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We show that for all n ≤ X apart from O(X exp(−c(logX)1/2(log logX)1/2)) exceptions,

the alternating group An is invariably generated by two elements of prime order. This

answers (in a quantitative form) a question of Guralnick, Shareshian, and Woodroofe.

1 Introduction

We say that a finite group G is invariably generated by elements g1, . . . , gk if for any

g′
1, . . . , g

′
k ∈ G with g′

i belonging to the conjugacy class of gi, we have 〈g′
1, . . . , g

′
k〉 = G. In

other words, the subset {g1, . . . , gk} generates the group even if we replace each element

by any of its conjugates.

Invariable generation of finite simple groups has received considerable attention.

It is known that every finite simple group is invariably generated by two elements of

unspecified order [1,2]. Invariable generation by a few random elements has been studied,

among others, in [3–7]. The expected number of random elements required for invariable

generation has been studied, for instance, in [2,8]. Dolfi et al. [9] asked the question: which

finite simple groups are invariably generated by two elements of prime (or prime power)

order?

We shall focus on invariable generation of the alternating groups An. For the

alternating groups, Shareshian and Woodroofe [10] showed that for n ≥ 8, a power

of two, the group An fails to be invariably generated by two elements of prime order.
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998 J. Teräväinen

Nevertheless, it is possible that An is always generated by an element of prime order

together with an element of prime power order; in fact, Guralnick et al. [11, Section 5]

recently asked this question in the following form (see also [10, Questions 1.2–1.4] and

[9, Section 6]).

Question 1.1. For every n ≥ 5, is the alternating group An invariably generated by an

element whose order is a prime power divisor pa of n, together with an element of prime

order r >
√
n?

Guralnick et al. [11] proved that all 5 ≤ n ≤ 1015 have this property, which

provides considerable numerical evidence for Question 1.1. Shareshian and Woodroofe

[10] proved that the asymptotic lower density of such n is at least 1 − 10−28 (with a = 1

above).

In this paper, we prove the following almost-all result on invariable generation

of the alternating groups An.

Theorem 1.2 (Almost all alternating groups are invariably generated by two prime

order elements). There exists a constant c > 0 such that, for all n ≤ X apart from


 X exp(−c(logX)1/2(log logX)1/2) exceptions, the alternating group An is invariably

generated by an element of order p together with an element of order r for some primes

p, r. Moreover, we may require that p | n and r > n/ exp(2(logn)1/2(log logn)1/2).

Here, and in the rest of the paper, c stands for a (very small) positive constant

that is the same on every occurrence.

It was proved in [10] that under the Riemann hypothesis almost all n satisfy

Question 1.1 (with a = 1). Guralnick et al. [11] state: “It would already be somewhat

interesting to give a proof that does not rely on the Riemann Hypothesis that the set of

counterexamples to Question 1.1 has asymptotic density 0.” Theorem 1.3 achieves this,

with a quantitative “quasi-polynomial” saving on the size of the exceptional set.

Theorem 1.2 will be deduced as a consequence of some group-theoretic consid-

erations combined with the following result on products of exactly two primes in short

intervals proved in Section 5.

Theorem 1.3 (Power-saving exceptional set for products of two primes in short inter-

vals). Let (logX)C ≤ h ≤ X1/10 for large enough C ≥ 1. Then, for all integers 1 ≤ x ≤ X

apart from 
 Xh−c exceptions, there exist ≥ ch/(logX) products of two primes p1p2 ∈
[x, x + h] with h1−2c ≤ p1 ≤ h1−c.
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Invariable Generation of Almost All Alternating Groups 999

Remark 1.4. The key aspect of Theorem 1.3 is the size of the exceptional set. By [12,

Theorem 1.1] (improving on [13]), for h = (logX)2.1 the interval [x, x + h] almost always

contains products of two primes, and in fact, the exceptional set in that result is power-

saving in h in the regime (logX)2.1 ≤ h ≤ (logX)C (i.e., one has an exceptional set of

the size 
 X/hc0 for some constant c0 > 0). However, in the complementary range h ≥
(logX)ψ(X) with ψ(X) tending to infinity relatively rapidly, the method there does not give

such a good exceptional set.

