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We show that for all n < X apart from O(X exp(—c(log X)'/?(loglog X)!/?)) exceptions,
the alternating group A,, is invariably generated by two elements of prime order. This

answers (in a quantitative form) a question of Guralnick, Shareshian, and Woodroofe.

1 Introduction

We say that a finite group G is invariably generated by elements g, ..., g, if for any
gi:---,9; € G with g; belonging to the conjugacy class of g;, we have (g},...,g;) = G.In
other words, the subset {g;,...,g;} generates the group even if we replace each element
by any of its conjugates.

Invariable generation of finite simple groups has received considerable attention.
It is known that every finite simple group is invariably generated by two elements of
unspecified order [1,2]. Invariable generation by a few random elements has been studied,
among others, in [3-7]. The expected number of random elements required for invariable
generation has been studied, for instance, in [2,8]. Dolfi et al. [9] asked the question: which
finite simple groups are invariably generated by two elements of prime (or prime power)
order?

We shall focus on invariable generation of the alternating groups A,. For the
alternating groups, Shareshian and Woodroofe [10] showed that for n > 8, a power

of two, the group A,, fails to be invariably generated by two elements of prime order.
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Nevertheless, it is possible that A, is always generated by an element of prime order
together with an element of prime power order; in fact, Guralnick et al. [11, Section 5]
recently asked this question in the following form (see also [10, Questions 1.2-1.4] and
[9, Section 6]).

Question 1.1. For every n > 5, is the alternating group A,, invariably generated by an
element whose order is a prime power divisor p? of n, together with an element of prime
order r > \/n?

Guralnick et al. [11] proved that all 5 < n < 10'® have this property, which
provides considerable numerical evidence for Question 1.1. Shareshian and Woodroofe
[10] proved that the asymptotic lower density of such n is at least 1 — 10728 (with a = 1
above).

In this paper, we prove the following almost-all result on invariable generation

of the alternating groups 4,,.

Theorem 1.2 (Almost all alternating groups are invariably generated by two prime
order elements). There exists a constant ¢ > 0 such that, for all n < X apart from
< Xexp(—c(logX)!/2(loglog X)!/2) exceptions, the alternating group 4, is invariably
generated by an element of order p together with an element of order r for some primes

p, . Moreover, we may require that p | n and r > n/ exp(2(logn)!/?(loglog n)'/?).

Here, and in the rest of the paper, ¢ stands for a (very small) positive constant
that is the same on every occurrence.

It was proved in [10] that under the Riemann hypothesis almost all n satisfy
Question 1.1 (with a = 1). Guralnick et al. [11] state: “It would already be somewhat
interesting to give a proof that does not rely on the Riemann Hypothesis that the set of
counterexamples to Question 1.1 has asymptotic density 0.” Theorem 1.3 achieves this,
with a quantitative “quasi-polynomial” saving on the size of the exceptional set.

Theorem 1.2 will be deduced as a consequence of some group-theoretic consid-
erations combined with the following result on products of exactly two primes in short

intervals proved in Section 5.

Theorem 1.3 (Power-saving exceptional set for products of two primes in short inter-
vals). Let (logX)¢ < h < X'/10 for large enough C > 1. Then, for all integers 1 < x < X
apart from « Xh~¢ exceptions, there exist > ch/(logX) products of two primes p,p, €
[x,x + h] with h!72¢ < p, < hl=¢,
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Invariable Generation of Almost All Alternating Groups 999

Remark 1.4. The key aspect of Theorem 1.3 is the size of the exceptional set. By [12,
Theorem 1.1] (improving on [13]), for A = (logX)?! the interval [x, x + h] almost always
contains products of two primes, and in fact, the exceptional set in that result is power-
saving in h in the regime (logX)?>! < h < (logX)® (i.e., one has an exceptional set of
the size « X/h® for some constant ¢, > 0). However, in the complementary range h >
(log X)¥® with v (X) tending to infinity relatively rapidly, the method there does not give
such a good exceptional set.

It turns out that we will need Theorem 1.3 only for h=exp((log X)!/2(loglog X)!/?),
but we give a proof in the larger range (log X)¢ < h < X'/10 as it may be of independent
interest.

