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In recent years, nonreciprocally coupled systems have received growing attention. Previous work has
shown that the interplay of nonreciprocal coupling and Goldstone modes can drive the emergence of
temporal order such as traveling waves. We show that these phenomena are generically found in a broad
class of pattern-forming systems, including mass-conserving reaction-diffusion systems and viscoelastic
active gels. All these systems share a characteristic dispersion relation that acquires a nonzero imaginary
part at the edge of the band of unstable modes and exhibit a regime of propagating structures (traveling
wave bands or droplets). We show that models for these systems can be mapped to a common “normal
form” that can be seen as a spatially extended generalization of the FitzZHugh-Nagumo model, providing a
unifying dynamical-systems perspective. We show that the minimal nonreciprocal Cahn-Hilliard equations
exhibit a surprisingly rich set of behaviors, including interrupted coarsening of traveling waves without
selection of a preferred wavelength and transversal undulations of wave fronts in two dimensions. We show
that the emergence of traveling waves and their speed are precisely predicted from the local dispersion
relation at interfaces far away from the homogeneous steady state. Our work, thus, generalizes previously
studied nonreciprocal phase transitions and shows that interfaces are the relevant collective excitations

governing the rich dynamical patterns of conserved fields.
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I. INTRODUCTION

Multispecies systems with effective cross-interactions
that are nonreciprocal have received significant interest in
recent years. At the microscale, classical nonreciprocity is
intrinsically rooted in the breaking of detailed balance. At a
mesoscopic scale, it manifests itself in effective dynamical
cross-couplings that correspond to nonconservative forces
and cannot be obtained as derivatives of a Hamiltonian or
free energy. Nonreciprocity is ubiquitous in active and
nonequilibrium systems [1]. It occurs, for instance, in
predator-prey systems [2], active solids with odd elasticity
[3], protein-based pattern formation [4], mixtures of active
and passive particles [5], quorum-sensing active particles
[6], directional interface growth [7], and non-Hermitian
quantum systems [8]. Such systems can spontaneously
organize in dynamical steady states with nontrivial tem-
poral order, such as traveling and oscillating states.
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Previous work has examined the effect of nonreciprocity
in models of conserved diffusive scalar fields [5,9,10].
Nonreciprocal cross-diffusive coupling has been shown to
result in the emergence of traveling waves (TWs), whose
appearance in systems with conservation laws where
fluctuations are expected to decay diffusively is surprising.
The directed motion of traveling waves provides a mecha-
nism for the breaking of polar symmetry in a system with
purely scalar order parameters.

A similar mechanism is at play in the antagonistic
coupling of two groups of flocking agents described, for
instance, by nonreciprocally coupled Toner-Tu equations
[1]. In the absence of coupling, each population undergoes
a phase transition to a state of finite mean motion that
spontaneously breaks polar symmetry [11]—the nonequi-
librium analog of a finite magnetization in interacting XY
spins. When the two populations A and B are coupled
antireciprocally (A wants to align with B, but B wants to
antialign with A), the system is dynamically frustrated and
organizes into a state of chase-and-run motion where
agents chase each other—a state that breaks chiral
symmetry [1]. Both sets of results have opened up a
flurry of activity on the role of nonreciprocity in dynami-
cal pattern formation [12] and the search for generic
models of nonequilibrium transitions from static to time-
ordered states [13].
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Traveling waves are ubiquitous and well understood in
nonlinearly dynamical systems with activator or inhibitor
couplings. In particular, a prototypical model for oscilla-
tions, excitability, and bistability is provided by the
FitzHugh-Nagumo (FHN) equations—a set of two coupled
nonlinear ordinary differential equations (ODEs) originally
introduced to describe spike generation in stimulated
neurons [14,15]. The spatially extended FHN reaction-
diffusion model and its extensions have been studied
extensively as prototypical models for the emergence of
traveling waves in oscillatory and excitable media [16,17],
but a similarly unified description of the origin of time
order in systems with conserved quantities is still out of
reach. In this paper, we show that a generic minimal model
for the transition from static to dynamic patterns in such
systems is obtained by coupling the Cahn-Hilliard equation
nonreciprocally to a purely diffusive field. The resulting
nonreciprocal Cahn-Hilliard (NRCH) provides a unified
description of a new class of dynamical pattern formation.

In the remainder of this introduction, we first present the
NRCH model and then summarize the main results of
our work.

A. Nonreciprocal Cahn-Hilliard equation

The Cahn-Hilliard equation is a classical model for phase
separation of binary fluid mixtures, where two immiscible
fluids of conserved mass spontaneously demix. It describes
both the equilibrium states and the kinetics of phase
separation in terms of a single scalar field that characterizes
the conserved volume fraction ¢ of one of the two
components. The minimal NRCH equations discussed in
this work are obtained by coupling ¢ to a second conserved
and purely diffusive field y. The coupled dynamics of the
two fields is given by

0,p(x,1) = V3(Dy1¢ + Dyy + ¢* —kV3¢), (la)

0y (x. 1) = V3(Dy1¢p + Do), (1b)

with diffusion coefficients D;;. We demand D,, >0 to
ensure stability of the y field. The « term (with x > 0)
stabilizes the phase-separating ¢ field at short scales and,
thus, controls the interface width and tension. Phase
separation can occur through a spinodal instability when
Dq; < 0. This is evident by examining the linear dynamics
of fluctuations of the conserved fields ¢ and y from their
homogeneous values. Since these fields are conserved, the
dynamics of fluctuations is controlled by soft or hydro-
dynamic modes, defined as those where a fluctuation of
wave number g decays (or grows) at a rate o(q), with
lim,_oRe[o(g)] =0. A familiar example is diffusion,
where density fluctuations can decay only by redistributing
material throughout the system. Indeed, in the absence of
cross-couplings, fluctuations in y decay diffusively, while
fluctuations in ¢ exhibit the characteristic dispersion

(a) Uncoupled Reciprocal Antireciprocal
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FIG. 1. (a) Dispersion relations of the NRCH equations show-
ing the eigenvalue crossing in the uncoupled case (D, D,; = 0,
left) which becomes an avoided crossing for reciprocal coupling
(center) and gives rise to a band of propagating modes for
antireciprocal coupling (right). (b),(c) Kymographs showing the
spatiotemporal dynamics in 1D with periodic boundary con-
ditions. (b) Phase separation and coarsening for reciprocal
coupling (D1, = D,; = 0.07). (c) Traveling waves emerge for
sufficiently strong antireciprocal coupling (D, = —D,; = 0.14).
Notably, coarsening is interrupted for traveling waves. [Param-
eters ¢ = 0 and D,, = 0.1; system size L = 20. Details on the
numerical simulations are provided in Appendix E. The snapshot
profiles in (b) and (c) are from time points = 107 and
t =5 x 10*, respectively.].

relation of a spinodal instability [see Fig. 1(a)], with largest
growth at a characteristic length scale controlled by |D;|
and k.

The minimal nonlinearity ¢° saturates the pattern ampli-
tude, resulting in stable bulk phase-separated regions at
long times [Fig. 1(b)].

Cross-diffusion couples the two hydrodynamic modes,
which becomes apparent through the interaction of the
eigenvalue branches in the linear fluctuation spectrum
(dispersion relation). For cross-diffusivities with equal signs,
the branches avoid crossing and remain real [Fig. 1(a)]. By
contrast, nonreciprocal cross-diffusivities (D, # D,;) cause
the dispersion relation branches to cross at a point where the
corresponding eigenvectors align, resulting in the appearance
of an imaginary part [green dashed lines in Fig. 1(a)]. This
mode coalescence due to nonreciprocal couplings transforms
the static phase-separated state into traveling [Fig. 1(c)] or
oscillating domains [5,9] through a generic mechanism
discussed in detail below. While this model and more
complex ones consisting of two coupled Cahn-Hilliard
equations have been studied before [5,9,10], previous work
has some important limitations. Specifically, Ref. [5] has
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examined Eq. (1) only for small systems near the onset of
instability. References [9,10] have considered more complex
equations, which renders an exhaustive analysis and intuitive
understanding of the dynamics difficult.

B. Summary of results and outline

Our work significantly extends previous findings in a
number of ways. It shows that, despite their apparent
simplicity, Eq. (1) provide deep insight into a broad class
of pattern-forming systems and exhibit several remarkable
behaviors that had not been previously reported, including
interrupted coarsening of traveling waves without wave-
length selection and undulating interfaces.

1. Generic model of traveling patterns
in extended systems

First, we show that Eq. (1) provide a unifying minimal
model for a nonequilibrium phase transition from static to
time-ordered states in extended systems with conservation
laws. Specifically, antagonistic cross-diffusion causes spa-
tial inhomogeneities in the two fields to undergo a chase-
and-run dynamics, until they settle in a state with a
common velocity. This is signaled by the mode coalescence
via the merging of the real part of the two hydrodynamic
modes’ growth rates and the simultaneous emergence of a
finite imaginary part indicating propagating waves [see
Figs. 3(b)-3(e)]. This structure of the dispersion relation is
a distinct signature of temporal organization and, hence,
provides a criterion for identifying this new class of
dynamical pattern formation. Furthermore, the hydrody-
namic nature of the fluctuations guarantees that for strong
enough nonreciprocity the merging will occur for all
parameter values; hence, it is generic. Connecting with
the language of dynamical systems, the transition of the
decoupled field ¢ from a homogeneous well-mixed state to
a stationary phase composed of dilute and dense regions
occurs via a pitchfork bifurcation [18] of the pattern
amplitude. Nonreciprocal cross-couplings drive a second
transition to a time-dependent state that breaks parity and
time-reversal symmetry, where the demixed domains
(“droplets™) travel at constant velocity. The domains
organize into periodic wave trains that we refer to as
traveling waves. This transition is related to ones previ-
ously observed in nonconserving reaction-diffusion sys-
tems [19-21] and is known as a drift-pitchfork bifurcation
[22]. The same bifurcation underlies the transition to
collective actuation in an active solid [23].