It turns out that wewill need Theorem 1.3 only for h=exp((logX)1/2(log logX)1/2),

but we give a proof in the larger range (logX)C ≤ h ≤ X1/10 as it may be of independent

interest.

We also remark that even under the Riemann hypothesis, we are not aware of a

proof that there are 
 Xh−1/2−ε exceptional intervals [x, x+h] with x ≤ X not containing

a product of two primes, with ε > 0 fixed.

By [10, eq. (1.1)], our main theorem has the following implication for common

prime divisors of binomial coefficients.

Corollary 1.5. There exists a constant c > 0 such that, for all n ≤ X apart from 

X exp(−c(logX)1/2(log logX)1/2) exceptions, there exist two primes p1,p2 (depending on

n) such that for each 1 ≤ i ≤ n− 1 at least one of p1,p2 divides
(n
i

)
.

This improves on [10,Theorem 1.5],where it was shown that the set of exceptional

n ≤ X has size ≤ (10−28+o(1))X. One would expect that there are no exceptional n. Let us

alsomention that assuming very strong information on primes in short intervals, namely

Cramér’s conjecture, one can show that there are O(X1/2+o(1)) exceptional n ≤ X both for

Corollary 1.5 and Theorem 1.2 (see [11, Subsection 4.3]).

2 Notation

The symbols p,pi, r always stand for prime numbers.

We denote by (a,b) the greatest common divisor of two natural numbers a,b. As

usual, � denotes the von Mangoldt function.

We use the Vinogradov asymptotic notation A 
 B to denote that there exists a

constant C such that |A| ≤ CB.

In the course of the proof, we shall need maximal subgroups of An. The maximal

subgroups H of An are classified into three types.
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1000 J. Teräväinen

• We say thatH is intransitive if there exist i, j ∈ [n] such that under the natural

action of H on [n], we have i · h �= j for all h ∈ H. Otherwise, we say that H

is transitive. If H is an intransitive maximal subgroup, then H fixes some set

X ⊂ [n] with 1 ≤ |X| < n under the action of H on [n].

• We say that H is imprimitive if it is transitive and there is a proper partition

π of [n] into parts of size ≥ 2 such that the action of H on [n] permutes these

parts. By the maximality of H, we may assume that the parts in π all have the

same size.

• We say that H is primitive if it is transitive but not imprimitive.

It is clear that each maximal subgroup must be of one of these three types.

3 Group-Theoretic Lemmas

The group theory part of our argument can be abstracted into similar ingredients as the

arguments in [11].

Proposition 3.1. Let n ≥ 25 be an integer. Suppose that the following hold for some

primes r >
√
2n and p | n and for t = 
n/r�.

(i) n is not a prime power.

(ii) n is not of the form (qd − 1)/(q− 1) for any integers q ≥ 2 and d ≥ 3.

(iii) n− tr ≥ 3.

(iv) (t,n) = 1.

(v) p � ar+b for any integers a,bwith 0 ≤ a ≤ t, 0 ≤ b ≤ n−tr, and 0 < ar+b < n.

Then An is invariably generated by an element of order p together with an

element of order r.

Proof. We may assume that p ≥ 3, since if p = 2 condition (v) cannot hold. Denote

u = n − tr ∈ [3, r). Let g1 ∈ An be a product of n/p disjoint cycles of length p, and let

g2 ∈ An be a product of t disjoint cycles of length r and u fixed points. Since disjoint

cycles commute, g1 has order p and g2 has order r. Since conjugation preserves cycle

structure, any conjugates of g1, g2 are still of the same form. Hence, it suffices to show

that 〈g1, g2〉 = An.

Suppose that 〈g1, g2〉 �= An. Let H �= An be the maximal subgroup of An that

contains 〈g1, g2〉. By the classification of maximal subgroups ofAn (Subsection 2),H must

be either primitive, imprimitive, or intransitive.
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Invariable Generation of Almost All Alternating Groups 1001

Case 1. Suppose H is primitive. Recall that H contains g2, which is a product of

t r-cycles and u fixed points. By [11, Theorem 2.4 and Remark 2.5], this implies that one

of the following holds:

• n = qd−1
q−1 for some integers q ≥ 2 and d ≥ 3;

• u ≤ 2;

• n is a prime power.

