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1 | MAIN THEOREMS

Let U :={z € C : |z| £ 1} denote the unit disc of the complex plane, and let f: N — U be a 1-
bounded multiplicative function. In this paper we study sums of the form

> [ M

n<x
n=a (mod q)

with (a, q) = 1 and with the modulus 1 < g < x being very large as a function of x. We call such
arithmetic progressions short, since the number of terms is ~ x/q, which is assumed to grow
slowly with x.
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368 | KLURMAN ET AL.

Our main results concern the deviation of multiplicative functions f : N — U in residue classes
in the square-root range q < x'/27¢, as well as their variance in residue classes in the full range
g = o(x). Here by deviation we mean

x1(a) —
mx| X -0 };Cf(n)xl(nﬂ, @)
n=a (mod q)

where Z; is the set of invertible residue classes (mod q), and by variance we mean

Xl XY sm- ); 1((;)) > romm)|, 3)
a (mod q) n<x n<x
n=a (mod q)

where Z;( 0 denotes a sum over reduced residue classes (mod q). The character y, (mod q) here is
chosen’ such that the map y + inf ltl<tog x Dg(f> x(n)n't; x)is minimized, where, given f, g : N —
U we define

1/2
Dy(f.g:%) =] Y, 1- Re(f;)(P)g(p)) “
pla

to be the pretentious distance function of Granville and Soundararajan (see, for example, [3, p. 3]).
As a consequence of a well-known theorem of Halész, it can be shown that any other character
X # x1 (mod q) has small correlation sums }’, . f(n)x(n), and so informally we may think of x,
as a character that “correlates the most” with f among all the characters (mod q).

Comparing the sum (1) to the main term x,(a)/9(q) - Y, f (n)x,(n) is natural, since if, in
fact, f “correlates” significantly with some Dirichlet character y, then we expect

Y s~ DY fozon

n=a (mod q)

In this paper, we develop a systematic approach to estimating weighted character sums

anx f(n)x(n)n' for the wide range of parameters t,q = O(x), and deduce numerous estimates
for (2) and (3).

1.1 | Results for prime moduli

For many problems on well distribution in arithmetic progressions one can obtain stronger results
for prime moduli than for general moduli (see, for example, [8, 15]); the same is true in our setting.

Our first main result concerns the variance (3) in the range where x/q tends to infinity very
slowly. It is motivated by the groundbreaking work of Matoméki and Radziwitt [32], which
produces a comparable result for multiplicative functions in short intervals.

T If there is more than one minimizing character, we may choose any of these.
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All the constants in this paper implied by the “<«” notation will be absolute unless otherwise
indicated.
Corollary 1.1. Let 1 < Q < x/10 and (log(x/Q))~1/2% < ¢ < 1. Then there exists a set [1, x5
zcQ,.Ccll,x]nz Wlth I[1,Q]\ Q, | < (log x)¢ * such that the following holds.

Letp € Q.. N[1,Q] beaprime. Let f : N — U be a multiplicative function. Let x, be a character
(mod p) minimizing the distance inf ;| ¢og . D, (f, x(n)n't; x). Then we have

1N

z* | z f(n) _ Xl( ) 2 f(n))(l(}’l)' < E_ (5)
a (mod p) n<x n<x
n=a (mod p)

Moreover, assuming GRH, (5) holds forall p € [1,Q].

Remark 1.1. Applying Halasz’s theorem (Lemma 7.4), we see that in Corollary 1.1 (as well as in
our other results to follow) the main term (x;(a)/9(q)) - X, S (n)x,(n) can be deleted from the
variance, unless

inf D, (f, xi(mn't; x)? < 210g— (6)
|t|<logx

In particular, if GRH holds, then by the pretentious triangle inequality we see that (6) can hold
only if y, is induced by y’, where y’ is the primitive character of conductor £ Q that minimizes
inf |/ <jogx D(f's x(n)n't; x) (without assuming GRH, the situation is somewhat more complicated;
cf. Subsection 3.3).

We refer to Section 3 for a discussion of the strength of this theorem as well as that of our
other theorems.

1.2 | Smooth-supported functions in the square root range

We are also able to obtain a result on the deviation (2) of multiplicative functions in all arithmetic
progressions n = a (mod q) in the “middle range” g < x'/2=°(), This supports the well-known
analogy between results for all moduli in the middle range g < x'/27°() and almost all moduli
in the large range x' ¢ < g < x!~°() (an example of this analogy is provided by the theorems of
Bombieri-Vinogradov and Barban-Davenport-Halberstam).

Transferring results from the almost all case to the case of all arithmetic progressions
requires a bilinear structure in our sums. In our case, we introduce this bilinear structure
by considering multiplicative functions f supported on smooth (otherwise known as friable)
numbers.

Theorem 1.2. Let 7 > 0 be fixed. Let x > 10, (log x)~/?° < ¢ < 1, and Q < x'/?71907, There is a

set[1,x"1nz c Quc ClLxINZwith |[1,Q]\ Q, | < Qx‘fm0 such that the following holds.
Letq € Q, . N[1,Q]. Let f : N — U be a multiplicative function supported on x"-smooth num-

bers. Let y, be a character (mod q) minimizing the distance inf |/ <l x IDq(f,)((n)n“; x). Then we
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370 | KLURMAN ET AL.

have
max| Y f(n)- x1(@) Zf(”))h(n)| < s— Q)
a€zg n<x #(q) n<x
n=a (mod q)

Furthermore, if Q' is any subset of [1, Q] whose elements are pairwise coprime, then we have the
bound |Q"\ Q, .| < (log x)fzoo. Moreover, assuming GRH, (7) holds for all q € [1,Q].

1.3 | Results for smooth moduli

In addition to primality of moduli, we can also leverage their smoothness (see [37, 49] for some
other level of distribution estimates leveraging the smoothness of moduli). For moduli g that are
qE/—smooth, we may prove a variant of Corollary 1.1 without any exceptional moduli at all, but
with the disadvantage that the upper bound for the variance is weaker (and possibly trivial) when
q has abnormally many small prime divisors. To this end, we make the following definition.

Definition 1.1. We say that an integer q > 1 is y-typical if
1
fp<z:plgl< —n(z) forall z3>y.

Theorem 1.3 analogizes Corollary 1.1 for smooth moduli that are, in addition, (x/ Q)gz-typical
numbers. A simple argument (see Lemma 9.1) shows that all g < x are such numbers if Q =
o(x/(log x)!/ 52), and otherwise the number of g < Q that are not (x/ Q)Ez-typical is bounded by
< Qexp(=1074(x/Q)™).

Theorem 1.3. Let 1< Q < x/10, (log(x/Q)™/?° < e <1, and ¢’ = exp(—e3). Let ¢ < Q be
¢ -smooth and (x /Q)Ez-typical. Let f: N = U be a multiplicative function. Let y, (mod q) be a
character minimizing the distance inf ;| o0 Dy (f, x(m)n't; x). Then we have

2
> X f<n)—)“( )Zf<n>x1<n>| <<sqo<q)< )

a (mod q) n<x n<x
a n=a (mod q)

We note that the need to restrict to typical moduli arises naturally in our proof and is present
also in other works (formulated in slightly different terms), see, for example, [13, 30]. See also
Subsection 3.4 for a discussion of the necessity of this assumption.

1.4 | General moduli

We may now state a result for general moduli g that are not required to be prime or smooth. In
this case we obtain the desired bound for the variance (3) for all typical moduli outside a nearly
power-saving exceptional set.

Theorem 1.4. Let 1 < Q < x/10 and (log(x/Q))~1/2% < ¢ < 1. Then there exists a set [1, x° &2
7zCcQ,.Ccll,x]nz wu‘h I[1,Q]\ Q| < Qx_520 such that the following holds.

1n
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MULTIPLICATIVE FUNCTIONS IN SHORT ARITHMETIC PROGRESSIONS | 371

Letq € Q.. N[1,Q] be (x/Q)Ez-typical. Let f: N — U be a multiplicative function. Let y, be a
character (mod q) minimizing the distance inf | <logx D, (f, x(n)n'; x). Then we have

2
> X sm- “ ) Z f(nm(n)] < eqo(q)( ) )
a (mod q) n<x n<x
n=a (mod q)

Moreover, assuming GRH, (8) holds for all (x/Q)EZ—typical qg €[1,0Q].

1.5 | Hybrid results
As already mentioned, our results are motivated by the following theorem from [32].

Theorem A (Matomiki-Radziwilt). Let 10 < h < X, and let f: N — [—1,1] be multiplicative.
Then we have

loglogh 2 _
[( ’ Z f(n)__ Z f(n)’ dx < <<W> +(lOgX) 1/50>Xh2.

x<n<x+h X<n<2X

This was generalized to functions f : N — U that are not n'-pretentious for any || < X by
Matomaiki-Radziwilt-Tao [34]. Our next theorem is a hybrid result that allows us to “interpolate”
between Theorem A (in the complex-valued case) and our Theorem 1.4 on multiplicative functions
in short arithmetic progressions, thus generalizing both results. This theorem applies to sums of
the form

> fm

x<n<x+h
n=a (mod q)
over short intervals and arithmetic progressions, with averaging over x € [X,2X]and a € Z;, as
soon as h/q — oo.

Theorem 1.5 (A hybrid theorem). LetX > h > 10and 1 < Q < h/10. Let (log(h/Q))~1/? < g < 1.
Then there is a set [1,X]NZ C Qx. C [1,X] N Z satisfying |[1,Q\Qx .| < QX" such that
the following holds.

Let g € Qx . N[1,Q] be (h/Q)E typical. Let f : N — U be multiplicative. Let y, be a character
(mod q) minimizing the distance inf |, <x Dy (f, x(m)n'; X), and for each y let t, €[-X,X]bea
point that minimizes' Dy(f, x(n)n''; X). Then we have

X+h
[N f(n)—?fq“f( / mdv>3X > oo onn e ©)

a (mod q) x<n<x+h n<3X
n=a (mod q)

h 2
x( =) .
< ep(q) <q>

Moreover, assuming GRH, (9) holds for all (h/ Q)Ez—lypical qg €[1,0Q].

If there are several such ¢ ++» bick any one of them.
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372 | KLURMAN ET AL.

We remark that for h < €X, by Taylor approximation we have
x+h .
/ v'x dv = hx''n + O(eh).
X

Taking Q = 1, £ = (logh)~'/2%, and letting h tend to infinity slowly with X, we recover Theo-
rem A (though with a smaller power of logarithm saving) in a form that applies to any 1-bounded
f, whether n!-pretentious or not (cf. [33, Theorem 1.7]). Taking in turn Q = o(h) and h = X, we
arrive at a slightly weaker form of our variance result, Theorem 1.4, where we now need to average
over x € [X,2X].

In the case of real-valued multiplicative functions f: N — [-1,1], we have a simpler
formulation of the result as follows.

Corollary 1.6. Let the notation be as in Theorem 1.5, and assume additionally that f is real-valued.
Then forall g € Qx . N [1,Q] that are (h/Q)Ez—typical we have

SRR 1@ h o n\2
[{ 2 l Z fn)— qol(q) e Z f(n))(l(n)’ dx < Ego(q)X<a> .

a(mod q) x<n<x+h n<3X
n=a (mod q)

Moreover, the second sum inside the absolute values can be deleted unless y, (mod q) is real.

We can also specialize Corollary 1.6 to f = u and to the smaller range g < x=*" to obtain a clean
statement, which has recently been used in [47] to obtain applications to ergodic theory.

Corollary 1.7. Let A > 1 be fixed. Let X > h > 10q > 10, (log(h/q)) "/ << 1, ¢ < X, and
let g be (h/ q)gz—typical. Then we have

2 « 2 n\?
[ X X wof areptox(t),

a (mod q) x<n<x+h
n=a (mod q)

except possibly if q is a multiple of a single number q, > (log X)* depending only on A and X.

The exclusion of the multiples of a single modulus is necessary if Siegel zeros exist, as they bias
the distribution of y in residue classes.

2 | APPLICATIONS

A celebrated theorem of Linnik states that the least prime p = a (mod q) is < g” for some absolute
constant L and uniformly for a € Zz; and g > 1. The record value to date is L = 5, due to Xylouris

[48]. For g° —smooth moduli (with § = 8(¢)), a better bound of < q'2/5+¢ is available, this being a
result of Chang [4, Corollary 11]. Under GRH, we would have L = 2 + o(1) in place of L = 5, and
assuming a conjecture of Cramér-type, L = 1 + o(1) would be the optimal exponent.

We apply the techniques used to prove our main results to make progress on the analogue of
Linnik’s theorem for E; numbers, that is, numbers that are the product of exactly 3 primes. We
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MULTIPLICATIVE FUNCTIONS IN SHORT ARITHMETIC PROGRESSIONS 373

seek bounds on the quantity

Z(q) ;=maxminfneN: n=a(modq): n € E}.
aezf;

One can show that under GRH one has .%;(q) < ¢>+°(1). The E; numbers, just like the primes, are
subject to the parity problem, and hence one cannot use sieve methods to tackle the problem of
bounding -%;(q) (in contrast, for products of at most two primes < x, it is known that one can find
them in every reduced residue class modulo q for g < x/2*9 for some § > 0 by a result of Heath-
Brown [18] proved using sieve methods). In relation to this problem, Ramaré and Walker [39]
obtained the bound .%;(q) < ¢'° by constructing products of primes p, p, p; with each p; < ¢'*/3.

We show unconditionally that .%5(q) < g*+°(") for all smooth moduli and for all but a few prime
moduli; moreover, the products p; p, p; constructed satisfy p; < g for j =1,2,3.

Theorem 2.1. Lete > 0, and let £’ > 0 be small enough in terms of c.

(i) Foranyintegerq > 1thatis qg/-smooth, foranya € Zj;, there exists some q-smooth n € E; such
that n < ¢**¢ and n = a (mod q). Consequently, Z,(q) < g***.

(ii) LetQ > 2. Thenforallbut <, 1primesq € [QY/2,Q], foranya € Z;, there exists some q-smooth
n € E; such that n < ¢**¢ and n = a (mod q). Consequently, £,(q) < q**=.

This will be proved in Section 12. Since all the E; numbers we detect are g-smooth, our results
are connected to the question of representing every element of the multiplicative group Z;( by
using only a bounded number of small primes. This problem was introduced by Erdds, Odlyzko
and Sarkozy in [7]. In [7, Section 2] it is mentioned that Erdds conjectured that every residue class
in Z*, with g a large prime, has a representative of the form p, p, with p;, p, < q primes. As is
noted in [46], this remains open, even under GRH. The weaker “Schnirelmann-type” question of
representing every residue class in Zi; as the product of at most k primes in [1, g] was studied by
Walker [46], who showed' that k = 6 suffices for all large primes g, and moreover that k = 48
suffices if we consider products of exactly k primes. Shparlinski [41] then improved on the former
by showing that at most 5 primes suffice for every large integer q. See also the very recent works
[2, 43] for further results on this problem. From Theorem 2.1 we deduce the following.

Corollary 2.2 (Ternary version of Erdds’ conjecture with bounded exceptional set). There exists
an absolute constant C > 0 such that the following holds. For all Q > 2 and all primes q € [Q'/2,Q],
apart from < C exceptions, every element of the multiplicative group Z; can be represented as the
product of exactly three primes from [1, q].

Finally, we consider an analogue of Linnik’s theorem concerning values of the Mébius function.
Since the theorems above give .%;(q) < ¢>*°™ for smooth ¢ and all but a few primes g (and since
the E; numbers we detect are typically squarefree), for such g the least number n with u(n) = —1
and n = a (mod q) also satisfies n < g>"°"). Going further, we are able to obtain lower bounds
of the correct order of magnitude for the number of n < x with u(n) = —1 in any residue class
a (mod q) as soon as x > g>*¢, as opposed to just showing their existence.

" Both in [41, 46] a stronger result was shown, namely that one can restrict to primes in [1, g*~] for explicitly given values
of > 0. An inspection of the proof of our Corollary 2.2 shows that there also we could restrict to primes bounded by ¢'~7,
with 7 > 0 small enough.
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374 | KLURMAN ET AL.

Proposition 2.3. Let¢ > 0 and Q > 2. Then, for all but <, 1 primes q € [Q'/?,Q], we have

min [{n < x : n=a(modq), un) =-1} >, X
anf; q

forall x > g*>*¢. The same holds when the condition u(n) = —1 is replaced by u(n) = +1.

We lastly remark that unconditionally proving the estimate .#5(q) < g*+°(") for every q
seems challenging, due to connections between this problem and Vinogradov’s conjecture (see
Subsection 3.3).

3 | OPTIMALITY OF THEOREMS AND PREVIOUS WORK
3.1 | Previous results

The study of the deviations (2) and (3) of f in arithmetic progressions can roughly speaking be
divided into three different regimes: the small moduli q < x¢, the middle moduli x* < q < x'¢,
and the large moduli x'~¢ < q = o(x), for ¢ > 0 small.

3.1.1 | Small moduli

In the regime of small moduli, Linnik’s theorem, in its quantitative form [28, Theorem 18.6], gives
the expected asymptotic formula for the average of u (or A) over a (mod q), valid foralla € Z>q< and
g < x¢, apart possibly from multiples g of a single number g, (a Siegel modulus). A far-reaching
generalization of this to arbitrary 1-bounded multiplicative functions f was achieved by Balog,
Granville and Soundararajan [3]. See also the work [10] of Granville, Harper and Soundararajan
for related results. One consequence of our Theorem 1.5 (noting that the set Qy . there contains
[1,X 5200] N Z) is a short interval version of the result of [3], albeit with an average over a.

3.1.2 | Middle moduli

The middle regime g = x° with e < 8 < 1 — ¢ (and typically with 8 near 1/2) is arguably the most
well-studied one. Results related to this range include the celebrated Bombieri-Vinogradov theo-
rem, which for f = u (or f = A) can be interpreted as providing cancellation in the deviation (2)
for almost all g < x'/*“ and all a € ZZ;. A complete generalization of the Bombieri-Vinogradov
theorem to arbitrary 1-bounded multiplicative functions was recently achieved by Granville and
Shao [11, Theorem 1.2].

The work of Granville and Shao in particular implies the following result applicable to almost

1
-1
all moduli: if f: N — U is multiplicative, then for all but < Q/(log x)1 Vi choices of qe
[Q,20Q] c [1, x}/27¢], we have

x1(a) — _ (X
m| 3 so0-20 3 soozon) ~o(%). (10)
n=a (mod q)
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In [11, Corollary 1.7], Granville and Shao obtained a saving of an arbitrary power of logx,
assuming that f is supported on x7-smooth numbers and that f satisfies the Siegel-Walfisz
condition.

Our Theorem 1.2 improves on (10) in the aspect of the exceptional set, as our result implies that
if f is supported on x”7-smooth numbers, then the size of the exceptional set of ¢ < x/2¢ in (10)
can be reduced to an almost power-saving bound, or even to a power of logarithm in the case of
prime moduli. In this aspect, our result may also be compared with a recent result of Baker [1],
who showed that the estimate (10) holds for f = A (with y; = 1) for all but a power of logarithm
number of primes q < x%/40—¢,

Though the theorems in this paper are not related to such developments, we note in passing that
in the literature there are several results, valid in the middle range g < x°, that go beyond 6 = 1/2
for general multiplicative functions, provided that one removes the maximum over the residue
classes a (mod q). See the works of Green [15], Granville-Shao [11], Drappeau-Granville-Shao
[6], and Fouvry-Radziwilt [9], among others.

3.1.3 | Large moduli

In the range x'~ < g = o(x), one aims for estimates valid for almost all q and for almost all
ae Z;; results of this shape arise from upper bounds for the variance (3). The most classical
theorem of this type is the Barban-Davenport-Halberstam theorem [28, Chapter 17], which states
that

Y X Y un )| (1og2)A an

<x/(logx)B aez¥ n<x
g<x/(log.x) 9 n=a (mod q)

with B = B(A) explicit (and there is an analogue in which u is replaced with A).

The Barban-Davenport-Halberstam theorem was extensively studied by Hooley in a sem-
inal series of publications titled “On the Barban-Davenport-Halberstam theorem,” spanning
19 papers. In this series, he significantly improved and generalized the Barban-Davenport-
Halberstam bound, and among other things produced an asymptotic formula for the left-hand
side of (11), and also with u replaced by any bounded sequence satisfying a Siegel-Walfisz type
assumption. Of this series of papers, the ones related to the aims of the present paper are [21-25].
In particular, from [21] (where Hooley considers the variance summed over all moduli g < Q) one
extracts the following result (see also the work of Vaughan [45] for a related result, proved using
the circle method).

Theorem B (Hooley). Lete > 0Oand A > 1befixed. Let1 < Q < x,andlet f : N — Ubean arbltrary
function satisfying the Siegel-Walfisz condition. Denote H := x/Q. Then, for all 1 < q < Q apart
from < Q((log H)/H + (log x)™*) exceptions we have

2
YT - 22 o] <o)

a (mod q) n<x n<x
n=a (mod q)

where, for each q < Q, the character Y, is principal modulo gq.
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By our Theorem 1.4, and the fact that the number of moduli g < Q that are not H EZ-typical is
< Qexp(—(1/1000 + o(1))H 52) (see Lemma 9.1), the size of the exceptional set here for multi-
plicative f reduces to < Q exp(—coH E2), for ¢, > 0 constant. We can at the same time remove the
Siegel-Walfisz assumption on f. If we restrict ourselves to H Ez-typical moduli only, then Theo-
rem 1.4 bounds the exceptional set by < Qx‘gm. This essentially power-saving bound was not,
according to our knowledge, previously available even for f = u.