2. Criterion for identifying this new class
of dynamical pattern formation

We identify the spatially localized coalescence of hydro-
dynamic modes arising from the conservation laws shown in
Figs. 3(b)-3(e) as a generic mechanism for temporal
organization in these systems. The features of the linear

dispersion relation highlighted in Fig. 3(b), thus, provide a
criterion for identifying this new class of dynamical pattern
formation. The intersection of the two branches of the
dispersion relation is associated with a nondiagonalizable
form of the matrix that governs the linear dynamics of
fluctuations and degenerate eigenvectors. This mechanism
is analogous to the one responsible for the onset of chiral
states in antagonistic flocking models and is referred to as an
exceptional point in the corresponding phase diagram [1].
There is, however, an important difference between the two
systems. In flocking models, the velocity order parameter is
not conserved. Instead, the spontaneously broken polar
symmetry of the flocking state is associated with the
emergence of a Goldstone mode with a relaxation rate that
vanishes at long wavelength. Chiral states that spontane-
ously select handedness occur when the Goldstone mode
coalesces with the relaxational mode describing fluctuations
of the homogeneous steady state [1]. The coalescence,
therefore, happens globally. In contrast, for the mass-
conserving systems studied here, mode coalescence is
spatially localized at the interfaces of the phase-separated
patterns, and the emergence of traveling states that break
polar symmetry occurs generically for all parameter values.
The interfaces effectively “self-tune” to the neutrally stable
mode at the right edge of the band of unstable modes. This
behavior is manifest in the characteristic form of the
dispersion relation [Figs. 3(b)-3(e)] that identifies the class
of systems captured by the minimal model [Eq. (1)].
Importantly, this allows us to predict the speed of the
traveling waves by a local dispersion relation at the inter-
face, even far from the homogeneous steady state. This
points toward a vantage point for tackling highly nonlinear
systems by linearizing locally and using the presence of
conservation laws as previously proposed in Refs. [24,25].

3. Unifying model of traveling patterns

We explicitly demonstrate that the mode-coalescence
route to spatiotemporal order arises naturally in a broad
class of pattern-forming systems that can all be recast in the
NRCH framework. We show this explicitly for one-dimen-
sional realizations of nonequilibrium systems previously
considered in the literature, including mixtures of active
and passive particles [5], mass-conserving reaction-diffu-
sion systems [13,26,27], and active gel models [28,29]. In
all these systems, an analysis of the linear dispersion
relation at the inflection point of the interface between
two phase-separated regions using a method introduced in
Ref. [25] provides an expression predicting the interface
speed—a result that generally requires an analysis deep in
the nonlinear region.

4. New mechanism for interrupted coarsening

We show that, although the equations contain only a
single explicit length scale, corresponding to the width of the
interface, the traveling droplets exhibit interrupted or
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arrested coarsening. It is known that the introduction of a
second length scale, as arising, for instance, from broken
mass conservation, can arrest coarsening [30-33]. Other
mechanisms that have been shown to interrupt coarsening
resulting in microphase-separated states include elasticity
[34,35], the coupling to chemical reactions [36], and long-
range interactions [37,38]. The mechanism that stabilizes
finite wavelength patterns in the NRCH model is, however,
more subtle. In the initial stages of the phase separation,
droplets travel at different speeds, and the system continues
to coarsen via collisions of traveling droplets in a chase-and-
run mode until all droplets have achieved the same stable
velocity and coarsening stops. As a result, one finds that the
system can select stable traveling droplets with a broad range
of wavelengths—ranging from the interface width to the
system size—depending on the initial conditions.

5. New dynamical patterns in two-dimensional systems

In two-dimensional (2D) systems, interfaces can become
unstable leading to undulations of the wave fronts. This
interfacial instability gives rise to a rich variety of patterns
including spatiotemporal chaos. Notably, since undulations
propagate along the interfaces, i.e., transversally to the
wave fronts, they break chiral symmetry in addition to polar
symmetry.

6. Role of boundary conditions

No-flux boundaries break translation invariance and can
arrest traveling waves in one dimension (1D). For suffi-
ciently strong antireciprocal coupling, stationary solutions
cease to exist, giving rise to standing waves in 1D and to
periodically sloshing structures in 2D. In 1D, the onset of
the transition to the standing wave regime can be read off
from a simple geometric condition in the phase portrait, and
the full phase diagram can be predicted by linear stability
analysis and simple graphical constructions.

7. Outline

The remainder of this paper is organized as follows. In
Sec. II, we revisit the FitzHugh-Nagumo model to highlight
the role of nonreciprocity in driving temporal oscillations
(limit cycles). In Sec. III, we introduce the minimal NRCH
model, carry out a linear stability analysis, and show that a
regional stability analysis in the interfacial region provides
an excellent estimate for the speed of traveling waves. After
discussing the arrest of coarsening and wavelength selec-
tion in 1D in Sec. IV, we extend the numerical work to 2D,
where a new state of undulating traveling waves is observed
(Sec. V). In Sec. VI, we show that a number of recently
studied physical systems can be mapped onto our minimal
NRCH model. Details of the mapping are given in
Appendix F for reaction-diffusion systems, with specific
application to the dynamics of the Min-protein system of
Escherichia coli and in Appendix G for active gel models

of active poroelastic media. We conclude the body of the
paper with a brief discussion and outlook in Sec. VII.

II. REVISITING THE FITZHUGH-NAGUMO
MODEL

We start with a minimal example that places nonreci-
procity in a dynamical-systems framework. To this end, we
briefly revisit the classic FHN model [14,15]

ou(t) = u—u’+ cv, (2a)
0,v(t) = a—bv + cyu, (2b)

which serves as a prototypical minimal model for excita-
bility, bistability, and oscillations in a broad variety in
physical and biological systems. In the biological context, u
is called an activator and » an inhibitor when ¢, < 0 and
¢y > 0. When ¢, = ¢ =c¢, Eq. (2) can be derived
as relaxational dynamics in the free energy landscape
flu,v) = =2u? +1u* — cuv — av + (b/2)v*.

It is useful to analyze the behavior in the language of
dynamical systems [18,39] by plotting the nullclines in the
(u, v) phase space, defined as the solutions of d,u = 0 and
d,v =0 [Figs. 2(a) and 2(b)]. The intersection of the
nullclines determines the fixed points of the system. In
the reciprocal case, the system is bistable: There is an
unstable fixed point at © = v =0 and two stable fixed
points [black disks in Fig. 2(a)]. The dynamics cannot
exhibit limit-cycle oscillations, as is manifest from the
phase portrait in Fig. 2(a). By contrast, oscillations appear
when the coupling is sufficiently nonreciprocal ¢, # ¢;.
In the regime of separated timescales, |a|, b, |cj5| < 1, the
limit-cycle oscillations can be constructed geometrically in
the phase portrait as relaxation oscillations which periodi-
cally switch the state of the system between the two stable
steady state branches of the fast u-dynamics [see Fig. 2(b)].
Thus, the FHN model exemplifies that a dynamical-
systems perspective allows one to understand geometrically
how oscillations emerge from nonreciprocal coupling.
Such insight is useful because, unlike the amplitude
equation formalism commonly employed to study pattern

(a) Reciprocal ci2 =co1 (b) Antireciprocal c1oc < 0

Limit cycle

v 4

FIG. 2. Phase portrait of the FHN model (2) with a = 0. (a) For
reciprocal coupling (¢, = ¢,1), the v-nullcline is always sloped
such that the system is bistable. (b) For sufficiently strong
antireciprocal coupling, limit-cycle oscillations emerge.
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formation [40], it is not restricted to the vicinity of the onset
of oscillations. In the following, we seek this kind of insight
for the dynamics of Eq. (1).

III. A PROTOTYPICAL MODEL
FOR NONRECIPROCALLY
COUPLED CONSERVED FIELDS

To go from the “well-mixed” setting described by a few
degrees of freedom to a spatially extended system, it is
useful to first consider just the bistable dynamics of u, i.e.,
Eq. (2a) with ¢;, = 0. Bistable dynamics can be cast as
relaxational dynamics in a double-well potential. The
minimal prescription for a spatially extended system is
to supplement the double-well free energy density by the
lowest-order term of a gradient expansion, x/2(Vu)2,
penalizing interfaces. The relaxational dynamics can be
either nonconserved, in which case one obtains the Allen-
Cahn equation [41], or conserved, giving the Cahn-Hilliard
equation [42], i.e., Eq. (1a) with D, = 0. (These equations
are also referred to as model A and model B, respectively
[43].) We can now apply the same logic to the FHN
equations, by deriving the relaxational dynamics from the
free energy density f -+ (k/2)(Vu)? (yielding reciprocal
dynamics) and then allowing the coupling coefficients to
become nonreciprocal. In the nonconserved case, one
arrives at the well-known FHN reaction-diffusion equations
which are a prototypical model for oscillatory and excitable
media, exhibiting phase and trigger waves [44]. In the
conserved case, one obtains the NRCH model [Eq. (1)].
Table I provides an overview of the relationships between
different models discussed above and places the NRCH
model in a systematic classification scheme. To emphasize
that the variables are fields and avoid confusion with the
FHN ODEs (2), we have changed notation to the fields ¢
and y and the diffusion coefficients D;;.

Before analyzing the emergent behavior arising from
Eq. (1) in further detail, let us get a few preliminaries out
of the way. The spatial averages of ¢ = (¢) and = (/) are
conserved and are, therefore, control parameters of the
system. However, because Eq. (1) are invariant under
addition of a global constant to y, we can set iy = 0 without
loss of generality. Moreover, we have scaled the coefficientin
front of the ¢ term to unity which is always possible by
rescaling the field ¢p. We further choose length and timescales
such that k = 1 and D;; = —1. Observe that one can rescale

TABLE I. “Local” dynamics and their generalizations to spa-
tially extended systems. FHNRD is the classic FHN reaction-
diffusion model for oscillatory and excitable media obtained by
supplementing Eq. (2) by diffusion of u and v.

Local Bistability  Oscillations, excitability
Spatial Nonconserved ~ Allen-Cahn FHNRD
p Conserved Cahn-Hilliard NRCH: Eq. (1)

y such that either D,; = D, (reciprocal case) or D, =
—D, (antireciprocal case). In other words, only the product
D, D, isrelevant for the dynamics. We, therefore, introduce
the signed geometric mean of the cross-diffusivities:

D = sgn(D,D51)/|D1,D ], (3)

as the parameter controlling the strength and reciprocity of
cross-diffusive coupling throughout the paper. That is, we set
Dy, = D, D,; — |D| in Eq. (1).

Finally, we note that, by discretizing Eq. (1) in the
elementary setting of two well-mixed, diffusively coupled
compartments, one obtains equations for the mass
differences between the two compartments whose form
recovers the FHN equations (see Appendix A). Static and
standing wave patterns correspond to bistability and limit-
cycle oscillations in the FHN model, respectively.