However, these are all impossible by our assumptions (i), (ii), (iii).

Case 2. Suppose H is imprimitive. Then H preserves some partition π of [n] into

d parts of size n/d for some d | n, 1 < d < n. Note that the base r representation of n

is n = tr + u. Hence, g2 is a base r-element. (We say that an element g ∈ An is a base-p

element if, given the base p representation n = α0 + α1p+ α2p
2 + · · · , the element g has

α0 fixed points and αi cycles of length pi for all i.) By [11, Lemma 3.6], the base r-element

g2 fixing π implies that d | (t,u) or n/d | (t,u). In either case, (t,u) > 1, so that also

(t,n) = (t, tr + u) > 1, which contradicts our assumption (iv).

Case 3. Lastly, suppose H is intransitive. Then there is a subset X ⊂ [n] of some

size 1 < k < n such that H is the stabilizer of X. Now, g1 fixing X implies that k = pm for

some integer m, while g2 fixing X implies that k = ar + b for some 0 ≤ a ≤ t, 0 ≤ b ≤ u,

with 0 < ar + b < n. But, by assumption (v), both of these cannot happen. �

Note that Proposition 3.1 does not handle the case of prime (or prime power) n;

for these, we need the following complementary lemma.

Lemma 3.2. Let n ≥ 2. Let p, r be primes with p | n and r < n− 2 < n ≤ r + p. Then An

is invariably generated by an element of order r together with an element of order p.

Proof. This follows from [11, Lemma 3.3] with a = 1 by taking the permutation x, there

to be a product of n/p disjoint cycles of length p. �

4 Proof of Theorem 1.2 Assuming Theorem 1.3

In this section, we prove Theorem 1.2 assuming Theorem 1.3 (which in turn is proved in

Section 5). Throughout this section, let

h := exp((logX)1/2(log logX)1/2).
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1002 J. Teräväinen

By Theorem 1.3, for all n ≤ X outside an admissible exceptional set, there exist �
h/(logX) products of two primes

p1p2 ∈ [n− h,n− 3] with h1−2c/2 ≤ p1 ≤ h1−c.

By Proposition 3.1 (with r = p2, t = p1) and the union bound, it suffices to show that each

of the assumptions (i)–(v) of Proposition 3.1 fails for 
 X exp(−c(logX)1/2(log logX)1/2)

integers n ≤ X. Assumption (iii) is automatically satisfied with our choices. If (i) fails,

then n = pa is a prime power, and if a = 1, then Lemma 3.2 tells us that An is generated

by an element of order r together with an element of order p. There are 
 X1/2 integers

n ≤ X of the form pa with p prime and a ≥ 2, so this is also an acceptable exceptional

set.We are left with showing that the properties (ii), (iv), (v) are true for all but the stated

number of exceptional n. The smallness of exceptions to assumptions (ii), (iv), (v) will

follow from the following five lemmas.

Lemma 4.1 (Dealing with very large prime factors). Suppose that n is large enough and

that p | n for some prime p ≥ n0.9. Then, An is invariably generated by an element of

order p together with an element of prime order r > n/2.

Proof. By the prime number theorem in short intervals (one could replace the exponent

0.9 here by 0.525 by [14], but the above suffices for our purposes), there is a prime

r ∈ (n − n0.9,n − 3] ⊂ (n − p,n − 3] for all n ≥ N0. Hence, the claim follows from

Lemma 3.2. �

Lemma 4.2 (Exceptions to assumption (ii)). The number of n ≤ X that are of the form

(qd − 1)/(q− 1) with q ≥ 2 and d ≥ 3 is 
 √
X.

Proof. The number of n ≤ X of the form (q3 − 1)/(q− 1) = 1 + q+ q2 is trivially 
 √
X.

