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Abstract—The healthcare industry has experienced a re-
markable digital transformation through the adoption of IoT
technologies, resulting in a significant increase in the volume
and variety of medical data generated. Challenges in processing,
analyzing, and sharing healthcare data persist. Traditional cloud
computing approaches, while useful for processing healthcare
data, have drawbacks, including delays in data transfer, data
privacy concerns, and the risk of data unavailability. In this
paper, we propose a software-defined 5G and AI-enabled dis-
tributed edge-cloud collaboration platform to classify healthcare
data at the edge devices, facilitate real-time service delivery, and
create AI/ML-based models for identifying patients’ potential
medical conditions. In our architecture, we have incorporated a
federated learning scheme based on homomorphic encryption to
provide privacy in data sharing and processing. The proposed
framework ensures secure and efficient data communication and
processing, ultimately fostering effective collaboration among
healthcare institutions. The models will be validated by per-
forming a comparative time analysis, and the interplay between
edge and cloud computing will be investigated to support real-
time healthcare applications.

Index Terms—Cloud Computing, Edge Computing, Federated
Learning, 5G SDN, Healthcare, IoT, Privacy

I. INTRODUCTION

The rapid advancement of technology, particularly Internet

of Things (IoT), has transformed the healthcare industry by

enabling real-time patient monitoring and remote medical

support. Wearable medical IoT devices allow doctors to col-

lect medical data from patients through smartphone applica-

tions, enabling remote medical treatment. The modernization

of smart devices, wireless communication, and computational

facilities have significantly improved the efficiency, accuracy,

and accessibility of healthcare data management, leading to

better patient outcomes and an overall enhancement of the

healthcare system. More than 100-million people are using

wearable medical devices globally as estimated in [1]. Forbes

predicted that the compound annual growth rate of data for

healthcare would reach 36% of the world’s data volume by

2025 [2], which is faster than other industries, including me-

dia and entertainment, manufacturing, and financial services.

However, the continuous use of medical IoT devices and

applications generates vast and diverse data artifacts that

require efficient processing and analysis to deliver high-

quality care. Traditional cloud computing approaches used

for healthcare data processing have drawbacks, including

delays in data transfer, data privacy concerns, and the risk

of data unavailability due to system failures. Effective data

sharing among healthcare institutions faces challenges due to

geographical dispersion, different ethical rules and data shar-

ing regulations, and the risks of data breaches. These factors

result in isolated data islands that hinder the development

of the healthcare industry. To overcome these challenges, a

secure framework is needed to enable healthcare institutions

to share data while preserving data privacy.

In this paper, we propose to develop an edge-cloud collab-

oration platform that enhances efficient data communication

and processing for intelligent medical systems. Leveraging

software-defined 5G [3] and AI-enabled distributed edge-

cloud technologies [4], [5], the proposed platform ensures

the secure management and availability of critical healthcare

data. The approach involves an SDN-driven architecture that

classifies healthcare data at edge devices, facilitates real-

time service delivery, and creates models based on AI/ML

algorithms to identify potential medical conditions in pa-

tients. It also utilizes homomorphic encryption [6] with

federated learning to provide privacy without disclosing the

raw and sensitive health data [7]. The proposed platform

ensures secure and efficient data communication and process-

ing, thereby fostering effective collaboration among different

healthcare institutions and ultimately enhancing the overall

quality of patient care.
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The rest of this paper is organized as follows: In Section

II, we provide a literature review on federated learning,

5G networking, cloud computing, edge computing, SDN

(Software Defined Networking), IoT (Internet of Things),

AI (Artificial Intelligence), and data privacy in healthcare

applications. Section III provides a detailed description of

the proposed framework for communication-efficient and

privacy-preserving healthcare data sharing and processing.

Section IV introduces the concepts of 5G and SDN. In Sec-

tion V, we elaborate on how data privacy is ensured through

federated learning. Lastly, in Section VI, we conclude the

paper and provide a direction for future work.

II. RELATED WORKS

The Internet of Things has transformed the healthcare

industry by enabling real-time patient monitoring and remote

medical support. Several studies have investigated the poten-

tial of IoT in healthcare applications such as remote patient

monitoring, telehealth, and robotic surgeries. Here is an

example: The work proposed in [8] provides a comprehensive

overview of IoT, including its application in healthcare.