A. Linear stability analysis

We begin with a linear stability analysis of the homo-
geneous steady states. Notably, this analysis later proves
useful beyond the usual setting of linearization around a
global steady state. Instead, we use a local dispersion
relation—calculated at the interfaces of highly nonlinear
patterns—to predict the onset and speed of traveling waves.

Linearizing Eq. (1) around a homogeneous steady state
(., w) = (g, y) [45] for perturbations of the form e/¢*+o!
yields the Jacobian

J:_2<D1]+3i¢(2)+1<q2 D) (4)
D Dy,

In the uncoupled case (D = 0), the dispersion relation has
two independent branches given by the diagonal entries in
the Jacobian [see Fig. 1(a), left]. A band of unstable modes
[0,q.] emerges in the first branch when D;; < —3¢3,
where g% = (—D;; —3¢3)/x. This is the well-known
spinodal decomposition instability that drives phase sep-
aration. Cross-diffusive couplings cause the branches of the
dispersion relation to interact near their intersection point,
giving rise to either an avoided crossing in the reciprocal
case D > 0 [see Fig. 1(a), center] or a band of propagating
modes (Imo # 0) in the antireciprocal case D < 0; see
Fig. 1(a), right, and Figs. 3(c)-3(e). For sufficiently strong
antireciprocal coupling, the band of propagating modes
begins to overlap with the band of unstable modes [0, ¢ |.
Some simple algebra (and introducing the shorthand
d]l = Dll —+ 3¢(2)) ylelds

g, = /—(d + Dyn)/x, (5a)
Imo(q,) = £47 \/ —D|D| - D3, (5b)

021014-5



FRIDTJOF BRAUNS and M. CRISTINA MARCHETTI

PHYS. REV. X 14, 021014 (2024)

g‘\ Dy> (a) (b) [ .
;l)- [D1a| Imo(g;:) =0 Dy 02 7 oo
9] 0 -
« o 05 1 15 2 [Dul N 4q
-0.2 N\
_ [E : N
g 401 .
g . \E,"
5 0 Y — Re
E / A == 1Im
< -0.1 : ~s
085 g+ 095

(e) Pattern amplitude
0
D1y
|D1l
705_
_1_
o)
B
-1.54
0 0.5 1 Dy 15
| |D11]
0 d)max*d)min Z

FIG.3. (a)Linear stability diagram in the D,,-D parameter plane
for an equal mixture (g?) = 0); for unequal mixtures g?) #0, see
Appendix B. Along the solid purple line (E), an “exceptional
point” appears in the dispersion relation, where the band of
unstable modes touches the band of propagating modes [see
(b)]. CH and P indicate the “conserved-Hopf” and pitchfork
bifurcations, respectively, bounding the regime where pattern
formation is suppressed by fast y diffusion (D,, > —Dy;). Below
the dashed purple line, the fastest-growing mode in the dispersion
relation is propagating. (b)—(d) Dispersion relations in different
regimes: (b) exceptional point (see the inset); (c) near the pitchfork
bifurcation; (d) near the conserved-Hopf bifurcation, where all
unstable modes propagate [Imo(g — 0) ~ 4%]. (e),(f) Pattern am-
plitude and wave speed as a function of D,, and D. Stationary
patterns (S) transition to traveling waves (TWs) in a drift-pitchfork
(DP) bifurcation at D = —D,, which lies exactly along the line of
exceptional points [see (a)]. The onset of patterns at the CH and P
bifurcations is supercritical for the case equal mixture case ¢p = 0
shown here. [System size L = 100 in (e) and (f).].

if —-D > D,,, and

o B

Ima(q.) = 0, (54)

if —D < D,,. Unstable modes exist only when the expres-
sion under the square root in ¢, is positive, which sets the
boundaries of the linearly unstable parameter regime,
demarcated by CH and P bifurcations in Fig. 3(a).

) , @ 1@

(¢mf, winf) dbr
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(d)

32

2
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g p b+—-

0 (1000000008 = == === =a=mmcaaan-
-1.5 -1 -0.5 0

D/|Dy|

FIG. 4. Graphical construction of stationary states. (a) The
elementary building block of a stationary pattern is a single
interface separating the low-density phase from the high-density
phase, i.e., a “half-droplet.” (b) ¢-y phase portrait with the ¢-
nullcline (blue line) and y-nullcline (red line), corresponding to
lines where the respective generalized chemical potentials are
constant [Eq. (6)]. The bulk phase densities and the densities at
the interface’s inflection point can be read off from the inter-
section points of the nullclines. (c) Maxwell construction deter-
mining the generalized chemical potential. The areas under the
curve have to balance; see Eq. (8). (d) Amplitude of stationary
patterns as a function of the antireciprocal coupling strength
D < 0. The numerical results (o) agree excellently with the
prediction from the graphical construction (solid line). P marks
the supercritical pitchfork bifurcation. The dashed line indicates
the unstable homogeneous steady state. (Parameters ¢ = 0,
D22 = 12, and L = 100)

Outside this regime, fast y diffusion (D,, > —D;;) sup-
presses pattern formation. The term ‘“conserved-Hopf”
instability was coined in Ref. [13] to describe a long-
wavelength instability with propagating modes, giving rise
to traveling waves with a finite speed at onset [5,13]
(analogous to the onset of oscillations with finite frequency
in a Hopf bifurcation [18]). At the pitchfork bifurcation,
stationary patterns emerge with an amplitude that scales as
A'/2 where A is the parameter distance from the bifurca-
tion [see Fig. 4(d)]. Both these bifurcations are supercritical
for ¢p = 0, as can be seen from the pattern amplitude going
to zero at the bifurcation [Fig. 3(e)]. For ¢ # 0, they
become subcritical (see Appendix B).

For D = —D,,, the marginal mode g . touches the band of
propagating modes. At this point, the Jacobian has two
vanishing eigenvalues and is nondiagonalizable; i.e., its
eigenvectors coincide. This marks an exceptional point
[1,8]. Note that an exceptional point has codimension two,
meaning that two parameters need to be tuned for it to occur.
Here, one of these parameters is the wave number ¢g. This
implies that only one control parameter of the system, e.g., a
cross-diffusion coefficient, needs to be tuned for an
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exceptional point to appear in the dispersion relation.
[Additional linear stability diagrams in terms of D, =
(Dy; & Dy5)/2 and in the D,;-Dy, plane are shown in
Fig. 9 in Appendix C.]

A puzzling observation in previous literature has been
that traveling waves emerge when Imo (g, ) # 0, even if the
fastest-growing mode of the dispersion relation correspond-
ing to wave number ¢, 1S not propagating (i.e., has
vanishing imaginary part) [28,29,46,47]. Indeed, numerical
simulations show that Imo(g.,.) provides a precise criterion
for the onset of traveling waves in a drift-pitchfork (DP)
bifurcation [22] [Fig. 3(f)]. In such a bifurcation, a sta-
tionary pattern becomes unstable and starts propagating (or
“drifting””) and the propagation speed scales as A'/? with
the distance A from the bifurcation. In other words, the
propagation speed undergoes a pitchfork bifurcation—
hence the name. This is an important difference to the
CH instability, where traveling waves emerge with a finite
speed. The emergence of traveling waves in DP and CH
bifurcations spontaneously breaks parity symmetry in 1D
(polar symmetry in higher spatial dimensions).

The prediction of the DP bifurcation from the excep-
tional point in the dispersion relation is remarkable from the
standpoint of weakly nonlinear analysis where one expects
traveling waves only when the fastest-growing mode is
propagating [i.e., when Imo(q,,) # 0]. To resolve this
puzzle, we first analyze the fully nonlinear stationary
patterns and then use the local dispersion relation at its
interfaces to understand the transition to traveling waves.

B. Generalized Maxwell construction
for stationary patterns

Weakly nonlinear analysis, as performed in Ref. [5],
is restricted to small systems of size L ~2x/q, where
only the system-size mode is unstable. To overcome this
limitation, i.e., investigate the fully nonlinear traveling
waves in a large system, we first take a closer look at the
stationary patterns by generalizing the Maxwell construc-
tion for phase separation. Stationary patterns form the basis
for a quantitative understanding of the onset and speed of
traveling waves. We focus on one spatial dimension in this
and the subsequent section. Two-dimensional patterns are
briefly investigated in Sec. V.

In a stationary state [¢(x),(x)], the fluxes of ¢ and y
have to vanish. We can express these fluxes J, = =V,
Jy ==V, as gradients of the generalized chemical
potentials:

ty(b.w) = Dy + ¢ + Dy — kd%¢h, (6a)

#y (b, y) = |DIp + Dy (6b)

On a domain with periodic or no-flux boundary condi-
tions, the fluxes vanish only when these potentials are

spatially constant, i.e., u¢($,1/7) = const, yy,(dA), W) = const.
Graphically, the latter condition implies that the densities
fall onto a straight line in the ¢-y phase portrait; see
Fig. 4(b). In analogy to the FHN model, we call this
“w-nullcline.” Furthermore, bulk regions where d,.¢ van-
ishes must lie on the ¢-nullcline D“Jb + 433 +Dy = Hep-
In other words, the bulk densities ¢, are given by the
nullcline intersection points. The third intersection point in
the center corresponds to the inflection point of the inter-
face, where 02¢ vanishes.

To find the generalized chemical potentials y, and u,,,
and the size of the low- and high-density domains, we
employ the Maxwell construction (also know as common
tangent construction) and the given average densities ¢ and
. Solving Eq. (6b) for yr and substituting into Eq. (6a)
gives

b DD|> A3 25
py ——p, = (D ——2L) d+¢> — k2. (7)
"Dy < "D,
s=p=const ==ﬁ1 1

This is simply the stationary state equation for the Cahn-
Hilliard equation. Nontrivial solutions, i.e., stationary
patterns, exist only when D;; < 0. This can be seen from
a simple mechanical analogy where the stationary profile
$(x) is mapped to the position ¢ of a ball with mass x at
time x rolling in a potential V() = ud — D1,¢?/2 + ¢*/4
[44]. Stationary patterns, corresponding to periodic oscil-
lations of the ball, exist only when V has a local minimum
which requires Dy, <0. In 1D, the value of u is fixed as
follows: We first multiply with dxfj; and then integrate
across the interface using 20,0%p = 0,(,¢)? and the fact
that anE ~ 0 in the bulk phases, giving

[y () = p_(W)lu = Flp (W) = Flp_(w)],  (8)

with the “local free energy density” F(¢) = Dy1¢*/2 +
¢*/4. For the symmetric free energy density of the Cahn-
Hilliard model, Eq. (8) is solved by u=0, ¢ = +£/—D;;
see Fig. 4(c). The graphical construction generalizes to
asymmetric local free energy densities where finding p, in
general, requires solving Eq. (8) numerically. In 1D, the
sizes of the low- and high-density domains, L., are
determined by the average density via the “lever rule”
(Ly +L_)p=¢_L_+¢,L,; see Fig. 4(a). The above
construction generalizes to higher spatial dimensions,
where x is taken to be the coordinate transversal to the
interface. Interface curvature introduces an additional term
proportional to k which is obtained by locally transforming
to polar coordinates centered around the local center of
curvature.

