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Abstract—The healthcare industry has experienced a re-
markable digital transformation through the adoption of IoT
technologies, resulting in a significant increase in the volume
and variety of medical data generated. Challenges in processing,
analyzing, and sharing healthcare data persist. Traditional cloud
computing approaches, while useful for processing healthcare
data, have drawbacks, including delays in data transfer, data
privacy concerns, and the risk of data unavailability. In this
paper, we propose a software-defined 5G and Al-enabled dis-
tributed edge-cloud collaboration platform to classify healthcare
data at the edge devices, facilitate real-time service delivery, and
create AI/ML-based models for identifying patients’ potential
medical conditions. In our architecture, we have incorporated a
federated learning scheme based on homomorphic encryption to
provide privacy in data sharing and processing. The proposed
framework ensures secure and efficient data communication and
processing, ultimately fostering effective collaboration among
healthcare institutions. The models will be validated by per-
forming a comparative time analysis, and the interplay between
edge and cloud computing will be investigated to support real-
time healthcare applications.

Index Terms—Cloud Computing, Edge Computing, Federated
Learning, 5G SDN, Healthcare, IoT, Privacy

I. INTRODUCTION

The rapid advancement of technology, particularly Internet
of Things (IoT), has transformed the healthcare industry by
enabling real-time patient monitoring and remote medical
support. Wearable medical IoT devices allow doctors to col-
lect medical data from patients through smartphone applica-
tions, enabling remote medical treatment. The modernization
of smart devices, wireless communication, and computational
facilities have significantly improved the efficiency, accuracy,
and accessibility of healthcare data management, leading to
better patient outcomes and an overall enhancement of the
healthcare system. More than 100-million people are using
wearable medical devices globally as estimated in [1]. Forbes
predicted that the compound annual growth rate of data for
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healthcare would reach 36% of the world’s data volume by
2025 [2], which is faster than other industries, including me-
dia and entertainment, manufacturing, and financial services.

However, the continuous use of medical IoT devices and
applications generates vast and diverse data artifacts that
require efficient processing and analysis to deliver high-
quality care. Traditional cloud computing approaches used
for healthcare data processing have drawbacks, including
delays in data transfer, data privacy concerns, and the risk
of data unavailability due to system failures. Effective data
sharing among healthcare institutions faces challenges due to
geographical dispersion, different ethical rules and data shar-
ing regulations, and the risks of data breaches. These factors
result in isolated data islands that hinder the development
of the healthcare industry. To overcome these challenges, a
secure framework is needed to enable healthcare institutions
to share data while preserving data privacy.

In this paper, we propose to develop an edge-cloud collab-
oration platform that enhances efficient data communication
and processing for intelligent medical systems. Leveraging
software-defined 5G [3] and Al-enabled distributed edge-
cloud technologies [4], [5], the proposed platform ensures
the secure management and availability of critical healthcare
data. The approach involves an SDN-driven architecture that
classifies healthcare data at edge devices, facilitates real-
time service delivery, and creates models based on AI/ML
algorithms to identify potential medical conditions in pa-
tients. It also utilizes homomorphic encryption [6] with
federated learning to provide privacy without disclosing the
raw and sensitive health data [7]. The proposed platform
ensures secure and efficient data communication and process-
ing, thereby fostering effective collaboration among different
healthcare institutions and ultimately enhancing the overall
quality of patient care.
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The rest of this paper is organized as follows: In Section
I, we provide a literature review on federated learning,
5G networking, cloud computing, edge computing, SDN
(Software Defined Networking), [oT (Internet of Things),
Al (Artificial Intelligence), and data privacy in healthcare
applications. Section III provides a detailed description of
the proposed framework for communication-efficient and
privacy-preserving healthcare data sharing and processing.
Section IV introduces the concepts of 5G and SDN. In Sec-
tion V, we elaborate on how data privacy is ensured through
federated learning. Lastly, in Section VI, we conclude the
paper and provide a direction for future work.

II. RELATED WORKS

The Internet of Things has transformed the healthcare
industry by enabling real-time patient monitoring and remote
medical support. Several studies have investigated the poten-
tial of IoT in healthcare applications such as remote patient
monitoring, telehealth, and robotic surgeries. Here is an
example: The work proposed in [8] provides a comprehensive
overview of IoT, including its application in healthcare.