Similarly, for any d ≥ 4, the number of n of the form (qd−1)/(q−1) is 
 X1/(d−1) 
 X1/3.

Since necessarily d ≤ (logX)/(log 2), the claim follows. �

Lemma 4.3 (Exceptions to assumption (iv)). Let n ∈ [X1/2,X]. The number of products of

two primes p1p2 ∈ [n− h,n] with h1−2c/2 ≤ p1 ≤ h1−c and p1 | n is o(h/(logX)).
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Invariable Generation of Almost All Alternating Groups 1003

Proof. We can very crudely bound

∑
h1−2c/2≤p1≤h1−c

p1|n

∑
(n−h)/p1≤p2≤n/p1

1 

∑

p1≥h1−2c/2
p1|n

h

p1

 h(logX)

h1−2c = o
(

h

logX

)
.

�

Lemma 4.4 (Exceptions to assumption (v) with large prime divisor). For all but
 X/h1/2

integers n ≤ X, the following holds.

The number of products of two primes p1p2 ∈ [n−h,n] with h1−2c/2 ≤ p1 ≤ h1−c

that satisfy p | ap2+b for some prime p | n, h3 ≤ p ≤ X0.9 and some 0 ≤ a ≤ p1, 0 ≤ b ≤ h

with 0 < ap2 + b < n is o(h/(logX)).

Proof. Suppose p | ap2+bwith 0 ≤ a ≤ p1 and 0 ≤ b ≤ h. If a = p1, then p | n,p | ap2+b

implies p | n−p1p2 −b ∈ (0,h]. But as p > h, this is not possible. Similarly, if a = 0, then

p | b ∈ [1,h], which contradicts p > h. Now, denoting

Sp := {j ∈ Z : aj + b ≡ 0 (mod p) for some 1 ≤ a < p1, 0 ≤ b ≤ h},

we can write the condition p | ap2 + b with a,b as above in the form p2 ∈ Sp. It then
suffices to show, for every h3 ≤ p ≤ X0.9, that

∑
n−h≤p1p2≤n

p2∈Sp

1 ≤ h

(logX)2

holds for all but 
 X/(h0.9p) integers n ≤ X, n ≡ 0 (mod p). Indeed, once we have this,

the claim follows from the union bound and the fact that any n ≤ X has 
 (logX)/(logh)

prime factors p > h3.

Using the inequality |{n ≤ X : bn ≥ λ}| ≤ λ−1 ∑
n≤X bn with bn ≥ 0, we can

estimate

∣∣∣∣
{
n ≤ X : p | n and

∑
n−h≤p1p2≤n

h1−2c/2≤p1≤h1−c
p2∈Sp

1 ≥ h

(logX)2

}∣∣∣∣

≤ (logX)2

h

∑
m≤X/p

∑
h1−2c/2≤p1≤h1−c

∑
(pm−h)/p1≤�≤pm/p1

�∈Sp

1. (4.1)
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1004 J. Teräväinen

Note then that � ∈ Sp for some � ∈ [(pm−h)/p1,pm/p1] implies that for some 1 ≤ a < p1,

we have

apm

p1
∈ [−2h, 2h] (mod p).

Therefore, we have

am

p1
∈

[
−2h

p
,
2h

p

]
(mod 1).

But if p1 � am, then by denoting by ‖ · ‖, the distance to the nearest integer, we have

∥∥∥∥amp1
∥∥∥∥ ≥ 1

p1
>

2h

p
,

since p ≥ h3 and p1 ≤ h1−c. We must therefore have p1 | am, so p1 | m. Hence, (4.1) is

bounded by


 (logX)2

h

∑
m≤X/p

∑
h1−2c/2≤p1≤h1−c

h

p1
1p1|m


 (logX)2
∑

h1−2c/2≤p1≤h1−c

X

pp21


 X

ph0.9
,

recalling that p1p 
 X0.9+o(1) and p1 ≥ h1−2c ≥ h0.9(logX)2 if we take c < 1/25. As noted

before, this was enough to conclude the proof. �

Lemma 4.5 (Bounding the number of smooth numbers). The number of n ≤ X that have

no prime factors larger than h3 is 
 X exp(−c(logX)1/2(log logX)).