In the above graphical construction, the binodal lines
limiting the regime of stationary patterns can be read
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off from the nullcline intersection in the phase portrait

b oqa = $+ = /D11 — D|D|/Day. At ¢ = 0, the bino-

dal touches the spinodal obtained from linear stability
analysis, implying that the pitchfork bifurcation from the
homogeneous to the phase-separated state is supercritical in
that case; see Fig. 4(d). For ¢ #0, the regime of linear
instability is smaller than the regime where stationary
patterns exist, implying that the system is subcritical; see
Appendix B. This is a consequence of the fact that the
spinodal and binodal become different for unequal mix-
tures, while they coincide for equal mixtures. Numerical
simulations show that there is also a regime of subcritical
traveling waves when ¢ # 0 that emerge in a drift-pitchfork
bifurcation from subcritical stationary patterns.

C. Interface mode predicts traveling
wave onset and speed

The “generalized Maxwell” construction presented in the
previous section yields the “bulk phases” ¢ but in itself is
not informative about the interface that separates them.
However, from the inner nullcline intersection we can read
off the profile’s inflection point (¢;.¢, wine) = (0, 0) around
which the interface is centered (cf. Fig. 4). This allows one
to calculate a local dispersion relation at the interface by
evaluating the Jacobian Eq. (4) at ¢py = ¢;,¢ [see Fig. 5(b)].
This is, of course, a slight abuse of linear stability analysis
of the homogeneous state, since the interface is evidently

relation is informative about the instability that maintains
the interface against “flattening” toward a homogeneous
state. The interface width £, is the length scale where
destabilizing and stabilizing effects balance and can be read
off from the marginally stable mode ¢'™ in the dispersion
relation: £}, ~ 7/ g™ [25]. More precisely, the interface can
be approximated as a half-period sinusoidal profile ¢ ~
sin[g™(x — xj,)] concatenated to flat plateaus at ¢ = ¢
[see Fig. 5(a)]. To understand how the interface width is
selected dynamically, consider an interface wider than
7/ ¢™. The corresponding sinusoidal mode will grow, since
it falls into the band of unstable modes (g < ¢'™). The
nonlinearity causes the saturation of ¢ at the plateaus ¢,
while the sinusoidal mode’s growth causes the interface to
narrow. This process stops when the interface width reaches
7/q, where the sinusoidal mode at the interface stops
growing. Conversely, an interface initially narrower than
7/ ¢™, will contain a sinusoidal mode that decays until the
interface width reaches z/q™.

For sufficiently strong antireciprocal coupling
(D < —Dy,), the interface mode’s growth rate acquires a
nonzero imaginary part [Imo(g'™) # 0; see Fig. 3(a)l,
indicating a propagating mode driven by local chase-
and-run dynamics. Indeed, this condition coincides exactly
with the drift-pitchfork bifurcation where stationary pat-
terns turn into traveling waves [cf. Fig. 3(g)]. What sets the
speed of these waves? The propagation speed of a mode

not homogeneous. Nonetheless, the local dispersion  with wave number g and complex growth rate ¢(q) is given
(a) (© 8] oa=100 (e) © ok=1/4
¢ Lint ~ — | ex=s0 Ak=1 0 00 o
¢ — Y+ Q) 64 AX=20 Q SKk=4 ynw (;)
+ ImU(q'”t) < ox=10 < k=16 *°
VW~ < 4 ’; 57 o
Gin a+ £ N ; E = ~2d
A ()
=" ooel L . .
L x i 0 1 2 3 4 10 100 1000
(d) 20 : A/ K/|Dul
(b) Local dispersion relations % © Numeric
; a ] 1\ —Ea. (12) [ (f)1 A=10  (g) A=1000
o Interface o Bulk Slo- /-Y\ o ¥l
0|/\ . E ] % __b-““ ".A".. o° ] 0 \ 0 0
| N |\ 7 5 2000000000000000000% X/ \ N /_L__,,Z
oy .
. - @ - =51

-1 ¢

FIG.5.

d) 1

(a) Iustration of a traveling “droplet” profile with the interfaces (red) and bulk (blue) regions highlighted. (b) Local dispersion

relations of the interface and the bulk obtained by evaluating the Jacobian Eq. (4) at ¢;,; and ¢, respectively. The regional dispersion

relation in the bulk exhibits no instability. The marginal mode ¢}

int

, obtained from the local dispersion relation at the interface, predicts

interface width [see Ref. [25] and droplet speed as shown in (c) and (d). (c) Droplet speed as a function of the nonreciprocal coupling
strength D, comparing numerical simulations for various wavelengths (symbols) and the analytic prediction Eq. (12) (solid line). DP
marks the drift-pitchfork bifurcation at D = —D,,. (d) Wave speed as a function of the average density ¢ which controls the relative size
of the low- and high-density bulk domains. Note that the prediction from the interface mode ¢'™ is valid even where the homogeneous
steady state is unstable, i.e., outside the “spinodals” +¢* = +./—D;;/3]. No patterns exist outside the “binodals” indicated by vertical
dashed lines. (e) Wave speed as a function of the wavelength A and the interface width (¢;,; & \/x/|D1,|) controlled by «. (f) For A = £},
the wave profile is nearly sinusoidal; (g) sharp interfaces form when 4 > 7. [Parameters D;; = —1, D5, = 0.1; ¢ = 0 in (c) and (e);

4 =100 in (d); D = —0.15 in (d) and (e)].
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by Imo(q)/q. Based on the hypothesis that the waves are
driven by the interface mode, we expect that the speed of
traveling waves follows the relationship

Imo qint
Urw X % . (9)
q+

In fact, this relationship holds as an equality for a sinusoidal
pattern where the wavelength is twice the interface width [5].
Since the droplet propagation requires redistribution of
mass, the wave speed is limited by diffusive transport through
the domains separating the interfaces when 4> ¢&,.
Specifically, the mass fluxes through these domains scales
as Jo o 1/AL, where A_ (4, ) denote the widths of the low-
(high-) density domains. Moving an interface bridging the
density difference ¢, — ¢_ requires a net mass flux

1 1
(¢+_¢—)”TW:J++J—°<Z+Z' (10)

To fix the prefactor, we demand that the relation vpw =
Imo(q.)/q. is recovered for the sinusoidal pattern where
A =2A_=L/2~x/q,. This yields

alme(g™) /(1 1
g Ay A

D] 2z D3,
“ T\ T (12)

In Eq. (12), we use Eq. (5b) and the “lever rule” for the sizes
of the low- and high-density domains. Notably, g™ cancels
from this expression, implying that vy is independent of
the interface width. In numerical simulations across param-
eter sweeps for D, gZ A, and k, we find that the observed
wave speeds agree well with the analytic approximation
from Eq. (12) as shown in Figs. 5(c)-5(e). Remarkably,
the prediction is accurate even in the binodal regime

|p| > ¢* = \/—D;,/3, where the homogeneous steady state
is stable. This emphasizes the fact that the local dispersion
relation at the interface informs about properties of the highly
nonlinear pattern which are not captured by the global
dispersion relation of the homogeneous steady state.

In passing, we note independence of wave speed from the
interface width suggests that one might derive an analytic
expression in the sharp interface limit ¢'™ — co. However,
the cross-diffusive coupling poses a particular challenge
for such an approach, since y becomes discontinuous at
interfaces in the limit. This problem is not present in
recently studied systems, where a phase-separating field
is coupled to a nonconserved diffusive field via source terms
rather than cross-diffusive fluxes such that a sharp interface
approximation can be applied straightforwardly [47-50].
Resolving this technical challenge is left for future work.

(11)

IV. INTERRUPTED COARSENING
AND WAVELENGTH SELECTION

A hallmark of phase-separating systems is coarsening,
the growth of the characteristic length scale of spatial
patterns. In mass-conserving systems, coarsening is driven
by redistribution of mass from smaller to larger droplets, a
process known as Ostwald ripening [51,52].

In the reciprocally coupled case, coarsening in the
NRCH system proceeds to complete phase separation as
in the conventional Cahn-Hilliard equation [cf. Fig. 2(c)].
We find the same behavior for weak antireciprocal cou-
pling (=D < D,,), where no traveling waves occur. By
contrast, the coarsening kinetics is markedly different in
the region where the system supports traveling waves
(=D > Dy). .

In the slow-y regime (|D| < |Dy,]), traveling droplets
initially coarsen via collisions of counterpropagating
droplets as shown in the kymograph in Fig. 6(a).
Remarkably, the coarsening stops once all droplets travel
in the same direction. Mass is redistributed from smaller
to larger droplets until their masses are equilibrated,
resulting in a periodic wave train. Starting from a
homogeneous state perturbed by small amplitude noise,
the initial propagation directions of the droplets are
random. As a result, an ensemble of simulations with
different noise realizations shows a broad distribution of
droplets remaining in steady state [Fig. 6(c)]. In other
words, the dynamics does not select a particular wave-
length. In fact, starting simulations initialized with a given
wavelength, we find that the initial wavelength is selected
in the final steady state, implying that all wavelengths
(larger than the interface width) are stable. In particular,
this includes the fully phase-separated state (see Fig. 11 in
Appendix E).