We now discuss some of the key features of our results when it comes to the strength
and optimality.

3.2 | The description and size of the exceptional set

Theset([1,x] N Z) \ Q, . of exceptional moduli present in our main theorems turns out to be com-
pletely independent of the function f that we consider, a feature that does not arise from applying
the Barban-Davenport-Halberstam theorem or Hooley’s Theorem B. We have the following
explicit” description of Q.. in terms of zeros of L-functions (mod q):

e 1%(loglog x)

» [Im(s)] < 3x 5
log x

Oy =39 <Xx: H L(s,y)#0 for Re(s)>1-—

see Proposition 9.2 and Lemma 8.1 for this. Hence, assuming GRH (or even a weaker version
of it), Q, . = [1,x] N Z. From the description of Q, . above and zero-density estimates, it is not
difficult to see that we have a structural description of the exceptional moduli as the set of multiples
of a subset £, C [xsm, x] of integers of size O((log x)fzoo). This explains why the bound for the
number of exceptional prime moduli in Corollary 1.1 is so strong, compared to the case of general
moduli.

3.3 | Connection to Vinogradov’s conjecture and character sums

For any fixed € > 0, the number of exceptional moduli in Theorem 1.4 is of the form Qx—", saving
a power of x that tends to 0 as € — 0. We show here that this is essentially the best possible, in
the sense that replacing Qx‘gzoo by Qx "o for 5, > 0 fixed would lead to the proof of some form of
Vinogradov’s conjecture* (which is known under GRH but not unconditionally).

Indeed, assume that Vinogradov’s conjecture is false. Then there exists 7 > 0 and infinitely
many x > 10 such that for some prime x7—°() < g, < x” we have (;—0) = 1 for all n with the largest

prime factor P*(n) < qp.
Defining the multiplicative function f,(n) :=1 PH(n)<q”’ by the classical asymptotic formula for
~Ho
smooth numbers (and the fact that g, is prime), we have

" Here, given a Dirichlet character y we denote by cond(y) the conductor of .

#Vinogradov’s conjecture on the least quadratic non-residue states that for every 7 > 0 and for any prime q > g, there is
a quadratic non-residue (mod q) in the interval [1, g”].
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an(m( ) =D Frmxo(n) = (o) + o(D)x, (12)

n<x n<x

with y, the principal character modulo g, and p(-) the Dickman function (see Section 5 for its
definition). It follows that, regardless of the choice of y; (mod q),

1
Qo) , (mzm; o | nz;cfn(”))((n)| >, ¢(qo)_' -
XFX1

However, by Parseval’s identity (that is, just expanding the square and using orthogonality),
(13) equals to the left-hand side of (8) (with f = fy), and thus g & Q, . if € is small in terms
of 7.

Note that if Q = x/logx and r = q,p with p € [logx,Q/q,] a prime, then the same argument
as above (with y,(n) and ( ) replaced by xo(n)1,,)-, and (” )1(n.r)=1 in (12)) shows that also

r € Q, ., meaning that there are 3> Qx~7+°() exceptional q < Q (again with ¢ small enough in
terms of ). Taking < 7, this shows that the number of exceptional moduli for (8) is in fact not
bounded by <« Qx~"0. Thus, one cannot generally improve on the exceptional set in Theorem 1.4
without settling Vinogradov’s conjecture at the same time.

One could also adapt the argument above to show more strongly that improving the exceptional
set for (8) implies cancellation in smooth-supported character sums. Using arguments from [14],
it should further be possible to say that this implies bounds for zeros of L-functions near 1 (which
is out of reach of current knowledge).

Similar conclusions apply to the size of the exceptional set in our other main theorems.

3.4 | The restriction to typical moduli

We now discuss the importance of working with typical moduli in Theorems 1.4 and 1.5. In our
proofs, as in the work [32], it is important for us to be able to discard those n < x,n = a (mod q)
from the sum (8) that have no prime factors from certain long intervals [P;, Q;] (with Q; < h/Q).
However, if q is divisible by all (or most) primes in [P;, Q;], then the contribution of such integers
is not negligible. This would then prevent us from factorizing our character sums in a desirable
way, which is crucial to our method.

While Theorem 1.4 may remain valid for all moduli g < Q (under GRH, say), there seem to
be serious obstacles to proving this. Indeed, Granville and Soundararajan [13] proved a very
general uncertainty principle for arithmetic sequences, which roughly speaking says that “mul-
tiplicatively interesting” sequences cannot be perfectly distributed in all arithmetic progressions.
For example, if f(n) = 1(,,)-; with r having very many small prime factors in the sense that
D plr,p<logx(108 P)/p > loglog x, then for large constant C > 0 there exists y € (x/4,x) and a
progression a (mod q) with (a,q) = 1 and g < x/(log x)¢ and P~(q) > loglog x such that the
mean value of f over n < y,n = a (mod q) does not obey the anticipated asymptotic formula.
Note that this is not due to “trivial” reasons such as f having sparse support, as it is possible for
f, constructed in this fashion, to have f(n) = 1 for a positive proportion of n < x, for example, if

r= H(log x)-1<pglogx P+
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Similarly, if for example f is the indicator of sums of two squares, then the results of [13] imply
that f is poorly distributed in some residue classes a (mod q) with g < x/(log x)°.

3.5 | Remarks on improvements

We finally list a few small improvements to our main theorems that could be obtained with only
slight modifications to the proofs.

* In Theorem 1.5, we obtain an upper bound for (9) of the form (log(h/Q))~“¢(q)(x/q)? for small
¢ > 0 by choosing € = (log(h/ Q))~1/5%_ say. Thus our savings are comparable to those in [32,
Theorem 3]. Due to our reliance on typical factorizations, one cannot hope for larger savings
than ((loglog(h/Q))/ log(h/Q))? in general. However, if one specializes to the case f = w in our
main theorems, one can easily adapt the proof to yield savings of the form < (log(h/Q))~2+°(M
by applying the Siegel-Walfisz theorem in place of Hélasz-type estimates. We leave the details
to the interested reader.

* Asin the work of Granville and Shao [11] on the Bombieri-Vinogradov theorem for multiplica-
tive functions, we could obtain stronger bounds for (8) if we subtracted the contribution of
more than one character from the sum of f over an arithmetic progression. Moreover, it fol-
lows directly from our proof that if we subtracted the contribution of < (log x)¢©) characters,
where C(g) > 0 is large, then there would be no exceptional g at all in the theorem. We leave
these modifications to the interested reader.

4 | PROOF IDEAS

We shall briefly outline some of the ideas that go into the proofs of our main results.

4.1 | Proofideas for the variance results

We start by discussing the proof of the hybrid result, Theorem 1.5; the proof of our result on
multiplicative functions in short progressions, Theorem 1.4, is similar but slightly easier in
some aspects.

As in the groundbreaking work of Matoméki-Radziwitt [32], we begin by applying a suitable
version of Parseval’s identity to transfer the problem to estimating an L?-average of partial sums
of f twisted by characters from a family. Of course, since we are working with both intervals
and arithmetic progressions, the right family of characters to employ are the twisted characters

{ )((n)ni‘}x (mod ¢)- In this way, we reduce our task to obtaining cancellation in
[t|<X/h

2 /’ > sxmn| dr,

x (mod q) x  X<n<2X

with T, = [-X/h,X/h]if x # yy and T, = [-X/h,X/h]\ [t, —€'°,t, +¢'°], with x; and
t,, asin the theorem (so (x,t) — IDq(f,)((n)n”;X) for y (mod q) and |t| < X is minimized at
(s t )); the contribution from the deleted segment in T, accounts for our main term.
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We make crucial use of the Ramaré identity, thus obtaining a factorization’

Y, foxmn ™~ Y [P Y, f(Mayp o x(mm,

X<n<2X PjSPSQj X/p<m<2X/p

with parameters P s Q s 1< j <J, at our disposal, and the approximation being accurate in an

L?-sense (after splitting the p variable into short intervals). Here a,, PQ; = m isa
T [PjQjl

well-behaved sequence, behaving essentially like constant 1 for the purposes of our argument.
After having obtained this bilinear structure, we split the “spectrum” {y (mod q)} X [-X/h, X /h]
into parts depending on which (if any) of the sums ZPj << f(p)x(p)p~** with j < J exhibits
cancellation. The contributions from different parts of the spectrum are bounded differently by
establishing various mean and large value estimates for twisted character sums (see Section 6), in
analogy with [32, Section 4] for Dirichlet polynomials.

The outcome of all of this is that we can reduce to the case where the longest of our twisted
character sums, ZPJ <p<Q; f(p)x(p)p~", has (essentially) no cancellation at all. It is this large
spectrum case where we significantly deviate from [32]; in that work, the large spectrum is not
the most difficult case to deal with, thanks to the Vinogradov-Korobov zero-free region for the
Riemann zeta function. In our setting, in turn, we encounter L-functions L(s, y) with y having
very large conductor, and for these L-functions the known zero-free regions are very poor (the
best region being the Landau-Page zero-free region o > 1 — log(qa%, valid apart from possible
Siegel zeros). At this point, we restrict the set of moduli in question to those g < Q for which
the functions L(s, y) for every y (mod q) (of large conductor) enjoy a suitable zero-free region
(see Proposition 9.4 and Lemma 8.1 for the definition of the region involved). Our bounds for
the number of moduli omitted in this fashion come from log-free zero-density estimates for L-
functions (Lemma 7.3); in the case of pairwise coprime moduli, as in Corollary 1.1, the bound is
much better thanks to there being no effect from a single bad character inducing many others.

Having restricted to such moduli we establish a bound essentially of the form

sup sup | > FxmnT| < e == qo(q) a4)
x (mod q) [t]<X X<n<2X
x=xn=>lt—ty, |27

for the sup norm of the twisted character sums involved, and also prove that the large spectrum
set under consideration is extremely small,* that is,

-2

sup |4 (.0 €fx (mod@hx7 : | Y f(px(p)p™|> S

Pe[Xxe.X] P<p<2P

" Due to the restriction to reduced residue classes a (mod q) in our theorems, we have desirable factorizations for typical
integers only if g is not divisible by an atypically large number of small primes, for example, by almost all of the primes
up to (h/Q)%O, This is what results in the need in our main theorems to restrict to typical moduli. This issue of course
does not arise in the short interval setting of [32].

#One could use moment estimates (for example, Lemma 6.5) to show that the large values set is < (log X )0:(1) in size;
however, in our case that would be a fatal loss, since the saving we get in (14) is at best 1/logX and is therefore not
enough to compensate this. In [32], a Haldsz-Montgomery type estimate for prime-supported Dirichlet polynomials is
established to deal with the large spectrum; our Proposition 8.5 essentially establishes a hybrid version of this, but in a
very different regime.
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with 7 C [—X, X] well spaced. These two bounds are our two key Propositions 8.3 and 8.5 in the
proof of the hybrid theorem. We need full uniformity in |¢|, ¢ < X, which makes the proofs some-
what involved: in particular, our proofs rely on some lemmas from the works of Koukoulopoulos
[31] and Granville-Harper-Soundararajan [10] (as well as a result of Chang [4, Theorem 5] for
Theorem 1.3 on smooth moduli).

4.2 | Proofideas for the case of all moduli in the square-root range

The starting point of the proof of Theorem 1.2 is the simple Lemma 11.4 that allows us to con-
veniently decompose any x”7-smooth number into a product n = dm with an appropriate choice
of d, m € [x'/277, x1/2*1]. However, the decoupling of the d and m variables here is somewhat
delicate and requires some smooth number estimates. After decoupling the variables (and extract-
ing a further small prime factor), we have introduced a trilinear structure with two variables of
almost equal length, which (by Cauchy-Schwarz) means that we can employ the techniques from
previous sections to bound the mean squares of the product of three character sums involved.

4.3 | Proofideas for the Linnik-type results

For the proof of our Linnik-type results, Theorems 2.1(i) and (ii), we use similar ideas as for The-
orem 1.2, with a couple of additions. Since we need only a positive lower bound for the number
of n = a (mod q) that are E; numbers, we can require that these n have prime factors from any
intervals that we choose. Thanks to this flexibility in the sizes of the prime factors, we can get
good bounds for the trilinear sums that arise. A key maneuver here is to count suitable n with the
logarithmic weight 1/, so that we will be able to utilize a modification of the “Rodosskii bound”
from the works of Soundararajan [42] and Harper [17], which establishes cancellation in logarith-
mically averaged character sums over primes assuming only a very narrow zero-free region. For
smooth moduli, we have a suitable zero-free region by a result of Chang [4, Theorem 5], whereas
for prime q we apply the log-free zero-density estimate to obtain a suitable region apart from a
few bad moduli.

STRUCTURE OF THE PAPER

We will present the proofs of Theorems 1.4 and 1.5 in Subsections 9.4 and 9.3, respectively. The
necessary lemmas for proving these results are presented in Sections 6 and 7. Section 8 in turn
contains two propositions that are key ingredients in the proofs of the main theorems. In Section 10
we prove Theorem 1.3 on smooth moduli. Our result on smooth-supported functions in the square-
root range is proved in Section 11. Section 12 in turn contains the proofs of the applications to
Linnik-type theorems. We remark that Sections 9, 11 and 12 can be read independently of each
other, but they all depend on the work in Section 8.

5 | NOTATION

We use the usual Vinogradov and Landau asymptotic notation <, >, <, O(-), o(-), with the implied
constants being absolute unless otherwise stated. If we write <,,>>, or O,(-), this signifies that
the implied constant depends on the parameter .
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We write 15(n) for the indicator function of a set S. The functions A, ¢ and 7, are the usual
von Mangoldt, Euler phi and k-fold divisor functions, and 7(x) is the prime-counting function.
By P*(n) and P~ (n) we mean the largest and smallest prime factors of n, respectively. We say
that n is y-smooth if P*(n) < y. We write e(x) = ¥ for the complex exponential. The symbol
p: (0,00) — [0,1] denotes the Dickman function, the unique solution to the delay differential
equation p(u — 1) = —up’(u) for u > 1, with the initial data p(u) = 1 for 0 < u < 1; see [20] for
further properties of this function.

The symbol p is reserved for primes, whereas j, k, m, n, q are positive integers.

Below we list for the reader’s convenience the notation we introduce in later sections.

NOMENCLATURE

*

a sum over the invertible residue classes (mod q)
a (mod q)
3k
a sum over the primitive characters (mod q)

x (mod q)
Xo the principal character

x* the primitive character inducing the character y
cond(y) the conductor of the character y
Z; the set of invertible residue classes (mod q)
Qip,o)(n), wp o)(n) the number of prime factors of n from an interval [P, Q], with and without
multiplicities, respectively
A(q,Z) Equation (48)
lI’q(X ,Y) Equation (77)

Dy(f, 9;x) Equation (4)
D(f, g;y,x) Equation (22)
F(y) Equation (67)
Ly(s,f) Equation (19)
My (T) Equation (21)
N(o,T, x) Equation (20)
Q..n Equation (32)
V, Equation (18)

6 | MEAN AND LARGE VALUES ESTIMATES

We begin this section with several standard L?-bounds for sums twisted both by Dirichlet and
Archimedean characters.

Important note. In what follows, we will seek to make all of our estimates as sharp as possible
as a function of g, in particular obtaining factors of ¢(q)/q in our estimates wherever possible.
While this increases the lengths of some proofs (particularly in Section 7), it is critical in order for
us to state our main variance estimates with no loss.

Lemma 6.1 (Large sieve for characters). Let g, M, N > 1, and let (a,,),, be complex numbers. Then

Z an)((n)'2 < ((p(q) + ?N) Z la, |2.

x (mod q) M<n<M+N M<n<M+N
(n,g)=1
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Proof. This is [35, Theorem 6.2]. O

Lemma 6.2 (Hybrid large sieve for characters). Let T, N, q > 1. Then

/ Z an)((n)n”’zdt < <¢>(q)T + ?N) Z la,|?.

x (mod q) n<N n<N
(n,g)=1
Proof. This is a slight sharpening of [35, Theorem 6.4] (more precisely, see (6.14) there). O

For the proof of Lemma 6.5, we will also need a discrete version of the large sieve estimate,
in which we sum over well-spaced sets. We say that a set 7 C R is well spaced if t,u € 7, t # u
implies |t — u| > 1. We give two such results below, one of which is sensitive to sparse families of
characters.

Lemma 6.3 (Discrete hybrid large sieve for characters). Let T,N,q > 1, and let T C [-T,T] be a
well-spaced set. Then

z Z | Z an)((n)n”|2 < <qa(q)T + ?N) log(3N) 2 la,|*.

x (mod ) teT n<N n<N
(n,g)=1

Proof. This result, which is a slight sharpening of [35, Theorem 7.4] (taking § = 1 there), is proved
in a standard way by combining Gallagher’s Sobolev-type lemma [28, Lemma 9.3] with Lemma 6.2;
we leave the details to the reader. O

Lemma 6.4 (Haldsz-Montgomery large values estimate). Let T, q > 1 and let £ C {y (mod q)} X
[=T,T] be such thatif t # uand (x,t),(x,u) € € then |t —u| > 1. Then

Y | X avoon'| < (ELn -+ exan P 1ogean)) ¥ ol

(x,t)ee nsN n<N
(n,g)=1

Proof. This is a slight sharpening (paying attention to coprimality with q) of [35, Theorem 8.3]
(see especially (8.16), taking § = 1 and o, = 0), and is proven in much the same way. We leave the
details to the interested reader. O

When it comes to estimating the size of the large values set of a short twisted character sum
supported on the primes, the following hybrid version of [32, Lemma 8] will be important.

Lemma 6.5 (Basic large values estimate — prime support). Let P,T > 2. Let T C [-T,T] be well
spaced. Let

P,(s):= Y a,x(p)p~*,

P<p<2P

where |a,| < 1forall P < p < 2P. Then for any a € [0, 1] we have

{(x,t) € {x' (mod )} x T : [P, (it)] > > P19 < (qT)™ <P2°‘ + exp <100 lg(q ) log log(qT)>>
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MULTIPLICATIVE FUNCTIONS IN SHORT ARITHMETIC PROGRESSIONS 383

Proof. Without loss of generality, we may assume that P and T are larger than any given constant.
Let N be the number of pairs (¥, t) in question and V' := P'~%; then

N<v2 3 3P (i)

x (mod q) teT

for any k > 1. We pick k = [lol(g)(qPT )] Expanding out, we see that

PX(s)k= Z b(n)y(n)n=%, where b(n)= Z ap, ap, -

Pk<ng(2P)k D1 DE=n
p;€lP.2P] Vj
By the discrete large sieve (Lemma 6.3), we have

> DLIPGOIF < (9T + (2P)) log(3-(2PY) D [b(w)|*.

x (mod q) teT Pk<n<(2P)k

We can then compute the mean square over n as

k P k
2

Y opmwr< Y 1<k!< y 1> <k!< >
P<p<2P logP

Pk<ng(2P)k D1 Pk=41""" 9k
P<p;,q;<2P

This gives the bound

k
> Y Ip Pt < k'<<o(q)T+<2P>’<)log<(zp>k+1)< )

x (mod q) teT
(@7 [ 4P> \*
< D!log(2P)( 1 .
(ke 1)tog( )< ¥ (2P)k><logP>

Multiplying this by =2k and recalling the choices of V and k, this becomes

k-1
8k
T 20£P20£
< (qT) <_log 7 )

If log P > 8k then this bound is < (gT)?*P?*; otherwise, we obtain the bound < (qT)**(e*°k)¥
(for P large enough). Together, these two bounds imply the claim. I

The proofs of the next two lemmas are almost identical to the proofs of the corresponding results
in [32], with the following small modifications. First, one applies Lemma 6.2, rather than the mean
value theorem for Dirichlet polynomials. Second, the corresponding Dirichlet polynomials are
considered on the zero line rather than the one line. Finally, the coefficients are supported on the
integers (n, q) = 1 which accounts for the extra factor ¢(q)/q. We give the proof of one of them to
illustrate the changes needed.

Lemma 6.6. Letq,T >1,2<Y,<Y,and?¢ := [izg?] For a,,, c,1-bounded complex numbers,
define
Q)= Y, cx(pp” and A(x,s):i= Y, aux(mm™.

Y1<p<2Y;y X/Y,<m<2X /Y,
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384 | KLURMAN ET AL.

Then

/ 1Q(x, it)’ Ay, it)|dt < @Xylzf <go(q)T + @XY12f>(f + )12
x (mod q) q q

Moreover, we have the same bound for

> 1QGx 0 Ax, 0)

x (mod q)

when we put T = 1 on the right-hand side.

Proof. This is analogous to [32, Lemma 13]. The Dirichlet polynomial Q(y,s)’ A(x,s) has its
coefficients supported on the interval

[Y-X/Y,,2Y)) - 2X/Y,] C [X,2° Y X].