We also remark that even under the Riemann hypothesis, we are not aware of a
proof that there are « Xh~1/27¢ exceptional intervals [x, x + h] with x < X not containing

a product of two primes, with ¢ > 0 fixed.

By [10, eq. (1.1)], our main theorem has the following implication for common

prime divisors of binomial coefficients.

Corollary 1.5. There exists a constant ¢ > 0 such that, for all n < X apart from «
X exp(—c(log X)'/?(loglog X)'/?) exceptions, there exist two primes p;, p, (depending on

n) such that for each 1 <i <n — 1 at least one of p;, p, divides (7).

This improves on [10, Theorem 1.5], where it was shown that the set of exceptional
n < X has size < (10728 +0(1))X. One would expect that there are no exceptional n. Let us
also mention that assuming very strong information on primes in short intervals, namely
Cramér’s conjecture, one can show that there are O(X!/2t°(1)) exceptional n < X both for

Corollary 1.5 and Theorem 1.2 (see [11, Subsection 4.3]).

2 Notation

The symbols p, p;, r always stand for prime numbers.

We denote by (a, b) the greatest common divisor of two natural numbers a, b. As
usual, A denotes the von Mangoldt function.

We use the Vinogradov asymptotic notation A <« B to denote that there exists a
constant C such that |A| < CB.

In the course of the proof, we shall need maximal subgroups of A,,. The maximal

subgroups H of A, are classified into three types.
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1000 J. Teravidinen

e We say that H is intransitive if there exist i,j € [n] such that under the natural
action of H on [n], we have i - h # j for all h € H. Otherwise, we say that H
is transitive. If H is an intransitive maximal subgroup, then H fixes some set
X C [n]lwith 1 < |X| < n under the action of H on [n].

e We say that H is imprimitive if it is transitive and there is a proper partition
7 of [n] into parts of size > 2 such that the action of H on [n] permutes these
parts. By the maximality of H, we may assume that the parts in 7 all have the
same size.

e We say that H is primitive if it is transitive but not imprimitive.

It is clear that each maximal subgroup must be of one of these three types.

3 Group-Theoretic Lemmas

The group theory part of our argument can be abstracted into similar ingredients as the

arguments in [11].

Proposition 3.1. Let n > 25 be an integer. Suppose that the following hold for some
primes r > +/2n and p | n and for t = |n/r].

(i) nis not a prime power.

(ii) n is not of the form (g% — 1)/(q — 1) for any integers q > 2 and d > 3.

({ii) n—tr>3.

(iv) (t,n)=1.

(v) ptar+bforanyintegersa,bwith0<a <t 0<b<n-tr,and0 < ar+b < n.
Then A, is invariably generated by an element of order p together with an

element of order r.

Proof. We may assume that p > 3, since if p = 2 condition (v) cannot hold. Denote
u=n-—trel3r).Letg, €A, beaproduct of n/p disjoint cycles of length p, and let
g, € A, be a product of ¢t disjoint cycles of length r and u fixed points. Since disjoint
cycles commute, g; has order p and g, has order r. Since conjugation preserves cycle
structure, any conjugates of g,, g, are still of the same form. Hence, it suffices to show
that (g,,9,) = 4,,.

Suppose that (g;,g9,) # A,. Let H # A, be the maximal subgroup of A, that
contains (g;, g,). By the classification of maximal subgroups of A4,, (Subsection 2), H must

be either primitive, imprimitive, or intransitive.
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Invariable Generation of Almost All Alternating Groups 1001

Case 1. Suppose H is primitive. Recall that H contains g,, which is a product of
t r-cycles and u fixed points. By [11, Theorem 2.4 and Remark 2.5], this implies that one
of the following holds:

e n= % for some integers ¢ > 2 and d > 3;

* uxy

e nisa prime power.

However, these are all impossible by our assumptions (i), (ii), (iii).

Case 2. Suppose H is imprimitive. Then H preserves some partition = of [n] into
d parts of size n/d for some d | n, 1 < d < n. Note that the base r representation of n
is n = tr + u. Hence, g, is a base r-element. (We say that an element g € A4,, is a base-p
element if, given the base p representation n = ag + a;p + a,p? + - - -, the element g has
a, fixed points and «; cycles of length p for all i.) By [11, Lemma 3.6], the base r-element
g, fixing = implies that d | (t,u) or n/d | (t,u). In either case, (¢t,u) > 1, so that also
(t,n) = (t,tr + u) > 1, which contradicts our assumption (iv).