We find this remarkable multistability of wavelengths for
all traveling waves. However, close to the CH bifurcation,
i.e., in the fast-y regime |D| ~ |D,|, we find that the final
wavelength selected from a randomly perturbed initial
condition is very close to the wavelength of the fastest-
growing mode [see Figs. 6(b) and 6(d)]. This suggests that a
different wavelength selection mechanism is at play in this
regime. Recall that the CH bifurcation is supercritical,
meaning that the pattern amplitude is small in the vicinity
of the bifurcation and the dynamics is dominated by the
fastest-growing mode. Since this mode is propagating near
the CH bifurcation [cf. Fig. 3(d)], there is initially a super-
position of two counterpropagating waves [Fig. 6(b)]. These
waves interact through the nonlinearity, which eventually
causes the amplitude of one to go to zero such that a traveling
wave remains. Alternatively, the amplitudes of both waves
might equilibrate, which would result in a standing wave
pattern. However, we have not found stable standing waves
in any of our simulations, suggesting that they are unstable.
An analysis in terms of the amplitude equation formalism
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Slow v regime Near CH bifurcation
200 0 )1 e Dy =0.8 200
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FIG. 6. (a) In the slow-y regime, droplet collisions drive
coarsening (see enlarged view on the left) until all droplets travel
in the same direction and slowly equilibrate their masses (right).
(b) Near the CH bifurcation, the dynamics appears as a super-
position of counterpropagating traveling waves, corresponding to
the fastest-growing mode of the dispersion relation. Over time,
the amplitude of one of the waves vanishes and the steady state is
always a pure traveling wave. (c),(d) Distribution of droplet
number (inversely proportional to wavelength) of traveling wave
trains in simulations initialized from a homogeneous state with
small amplitude noise. Red lines indicate the number of “drop-
lets” corresponding to the fastest-growing mode, n* = L,y /27.
(c) Significant coarsening and broad distribution of final peak
number near the drift-pitchfork bifurcation. (d) Almost no
coarsening and narrow distribution of final peak number near
the supercritical conserved-Hopf bifurcation. [Parameters L =
200 in (b) and (c) and L = 400 in (c) and (d); ensemble size 200.
Simulations are run sufficiently long to ensure that a steady state
is reached, 7 = 5 x 10°].

(also known as weakly nonlinear analysis) [40] might
explain this puzzling observation.

The multistability of wave trains with different wave-
lengths, including the fully phase-separated state, is sim-
ilar to what is found in 1D models of flocking [53,54].
However, in that case, not all wavelengths larger than the
interface width are stable, and, in particular, short wave-
lengths are unstable. Other scenarios for interrupted coars-
ening, such as in systems with weakly broken mass
conservation, long-range interactions, or coupling to chemi-
cal interactions, generally exhibit a band of stable wave-
lengths that is bounded both from above and below [33,36].
The reason for this is that the same process that causes
coarsening to stop also drives splitting of domains above a
critical size [33,55].

V. 2D PATTERNS: UNDULATING FRONTS
AND SPATIOTEMPORAL CHAOS

We conclude our analysis of Eq. (1) with a brief
exploration of dynamics in two spatial dimensions. As
in one dimension (1D), we find uninterrupted coarsening in
the phase-separation regime and interrupted coarsening for
traveling waves [see Fig. 7(a) and Supplemental Material
Movie 1 [56]]. Strikingly, for sufficiently large wave-
length, the interfaces of the traveling waves start undulating
and the undulations propagate transversal to the traveling
wave [see Fig. 7(b) and Supplemental Material Movies 2
and 3 [56] ]. While traveling waves break polar symmetry,
the traveling undulations additionally break chiral sym-
metry. Notably, undulations of adjacent interfaces can
travel either in the same direction (see Supplemental
Material Movie 2 [56]) or in opposite directions [see
Fig. 7(b) and Supplemental Material Movie 3 [56] ].

A large parameter sweep shows that the threshold
wavelength of traveling bands above which undulations
form decreases with the strength of nonreciprocal coupling
[Fig. 7(c)]. We suspect that the interface undulations are
driven by a nonreciprocal generalization of the Mullins-
Sekerka instability [57], which describes fingering of a
propagating interface and is driven by gradients of a single
diffusive field. The nonreciprocal interaction with the
second diffusive field is likely responsible for the trans-
versal motion of the undulations, which is absent in the
classical Mullins-Sekerka fingers. A further investigation
of the interface instability using capillary wave theory is
beyond the scope of this manuscript and deferred to future
work. In the conclusion (Sec. VII), we briefly discuss
potential relations to other interfacial instabilities discov-
ered in recent studies [9,48,58].

For nonequal mixtures (¢ # 0), the canonical Cahn-
Hilliard dynamics transitions from labyrinthlike patterns to
high-density droplets in a low-density background (¢ < 0).
(Since the model is symmetric under ¢ — —¢, the dynam-
ics of droplets is equivalent to that of “bubbles or holes.”)
The NRCH model shows a similar transition from traveling
wave bands to traveling droplets [9] that can form regular
dynamic lattices (see Supplemental Material Movie 6 [56]).
In large systems, we find that interfacial undulations cause
larger droplets to break up while smaller droplets collide
and merge resulting in chaotic dynamics (see Supplemental
Material Movie 7 [56]). The breaking up of large droplets
interrupts coarsening and the system eventually reaches a
steady distribution of droplet sizes (see Fig. 12 in
Appendix E). This dynamically maintained distribution
of droplet sizes is in contrast to the stable traveling wave
(“train of droplets”) which forms in 1D, because droplet
collisions cease once all droplets travel in the same
direction (cf. Fig. 6). As a consequence, we do not expect
that interrupted coarsening in 2D will exhibit the same
strong dependence on the initial condition as we find in 1D.
Testing this hypothesis and developing a kinetic theory for
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FIG. 7. (a) Traveling wave bands form in a 2D domain with periodic boundary conditions (see Supplemental Material Movie 1 [56];
D = —1). The green arrow indicates the propagation direction. (b) Undulations form spontaneously along the interfaces of traveling
waves (see Supplemental Material Movies 2 and 3 [56]). The undulations travel along the interfaces (blue arrows), i.e., transversal to the
traveling wave direction (red arrow). (c) Phase diagram showing that transversal undulations (purple diamonds) form only for traveling
waves whose wavelength 4 is sufficiently large. The interfaces of traveling waves with smaller wavelength remain flat. Simulations are
performed in a square domain with side length 4 and initialized with a single high-density band, corresponding to a traveling wave with
wavelength A. (d) Undulations destabilize interfaces and thereby drive spatiotemporal chaos in simulations with no-flux boundary
conditions (D = —0.2); see Supplemental Material Movie 4 [56]. [¢p = 0, D5, = 0.1; L = 200 in (a); L = 100 in (b) and (d)].

the droplet size distribution are interesting avenues for
future research.

Finally, let us turn to 2D systems with no-flux boundary
conditions. In contrast to 1D, where no-flux boundaries
can arrest the interface mode that drives traveling waves
(see Appendix D), the propagating interface mode can
drive mass transport transversal to the interface in 2D.
Thus, stationary interfaces are always unstable in 2D for
D < —D,, [Fig. 7(d)]. Starting from a fully phase-sepa-
rated (demixed) initial condition, the interfaces’ transversal
instability drives the breakup of the phase-separated
domains, leading to a dynamic, “microphase-separated”
state, where mass sloshes from one side of the domain to
the other chaotically [see Fig. 7(d) and Supplemental

TABLE II.

Material Movie 4 [56] ]. The slow sloshing is a result of
the initial condition where ¢ is concentrated on one side
of the system. Starting from a homogeneous state, we
find spatiotemporal chaos (see Supplemental Material
Movie 5 [56]).

VI. CONCRETE PHYSICAL SYSTEMS

In the following, we discuss various classes of systems
that can be mapped to Eq. (1) as summarized in Table II.
The appearance of propagating modes near g, is the
characteristic feature that identifies these systems, since
it indicates that their linearized dynamics (Jacobian) is of
the form Eq. (4). For each system, we discuss the origin of

Overview of physical systems sharing the same prototypical core behavior described by Eq. (1). The Min-protein system of

E. coli serves as example for protein-based pattern formation described by mass-conserving reaction-diffusion systems.

System

¢ W

Nonreciprocal binary mixtures [5,6,9,32,59,60]

Active or passive particle mixtures [5]
Mass-conserving reaction-diffusion systems [26,27,61]
Active gels [28,29,62-64]

Phase-separating field

Density of active particles
MinD concentration®

Density of contractile elements”

Diffusive field

Density of passive particles
MinE concentration

Strain®

*MinE redistribution is required for the pattern-forming instability, see Ref. [65].
l?The density field alone does not possess an instability in this case: Coupling to strain is required for the instability; see Eq. (15).
“Hydrodynamic mode due to translation invariance of the displacement field u — u + a.
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the effective negative diffusion Dy, that drives the pattern-
forming (mass-redistribution) instability and the origin of
nonreciprocity in the effective cross-diffusive coupling.

Before discussing concrete physical systems, we note
that mapping to Eq. (1) generally lead to coefficients D;;
and x that depend on the fields ¢ and yw. Nonetheless,
studying the minimal model provides a crucial baseline.
The rich behavior of the NRCH model suggests that in
many cases the minimal model might indeed be sufficient
to provide a phenomenological account of experimental
observations. The failure of the minimal model to repro-
duce certain experimental observations may provide hints
toward necessary model extensions, such as nonconstant
coefficients [59].

In nonreciprocally coupled binary mixtures [9,10,59],
phase separation is driven by relaxation to equilibrium,
while nonreciprocity results explicitly from nonequilibrium
effects. This is in contrast to the other systems below, in
which phase separation itself is driven by nonequilibrium
processes such that there is no equilibrium limit which is
reciprocal but still exhibits phase separation.

For mixtures of active and passive Brownian particles,
a mapping to Eq. (1) has been provided in Ref. [5]. The
active particles form patterns via motility-induced phase
separation [66]. Persistence of self-propulsion of the active
particles causes them to slow down when their orientation
points in a direction of increasing density (of both active
and passive particles). This causes both the mass-redis-
tribution instability and the negative cross-diffusion term
Xap (here, Dyy). In contrast, the cross-diffusion term yp,
(here, D,;) is not affected by activity, because passive
particles are simply sterically repelled by both active and
passive particles.