We now apply Lemma 6.2 to arrive at

/ 1QCx, it)” A(y, it)|*dt

x (mod q)

< <qo(q)T + 2@y X> Z Z 1
q XS}'ISZK-F]YlX n=mpy--pg
(n,g)=1 Y 1<y <2Y7,
X/Y,<m<2X /Y,

We note that, for each » in the outer sum, we have

D 1<) 2 1:=2£19(n),

n=mp...py n=mr
Y1<py--pp<2Y7, plIr=Y;<p<2Y;
X/Y,<m<2X /Y,

where g(n) is a multiplicative function defined by g(p*) = k + 1 for Y; < p < 2Y; and g(p*) = 1
otherwise. Consequently,

/ Qe it aGeivfdr < (@1 + P22 vx e ¥ g a3

x (mod q) X<n<2ftly X
(n,g)=1
Shiu’s bound [40, Theorem 1] in dyadic ranges yields
-1
Y g < y 2@ 11 <1 + lg(L) «v?9, (16)
Y<n<2y 9 p<y p q
(n.g)=1 ptq

We now split the right-hand side of (15) into dyadic ranges, apply (16) to each of them and sum
the results up to finish the proof of the first claim. The second claim is proven in the same way,
but using Lemma 6.1 in place of Lemma 6.2. O
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MULTIPLICATIVE FUNCTIONS IN SHORT ARITHMETIC PROGRESSIONS | 385

Lemma 6.7. LetX >H >1,Q>P > 1. Let a,,, b, c, be I-bounded sequences with a,,, = b,.c,
whenever p t mand P < p < Q. LetE be a collection of Dirichlet characters modulo q > 1 Let
Qu:9) = Y cx(pp~*
P<p<Q

eU/HSpSE(UJrl)/H

and
s 1

R ,8) 1= b e,
o (0>9) z MM S

Xe—V/Hgmg2Xe v/H

foreach y € 2 and v >0. Let T C [-T,T] be measurable, and T :={j € Z : |HlogP| < j <
HlogQ}. Then

Z / | Z an)((n)n_“’zdt < Hlog <%> / |QJH()(,lt)Rj a(x,it) dt
JEI x€E

XEE n<X

»(q) <o(q) »(q) 2
— — —X 1 11
+ P X<§0( T+ —= 7 <H + P> + 7 HZSX, [an "1 py=1
(n,g9)=1

where P := [[p <0 P-
Moreover, the same bound holds for

APRECN 17)

XEE n<X

with T = 1 and the integration removed on the right-hand side.

Proof. The proof is almost identical to the proof of [32, Lemma 12], the only slight difference
being that after splitting the sum involving a,, into short sums, one estimates the error terms by
applying Lemma 6.2 (or Lemma 6.1 in the case of (17)) instead of the mean value theorem for
Dirichlet polynomials. U

7 | LEMMAS ON MULTIPLICATIVE FUNCTIONS
7.1 | Preliminaries

Throughout this section, given t € R we set
V, :=exp <10g(3 +1t)?/? loglog(3 + |t|)1/3>. (18)

For y > 2, Re(s) > 1, and a multiplicative f : N — U, we define
, f(p")
Ls.f) =[] D] e 19)
P>y k=0

Also recall the definition of the Dy distance from (4), and let D := D;.
We begin with two estimates for L,(s, f) from the work of Koukoulopoulos [31].
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386 | KLURMAN ET AL.

Lemma 7.1 (Relating L, (s, f) to pretentious distance). Let X,y > 2, t € R, and let f : N — U be
multiplicative. Then

log Ly<l+$+it,f>‘=Re< Z %p_”>+0(1).

y<psx

Proof. This is [31, Lemma 3.2]. O

Lemma 7.2 (Bounding L, (s, x)). Lete > 0. Letq > land s = o + it witho > 1andt €R. Lety >
qV, andlet y (mod q) be a character. Then, if |t| > €/ logy orif x is complex, we have |L,(s, x)| =, 1.

Proof. This is [31, Lemma 4.2]. Cl

In this section and the next, we need estimates for the count of zeros of L(s, y), namely

N, T,x) = Y 1, (20)

P L(p,x)=0
Re(p)z0
[Im(p)I<T

where multiple zeros are counted according to their multiplicities.

Lemma 7.3 (Log-free zero-density estimate). For Q,T > 1, % <o <lande> 0, wehave

12
Z Z* N(O’, T, X) <<E (QZT)(?-'—E)(l_U)-

g<Q x (mod q)

Proof. This is well known (see “Zeros Result 1 (iv)” in [16]). For % < 0 £4/5, say, the lemma
follows from the work of Huxley [26], whereas in the complementary region we can apply Jutila’s
log-free zero-density estimate [29] (with 12/5 + ¢ replaced with the better exponent 2 + ).  []

7.2 | General estimates for partial sums of multiplicative functions

In this subsection we collect various estimates for partial sums of 1-bounded multiplicative
functions.

Lemma 7.4 (A Halasz-type inequality). Let x > 10 and 1< q,T <10x. Let f: N> U be a
multiplicative function. Then

% g’c Jm < ?(Wg(ﬂ + e M 4 % + (logx)_1/4>,

(n,g)=1

where

My(T) = My(f;x,T) := l}&fT D,(f,n"; x)%. (21)
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Proof. We may assume that T < 4/log x, since otherwise we can use M (T) < M,(y/log x) and

the fact that y — (y + 1)e™ is decreasing to reduce to the case T = y/log x. But then the claim
follows' from [3, Corollary 2.2]. O

We also need a version of Haldsz’s inequality that is sharp for sums that are restricted to rough
numbers (that is, integers having only large prime factors). This will be employed in the proof of
Lemma 7.9.

Lemma 7.5 (Halasz over rough numbers). Let 2 <y < x, and let f: N — U be multiplicative.
Then

log x

(1 + M(f; (y, x], 28X ) MO0

1 ’ logy 1

— < + ,

X rg;c Fm logy log x
P~ (n)>y

where M(f; (y, x],T) is defined for T > 0 by

M(f;(y,x],T) := |Hl<f;“ D(f,n";y, x)?

with

(12
5 1—Re(f(p)g(p))) . (22)

ID(f’ g;y,x) = <
y<p<x p
Proof. Without loss of generality, we may assume that f(p*) = 0 for all primes p < y and all k > 1.
We may also assume that y < x'/2, since otherwise the estimate follows trivially from the prime
number theorem.
A consequence of [10, Proposition 7.1] (see in particular formula (7.3) there) implies that

D) <@+ M™M= 4 = (23)
= logy logx
where M is defined implicitly via
sup |F(1+1/logx+it)| _ymlogx
u . = _’
I1]< o8 1+1/logx + it logy

logy

where F(s) := [], X0 f(p¥)/p* for Re(s) > 1. On the other hand, as f(p*) = 0 for all p <,
by Lemma 7.1 for any ¢ € R we have

1 1-R it it.
[F(1+1/logx + it)|—ogy =< exp (— Z 1= Re(/ ()P )) = ¢ DU
log x Yot p

T1In [3, Corollary 2.2], it is assumed that g < \/}, but the same proof works for g < 10x.
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so that

D, nit;y,x)? —M(fi(y.x], izg )

eM« su
1£x |1+ 1/logx + it|
1< 5y

In particular, M(f; (y, x], logx) <M+ 0(1).
Sincet = (1 +t)e~tis decreasmg, it now follows from (23) that

—M(fipx] i8S X x
fn) < <1 +M<f .. ))e e x|, x
r;c logy logx

as claimed. O

In the proof of Theorem 1.5, we will also need the following three lemmas.

Lemma 7.6 (Twisting by n'"). Let a« € R. Then for any x > 3 and any multiplicative f : N — U,

<log(2+ |])
———ex
log x

=Y fon'® = Hlafo( n)+0

n<x n<x

p <|D(f, 1;x)\/(2 +0(1)) 10g10gx>>.

Proof. From [12, Lemma 7.1], we have the claimed estimate with the error term

log(2 + |al) 11— f(p)l
({3122

Hence, the claim follows from
1 1 1
1- 2 1- 2\? 1-R 2
2 11— f(p)l < 2 1 2 11— f(p)l < (loglog x + O(l))% 5 2 e(f(p) _
px P pxP/) \px P px p

g

Lemma 7.7 (Simplifying a Perron integral). Let X, Z > 10, with 1 < Z < (log X)'/?. Let1 < h < X,
andlet1 < q < h/10. Let g : N — U be multiplicative, and let t, be a minimizer of t — D(g, n'; X)
on |t| < X. Then for every x € [X,2X] we have

1 to+Z oG+ Ry = x A Xtho o(q)
 ShlOik Ty ity ity 4 O :
2mh ), 2, 9 it 3hX 2, gmn” /x vrav O\ gz

n<3XxX n<3x
(n,g)=1 (n,q)=1

t_ it
Proof. We note that W = /x+h vt dy for each ¢t € [t, — Z, t, + Z]. Inserting this into
the left-hand side of the statement, swapping the orders of integration and making the change of
variables u :=t — t;, we obtain

1 x+h ) z o
— v~ il / vt Z g(m)n~"o~ M dy | dv. (24)
X —Z

27h K
(n,g)=1
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Let M := min ity+w); X)2, By Lemma 7.4, if M > (1/4) loglog X, then

|u|< logX q(!] n

sup Z g(n)n~ ™| <« qa(q) XA+ M)e™ + X /(log X)'/*) <« X(log X)~1/4+o),
|lul<Z n<3X
(ng)=1

in which case the expression (24) can be bounded by
< % - ZX(log X)~ /4 « (logx)~'/°

for X sufficiently large, given that Z < (logX)'/?°. The claim follows in this case, so we may
assume in the sequel that M < (1/4)loglog X.
Put g, (n) := = g(n)n~". Since |u| < Z, Lemma 7.6 yields

Y g (v = G0 3 (n)+o<wem>
’ 0 logX

n<3x 1- n<3x
(n,g)=1 (n,q)=1
(3X) iu X
2 9M+0(—Z ),
n<3X (log X)0-29=0(1)
(n Q=1

1/2 —1 < —0.29. Furthermore, 0.29 — 1/20 > 1/5, so upon inserting this estimate into (24)
that expression becomes

x+h .
Z g(n)n~'o / v~ ik I(w; 3%) dv + O<—1 > (25)
n<3X x h (logX)l/S
(n,q)=1

where for y > 1 we have defined

z —iu
I(v;y) = i/ v‘“y—,du.

2 J_, 1—iu

Using a standard, truncated version of Perron’s formula (for example, [28, Proposition 5.54]), if

y # v then
) v 1 /v)’ ( y/v ))
W)=~ =— L ds+0( 0—L——
1:y) y<2m /Re(s):l s 87 Z|log(y/v)l

v 1
=21, +0( ———— ).
y 7 (ZIIOg(y/v)I>

As [x,x + h] is disjoint from [3X — 3—\/}% 3X + 3—\/)%], we have Z|log(3X /v)| > Z/2 for all v €

[x,x + h] and (25) becomes
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390 KLURMAN ET AL.

+h
- GD(Q) dv 1
(3hx)™! (n) / viodv + 0 +
rz;X Yo qhz [log(3X/v)|  (logX)'/5
(n,g)=1

x+h
! it o(q) 1 )
= (3hX)~ Z 9;,(n) / vifodv + O(qzl/Z + Goa0 )’

n<3X

(n.g)=1
Since (log X)~'/° <« ¢(q)/(gZ'/?), this completes the proof. O
7.3 | Bounds on prime sums of twisted Dirichlet characters

The following lower bound on the pretentious distance D between Dirichlet and Archimedean
characters will enable us to show that f can only correlate significantly with at most one Dirichlet
character y (mod q), which must then be y, (see Proposition 8.3).

Lemma 7.8 (A pretentious distance bound). Let x > 10, 1 < g < x, and let )( be any non-principal
Dirichlet character modulo q induced by a primitive character y* modulo q*. Then

log x
2(29*)

: 2
o8 Datenia > J1oe (s

> + 0(1).

Remark 7.1. For the purpose of proving Theorem 1.4, our estimates only require uniformity in
the t-aspect for |f| < logx, and in that regime Lemma 7.8 is easier to prove. However, in order
to prove Theorem 1.5, we will need full uniformity in the much larger range |t| < x. The same
remark applies to Lemma 7.9 and several lemmas in Section 8.

Proof. We may assume that x is larger than any fixed absolute constant, since otherwise the
bound is trivial upon choosing the term O(1) appropriately. Let ¢, be a minimizer for the map
t = D(y,n'; x) on [-10x, 10x]. We split the proof of the lemma into two cases.

Case 1. If |#,| < logx, then the claim follows directly from [3, Lemma 3.4].

Case 2. Next assume that |£,| > logx. Let us write y(n) = x*(n)1(,)=1 where x* (mod g*)
induces y and (r,q*) = 1. Let y := ¢*Vy,,; then we have V,,, <y < max{(q*)*,V

‘We now observe that, since g* < y, we have

10x

. 1-— * —ito
[Dq(;(,n”O;x)z > Re( 2 X (P)P > -0 Z Il)

y<psx p plq
pzy

log x 1
=1 —— | —log|L {14+ — +ity, x* 0(1),
Og<10gy> ce| y< +10gx+l°)(>|+ @

where for the last line we used Lemma 7.1 and the crude estimate ] plg 1 < log x = o(y).
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Recalling log x < |ty| < 10x and our choice of y, Lemma 7.2 gives |Ly(1 +1/logx + ity, x*)| =
1. It follows that

; log x 1 log x
D,(x,n';x)* > 1 — o) = -1 — 0(1),
a(ms2) °g<logy> rom>g °g<log(zq*>> o

where for the last inequality we used y < max{(q*)*,V;, }. O

The following pointwise bound for twisted character sums over primes will be needed in the
proof of Proposition 8.5.

Lemma 7.9 (Character sums over primes). Let x > 10, X = x(108 x)Y ® and 1< g<Xx.Lethbea
fixed smooth function supported on [1/2,4]. Then, for € € (0,1) and for any character y (mod q)
with cond(y) < x%, uniformly in the range |t| < X we have

X X

+ . 26
(logx)03 ~ t2+1 (26)

| ; A(”))((ﬂ)n‘”h(% >| <, s<10g3 %)x +

Moreover, the ﬁ term can be deleted for all but possibly one non-principal y (mod q), and this y
(if it exists) must be real and satisfy L(3, x) = 0 for some real § > 1 — c,/(log q) for some absolute
constant ¢, > 0.

Remark 7.2. By looking at the proof of Lemma 7.9, it is clear that (26) works also for the sharp
weight h(u) = 1, ) if x/(t* + 1) is replaced with x /(|¢| + 1) there. The 1/(¢* + 1) decay is help-
ful when we apply Lemma 7.9 in the proof of Proposition 8.5 to ensure that when (26) is summed
over a well-spaced set of t the resulting bound will not be too large.

Proof. Without loss of generality, we may assume that x is larger than any given constant, that
£ > (logx)~%4, and that ¢ is smaller than any fixed constant. If y is induced by y* (mod q*), we
have

> A~ h(%) = X Ay (mn*h( %) +0,(og x)?)

and as the error term is small, may assume that y is primitive and q = g*.
We split into cases depending on the sizes of g and ¢.
Case 1. Suppose first that g = 1. Then y is identically 1, and in that case by Mellin inversion
we have
1 2+ico p1

z A(n)n‘”h(%) =—— ?(s + it)h(s)x® ds.

27i 2—ioco

Since h is smooth, its Mellin transform £ satisfies |h(s)| <, 1/(1 + |s]'9) for Re(s) € [—100, 100].
Hence, shifting the line of integration to Re(s) = b := 1 — (log x)'/1°, we obtain

) n 1 b+ilogx #r _ _ X
Y A(n)n‘”h(—) =L (s + iO)h(s)x* ds + R(1 — it)x + O, <—>
- X 271 Jp—itogx log x
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and this is < x/(t? + 1) + 0,,(x/ log x) by using the Vinogradov-Korobov bound |%(s +it)| <
log x in the region of the integrand. We may thus assume that g* > 2.

Case 2. Suppose then that 2 < g* < (log x)'°, |¢| < (log x)!°. Then (26) follows straightfor-
wardly from partial summation and the Siegel-Walfisz theorem (with a better bound of <,
x(log x)~199),

Case 3. Next, suppose g* > (log x)'°, |¢| < (log x)'°. We apply the explicit formula (proven
similar to [28, Proposition 5.25])

Y Amr wnh(2) == Y xR i) + 0, Flog'@x(t| +2))), @)
n X p=p+iy:
L(p,x*)=0
ly—it|<T
0<p<1
where we choose T = (log x)'%° to make the error term small.

Let D = log(x®(|t| + 2)). Note that by the Landau-Page theorem [44, Theorem 11.8.25] we have
the zero-free region L(s, y*) # 0 for Re(s) > 1 — ¢, /(log D) for some constant ¢, > 0, apart from
possibly one zero p = 8, which has to be real and simple; additionally, such an exceptional zero
can only exist for at most one character y* of conductor < xf, which has to be real and non-
principal. Applying the bound h(s) < 1/(1 + |s|'?) for Re(s) € [—100, 100], the contribution of
p = B to the right of (27) is certainly

<y, (28)

2+1

which is admissible. Moreover, the contribution of Re(p) < 9/10 to (27) is trivially < x°1/100,
By splitting the sum in (27) into pieces Re(s) € (1 — (k + 1)c,/(log D), 1 — kc,/ log D], Im(s) €

[T, 2T], the sum becomes

ke, %
oy N(1- 75527

X 91/100 ~TosD
<h 57X + D ) x e oY
1<k<(log D)/(5¢y) T=2
Jj=0

The log-free zero-density estimate (see Lemma 7.3) allows us to bound this by

keg #\6kcy /(log D) o
1_@ (q ) < x_ZlogD .

X 91/100
+ X + X 00000
2 5
el 1<k<(10gD)/(5¢,) T=2) °+1
Jj=0

<p

by the geometric sum formula and the fact that g* < x'/19%, Noting that x=¢%/(2108D) « 100 for
It] < (log x)'° < g* < x¢, this case has now been handled.

Case 4. We are left with the case |¢| > (log x)'°, g* > 2.Since g* = cond() < xf by assumption,
we may assume that 2 < g* < x1/509% by selecting £ smaller if necessary. Since |¢| is large, we no
longer need the smoothing factor h(n/x), and in fact by partial summation (and the fact that i’
is bounded) we see that (26) in the regime under consideration follows once we prove

xl

(log 00 29)

’ ngc,/ A(n))((n)n‘”‘ < elog? (%)x, +

for any x” € [x/2,4x]. In what follows, for notational convenience we denote x’ by x.
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Puty = (g*)*V1%, so that for g* < x'/5000 we have y < x!/10900 We define
,Uy(m) = #(m)lP*(m)>y’
log, m := (log M)1p- (s
and as in [10, Section 7] we use the convolution identity
A Lp-(n)sy = py * logy(n), n>y.

By the prime number theorem, we then see that for any ¢ € R we have

Y AmxmnTt =Y Am)xmnT" + 0

n<x y2<n<x

= Y wmxmm " log, (dx(d)d ™" + 0>+ x'/3).

yZ<md<x

Let M,D € [y,x] be parameters that satisfy MD = x, with D < x'/2. Using the hyperbola
method, we have

Z Am)y(mn™ =T, + T, + 0* + x'/3),

y2<ngx
Ty = ) w(mxmm™ Y log(d)x(d)d ™"
m<M y2/m<d<x/m
T, := Y log,(dx(dd™ Y pmxmm™.
d<D y2/d<m<x/d

m>M

We first deal with T,. By Haldsz’s theorem for rough numbers (Lemma 7.5), for each d < D the
inner sum is

X (N+1)e N loglogM N ﬁ
d logy logM d’

where we have defined

1 —Re(u,(p)x(p)p~+W)

y<p<M p

N := inf

|u|<log x

AsD < xY/2, M > x'/? and #y(p) = =1 it follows (as in the proof of Lemma 7.8) that

p>y»

—i(t+u)
Z 1+ Re(x(p)p~""*W) L o)

log x . .
logy + |u|1<rggxlog IL,(1 +1/logx +i(t + u), x)| + O(1). (30)

> log

Now since y > q*V,x, Lemma 7.2 tells us that

IL,(1+1/logx +iw, x)| <1 (31)
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for y complex and |w| < 2X, or for y real and 1 < |w| < 2X. Note that since |t| > (log x)'? in
(30) by assumption, we have |t + u| > 1 there, and thus (31) holds in any case for w =t + u,
|u| < logx.

The above implies that N > log((log x)/(logy)) — O(1). Hence, by partial summation and the
estimate ) ;, 1p-(4)>y < u/(logy) coming from Selberg’s sieve, we have

x 10g log x
logy Og 2
T _ |
, <K Togx ‘KZD 4 + (ylogx)
P=(d)>y
x log &x loe D ) d
logy | 108 u 2
| = 1|lo 1
logx | logy +/y dz:; g(e)m +(ylogx)
P=(d)>y
(log D)?log igi; ,
—— + (ylogx)’,
*“(log x)(log ) s

for all non-principal characters y modulo q (recalling that y < x1/10000),

We next estimate T;. By partial summation, the inner sum in T, for each m < M, is

ogd)y S ogx max X —il = R(m).
(logd)x(d)d™"| < (log x) (dyd™" (m)
2 y<upu,<x/m <
ye/m<d<x/m U <asu,

P=(d)>y P (d)>y

Recalling that y = (g*)*V'1%, we apply [31, Lemma 2.4] to the R(m) terms, obtaining

R(m) < loﬁ ((x/m)l—l/(301ogy) + (x/m)l—l/(loolog V[)>’
logy

and since y > V%, the second term can be ignored.
Summing over m < M, and using Selberg’s sieve to bound the number of integers with P~(m) >
¥, we conclude that T, is bounded by

Z |R(m)| <<xlg x—1/(30logy) Z m—1+1/(0logy)
logy

m<M m<M
P~ (m)>y P~(m)>y

logx \*/ x \~1/(30logy)
wn(lBE) (x) O,
logy M
Putting this all together and recalling |¢| < X, we find that

1 2 ~1/(30logy)
logy M

(log(x/M))* log {2
T,<x

(log x)(log y)
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We select M = x/y'000log(logx/logy) € [x1/2 x] (so in particular y < x/M =D < x'/?, as

required). Then log(x/M) = 1000 log y log( igi;) and thus, as g* < x1/1°, we have

gy logy 5 (logx logy 5 (logx
T+ 7T, < 1 < 1 — ).
10 x(l ogx > +x10gx °8 <10gy xlogx °8 logy
If ¢* < Vy then logy < (logx)*®®* for large enough x, and hence the bound reduces to
< x/(logx)®3. On the other hand, if Vy < q* < x® then the above bound becomes <

igg‘i og (logx)<< elog®(1/¢)x. This proves (29), and thus completes the proof of the
lemma. ]

8 | KEY PROPOSITIONS

The goal of this section is to prove two key propositions, namely Propositions 8.3 and 8.5. For
the proofs of both of these propositions, we will need good bounds on the number of Dirichlet
characters whose L-functions have a bad zero-free region.

