracy, efficiency, and reliability. We expect that
our method would assist human designers in accelerating analog
chip design with artificial agents that master massive circuitry
optimization experiences via learning.
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