Cloud computing has also been extensively used in health-

care for data storage, processing, and analysis. Several works

have highlighted the benefits and challenges associated with

using cloud computing in healthcare, particularly with respect

to data privacy, security, and latency. These studies have laid

the groundwork for understanding the limitations of cloud

computing in handling the vast and diverse data generated

by IoT devices and applications in healthcare. The authors

in [9] discuss the potential benefits and challenges of us-

ing cloud computing in healthcare services, including data

storage, processing, and analysis. The work proposed in [10]

discusses the opportunities, challenges, and innovations in

using cloud computing for healthcare services, with a focus

on data privacy, security, and latency.

To overcome the limitations of cloud computing, re-

searchers have explored edge computing and 5G network-

ing as promising solutions for efficient data communica-

tion and processing in healthcare applications. These works

have demonstrated the potential of edge computing and 5G

networks in reducing latency, improving data privacy and

security, and enhancing the overall performance of healthcare

systems. The authors in [11] present a comprehensive study

that explores the role of 5G, edge computing, and IoT in

healthcare. This study also analyses the use of cutting-edge

artificial intelligence-based classification and prediction tech-

niques employed for edge intelligence. The work presented

in [12] proposes an edge computing framework for IoT based

healthcare services, focusing on efficient data communication

and processing, as well as addressing the limitations of cloud

computing in healthcare applications.

In addition, SDN-driven architectures have been proposed

as a means to efficiently manage healthcare data and de-

liver real-time services in intelligent medical systems. These

studies have examined the potential of SDN in enabling

better network management, resource allocation, and service

delivery in healthcare applications. The authors in [13] pro-

pose an SDN-based multi-tier computing and communication

architecture composed of end-user devices, edge servers, and

legacy cloud data-center for pervasive healthcare. The work

presented in [14] proposes a novel on-demand e-Healthcare

dynamic network slice architecture that uses the machine

learning algorithms at the edge server for real-time classifi-

cation and access of the offloaded data from the central SDN

controller. The authors in [15] present a smart healthcare

framework that uses SDN-based slicing backup algorithm for

leveraging deep learning neural network to orchestrate net-

work latency and load efficiently. The work presented in [16]

proposes a load-balancing mechanism based on SDN-SFC

for the optimization of hospital remote-monitoring network

planning to eliminate the need for large amounts of hardware.

Moreover, AI and machine learning algorithms have been

widely used in healthcare for identifying potential medical

conditions and improving the quality of care provided to

patients. Several works have explored the development and

validation of AI/ML-based models for various healthcare

applications, including diagnostics, treatment planning, and

personalized medicine. The authors in [17] demonstrate the

use of deep neural networks for classifying skin cancer,

achieving dermatologist-level performance in diagnostics,

showing the potential of AI in improving the quality of care.

Finally, federated learning has emerged as a promising

technique for preserving privacy in healthcare data sharing

and processing. The work presented in [18] introduce the

concept of fully homomorphic encryption, offering a po-

tential solution for preserving data privacy and security in

healthcare. The work in [19] discusses the system design

of federated learning, ensuring data privacy and security in

healthcare applications.

The existing literature provides insights into the various

aspects of IoT, cloud computing, edge computing, 5G net-

working, SDN, AI, and data privacy in healthcare applica-

tions. However, there remains a need for a comprehensive

edge-cloud collaboration platform that addresses the lim-

itations of traditional approaches while ensuring efficient

data communication, processing, and privacy in intelligent

medical systems [20]. This paper aims to build upon the

existing body of knowledge and develop a novel platform that

leverages software-defined 5G, AI-enabled distributed edge-

cloud technologies, and federated learning to overcome the

challenges faced in healthcare data sharing and processing.

III. PROPOSED FRAMEWORK

In this section, we discuss the architecture of our proposed

framework. It aims to address existing challenges in sharing

and processing big data among healthcare institutions, par-

ticularly focusing on data privacy preservation and efficient

data communication. Figure 1 shows the architecture of

our proposed framework, which comprises three layers: the

infrastructure and IoT-devices layer, the edge computing

layer, and the cloud computing layer. Each of these layers
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plays a crucial role in the overall system, and they will be

discussed in detail in the subsequent subsections.

Fig. 1. Architecture for Communication-Efficient and Privacy-Preserving
Edge-Cloud Framework For Smart Healthcare

A. Infrastructure and IoT-devices Layer

This layer encompasses all the networked and IoT devices

utilized in the participating healthcare institutions. These

devices include, but are not limited to, desktop computers,

intelligent medical transportation systems, smart pacemakers,

smart insulin pumps, smartphones, intelligent surgery robots,

networked imaging scanners, embedded systems, hospital

self-check-in stations, and more. These devices play a crucial

role in both generating and consuming data within the

healthcare ecosystem.