The log-free zero-density estimate is easily employed to yield the following.

Lemma8.1. Letx > 10, ¢ € ((logx)~1/?°,1), and 1/(loglog x) < M < £%° log x /(20 loglog x), and
define the set

M(logl
Qe i= {q <x: H L(s,x)#0 for Re(s)>1- M, [Im(s)| < Sx}.

x (mod q) log x
cond(;()>x€20

(32)

Then for 1<Q < x we have |[1,Q]\ Q. v| < Qx~""/2. Moreover, there exists a set Byem C
[x<”, x] of size < (log x)'°M such that every integer in [1,x] \ Q, . 5, is a multiple of some element

Ofo,s,M'

Proof. IfQ < xgzo, then trivially [1,Q] N Z C Q,, . ), so there is nothing to be proved. We may thus

assume that Q > x<*
Let

M loglog x
ﬁ, [t] £3x with H Lo +it, x) = 0}_
X (mod q)

X primitive

B :={ <x: do>1-
M q ¢ log x

By Lemma 7.3, we have

M loglog x

(12/5+40.1) ogx  « (log x)lOM.

Mlogl
Boul <Y, Y NO—- MR 3x 1) < (x7)
q<x y (mod q)
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Since L(s, y) and L(s, x") have the same zeros in the region Re(s) > 0 if y and y’ are induced
by the same character, we see that every g < x with g € Q, ., is a multiple of some ele-

ment of B, . 1= By N [x° * x], and each such element has < Qx~¢"" + 1 multiples up to Q.
Thus

I[1,QI\ Qe < (log )" MQx " < Qx~"/2,
since M < £2°(log x)/(201oglog x), € > (logx)~2/2°, and Q > x¢”". O
The next lemma will be a crucial ingredient in the proof of Propositions 8.3 and 8.5.

Lemma 8.2. Let x > 10 and (logx)~'/%° < ¢ < 1. For a character y (mod q), let

w = {1, x principal or y real and cond(y) < x< b = {1, x principal
X~ X~

0, otherwise. 0, otherwise.

Letq € Q, o6

(i) Uniformly for x¢° < P < x, we have

sup sup Z A y(mn~"| <« '°P.

x (mod q) s*louxgulsz.lx n<P

(ii) We have

inf inf DG, L;x) > 5.5log - +O(1).
x (mod q) X rj<2x €
log x

Proof of (). We may assume that x is large enough and that € > 0 is small enough.
Suppose first that cond(y) > x¢*’. In that case we shall show the stronger bound

—i P
sup Am)y(nn™| « ————. (33)
lt]<2.1x ’ ngzp (log P)100
By Perron’s formula, we have
y 1 141/ log x+iT P
An)y(nn™ = —— —(s + it, )() ds + ( > (34)
,;: 2mi 141/ log x—iT L (1 P)lOO

where T := (log x)!°%. Recall that by the definition of Q, . .+ the function L(s, x) has the zero-
free region Re(s) > 1 — 0, := 1 — e %(loglog x)/(log x), |Im(s)| < 3x. Shift the line of integration
in (34) to Re(s) = 1 — 0, /2. By [36, Lemma 11.1], we have

%65, )] < togxy
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MULTIPLICATIVE FUNCTIONS IN SHORT ARITHMETIC PROGRESSIONS | 397

whenever 9/10 < Re(s) < 2, [Im(s)| < 10x, and the distance from s to the nearest zero of L(-, y)
is> @. Hence, we obtain for (34) the bound

L% 1172 loglog P
< P 2 (logx)*’(loglogx) < P 4logP &«

_Pr
(log P)100 '

Suppose then that cond(y) < x¢”. Then, since cond(y) < P, by Lemma 7.9 and Remark 7.2
we have

P + P
(logP)-3 = 1+ |¢t|”

| Z A(n))((n)n‘”' < ¢ log? (%)P +

n<P

where the last term can be deleted if y is complex. Since (log P)~%3 < ¢!? and by assumption
|t] > e710if y is real and cond(¥) < x¢”, we obtain the desired bound. O

Proof of (ii). Suppose first that y is principal. Let y = V,, in the notation of (18) (in particular,
logy > 1/log x). Note that )" plgpsy L /p < 1. Then by Mertens’ theorem and Lemma 7.1, we have

. . log x 1
[ 1-9)2 — it 7.4)2
Dq()((n)nl ,1; x) = Dq(l’l ,1; X) > 10g @ + Re( E p1+i[ > + O(l)

y<p<sx

log x
= log —— +1 0(1).
Oglogy+0g +0(1)

(1 2 i)
log x

Lemma 7.2 tells us that |L,(1 + L 4it,1)] < 1for —— < |¢| < 10x, so we obtain
log x logy

: inf IDq(n“, 1;x)% > <% - o(l)) loglog x, (35)
<[t|<10x
y/log x

which suffices.
If x is non-principal (so that v, =0) and cond(y) < x‘*—zo, then Lemma 7.8 gives the desired
bound

log x

log x&*

D,(x(mn*,1;x)* > % log ( > +0(1) =55 logé +0Q1).

We are then left with the case where cond(y) > x<.

Since Zplq eSS 1/p <« 1, we have

D, (x(Mn'",1;x)* > Re| D 1_+@p” +0(1).

5.5
XETTLpLx

By Mertens’ theorem, this is

> 5.510g % +5+0(1),
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398 | KLURMAN ET AL.

where by partial summation

- Z L2 g2 XXz

<p<x <p<x

/x (logy+ 1Y s, x(p)log p)p~™*
+
X

dy.
¢ y*log’y
From part (i) we now see that S = O(1), completing the proof. 1

Proposition 8.3 (Sup norm bound for twisted sums of a multiplicative function). Let x > 10 and
(logx)~1/%° < e < 1. Let f : N — U be a multiplicative functlon Let ()(l,t ) be a point minimizing
the map (x,t) — D,(f, x(m)n't; x) among y (mod q) and |t| <

Let 10 < P,Q < x with 1023 <& V% and let g : N — [0,1] be any multiplicative function with

the property that g(p) = 1 forall p ¢ [P, Q)].
Then, with the notation of Lemma 8.1, for all q € QO ceo we have

<p(q) 36)

sup sup  sup 2 f(n)g(n))((n)n_” <K eg——
x (mod q) |1]<x/2 ye[x01 x] 'Y 7y

X#X1
In addition, forall1 < Z < x and 1 < q < x we have
- (@) 1
s sup |23 fmgozton | < FE( Gog 04 22 ) @)
ltl<x  ye[x0lx]'Y n<y \/Z

|[_t)(1

Remark 8.1. For the proofs of Theorem 1.4 and 1.2, we need a version of this proposition where
the supremum over ¢ is over the smaller range [—l logx 2 log x], and (x;, ¢, ) is taken be a min-
imizing point of (¥, t) = D,(f, x(n)n't; x) with |t| logx The same proof apphes to this case,
and we can obtain a similar variant of Corollary 8.4 as well.

Remark 8.2. The same arguments as in Subsection 3.3 show that we cannot prove (36) for all
g < x without settling Vinogradov’s conjecture at the same time. However, in the smaller range of
qg< x¢” there are no exceptional moduli in Proposition 8.3; cf. [3, Lemma 3.1] for a related result
in this range.

Proof. We begin with the first claim. We may assume in what follows that x is larger than any
fixed constant and that ¢ is smaller than any fixed constant.

Suppose for the sake of contradiction that there is a character y # y; (mod q) and a real number
t € [-x/2,x/2] for which

| Y, fmgxmn™| > ¢

n<y

v@,
q
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for some y € [x%1,x]. Owing to & > (logx)~'/°° and the fact that 2 y<p<x % <« 1, Lemma 7.4

implies that there is some v € [—% log x, % log x] for which
Dq(fg,)((n)ni(“”); x)? £ 1.001 log% +0(1).
Since fg(p) = f(p) for all p ¢ [P, Q] we have that

max |Dy(f g, x(m)n'™; x)? = Dy(f, x(m)n'*; x)’|

= max
aER

N

5 (1—g<p))Re(£<p)7(p>p—i“> <y L <10g<1 §Q> ro@), (9
Piﬁjo P<p<Q

and thus as log Q < ¢~/ log P we obtain
Dy(f, x(mn'+); x)? < 1.171og(1/¢) + O(1).

According to the definition of y,, we also have D,(f, Xl(n)n”%l ;x)? < 1.171log(1/¢) + O(1) with

t,, € [=x,x]. As such, the pretentious triangle inequality implies that

. . ) ) 2
Dyt ("1, 2 +; x)2 < (Dy(F 2" ;%) + Dy s (mn'0530)
1
< 5.481log z + 0(1).

But since y, x is non-principal, this contradicts Lemma 8.2(ii).
‘We proceed to the second claim of the proposition. We may assume that Z > 2. Suppose |t —
y | = Zand |t| < x. Let |u| <Z/2,sothat Z/2 < |t + u —t,, | < 2x. By the definition of ¢, and
the triangle inequality,

ZIDq(f’ Xl(n)ni(t+u); x) > IDq(f’ )(l(n)ni(H—u); x) + IDq(f’ Xl(n)nitll ’x)
2 Dq(l nl([+u t ) x)
From (35), we see that
io 2 1
inf D (n 1;x)° > (5 — o(l)) loglog x + O(1). (39)

1<|a]<2x

Therefore, we conclude that
Dq(f,)fl(n)ni(“r“); x)? > (% — 0(1)) loglog x.

Using (38) and ¢ > (log x)~1/°, we deduce that for x sufficiently large,
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400 | KLURMAN ET AL.

log Q
log P

i(t+u). 4.)2 l _ _ L
Dy(f g, x1(m)n ;X)) = (12 o(l)) loglog x 10g< > > 15 loglog x.

Applying the Halasz-type bound of Lemma 7.4 with T = Z /2, this yields

}Z;} f(")g(l’l))(_l(n)n_i" (aCl ((10g X)~/15 4 é)y’

for every |t| < x satisfying |t — ty |22, as claimed. O

We will also require a variant of Proposition 8.3 for sums weighted by the factor 1/(1 +
wip,o)(m)) that arises in the statement of Lemma 6.7.

Corollary8.4. Letx > R > 10,¢ € ((logx)~'/*°, 1) and (log x)™*! < a < 8 < 1, with §/a < e~ 1/°.
Set P = x% Q = xP and for f : N — U multiplicative consider the twisted character sum

FOmFomm
2

RGx:s) = T+ wpm)

R<m<2R

Let (x1,t,,) be a point minimizing the map (x,t) - Dy(f, x(mnit; x) for y (mod q) and |t| < x
Then, with the notation of Lemma 8.1, for q € Qyce6 We have

sup sup  sup l|R()(,it)| < E@. (40)
x (mod q) |t]<x/2 Re[x1/2,x] q
XFX1
Furthermore, for 1 < Z < (log x)'/1° we have
sup  sup IR()(l, i) < — L go(q) (41)

ltI<X  Re[x1/2x]
li—ty, 1>Z

Remark 8.3. The case g = 1 of the corollary is a variant of [32, Lemma 3].

Proof. We may assume that x is larger than any fixed constant, and ¢ is smaller than any fixed
constant, since otherwise both results are immediate from the trivial bound |R(y, it)| < {R < m <
2R : (m,q) = 1}.

The proof of both (40) and (41) rely on the following simple observation: for any m > 1 we have

1 1
_ = / rerelmdy.,
1+ co[P,Q](m) 0

For each r € (0,1] the map g,(m) := rerl(m g g multiplicative function satisfying 0 < g, < 1,
and such that g,(p) = 1 for every prime p ¢ [P, Q].
Given y (mod q) and t € R, we therefore have

1
1%|R(}(,it)| =/0 (1% Z f(m)gr(m)f(m)m_”>dr.

R<m<2R
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With regards to (40) there is thus some ry € (0,1] such that if g = g, then

sup sup  sup 1 IR(x, it)]
x (mod q) |t|<x/2 Re[x1/2 x|
XFX1

1
< / sup sup sup |~ Y fOm)g,(mzomm | |ar
0 |x (H;Od Q) lt1<x/2 Re[x1/2,x] | T R<m<2R
XFX1

|-

|-

< sup sup  sup 2, fmgm)x(mm™"|,
X (IT;EOd q) [t1<x/2 Re[x1/2 x] R<M<2R
XFX1

and similarly toward (41) there is some r; € (0,1] such thatif g = g, then

1 . 1 — —i
sup  sup  IRGr,il< sup sup (o DT fm)g(myx,(mym ™"
ltlsx  Re[x1/2x] ltlsx  Re[x!/2x] | R<m<2R
li—ty, 1>Z lt—ty, 1>Z

The corollary is proved upon applying (36) and (37) of Proposition 8.3, respectively, to each of the
last two estimates. O

Proposition 8.5 (Sharp large values bound for weighted sums of twisted characters). Let
x > 10, (logx)~/3° < ¢ <8 <1/2, and 1 = max{(logx)~'/3°,&*}. Let (a,), be I-bounded com-
plex numbers, let T C [—x,x] be a well-spaced set, and let S :={(y,t) : y (mod q), t €T}
Define

log P _ .
Nys 1= sup {(x,t)eS: 5% Z a,x(p)p ”|>e}|.

XT<P<x P<p<(1+6)P

Then, with the notation of Lemma 8.1, forq € Q, . .-s wehave N, ¢ < £7267L. The implied constant
is absolute.

Remark 8.4. For the proof of Theorem 1.4 will only require the special, simpler case 7 = {0}.

Proof. We may assume without loss of generality that € > 0 is smaller than any fixed constant. Let
P € [x7, x] yield the set of largest cardinality that is counted by N, ¢, and let B, ¢ denote the set
of pairs (, t) yielding the large values counted by N, ¢ at scale P. We have, for some unimodular

C)(J’

%Nq,ss Y exont= Y o Y ez

(:D€EBy s P<p<(1+6)P (X .DEBy s P<p<(1+8)P

= 2 ap Z CX,J(P)P_”-

P<p<(1+6)P  (x.H)EBy s

(42)
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402 | KLURMAN ET AL.

Applying the Cauchy-Schwarz and Brun-Titchmarsh inequalities, this is

1/2

1/2
@) .5 ot

P<p<(1+0)P  (x,H)EBy s
1/2

1/2
= <105%) 2 /:)(gn13| )3 Cx,tf(”)”_”r : (43)

P<n<g(1+46)P 1 (.HEBy s

Let h be a smooth function supported on [1/2, 2] with h(u) = 1 foru € [1,3/2],and 0 < h(u) <
1 for all u. We insert the weight h(n/P) into the n sum in (43) and expand out the square, obtaining
the upper bound

1/2

s\ Ay 7= (=i (1
< <(10gp)2> ( Z Z |Z (M x1x(Mn (1—))|

X1:1)EB s (X2:12)EBy s 1

1/2
éP
- (qarp) G0

where we let S; be the sum over the pairs with cond(y; x,) < x= and S, be the sum over the pairs
with cond(y, 75) > x<

We first treat S,. If cond(x,7,) < x* » then cond(y, ¥;) < P® < P, s0 by Lemma 7.9
(and the fact that x < P7 < p(logP 2 ) for some non-principal real character &; (mod q) we have

~1/204)20

p PIXIX_ZE{XOagl}
(logP)%3 =~ |t; — 6,2 +1°

’ Z A(n))(l)(_z(n)n_i([l_tz)h<%)| < ¢'%1og? < 1 )P + (44)

with y, (mod q) the principal character.
Since | B, 5| = N, s and (log )™ < €%, summing (44) over (x;, ), (X2, t,) € By s shows that
the contribution of the characters vmth small conductor obeys the bound

SN
S; KN, P+ 2 2 Z It —t, |2 11;(1)(26{9(0 &}
(x1:11)EBy s X, (mod q) L,ET 1

(45)

< N2 P+NysP Y

2
=k +1

< (°N] ¢ + Ny o)P,

where in the second-to-last step we used the fact that 7 is well spaced.
We then consider the contribution of S,. By Lemma 8.2(i) and partial summation (and the fact
that P > x7 > x54), forq € Qy 6> WE have

sup  sup ZA(n))((n)n ”h( >| < %P, (46)
x (mod q) ltl<x ™ Ty

cond( )()>x€
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MULTIPLICATIVE FUNCTIONS IN SHORT ARITHMETIC PROGRESSIONS 403

On the other hand, for y principal we use Lemma 7.9 with ¢ = 1 and € = 1/ log P to estimate

P + P
(logP)03 ~ Jt]2+1

| 3 Amx(mnh ( % ) | < | Y Amn"h ( %) | +0((log P)?) < (47)

for |¢] < x.
Applying (46) or (47) with y = x;x, andt = t; — ¢, for each ()1, 1), (X2, 1,) € B, s counted by
S,, and handling the contributions from these as in (45), we find

Sy < (e'°N; ¢ + Ny 5)P.
Combining the bounds on S; and S, with (42) and (43), we see that

1/2
P Nos < LN, N

1/2
——N,
logP %% " logP

q,5”

and since ¢ < & and ¢ > 0 is small enough, we deduce from this that N, ¢ < £726~!, which was
to be shown. O

Remark 8.5. If in Proposition 8.3 or 8.5 we restrict to a set @' C [1, x] of pairwise coprime moduli
g, then by Lemma 8.1 the sizes of the corresponding sets of exceptional g < x are <« (log x)log_ﬁ.
Moreover, under GRH there are no exceptional moduli.

9 | VARIANCE IN PROGRESSIONS AND SHORT INTERVALS
9.1 | Typical number of prime factors

Before proceeding to the proofs of our main theorems, we elaborate on some observations about
typical moduli (in the sense of Definition 1.1) that were made in the introduction.

Let wypg|(n) :={p | n: p € [P,Ql}| denote the number of prime factors of n belonging to
the interval [P, Q]. Given y > 1, define

912221@)
Ag.y) = max =21

, 48
zzy z/logz (48)

which gives the maximal relative density of prime divisors of g on a dyadic subinterval of [y, c0).
Clearly, if q is y-typical in the sense of Definition 1.1, then A(q,y) < 1/50 + o(1) by the prime
number theorem. Note also that 0 < A(q,y) < 1 always.

Lemma 9.1 (Density of atypical integers). Let Q > 1, y > 1. Then the number of q < Q that are not
y-typical is < Q exp(—=10~*y). Moreover, if y > 1000(log Q) and Q is large enough, then all g < Q
are y-typical.

Proof. We may assume that y is large enough. Note that by dyadic summation, if

1
AQ,y) € —,
q.y) 00
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404 | KLURMAN ET AL.

then q is y-typical. The second claim of the lemma follows directly from this and the estimate

w(g) < (1 + o(1))(log q)/(loglog q).
‘We are left with the first claim. Observe that for any fixed ¢ > 0, by the union bound we have

Ha<Q: A@y)>dil < Z |{Q<Q N —C'Zj. }|

Sy 5log(2/)
<Y Y Ha<e:IIrla}
2izy  PcPn[2/712/] PEP

[PI>c-27 /(5log(2)))

< Z 22j/(10g(2j)) . Qe_c'2j71/5
2izy

< Qe /20,
Applying this with ¢ = 1/500, we obtain the claim. O
From Lemma 9.1, we deduce the claims made before Theorem 1.3 that all g < x are (x/ Q)EZ-
typical if Q = o(x/(log x)/ 52) and otherwise the number of g < x that are not (x/ Q)Ez-typical is
< exp(—10~*(x/Q)*).
9.2 | Parseval-type bounds

We reduce the proofs of Corollary 1.1 and Theorems 1.4 and 1.5 to L? bounds for (twisted) character
sums.

Proposition 9.2. Let1 < Q < x/10and (log(x/Q))~'/2% < ¢ < 1,andlet f : N — U be multiplica-
tive. Let ), be a character (mod q) minimizing the distance inf It]<log x Dy(f, x(m)n'; x). Then, with
the notation of Lemma 8.1, for q € Q,. .6 .-s0 N [1,Q] we have

2
_ 2 3
Z ’ Z f(n))((n)| « £173M(a.(x/Q) )<@x> . (49)
x (nod ) n<x 1
X#FX1

Moreover, assuming GRH, (49) holds for all q € [1,Q].
Regarding Corollary 1.1, we in fact prove the following generalization.

Theorem 9.3. Let Q' C [1, Q] be any set of pairwise coprime numbers. Corollary 1.1 continues to
hold if the moduli p, rather than being prime, are taken to be (x/ Q)Ez—typical elements of Q', and if
the right-hand side of (5) is replaced with ep(p)(x/ p)>.