Proof. Let s = (logX)/(logh3) = (logX)1/2/(3(log logX)1/2). Then, by a standard smooth

number estimate (see, e.g., [15, Corollary 1.3]), the number of h3-smooth integers up to X

is


 Xs−(1+o(1))s 
 X exp(−c(logX)1/2(log logX)1/2),
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Invariable Generation of Almost All Alternating Groups 1005

provided we take c < 1/6. �

Combining Lemmas 4.1– 4.5, Theorem 1.2 follows (assuming still Theorem 1.3).

Remark 4.6. Note that the size of our exceptional set arose essentially from solving the

equation h−c = s−s with s = (logX)/(logh) and c � 1. Since it does not seem easy to

obtain a saving larger than h−O(1) for the size of the exceptional set in Theorem 1.3 even

under the Riemann hypothesis, it seems that a new idea would be required to improve

on the size of our exceptional set in Theorem 1.2.

5 Proof of Theorem 1.3

Throughout this section, let ε > 0 be a small enough absolute constant. We can restate

Theorem 1.3 in the following quantitative form.

Theorem 5.1. Let (log x)C ≤ h ≤ X1/10 for large enough C ≥ 1. Then, for all integers

1 ≤ x ≤ X apart from 
 Xh−ε exceptions, we have

∑
x≤n1n2≤x+h
h1−2ε≤n1≤h1−ε

�(n1)�(n2) = h
∑

h1−2ε≤n1≤h1−ε

�(n1)

n1
+ O(h(logX)−100). (5.1)

By Mertens’s theorem, we have

∑
h1−2ε≤n1≤h1−ε

�(n1)

n1
=

(
log

1 − ε

1 − 2ε
+ o(1)

)
logh

and log((1 − ε)/(1 − 2ε)) > ε for ε ∈ (0, 1/2). Hence, noting that �(n1) ≤ logh,�(n2) ≤
logX+1 and trivially bounding the contribution of the higher prime powers to �, we see

that Theorem 5.1 directly implies Theorem 1.3 with c = ε.

We will prove Theorem 5.1 via the method of Dirichlet polynomials. The main

hurdle in the proof is that we do not know a zero-free strip of constant width for

the Riemann zeta function. Given our current knowledge on the zero-free region of

the Riemann zeta function (i.e., the Vinogradov–Korobov zero-free region), we cannot

hope to have an error term better than h exp(−(logX)1/3+o(1)) on the right of (5.1).

Hence, (5.1) cannot be directly converted into a variance estimate that we could hope to
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1006 J. Teräväinen

unconditionally prove. This issue is amended by defining amodel function �̃ for the von

Mangoldt function such that �̃ “resonates”with the zeros of the Riemann zeta function of

large real part in exactly the same way as the vonMangoldt function itself, and therefore

the Dirichlet polynomial of � − �̃ satisfies power-saving Dirichlet polynomial bounds.

More precisely, we define �̃ as follows.

Definition 5.2 (A model for the von Mangoldt function). For a given X ≥ 2, define

�̃(n) := 1 −
∑

ρ=β+iγ
β≥1−10ε

|γ |≤X1.1

nρ−1,

where the sum is over the nontrivial zeros ρ of the Riemann zeta function.

We have the following lemma on the size of the model function �̃(n).

Lemma 5.3. For n ∈ [X0.1, 2X], we have |�̃(n) − 1| 
 exp(−(logX)0.33).

Proof. We have

�̃(n) − 1 = −
∑

ρ=β+iγ
β≥1−10ε

|γ |≤X1.1

nρ−1



∑

ρ=β+iγ
β≥1−10ε

|γ |≤X1.1

X0.1(β−1).

