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Abstract. We establish quantitative bounds on the U k [N] Gowers norms of the Mdbius function p
and the von Mangoldt function A for all k, with error terms of the shape O((loglog N)7¢). As a
consequence, we obtain quantitative bounds for the number of solutions to any linear system of
equations of finite complexity in the primes, with the same shape of error terms. We also obtain
the first quantitative bounds on the size of sets containing no k-term arithmetic progressions with
shifted prime difference.
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1. Introduction

Throughout this paper we fix an integer k > 1, and let N > 1 be a real parameter that is
assumed to be sufficiently large depending on k. We will also make frequent use of the
somewhat smaller quantity

0 = exp(logl/m N), (1.1)

for instance by sieving out multiples of all primes less than Q. We use ¢ to denote various
small positive constants depending on k that are allowed to vary from line to line, or even
within the same line. All the constants in our asymptotic notation are permitted to depend
on k (see Section 3 for a more detailed description of the asymptotic notation conventions
used in this paper). The implied constants will be effective, except when otherwise stated.

In this paper we will be interested in quantitatively controlling the Gowers norm
uniformity of the Mobius function p and the von Mangoldt function A on the inter-
val [N] :={n e N :1 <n < N}, as well as various related statistics. Our methods can
extend to some other arithmetic functions, such as sufficiently “non-pretentious” bounded
multiplicative functions, but we focus on the classical functions yu, A here for ease of
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exposition. Such quantitative control on the Gowers norms will be used to quantify the
asymptotics for linear equations in primes obtained in [22].

We begin by recalling the definition of the Gowers uniformity norms, first introduced
by Gowers [13]; we largely follow the notation of [22, Appendix B] here, except that we
will find it convenient to work with both normalized and unnormalized Gowers norms.
Definition 1.1 (Gowers norms). Let kK > 1 be a natural number.

(1) Ifw € {0, l}k is a k-tuple, we write w1, . .., wg € {0, 1} for the components of w, and
lw| == w1 + - -+ + wg. Similarly, if # € G* is a k-tuple in some additive group G, we
write iy, ..., h; € G for the components of &, and write w - h for the “dot product”

a)l; =wihy + -+ ophy.
We often identify G¥*! with G x G, thus for instance the assertion (n, 1) € G¥+1
means thatn € G and h € G¥.

@ii) If f: G — C is a finitely supported function on an additive group G, we define the
(unnormalized) Gowers uniformity norm || f || 7« (G) to be the quantity

L\ 1/2K
ooy =( XTI e“lrm+o-h)"” .

(n,h)eGk+1 0{0,1}K

where €: z > z denotes complex conjugation. If G is finite, we then define the
normalized norm
”f”Uk(G) = ||f||[}k(G)/||l||[7k(G)~
(iii) For any function f:7Z — C and natural number N, we define the local (normalized)
Gowers uniformity norm

I xvy = 1 Anillge zy /Il g e zy»
where 1y is the indicator function of [N].

Thus for instance

1 Moy = Bt rnmyerwyz £ ) o+ )2
= Enepvy £ ()],

where throughout this paper we use the averaging notation

Boea /@) = 5 Y /(@

acA

for any non-empty set A of some finite cardinality #A, and by the orthogonality of additive
characters we can compute

1/ N2y = (B o semh ey £ ) F 1) fn +5) f(n + h + k)

g N_3/4(/1‘ 3 f(n)e(ne)‘4d9)l/4,
0

ne[N]
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where we adopt the usual asymptotic notation (see Section 3), and e(6) := ¢27*% . While
we will permit the functions f to be complex-valued for compatibility with previous lit-
erature (particularly those that invoke the circle method), in this paper we will deal almost
exclusively with real-valued functions. As is well known, the Gowers uniformity norms
are indeed norms for k > 2, and seminorms for k = 1; see for instance [22, Appendix B].
In particular, they obey the triangle inequality

I/ + gluray = 1S luxivy + I8 luxiag (1.2)

(and similarly for the other variants of the Gowers norms in Definition 1.1), which we
will rely on frequently in this paper.

The Mobius pseudorandomness principle (see e.g. [29, p. 338]) informally makes the
prediction

un) ~0

in the metric given by the Gowers norms U¥[N]. Similarly, the usual modification of the
Cramér random model [6], as refined by Granville [15] in order to take into account the
distribution at primes below some threshold w, makes the prediction

/\(}’l) ~ ACramér,w(n)

for various small 2 < w < N, where Acramér,w: Z — R is the function
P(w) P
Acramer.w (n) = ————1 =:||—1 ,
Cramé ,w( ) q,’)(P(w)) (n,P(w))=1 - 1 pin

where P(w) is the primorial' of w,

Pw) =[] p

p<w

with ¢ the Euler totient function and (n, P(w)) the greatest common divisor of n
and P(w). Thus for instance Acramer,2 = 1 (Which corresponds to the original model
of Cramér). The precise choice of the parameter w is not too important, as can be shown
by the following standard sieve-theoretic calculation:

Proposition 1.2 (Gowers norm stability of the Cramér model). If 2 < w,z < Q, then
”ACramér,w - ACramér,ZHUk[N] < log_c N+w*+z7¢ (13)

We establish this proposition in Section 5. In our applications it will be convenient
to focus on the Cramér models A cramer,w s Acramer,z With w = log“ N, z = Q, fork > 0
a sufficiently small constant which may depend on k (usually we can take ¥ = 1/100).
However, using Proposition 1.2 it is not difficult to also work with other suitable choices

!In some texts the constraint p < w is used in place of p < w; the precise convention is not too
important for our applications, but the choice p < w is consistent with the conventions in [11].
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of parameters if desired, at least up to logarithmic decay (and probably up to pseudopoly-
nomial decay” as well, see Remark 5.4).

We summarize the previous Gowers uniformity results on Mobius and von Mangoldt
as follows.

Theorem 1.3 (Gowers uniformity of Mobius and von Mangoldt).

(i) (Pseudopolynomial U! uniformity) We have

Ilgng IA = Hlgiay < exp(—c(log N)**(loglog N)~'/%).
(ii) (Logarithmic and strongly logarithmic U? uniformity) We have
lellp2pny <57 log™ N
and
IA = Acramerw 2y <™ log™* N + w™° (1.4)

forall A>0andall2 <w < Q.
(iii) (Qualitative higher uniformity) For any fixed k > 2, we have

iy = o™ (1)

and
IA = Acramerw lgr vy < w™° + 0™(1) (1.5)

as N — oo uniformly for any 2 < w < Q.

In the asymptotic notation superscripted with ineff, the implied constants are permitted
to be ineffective.

A short deduction of this theorem from results stated in the literature is given in
Appendix B for the sake of completeness.

The first main objective of this paper is to quantify (and make effective) the qualita-
tive rate of decay 0'™(1) in Theorem 1.3 (iii). We are able to obtain doubly logarithmic
bounds which are weaker than the k = 2 logarithmic bound in Theorem 1.3 (ii) only by a
single additional logarithm:

Theorem 1.4 (Doubly logarithmic uniformity of Mobius and von Mangoldt). For k > 2,
we have

gy < (loglog N)™

and
”A - ACramér,w ”Uk[N] < (loglog N)_C +w™ ¢

whenever 2 < w < Q.