Deduction of Theorems 9.3, 1.4 from Proposition 9.2. We apply Proposition 9.2 with ¢!! in place
of e. We have A(q, (x/ Q)EM) < 1/50 + o(1) by the assumption that q is (x/ Q)Ez-typical. Therefore,
(81.1)1—3A(q,(x/Q)51'1) « gl 1(1-3/504+0(1) ¢

d ‘T €T0T XPPTO9FI

sy woyy

:sd11Y) SUONIPUOD) PuE SWA L A1 998 “[4707/30/£Z) U0 ATeIqrT SUHUQ AJ[IAL ‘ANSIOAIUN G0N AQ 9PSTTSWI/ZT [ 1°01/10p WO Kafim-

1oy w00 Koji A

25U02 SUOWWIOD) AAIEaL) 2[qeardde ay Aq PAUIAAOS AT SO[OIIE O 595N JO SAINI 0] AIBIGYT SUIUO AB[1 AN TO



MULTIPLICATIVE FUNCTIONS IN SHORT ARITHMETIC PROGRESSIONS 405

By orthogonality of Dirichlet characters, we have the Parseval-type identity

> [Tzl = 3| ¥ -3 ES S soge|

(D)  (nod ) ' e alg)  n<x Pl Gl
XEE n=a(q)

for any E C {y (mod q)}. Each of the claimed results follows from this, as the corresponding
bounds for exceptional moduli in each theorem may be deduced frorn Lemma 8.1 (see also
Remark 8.5): for any 1 < Q < x we have |[1,Q] \ Qy 11y (c11)-50| < Qx—"", while if Q' C [1, x]
is a set of pairwise coprime numbers then [Q" \ Q, 11y (c11)-s0] < (logx)* 00.

Finally, assuming GRH, each of the claims holds without exception.

Similarly, we will deduce Theorem 1.5 from the following proposition.

Proposition 9.4. Let 1 < Q < h/10 and (log(h/Q))'/2® < ¢ <1, and let f : N — U be multi-
plicative. Let x, be a character (mod q) minimizing the distance inf |, x Dy(f, x(m)n'; X), and let
ty, € [=X,X]bea point that minimizes I])q(f,)(l(n)n”;X). LetZ, = e %and Z, = 0 for x # x;.
Then, with the notation of Lemma 8.1, for all ¢ € Qx 6 .-s0 N [1,Q] and for T = (X /h)(h/Q)*°,

we have

Y ooz, | X sz [ e < iaion (20 )

x (mod q) |f|<T n<3x q
Moreover, assuming either the GRH or that Q < X ¢ the exceptional set of q vanishes.

Deduction of Theorem 1.5 from Proposition 9.4. We use Proposition 9.4 with e!! in place of ¢.
By Lemma 7.7, for x € [X,2X] the second term inside the square in (9) is

e i It — xt
L@, 1 / + <Zf(n))(_1(n)n“t>—(x+hi)t[ x’dt+o<gn/zg>.

§D(Q) t, —e~1 n<3X

Let us call the main term here M(X; x, g, a).
By the Cauchy-Schwarz inequality, this implies that (9) is

. 2X 2
< Z / ‘ z f(n) — MX;x,q,a) dx+£Xgo(q)< >

a (mod q) X x<n<x+h
n=a (mod q)

We will now show that the following Parseval-type bound holds: for 1 < g < h < X, we have

Y o, PG

(n) — MX;x,q,a) dx < max
/ x<n<x+h f 1 T>X/h T§0(CI) It |

a (mod q) x (mod q)

n=a (mod q)
(50)

where F(y,5) 1= X, sx f(Mx(mn~Sand Z, = ¢ if y = x; and Z,, = 0 otherwise.
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406 | KLURMAN ET AL.

Once we have this, the case where the maximum in (50) is attained with T > X /h - (h/Q)001""
can be bounded using Lemma 6.2 as

»(q) 1 @, @, 5
(oo ) 5= (g ) e <<

since (log h/Q)~1/200 < ¢11 certainly implies (h/Q)*1¢"" « ¢. This contribution is small enough

for Theorem 1.5. If instead T € [X/h, X /h - (h/Q)°?1e""], we have —— < 1

7@ < 7%’ so the bound of

Proposition 9.4 (with ¢! in place of ¢) suffices.

The proof of (50) follows closely that of [32, Lemma 14] (here we choose to work on the 0-line
rather than on the 1-line for convenience, though). Let us write 7 ¥ = (t)c -7 byt Z X], where
Z, is as above. Recall that 7, = @ if y # x,. We note first of all that"

> ) - MX;x,q,0)

x<n<x+h
n=a (mod q)
x(a) (x + h)it — xit
) (mZod ) qo(—q)(m;mf(n)x(n) - = / | Fu =t =X dt),

so that by orthogonality of Dirichlet characters we find

% 2
> f) - MK x,q, a)|
a (mod q) x<n<x+h

n=a (mod q)

=<0(1(J) ) | 2 f(n))((n)—_/F( )Wdtz,

x (mod q) x<n<x+h

Now, by Perron’s formula (taking the line of integration Re(s) = ¢ — 0% since P is finitely
supported), whenever x, x + h are not integers, for each y we have

X + h)it — xit
3 o = = / FGrin & =X g,
x<n<x+h -
so that, if £ is the expression on the left-hand side of (50), we have
2X it _ it
r=_L1 2 / ’ZL/ Fx, )wdt dx.
qD(CI) x (mod q) X i R\I

Repeating the trick at the bottom of [32, p. 22], we can find some point u € [-3h/X,3h/X] for
which

2X . it _ 2
ft<— ¥ / ’/ Fp i S0 =1 3P
R\Z, t

x (mod q) /X

 Here the integral is interpreted as zero if T » Is empty.
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MULTIPLICATIVE FUNCTIONS IN SHORT ARITHMETIC PROGRESSIONS | 407

The rest of the proof of (50) then follows that of [32, Lemma 14] almost verbatim (adding a smooth
weight to the x integral, expanding the square and swapping the order of integration).

9.3 | Proof of hybrid theorem

We may of course assume in what follows that i /Q is larger than any given absolute constant and
that € > 0 is smaller than any given positive constant.
‘We have shown that to prove Theorem 1.5 it is enough to prove Proposition 9.4, that is, that

X o, GO < 000 <¢(q) ) (s1)
xmod gy \ir 1

for T = (X/h)(h/Q)*%¢, where

F(x,s):= Y, f(m)x(mn~.

n<3X

As in [32], we restrict the support of F(y,s) to integers with typical factorization. Define
a “well-factorable” set S as follows. For 1 < Q < h/10, ¢ € ((log g)—1/200, Dand2<j<J -1,
set

Plei7 leh/Q’
P; =exp (j*(logQ,) "logP,), Q;=exp (j***(logQ,)),

2

P] = XE N Q] = X
with J > 2 being chosen minimally subject to the constraint J**2(log Q,)’ > (log X)'/2. (If ] = 2,

only use the definitions of P;, Q,, P;,Q;.)
Then let

S:={n<x: wlPi’QiJ(n)Z 1 VigigJ}hL

One sees that for 2 < j < J the inequalities

loglog Q; n n
— < —, —=logP;>8l i 161log j 52
long_1 -1 4]2 j2 Og J Ong 1 + Og.] ( )
hold for fixed n € (0,1) and large enough h/Q (the j = 2 case follows from the assumption
log(h/Q) > 719, and for the j =J case it is helpful to note that J < loglogX and P;,_; >
exp((loglog X)'9) if J > 3), and thus the Pj, Q; satisfy all the same requirements as in [32]. A
simple sieve upper bound shows that

log P~ logP
L3X]\S|l<« Y x— LY = «ex.
I[1,3X]\ S| JZJ g0, < ¥iog0, le
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408 | KLURMAN ET AL.

‘We next define
H =H;=H:=|¢"|, Hj:=jP)" for 2<j<J-1
I; :=[|H;logP;|,H;logQ;l;

Quu, 9 = D, f(ox(pp~ forvely
eU/Hj§p<€(U+1)/Hj

fm)x(m)m=°

forvel
~u/H; 1+ w[Pstj](m)

j.

RU,HJ(X’ S) .

m<3Xe

We split the set
E={(x.)e{xmod }x[-X,X]: [t—t,|>Z,, [t|<T}
as€ = {J;_ X UV with
X ={(r.0D €& Quu (i) e/ vyer},
X ={(x,nee: |Qv’Hj()(,it)| < el /H; e I3\ U X;, 2<j<T -1,
i<j—1
v=¢\ &
i</—-1

where we take

1 1
TG ”( +2j> K

We may of course write, for some (possibly empty) sets 7; , [T, T],

& = U DX Tjy

x (mod q)

By Lemma 6.7, for each 1 < j < J — 1 we have

/ Y femen|ar

x (mod q) " /j.x n<3X

Q.
<Hlog>t ¥ / 1Qu s, (DR 1y Gt i)t

J vET; x (mod q)

2
+<@X) 1,1y I (1—1>,
q H] Pj P;i<p<Q; p

j 5

ptq

the integrals here being interpreted as zeroif 7; ,, = @. By our choices of P; and H j, the error terms
involving 1/H; or 1/P; are < e(p(q)/q - X)? when summed over j <J — 1, since log(h/Q) >
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MULTIPLICATIVE FUNCTIONS IN SHORT ARITHMETIC PROGRESSIONS | 409

¢~'% by assumption. After summing over j <J — 1, the error terms involving []p,<p<q,(1 — —)

ptq
contribute
logP; 2
< <¢(q)X> =[] <1+l> < <—¢(q)X> > <11 <1+l>.
q 108 g p q <197 g p
Pi<p<Q; Pij<pQ;
In terms of the A(-) function defined in (48), for j < J — 1 we have
A(q, P
H <1+l> < exp Z 1 < exp Z (@.P)
p p log(2%)
plg plg 2kelP;/2,Q]
Pij<p<Q; Pij<pQ;
log Q ; 10g2 Togz A@-P1)
< < ]) < (]25_1)1°g2 AlgPy).
log P;
Hence, on multiplying by ¢/ j> and summing over j < J — 1, for A(q, P;) < 1/3, we get a contribu-
tion of < ¢! 734(¢P1) which is the desired savings (the j sum converges since 2(— —1) < -1).

For A(g,P;) > 1/3, in turn, we simply use the triangle inequality to note that the trivial bound
< (¢(gq)/q - X)? for (51) coming from Lemma 6.2 (after forgetting the condition |t — tl>Z,)is
good enough.

Using the assumption defining &’;, we have

Q,
Higl Y Y / 1Qu st I Ry s i)l

J vET; x (mod q)

< H; log 9 Z e(2=2a)v/H; z / IRU,Hj()(,it)lzdt=
J VET; x (mod q) Tjx

It thus remains to bound E; for 1 < j <J — 1, as well as the contributions from the pairs (¥, t) €
v.

Case of X, . For the pairs in X;, we crudely extend the ¢-integral to [T, T] and apply Lemma 6.2
to arrive at

El < Hl log Q— Z (2=2a1)v/H, <¢E]q)Xe_U/H1 + qo( )T> ¢’(Q) —U/Hl

1 vel,

2@\’ .
< (TX> H,logQ; - Z e—2mv/H,

veL
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410 | KLURMAN ET AL.

where on the second line we used Xe /" > X/Q, > qT by the assumptions T = (X /h) - P!
and Q; < h/(QPY""). We see that the contribution of E, is small enough, since H; < ¢! and
Pl—O.l — (h/Q)—O.lz < 810.

Case of X;. Let 2 < j <J — 1. We partition

= U ¥

relj

where X , is the set of (x,¢) € &; such that r is the minimal index in 7;_, with |Qr,Hj_] (x,it)| >

e(=ej-r/Hjy Letting ry € 1 -1 and vy €7 ¥ denote the choices of r and v, respectively, with
maximal contribution, we obtain

E; < H;(logQ)IL;|IT;_,|

T 25,
eIt / (10 ., Cro Dl 100 M ) TH0R, (i) P,
x (mod q) -T

L vo/H;
where ¢, = [VU/HJ 1>1.

Using |7;_,| < |T;| < H;logQ}, this becomes

E; < (H;logQ;) e® 2 0/ M==2e1-00 T/ Mo

x / 1Quy 1, G i) 470 Ry 1 (i)l
X (mod q)

We apply Lemma 6.6 to obtain

2
/ Q1 G I 170y 1y i) Pt < (q"(q)Xe’o/Hf 120) ) (€, + DD
X (mod q)

UO/ Jj

> Whence using 20 + 1) < ¢ we get
0

We have 7 e Z

Jj-1
E (2D, o, ? 2etj_y—aj)vo/Hj 426, log £,
< (Hj long) p ——=Xe'0/Hj-1 ) 1T : Iro, (53)

UO/ J

. <
Since f]’ ro I

+1landry/H;_; >logP;_; —1,vy/H; < logQ;, we have

Jj-1

v, loglogQ;

logt, < - loglogQ; + 1.
%8%ir < TogP,, =1 T o8losQ +

Thus, (53) is

(q) 2\ loglogQ;
< <TX€r0/H1_1> H;’(logQ])S exp <<210gPJ—_1—]1 + 2(0(j_1 - O(J) UO/Hj .
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MULTIPLICATIVE FUNCTIONS IN SHORT ARITHMETIC PROGRESSIONS 411

By (52) and the choice of the a;, we have the inequalities

loglog Q;
LQJ_lgn . <=2
logP; —1 = 4j2

1/24

IOgQJ S ijl )

so we get

JIJ

(Q) : 3 5 _Lz
Ej<|—X) H; (logQJ) Q?

<<< (Q)X> 6P03Q2+5/24 jz?z
q

Again by (52), we have the inequality
s logP; > 8logQ;_, + 16log j
I gl zologl; gJ

SO

2 2
E < <¢(q)X> | 1 <<p(q)X> -1 ‘
q J2Qi q J*Py

Summing over j gives
2
Y Ei< <—¢(q)X> p;t
2<j<I-1 q

and this is acceptable. It remains to deal with U".
Case of U'. Let us write

v= J x7,

x (mod q)

By Lemma 6.7 and the definitions of P;, Q; and H := H;, we have

/ IF( 0P dt < Hlog 3 Y / 1Qu G IDPIR, 1 (s i) Pl

J VET; x (mod q)

@(q) > 1 ( 1 )
+—+e¢ 1+=)|
< q H Py PJ$1;£QJ p

plg

x (mod q)

(54)
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412 | KLURMAN ET AL.

Since H = |e7!| and []p,<p<o,(1 + )<< ¢3A@P1) (similar to the X; case), the terms on the
plq
second line of (54) contribute < g!—3A(¢.P 1)(¥X )2. Thus we have

/ |F(x,it)|*dt

x (mod q)

2
< (H1log Ly / 1Qu G D Ry, 1o it) Pt + €133 (2D
PJ x (mod q) ” - q

2
<me(logx? ¥ / 1Quy Gt IO IRy, 1 (s 10t + €1 3A<q”(@x> (55)

x (mod q)

for some v, € [He? logX — 1, Helog X], with H = [e71].
We discretize the integral, so that the term on the right of (55) is bounded by

< H%(l0gX)* Y Y 1Qu a0 iRy (1, iD)]? (56)
x (mod q) teT)g

for some (possibly empty) well-spaced set T)(, c7T,c[-T,Tl].
Let us define the discrete version of U as

! _ !
U = U <7
x (mod q)

We consider separately the subsets

. eVo/H
Vs = {0 eV 1Quu(ninl <5— |,
0

elo/H
U= {()(,t) eV’ 1 [Quu(x,if)] > € o };
note that by the Brun-Titchmarsh inequality the trivial upper bound is |QU0’ gl i) < eVo/H /-
We start with the U case. Observe that if (x,t) € Us then |Qy g, (¥, it)] > e(—ay_)v'/Hy_,
for some v’ € T;_,. Applying our large values estimate, Lemma 6.5, together with the fact that
qT < X'+°() this leads to

V| < (qT)Z“J 1(Q2“J 14 (lOgX)ZOOE_Z) < X049,

since a;_; < 1/4 —m and 7 = 0.01. Hence, by the Haldsz-Montgomery inequality for twisted
character sums (Lemma 6.4), we have

. ) e2vo/H ,
> 1Qu DR IR, p OGP < e 5—— Y[Ry 5 (rsi0)?

(DEVS Y% (rhevs
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MULTIPLICATIVE FUNCTIONS IN SHORT ARITHMETIC PROGRESSIONS 413

200/H
S (E Dol 4 gy topCaamiI Uil ) EL e

%

200 /H 2 2
Tl <qo(q)Xe_UO/H> <<H_z‘(10gX)_2<qo(q)X>,

U5 q q

since g0(‘1)X e vo/H > X099 and v, > He?log X. This bound is admissible after multiplying by
H?%e 2(logX)2

Now we turn to the U}, case. We recall that our modulus satisfies g € Q, s .50, and note that
¢’ > (logX)~1/13,

By Proposition 8.5 (with ¢ — €2 and § = e’/# —1 < 1/H and ¢ > 0 small enough), for g €
Q, 6 -0, We have | U} | < e *H < ¢°. In addition, by Corollary 8.4 (with ¢ replaced by ¢’ : = €°,
a and B replaced, respectively, by 2 and ¢ so that f/a = ¢! = (¢/)71/°), for g € Q, 6 .50 C
Q. o (/)-6 We have the pointwise bound

sup sup |Rv0()(a lt)|/(Xe_U0/H) <t gD(Q) @

x (mod q) |t|<X q q
X#X1

Hence we can bound the contribution of the pairs (x, t) with y # y; by

N N2 eZUO/H
z 1Quy (X DRy (X, 1D1° < U] sup sup |R,, H()(,lt)|
(x.Hevy Uy x (mod g) [t]<X
X#E0 X#EX1

—5+12 2
«_¢ »(q) x),
e*H2(logX)? \ ¢
and this multiplied by the factor H?¢*(log X)? yields a more than sufficient bound for (56).
The contribution of y = y;, in turn, is bounded using Corollary 8.4 in the form that

sup IRy, 1 (X1 if)| 1 9l
Z<|t—t,, |<x Xevo/H \/_ q

for Z = £719 < (log X)'/?° and for q as before. This yields

N2 N eZUO/H
D 1Qu a (s DR IRy s i < |V
Qe Y%

E_S+10 qo(q)
X ).
< e*H?(log X)? <

This multiplied by H?c*(logX)?> produces a good enough bound, finishing the proof of
Proposition 9.4, and hence that of Theorem 1.5.

N3
sup IRUO,H(Xla it)]
Z<lt—t,, I<
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414 | KLURMAN ET AL.

Proof of Corollary 1.6. Our task is to simplify the main term in Theorem 1.5 in the case of a real-
valued multiplicative f: N — [~1,1]. We work with the same set of moduli g € Q, s .—s0 as in
Proposition 9.4. By the triangle inequality and Theorem 1.5, it suffices to show that

2X 1 x+h i .
/X |3X2f(”))fl(”)_ ‘/x virdo 3 Y fxmn

n<3Xx n<3X

dx < £X< qo(q))
q
(57)
Set Y := 3X. By the triangle inequality for pretentious distance, we have
2D, (f, x (M5 Y) 2 Dy (f2 x2(mn*n;Y) » By, 2 (mn®;Y) = D, (f2, 1Y), (58)
We then split into several cases.

Case 1. Suppose first that D, (f 2,1;Y)? > 2log(1/¢). Applying the Cauchy-Schwarz inequality,
fort € {0, t)(l} we obtain

1/2
| 2 fmzmn ™| < <¢(q) ) >, fny
n<yY n<Y

(ng)=1

By an elementary upper bound [28, (1.85)] for mean values of multiplicative functions taking
values in [0,1], we have

2 _
3 5o < Sy T (14 L2 20) « 8Dy o 2117 < 220y

n<yY p<Y p
(n,g)=1 ptq
Hence (57) holds.

Case 2. Suppose then that D, (f 2,1;Y)? < 2log(1/¢) and that either y; is complex or £y, 12
2log x. Then by Lemma 8.2(ii) (with £° in place of €) from (58) (with ¢ in place of txl) we obtain

2
, . V5.5-6-1/2 1 1
f D, LyyY > 2=—=———X7 ) log= > 4log-. 59
It—t;ﬁslogx (s xai(mn™;Y) < 5 og~ >4log - (59)
By Lemma 7.4 and the minimal property of t,,» we then obtain
max | Z f(n))(_l(n)n‘”| < 53@& (60)
te{o,th} n<y q

which implies (57).
Case 3. Finally, suppose that D, (f 2,1;Y) < 2log(1/¢) and that y, is real and |t | <2logx. We
may assume that

Dy(f, xy(mn'; V)2 < 2log % (61)
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MULTIPLICATIVE FUNCTIONS IN SHORT ARITHMETIC PROGRESSIONS | 415

since otherwise (59) holds by the minimal property of t,,, and then we can conclude as before. But
then by (58),

s

D (1 X (n)nz”xl Y)—[D (f51;7) < (810g%>1/2

so by the assumption on D, (f 2,1;Y) and the fact that y, is real we deduce
2ty . )2 12 4 o172\ 10 L _ 1
IDq(l,n Y)Y <(2/°+8 logg = 181log pt

By (35) (and the fact that £ > (log X)~'/2%) this is a contradiction unless Ity | <€
For It)m' < ¢, in turn, we have

1 x+h
E( / v“mdv) Zf(n)xl(n)n‘”lz

n<yY n<yY

—ity, +O< GD(Q))
q

by estimating the integrand trivially. Moreover, the expression on the right is by (61) and
Lemma 7.6 equal to

(q)
= > fO0T) + O( Lk ©2)
n<Y q
This proves (57) also in this case, and now all the cases have been dealt with. O

Corollary 1.7 follows quickly from Corollary 1.6.