Case 3. Lastly, suppose H is intransitive. Then there is a subset X C [n] of some
size 1 < k < n such that H is the stabilizer of X. Now, g, fixing X implies that k = pm for
some integer m, while g, fixing X implies that k = ar + b forsome0 <a <t,0<b < u,

with 0 < ar + b < n. But, by assumption (v), both of these cannot happen. |

Note that Proposition 3.1 does not handle the case of prime (or prime power) n;

for these, we need the following complementary lemma.

Lemma 3.2. Letn > 2.Let p,r be primes withp |[nandr<n—-2<n <r+p.Then4,

is invariably generated by an element of order r together with an element of order p.

Proof. This follows from [11, Lemma 3.3] with a = 1 by taking the permutation x, there
to be a product of n/p disjoint cycles of length p. |

4 Proof of Theorem 1.2 Assuming Theorem 1.3

In this section, we prove Theorem 1.2 assuming Theorem 1.3 (which in turn is proved in

Section 5). Throughout this section, let

h := exp((log X)'/?(loglog X)'/?).
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1002 J. Teravidinen

By Theorem 1.3, for all n < X outside an admissible exceptional set, there exist >

h/(log X) products of two primes
PP, € [n—h,n —3]with h!72¢/2 < p, < h!~°,

By Proposition 3.1 (with r = p,, t = p;) and the union bound, it suffices to show that each
of the assumptions (i)-(v) of Proposition 3.1 fails for « X exp(—c(log X)!/?(loglog X)!/?)
integers n < X. Assumption (iii) is automatically satisfied with our choices. If (i) fails,
then n = p® is a prime power, and if @ = 1, then Lemma 3.2 tells us that A, is generated
by an element of order r together with an element of order p. There are « X'/? integers
n < X of the form p® with p prime and a > 2, so this is also an acceptable exceptional
set. We are left with showing that the properties (ii), (iv), (v) are true for all but the stated
number of exceptional n. The smallness of exceptions to assumptions (ii), (iv), (v) will

follow from the following five lemmas.

Lemma 4.1 (Dealing with very large prime factors). Suppose that n is large enough and
that p | n for some prime p > n%9. Then, 4,, is invariably generated by an element of

order p together with an element of prime order r > n/2.

Proof. By the prime number theorem in short intervals (one could replace the exponent
0.9 here by 0.525 by [14], but the above suffices for our purposes), there is a prime
re (n—no°

Lemma 3.2. ]

,n—3] C n—p,n—3]forall n > N, Hence, the claim follows from

Lemma 4.2 (Exceptions to assumption (ii)). The number of n < X that are of the form
(@ —1)/(g—1)withg> 2 and d > 3 is < VX.

Proof. The number of n < X of the form (g% — 1)/(q — 1) = 1 + q + ¢? is trivially « vX.
Similarly, for any d > 4, the number of n of the form (g% —1)/(g—1) is « X1/(@-1D « x1/3,
Since necessarily d < (log X)/(log 2), the claim follows. [ |

Lemma 4.3 (Exceptions to assumption (iv)). Let n € [X!/2, X]. The number of products of

two primes p;p, € [n — h,n] with h'=2¢/2 < p; < h!=¢ and p, | n is o(h/(log X)).
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Invariable Generation of Almost All Alternating Groups 1003

Proof. We can very crudely bound

h h(logX h
> > o« X < fEY o).
- B — )2 h log X
h1=2¢/2<p;<h!=¢ (n—h)/p1=<p2<n/p: p1>hl=2¢/2

piln p1ln

Lemma 4.4 (Exceptions to assumption (v) with large prime divisor). For all but « X/h!/2
integers n < X, the following holds.

The number of products of two primes p;p, € [n —h, n] with h!=2¢/2 < p; < h!=¢
that satisfy p | ap, +b for some prime p | n,h® < p < X% andsome0 <a <p;,0<b<h
with 0 < ap, + b < nis o(h/(log X)).