2By a pseudopolynomially decaying function we mean one that decays faster than
exp(—log€ N) for some ¢ > 0.
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This is new for k > 3; henceforth we will assume & > 2 in our arguments to avoid
some minor degeneracies. We remark that this theorem (and hence all of our subsequent
results) are dependent on the results in [33] (see also [1]), which are currently available
in preprint form as of this time of writing.

For later use, we also state a version of Theorem 1.4 for A where the W-trick has
been implemented.

Corollary 1.5 (W -tricked quantitative Gowers uniformity). Ler w = (loglog N)'/? and
W = prw p. Then for k > 2 we have

' ¢(v3/—) AW - +b) — 1 <« (loglog )™

U272

whenever 1 < b < W is coprime to W.

In Corollary 1.5, unlike in Theorem 1.4, the size of w turns out to be important.
Indeed, if we had w/loglog N — oo, then for all we know there could be a Siegel zero
to some modulus g < Q such that all its prime factors divided W, and this would bias the
main term 1 in Corollary 1.5; cf. Theorem 2.6.

1.1. Applications to linear equations in primes and to progressions with shifted prime
difference

The main application of the qualitative uniformity result (1.5) in [22] was to obtain quali-
tative asymptotics on linear equations in the primes; now using Theorem 1.4 we can make
that result quantitative.

Theorem 1.6 (Quantitative linear equations in primes). Let N,d,t, L be positive integers,
and let W = (Y1, ..., V) be a system of affine-linear forms V;: Z¢ — 7 of the form

Yi(n) = n-y; + ¥ (0)

where Vr; € Z¢ and V;(0) € Z are such that |y;| < L and |¥;(0)] < LN. Suppose that
no two of the 1% are linearly dependent. Let @ C [~N, N1 be a convex body. Then

> TTAW:@) = Boo [ Bo + Or.a.L (N (loglog N)~°) (1.6)

neQnzd i=1 p
as N — oo, where ¢ = ¢; 4,1, > 0 depends only ont,d, L, A is extended by zero to the
integers, PBoo s the Archimedean factor

Boo = vol( N WHRL,)),

and for each prime p, B is the local factor

_ P
Pri=Eicarny | | 7 w0
i=1

(viewing each i also as an affine map from (2] pZ)? to 7./ pZ.).
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Note that, in the language of [22], the assumption that 1.ﬂ,~ are pairwise linearly inde-
pendent is equivalent to these forms having “finite Cauchy—Schwarz complexity”.
In [22], the result of Theorem 1.6 was established with the qualitative error term
‘“e“ d.L (N4) in (1.6) (initially under the hypotheses of the Mbius and nilsequences con-
]ecture and the inverse Gowers-norm conjecture, but these were later proved in [23,27]).
In Section 9, we outline the (rather straightforward) details of the deduction of Theo-
rem 1.6 from Theorem 1.4.

Example 1.7. In [22, Example 8] it is shown that the number of (increasing) arithmetic
progressions of primes of a given length k > 2 in [N] is equal to

2
(gl om0 2

where B, is equal to %(#)k’l when p <k, and (1 — ]%)(#)kfl otherwise. Insert-

ing Theorem 1.6 into the arguments from [22], the qualitative error term 0™"(1) can now
be improved to the doubly logarithmic error O((loglog N)~¢). This is new for k > 4.

Another application of Theorem 1.6 is to sets containing no progressions with shifted
prime difference.’ It was shown by Sarkozy [39] that (for N large) any subset of [N]
of size > N contains a pattern of the form x, x + p — 1 with p a prime. After several
improvements [32, 37, 46], the current best known quantitative version of this, proved
recently by Green [16], is that any subset of [N] of size > N !~ contains a pattern of this
form. Sarkozy’s theorem was later generalized to longer progressions by Frantzikinakis—
Host—Kra [10], and Wooley—Ziegler [47], who showed that, for any k > 3 and N large
enough in terms of k, any subset of [N] of size 3> N contains a pattern of the form
X, x+p—-Lx+2(p—-1),...,x +(k—1)(p — 1) with p a prime, that is, a k-term
arithmetic progression with shifted prime difference. These proofs however did not pro-
vide quantitative bounds for the density of a set avoiding k -term progressions with shifted
prime difference. Using our main theorem, we can now obtain the first quantitative bound
for this problem.

Theorem 1.8 (A quantitative bound for sets missing progressions with shifted prime dif-
ference). Let k > 3, and let N be large enough in terms of k. Then any subset of [N]
of size > N(loglogloglog N)~™¢ contains a k-term arithmetic progression whose com-
mon difference is a shifted prime of the form p — 1. Moreover, if k = 4, one can replace
N(loglogloglog N)~¢ with N(logloglog N)~¢ above, and if k = 3, one can replace it
with N exp(—(logloglog N)¢).

The proof of this is given in Section 10.

Remark 1.9. It is likely that one can similarly now make other qualitative consequences
of (1.5) quantitative. Certainly the version of the generalized Hardy-Littlewood conjec-
ture in [22, Conjecture 1.2] (in the finite complexity case) can now be made quantitative,

3We are indebted to Sean Prendiville for bringing this application to our attention.
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with doubly logarithmic savings, in a manner perfectly analogous to Theorem 1.6, as can
the version of the main theorem in [22, Theorem 1.8]; we omit the details. The more
recent asymptotics on linear inequalities in primes in [45] are also likely to now have a
doubly logarithmic quantitative version, but we do not pursue this matter here.

Lastly, one can also use Theorem 1.6 to quantify a result of the authors [42] on the log-
arithmically averaged Chowla conjecture for odd order correlations (whose proof relied
on the Gowers uniformity of A). A back of the envelope calculation suggests that one
could quantify the error term there, for fixed odd k > 3, to triply logarithmic; thus,

1 ) p(n+h)p(n + ho)---p(n + hy)

log x = n

< (logloglogx)™¢ (1.7)

for any fixed integers 0 < h; < --- < hy (and the same with the Liouville function in
place of ). Very briefly, by the entropy decrement argument [42, Theorem 3.1] one can
locate a scale exp((loglog x)!/?) < P < log x such that the left-hand side of (1.7) can be
replaced up to a triply logarithmic error term with

(=D 3 11 3 p(n + phy)pu(n + pha) - u(n + phy)
loglog P p logx n '

PP n=x

One would then split the p sum into dyadic scales and proceed as in [42] by replacing
the average over primes p with an average over w-rough integers, using Theorem 1.6 and
a quantitative version of the generalized von Neumann theorem as a substitute for The-
orem 1.3, producing an admissible O((loglog P)™¢) error term. The triply logarithmic
error terms at this step are much worse than any other error terms arising in the rest of the
proof, therefore leading to (1.7). We leave the details to the interested reader.

2. Discussion and set-up of the proof

Until recently, there were two main obstacles to achieving the sort of quantitative (and
effective) bound stated in Theorem 1.4. Firstly, the first proofs of the inverse conjecture
for the Gowers norms in the large k regime k > 5 were ineffective (using tools such as
non-standard analysis) and did not provide any quantitative dependence of constants. Sec-
ondly, in order to overcome certain logarithmic losses in the estimates, it was necessary
to invoke Siegel’s theorem to control the correlation of the Mobius function with nilse-
quences, and the decay rate in the o(1) bounds in Theorem 1.3 (iii) then depended on the
rate at which the constants in Siegel’s theorem |L(1, y)| > g=¢ depended on &, which
is completely ineffective with known methods.