Cloud computing has also been extensively used in health-
care for data storage, processing, and analysis. Several works
have highlighted the benefits and challenges associated with
using cloud computing in healthcare, particularly with respect
to data privacy, security, and latency. These studies have laid
the groundwork for understanding the limitations of cloud
computing in handling the vast and diverse data generated
by IoT devices and applications in healthcare. The authors
in [9] discuss the potential benefits and challenges of us-
ing cloud computing in healthcare services, including data
storage, processing, and analysis. The work proposed in [10]
discusses the opportunities, challenges, and innovations in
using cloud computing for healthcare services, with a focus
on data privacy, security, and latency.

To overcome the limitations of cloud computing, re-
searchers have explored edge computing and 5G network-
ing as promising solutions for efficient data communica-
tion and processing in healthcare applications. These works
have demonstrated the potential of edge computing and 5G
networks in reducing latency, improving data privacy and
security, and enhancing the overall performance of healthcare
systems. The authors in [11] present a comprehensive study
that explores the role of 5G, edge computing, and IoT in
healthcare. This study also analyses the use of cutting-edge
artificial intelligence-based classification and prediction tech-
niques employed for edge intelligence. The work presented
in [12] proposes an edge computing framework for IoT based
healthcare services, focusing on efficient data communication
and processing, as well as addressing the limitations of cloud
computing in healthcare applications.

In addition, SDN-driven architectures have been proposed
as a means to efficiently manage healthcare data and de-
liver real-time services in intelligent medical systems. These
studies have examined the potential of SDN in enabling
better network management, resource allocation, and service

delivery in healthcare applications. The authors in [13] pro-
pose an SDN-based multi-tier computing and communication
architecture composed of end-user devices, edge servers, and
legacy cloud data-center for pervasive healthcare. The work
presented in [14] proposes a novel on-demand e-Healthcare
dynamic network slice architecture that uses the machine
learning algorithms at the edge server for real-time classifi-
cation and access of the offloaded data from the central SDN
controller. The authors in [15] present a smart healthcare
framework that uses SDN-based slicing backup algorithm for
leveraging deep learning neural network to orchestrate net-
work latency and load efficiently. The work presented in [16]
proposes a load-balancing mechanism based on SDN-SFC
for the optimization of hospital remote-monitoring network
planning to eliminate the need for large amounts of hardware.

Moreover, Al and machine learning algorithms have been
widely used in healthcare for identifying potential medical
conditions and improving the quality of care provided to
patients. Several works have explored the development and
validation of AI/ML-based models for various healthcare
applications, including diagnostics, treatment planning, and
personalized medicine. The authors in [17] demonstrate the
use of deep neural networks for classifying skin cancer,
achieving dermatologist-level performance in diagnostics,
showing the potential of Al in improving the quality of care.

Finally, federated learning has emerged as a promising
technique for preserving privacy in healthcare data sharing
and processing. The work presented in [18] introduce the
concept of fully homomorphic encryption, offering a po-
tential solution for preserving data privacy and security in
healthcare. The work in [19] discusses the system design
of federated learning, ensuring data privacy and security in
healthcare applications.

The existing literature provides insights into the various
aspects of IoT, cloud computing, edge computing, 5G net-
working, SDN, Al, and data privacy in healthcare applica-
tions. However, there remains a need for a comprehensive
edge-cloud collaboration platform that addresses the lim-
itations of traditional approaches while ensuring efficient
data communication, processing, and privacy in intelligent
medical systems [20]. This paper aims to build upon the
existing body of knowledge and develop a novel platform that
leverages software-defined 5G, Al-enabled distributed edge-
cloud technologies, and federated learning to overcome the
challenges faced in healthcare data sharing and processing.

III. PROPOSED FRAMEWORK

In this section, we discuss the architecture of our proposed
framework. It aims to address existing challenges in sharing
and processing big data among healthcare institutions, par-
ticularly focusing on data privacy preservation and efficient
data communication. Figure 1 shows the architecture of
our proposed framework, which comprises three layers: the
infrastructure and loT-devices layer, the edge computing
layer, and the cloud computing layer. Each of these layers
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plays a crucial role in the overall system, and they will be
discussed in detail in the subsequent subsections.