Proof. Supposep |ap,+bwithO<a <p,and0<b<h.Iffa=p,, thenp|n,p|ap,+>b
implies p | n—p;p, —b € (0, hl. But as p > h, this is not possible. Similarly, if a = 0, then
p | b €[1, h], which contradicts p > h. Now, denoting

Sp:z{jeZ: aj+b=0 (modp)forsomel <a<p;,0<b<h}

we can write the condition p | ap, + b with a,b as above in the form p, € S,. It then

suffices to show, for every h® < p < X%9, that

R g
= 2
n—h<pipz<n (log X)
p2€Sp

holds for all but « X/(ho'gp) integers n < X, n = 0 (mod p). Indeed, once we have this,
the claim follows from the union bound and the fact that any n < X has « (log X)/(log h)
prime factors p > h®.

Using the inequality [{n < X : b, > A}| < A1, _yb, with b, > 0, we can

estimate

[n <X: p|n and Z
n—h<pip2<n
hl*ZC/ZSplshlfc
p2€Sp

< @ > > > 1. (4.1)

m=<X/p hl-2¢/2<p,<hl=¢ (pm—h)/p1<t<pm/p:
LeSp

= <1ogX)2]
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1004 J. Teravidinen

Note then that ¢ € S, for some ¢ € [(pm — h)/p;, pm/p,] implies that for some 1 <a < p,,

we have
apm € [-2h,2h] (mod p).
P
Therefore, we have
am 2h 2h
—€c|—-——,— (mod 1).
b b p
But if p; t am, then by denoting by || - ||, the distance to the nearest integer, we have
am 1 2h
- Z - > _I
b b p

since p > h® and p; < h1—¢. We must therefore have p; | am, so p; | m. Hence, (4.1) is
bounded by

(log X)* h

< h Z Z p_lpllm

m<X/p h1’2”/2§p1§h1*0 1
X

< (logX)* > —

h1726/2§p1§h176 ppl
X
< Spos

recalling that p;p « X%9+° and p; > h'=2¢ > h09(log X)? if we take ¢ < 1/25. As noted

before, this was enough to conclude the proof. [ |

Lemma 4.5 (Bounding the number of smooth numbers). The number of n < X that have

no prime factors larger than h® is « X exp(—c(log X)'/?(loglog X)).

Proof. Lets = (logX)/(logh®) = (logX)'/?/(3(loglog X)!/?). Then, by a standard smooth
number estimate (see, e.g., [15, Corollary 1.3]), the number of h3-smooth integers up to X

is

&« Xs~AHoW)s « x exp(—c(log X)'/2(loglog X)1/?),
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Invariable Generation of Almost All Alternating Groups 1005

provided we take c < 1/6. ]
Combining Lemmas 4.1- 4.5, Theorem 1.2 follows (assuming still Theorem 1.3).

Remark 4.6. Note that the size of our exceptional set arose essentially from solving the
equation h=¢ = s75 with s = (logX)/(logh) and ¢ =< 1. Since it does not seem easy to
obtain a saving larger than A% for the size of the exceptional set in Theorem 1.3 even
under the Riemann hypothesis, it seems that a new idea would be required to improve

on the size of our exceptional set in Theorem 1.2.

5 Proof of Theorem 1.3

Throughout this section, let ¢ > 0 be a small enough absolute constant. We can restate

Theorem 1.3 in the following quantitative form.

Theorem 5.1. Let (logx)¢ < h < X'/10 for large enough C > 1. Then, for all integers

1 < x < X apart from « Xh~¢ exceptions, we have

> AmpAmy =h > ¥+O(h(logX)_loo). (5.1)

x<nina<x+h Rl-2¢<p;<pl—e 1

hl—ZeSnIShl—s

By Mertens's theorem, we have

Z Ay) = (log 11__28 + 0(1)) logh

hl-28<p, <hl—¢ m €

and log((1 — ¢)/(1 — 2¢)) > ¢ for ¢ € (0,1/2). Hence, noting that A(n;) < logh, A(n,) <
log X +1 and trivially bounding the contribution of the higher prime powers to A, we see
that Theorem 5.1 directly implies Theorem 1.3 with ¢ = ¢.