Proof of Corollary 1.7. We apply Corollary 1.6 with f = u. Note that the set Qy . in Corollary 1.6
contains all positive integers < X <" Now, let ¢y be a small enough absolute constant, and let
m < X" be a modulus for which L(s, x*) for some real character y* (mod m) has a real zero
>1—cy/log(X <) (if it exists). By the Landau-Page theorem and Siegel’s theorem, all such m
are multiples of a single number g, > (log X)* (if no such m exists, set g, = 1).

It then suffices to show that for q not divisible by g, we have

| Y | <288 (©)
n<3X q

for all characters y (mod gq). We may assume that y is non-principal, as otherwise the claim fol-
lows from the prime number theorem (with, for example, de la Vallée-Poussin error term). By
Lemma 7.4, we have (63) provided that

inf Dq(,u,)((n)n“; 3X)% > log(1/¢), (64)

|t|<log x

say. By Mertens’ theorem, for |¢| < log x we can lower bound

Dy (u, x(mn'*;3X)* > +0(1).

1+ Re(x(p)p™)
Z /A 4 e

x(p)p"
2 2

1
=10log = + Re
xel0 £ 10

<p<X XU <p<X

(65)
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416 | KLURMAN ET AL.

By Lemma 7.9 and Remark 7.2, for any g'/ €% < ¥ < X and g not divisible by g, we have

y

(Tog )" (66)

2 A(n))((n)n”‘ < ' (log3 l)y +
n<y €

Using (66) and partial summation, we conclude that the left-hand side of (65) is > 91og(1/¢), say.
We thus obtain (64), and hence (63). O

9.4 | The case of arithmetic progressions

In this subsection we prove Theorem 1.4 and Theorem 9.3. As shown in Section 9.2, it suffices to
prove Proposition 9.2.

Proof of Proposition 9.2. We may plainly assume that x is larger than any fixed constant and that
€ > 0 is smaller than any fixed positive constant.

The proof follows the same lines as that of Proposition 9.4, and we merely highlight the main
differences. For x > 10,1 < Q < x/100 and (log(x/Q))~'/2% < ¢ < 1 we set

Py = i’ Q =x/Q
P; =exp (j¥(logQ,) 'logP,), Q;=exp(j*”"(logQ,)), 2<j<J-1

where J > 2 is the smallest integer with J¥*2(logQ,)’ > (logx)'/2. (If J = 2 then only define
Pli QI’P]’ Q] as abOVe.)
In analogy to the definitions made in the proof of Proposition 9.4, we also define

F(o) = Y, f(mx(n), (67)
n<3x

H =H;=H:=|¢'|, H;:=jP"for2<j<J-1,

1; :=[|H;logP;],H;logQ;]for2 < j<J -1,

Qu = Y, [P

ev/Hj<p<e(U+1)/Hj

f(m)x(m)

v/H; 1+ w[Pj’Qj](m)

RU’HJ,(;() : forvel;, 1<j</J.

m<3xe”

Finally, for g > 1 and 2 < j <J — 1, let us write
Xt ={x#x1(modq) : [Q,z X< eI~/ vy e 1,3,

X ={r# pmodq) t Q< veer i\ | x4 2<j<I-1

i<j—1

V= {x#x modg}\ |J &,

i</-1
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MULTIPLICATIVE FUNCTIONS IN SHORT ARITHMETIC PROGRESSIONS 417

where, as before, we put

1 1
=2_p(1+=), n=o01
A ”( +2J> 7

for each 1 £ j <J — 1. Similar to the proof of Proposition 9.4, the proof of Proposition 9.2 (and
hence of Theorem 1.4) splits into the cases y € &), ..., X;_;, U’, depending on which character
sum is small or large.

The introduction of the typical factorizations corresponding to the set S is handled, as above,
using Lemma 6.7 (more precisely, (17) there), which gives

Q .
2 [FCOP <Hjlog == 37 3 1Quu (R, OO

XEX; J vel; yex;

2
+<@x> T+l 4 ] a-Hy (68)
i Fiopsp<q P

piq

When summed over 1< j<J—1, the error terms are small, analogously to the proof of
Theorem 1.5.

Letting E; denote the main term on the right of (68), we apply the same arguments, but with
Lemma 6.1 in place of Lemma 6.2 for j = 1, and for 2 < j <J — 1 we use the second statement of
Lemma 6.6, rather than the first. In this way we obtain

E; < (¢(Q) > HP{" < E(go(q) )
q q

2 2
Y Ei< <?x> > _21 < <¢;q)x> P,

2<j<-1 2<fa-1 Q1

which is sufficient.
In the case of U, we apply Lemma 6.7 once again with the choices P; and Q;. As above, we find
av, € I; such that

2
S IFQOIP < (H1og Q) Y, 1Qu, uCOPIRy (O + El—sA<q,pl><@x> ,

XEU XEU q

estimating the error term as for the sets X, but invoking the specific choices of H;, P; and Q.
As in the proof of Proposition 9.4, we split U" further into the subsets

2e/ } nNU
Vo
vo/H
e’ } N
Vo

Uy = {){ # X1 0 1Quu(I <¢

vy = {)( # X1 0 1Qu, (0l > €
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418 | KLURMAN ET AL.

We combine Lemma 6.5 (with 7 = {0} this time) with Lemma 6.4 (wherein £ consists of points
(x,0)), and argue as in the proof of Proposition 9.4 to obtain that

2
Z |QU0:H(X)|2|RUO,H()()|2 < (HIng)_z<?x> ,

XEVs

which, when multiplied by (H log Q;)? < ¢2(H log x)? yields an acceptable bound.

We treat the U7 case in essentially the same way as in the proof of Proposition 9.4, and in fact
the claim is simpler, as it suffices to combine Proposition 8.5 (with the same parameter choices as
in the previous proof) with Corollary 8.4 (taking Remark 8.1 into account). O

10 | THE CASE OF SMOOTH MODULI

In this section, we prove Theorem 1.3 on the variance of multiplicative functions in arithmetic pro-
gressions to all smooth moduli. A key additional ingredient compared to the proof of Corollary 1.1
is the following estimate for short sums of Dirichlet characters with smooth conductor.

Lemma10.1. Letq, N > 1with P*(q) < Nl gqnd N > q€/(°810¢ D where C > 0is a large absolute
constant. Then, uniformly for any non-principal character y (mod q) and any M > 1,

‘ Z )((n)’<<Nexp(—%\/logN>. (69)

M<n<M+N

Proof. We may assume that g, and thus N, is larger than any fixed constant, since the claim is
immediate otherwise. We note moreover that for N > g, the estimate (69) follows directly from
the Polya-Vinogradov inequality, and thus we can assume that N < gq.

The result (69) holds for primitive y (mod q) (in a wider range than stated above and with
exp(—+/log N) in place of exp(—% y/log N)) by a result of Chang [4, Theorem 5]. Indeed, Chang’s
logg )log q’ _logg
logq’ ” logq logloggq
with ¢’ =] plq P> S0 as ulog 5 < 1 for u < 1 the range in Chang’s result contains the range N >

qZC’/ loglogg

estimate holds in the regime log N > (log g)' = + C’ log(2 for some ¢, C’ > 0 and

Let now )y (mod q) be a non-principal character induced by a primitive character ¥’ (mod q’)
with g’ | g, so that x(n) = x'(n)1, q)=1- By M&bius inversion,

Y xm=Yu@dyd Y X m).

M<n<M+N dlgq M/d<m<(M+N)/d

Note that in our range /N > g®5¢/(0glogd) and 1/N7(q) < N°9, thus taking C = 10C’ and using
Chang’s strengthening of (69) for the primitive character y’ (mod q’), we arrive at

Z x(n) < Z | Z )(’(m)|+ Z (%T+1)

M<n<M+N dlg  M/d<m<(M+N)/d dlg

d<y/N d>\/N
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MULTIPLICATIVE FUNCTIONS IN SHORT ARITHMETIC PROGRESSIONS 419

< Nexp (—%VlogN) 2 % + \/Nf(q)

dlq
< Nexp <—(% + o(l)) \/logN>,
and the result follows for large enough N. O

Lemma 10.2, which uses Lemma 10.1 as an input, allows us to improve on Proposition 8.5 for
smooth moduli. It provides good upper bounds for the frequency of large character sums (mod q)
over primes without any exceptional smooth q.

Lemma10.2. Let g > P > 1 be integers with P+(q) < PY/109_ Suppose also that P > g'/(0glog @)’
Then for1 > & > exp(—(log P)**°) and V > exp(—(log P)**°) and for any complex numbers |a,| <
1, we have

|{X (mod q) . | z ap}((p)| > Vl(f_P }| < (CV—1)610g(QP)/10gP, (70)

P<p<(1+6)P gP

with the implied constant and C > 1 being absolute.

Proof. We begin by noting that, under our assumptions, Lemma 10.1 implies

v/ log P) (71)

Z x(n) < dPexp <

_1
nel 10

whenever y (mod q) is non-principal and I is an interval of length |I| € [P2, P].

Let R be the quantity on the left-hand side of (70). For any k € N we have by Chebyshev’s
inequality

log P 2k B 2%
R« <_5P > y—2k Z I Z ap)((p)|
x (mod q) P<p<(1+3)P

log P 3 )
= < oP > Vv 2k Z ap1 akalpk+1 aka Z X(p] '.'pk))((pk+1 ...ka)
P<py s Do S(1+6)P 2 (ot o)
log P 2k ok
s( SP ) Ve(q) 2 L o pe=piss-pa (mod q)-
P<py,esPok S(1+8)P
(p1-+P2k-9)=1

We pick k = [311%(?’)], so that 3 < k < (loglog q)°°.

Let v(n) be the sieve majorant coming from the linear sieve with sifting level D = P* and sifting
parameter z = PP, where o > 0 is a small enough absolute constant (say o = 1/100). The sieve
weight takes the form

v(n) = Z A4
dln
d<pe
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420 | KLURMAN ET AL.

for some 1; € [—1,1]. Then R is bounded by

log P B
R< << oP > v quO(q) Z 7)(nl)mV(nz")l"l""1k5”k+1"'"2k (mod q)
P<ny ...y <(14+6)P
("1"'"2k"1)=1
logP\ % _ 2k
= <—§, ) vaECY Y v 72)

x (mod q) P<n<(1+48)P

The contribution of the principal character to the y sum is

2k 2k
20726P
<< Z v(n)) <<<TP>
P<n<(148)P 08

by the linear sieve, and this contribution is admissible by setting C = 20~2 in the lemma. Consider
next when y is non-principal. Exchanging the order of summation and applying (71), we have the
upper bound

Y vmxm= Y Ax@ Y x(m) < PllogPyexp (2 VIogP)

P<n<(149)P d<Ppr P/d<sm<(148)P/d

< Pexp (——\/@)

Hence the contribution of the non-principal characters to the y sum in (72) is bounded by

<<P2exp<—12—5\/10gP> Z | Z v(n)x(n)'

x (mod q) P<n<(1+6)P

2(k— 1)

and expanding out the moment again, this is

y/log P
< P?exp (— >go(q) D
P<ny

15
..... Ny(k—1)<(A1+6)P
(ny-++nye—1),q)=1

xv(ny) - V(nz(k—l))lnl~~-nk,15nkmn2(k,1) (mod q)

<<P2exp<—\/?> ) D

P$n1 ..... n2<k71)<(1+5)P
(ny-ny_1),q)=1

X T(ng) - T(nz(k—l))lnl Mg =Ny Aygk_py (mod q)*

Merging variables, this becomes

/1
< P%exp <— o ) @ Y DM (my)

my,my<(2P)F1
my=m, (mod q)
(mymy,q)=1
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= P?exp <— log ) @ Z Tok—1)(M1) 2 Ta(k—1)(M3)-

m; <(2P)k1 m,<(2P)k1
(my.q)=1 my=my (mod q)

Shiu’s bound [40] shows that the inner sum is < (ZP) (10g(2P)k)2(k D=1"as q < (2P)090k=1)
by our choice of k. Thus the whole expression above is

< p%* exp <—% \/lo?),

since (klog P)** < exp((log P)*°1). When we multiply this contribution by (log P/(SP))* V2K
and recall the assumptions &,V > exp(—(log P)**°) and the fact that k < loglog P, we see that

R< (CVv k457 'vHkexp ( \/lo?)
< (CVhH* 41,
which, recalling our choice of k, is what was to be shown. O
Our next lemma improves on Proposition 8.3 for smooth moduli (apart from the t-aspect).

Lemma10.3. Letx > 10,x > 0and 2 < P < Q < x. Then forall q < x satisfying P*(q) < q"mo and
for any multiplicative function f : N — U, if x; (mod q) is defined as in Theorem 1.4 then

1 - log Q' (q)
sup sup |- fx(n)| <« < > .
x (mod q) ye[x*x] 'Y ,%; ’ IOgP q
170 (n[P.QD=1

Proof. We may assume in what follows that x > 0 is small enough (adjusting the implied constant
if necessary). We may also assume g~ > 2, so x > (logq) L.

Note that n — 1(, 1p op=1 is multiplicative, and that for any g;,9,: N — U and any y > 2 we
have

0gQ

gP> + 0(1).

1
[D’q(gll(-,[P,Q]):l,92§y)2 z Dq(91:92§y)2 - Z - = Dq(gpgz’y) — log <
P<p<Q

Hence, following the beginning of the proof of Proposition 8.3 almost verbatim, we obtain the
result once we prove that

sup  D,(&, n''; x*)* > 5.5log 1, log fracqe(q) + O(1)
|t|<(log q)0-02 K

for all non-principal characters £ (mod q).
From Lemma 7.1, it follows that

D(&, n'";x%)* > loglog x* — log |L(c + it, )| — O(1),
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422 | KLURMAN ET AL.

where o0 = 1 + 1/(log x*), so it suffices to show that

sup |L(c+it,é)| <«
|t<(log g)*-02

6.5 fPE;I) logq

for all ¢ < x satisfying P*(q) < q"loo. By partial summation and the Pélya-Vinogradov theorem,

Lo+ite)= Y, S L o).

o+it
n<q(|t]+1)
100
Let g’ = ¢'0%%"" Then

. ?(q) :
|L(o +it, )| < Tlogq +| Z

q'<n<q(|t]+1)

potit

The first term on the right-hand side is acceptable. For the second term, we apply partial
summation to write it as

&) _ S(q',q(ltl +1))
na+it (q(ltl + 1))o+it

qt]+1) .
+ (o + it)/ S(q’, wyu~'"7" du, (73)
q/

q'<n<q(|t]+1)

where

SMM,N) = Y &(n).

M<n<N

We are now in a position to apply Lemma 10.1 (which is applicable, as P*(q) < q"wo <
(¢")°0%01), The triangle inequality and Lemma 10.1 imply that whenever q’ < u < 2q’ we have

15’1 <150’ /2,471 + 15(¢'/2,0)] < wexp (-3 Viog@'/2)) < uexp (-5 Viogu ),

a bound that continues to hold for all u > 2q’ directly from Lemma 10.1. Thus, we may bound the
right-hand side of (73) by

o)

dukl<xk

1
<<1+(1+|t|)/ _—
g u exp(% v/logu)

since ¢(q)/q > 1/ loglog q and x > (log q)~°°!. This concludes the proof. O

10§0EJQ) logq,

From the previous lemma, we derive the following variant of Corollary 8.4 for smooth moduli
g, again without exceptions.

Corollary10.4. Letx > R > 10, x € ((logx)~1/1%,1), and 10 < P < Q/2 < x. Let the twisted char-
acter sum R(y, s), multiplicative function f : N — U and character y, (mod q) be defined as in
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MULTIPLICATIVE FUNCTIONS IN SHORT ARITHMETIC PROGRESSIONS 423

Corollary 8.4. Then for 2 < g < x satisfying PT(q) < q"100 we have

1 logx\ ¢(q)
sup sup =|R(x,0)| <« K< > —.
x (mod q) Re[x1/2 x] log P q

X#Fx1

Proof. Applying the hyperbola method, we see that

Ruol<| Y LM, mom,)

m;<Rx~* 1+ w[P,Q](ml) R/my<m,<2R/m,
plm;=>p€([P,Q] (my,[P,QD=1

+ ) Y o1
my<2x®  Rx~*<m<2R/m,
(m,,[P.QD)=1 plm;=pe[PQ]
(my,q)=1

(74)

Since R/m,; > x* holds in the first sum on the right, we can apply Lemma 10.3 to bound this sum
by

log Q ¢(q) R log Q ¢(q) 1\'
Tre| 2 | e JL0)

logP ¢ iy <x P<p<Q p
plmy=p€[P,Q]
2
qu(q) log Q R
q \logP

The second sum on the right of (74), in turn, is bounded using Selberg’s sieve by

1
< Y Y 1<« ¥ R L@y
m, log P logP gq

m,<2x*  m;<2R/m, m,<2x*
(my,[P.QD=1 P~(m;)>P (my,q)=1
(my,q)=1
using the fact that p|g = p < q"100 < 2x* in the final step. O

Proof of Theorem 1.3.. Inspecting the proof of Theorem 1.5, the result of that theorem holds for
any modulus q < x satisfying, for H = |¢~!], the bounds

swp [{x@modq): | Y f)xp)|>e/10-

Pe[xe? x¢] P<p<Pel/H

} | <K@, (75)

HlogP

and for P = x¢ and Q = x¢,

wp |1 sup fomgm | s 9@

x mod q) 'R refx1/2 1] pdror 1+ @[p,01(M) K@Y q
XFxX1

(76)
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424 | KLURMAN ET AL.

for some function K(¢) > 1. Indeed, it is only the U} case of the proof of Theorem 1.4 where
we need to assume something about the modulus g, and the assumptions that we need there
are precisely a large values estimate of the form (75) together with a pointwise bound of the
type (76).

We then establish (75) and (76). Let P*(q) < qE/ with ¢/ = exp(—¢~3). Lemma 10.2 (where we
take V = £2/10 and & = e'/H — 1) readily provides (75) with K(¢) = €10 (assuming as we may
that ¢ > 0 is smaller than any fixed constant).

Corollary 10.4 in turn gives (76) (with the same K(¢) = ¢~ as above) when we take x =
£°K(e)~1/? there, which we can do since P*(q) < qE/ < q"wo. This completes the proof. O

1002

11 | ALL MODULIIN THE SQUARE-ROOT RANGE

11.1 | Preliminary lemmas

For the proof of Theorem 1.2, we need a few estimates concerning smooth and rough numbers
to bound the error terms arising from exhibiting good factorizations for smooth numbers in

Lemmas 11.5 and 11.7.

Lemma11.1. Letc € (0,1). Let1 <Y < X and 1 < g < X', and let X/ < § < 1. Then for any
reduced residue class a modulo g,

O 2 S
(1-8)X<m<X p(q)logY
P~(m)>Y
m=a (mod q)
Proof. This follows immediately from Selberg’s sieve. -

Given 1< q,Y <X, define the counting function of Y-smooth numbers up to X that are
coprime to q as

Y,(X,Y) :=|{n<X : PF(n)<Y,(n,q) = 13| (77)
We have the following estimate for qu(X ,Y) in short intervals.

Lemma 11.2. Let 10

Y < X and set u :=logX/logY. Assume that Y > exp((log X)**°) and
exp(—(log X)*) < § < 1.

<
< 1. Finally, let1 < g < eﬁ. Then

¥ ((1+8)X,Y) - ¥ (X, V) < p(u)?ax.

Proof. By the sieve of Eratosthenes, we have

P (A+OXY)-¥,X, V)= Y ud Y L
+d|q §<m<(1+6)§
p (d)SY P+(m)<Y
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MULTIPLICATIVE FUNCTIONS IN SHORT ARITHMETIC PROGRESSIONS | 425

Let S, and S, be parts of the sum with d < exp(10(log X)'/2) and d > exp(10(log X)'/?), respec-
tively. For estimating S,, we crudely remove the smoothness condition from the m and d sums,

and estimate the remaining sum using 1/d < exp(—=5(log X)'/2)/ \/E to obtain

-1
06X 1/2 1
S, < D = < 8X exp(=5(log X)) [ ] <1 - —>
dlq d plg \/5

d>exp(10(log X)1/2)
< 60X exp(—S(logX)l/z) exp(3yw(q))

and using w(q) = o(log q) this is certainly < §X p(u)%q) exp(—%(logX /)by u < (log X)*! and

the well-known estimate p(u) = y~ (oM,
For the S; sum, we instead apply [20, Theorem 5.1] (noting that its hypothesis 6X /d > XY ~%/12
is satisfied) so that we obtain

_ 5X _ logd log(u + 1)
S = dzl;, <,u(d)7,o<u @)(14_0( logY >>>

d<exp(10(log X)1/2)
PHA)<Y

1
= Z (u(d)%xp(u)<1 + O<—0g1:;; D > ) )
P+21$C)I<Y

logd
lp(u) — p(u — =2
+ O] 6X exp(3Vw(q) — S(logX)l/z) +0X Z 7 log¥ , (78)
dlq
d<exp(10(log X)1/2)
PT()Y

where we used the same bound as in the S, case to extend the d sum toalld | ¢,P*(d) < Y.
As with S,, the first error term in (78) is < §X p(u)% exp(—%(logX )1/2). To treat the second,

we apply the mean value theorem and the identity up’(u) = —p(u — 1), for d < exp(10(log X)'/2)
to obtain
logd o(v—1) (log X)!/2

max — xp(u—-2)
logY u—10(log X)1/2 / log Y <v<u v logY

logd
lp(u — @) —pW)| < ,

and therefore the expression for S; simplifies to

1 1(loglu+1) p(u—2) o,
S = optX H <1_l_?> +O<Za< logY * p(u) (logX) 03)) ’

plg dlq
p<Y

Now the result follows by recalling that u < (log X)*! and noting that the product over p |
is < ? as'Y > log? g and that p(u — 2) < u3p(u) by [20, Formulas (2.8) and (2.4)]. O
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426 | KLURMAN ET AL.