Encrypted Aggregated
Global Model in Cloud'
server

&

Cloud Computing
Layer

56 Network

Edge Computing
Layer

Networked MRI Networked Self
Scanner CheckIn Kiosk

Healthcare Center 2 Healtheare Center 3

Fig. 1. Architecture for Communication-Efficient and Privacy-Preserving
Edge-Cloud Framework For Smart Healthcare

A. Infrastructure and loT-devices Layer

This layer encompasses all the networked and IoT devices
utilized in the participating healthcare institutions. These
devices include, but are not limited to, desktop computers,
intelligent medical transportation systems, smart pacemakers,
smart insulin pumps, smartphones, intelligent surgery robots,
networked imaging scanners, embedded systems, hospital
self-check-in stations, and more. These devices play a crucial
role in both generating and consuming data within the
healthcare ecosystem.

The infrastructure and IoT devices within this layer gen-
erate a vast array of data artifacts, each with its own unique
characteristics. These data artifacts are then directed to the
edge server, where they undergo processing and storage. By
means of an application programming interface (API), the
infrastructure devices are able to retrieve the processed data
from the edge server and conduct further data analysis.

B. Edge Computing Layer

In the proposed framework, we leverage edge computing
to address the challenges associated with centralized cloud
computing by bringing data storage, computing, and process-
ing closer to the devices that generate and consume the data.
This is achieved by deploying intelligent edge servers at each
participating healthcare center. By performing computations
locally, edge computing offers several advantages over tradi-
tional cloud computing:

1) Latency: Edge computing significantly reduces the time
taken for data to travel between the data source and the
processing unit.

2) Bandwidth: Local processing at the edge server in-
creases the network bandwidth, thus preventing net-
work congestion.

3) Privacy and security: Edge computing enhances data
privacy and security by processing sensitive data lo-
cally instead of sending it to a centralized data center.

4) Scalability and resilience: The edge servers are inter-
connected in a full mesh topology. This distributed ar-
chitecture prevents single points of failure and ensures
system continuity, even in the presence of compromised
or disconnected nodes.

C. Cloud Computing Layer

Within this layer, cloud computing is utilized through
the utilization of a centralized cloud server. This server
plays a crucial role in coordinating the heavy computing
tasks associated with federated learning. One advantage of
employing cloud computing is the ability to leverage its vast
data storage capabilities. In contemporary times, elastic cloud
services allow for dynamic increases in data storage capacity
on an as-needed basis.

Moreover, the centralized cloud server serves as a plat-
form for harnessing the power of software-defined 5G and
Al-enabled distributed edge-cloud technologies. These ad-
vancements ensure the secure management and responsive
availability of critical healthcare data. Additionally, the cloud
server assumes the role of the control center for the entire ar-
chitecture. Within this layer, other network functions, such as
NFV (Network Function Virtualization) and SDN (Software-
Defined Networking), can be deployed in conjunction with
5G technology, facilitating the implementation of network
slicing.

IV. 5G NETWORK

The emergence of 5G network technology represents the
latest generation of mobile communication networks, revo-
lutionizing various industries such as autonomous vehicles,
remote surgery, smart cities, and immersive entertainment ex-
periences. It comprises several key components, including the
Radio Access Network (RAN), Massive MIMO technology,
5G New Radio (NR), Core Network, Network Slicing, Edge
Computing, Backhaul and Fronthaul, and Device Support.
Together, these components collaborate to provide notable
benefits such as faster data speeds, reduced latency, increased
capacity, and enhanced reliability.

The 5G Core, a central part of the 5G network, serves
as the hub for managing and orchestrating various network
functions, such as NFV and SDN. It plays an important
role in enabling advanced features and capabilities within
5G networks, such as ultra-low latency communication, net-
work slicing, and edge computing. These advancements are
instrumental in supporting a wide range of new applications
and services across diverse industries.

Within the healthcare industry, a vast amount of data is
generated by devices and applications. To ensure efficient
and reliable communication, it is essential to address po-
tential issues related to high latency and data bottlenecks.
To overcome these challenges, our architecture leverages
5G network and communication technology. This approach
ensures ubiquitous connectivity, supporting a high number
of connected devices with various services. Additionally,
it offers very high-speed connections, enabling faster data
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transmission, and provides extremely low latency, supporting
real-time data transmission and reception.

V. PRIVACY PRESERVATION

PP Federated learning proceeds as follows: Assuming there
are N clients participating, each client trains a local model
using the data contained in its dataset through several itera-
tions with the stochastic gradient descent (SGD) algorithm.
Once this task is complete, the client uploads its local model
to the server, which then aggregates all the local models
submitted by N clients and generates a global model using the
weighted average algorithm. Subsequently, the global model
is distributed to each participating client i for further training
until the model converges. This means, given the aggregation
weight W; for the client i, where i € N, the global model
Mjopar 1s calculated by summing the weighted local models,
as shown in Equation (1).