The infrastructure and IoT devices within this layer gen-

erate a vast array of data artifacts, each with its own unique

characteristics. These data artifacts are then directed to the

edge server, where they undergo processing and storage. By

means of an application programming interface (API), the

infrastructure devices are able to retrieve the processed data

from the edge server and conduct further data analysis.

B. Edge Computing Layer

In the proposed framework, we leverage edge computing

to address the challenges associated with centralized cloud

computing by bringing data storage, computing, and process-

ing closer to the devices that generate and consume the data.

This is achieved by deploying intelligent edge servers at each

participating healthcare center. By performing computations

locally, edge computing offers several advantages over tradi-

tional cloud computing:

1) Latency: Edge computing significantly reduces the time

taken for data to travel between the data source and the

processing unit.

2) Bandwidth: Local processing at the edge server in-

creases the network bandwidth, thus preventing net-

work congestion.

3) Privacy and security: Edge computing enhances data

privacy and security by processing sensitive data lo-

cally instead of sending it to a centralized data center.

4) Scalability and resilience: The edge servers are inter-

connected in a full mesh topology. This distributed ar-

chitecture prevents single points of failure and ensures

system continuity, even in the presence of compromised

or disconnected nodes.

C. Cloud Computing Layer

Within this layer, cloud computing is utilized through

the utilization of a centralized cloud server. This server

plays a crucial role in coordinating the heavy computing

tasks associated with federated learning. One advantage of

employing cloud computing is the ability to leverage its vast

data storage capabilities. In contemporary times, elastic cloud

services allow for dynamic increases in data storage capacity

on an as-needed basis.

Moreover, the centralized cloud server serves as a plat-

form for harnessing the power of software-defined 5G and

AI-enabled distributed edge-cloud technologies. These ad-

vancements ensure the secure management and responsive

availability of critical healthcare data. Additionally, the cloud

server assumes the role of the control center for the entire ar-

chitecture. Within this layer, other network functions, such as

NFV (Network Function Virtualization) and SDN (Software-

Defined Networking), can be deployed in conjunction with

5G technology, facilitating the implementation of network

slicing.

IV. 5G NETWORK

The emergence of 5G network technology represents the

latest generation of mobile communication networks, revo-

lutionizing various industries such as autonomous vehicles,

remote surgery, smart cities, and immersive entertainment ex-

periences. It comprises several key components, including the

Radio Access Network (RAN), Massive MIMO technology,

5G New Radio (NR), Core Network, Network Slicing, Edge

Computing, Backhaul and Fronthaul, and Device Support.

Together, these components collaborate to provide notable

benefits such as faster data speeds, reduced latency, increased

capacity, and enhanced reliability.

The 5G Core, a central part of the 5G network, serves

as the hub for managing and orchestrating various network

functions, such as NFV and SDN. It plays an important

role in enabling advanced features and capabilities within

5G networks, such as ultra-low latency communication, net-

work slicing, and edge computing. These advancements are

instrumental in supporting a wide range of new applications

and services across diverse industries.

Within the healthcare industry, a vast amount of data is

generated by devices and applications. To ensure efficient

and reliable communication, it is essential to address po-

tential issues related to high latency and data bottlenecks.

To overcome these challenges, our architecture leverages

5G network and communication technology. This approach

ensures ubiquitous connectivity, supporting a high number

of connected devices with various services. Additionally,

it offers very high-speed connections, enabling faster data
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transmission, and provides extremely low latency, supporting

real-time data transmission and reception.

V. PRIVACY PRESERVATION

PP Federated learning proceeds as follows: Assuming there

are N clients participating, each client trains a local model

using the data contained in its dataset through several itera-

tions with the stochastic gradient descent (SGD) algorithm.

Once this task is complete, the client uploads its local model

to the server, which then aggregates all the local models

submitted by N clients and generates a global model using the

weighted average algorithm. Subsequently, the global model

is distributed to each participating client i for further training

until the model converges. This means, given the aggregation

weight Wi for the client i, where i ∈ N, the global model

Mglobal is calculated by summing the weighted local models,

as shown in Equation (1).

Mglobal =
N∑

i=1

WiMi (1)

Federated learning is proven to be an efficient technique

for sharing and processing data among multiple healthcare

institutions [21]. However, some existing federated learning

schemes overlook privacy preservation [22], [23], while oth-

ers rely on homomorphic encryption schemes to address data

security and privacy concerns [7], [24]. Nevertheless, some

of these privacy-preserving federated learning schemes have

limitations, such as clients’ dropout [24], [25].