The first issue was resolved recently with the quantitative inverse theorem of Man-
ners [33], which provided a good quantitative dependence on all parameters in the inverse
theory of Gowers norms. To resolve the second issue, we perform the technique of isolat-
ing out the contribution of a potential Siegel zero to obtain more refined approximations

M~ USiegel (I’Z), A~ ASiegel(n)

to the arithmetic functions p, A. To make this precise we introduce some notation:
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Definition 2.1 (Siegel model). Recall that the quantity QO was defined in (1.1).

®

(i)

(iii)

We define a Q-Siegel zero to be a real number 1 — locg"Q < B < 1 for which there
exists a primitive real Dirichlet character ysiege (Which we call the Q-Siegel charac-
ter) of conductor gsiceel < Q such that L(f, xsicget) = 0, where L(s, y) denotes the
Dirichlet L-function associated to y. Here cy is a sufficiently small absolute constant
(and henceforth all implied constants are permitted to depend on cg). Note from the
Landau—Page theorem (see e.g. [35, Corollary 11.10]) that if a Q-Siegel zero exists,
then it is unique (and similarly for the Q-Siegel character), and the zero § is simple
(so that L' (B, xsiegel) # 0).

We define the Q-Siegel model Agicge for the von Mangoldt function A to be

ASiegel(n) = ACramér,Q(n) = ml(n,P(Q))=l

if no Q-Siegel zero exists, and
ASiege] (I’l) = ACramér,Q(n)(1 - nﬁilxsiegel (l’l))

otherwise.

We define the Q-Siegel model [isiege for the Mobius function u to be
Usiege1 () =0
if no Q-Siegel zero exists, and
Usiegel (1) = [iocal * 1" (1) (2.1)
otherwise, where e, 18 the local Mobius function
Miocat(n) = (1)1, p(0)s

' is the function

P
1 (1) = an? ™! ysicoel (1) Lin, p0)y)=1 = W%(ACramér,Q(n) — Asiegel (1)),
2.2)
« is the quantity
1 1 -1 XSiegel(p))_l
- 1—— - == 23
“ L/(,B, XSiegel) l_[ ( p) ( pﬁ -

p<Q

and fjocq * (' is the Dirichlet convolution of fijocy and p':

Mlocal * ,u/(n) = Z Mlocal(d)ﬂ/(n/d)'
dln

(Note from the supports of ftiocar, 1’ that at most one term in this sum is non-zero for
any given n.)
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The significance of these models is that A and Asjegel have very nearly the same
statistics on arithmetic progressions (with error terms that improve over the main term by
pseudopolynomial factors O (exp(—log® N)), which are superior to the strongly logarith-
mic gains OH“eﬂ‘(long N) provided by the Siegel-Walfisz theorem), and similarly for
and [isiegel- Indeed, in Section 7 we will show the following estimates:

Proposition 2.2 (Pseudopolynomial equidistribution in arithmetic progressions). For any
arithmetic progression P C [N], we have

Y (1) = Bsieger (1)) < N exp(—clog'/** N) (2.4)
nepP

and
D (A1) = Asieger(n)) < N exp(—clog'/'® N). (2.5)
nepP

Remark 2.3. The construction of jisiegel appears to be complicated, but it is a multiplica-

tive construction and can be justified as follows. If x is any character induced from ysiegel

of some period q|[gsicgel, P(Q)], a short calculation reveals the Euler products
XSlegel(p) 1— 1

Z I’leegel)((”) {(s+1-p) 1—[ 5 rSas
n=1 L/(ﬂ XSlegel) <0 1— XSle;e](p) <0 1— %
plq
XSlegel(p)
<[{1 (2.6)
rlq
and 1
1 . -
Z MX(") 1_[(1 _ S egel(p)) 2.7
L(S XSlegel) ps

whenever Re(s) > 1. One can then check that the meromorphic continuations of the two
Dirichlet series (2.6), (2.7) both have a simple pole at s = 8 with the same residue (and
when y is not induced from xsjegel there is no such pole), which helps justify why we
expect [siegel t0 be a good approximation to p. We experimented with simpler models
to /4 than jigieger, but in order to get the pseudopolynomial error terms exp(—log® N) in
(2.4) it seems essential that the model fisieqel behaves almost identically to u with respect
to primes p as large as exp(log® N), which necessitates a complicated construction such
as (2.1). We remark that a similar (though slightly less refined) approximant Ageg; to the
Liouville function A was introduced by Germén and Katai [12], and recently used in [2]
to establish Chowla’s conjecture in the presence of a Siegel zero.

For future reference we also observe the following crude pointwise bounds on A,
and their approximate models:

Lemma 2.4 (Pointwise bounds). Forn € [N]and2 < w < Q, one has
A(n)a ACramér,w (I’l), ASiegel (l’l) < log N

and
M(”)v MSiegel(n) < 1
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Proof. All of these bounds are either trivial or immediate consequences of Mertens’ the-
orem, except for the bound on gieee1, Which would follow if the quantity o in (2.3) were
bounded. This turns out to follow from standard bounds on the L-function L(s, ¥sicgel)
near a Q-Siegel zero 8; see Lemma 5.5. |

In view of Proposition 1.2 and the triangle inequality (1.2), Theorem 1.4 then follows
from the following two statements.

Theorem 2.5 (Siegel corrections are logarithmically Gowers uniform). We have

| isieget [ Ux N] K Gsieger K log™* N (2.8)

and
”ASiegel - ACramér,Q ”Uk[N] < ‘I;ggel < log_c N (2-9)

with the convention that the expression qgggel vanishes when no Q-Siegel zero exists.

Theorem 2.6 (Doubly logarithmic uniformity of Mobius and von Mangoldt, IT). We have

1 — psiegel |l yx ) < (loglog N)™° (2.10)

and
IA — Asiegeank[N] < (loglog N)~°. (2.11D)

Theorem 2.5 is an application of sieve-theoretic methods, smooth number estimates
and the Weil bound, and is established in Section 5.2. The main difficulty is to estab-
lish Theorem 2.6. In principle, one can directly apply the quantitative inverse theory of
Manners [33], and reduce matters to controlling the correlation of (t — siegel, A — Asiegel
with nilsequences arising from nilmanifolds (although in the case of A — Agjeeer We have
the obstacle that the function is unbounded — the resolution of this is discussed below).
Indeed, in Section 7 we will establish the following bounds that significantly extend the
bounds in Proposition 2.2:

Theorem 2.7 (Pseudopolynomial orthogonality of Mobius and von Mangoldt with nilse-
quences). Let € > 0 and k > 1. Let ¢1(€) > 0 be small enough in terms of €. Then we
have the bounds

Y (1 = siege) (1) F(g(m)T) < N exp(—log"/'*¢ N) (2.12)
neP

and
D (A = Asiege) () F(g(m)T) e N exp(—log'/'~¢ N) (2.13)
nepP

whenever P C [N] is an arithmetic progression, G/ T is a filtered nilmanifold of degree
k — 1, dimension at most (loglog N)'©, and complexity at most exp(logcl(é) N),
F : G/T — C is a 1-bounded Lipschitz function* of Lipschitz constant at most

4A function F: X — C is 1-bounded if |F(x)| < 1 for all x € X. More generally, given any
v:X - R, we say that F: X — C is v-bounded if |F(x)| < v(x) forall x € X.
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exp(logl/w_e N), and g: Z — G is a polynomial map. (The relevant definitions of fil-
tered nilmanifolds, etc., are reviewed in Definition 6.1.)