Mass-conserving reaction-diffusion systems describe,
for instance, pattern formation by proteins that cycle
between different conformational states (e.g., membrane
bound and cytosolic) much faster than they are produced or
degraded [4]. An effective description of the proteins’
mass-redistribution dynamics can be obtained via a local-
equilibrium approximation [24,25,65]. The most widely
studied example is the Min-protein system of E. coli, which
has been reconstituted in vitro [67], where it exhibits a
remarkable diversity of spatiotemporal patterns [26,68,69].
The dynamics of the densities of MinD and MinE can be
mapped to Eq. (1) via the local-equilibrium approximation
(see Appendix F for details). Because of MinD’s self-
recruitment to the membrane, its effective self-diffusion
coefficient is negative, thus driving the pattern-forming
mass-redistribution instability [65]. Nonreciprocal cross-
diffusion of MinD and MinE is a consequence of the
nonreciprocity in the chemical reactions (MinD recruits
MinE to the membrane, while MinE drives membrane
detachment of MinD). In general, the effective transport
coefficients can be read off from the slopes of the surfaces
of reactive equilibria as a function of the total densities,

which gives them a simple geometric interpretation [65].
We note that a systematic mapping of mass-conserving
reaction-diffusion dynamics to a more general form of the
nonreciprocal Cahn-Hilliard equation has been obtained
very recently via a weakly nonlinear analysis in Ref. [13].
While this approach is mathematically more rigorous than
ours, it does not provide the physical and geometric insight
afforded by the local-equilibrium approximation.

Active gel theory has been used to model active viscoelastic
and poroelastic media on various scales from the intracellular
actomyosin cortex [28,62,70] to tissues and motile cells
embedded in extracellular matrix (ECM) [63,64,71]. These
models qualitatively reproduce the wavelike and “pulsatory”
dynamics observed in these biological systems [72-75].
A prototypical model for motile cells embedded in ECM
serves as a concrete setting in the following discussion
(mapping of poroelastic models [28,29] to these equations
is briefly discussed in Appendix G). In the following, we
restrict our analysis to isotropic active stress and a 1D
description that captures only the longitudinal mode, where
the displacement field is aligned with the wave vector. This
setting is sufficient to capture the basic instability of active
contractile media [28,29,62,63]. In future work, it will be
interesting to study 2D and 3D active gel models, where the
transversal component(s) of the displacement field may be
excited by the undulational instability of traveling waves.

In 1D, mass conservation of cell density ¢ and force
balance take the form

d,c + 0,(itc) = Ddc, (13a)

yit = 0, [nd it + Ed.u+ T,(c)]. (13b)
Here, u is the displacement (and iz = d,u the velocity) of
the ECM which is modeled as a Kelvin-Voigt viscoelastic
material with stiffness £ and viscosity #, y is the friction of
the ECM with an underlying rigid substrate, and T, (c) is
the active stress exerted by the cells.

Let us first consider the case of vanishing ECM stiffness
E = 0. This case corresponds to the model studied in
Ref. [62] in the context of an actomyosin cortex, where ¢
describes the density of contractile myosin motors. We can
formally solve Eq. (13b) and substitute into Eq. (13a)

¢ =0 {[D = c(y —ndt)"'T(c)]orct,  (14)

where T, = 0.T,. This is a closed equation for ¢ and has
the form of a diffusion equation where the effective
diffusion constant becomes negative in the long-wave-
length limit when ¢T%,(c) > yD.

Going through the same calculations for a finite stiffness
E >0 and introducing the strain & = d,u yields (see
Appendix G)
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]/a,C = ax[(yD - CT;)axc - CEaxg} - aiTa(C)’ (1521)

R I

y0,e = Ed%e + 0,(T%0,¢), (15b)
where we expand the kernel (y — 792)~! to second order in 0,
to obtain the term (1/y)dtT,(c) that stabilizes short wave-
lengths. In the form Eq. (15), it becomes clear that ECM
elasticity has the role of an effective “cross-diffusive”
coupling that couples the cell density ¢ to the ECM strain
e. In turn, the active tension T,(c) provides the cross-
coupling from ¢ to e. Because the “cross-diffusion” terms
appear with opposite signs [and because 7%, (c) > yD/c > 0
is required for phase separation], the coupling is necessarily
antireciprocal. Traveling waves, therefore, appear generically.

The hydrodynamic modes in active gels arise from mass
conservation of the density ¢ and translation invariance of
the displacement field u (i.e., invariance under u — u + a).
The translation invariance is broken if the ECM is elasti-
cally attached to an underlying rigid substrate, which
introduces a term ke in Eq. (15b). This is analogous to a
production-degradation term that breaks mass conserva-
tion. This generically interrupts the coarsening process
leading to microphase separation [33]. For soft attachment
(small k), the branches crossing in the dispersion relation
remains close to ¢, such that the interfacial mode remains
oscillatory or propagating. Stiff attachment, however, shifts
the second branch of the dispersion relation down and
thereby suppresses traveling waves.

A slightly different scenario to the one described by
Eq. (13) is a viscous active gel that is coupled to an elastic
substrate by friction. In this case, the substrate needs to be
sufficiently soft for traveling waves to emerge. In the limit
of a rigid substrate, one recovers the scenario studied
in Ref. [62].

Contraction pulses and waves are observed in the acto-
myosin cortex of cells [72-74,76] and in tissues [75,77].
While most previous models have relied on oscillatory or
excitable biochemical kinetics [72,74,78], our unifying
NRCH model demonstrates how these dynamic patterns
can arise generically from transport of conserved quantities
even in the absence of feedback loops in the biochemical
reactions. A key feature of the NRCH model is the transition
from dynamic to stationary patterns as a function of the
(effective) transport coefficients. This might shed new light
on the question how the actomyosin cortex transitions from
dynamic pulses to the stationary cytokinetic ring [79].

Chemosensitive motility and catalytically  active
droplets.—The cell densities of two motile bacterial
species that cross-regulate each others motility via signal-
ing molecules can effectively be described as a binary
mixture with nonreciprocal coupling [32]. Nonreciprocity
of the effective cross-diffusion results directly from the
nonreciprocity of chemical signaling interactions. The
effective description in terms of only the bacterial densities

is valid when the dynamics of the signaling molecules is
much faster than the bacterial motility.

Recently, the opposite limit of a fast chemotactic
particles coupled to a slow signaling molecule has been
studied in Ref. [47]. Even though the chemical field is not
conserved in the dynamics, the branches in the dispersion
relation cross near g, when the chemical field is slow.
Therefore, the traveling waves emerge by the same mecha-
nism as in the prototypical model Eq. (1). A related
scenario was studied in Ref. [49] in the context of
catalytically active droplets. In both models [47,49], broken
mass conservation leads to interrupted coarsening. As we
have shown here, coarsening of traveling waves is generi-
cally interrupted, even without broken mass conservation.
The mechanism of wavelength selection due to weakly
broken mass conservation is well understood for quasista-
tionary patterns [30,33,80], In contrast, for traveling wave
patterns the question of wavelength selection far from a
homogeneous state remains a wide open and an interesting
avenue for future research.

VII. CONCLUSION

Traveling waves emerge generically in a broad range of
dynamical systems. While their emergence and dynamics
are well understood in excitable and oscillatory media
without conserved quantities [40,44,81,82], much less is
known about traveling waves in the presence of conservation
laws. Here, we have presented the NRCH model Eq. (1) as a
minimal model for the emergence of traveling waves in
systems with conservation laws. The NRCH model can be
seen as the mass-conserving analog of the well-known
FitzHugh-Nagumo reaction-diffusion model [16]; see
Table I. It unifies many previously studied systems, includ-
ing mixtures of active and passive particles, reaction-
diffusion systems, and active gels (see Table II). Notably,
already this minimal model exhibits several remarkable
behaviors such as coarsening driven by droplet collisions
which arrests without selecting a preferred wavelength and a
transversal instability of planar interfaces that gives rise to
traveling wavefront undulations and spatiotemporal chaos.
The present study provides only a first glimpse of this rich
phenomenology and raises many interesting questions for
further research as summarized below.

As a central result, we have identified the mechanism by
which stationary patterns transition to traveling patterns in
the NRCH model. The transition is heralded by an excep-
tional point in the local dispersion relation at the interfaces
of the stationary pattern. At the exceptional point, two
hydrodynamic modes coalesce; i.e., the Jacobian’s eigen-
vectors coincide. This mechanism of temporal organization
generalizes the notion of nonreciprocal phase transitions [1]
to mass-conserving systems. In the nonconserved case, the
mode coalescence involves a global Goldstone mode (e.g.,
due to the rotation invariance of an orientational order
parameter or oscillator phase) and is independent of spatial
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gradients. By contrast, in the mass-conserving system, the
mode coalescence takes place at finite wave number and is
spatially localized to domain interfaces. Notably, the
traveling wave speed is predicted by the local dispersion
relation at the interface, even far from the homogeneous
steady state.

More generally, our results show that interfaces are the
relevant collective excitations that govern the pattern
dynamics of nonreciprocally coupled conserved fields.
This justifies, a posteriori, that we used the minimal form
of the equations for two conserved fields Eq. (1), as these
equations capture the key features: the formation of
interfaces through phase separation and their motion
governed by the local dispersion relation. This offers a
complementary approach to the amplitude equation for-
malism, which is valid for small amplitude sinusoidal
patterns near the onset of pattern formation (e.g., near
the conserved-Hopf bifurcation) [13].

We are only beginning to understand the rich phenom-
enology of the NRCH model and many important questions
remain open. In the following, we point to several exciting
avenues for future research.

First, noise plays a crucial role in the nonreciprocal phase
transitions studied in Ref. [1]. This is not the case for the
systems studied here. On the other hand, our analysis of the
deterministic dynamics has revealed that traveling waves
are highly multistable, with stable wavelengths ranging
from the interfacial length scale up to the system size
(corresponding to a fully phase-separated state) and the
selected wavelength depends sensitively on the initial
condition. This suggests that noise may play an important
role in wavelength selection, similar to what is observed in
models of flocking [54]. Other than noise, weakly broken
mass conservation [30,33], coupling to chemical reactions
[36], or long-range interactions [37,38], e.g., via an elastic
medium [34,35], may also provide mechanisms for wave-
length selection. The scenario of elasticity-mediated long-
range coupling is particularly interesting in the context of
active gel theories and poroelastic media.