By the Vinogradov–Korobov zero-free region, we necessarily have β ≤ β0 := 1 −
(logX)−0.667 for X ≥ X0. Hence, by splitting the values of β into intervals of length

≤ 1/(logX), we have

∑
ρ=β+iγ
β≥1−10ε

|γ |≤X1.1

X0.1(β−1) 
 (logX) max
1−10ε≤β≤β0

X0.1(β−1)N(β,X1.1),

whereN(β,T) denotes the number of zeros ρ of the Riemann zeta functionwith Re(ρ) ≥ β,

|Im(ρ)| ≤ X. We may assume that ε ≤ 10−8, say. By a zero density estimate for the
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Invariable Generation of Almost All Alternating Groups 1007

Riemann zeta function near the 1-line [16], for β ≥ 1 − 2 · 10−7 (say), we have

N(β,X1.1) 
 (X1.1)100(1−β)3/2 
 X0.1(1−β)/2. (5.2)

Hence, we have

max
1−10ε≤β≤β0

(logX)X0.1(β−1)N(β,X1.1) 
 X0.04(β0−1) 
 exp(−(logX)0.33),

giving the claim. �

With the help of our model function, we can state a variance estimate that will

turn out to imply Theorem 5.1.

Proposition 5.4 (A variance estimate). Let (logX)C ≤ h ≤ X1/9 for large enough C ≥ 1.

Also, let H = X1−10ε. Then we have

∫ X

X/2

∣∣∣∣∣∣∣∣∣
∑

x≤n1n2≤x+h
h1−2ε≤n1≤h1−ε

�(n1)(� − �̃)(n2) − h

H

∑
x≤n1n2≤x+H
h1−2ε≤n1≤h1−ε

�(n1)(� − �̃)(n2)

∣∣∣∣∣∣∣∣∣
2 dx 
 h2−4εX.

Proof of Theorem 5.1 assuming Proposition 5.4. By Lemma 5.3 and Chebyshev’s

inequality, it suffices to show for all x ∈ [X/2,X] that

∑
x≤n1n2≤x+H
h1−2ε≤n1≤h1−ε

�(n1)(�(n2) − 1) 
A H(logX)−A (5.3)

and

∑
x≤n1n2≤x+h′
h1−2ε≤n1≤h1−ε

�(n1)(�̃(n2) − 1) 
A h′(logX)−A (5.4)

for h′ ∈ {h,H}.
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1008 J. Teräväinen

The first claim (5.3) follows directly by writing

∑
x≤n1n2≤x+H
h1−2ε≤n1≤h1−ε

�(n1)(�(n2) − 1) =
∑

h1−2ε≤n1≤h1−ε

�(n1)
∑

x/n1≤n2≤(x+H)/n1

(�(n2) − 1)

and applying the prime number theorem in short intervals to the n2 sum.

For the proof of (5.4), note simply that by Lemma 5.3 for x ∈ [X/2,X], we have

∑
x≤n1n2≤x+h′
h1−2ε≤n1≤h1−ε

�(n1)|�̃(n2) − 1| 

∑

h1−2ε≤n1≤h1−ε

(logh)h′

n1
exp(−(logX)0.33) 
A

h′

(logX)A
.

�

Before proving Proposition 5.4, we shall reduce it to mean squares of Dirichlet

polynomials.

Proposition 5.5 (Mean square bound for a product of two prime Dirichlet polynomials).

Let

P1(s) :=
∑

h1−2ε≤n≤h1−ε

�(n)n−s, P̃(s) =
∑

X/(2h1−ε)≤n≤X/h1−2ε

(� − �̃)(n)n−s.

Also, let (logX)C ≤ h ≤ X1/9 with C ≥ 1 large enough. Then we have

∫ X/h1−4ε

h10ε

|P1(1 + it)|2 |̃P(1 + it)|2 dt 
 h−4ε.

Proof of Proposition 5.4 assuming Proposition 5.5. This is a standard Perron formula

argument. Let

an =
∑

n=n1n2
h1−2ε≤n1≤h1−ε

X/(2h1−ε)≤n2≤X/h1−2ε

�(n1)�(n2), Sy(x) = 1

y

∑
x≤n≤x+y

an, F(s) =
∑
n

ann
−s.
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Also, let H = X1−10ε. By [13, Lemma 1], we have (in [13, Lemma 1], an is assumed to be

supported in [X, 2X], but this is actually not used in the proof)

∫ X

X/2

∣∣∣∣1hSh(x) − 1

H
SH(x)

∣∣∣∣ 2 dx 
 h−10ε +
∫ X/h

h10ε

|F(1 + it)|2 dt+ max
T≥X/h

X

Th

∫ 2T

T
|F(1 + it)|2 dt.