Remark 2.8. If one redefined the Siegel models (isiegel, Asicgel DY assigning the parame-
ter Q the larger value exp(logl/ 2 N), one could inspect that the exponent of the logarithm
in (2.12) and (2.13) (and in particular in Proposition 2.2) could be increased to 1/2 — e,
hence essentially matching the shape of the error term in the classical prime number the-
orem. For this modification, one would have to tweak the exponents in Section 5 a little;
in particular, in Proposition 5.2 the exponents 3/5 and 4/5 would have to be replaced
with 1/2. As the precise value of the exponent has very little influence on our bounds, we
leave the details of this strengthening to the interested reader.

For the sake of comparison, in [23] the strongly logarithmic bound
Enepnii(n) F(g(mT) <4 log™* N

was established for any A > 0 assuming that the dimension and complexity of G/I" and
the Lipschitz constant of F* were all bounded by M ; using this bound, in [22] the qualita-
tive bound

EnG[N](MA(W n+ b) — ])F(g(n)l") _ Omeff(])

was shown for the same type of nilsequences F(g(n)I"), where W = P(w) for some
w = w(N) growing sufficiently slowly to infinity with N and any b € [W] coprime to W'.
With a little additional effort, the latter bound then also implies the qualitative bound

D (A = Acumerw) (M) F(g()T) = 0™ (N)

nepP
for these nilsequences and arbitrary arithmetic progressions P C [N]. The arguments
relied upon (and in fact imply) the Siegel-Walfisz theorem and thus could not give error
terms better than strongly logarithmic, which would be unsuitable for our applications
(particularly those involving the von Mangoldt function). It is therefore necessary to
account for the correction terms pisiegel, Asiegel — Acramér,@ t0 avoid any appeal to the
Siegel-Walfisz theorem and to improve the bounds to be of pseudopolynomial type,
despite the fact (from Theorem 2.5) that these correction terms are already logarithmi-
cally small in the Gowers norm sense.

Our proof of Theorem 2.7 will broadly follow the same strategy as that in [23], rely-
ing on Proposition 2.2 in the “major arc” case and on decomposition into “Type I”’ and
“Type II” sums, followed by Cauchy—Schwarz and an appeal to the equidistribution the-
ory of nilmanifolds, in the “minor arc” case. A key new feature, compared to previous
work, is that the dimension of the nilsequences is no longer bounded, but grows at a
roughly doubly logarithmic rate in N. Because of this, we are forced to perform a careful
accounting on the dependence on dimension in the aforementioned equidistribution the-
ory, and in particular ensure that the bounds only depend at most doubly exponentially on
the dimension. This is in fact one of the main reasons why our bounds in Theorem 1.4 are
limited to be doubly logarithmic in nature; see Remarks 2.9 and 6.4 below.
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The estimate (2.10) can be directly obtained from (2.12) using the inverse theorem
of Manners [33], which we review in Section 6; note that this theorem basically applies
a double logarithm to the quantitative bounds, which is why the pseudopolynomial type
terms in Theorem 2.7 are reduced to doubly logarithmic type terms in Theorem 2.6. For
the von Mangoldt estimate (2.11), we encounter the familiar problem that A — Agieger is
not bounded (see Lemma 2.4), so that Manners’ quantitative inverse theorem does not
immediately apply. In [22], this difficulty was resolved at the qualitative level by first
using the “W-trick” of passing to an arithmetic progression {Wn + b : n € N} for some
W = P(w) and some w growing slowly with N, and then dominating (an appropri-
ately normalized version of) the von Mangoldt function on that progression by a divisor
sum v of Goldston—Yildirim type that obeyed some “pseudorandomness” conditions. This
enabled one to then apply a transference principle that roughly speaking allowed one to
behave “as if” the normalized von Mangoldt function was bounded on this progression,
at least for the purposes of applying an inverse theorem for the Gowers norms.

Here the biggest source of quantitative inefficiency is the transference principle, as the
first few proofs of this principle [14, 19,22, 36] involved the Weierstrass approximation
theorem, quantitative versions of which can generate exponential type losses. However,
in [5] (see also [4]), Conlon, Fox, and Zhao introduced the method of densification, which
they used to obtain a transference principle in the context of Szemerédi-type theorems that
involved only polynomial dependencies on the bounds (and they also relaxed the pseudo-
randomness hypotheses on the enveloping sieve v by dropping the so-called “correlation
condition”). As it turns out, the densification method can be adapted to inverse theorems
as well with efficient quantitative bounds, at least when the correlation in the inverse
theorem enjoys polynomial bounds; we formalize this observation (which seems to be
of independent interest) as Theorem 8.1. Fortunately for us, the arguments of Manners
in [33, Section 5] already provide such a polynomial bound. Using our quantitative trans-
ference result for the inverse theorem, it becomes a relatively routine matter to derive
(2.11) from (2.13), after making various necessary quantitative refinements (for instance,
the parameter w will now be taken to be of the shape log® N for some small & > 0, rather
than growing in some unspecified slow fashion with N). This will all be performed in
Section 8.

Remark 2.9. Perhaps surprisingly, the bounds in Theorem 1.4 are not significantly
improved if one assumes the generalized Riemann hypothesis; some pseudopolynomial
bounds can now be sharpened to polynomial bounds (such as Theorem 2.7), but for the
logarithmic and doubly logarithmic bounds only minor improvements in the unspecified
constants ¢ are available under GRH (though of course in this case any terms involving
Q-Siegel zeroes can simply be deleted). On the other hand, it is tempting to conjecture
that the doubly logarithmic bounds in our main results can be improved to logarithmic,
given that several of the key estimates already have this quality of error term or better.
This is particularly appealing in the k = 3 case where we have quite a good inverse U3
theorem [18]. The main difficulty is that to achieve this goal, it appears that one needs
an equidistribution theory for 2-step nilmanifolds (or quadratic bracket polynomials) that
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involves exponents that are merely polynomial in the dimension of the nilmanifold (or
complexity of the bracket polynomial) rather than exponential. In analogy with the well
known quadratic Diophantine approximation theory of Schmidt [40], it seems reason-
able to expect such a theory to be feasible,” but we will not pursue this matter here. On
the other hand, we note that by combining Theorem 2.7 with the circle method one can
obtain the pseudopolynomial bounds

14 — msiegellu2inys 1A = Asiegellp2(n] < exp(—clog® N),

and one could optimistically conjecture that such pseudopolynomial (or even polynomial)
bounds are also true for higher Gowers norms as well (such bounds would follow from a
sufficiently uniform version of the Hardy—Littlewood prime tuples conjecture).

3. Notation

As stated in the introduction, throughout this paper we fix an integer k > 1, and assume
N is a positive real number that is sufficiently large depending on k (and Q is given in
terms of N by (1.1)). We abbreviate {n € N : 1 <n < N} as [N] (even when N is not an
integer).