A. Proposed Scheme

Motivated by the work of Zhang et al. [7], we proposed

a federated learning scheme with related concepts. This

scheme combines various cryptographic primitives, including

the homomorphic encryption scheme [6], the Shamir secret

sharing algorithm [26], and the Diffie-Hellman key exchange

[27], to ensure both privacy and security. It also tackles the

challenge of clients’ dropout.

We have incorporated this scheme in our architecture to

provide privacy in data sharing and processing. Our archi-

tecture consists of a model aggregation server located in

the cloud and distributed clients, which represent healthcare

institutions with substantial raw healthcare data stored in

their edge servers. The responsibility of the clients is to

train local models on their respective healthcare datasets,

then submit only the encrypted local models along with their

relevant encrypted data quality values to the server, which

then securely aggregates them to generate the global model.

Finally, each client downloads the global model from the

cloud server and continues with iterative training until its

local model converges.

During training, each client keeps its dataset private and

does not share it with the server. Clients may attempt to

infer sensitive raw data from the other clients; however, they

are unable to learn the models of the other clients. While

our scheme specifically focuses on resisting passive collusion

attacks, deliberate attacks on model training are not taken into

consideration.

B. Clients Contribution Weight Computation

In many cases, model aggregation is performed based on

data size, resulting in all clients contributing to the global

model training with the same weight, which can impact

model accuracy. To address this challenge, our federated

learning scheme considers the data quality in the submitted

local models to determine their contribution weight. This

technique enables effective collaboration in federated learn-

ing, as clients with higher data quality make more substantial

contributions to the global model, resulting in improved

accuracy and convergence.

Our scheme incorporates the use of the truth discovery

algorithm and SGD algorithm to calculate the data quality

to determine the weight of each client in the global model.

Past works, such as [28] and [29], have utilized the truth

discovery algorithm in crowd sensing systems to assess the

reliability of data sources by comparing observed values to

true values. This algorithm has demonstrated effectiveness in

evaluating the quality of heterogeneous data.

Furthermore, [30] leveraged the local gradient amplitude

in the SGD algorithm to measure the proportion of the

local model in the global model. However, the gradient

amplitude primarily reflects the convergence speed and can

be influenced by factors such as dataset size and learning

rate. As in Zhang et al. [7], to address these limitations, our

scheme employs the truth discovery algorithm to calculate the

distance between the local gradient and the global gradient

in each training epoch. This approach provides a more

comprehensive measure of the contribution of local models.

The SGD provides a method for obtaining the global

gradient through two global models trained in two adjacent

epochs. Let Gt

global represent the global gradient in the t-th

epoch, M t

global represent the global model in the t-th epoch,

and M t+1

global represent the global model in the (t + 1)-th

epoch. The global gradient can be obtained using Equation

(2), where β represents the training rate. This gradient is

essential for updating the global model and facilitating the

convergence of the federated learning process.

Gt

global =
M t

global −M t+1

global

β
(2)

Our scheme leverages the gradients to derive the data

quality parameter. This involves calculating the distance

between the local and global gradients. Let Gt

i represent

the local gradient in the t-th epoch, Gt−1

global represent the

global gradient in the (t-1)th epoch, the data quality Kt

i
in

the t-th epoch, can be obtained using Equation (3), where γ
represents a scaling coefficient.

Kt

i
=

γ

∥Gt

i
−Gt−1

global∥2
(3)

In our approach, we utilize the global gradient from the

previous epoch, Gt−1

global in the (t - 1)-th epoch, to calculate
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the data quality Kt

i
in the current (t-th) epoch, as depicted

in Equation (3). The calculation incorporates a scaling co-

efficient, γ, which is determined based on the Chi-squared

distribution, denoted as χ2. This coefficient is obtained by

evaluating the significance level α and the dimension of the

gradient vector, represented as |d|. Importantly, γ=χ2(1-α/2,

|d|) can be considered a public parameter, given the known

values of α and |d| [31]. Incorporating γ enables us to assess

and utilize the data quality in the federated learning process

accurately.

When the data quality value is known, the weighted

average algorithm performs well. Given the data quality Kt

i

and the local model Mt

i
of each client i in the t-th epoch,

the global model M t

global in the t-th epoch can be obtained

using Equation (4), where N represents the number of clients

participating in the federated learning process.

M t

global =

∑
N

i=1
Kt

i
M t

i∑
N

i=1
Kt

i

(4)

From Equation (4), we can deduce that the clients with

higher data quality contribute more to the global model.