N
Metopar = Z WiM; (1)
i=1

Federated learning is proven to be an efficient technique
for sharing and processing data among multiple healthcare
institutions [21]. However, some existing federated learning
schemes overlook privacy preservation [22], [23], while oth-
ers rely on homomorphic encryption schemes to address data
security and privacy concerns [7], [24]. Nevertheless, some
of these privacy-preserving federated learning schemes have
limitations, such as clients’ dropout [24], [25].

A. Proposed Scheme

Motivated by the work of Zhang et al. [7], we proposed
a federated learning scheme with related concepts. This
scheme combines various cryptographic primitives, including
the homomorphic encryption scheme [6], the Shamir secret
sharing algorithm [26], and the Diffie-Hellman key exchange
[27], to ensure both privacy and security. It also tackles the
challenge of clients’ dropout.

We have incorporated this scheme in our architecture to
provide privacy in data sharing and processing. Our archi-
tecture consists of a model aggregation server located in
the cloud and distributed clients, which represent healthcare
institutions with substantial raw healthcare data stored in
their edge servers. The responsibility of the clients is to
train local models on their respective healthcare datasets,
then submit only the encrypted local models along with their
relevant encrypted data quality values to the server, which
then securely aggregates them to generate the global model.
Finally, each client downloads the global model from the
cloud server and continues with iterative training until its
local model converges.

During training, each client keeps its dataset private and
does not share it with the server. Clients may attempt to
infer sensitive raw data from the other clients; however, they
are unable to learn the models of the other clients. While
our scheme specifically focuses on resisting passive collusion

attacks, deliberate attacks on model training are not taken into
consideration.

B. Clients Contribution Weight Computation

In many cases, model aggregation is performed based on
data size, resulting in all clients contributing to the global
model training with the same weight, which can impact
model accuracy. To address this challenge, our federated
learning scheme considers the data quality in the submitted
local models to determine their contribution weight. This
technique enables effective collaboration in federated learn-
ing, as clients with higher data quality make more substantial
contributions to the global model, resulting in improved
accuracy and convergence.

Our scheme incorporates the use of the truth discovery
algorithm and SGD algorithm to calculate the data quality
to determine the weight of each client in the global model.
Past works, such as [28] and [29], have utilized the truth
discovery algorithm in crowd sensing systems to assess the
reliability of data sources by comparing observed values to
true values. This algorithm has demonstrated effectiveness in
evaluating the quality of heterogeneous data.

Furthermore, [30] leveraged the local gradient amplitude
in the SGD algorithm to measure the proportion of the
local model in the global model. However, the gradient
amplitude primarily reflects the convergence speed and can
be influenced by factors such as dataset size and learning
rate. As in Zhang et al. [7], to address these limitations, our
scheme employs the truth discovery algorithm to calculate the
distance between the local gradient and the global gradient
in each training epoch. This approach provides a more
comprehensive measure of the contribution of local models.

The SGD provides a method for obtaining the global
gradient through two global models trained in two adjacent
epochs. Let G;[{;bal represent the global gradient in the #-th
epoch, MY, , . represent the global model in the 7-th epoch,
and M;Ij;bal represent the global model in the (¢t + [)-th
epoch. The global gradient can be obtained using Equation
(2), where [ represents the training rate. This gradient is
essential for updating the global model and facilitating the
convergence of the federated learning process.

szlgbal _ Mgtlobal ; Mgtl—(tblal (2)

Our scheme leverages the gradients to derive the data
quality parameter. This involves calculating the distance
between the local and global gradients. Let G! represent
the local gradient in the #-th epoch, G;;;al represent the
global gradient in the (z-1)th epoch, the data quality K! in
the ¢-th epoch, can be obtained using Equation (3), where
represents a scaling coefficient.

v
Kl 3
’ ”Gf - G;]ogallb
In our approach, we utilize the global gradient from the

previous epoch, G;;);az in the (¢ - 1)-th epoch, to calculate
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the data quality K! in the current (t-th) epoch, as depicted
in Equation (3). The calculation incorporates a scaling co-
efficient, v, which is determined based on the Chi-squared
distribution, denoted as x?2. This coefficient is obtained by
evaluating the significance level o and the dimension of the
gradient vector, represented as |d|. Importantly, y=x?(1-c/2,
|d|) can be considered a public parameter, given the known
values of « and |d| [31]. Incorporating -y enables us to assess
and utilize the data quality in the federated learning process
accurately.