Second, we found the emergence of transversally travel-
ing undulations at the interfaces of traveling waves as a
particularly striking feature of the NRCH dynamics. These
undulations are reminiscent of the traveling finger patterns
observed at an oil-air interface driven by the rotation of two
acentrically mounted cylinders [7]. A similar phenomenon
has recently been observed in simulations of a nonreciprocal
four-component mixture [9]. While the exact mechanism
driving these undulations remains unclear, we hypothesize
that they may arise via a nonreciprocal generalization of the
well-known Mullins-Sekerka instability [57]. An active
Mullins-Sekerka instability has recently been identified in
a model for active phase separation [58], where the ampli-
tude of undulations does not saturate, leading to the
formation of an “active-foam”-like state. A different sce-
nario for fingering has recently been studied in the context of

chemotactic fronts [48], where the front instability is
mediated by a nonconserved chemoattractant field.
Similar instabilities might be found in other recently studied
systems where a phase-separating field is coupled to a
nonconserved field through source terms [47,49].
Developing a capillary wave theory for the NRCH model
is left for future work. We expect that understanding the
interface dynamics will be crucial to approach the open
questions of coarsening and wavelength selection in 2D.

Third, we have restricted our analysis to the minimal
model Eq. (1) with constant coefficients. These minimal
equations already give rise to unexpectedly rich phenom-
ena, suggesting that many observations from experiments
and more complex models might also be described by a
minimal phenomenological model. The simplicity of
Eq. (1) has allowed us to understand the dynamics in
terms of linear stability analysis and phase space geometry,
providing a starting point for systematic investigations of
more complex models with density-dependent transport
coefficients [59] or spontaneous phase separation of the y
field [10].

A promising experimental setting for observing signa-
tures of NRCH dynamics may be the in vitro reconstituted
Min-protein system of E. coli [67]. Mathematical models of
the Min system can be mapped to the NRCH equations,
since the densities of MinD and MinE are conserved and
their interactions are nonreciprocal. The protein interactions
can be tuned at a molecular level [83]. Moreover, the
Min-protein system can be confined to shallow micro-
chambers [26,68]. This suppresses bulk-surface oscillations
that appear in systems with larger bulk-surface volume [24],
allowing one to integrate out the bulk degrees of freedom.
Notably, in such microchambers, the Min system exhibits
spatiotemporal chaos and traveling droplets not unlike those
found in the NRCH model (see Supplemental Material
Movies 5 and 6 [56]). The insights from the NRCH model
might also shed light on the quasistationary patterns of
traveling waves observed in the Min-protein system and the
transitions between such patterns [69].

Finally, the interface undulations also bear striking
similarities to those found in phase-separating mixtures
of passive fluids and active liquid crystals driven out of
equilibrium by cytoskeletal motor proteins [84]. In these
systems, it has been shown that the emergence of active
emulsions of continuously splitting and merging droplets
and of traveling interfacial waves is facilitated by the
coupling to liquid crystalline degrees of freedom [84,85].
The present work suggests, however, that variations of the
purely scalar minimal model described here may also
capture this behavior.
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APPENDIX A: TWO-COMPARTMENT
APPROXIMATION: MAPPING TO FHN

As a minimal “cartoon” of the spatially extended system,
we can approximate the spatial extended domain by two
diffusively coupled well-mixed compartments [65]:

0ipr, = Dy (g — 1) + b1 — b + Din(wr —w1).
atd)R = _ard)b
oy, = Doy (g — 1) + Don(wr —wir),

OWr = —0Wr. (A1)

The average densities ¢ = (¢, + ¢g)/2 and yy =
(wr +wg)/2 are conserved. Therefore, the dynamics
can be written in terms of the redistributed densities A¢ =

(pr — ¢1)/2 and Ay = (yp —wg)/2:

1
EatA¢ = =Dy (1 =3¢5)Ad — AP’ + DAy, (A2a)
1
zatAl// =Dy A¢ — Dy Ay. (A2b)

These equations have exactly the form of the FHN model
Eq. (2) with “offset” a = 0. This zero offset is a conse-
quence of the parity symmetry of Eq. (1). For spatially
varying coefficients in Eq. (1), this parity symmetry is
broken, and one obtains an FHN equation with a # 0 in the
two-compartment approximation.

Note that the two-compartment approximation corre-
sponds to a system with no-flux boundary conditions, which
exhibits standing waves rather than traveling waves. The
continuous translational symmetry required for traveling
waves can be captured by a single-mode approximation [5].

APPENDIX B: UNEQUAL MIXTURES (¢ # 0)

In the main text, we focus our analysis on the case of an
equal (symmetric) mixture ¢» = 0. In this case, the onset of
pattern formation is supercritical, as the spinodal and the
binodal lines coincide. In the following, we briefly discuss
unequal mixtures. As shown in Fig. 8, the onset of pattern
formation is generically subcritical when ¢ # 0.

In the phase diagram, the binodal lines ¢ = ¢, bound-
ing the regime where stationary patterns exist, are given by
D, = —\/(=Dy, — ¢*)D,,. The spinodal, bounding the
regime where the homogeneous steady state is unstable, is
given by D; = —\/(=D,, — 3¢*)D,. Because its patterns
exist outside the spinodal region, the spinodal line is a
subcritical pitchfork bifurcation. Notably, the locus of the
exceptional point in the local dispersion relation (cf. Fig. 3)
predicts precisely the drift-pitchfork bifurcation (DP)
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FIG. 8. Phase diagrams for unequal mixtures (¢ #0). (a) The
homogeneous steady state is unstable above the spinodal (dashed
blue line), while stationary patterns exist above the binodal (solid
and dot-dashed blue lines; the discrepancy to the numerical
simulations is due to the finite size of the simulation domain).
Below the drift-pitchfork bifurcation (solid magenta line, DP),
stationary patterns are unstable and develop into traveling waves.
The red line indicates the conserved-Hopf bifurcation (CH). Near
the drift-pitchfork bifurcation, the conserved-Hopf bifurcation is
subcritical (dashed red line), while it is supercritical further away.
(b) When |$|> > —D,, /3, the homogeneous steady state is stable
for all values of D,, and D < 0, such that no spinodal and no
conserved-Hopf bifurcation appear in the phase diagram. Trav-
eling waves emerging due to a drift-pitchfork bifurcation from
stationary patterns exist for sufficiently weak antireciprocal
coupling.

where traveling waves emerge from phase-separated pat-
terns. This is true even deeply in the subcritical regime
where the global homogeneous steady state is stable for all
values of D and D,, [Fig. 8(b)].

Near the drift-pitchfork bifurcation, the conserved-Hopf
bifurcation is subcritical while it remains supercritical
further away [Fig. 8(a)].

APPENDIX C: LINEAR STABILITY
DIAGRAMS IN THE D_-D, PLANE

In this appendix, we redraw our phase diagram in the
plane of D, = D, 4+ D, for the original form of Eq. (1)
where y has not been rescaled. This parametrization has
been used before in the literature [1,9] and is, therefore,
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FIG. 9. (a),(b) Phase diagrams in the D_-D, plane. The coordinate axes correspond to the reciprocal and antireciprocal cases,
respectively. The bifurcation lines have hyperbolic shapes, because only the product Dj,D,; = D — D? is relevant. (a) For sufficiently
slow diffusion of y (i.e., D{; < —D»,, < 0), there is a regime of traveling waves. (b) No regime traveling waves exist when D,, > —Dy;.
For D, < 0, sufficiently strong antireciprocal cross-diffusive (D_ > DP = /=D, Dy,) suppresses phase separation. For D; > 0, the
uncoupled system is linearly stable, but sufficiently strong reciprocal cross-diffusive coupling (D, > D% = /D, D5,) can destabilize
the homogeneous steady state, giving rise to cross-diffusion-induced static phase separation. (c) Phase diagram in the D{;-D,, plane in
the antireciprocal regime (D, = 0). Note that this phase diagram shows the same information as the one in Fig. 3(a).

useful for making contact with previous work. In this
parametrization, the axes D_ = 0 and D = 0 correspond
to purely reciprocal and purely antireciprocal cases,
respectively [see Figs. 9(a) and 9(b)]. Because of the
freedom to rescale w, only the product Di,D, =

solid purple and orange dashed lines, systems with no-flux
boundary conditions exhibit arrested traveling waves
[cf. Fig. 10(b)]. Note that large values of D,,, correspond-
ing to fast diffusion of the y field, allow the y field to
catch up with ¢, stabilizing the static phase-separated state

and suppressing the traveling waves (regions shaded in
white in the phase diagrams).

Traveling wave patterns exist only for D,, < —D; [see
Fig. 9(a); cf. Fig. 3(a)]. Keeping D,, fixed and decreasing
the negative value of Dy, thus eliminates traveling waves
from the phase diagram once —D;; < D»,.

D2+ — D? controls the behavior of the system, and, there-
fore, the bifurcation lines in the D, plane have a hyper-
bolic shape. By rescaling y, one can always map system
onto a purely reciprocal or purely antireciprocal one,
depending on the sign of D,D»; as indicated by the black
and red arrows, respectively. In the regions between the
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FIG. 10. (a) Phase diagram for a 1D domain with no-flux boundary conditions arrests the drift-pitchfork bifurcation. The regime of

arrested traveling waves found in numerical simulations is shaded in green. For sufficiently strong antireciprocal coupling (below the red
line), arrested traveling waves transition to standing waves due to a destabilization of the bulk domains. Along the dashed orange line,
the y-nullcline intersects the ¢-nullcline at its turning points [see (c)]. In the timescale-separated regime D,, < |Dy;|, this marks the
limit of existence of stable stationary patterns. (b) Arrest of the interface-driven traveling waves once all mass has accumulated at a no-
flux boundary (D, = —D,; = 0.14). Note that the nullcline intersection points corresponding to the bulk densities lie on the stable
segments (solid blue line) of the ¢-nullcline in the phase portrait. (¢) Standing wave pattern resulting from the destabilization of the bulk
domains (D, = —D,; = 0.25). (Parameters D,; = —1, Dy, = 0.1, L = 50, and simulation time ¢ = 0-2 x 10%).
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APPENDIX D: ARRESTED TRAVELING
WAVES AND STANDING WAVES

In the main text, we argue that traveling waves are driven
by the propagating interface mode and that they require
continuous mass transport through the bulk domains. No-
flux boundary conditions suppress this mass transport and
thereby stabilize a stationary interface against the drift-
pitchfork bifurcation; see Fig. 10. In 2D, such “arrested”
interfaces are destabilized by mass transport transversal to
the interface [cf. Fig. 7(d)]. In 1D, the stationary patterns
become unstable only when the bulk domains lose stability.
An approximate criterion for this instability can be read off
from the phase-portrait construction, which suggests that
the bulk domains are unstable when (¢, ) lie on the
positively sloped segment of the ¢-nullcline. In other
words, stationary patterns are expected to lose stability
when the y-nullcline intersects the ¢-nullcline at its turn-
ing points. Indeed, this criterion provides a good approxi-
mation for the onset of standing wave oscillations; see
Figs. 10(a) and 10(c). It is analogous to the geometric
criterion for the onset of limit-cycle oscillations in the FHN
model [cf. Fig. 2(b)].