Now the claim follows by applying the mean value theorem for Dirichlet polynomials in

the range T ≥ X/h1−4ε. �

Before proving Proposition 5.5, we need one more lemma.

Lemma 5.6. For 2 ≤ |t| ≤ X, we have

|̃P(1 + it)| 
 1/|t| + X−8ε.

Proof. Let Q1 = X/(2h1−ε), Q2 = X/h1−2ε. By a slight variant of the explicit formula

(which is proved in the same way; cf. arguments in [17, Section 5]), for 2 ≤ |t| ≤ X, we

have

∑
Q1≤n≤Q2

�(n)n−1−it = −Qit
2 −Qit

1

it
−

∑
ρ=β+iγ
|γ |≤X1.1

Qρ−1−it
2 −Qρ−1−it

1

ρ − it
+ O

(
Q2(logQ2)

3

X1.1

)
.

Here, the error term is 
 X−10ε (if ε ≤ 1/110) and the first term is 
 |t|−1. Note that the

contribution of β < 1−10ε above is 
 X−8ε, using
∑

ρ:|Im(ρ)|≤X1.1 1/|ρ − it| 
 (logX)2 and

Q1 � X/h � X8/9.

On the other hand, we have

∑
Q1≤n≤Q2

�̃(n)n−1−it =
∑

Q1≤n≤Q2

n−1−it −
∑

ρ=β+iγ
β≥1−10ε

|γ |≤X1.1

∑
Q1≤n≤Q2

nρ−2−it.

By Perron’s formula, for any ξ with Re(ξ) ≤ 1, we have

∑
Q1≤n≤Q2

nξ−2−it = 1

2π i

∫ 1+X10εi

1−X10εi
ζ(s+ 2 − ξ + it)

Qs
2 −Qs

1

s
ds+ O(X−9ε).
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Shifting the line of integration to Re(s) = Re(ξ) − 2 and applying the residue theorem

and the estimate |ζ(iu)| 
 (1 + |u|)1/2, this is

Qξ−1−it
2 −Qξ−1−it

1

ξ − 1 − it
+ O(X−9ε),

since either the simple pole at s = ξ −1−it is captured by the integral unless |Im(ξ)−t| ≥
X10ε. Applying the above with ξ = 1 and ξ = ρ, and recalling (5.2), the claim follows. �

Proof of Proposition 5.5. We apply the Matomäki–Radziwiłł [18] method. We split the

integration domain into two sets

T1 = {h10ε ≤ t ≤ X/h1−4ε : |P1(1 + it)| ≥ h−5ε}, T2 = [h10ε,X/h1−4ε] \ T1.

By the mean value theorem for Dirichlet polynomials, we trivially have

∫
T1

|P1(1 + it)|2 |̃P(1 + it)|2 dt 
 h−10ε

(
X/h1−4ε + X/h1−ε

X/h1−ε

)

 h−4ε.

Consider then the integral over T2. By a large values estimate ([13, Lemma 6], which is

proved by raising P1 to a large power and applying the mean value theorem), if U ⊂ T2 is

any well-spaced subset (i.e., any two of its elements are separated by ≥ 1), then (taking

C large in terms of ε), we have

|U | 
 X11ε.

On the other hand, for some well-spaced U ⊂ T2, we have∫
T2

|P1(1 + it)|2 |̃P(1 + it)|2 dt 

∑
t∈U

|P1(1 + it)|2 |̃P(1 + it)|2,

and crudely bounding |P1(1 + it)| 
 1 and using Lemma 5.6, we can bound this by


 h−10ε + |U |X−16ε 
 h−10ε + X−5ε 
 h−4ε.

This proves the claim. �
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