We use the asymptotic notation X < Y,Y > X, or X = O(Y) to denote an estimate
of the form | X | < CY for some constant C > 0. If C depends on additional parameters,
we indicate this by subscripts, for instance X = Oy4(Y') denotes the estimate | X| < CyY
for some Cy > 0 depending on d . However, as all of our constants will depend on the fixed
parameter k, we omit this parameter from this subscripting notation. Unless otherwise
specified, the constants will depend in an effective fashion on the parameters; on the rare
occasions (mostly involving citing previous literature) in which ineffective constants are
used, we will use the superscript ineff to indicate this. We write X < Y as an abbreviation
for X € Y « X, subject to the same subscripting and superscripting conventions as
before. If X, Y depend on an additional parameter N, we write X = o(Y) as N — oo to
denote the claim that | X| < ¢(N)Y for some quantity c¢(/N) that goes to zero as N — oo,
again subject to the same subscripting and superscripting conventions as before. As stated
in the introduction, we use ¢ to denote various small positive constants depending on k
that can vary from line to line.

We often refer to the following hierarchy of decay estimates, in increasing order of
strength:

e qualitative (and ineffective) decay, in which X = o™(Y) as N — oo;

e doubly logarithmic decay, in which X < (loglog N)~°Y;

5 Another option is to exploit the improved dimension bounds for the inverse U3 theory now
available [38], using the equivalences from [21]. Since the initial release of this article as a preprint,
this option has in fact been carried out by Leng [31], who significantly improved the (loglog N)™¢
type bounds in Theorem 2.6 to exp(—log® N) type bounds in the k = 3 case.
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e logarithmic decay, in which X < (log N)™°Y;

o strongly (but ineffectively) logarithmic decay, in which X <<i‘11eff (log N)=4Y for any
A > 0 (this is a typical shape for bounds obtained using the Siegel-Walfisz theorem);

e pseudopolynomial decay, in which X < exp(—clog® N)Y;

e polynomial decay, in which X < N™°Y.

As the terminology suggests, pseudopolynomial decay will be a satisfactory substitute for
polynomial decay in many of our arguments.

We use 1g to denote the indicator function of a set E, thus 1g(n) equals 1 when
n € E and 0 otherwise. We also use 1g to denote the indicator of a statement S, thus 1g
equals 1 when S is true and O otherwise.

If A is a finite set, we use #A4 to denote its cardinality.

All sums and products over the variable p are understood to be over primes, and
similarly all sums and products over variables such as n or d are understood to be over
natural numbers, unless otherwise indicated.

4. Some lemmas on Gowers norms

We state here a few lemmas concerning the Gowers norms that will be used later on.
In addition to the triangle inequality (1.2), we shall also often use the closely related
Gowers—Cauchy—Schwarz inequality

(]E(x,,;)EGkH I1 fw(x+w-ﬁ)(s [T Ifeluee .1

wef{0,1}k we{0,1}k

for any finite additive group G and any functions f,,: G — C for w € {0, 1}*; see for
instance [22, Lemma B.2]. For arbitrary additive groups, we also have the non-normalized

DN § ACERCNOEN § N VAT 42)

(x,h)eGk+1 0€{0,1}K wel0,1}k

variant

Observe that the Gowers norms behave well with respect to tensor products: if fj :
G — C, f2: G, — C are finitely supported functions on additive groups G, G, then a
short computation reveals that

/1 ® f2||f/k(Gl><G2) = ||f1||(7k(G1)||f2||(7k(G2) (4.3)

for any k > 1.

We now develop a variant of this identity. We localize the Gowers norm to
cosets a + H of a subgroup H of an additive group G as follows: if kK > 1 and
f:G — C is finitely supported, we define ||f||(7k(a+H) =|f(la+ ')Hﬁk(H)’ and sim-
ilarly || fl|gk g+ 1) = || f(@ + )y zry if H is finite. Note that this definition does not
depend on the choice of coset representative. We have the following convenient Fubini
type inequality (which is reasonably well known “folklore”, although the only explicit
prior reference to such an inequality that we are aware of is [3, Lemma 4.3]):
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Lemma 4.1 (Fubini type inequality). Let k > 1, let G be an additive group, let H be a
subgroup of G, and let f: G — C be a finitely supported function. For each coset a + H
in the quotient group G/H, let F(a + H) denote the quantity

Fla+ H) = ||f||ﬁk(a+H);

note that F: G/H — C is also a finitely supported function. Then

”f”[]k(G) =< ”F”[]k(G/H)- 4.4)

Informally, this lemma asserts that to bound the U k (G) norm of a function f, one can
first evaluate the U¥ norm along the various cosets of H, and then compute the U¥ norm
of the numbers obtained in that fashion. If G, H are finite we can obtain similar claims for
the normalized U¥ norms in the obvious fashion. Note that the Fubini—Tonelli theorem
establishes a similar claim for the £! (or more generally £7) norms (and in this case one
has equality in (4.4) instead of inequality. One can also verify that (4.4) is consistent
with (4.3).

Proof of Lemma 4.1. From Definition 1.1 we have
11 el fin+w-h).
U (G)
(n,h)eGh+1 0€{0, 1}k

Consider the contribution to the right-hand side where # lies in a coset @ + H and h; lies
inacosetb; + H fori = 1,..., k. By the Gowers—Cauchy—Schwarz inequality (4.2), this
contribution can be bounded in magnitude by

[] Fa+o-b+H)
we{0,1}k

where b = (b1, ..., bx). Summing over all choices of a, b and applying Definition 1.1
again, we conclude that
k
”f“%/k(G) — ”F“Uk(G/H)
giving (4.4). ]
As a corollary of this inequality, we can estimate the Gowers norm of a function

on [N] in terms of its values on various arithmetic progressions:

Corollary 4.2 (W -trick). Let 1 < W < N/10, and let f : [N] — C be a function sup-
ported on the set {n € [N]: (n, W) = 1} that obeys the bounds

|2 +b)” <4

forall b € [W] coprime to W and some A > 0. Then

[/ lukvy < A.
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Proof. We extend f by zero to the integers Z and work with the unnormalized Gowers
norms. Since

k+1
||1[N]||(7k(Z) = N 2k
and i1
”H%]”[]k(z) = (N/ W) 2k
we have

W Ea
1 gk owz e < (M—W)A(N/W) 2

for all b € [W] coprime to W, and it will suffice to show that

S
1/ gk zy < AN 2% .

Applying Lemma 4.1 with G = Z and H = W Z, and normalizing the Gowers norms, it
suffices to show that

< 1.
Uk(z/wz)

!
p(w) =

Expressing W as the product of primes p?»(") and using the Chinese remainder theorem
and (4.3) repeatedly, the left-hand side can be written as

[

p

_r

o1 lep=1

Uk@/pvr™1z)

However, direct computation using the inclusion-exclusion principle shows that

k
ok _ 2 1
”l(',p):l”Uk(Z/pvp(W)Z) =1- ? + Ok(?)a

and hence

1
Uk(z/p’r W 1z) p

The claim follows. [

P
p— 1 ¢.p)=1

Next, we give a variant of the triangle inequality that estimates a Gowers norm based
on the greatest common divisor with a fixed modulus.