Corollary 11.3. Let1 <Y < X; <X, <eV¥ and 1 < q < X,, with Y > exp((log X,)*%9). Then

> L2 Botui0p 22,

X, <n<X, X
PT(n)Y
(n,g)=1

where u, := (logX;)/logY.

Proof. Decompose the interval (X, X,] dyadically. Using Lemma 11.2, we find

D 1« > o2 Y 1<<?p(ul) D 1<<?p(u1)log&

xi<n<2x, ' X <ax,  J-ien<) X, <2)<4X, X3
Pt(nm)<y PH(n)KY
(n,q)=1 (n,qg)=1
as claimed. O
11.2 | Decoupling of variables

The proof of Theorem 1.2 is based on obtaining bilinear structure in the sum, coming from the
fact that the summation may be restricted to smooth numbers. Certainly any x”7-smooth number
n € [x'77, x] can be written as n = dm with d, m € [x/277, x1/2+7], but a typical smooth number
has a lot of representations of the above form, and therefore it appears non-trivial to decouple the
d and m variables just from this. The following simple lemma however provides a more specific
factorization that does allow the decoupling of our variables.

Lemma 11.4. Let x > 4, and let n € [x'/?, x| be an integer. Then n can be written uniquely as dm
with d € [x!/2/P~(m), x'/?) and P*(d) < P~(m).

Proof. Letn = p,p, -+ py, where p; < p, < -+ < p, are primes. Let r > 1 be the smallest index for
which p; -+ p, > x!/2. Thend = p, -+ p,_,, m = p, - p; works. We still need to show that this is
the only possible choice of d and m.

Letd and m be as in the lemma. Since dm = p, -+ p; and P*(d) < P~ (m), there exists 7 > 1such
thatd = p; - p, 1, M = D, -+ P, and by the condition on the size of d we must have p; -+ p,_; <
x'/2, py - p,_; = x'/2/p,. There is exactly one suitable r, namely the smallest r with p, --- p, >
x1/2, L]

We need to be able to control the size of the P~(m) variable, since if it is very small then so
is P*(d), leading to character sums over very sparse sets. The next lemma says that for typi-
cal n < x the corresponding P~(m) is reasonably large, even if n is restricted to an arithmetic
progression.

In what follows, set

P 2N\j .
0; :=n(1—-¢) forall j>0, (79)
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MULTIPLICATIVE FUNCTIONS IN SHORT ARITHMETIC PROGRESSIONS 427

and let
J := [e%loglog(1/e)] (80)
so that for small € > 0 we have

6, =, 1/ log % and  p(1/(36,)) < (36,)1/6) « 100,
We have J < 2¢72loglog(1/¢) as long as € > 0 is small enough in terms of 7.

Lemma 11.5 (Restricting to numbers with specific factorizations). Let x > 10, € (0,1/10) and
(logx)™1/190 < ¢ < 1. Let 6 ; be given by (79) and J given by (80), and define

Sy = U {n<x: n=dm, de (xl/z_efﬂ,xl/z), Pt(d) < x0i1, P~(m) e (xefﬂ,xef]}.
o<j<t

Let q < x/271901_ Then for (a, q) = 1 we have

Y a-15m) <, sg.

n<x
n=a (mod q)
P*(n)<x”?

Proof. We may assume that ¢ is smaller than any fixed function of 7. In what follows, let n < x,
Pt(n) < x” and n = a (mod q) with (a,q) = 1.

Owing to Lemma 11.4, we may write any » as above uniquely in the form n = dm with P*(d) <
P~(m) and d € [x'/2/P~(m), x'/?). Let us further denote by 7; the set of n as above for which
P~(m) € (x%+1,x%], so that every n belongs to a unique set 7; with j > 0. We claim that n € S;
unless one of the following holds:

(i) n has adivisor d > x'/27 with P*(d) < x%+ and P~(n/d) > P*(d);
(ii) forsome0 < j<J the2re exist two (not necessarily distinct) primes p;, p, > x
nand1< p;/p, < x5
(iii) forsomeO < j < J,wecanwriten = md withd € [xl/z_ef,xl/z_e-f“],P+(d) < xs-f,P‘(m) €
(x%+1, x91.

%+t with p1ps |

Indeed, if n < x, PT(n) < x” and none of (i), (ii), (iii) holds, then letting j be the index for which
ne Tj, we have j < J (by negation of (i)) and in the factorization n = dm of n we have the condi-
tions P~(m) € (x%+1,x%1, P+(d) < x%i+ (by negation of (ii) and the fact that ©;, — 0, < %), and
d € (x'/?7%+1, x1/2] (by negation of (iii)), so that n € S;.

Applying Lemma 11.1, the contribution of (i) is

x/d

-1
< ¥ Y 1<y ., ?(@)log P*(d))

x1/21<dgxl/? m<x/d x1/2-1<d<x
PH(d)<xfr+1  PT(m)=P*(d) PH(d)<xfr+1
(d,g)=1 m=ad~! (mod q) (d,g)=1
< ek 1 x
n .
k>log(1/6;,1)—-1 X121 <dex1/? dlogx ¢(q)
Prael " x

(d,g)=1

d ‘T €T0T XPPTO9FI

sy woyy

:sd11Y) SUONIPUOD) PuE SWA L A1 998 “[4707/30/£Z) U0 ATeIqrT SUHUQ AJ[IAL ‘ANSIOAIUN G0N AQ 9PSTTSWI/ZT [ 1°01/10p WO Kafim-

1oy w00 Koji A

25U02 SUOWWIOD) AAIEaL) 2[qeardde ay Aq PAUIAAOS AT SO[OIIE O 595N JO SAINI 0] AIBIGYT SUIUO AB[1 AN TO



428 | KLURMAN ET AL.

Set u, := (logx)*?!. The contribution of the terms with ek <u, can be bounded using
Lemma 11.2, and p(u) < u™" (see [20, (2.6)]), yielding a contribution of

_ X —(k— —k X
< 2 e kp(ek/3)= <« Z g (k—l0g3)e™/3 o (1002
k>log(1/6;,1)—1 k>log(1/6541)—-1

since 6;,, >, 1/log(1/¢). The remaining terms with ek > u, can be estimated trivially using
Corollary 11.3, giving

<! Z e *o(uy/3)x <, eX.
k>0.011og log x q q

Denoting M = 6,_,¢~% and applying the prime number theorem, the contribution of (ii) in turn
is bounded by

D D S > !

M<k<e2 D ,pze[x(k—l)ez ’x(k+1)52] n<x M<k<ge2 pe[x(k—l)ez ,x(k+1)52]

n=a (mod q)
X k+1 2
<= <1 og <k > + (logx)_wo)
q M<k<e™2

P1p2ln
x _
< <k2 + (log x) 100)

and by the definition of M and the fact that 6,,, <, 1/log(1 /E) this is <, sg

Lastly, by Lemma 11.1 and Corollary 11.3, for any flxed 0<j<J,the contrlbutlon of (iii) is
D D) 2 DI
/28] o 1/20)m s<x/r X278 2051 pefx i+ 0] s'<x/(pr)
PH(r)<x’i P=(s)elx"+1 X% ()<’ ptq P(s")=x0i+1
(r,g)=1 s=ar™! (mod q) (r,q)=1 s’=a(pr)~! (mod q)

<7

1 x/(pr)
Z Z ¢(Q)9j+1(10g x)

L1/ e]<r<x1/z 8141 pe[x®itl 1%

P*(r)<x J
(r,g)=1
< Z X log 5 + (log x)~10
K 1/2 6j< < 1/2_9j+l ¢(Q)re]+1(logx) ej+1
PHr)<x’i
(rg=1
2=t 105 1 /c30, D
< o e(1/(3 +
T 0 6, (o gx)99

d ‘T €T0T XPPTO9FI

sy woyy

:sd11Y) SUONIPUOD) PuE SWA L A1 998 “[4707/30/£Z) U0 ATeIqrT SUHUQ AJ[IAL ‘ANSIOAIUN G0N AQ 9PSTTSWI/ZT [ 1°01/10p WO Kafim-

1oy w00 Koji A

p

25U02 SUOWWIOD) AAIEaL) 2[qeardde ay Aq PAUIAAOS AT SO[OIIE O 595N JO SAINI 0] AIBIGYT SUIUO AB[1 AN TO



MULTIPLICATIVE FUNCTIONS IN SHORT ARITHMETIC PROGRESSIONS | 429

Here the second term is certainly small enough. Using p(u) < u=2, log(1 + v) < v and formulas
(79) and (80), the first term summed over 0 < j < J is crudely bounded by

X
<, D ;- ]+1) =<, Jetx R 51'95.
oj<J

Therefore we have proved the assertion of the lemma. O

We further wish to split the d and m variables into short intervals to dispose of the
cross-condition dm < x on their product. This is achieved in the following lemma.

Lemma 11.6 (Separatmg variables). Let x > 10, 7 € (0,1/10) and (log x)~ 1/100 ¢ ¢ < 1. Let H :
e~ |. For each 0 < j < J (with J given by (80)) let Gj be given by (79), and write

={uez: HYj, logx <u<HOlogx —1}
. (81)
K ={vez: (1/2—6j+1)H10gx<v< zHlogx—l}.

Define the set

U U {n — pdm’, pe (eu/H’e(u+1)/H]’ de (ev/H’e(U+1)/H], m' < xe—(u+v+2)/H’
o<t uEZJ-,UEICj

P(d) < x%+, P~(m') > x%i}.
Let g < x'/271900_ Then for (a, q) = 1 we have

Z 1- 151/(n)) <, sg.

n<x
n=a (mod q)
P*(n)<x”

Proof. By Lemma 11.5, it suffices to prove the claim with 1 Sj(n) -1 s! (n)inplaceof 1 —1 s, (n). We
have SJ’ C S;,sinceforn € S; we have a unique way to write it, forsome 0 < j < J,asn = dm with
PH(d) < x%+1, P~(m) € (x%+1,x%], and we may further write m = pm/, so that p € (x%+1, x%]
and P~(m') > p.

Now, if we define u(.l), u(.z) as the endpoints of the discrete interval 7 s and similarly v(.l), v~ as
the endpoints of K;, we see that n € S; belongs for unique 0 < j <J,u € I;,v € K; to the setin
the definition of S’ 12 unless one of the following holds for the factorization n = pdm’ of n:

@

(u“) 1)/H (u<‘>+1)/H] [ (’) 1)/H (v“>+1)/H]

(i) wehavep €[e ord e for some i € {1,2}and 0 <
Jj<J;

(ii) wehave p € [e¥/H, e+ D/H] d g [eV/H W+ D/H] ! g [xe~wtv+2)/H yxo~w+v)/H] for some
u€el;,vekjand0<j<J;

(iii) we haveP (m’) e (%, x%].

Condition (iii) clearly leads to condition (ii) in the proof of Lemma 11.5 holding, so its contribution
is <, ex/q.
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430 | KLURMAN ET AL.

We are left with the contributions of (i) and (ii). They are bounded similarly, so we only consider
(ii).

For given j,u,v, Lemmas 11.1 and 11.2 tell us that the contribution of (ii) is

1
eu/H<p<e(u+1)/H eU/HSdSE(LH'l)/H xe—(u+v+2)/H<m1<xe—(u+u)/H
ptq P*L(d)sxsf+1 P’(m’);xefurl

(d,g)=1 m'=a(pd)~! (mod q)

77_1 xe—(u+v)/H
<H »(q)8;,, logx
et/H < pge+D/H ov/H g ou+1)/H qa(q) j+1108X

PH(d)<x’it!
(d,g)=1
< e P(1/(30))) ——,
H6; 4 uqlogx

where the second 1/H factor arose from summation over d and the 1/u factor arose from the
summation over p. Summing this over u € 7;, v € K; and 0 < j <J and recalling that |7;| <

(Gj - 6j+1)H(log X), IK;| < 6;,,Hlogx and p(y) < y~? yields a bound of
1 1 x 2] x X
< 6:,-6.,1)08, ,(Hlogx)?  ——— = «, — - = <, e=
"Ogg AR H Hlog?x 4 " H q¢ " g
by the definitions of H and J. O

Now that we have decoupled the variables, we may introduce Dirichlet characters and obtain
a trilinear sum. Foru € 7;,v € K;jand H = le~11], write

PO= Y fxp

eu/H < peu+D)/H

D)= ),  f@x@),

ev/H<d<e(u+l)/H 2
e (82)

M,0= ), fmx(m).
me/e<“+U+2)/H

P‘(m)>xej
Then we have the following.
Lemma 11.7. Let x > 10,7 € (0,1/10), € € ((log x)~1/29,1), g < x}/27197 gnd let f : N — U be

a multiplicative function supported on x”-smooth numbers. Letting x, be as in Theorem 1.2, and
recall the definitions in (81). Then for (a,q) = 1 we have

> f(n)—f;(;“))Zf(n)xT(n)|

n=a (mod q)

; X > = eX
S @ DRI ND) |PM(X)”DU(X)||Mu,U(}()|+On<g>'

x#x1 (mod q) 0<j<J uel;j vek;
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MULTIPLICATIVE FUNCTIONS IN SHORT ARITHMETIC PROGRESSIONS | 431

Proof. Applying Lemma 11.6 to both f and fy; and observing that the union of sets in the
definition of S} is disjoint, we see that the left-hand side in the statement is

Y SO m)E,(mdp)

ogj<J uelj eu/H<p<e(u+1)/H eV/H < dgeW+D/H <y o=(utv+2)/H
VEK; PHd)<xitt P (m)>xY

+0 <3>
"\ q

q n=a (mo q) ( )

Using the orthogonality of characters and then applying the triangle inequality, the main term
here is (omitting the summation ranges for brevity)

12> X ﬂa)(Zf( ))((p)> Y f@r@f Y semxem

0<j<J u€l; x#y; (mod q) (@) d . mo
VEK; PHd)<x%i ™! P=(m)>x"J

go(q) Y Y p@ID@IM @D,

0sj<J u€l; vek; y#yx; (mod q)

and the claim follows. O

11.3 | The main proof

Let n > 0. Suppose henceforth that the multiplicative function f: N — U is supported on
x”7-smooth integers. Our task is to prove Theorem 1.2, that is, to obtain cancellation in the
deviation

x1(a) —
may Z f =<0 %f(n)n(n)\.
n=a (mod q)

In what follows, let (log x)~1/2%° < ¢ < 1, let 6; and J be given by (79) and (80), and recall the
notation of (81) and (82).

According to Lemma 11.7, we can restrict ourselves to bounding the product of character sums
present in that lemma. Taking the maximum over (u,v) € T XK, there, it suffices to prove
that

(Gj - 9j+1)9j+1H2(10g x)* Z

_ _ _ X
P, COND, COIM, o, COI < €=, (83)
x#x1 (mod q) 1
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432 | KLURMAN ET AL.

where for each 0 < j < J thenumbersu; € I;,v; € K; are chosen so that they give maximal con-
tribution.
In analogy with the proofs of Theorems 1.4 and 1.5, for each j <J we define' the sets X and
AV 1= {x # x1 (mod @) 1 |P, (Ol < %/ Juj}

U = {x # x, (mod PNXV.

11.3.1 | Case of X

For a given 0 < j < J, consider the contribution from X(/). Applying Cauchy-Schwarz, we have

_1 ~ — _
o(q) Z 1P, CONDy, OONM,, o GO
XGX(})
1/2 12

Y. 1P, OPID, COF

1 5 1
< == My, GO —
2@ EZX@ o o(q)
We begin by bounding the first bracketed sum. We do not use Lemma 6.1 directly for this, since
that would lose one factor of log x that comes from the sparsity of the m variable in the definition
of Muj,vj (). Instead, we expand the square and apply orthogonality, which shows that the first

bracketed sum is bounded by

1/2

2 2 1

m Sxe—(ujHJj)/H —(uj+Uj)/H

P=(m)zx® P (my)>x’
my=m; (mod q)

my<xe

Taking the maximum over m,, summing over m, conditioned to m, = m; (mod q), and applying
Lemma 11.1 (recalling that xe~®i**/H /g > x7), this is
-1
< 771 - xe—(uj+vj)/H_
6;9(q)"/*log x
To treat the remaining bracketed expression, we use the pointwise bound from the definition
of XD, and then use Lemma 6.1 to bound DUj (), giving

TWe need only to split the y spectrum into two sets here, as opposed to many sets in the proof of Theorem 1.4.
This is owing to the fact that Puf( x) already has length > ¢, and thus our large values estimates for it are effective.
The reason we are allowed to take Puj (x) so long here (unlike in our previous proofs) is that we are assuming q <
x1/271000_1f we only assumed that g = o(x'/2), we would have to perform an iterative decomposition as in the preceding
sections.
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MULTIPLICATIVE FUNCTIONS IN SHORT ARITHMETIC PROGRESSIONS 433

1/2 1/2

Y 1P, PP, @F | <|=e /2 Y D, P

xex ( ) yex(

L
®(q)

e oum (@) o1 +1)/H 6, v;/H 0, Y2
< e )e J /u o(q) + Te j (‘Pq(e i XTI =W (%, x J+1)) . (84)
By Lemma 11.2,

»(q) Ui/ H

W (e ey — g (/M 1Py < P(1/(36;,1))= ="/ /H.

Inserting this into (84), and using %/ /q > 1 for any v i € K;, results in the bound

1/2
< 53(¢;q)p(1/(3ej+1))H ) o/ py

Combining this with the contribution from Muj,vj () yields the upper bound

Y, 1P, IID,DIIM,, D]

xex()

<0()

P(l/(39j+1))1/2

3g-1/2 )
611 u;(log x)q

Recalling H = [e7"!|, p(u) < u™ and 6; — 6;,; < %, when inserted into (83) this expression
yields

<, €30, —0,,)0,, H*(logx)* - H?p(1/(30,, )/ —F — « 12,
7 J JH1I/¥j+1 Jj+1 H9j+1(logx)2q 7 q

Finally summing this over 0 < j < J, the bound we obtain is

x
2=,
q

41X

< Je <

7)

which is good enough.

11.3.2 | Caseof ')

It remains to consider the contributions from /). We restrict to q € Q, (95 100 With the nota-
tion of Lemma 8.1. As in the proof of Theorem 1.4, that set satisfies the desired size bound
I[1,Q]\ Qy 95 ;10| < Qx‘E200 (since 9.5-20 < 200), and for any set Q' C [1,x] of coprime
integers the set Q, s 100 intersects it in < (logx)* " points (and under GRH we have
Q. 95 100 = [1,x] N Z). We also recall that in Theorem 1.2 the character y; (mod g) is such that
inf||cjog x Dg(f> x;(m)n'; x) is minimal.
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434 | KLURMAN ET AL.

By Proposition 8.5 (with § := e!/H —1 =< 1/H), for q as above we have |U')| <« ¢ °H <« 71,
since P,(x) has length > x% and 6, >, 1/(log %).

Furthermore, applying Proposition 8.3 (and Remark 8.1) to f(n)1 6; (and recalling g €

Pr(n)<x
Q95 ¢-100 ), we see that'

Pu@I=| T SORDL | < TR (55)

eu_,-/[lgdSe(uj+l)/U
for all y € U'(), except possibly for the y = yU) that minimizes the pretentious distance
inf( <o x Dg(f> XM, ) 650 15 X). We argue that x) must be the character y, of Theo-

rem 1.2, in which case Y ¢ 1) and we can ignore this character.
By applying Lemma 7.4, we see that either

. i ) 1
inf D2(f, xV(m)1,,, (st '3 %) < 1.01log o5t 0(1)

|t|<log x

or else (85) holds without any exceptional characters. We may assume we are in the former case,
and thenby 6, > 6;,, >, 1/(log(1/¢)) and trivial estimation we obtain

- 208 (it 1
|t|1<rllofgx [Dq(f,)( (m)n';x) < 1.1log 5 + On(l).

But we have the same for y, in place of /) by the minimality of y,. Thus, assuming that y() # y,
and applying the pretentious triangle inequality as in the proof of Proposition 8.3 (using also that
¢ > (log x)~1/290), we obtain a contradiction. This means that we may assume from now on that
(85) holds forall y € ') and 0 < j < J.

Now we take the maximum over y € U°/) in the sum that we are considering and apply the
Brun-Titchmarsh inequality to Py, (x) and Lemma 11.1 to My o, (x) to bound

1 — — _
go(Q) Xe%(,) / J 1

< e f(u;/H) - 1U'P| max D, ()| - M, , ()
)(EU'(J) J JY

9.5,0;/H -1
< euj/H/(uj/H) g7l ee’ _xe—(uj+vj)/H77—
HO;,,logx
<, R —
q6?, H(log x)?

Jj+1

and this multiplied by (6; — 6;,,)H*(log x)* and summed over 0 < j < J (recalling that 6; >,
1/1og(1/¢)) produces the bound

" Note that the saving of £ is much better than the trivial saving (which we do not need to exploit here) that comes
from the fact that d is supported on x% -smooth numbers. The trivial saving would only be better if 6; is roughly of size
1/1og(1/¢) or smaller, but as we shall see the contribution of these large values of the index j is small in any case by
trivial estimation.
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1\? x x
<<;7 82.4<10g E) H Z (9] - 6]+1)a <<77 51.25'
oyt

This completes the proof of Theorem 1.2.