When the data quality value is known, the weighted
average algorithm performs well. Given the data quality K}
and the local model M! of each client i in the z-th epoch,
the global model M;lobal in the #-th epoch can be obtained
using Equation (4), where N represents the number of clients
participating in the federated learning process.

N
Mt Zi:l Kzt Mlt

0(1: 4
global Z?;Kf (4)

From Equation (4), we can deduce that the clients with
higher data quality contribute more to the global model.

C. Secure Aggregation Process

In this section, we show how homomorphic encryption
techniques are used to mask the local models and their
data quality values in order to provide privacy in federated
learning . The following four parts outline the process.

1) System Initialization: Before the federated learning
starts, the cloud server confirms the clients that will
take part in the training and the neural network model,
such as deep neural network (DNN) or convolutional
neural network (CNN). At the same time, it sets
the learning rate (3, the maximum number of epochs
E for training convergence, the initial global model
M golo,ml, and the threshold e in the Shamir secret sharing
algorithm, which sets the maximum number of clients
that can either dropout or maliciously collude during
the training. After this, some secure parameters and
pairwise keys are generated to assure privacy and
security.

2) Local Model Masking: Once all the participating
clients receive the information above, the federated
learning process starts. Each client starts to train their
local model M, then computes the data quality value
K. For privacy preservation, some encrypted data need
to be shared among all clients to safeguard their local
models from eavesdropping by any potential malicious
entities. Furthermore, all local models and their associ-
ated data quality values are masked (encrypted) before
being uploaded to the server. The local model masking
process is completed first, then the encryption process
of the data quality follows, utilizing the enhanced
ElGamal homomorphic encryption algorithm proposed
by Zhang et al. [7].

3) Local Models Aggregation: The server starts to aggre-
gate the masked models once it receives the masked
models and the ciphertexts of the data quality from
at least e clients. Sometimes, there are clients that
drop out during the masked model upload process. In
such an event, the server aggregates the masked models
submitted by the active clients.

4) Global Model Generation: The process of decrypting
the aggregate ciphertext of data quality is performed
utilizing the enhanced ElGamal homomorphic encryp-
tion algorithm. Lastly, knowing the total data quality
value Zie% Kf of online clients, the value of all
aggregated masked local models w = ¢Zz‘e7>3 K! +
D iePs M!K!, and the scale factor ¢, the server can
generate the global model by aggregating the local
models of the active clients, as per Equation (5)

w = ¢Zie7>3 K} _ Ziepg MK} (5)
Ziepg Klt EiePa Kf
D. Proposed Scheme Security Analysis

t —
M, global —

The purpose of masking the models is to protect them so
that no adversary can snoop on them. This is performed by
adding a random number to the real inputs. In this way , the
masked result becomes unpredictable. The adversary may see
the sum of the real inputs but they will be unable to tell the
individual real input of every client because it is hidden.

We consider two cases for analysis purpose:

1) Case 1: Inter Clients Collusion: Let C.jj.4e denote the
set of clients participating in collusion, Server denote
the cloud server, and e the threshold set according
to the Shamir secret sharing algorithm [26]. Let us
consider that the server is honest and does not temper
with the data and that the cardinality of C,oyyge 1S
less than e. Assume there is an adversary Advers that
wants to break the masking scheme with the assistance
of Ceoiude. All the information that Advers can see is
equal to the data that C,j1y4. possesses. Advers cannot
see the data of the honest clients.

2) Case 2: Server-Clients Collusion: Here again, let us
consider that the server is honest and does not temper
with the data. Assume there is an adversary Advers that
wants to break the masking scheme with the assistance
of Ceoltude- Once again, all the information that Advers
can see is equal to the sum of data that the colluding
clients possess because Advers cannot see the data of
the honest clients.

In both cases, it is demonstrated that the information that
an adversary can view is limited to what the colluding clients
can see. The masking scheme is secure against collusion as
long as the number of colluding clients remains below the
threshold e. Therefore, the masking scheme is secure.

VI. CONCLUSION

In this paper, we have proposed a comprehensive frame-
work for healthcare data sharing and processing, centered
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around an edge-cloud collaboration platform. The platform
utilizes software-defined 5G and Al-enabled distributed edge-
cloud technologies to facilitate efficient data communication
for smart healthcare systems. Motivated by Zhang et al.,
we incorporated a related federated learning scheme in our
framework to provide privacy in data sharing and processing
in IoT-based healthcare applications.
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