Lemma 4.3 (Variant of triangle inequality). Let N > 100, let 1 < g < N, and let k > 1
be an integer. Let f : [N] — [—1, 1] be a function. Then

k 1
11 < D2 1@ easr=tllosaray
dlg

The key point here is the presence of the factor 1/d, which ensures that the summation
over d can be estimated manageably.



Quantitative bounds for Gowers uniformity of the Mobius and von Mangoldt functions 17

Proof of Lemma 4.3. We extend f by zero outside of [N]. From Definition 1.1, it suffices
to show the unnormalized estimate

- 1
k
oo Il fe+e-) < NS ——— | fleg=dllgrzy-
(n,};)EZ’ﬁL] we{0,1}k d|q d(N/d) 2k

The left-hand side can be written as

Y f(F@n)

nez
where the dual function F(n) is defined as
Fn):=Y_ [ fe+o-h).
hezk 0e{0, 135\ {0}k

We split this sum in terms of the value of (n, ¢) as

DT FWFm) =" 3" f(m)lp.g=aF@).

nez d|q nedZ

By the triangle inequality, it thus suffices to show that

k+1
> Wl gy=a F(1) € ———1 1 flcpy=dll graz)
nedz d(N/d) 2*
for each d | g. Decomposing k1, ..., hy in the definition of F(n) into cosets mod d, the

left-hand side may be written as

Z Z l_[ f(n+w'(l;+5))1(n,q)=d'

be[dk (n,h)e(dzyk+1 0€{0,1}k

By the Gowers—Cauchy—Schwarz inequality (4.1), and noting that f is bounded by 1[y7,
we have

> [1 f0+o (+b5)pg=-a

(n,}?)e(dZ)kJr] we{0,1}k K_q

k+1 o
<1 Vqymd gz (VD))

Summing over all the d k choices of l; , we thus obtain
k k+1 ok _q
Y S lg=a F) K || f1eqy=allg azyd* (N/d) )
nedZ

and the claim follows after a little algebra. ]
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5. Some sieve theory

5.1. The Cramér model

In this section we use some standard sieve-theoretic tools to establish several estimates
involving the Cramér models A cramer,w, sSome of which will also be useful in controlling
the Siegel models Asgjegel, Usiegel 1N later sections.

We first recall a form of the fundamental lemma of sieve theory (arising from an
analysis of the beta sieve).

Lemma 5.1 (Fundamental lemma of sieve theory). Let (a,)nez be a collection of non-
negative reals, let k > 0, z > 2, and D > z°**1. Let g: N — [0, 1) be a multiplicative
function obeying the estimates

[T a-gpn' < K( log 2 )K (5.1)

w<p<z log w

forall2 < w < z and some K > 0. Suppose that for every d < D dividing P(z) one has
the formula

Zan = Xg(d)+rg (5.2)
din

for some X > 0 and some remainder rg. Then

> an=x([T0-g)) 1+ 0™ K" + 0( 3 |rd|)

n <z D
(n.P()=1 ? dPe)
where s == llm‘;D.
og z
Proof. See [11, Theorem 6.9]. [
In our applications, the ratio s = llogD will grow at a logarithmic rate, leading to
og z

pseudopolynomial accuracy when applying the fundamental lemma.

Using the fundamental lemma we can obtain satisfactory estimates (with pseudopoly-
nomial accuracy) for counting linear equations in the Cramér model (compare with The-
orem 1.6).

Proposition 5.2 (Linear equations in the Cramér model). Lett,m > 1 be integers, and let
N > 100. Let Q be a convex subset of the cube [-N, N1%, and let 1, ... Vs 2" — 7
be linear forms

i (i) =7 - i + i (0)
for some yr; € Z™ and ;(0) € Z. Assume that the linear coefficients V1, . .., Vr; € Z™
are all pairwise linearly independent and have magnitude at most exp(log3/ 5 N) (say).
Then for any 2 < z < Q, one has

S TT Actumerz Wi () = vol() ] By + Orun(N™ exp(—c log*’> N))

neQnzmi=1 p<z
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for some ¢ > 0 depending only on t, m, where for each p, B, is the local factor
t

_ p
Br = Eic@/pzy | | ﬁlw (#)#0>

i=1
where V; is also viewed as a map from (Z./ pZ)™ to Z] pZ in the obvious fashion.

Proof. Without loss of generality we may assume that N is sufficiently large depending
on t, m; we now allow all implied constants to depend on #, m.
For any d dividing P(z), let g(d) € [0, 1] denote the quantity

8(d) = Ejie@azym 1i_, v, iiy=0’

with the convention that g(d) = 0 if d does not divide P (z). In particular, we have

g(p)=1- (”—_1) By (5.3)
)4

for all p < z. From the Chinese remainder theorem we see that g is multiplicative.
Suppose first that g(p) = 1 for some p < z, then B, = 0 and ]_[f:1 Acramer,z (Vi (1))
is identically zero. Thus the proposition is trivial in this case, so we may assume that
g(p) < 1 for all p. From the construction we then have the crude bound

1
gp)<1——. (54)
p

Also, from the construction we see that for any two distinct linear forms v;, ¥}, there is
a positive integer A;; = exp(O(log®> N)) such that ;, 1/}j are linearly independent in
(Z/ pZ)* whenever p does not divide A; ; (indeed, one can take A4;; to be one of the non-
zero coefficients of the wedge product of v/; and %). Ifwelet A = exp(0(10g3/ 5 N)) be
the product of all the 4;;, we conclude in particular that

1
Ene/pmym Ly y=y, =0 = 3

whenever p does not divide A, hence by using the inclusion-exclusion formula (or the
Bonferroni inequalities) we have

t 1
glp)=—+ 0(—2) (5.5)
p p
whenever p does not divide A. In particular, we have

s = (32 (1 o( )

unless p divides A (using (5.4) to handle the case when p is bounded). For p dividing 4,
(5.4) instead gives (1 — g(p))~! < p™. We conclude that for any 2 < w < z, we have

[T a-gen < (I1r)" TI (L)tsAm I (L)

w=p<z plA w=<p<z p_l w<p<z p_l
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and hence by Mertens’ theorem the axiom (5.1) is obeyed with k = ¢ and some K =
O(exp(0(log’® N))).
We introduce the sequence
= Y g =
neQNzZ™

Observe that the a, are non-negative with

5 T Acamec o = (M%) © o

ieQnzm i=1 p<z (. PEY=1
Set
D = exp(logg/10 N).
For any d < D dividing P(z), we have

Yooan= > lag e

n=0 (d) neQnNzm

The condition d | ]_[5=1 Vi () restricts d to g(d)d™ cosets of (dZ)™. Applying a volume
packing argument using [22, Corollary A.2] gives

Z Lair_, yoy = 8(d) vol(R) + O(dOMN™T
neQnzm

and hence axiom (5.2) is obeyed with X := vol(Q2) and some rgy = O(DOMN™—1),
Applying Lemma 5.1, we conclude that

> T Acomscevai) = (T2 vol@ [T - ()

reQnzmi=1 p<z p<z

x (14 O0(e™* exp(O(log*® N))))

t
+ 0((1—[ P ) DO(I)le)
p—1
p<z

with § = % > log“/5 N. We can then simplify the right-hand side using (5.3) and
Mertens’ theorem to

> TT Acumenz (i) = vol@)(] 8,) (1 + O (exp(—c log*’* N)))

neQnzmi=1 p<z
+ O™

(say) for some constant ¢ > 0 depending on ¢, m. From (5.1), (5.3) and Mertens’ theorem
we have the crude bound

[ 18> < exp(0(log®> N))
p<z

and the claim follows. [
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As afirst application of this estimate, we have good estimates (basically of logarithmic
type) for the Cramér model in the Gowers norm.