We will prove Theorem 5.1 via the method of Dirichlet polynomials. The main
hurdle in the proof is that we do not know a zero-free strip of constant width for
the Riemann zeta function. Given our current knowledge on the zero-free region of
the Riemann zeta function (i.e., the Vinogradov-Korobov zero-free region), we cannot
hope to have an error term better than hexp(—(logX)!/3t°(D) on the right of (5.1).

Hence, (5.1) cannot be directly converted into a variance estimate that we could hope to
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1006 J. Teravidinen

unconditionally prove. This issue is amended by defining a model function A for the von
Mangoldt function such that A “resonates” with the zeros of the Riemann zeta function of
large real part in exactly the same way as the von Mangoldt function itself, and therefore
the Dirichlet polynomial of A — A satisfies power-saving Dirichlet polynomial bounds.

More precisely, we define A as follows.

Definition 5.2 (A model for the von Mangoldt function). For a given X > 2, define

Amy:=1- > nl,
p=pB+iy
B>1-10¢
lyl<x11

where the sum is over the nontrivial zeros p of the Riemann zeta function.
We have the following lemma on the size of the model function A(n).

Lemma 5.3. For n € [X%!,2Xx], we have |A(n) — 1| < exp(—(log X)9-33).

Proof. We have

Amy—1=- > n!
p=p+iy
B>1-10¢e
lyl<x1

< Z x0-1(8-1)
p=p~+iy
B>1-10¢e
‘V‘SXI'I
By the Vinogradov-Korobov zero-free region, we necessarily have § < g, = 1 —
(log X)~9667 for X > X,. Hence, by splitting the values of g into intervals of length

< 1/(logX), we have

Z XO.I(ﬂ—l) << (IOgX) max XO.I(ﬂ—l)N(,lel.l),
ppriy 1-10e<B<po

B>1—10¢
ly|<xt1

where N (B, T) denotes the number of zeros p of the Riemann zeta function with Re(p) > 8,

IIm(p)| < X. We may assume that ¢ < 1078, say. By a zero density estimate for the
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Invariable Generation of Almost All Alternating Groups 1007

Riemann zeta function near the 1-line [16], for 8 > 1 — 2- 1077 (say), we have
N(IBIXI.I) < (X1.1)100(1—,3)3/2 < x0-11-p)/2 (5.2)
Hence, we have

max  (logX)X*' P~V (g, X11) « X001 « exp(—(logX)*%),
1-10e<A<fo

giving the claim. u

With the help of our model function, we can state a variance estimate that will

turn out to imply Theorem 5.1.

Proposition 5.4 (A variance estimate). Let (logX)¢ < h < X'/° for large enough C > 1.
Also, let H = X!~19% Then we have

X
/ 2. Am(A =Ry - I% > AmDA - Ny P dx < KX

X/2 x<niny<x+h x<ninz<x+H

h1=%<n <hl~® h'=% <n <h!~*

Proof of Theorem 5.1 assuming Proposition 5.4. By Lemma 5.3 and Chebyshev’s
inequality, it suffices to show for all x € [X/2, X] that

> AMm)(Any) — 1) K, HlogX)™ (5.3)

x<niny<x+H
hl—ZeSnl ihl—s

and

> AM)(A(ny) — 1) K, K logx) ™4 (5.4)

x<niny<x+h
hl—Ze <n Shl—e

for b’ € {h, H}.
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1008 J. Teravidinen

The first claim (5.3) follows directly by writing

> AmDAmy)-D= > Ay > (A(ny) — 1)
X<minz<x+H hl=2¢<pj<hl-¢ x/ny <nz<(x+H)/ny
h1—25§n1§h1—s

and applying the prime number theorem in short intervals to the n, sum.

For the proof of (5.4), note simply that by Lemma 5.3 for x € [X/2, X], we have

~ (logh)hW n
E Amp)IA(ny) — 1| K E L08R exp(—(log X)*%%) <« ———.
n; (log X)
x<ning<x+h hl-2e<nq<hl-¢
h1—255n1§h1—s

Before proving Proposition 5.4, we shall reduce it to mean squares of Dirichlet

polynomials.