C. Secure Aggregation Process

In this section, we show how homomorphic encryption

techniques are used to mask the local models and their

data quality values in order to provide privacy in federated

learning . The following four parts outline the process.

1) System Initialization: Before the federated learning

starts, the cloud server confirms the clients that will

take part in the training and the neural network model,

such as deep neural network (DNN) or convolutional

neural network (CNN). At the same time, it sets

the learning rate β, the maximum number of epochs

E for training convergence, the initial global model

M0
global, and the threshold e in the Shamir secret sharing

algorithm, which sets the maximum number of clients

that can either dropout or maliciously collude during

the training. After this, some secure parameters and

pairwise keys are generated to assure privacy and

security.

2) Local Model Masking: Once all the participating

clients receive the information above, the federated

learning process starts. Each client starts to train their

local model Mt

i
, then computes the data quality value

Kt

i
. For privacy preservation, some encrypted data need

to be shared among all clients to safeguard their local

models from eavesdropping by any potential malicious

entities. Furthermore, all local models and their associ-

ated data quality values are masked (encrypted) before

being uploaded to the server. The local model masking

process is completed first, then the encryption process

of the data quality follows, utilizing the enhanced

ElGamal homomorphic encryption algorithm proposed

by Zhang et al. [7].

3) Local Models Aggregation: The server starts to aggre-

gate the masked models once it receives the masked

models and the ciphertexts of the data quality from

at least e clients. Sometimes, there are clients that

drop out during the masked model upload process. In

such an event, the server aggregates the masked models

submitted by the active clients.

4) Global Model Generation: The process of decrypting

the aggregate ciphertext of data quality is performed

utilizing the enhanced ElGamal homomorphic encryp-

tion algorithm. Lastly, knowing the total data quality

value
∑

i∈P3
Kt

i
of online clients, the value of all

aggregated masked local models ω = φ
∑

i∈P3
Kt

i
+∑

i∈P3
M t

i
Kt

i
, and the scale factor φ, the server can

generate the global model by aggregating the local

models of the active clients, as per Equation (5)

M t

global =
ω − φ

∑
i∈P3

Kt

i∑
i∈P3

Kt

i

=

∑
i∈P3

M t

i
Kt

i∑
i∈P3

Kt

i

(5)

D. Proposed Scheme Security Analysis

The purpose of masking the models is to protect them so

that no adversary can snoop on them. This is performed by

adding a random number to the real inputs. In this way , the

masked result becomes unpredictable. The adversary may see

the sum of the real inputs but they will be unable to tell the

individual real input of every client because it is hidden.

We consider two cases for analysis purpose:

1) Case 1: Inter Clients Collusion: Let Ccollude denote the

set of clients participating in collusion, Server denote

the cloud server, and e the threshold set according

to the Shamir secret sharing algorithm [26]. Let us

consider that the server is honest and does not temper

with the data and that the cardinality of Ccollude is

less than e. Assume there is an adversary Advers that

wants to break the masking scheme with the assistance

of Ccollude. All the information that Advers can see is

equal to the data that Ccollude possesses. Advers cannot

see the data of the honest clients.

2) Case 2: Server-Clients Collusion: Here again, let us

consider that the server is honest and does not temper

with the data. Assume there is an adversary Advers that

wants to break the masking scheme with the assistance

of Ccollude. Once again, all the information that Advers

can see is equal to the sum of data that the colluding

clients possess because Advers cannot see the data of

the honest clients.

In both cases, it is demonstrated that the information that

an adversary can view is limited to what the colluding clients

can see. The masking scheme is secure against collusion as

long as the number of colluding clients remains below the

threshold e. Therefore, the masking scheme is secure.

VI. CONCLUSION

In this paper, we have proposed a comprehensive frame-

work for healthcare data sharing and processing, centered
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around an edge-cloud collaboration platform. The platform

utilizes software-defined 5G and AI-enabled distributed edge-

cloud technologies to facilitate efficient data communication

for smart healthcare systems. Motivated by Zhang et al.,

we incorporated a related federated learning scheme in our

framework to provide privacy in data sharing and processing

in IoT-based healthcare applications.

Future work will involve refining and validating the pro-

posed models, exploring the interplay between edge and

cloud computing, and identifying additional applications and

use cases for the developed platform. While federated learn-

ing offers promising benefits in terms of privacy preservation

and collaborative model training, it also presents its own set

of challenges, especially when dealing with high-dimensional

data in sensitive domains such as healthcare. By addressing

these challenges, we can further unlock the full potential

of federated learning in advancing collaborative, efficient,

secure and privacy-preserving, and patient-centric healthcare

system.
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