Corollary 5.3 (Gowers uniformity of the Cramér model on arithmetic progressions). Let
2 <w <z < Q besuch that w < logl/100 N.Set W .= P(w). Then forany1 <b < W
coprime to W, one has

H o)

L w™ .
w

Uk[u]

ACramér,z(W : +b) -1

Proof. Write N’ := Nvfb. We can rewrite the desired estimate (after adjusting ¢ appro-
priately) as

> [1 (¢$)Acmmér,z(W(n +w-h)+b) - 1) < (NYHwe,

(n,h)eQnzk+1 0e{0,1}K

where  is the convex body of tuples (1, #) € R¥*! such that
O<n+w-h<N

for all w € {0, 1}*. By inclusion-exclusion, it suffices to establish the bounds

W -
Z 1_[ ¢$)V )ACramér,z(W(n +w-h) +b) = vol(R) + O((N) 1w™)
(n,h)eQnzk+1 ©&€S

for all subsets S C {0, 1}¥. Applying Proposition 5.2 (and Mertens’ theorem), the left-
hand side is equal to

#S
(5572) vo@ T8+ o) +u)
p<z

(in fact, there is plenty of room to spare in the error term), where

— p
Br =B hye@py 1_[ p—1 Y swiytsor

weS
If p < w, then W vanishes modulo p and b is coprime to p, and hence 8, = (#)#S .

Thus o
(%) Hﬁpz l_[ Bp-

p<z w<p<z

By the inclusion-exclusion argument used to establish (5.5) one has

e G o) o)
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for any w < p < z, hence

[] Bo=1+0@™.

w<p<z
Since vol(2) <« (N’)**+1, the claim follows. n

Proof of Proposition 1.2. Combining Corollary 5.3 with Corollary 4.2, we see that
”ACramér,z - ACramér,w ”Uk[N] Lw ¢

whenever2 <w <z < exp(logl/lo N) are such that w < logl/m0 N . Proposition 1.2 now
follows from the triangle inequality (1.2) (note the case N = O(1) is trivial, so we may
assume N is large enough that logl/ 100 v > 2). ]

Remark 5.4. With more effort it may be possible to delete the log™¢ N term in (1.3), but
we will not need to do so here as there are several other error terms in our analysis that
are of the same order of magnitude as log™¢ N, or worse.

5.2. Controlling the Siegel correction

Now suppose that there is a O-Siegel zero B, with associated quadratic character ysicgel
and conductor gsiegel. In this subsection we combine the previous sieve-theoretic estimates
with Weil sum estimates to obtain good control on the Siegel models Asgiegel, [siegel-

We begin with some basic estimates on the Q-Siegel zero 8 and the Q-Siegel conduc-
tOT Gsiegel- AS XSiegel 1S @ primitive real character, gs;egel is must be either square-free or four
times a square-free number or eight times a square-free number. From the construction
one has the upper bound

Gsicgel < O = exp(log'/!* N).
From [8, Chapter 14, (12)] one has the estimate
1- ﬂ > qs_jelg/ezl IOg_z qSiegel»

which when combined with the upper bound 1 — 8 < logl o K log_l/ 10 A gives the lower

bound

logl/ >N
(loglog N)2°
One could improve this lower bound using Siegel’s theorem to strongly logarithmic, but
we will not do so here in order to keep the estimates effective. In particular, any bound of
the shape 0(‘1§§gel) will lead to logarithmic decay.
From [35, Theorem 2.9] we observe the doubly logarithmic bound

{Siegel > (5.6)

1\ i
I1 (1 - —) = BSeed  « Joglog gsieget < loglog N. (5.7)
¢(qSiegel)

p ‘ qSiegel p
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Next, we show that the quantity « in (2.3) is bounded, which was the missing step
needed to establish Lemma 2.4:

Lemma 5.5. We have o < 1. In particular, Lemma 2.4 holds.
Proof. Consider the meromorphic function

F(S) _ XSiegel(p))_l

L(s, XSiegel) p<Q( B p*

This function has a simple pole at 8 with residue

1
RCS(F, /3) T l_[ ( XSlegel(p)) — l_[ (1 _ _)
(/3 XSlegel) <0 <0 p
and no other poles in the disk {s : |s — 8] < l:f"Q }if cg is small enough, by [35, Theorem

11.3]. By Mertens’ theorem, it thus suffices to establish the bound

Res(F, B) <« @.

By the residue theorem, it suffices to show that

F(s) < 1 (5.8)

on the circle |s — | = 1§gCOQ On the rightmost point s = 8 + lfgc"Q >1+ 160 of this

circle, we can use the Euler product representation

Fiso) = [ (1 _ XSg_NP))

50
p=0 4

followed by the triangle inequality to estimate

1
|F(s0)| < 1_[ (1 + T]‘O) <1 (5.9)
p le@

p=0

thanks to Mertens’ theorem. For more general points s on this circle, we deduce from [35,
Theorem 11.4] that

I

_(57 XSiegel) < 10g Q
L

Since

Ll L i I
o) = ~Es. s = 3 LezaP)log P
F L p<0 P — XSiegel(p)

L log p
= _f(sv XSiegel) + O(Z 3cq )

l_
p<Q p @
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(noting that Res > 1 — ljg%og), we conclude from Mertens’ theorem that

F/
—(s lo
7 ®) <logQ
on the entire circle; integrating this and using (5.9), we obtain (5.8) as required. ]

From [35, Theorem 11.4] we have

/

1
(S XSlegel) _,B + O(IOg qugel)

and
L(S, XSiegel) > |S - ﬁ|

for s # B sufficiently close to 8; multiplying the two estimates and taking limits as s — f3,

we also obtain the bound .

L/(ﬂv XSiegel)

We can view xsicgel as a function on Z/¢gsicee1 Z. Crucially, it exhibits some cancel-
lation in the Gowers norms (of polynomial type in gs;egel, and hence of logarithmic type
in N):

<1 (5.10)

Lemma 5.6 (Gowers norm cancellation). For any ¢ > 0, we have
—1/2k+14
”XSngel”Uk(Z/QSicgch) <Le qSieg/el g
Proof. By the Chinese remainder theorem, we can express 7./ qsicge1Z as the product of
prime cyclic groups Z/pZ of odd order, as well as Z /2’ Z for some 0 < j < 3. The
quadratic character ysiegel can then be expressed as the tensor product of quadratic char-
acters on these groups. Using (4.3) and the divisor bound, it thus suffices to show that
_ k+1
Ixloeezypzy < P72
for all odd primes p, with y the quadratic character on Z/ pZ. By Definition 1.1, this is
equivalent to

E("jl)E(Z/pZ)k+l l_[ yn+w-h) < p—l/z.
wef{0,1}K

The contribution of any given tuple he (Z / pZ)¥ to the left-hand side is trivially bounded
by O(p~*). When the dot products o - h are all distinct, the Weil bounds (see e.g. [29,
Corollary 11.24]) give instead the bound O(p —k=1/2) Since there are p¥ tuples & and
collisions between the w - /1 only occur for O(p¥~1) of these tuples, the claim follows. m

We can now use this cancellation to prove Theorem 2.5.