Proposition 5.5 (Mean square bound for a product of two prime Dirichlet polynomials).
Let

Pi(s):= D> AmnS, Ps)= > (A — A)(n)n~s.

hl-26 <p<hl—e X/(2h1=#)<n<X/h1-2¢

Also, let (logX)¢ < h < X1/° with C > 1 large enough. Then we have

X/h1746 _
/ |P,(1 +it)|2|P(1 +it)|> dt < h™*.
h

10¢

Proof of Proposition 5.4 assuming Proposition 5.5. This is a standard Perron formula

argument. Let

1 _
a, = Z A(mAny), S, = - Z a,, F(s)= Zann s,
n=nins yx§n§X+y n
h1*2£§n1§h1*8
X/(2h'~#)<ny<X/h1~%
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Invariable Generation of Almost All Alternating Groups 1009

Also, let H = x'~10¢, By [13, Lemma 1], we have (in [13, Lemma 1], a,, is assumed to be

supported in [X, 2X], but this is actually not used in the proof)

X
/X/Z
Now the claim follows by applying the mean value theorem for Dirichlet polynomials in
the range T > X/h' =%, [ ]

1 1 X/h 2T
ﬁsh(x) — Su®) 2dx « h™10¢ +/ IF(1 +it)]? dt + max —/ IF(1 + it))? dt.
ths

Before proving Proposition 5.5, we need one more lemma.
Lemma 5.6. For 2 < |t| < X, we have

IP(1 +it)| < 1/|t] + X8,

Proof. Let Q, = X/(2h'~%), Q, = X/h'~?¢. By a slight variant of the explicit formula
(which is proved in the same way; cf. arguments in [17, Section 5]), for 2 < |t| < X, we

have

. . i .
> A(n)n*I*itz_M_ > Q "-oy +O(Oz(log02)3)'

it —it Xx1.1
Q15n=0y p=priy P
|V|SX1'1

Here, the error term is <« X~ 1% (if ¢ < 1/110) and the first term is <« |¢t|~!. Note that the
contribution of 8 < 1 — 10e above is « X%, using >’ xi1 1/lp —it] < (logX)? and
Q, > X/h > X8/°.

On the other hand, we have

Z A(n)n 1-it _ Z n—l —it __ Z Z np—Z—Lt.
1<n<02 1<n<02 =ﬁ+i)/ QISnSOZ

B>1-10¢e

|V|SX1'1

p:[Im(p)|<

By Perron’s formula, for any & with Re(¢) < 1, we have

' 1 1+X10€ Os _ QS
Z néfzflt: _/ é—(s_i_z_é:_l’_lt)% ds—f-O(X*gs)‘
1

271 J1_x10¢;
Q1=<n=<Q X
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Shifting the line of integration to Re(s) = Re(§) — 2 and applying the residue theorem

and the estimate |¢(iu)| < (1 + |u|)1/?, this is

E—1—it E—1—1it
02 B Ol
E_1-—it

+0(X7%),

since either the simple pole at s = &£ — 1 —it is captured by the integral unless |[Im(¢) —t| >

X' Applying the above with & = 1 and & = p, and recalling (5.2), the claim follows. B

Proof of Proposition 5.5. We apply the Matoméki-Radziwitt [18] method. We split the

integration domain into two sets
T, = (h'% <t <x/h'7% . |P(1 +it)| = k5, T, =[h!0¢, X/R1 %)\ T;.

By the mean value theorem for Dirichlet polynomials, we trivially have

X/h'™% + X/h1~*
X/hl—s

/T |P,(1 +it)|2|P(1 + it)|? dt « h™10¢ ( ) < h™%.
1

Consider then the integral over 7,. By a large values estimate ([13, Lemma 6], which is
proved by raising P; to a large power and applying the mean value theorem), if i/ C 7, is
any well-spaced subset (i.e., any two of its elements are separated by > 1), then (taking

C large in terms of ¢), we have

|u| << XllE‘

On the other hand, for some well-spaced ¢/ C 7,, we have

/|P1(1+it)|2|13(1+it)|2dt<<Z|Pl(1+it)|2|i5(1+it)|2,
T2 teld

and crudely bounding |P;(1 + it)| <« 1 and using Lemma 5.6, we can bound this by
« h—lOs + |U|X—168 & h—lOs _I_X—58 & h_48.

This proves the claim. n
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