APPENDIX E: NUMERICAL SIMULATIONS

The 1D simulations are performed using Mathematica’s
NDSolve[] function. The 2D simulations are performed
using the finite element software COMSOL MULTIPHYSICS v6.
Since finite element methods are not well suited to handle
gradients beyond second order, we introduce u, as an
auxiliary field and write the ¢ equation as 0,¢p = Vz,u(/,.
To make the equation for y,, parabolic, we allow it to relax on
a fast timescale 7, < 1:

Tﬂatﬂ(p +M¢ :D11¢+¢3 +Dl//—l<'v2¢. (El)
We use 7, = 10~*. Choosing smaller values of 7, does not

change the results.
The wave speed in 1D simulations is calculated via

oy = o X0t (E2)

 JFax(0.9)*”

which robustly determines the average speed of moving
interfaces where (0,¢)? is large, as one can easily see by
transforming into the comoving frame ¢ (x, 1) = (x — vrw1).

To assess patterns in the binodal regime [e.g., in Figs. 5(d)

and 8], simulations are initialized in a phase-separated state:

x —%‘)/4 +a(),  (E3)

w(x,0) = sin(2zx/L) + & (x).

#(x,0) = tanh K%_

(E4)
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FIG. 11. Multistability of traveling waves initiated with differ-
ent wavelengths A = L/n with n =1, 3, 15 the number of
“droplets.” Note that the time axis is scaled differently in each
kymograph to account for the scaling of wave speed with inverse
wavelength, vpw ~ 1/A. Parameters L = 200, D,, = 0.1, and
D12 = 02

Here, L is the simulation domain size, L . = (1 + ¢/2)is the
size of the high-density domain, and # controls the initial
width of interfaces. &;, denote small amplitude noise
(uniformly distributed in [—0.1,0.1]). This initial condition
extended to 2D is also used to study the emergence of
interface undulations in 2D [cf. Figs. 7(b)-7(d)].
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FIG. 12. (a) Snapshots of a long-term simulation showing

interrupted coarsening of traveling droplets. The droplet areas
(b) and number (c) continue to fluctuate as droplets continually
collide and break up (shaded band in indicates one standard
deviation around the mean). The distribution of droplet sizes
[see the inset in (c)] reaches a steady state that appears to be well
approximated by a Gamma distribution with shape parameter
a=2 and scale parameter = 14, i.e., P(v/A)~+/Aexp[v/A/14.0].
Droplet sizes are pooled across the time interval € [0.6, 2] x 10°.
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To assess the stability of traveling waves with different
wavelengths, we perform simulations starting with initial
conditions given by

¢(x,0) = tanh[sin(2znx/L)/¢] + & (x),  (ES)

w(x,0) = cos(2znx/L) + & (x). (E6)
The 7/2 phase shift between ¢ and y sets the direction of
wave propagation. We find that all wavelengths above the
interface width are stable, including the fully phase-
separated state (n = 1). Kymographs of three examples
are shown in Fig. 11.

We investigate the interrupted coarsening dynamics of
droplets in a system with nonequal mixture (¢ = —0.5) by
running a simulation until the distribution of droplet sizes
reaches a steady state (see Fig. 12).

APPENDIX F: MASS-CONSERVING
REACTION-DIFFUSION SYSTEMS

1. General mass-conserving reaction-diffusion systems

Dynamical equations describing reaction-diffusion can
be written in the general form
du(x,t) = DV?u +f(u), (F1)
where u = {u;} represents the collection of all diffusing
and reacting densities and D = diag({D,}) is the diffusion
matrix. We demand the diffusion matrix be diagonal,
meaning that there is no cross-diffusion on the level of
the individual components u;. When the reaction kinetics f
is mass conserving, there exist “stoichiometric” vectors s;
such that sf = 0. The corresponding conserved densities
are given by p; = s’u. We can further define the mass-
redistribution  potentials  7;(u) := s/Du. Multiplying
Eq. (F1) with s from the left then yields the mass-
redistribution dynamics
0,pi(x, 1) = Vi u(x, ). (F2)
To find approximate, closed dynamics for the densities
pi» we introduce the local reactive equilibria [24,25], which
are functions of the local total densities p;:

f(u*) =0,

wioh: {T) (73)

Under the condition that the local reactive dynamics
o,u = f(u) have a single stable fixed point u*, we can
make a local-equilibrium approximation in the long-
wavelength limit

u(x, ) R ({p;(x.1)}) (F4)

and reduce the dynamics to the redistribution of the total
densities

pi(3.0) = B (o) = 0. L Pyoups | (F5)

with the effective (cross-)diffusion coefficients D;; :=
siTDapju*. Effective cross-diffusion of the conserved den-

sities arises as a consequence of the chemical reactions even
when the “bare” diffusion matrix D is diagonal. The
coefficients D;; will, in general, depend on the local densities
p; via the local-equilibrium concentrations u*({p;}).

When the determinant of the effective diffusion matrix D
is negative, the dynamics becomes effectively antidiffusive,
i.e., has a long-wavelength instability. At short wave-
lengths, the local-equilibrium approximation does not hold
and the system is restabilized by the interplay between
(slow) diffusion and reactions [25]. Accounting for this
interplay in the local-equilibrium approximation yields the
stabilizing V# term in Eq. (1a).

2. Min-protein dynamics

The “skeleton model” of the Min system [26,80]
describes the concentrations of MinD and MinE in differ-
ent conformational states, namely, membrane-bound
MinD (m4) and MinDE complexes (mg4.), and cytosolic
MinD-ATP, MinD-ATP, and MinE (cpr, cpp, cg). The
model can be written in the form Eq. (F1) with u =
(mg, Mye, cpr, cpps cg), D = diag(Dy, Dye, Dp, Dp, Dg),
and the reactive dynamics are given by

Rp'(u) — R (u)
Rg"(w) — Rpg(u)

f(u) = —Ry'(u) + Acpp |, (F6)
RODfIEZ(u) — Acpp
—R"(u) + Ry (u)
where the reaction terms
Ry (u) = (kp + kqpmg)cpr, (F7a)
R (u) = kggmyce, (F7b)
RODfIEZ(u) = kdemde (F7C)

account, respectively, for MinD attachment and self-recruit-
ment to the membrane, MinE recruitment by MinD, and
dissociation of MinDE complexes with subsequent detach-
ment of both proteins to the cytosol. The term Acpp
accounts for nucleotide exchange, i.e., conversion from
¢cpp to cpr, in the cytosol. Importantly, these reaction
kinetics conserve the average total density of MinD and
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MinE proteins, pp and pg, individually; i.e., there are two
globally conserved masses that are redistributed in space.

APPENDIX G: ACTIVE GEL MODELS

1. Mapping to effective NRCH equation
To derive Eq. (15) from the 1D active gel model Eq. (13),
we first rewrite the force balance equation as
(r —nd%)it = Ediu + 9,T4(c) (G1)
and then formally solve for #&. The resulting kernel

(y —10%)~" can be approximated in a gradient expansion,
yielding (to third order in d,)

U~ n 21 c
y (1+ya%)[Eax LoTe)] (@)

~ EQu + 0,T,(c) + LT, (c). (G3)
4

After applying d, on both sides and introducing the strain
& = 0,u, one has

yoe ~ Ede + AT, (c) + La'T,(c).  (G4)
y
Substituting # into Eq. (13) gives
yo,c = yD = 9,[cEdu + 0,T,(c)] = 1*T,(c).  (G5)
v

In Eq. (13), we retain the fourth-order gradient only in the ¢
dynamics, where it is necessary to stabilize short length
scales when T!, > yD/c.

2. Active poroelastic models

As we briefly explain in the following, the models by
Radszuweit et al [28] and by Weber, Rycroft, and
Mahadevan [29] are closely related. This fact is slightly
obscured by the nondimensionalization performed in
Weber, Rycroft, and Mahadevan, which uses the elasticity
constant to rescale time and, thus, prevents decoupling the
displacement field from the mass-redistribution dynamics
in the limit of a vanishing elastic constant. The explicit
concentration field ¢ in Ref. [28] is replaced by the volume
fraction in Ref. [29]. Both models can be cast in the form
of Eq. (13).

We recapitulate the derivation from Ref. [29], immedi-
ately specifying to an active solid with volume fraction ¢
and a passive fluid with volume fraction 1— ¢. The
dynamics of ¢ is governed by a transport equations and
an incompressibility equation

0 + 0.(v,¢) = DO, (Go)

0=a,pus+ (1 - p)v,). (G7)
Given appropriate boundary conditions (Dirichlet or peri-
odic), the incompressibility condition can be solved to
give v, = /(1 - P)v,.

Force balance in the two phases reads

0= ax(ql)as) - ¢axp - fv (GS)

0=0,l(1- o] - (1—Pop+f  (G9)
with the friction force f = y¢(1 — ¢)(vs — vy). The pres-
sure p serves as a Lagrange multiplier to enforce incom-
pressibility. The active solid is described by a Kelvin-Voigt
model together with an active tension:

Oy = Eaxu + naxys + Ta(¢)’ (GIO)
where u is the solid’s displacement, i.e., it = v,. The
viscous stress in the fluid phase is negligible compared
to the solid stresses, so we can set 6, = 0. Solving Eq. (G9)
for d,p and substituting into Eq. (G8) then gives

YD o (oni) — EO($d.1) + 06T
T 10.(90.0) = E0.(90.1) + 00T ()

Together with Eq. (G6), we have a closed system of
equations for the dynamics of ¢ and u.

Note the close similarity to Eq. (13b). In fact, for small
deviations from a uniform state ¢ = ¢y, we can approxi-
mate ¢ as constant in all terms in Eq. (G11) except for the
last one, which is responsible for the instability.

The origin of the friction term in the viscoelastic gel case
Eq. (13b) and the poroelastic case Eq. (G11) differ. In the
former case, it accounts for friction with a rigid substrate,
whereas in the latter case, it accounts for friction between
the two interpermeating phases.

(G11)
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