12 | A LINNIK-TYPE RESULT

In this section, we prove our Linnik-type theorems stated in Section 2. As in the proof of
Theorem 1.4, we employ the Matomiki-Radziwilt method in arithmetic progressions.
Our main propositions in this section concern products of exactly three primes of the form

E; :={n=pp,p;: P}—E <p;j<P;, jE{1,2,3}, P = q'%% p, =P, =q  (86)

Proposition 12.1 (E; numbers in progressions to smooth moduli). For every small enough € > 0
there exists 1(€) > 0 such that the following holds.

Let q > 2 with P*(q) < q"©). There exists a real character £ (mod q) such that for all a coprime to
q we have

1_1+40(@) 1
) no el ) 2 ) P1D2Ds

n€E; PI7E<p <Py Py T<p,<P; Py <ps<Ps
n=a (mod q)

(87)

+ @ Z Z Z §(p1p2p3)

o(q) .- _ _ P1P2P3
Pi f<p1<Py P% ‘<pr<P, P% ‘<p3<Ps
with E;, P,,P,,P;asin(86).

Proposition 12.2 (E; numbers in progressions to prime moduli). For every small enough ¢ > 0
there exists M(e) > 1 such that the following holds.

Let q > 2. Suppose that the product [, L(s, x) has the zero-free region Re(s) > 1 — M(e)

logq’

(mod q)
|Im(s)| < (log q)3. Then for all a coprime to q we have

. ZIC) I _ _ P1P2P3
neky P17¢<p <Py Pye<p,<P, PYE<py<Ps
n=a (mod q)

with E;* P,,P,,P;asin (86).

We shall deduce Theorem 2.1(i) and (ii) from these two propositions at the end of the section.

12.1 | Auxiliary lemmas

In order to prove these propositions, we shall need a result of Chang [4, Theorem 10], giving an
improved zero-free region for L(s, y) when the conductor of y is smooth.
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436 | KLURMAN ET AL.

Lemma 12.3 (Zero-free region for L-functions to smooth moduli). Suppose q > 2 and P*(q) <
q* with C/(loglog(10q)) < x < 0.001 for large enough C > 0. Then the product [],, (neq o LG 0)
obeys the zero-free region

cx~ !

Re(S) = 1- s
logq

Im(s)| < q

for some constant ¢ > 0, apart from possibly a single zero . If 8 exists, then it is real and simple and
corresponds to a unique real character (mod q).

Proof. This follows from work of Chang [4, Theorem 10] (improving on work of Iwaniec [27]).
Indeed, that theorem shows that, apart from possibly one real, simple zero corresponding to a real,
non-principal character, there are constants ¢, ¢’ > 0 such that L(s, y) has the zero-free region

Re(s) > 1 — cmin 1+ , loglogd’l I L — ¢, [Im(s)| €T
log P*(q)" (log d) log(2;255) (log(dT))'—¢

where d is the conductor of y and d’ = [],; p- We take T = g and note that the middle term in
loglogd S loglogq
logd ~ loggq

the minimum is > , and this produces the zero-free region of the lemma. O

We will also need the following mean value estimate for sums over small sets of characters.

Lemma 12.4 (Haldsz-Montgomery type estimate over primes). Let q > 1 be an integer, and let B
be a set of characters (mod q). Then fork € {2,3}, 7 > 0,2 < R < /N, and for any complex numbers
a,, we have the estimate

,
Y| T auw)| < <— +NI 1/’<q<"+”/“"2+’7|”|R2/"> > la, I

XEE psN P<N
Proof. This is a result of Puchta [38, Theorem 3]. O

In the proof of Theorem 2.1(i) and (ii), we will need pointwise estimates for logarithmically
weighted character sums assuming only a narrow zero-free region. By a simple Perron’s formula
argument, we can obtain cancellation in

x(p)
P<P<P1+K p
for y # x, (mod q), x > 0 fixed, and P € [q%, q] if we assume a zero-free region of the form
Re(s) >1—3—=—=1 loglogq , [Im(s)| < q for L(s, x); the need for this zero-free region comes from point-

wise estimation of | T (s, )| < log?(q(|t| + 2)) which costs us two logarithms (in the region where

we are >> m away from any zeros). However, we must argue differently, since we are only

willing to assume a zero-free region of the form Re(s) > 1 — M (5) , [ Im(s)| < g (which we know for
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MULTIPLICATIVE FUNCTIONS IN SHORT ARITHMETIC PROGRESSIONS | 437

smooth moduli apart from Siegel zeros). To do so, we exploit the logarithmic weight 1/p in the
sum over P < p < P'**, which allows us to insert a carefully chosen smoothing. A variant of such
an argument is known as a Rodosskii bound in the literature.

Lemma 12.5 (A Rodosskii-type bound). Let g > 2, € > O x > 0, and let ¥ (mod q) be a non-
principal character. Suppose that L(s, y) # 0forRe(s) > 1 — |Im(s)| (log q)3. Then, provided
that P > q* >, 1, we have

x(p)

1+it| 0

sup (89)

[t|<(logq)3/2 P<p<Plte b
with Cy > 0 an absolute constant.

Proof. This is a slight modification of results proved by Soundararajan [42, Lemma 4.2] and
by Harper [17, Rodosskii Bound 1]; in those bounds there is the non-negative function (1 —
Re(x(p)p~i))/p in place of y(p)/p'* in (89), and consequently only lower bounds of the cor-
rect order of magnitude are needed in those results. We will choose a more elaborate smoothing
to obtain asymptotics (up to O(x)) for (89). Also note that our range of |¢| is smaller than in the
works mentioned above, but correspondingly the zero-free region is assumed to a lower height.

We may assume without loss of generality that ¥ < £/10 < 1/10, since otherwise the trivial
Mertens bound for (89) is good enough. By splitting the interval [P, P'*¢] into < ¢/x intervals of
the form [y, y'**] (and possibly one additional interval), it suffices to show that

x(p)logp

2
sup It < x“logy

I11<log@)*/2 " y< eyt

uniformly for y € [P, P?].
We introduce the continuous, non-negative weight function

x2u, € [0,x?]
it € [x%,x —x?]
9tuw) = 2k —u), u€x—1x3x],
0, & [0,x];

in other words, g is a trapezoid function. We further define the weight function

log £
Wp)=Ww,,.(p) =

logy.
g logy ogy

Since W(p) = logy for p € [y1+" y*=] and 0 < W(p) < logy everywhere, by estimating the
contribution of p € [y, y'+° ] U [y1+***, y1*+¢] trivially, it suffices to show that

sup < x*log? y. (90)

| x(p)W(p)logp
ltI<(log g)3/2

1+it
p
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438 | KLURMAN ET AL.

Let y* be the primitive character that induces y. Since the contribution of p | g to the sum in
(90) is negligible, and since we can replace log p with the von Mangoldt function, from Perron’s
formula we see that

(p)W(p)lo 1 [er . T
Z)(p plfn ED __ﬁ/ f(l+lt+s,)(')W(s)ds+O(K210gy),

ico
where

(14%)s _ y(1+1<—1<2)s _ y(1+x2)s +y8

W(s) = / W()xStdx = 22
0 52

is the Mellin transform of W'.
Shifting the contours to the left, and noting that W(s) is entire and |W(s)| < =~

we reach

” for Re(s) <

IsP

W(p)l —_
Z )((P)pl(% =— Z W(p —1—it) + O(x*logy), (91)
P p

3
where the sum is taken over all non-trivial zeros of L(s, y*). Since [t| < @

the p sum to end up with

, We can truncate

Z Xx(p)W(p)logp _

l+lt

W(o —1—it) + 0@ log y).
[Im(p)|<(log q)*

Let A := x~2. Thanks to our assumption on zero-free regions, we clearly have

— 2y T
and consequently
W(p)lo -4
‘ 2 x(p)W(p)log p < %2y Toea Z ; +x%logy.
pl+it |1+ it —p|?
[Tm(p)|<(log )3

We now note that for any zero p = 8 + iy, with |y| < (logq)® we must have f < 1 — & and
o)

1 < 1 < logg e< 1 )
[1+it—p|2  [1+1/logq+ it —pl|? A 1+1/logq+it—p)"

Thus we can estimate

W(p)l _ A
|Z x(p)W(p)log p 2, g . 284 ZRe L +x*logy.
plHit A < 14+1/logg+it—p
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Recall thaty > P > ql/ \/Z. We can use the Hadamard factorization theorem in the form given
in [5, Chapter 12] on the right-hand side of the above formula, and estimate |Lf(1 +1/logq +
it, )| < logg, to see that

| Z x(p)W(p) logp

1+l[

x2 _‘/_A(logy)z +x*logy < x*log”y

by our choice of A. This finishes the proof of the lemma. O

12.2 | Proof of Propositions 12.1 and 12.2

Proof of Proposition 12.1.. We may assume that ¢ > 0 is small enough and that q is large enough in
terms of g, since we must have qg' > 2, and we are free to choose the dependence of ¢’ on ¢. We shall
show that if g is such that we have the zero-free region L(s, y) # 0 for Re(s) > 1 —¢~1%/logq,
IIm(s)| < (log q)* for all y (mod q) apart from possibly one real character &, then (87) holds'. This
zero-free region is in particular satisfied for those g that satisfy P*(q) < ¢”) with small enough
7(e) > 0.

By the orthogonality of characters, we have

(@)

1 x(a)
T ou= X ah@R@RD Y SP@PR®D,
nek; X€{x0:¢} (mod q) x (mod ) ?
n=a (mod q) X#X0:§
where we have defined
Pi(x) = ) xp) je,2,3}
J . p ’ 9 9 .

1-¢
P;7*<p<P;

In the above expression, in the term corresponding to y, we can replace y, by 1 at the cost of

O((log 9)/q°)-
We employ the Matomiki-Radziwitt method as in our other proofs. Let

={x(mod q) : x & {x0.&} IP,COI <P;*%,
={x(modq) : x & {x,&H\X.

Unlike in the earlier sections, there is no U7 case to analyze, owing to the fact that for y € U5 we
already have some cancellation in |P; ()| by Lemma 12.5 and our assumption on q.
The case of X is handled similar to our other proofs. Indeed, by Cauchy-Schwarz, we have

1/2 1/2
X IPOOIP,CONP GOl < P;°-°1< > |P2<7)|2> ( > |P3(7)|2> :

XEX XEX XEX

If this bad ¢ does not exist, let £ be any non-principal real character in what follows.
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By the mean value theorem for character sums (Lemma 6.1) and the fact that P; = ¢'%%%, p, =
P; =g, thisis

1/2 1/2

_ 1 1 _
<qa % Y = Y S| <q
2

Pl7E<p,<P, PIT°<ps<P; P3

say, since go(q)/(P2P3)%(1_5) < ¢

The remaining case to consider is that of U. Note that, combining the assumed zero-free region
for L(s, x), x # £ (mod q) with Lemma 12.5, we see that |P,(x)| < ¢* for all y € V5.

We first estimate | Uy|. For each y € Uy we decompose P, () into dyadic segments [y, 2y] with
y=2¢€ [P}_E /2, P;] and use partial summation to obtain

IP,(D)| < (elogP) max
yelP=¢/2,P] Y

yzzj

> X(P)‘-

Y<p<2y

From Lemma 6.5, which bounds the number of large values taken by a prime-supported character
sum, we have the size bound

U] < [{x (mod q) : |P,(})| > Pl—o.o1}|

< xmodg): max 1| Y x(p)|>PrO%clogPy)! ‘
YELRSP Y | ydpay
y=2/
< Y lxmodg: | Y x(p)l >y 0% < g%,
P17 /2<y<Py Y<p<2y

y:2j

recalling that P, = ¢'%%% and q is sufficiently large in terms of ¢.
Introducing the dyadic sums

(p)
P ()= Z &, veE; = [(1—5)1ong,10ng],
e”spse”“
P;7¢<p<P;

the upper bound on |P;(x)| above and Cauchy-Schwarz give

X IPIP,OOIPDI <& Y, Y 1Py COIIPsL, ()

XEUg U1,0, €l YEUy

1/2 1/2
< sz(elogq)2< > IPz,U;(Y)F) <Z IP3,U3(7)|2>

XEU XEU
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for some v!,v), € I, (since as P, = P; we have I, = [;). It remains to be shown that for any
vel Iz

— 1
> IPLG0P < —

yeUs og’q

for j € {2, 3}, since then we get a bound of < ¢* for the sum over y € Uy, and this (multiplied by
the 1/¢(q) factor) can be included in the error term in (87).

For this purpose, we apply Lemma 12.4, which is a sharp inequality of Haldsz-Montgomery-
type for character sums over primes’. We take N =e'*!, |E| = |Us| < ¢*%, k=3, R=

NOOOOL g = 1‘1,1pe[ev eoHi]n[pl<,p) 1D that lemma. Since the term N?/3¢q'/°|E|R?/? appearing in

Lemma 12.4 is smaller than the other term —— 1 ek for our choice of parameters, we get a bound of

e/ —= < , as desired. This completes the analysis of the U case, so Proposition 12.1
ue” 1 2 g q S

follows. O

Proof of Proposition 12.2. The proof of Proposition 12.2 is similar to that of Proposition 12.1, except
that there are no exceptional characters arising. The proof of (87) goes through for any q for which
L(s, x) # 0 whenever Re(s) > 1 —&¢71%/logq, [Im(s)| < (logq)® and y # & (mod q). Moreover,
since under the assumption of Proposition 12.2 the exceptional character £ does not exist (that is,
the above holds for all y (mod q)), we can delete the term involving & from (87), giving (88). This
gives Proposition 12.2. 1

12.3 | Deductions of Linnik-type theorems

Corollary 2.2 is a direct consequence of Theorem 2.1(i) (by fixing ¢ > 0 in its statement). Hence, it
suffices to prove Theorem 2.1(i) and (ii).

Proof of Theorem 2.1(ii). It suffices to show that for all but <, 1 primes g € [Q'/2, Q] the right-hand
side of (88) is > 0; indeed, then the smallest g-smooth E; number in the progression a (mod q) is
< @**+10%0¢ (and since € > 0 is arbitrarily small, this is good enough).

In view of Proposition 12.2, it suffices to show that for all but <, 1 primes g € [Q'/2,Q],
Hx (mod q) L(s, y) obeys the zero-free region Re(s) > 1 M |Im(s)| < (logq)® required by
that proposition.

Since q is a prime, all the characters modulo q apart from the principal one are primitive. More-
over, the zeros of the L-function corresponding to the principal character are the same as the zeros
of the Riemann zeta function, so we have the Vinogradov-Korobov zero-free region for this L-
function. It therefore suffices to consider the L-functions corresponding to primitive characters.

By the log-free zero-density estimate (Lemma 7.3), we immediately see that Hj{ (mod ) L(s, y) has

the required zero-free region for all but < exp(100M(g)) prime moduli g € [Q'/2, Q], so we have
the claimed result. O

T For this estimate to work, it is crucial that the character sums P ;,0(x) are long enough in terms of g; in particular, we
need them to have length > q'/3+¢.
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Proof of Theorem 2.1(i). Fixing § > 0, we will show that if P*(q) < qE/ with ¢’ very small in terms
of &, then the least product of exactly three primes in every reduced residue class a (mod q) is
< q2+6 .

Let € > 0 be very small in terms of §. By Lemma 12.3, we have the zero-free region required by
Proposition 12.2 whenever P*(q) < g7 with () > 0 small enough, apart from possibly a single
zero 3, which is real and simple and corresponds to a single real character (mod q).

If this exceptional zero § does not exist, then from Proposition 12.2 we obtain a positive
lower bound for the left-hand side of (87). Therefore, we can assume that § exists. This is a

real zero of an L-function (mod g), and we write the zero as f =1— ﬁ with ¢ > 0. By a

result of Heath-Brown [19, Corollary 2] on Linnik’s theorem and Siegel zeros, if ¢ < ¢,(8) for

a suitably small function ¢,(5), then the least prime in any arithmetic progression a (mod q)

with (a,q) = 1 is < ¢%9/2, and thus also the least n = a (mod q) with exactly three prime fac-

tors obeys the same bound (indeed, if p,, p, < log® q are chosen to be primes not dividing g

and p < ¢**%/? is a prime = a(p,p,)~"! (mod q), then p;p,p < ¢**° and p;p,p = a (mod q)).
C,

Thus we have proved the theorem if § > 1 — k‘;%;q), so henceforth we will assume we are in the

opposite case.
According to Proposition 12.1, it suffices to show that

> %k(l—\/?) y L

Ple<p<P; PI<p<Ps

since then the left-hand side of (87) is > 0 for € > 0 small enough.

Following the exact same argument as in the proof of Lemma 12.5, and introducing the same
weight function W = W, with y € [Pi‘E ,P;] and x = ¢! (and using (91)), it is enough to show
that

| X 7e-n[<a-10Va0g’y) ¥
P

yIe<py

where the sum is over the non-trivial zeros p of L(s, £). Just as in the proof of Lemma 12.5, the
contribution of all the zeros p # § is < £(log® y) Zyl_,{ <<y zln as long as P*(q) < ¢"® with 7, (¢)
small enough. It suffices to show, then, that

= 1
W - Dl <1 -11Ve)log’y) D, —. (92)
ISPy p
We recall that § <1 — ; i’égl, and denote
—_— —au __ ,—bu _ ,—cu —u
F(u) := W(— u > =128 ¢ ¢ e log?y,
logy u?

where a =1+%, b =1+x—x% ¢ =1+« and the value at u = 0 is interpreted as the limit as
u — 0. We compute using L’Hopital’s rule that W(0) = F(0) = k(1 — x) log® y, and differentiation
shows that F is decreasing, so W is increasing. Moreover, F’ is increasing and F'(u) = (x/2 - (-2 +
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% + 12) + O(xu))log? y for |u| < 1. Thus, by the mean value theorem applied to F we have
— — ) 8 ) ) )
WE-1)< W< M) - F(CO( )) < F(0) + CO; )F’<M> < x(l —x— Coi )> log? y,

2 logy 2 2
since § > 0 is small. We further have 1 — x — ¢,(5)/4 < 1 — 100+4/¢ if ¢ > 0 (and hence x) is small
enough in terms of §, so that (92) holds by Mertens’ bound. This completes the proof. O

Proof of Proposition 2.3. The proof of Proposition 2.3 follows along similar lines as those above,

so we merely sketch it, indicating the required modifications. We outline the lower bound for n

with u(n) = —1; the corresponding estimate for u(n) = +1 is proved in the analogous way.
When considering numbers n with u(n) = —1, we restrict to those n that belong to the set

S:={neN: Q[Pj,Q.’_J(n) =1, je{l,2}}
with P, = x/10,Q, = x¢/5,P, = x'/>=¢,Q, = x'/2=¢/2; this introduces essentially the same factor-

ization patterns for our n as in the case of products of exactly three primes. By writing 1,,,,—_; =
%(/xz(n) — u(n)), it suffices to bound

X X
2 /12(}’1)15(?1) >e=, | Z um)lqs(n)| < 2=,
n<x q n<x q
n=a (mod q) n=a (mod q)

We concentrate on the latter bound (the former is similar but easier). Write n = p, p,m with
pj € [P i Q j] forj=1,2,m< ﬁ As in the previous sections, we can easily get rid of the cross
condition on the variables by splitting into short intervals, so applying orthogonality of characters
it suffices to show that

O T 0 e TG N o) PR . S—
@ oy ’ ’ H3(log Q1)(log Q2)q
X#Xo
uniformly for v; € I;, where we have defined
Qu = Y x(p) Ry :i= Y umx(mir(m),

eu/H<p<e(u+1)/H msx/e“/H

I, =[HlogP;,HlogQ,], H=|¢],

and 7 is the set of numbers coprime to all the primes in [P i Q j] for j € {1, 2}. We consider the
cases

X1 ={xmodq): 1Qu,n(0I <"1\ {xo}
Vs @ ={x (modq) : |Q, z(0| <& e™/H/u}\ (X U{x})

Uy + ={x (mod @)} \ (X U U5 U {xo}).
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The case of & is easy and is handled just as in the proof of Proposition 12.1. The case of Uy
is also handled similarly as in that proposition, except that we also need a Haldsz-Montgomery
estimate for ) yeUs IRy, 40,, 1 (0)]%. This bound takes the same form as Lemma 12.4, but is proved
simply by applying duality and the Burgess bound (since R, ,, ;;(¥) is a sum over the integers
rather than over the primes).

Finally, the U7 set is small in the sense that |} | < ¢=*3 by Proposition 8.5 whenever we have
the zero-free region

H L(s,x)#0 for Re(s)>1-— M(e) [Im(s)| < 3q (93)

% (mod q) logq

with M(e) large enough. It thus suffices to prove that

Sllp |RU1+UZ,H(X)| e

609D | (o tu)/m
X#Xo (mod q) q

and by Lemma 7.4 this reduces to the bound

sup inf L+ Re(x(p)p™) > 61log 1 + 0(1). (94)
% (mod g) ltI<(logq)®/2 px p €
X#Xo ptq

At first, a direct application of Lemma 7.4 reduces to proving (94) with x(p)p~*14(p) in place of
x(p)p~*, but since log Q i/ 1og P; < 1by our choices, the contribution of those p with 14(p) # 1
is negligible in (94).

Restricting the sum in (94) to p € [x*, x] with x = %!, we indeed obtain (94) from Lemma 12.5
upon splitting [x*, x] into segments

[x"/, x"+1], where x; = x(1 + ) and 0 < j < [log(1/x)/log(1/¢)] < 1,

as long as we have the zero-free region (93). This zero-free region is indeed available by Lemma 7.3
for all but <, 1 primes q € [Q/2,Q], as in the proof of Theorem 2.1(ii). O
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