Proof of Theorem 2.5. We may assume N is sufficiently large depending on k, and allow
all implied constants to depend on k. Obviously we may assume that a Q-Siegel zero
exists, as the claim is trivial otherwise.
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We first establish (2.9). It suffices to show the polynomial (in gs;eger) bound

” ACramér,QXSiegel(') ”Uk << qslegel, (511)

where (-)#~! denotes the function n — n#~1. By the fundamental theorem of calculus,
we have

N
v (OP 1 = / I () (1 = BYMP2dM + NP 1w (1) (5.12)
1

and v
1= / (1—-B)MP2dM + NP1, (5.13)
1
Substituting (5.12) and (5.13) on the left and right-hand sides of (5.11), respectively, and

applying Minkowski’s integral inequality to the Banach space norm || - [y« it suffices
to show that®

| Acramer, 0 Xsieget L[p1 |k (v K Gsiegel
uniformly for all | < M < N. By Definition 1.1, we can rewrite this estimate as
Z l_[ ACramer,Q XSlegel (l’l +w- h) < NkJrqulegel (514)
(n,hyeQnzk+1 0e{0, 1}k

forsomec > 0andall 1 < M < N, where Q = Q,y is the convex body

Q= {(x,ﬁ)e]R{kJrl :O<x+a)-)7§Mforalla)6{0,1}k}.

Splitting 7, 1y, . .., hy into cosets of gsiegel, We can write the left-hand side of (5.14) as
) [T #sicetla+w-b)Ga.b). (5.15)
(@,b)€lgsicga] 1 @€{0, 13K
where
Ga. 5) = Z 1_[ A Cramér, 0 (@Sicgel” + GSicgel @ -f;—i- atow- l;).

(nhye gl (@@ bynzk+1 we{0, 13
Applying Proposition 5.2 (with N replaced by N/¢sicge1), We can estimate
G(a.b) = g5 vol(R) [ ] By + O((NV/gsicee)* ' exp(—c log*’® N)).
p<z

where
p

18[7 = ]E(n:i;)e(Z/PZ)kJrl l_[ p— 1 1qsiegeln+qSiege]w'ﬁ+a+w'E7éO.
we{0,1}k

6 Alternatively, instead of applying Minkowski’s integral inequality one could open the def-
inition of the U k[N ] norm, exchange the order of integration and averaging, and apply the
Gowers—Cauchy—Schwarz inequality.
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Because of the ysicger factor in (5.15), we can restrict attention to the case where a + w - b
. . P . k
is coprime to gsieger. This implies that B, = #)2 when p | gsicgel- When p 4t gsicgel, We

can dilate n, h by 1/¢sicger (performing the division over the field Z/pZ) and then shift
both variables to simplify
p

Bp = I[*:(nfz)e(Z/pZ)’“rl 1_[ p—1 1n+w-i{7é0'
we{0,1}k

In particular, the 8, are not dependent on a, b » {Siegel- SUmming in a, b , we can thus write
the left-hand side of (5.14) as

vol(@) [T Ao, pegsengitt 11 Asiewi(a +@-b) + OV exp(~clog® N)).
p<z we{0,1}¢
The error term is certainly negligible. From Lemma 5.6 we have

7 —1/4
E(a!l;)e[qsiegel]k+l H A siegel (@+w b <L Gsicgel
we{0,1}K

(say), and we can of course bound vol(2) <« N**1. Finally, direct calculation shows that
By =1+ O(1/p?) when p } gsicgel, thus

2k 2k
p qSiegel 2k
< e L|\—/—— X (logloggs;
1_[ /317 1_[ (p -1 ) (¢(q5iegel)) ( glo8 qslegel)

p=z p |QSiege]

thanks to (5.7). Putting these estimates together, we obtain the claim (2.9).
Now we establish (2.8), which is a similar calculation but a little more involved
because of the oy factor. By Lemma 4.3 and (5.6) it suffices to show that

1 _
Z 7 l[esicget (d) L gsiege/dr=1 U [n/a) K Gsicger
d |qSicgcl
for some ¢ > 0 depending on k. From (5.7) we have
1
Y. 7 < logloggsice,
d |qSiegel

so it suffices to show that

Il esieget (4 ) 1 (. gsiegar/d)=1luK [v7d] K Gsicgel

for each d | gsicgel-
Fix d. We rewrite this estimate as

k _ k
siceel (d)1 gt dr=1 L /a1 | i 7y << dsicgal v/ e 7 (5.16)
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Using Definition 2.1, we can write

Msiegel (A1) (. gsica/a)=1(1) 1[N/ a) ()
=a Y pud)d)gn(n/d)VP 7 gsiega(n/d)  war poyy=1 1 insar (1) - (5.17)
d’'eD
where O is the set of all d’ | P(Q) with (d’, gsieget) = 1. By Lemma 5.5, it thus suffices
to show that

2k
H > @) ar.(/d)P 7 gsiega (/A (par p@yy=1 1[N/a)
d’'eD

Uk (z)

— k
< qSiggelll Iinvya) ”?jk @)
Using (5.12), (5.13) and Minkowski’s integral inequality, it suffices to show

2k

H Z u(d" g xsieger,m (-/d") vy
d’'eD

—c 2k
0k(Z) < qSiegel||1[N/d]||[7k(Z) (518)

forany M > 1, where

Xsiegel, M (1) = Xsiegel (M) 1{a11(1) L (n, P(0))=1-

We decompose D = D< U D-., where D are those d’ € D with d’ < exp(log!/? N)
(say) and D-. are those d’ € D with d’ > exp(logl/ 2 N). We first dispose of the contri-
bution of the large d’, i.e. d’ € D-. Their contribution to the expression inside the norm
on the left-hand side of (5.18) is supported on a set of numbers n of size

N
Z dd"

d'eD~

From basic estimates on smooth numbers [28, Theorem 1.1], the number of elements of
D- in any dyadic range [M,2M] with M € [Q, N]is O(Mu~*/?) (say) where u := %.
From this and a routine dyadic decomposition we see that

N
Z 7d < N exp(— log_l/lo N)
d’'eD-
(say). We thus see that the contribution to the left-hand side of (5.18) can be bounded by
O(N**1! exp(—log~'/1% N')), which is acceptable. Thus, by the triangle inequality (1.2),
it suffices to control the contribution of D, i.e. to show that
2k

” > M(d/)ld’|~XSiegel,MI[N/d]‘
d'eD<

—c 2k
gy < sieae Nwvsaillge g,y

We can expand out the left-hand side as



T. Tao, J. Teravdinen 28

where for d" = (d;,) ye(0,13x We have

n+ow-h
Agr = Z l_[ M(d(i,)ld{i)‘n+w,ﬁXSiegel,M (d—’)’
w

(n,h)eQ ©€{0,1}F

where € is the set of all tuples (n, ﬁ) € Z*+! such thatn + w - h € [N/d] for all w in
{0, 1}¥. Meanwhile, using the pointwise bound

0= Z Lot Iivyanlerar,peoy=1 = linya
d'eD<

(reflecting the fact that every number n has a unique decomposition n = d’(n/d’) where
d'"| P(Q)and (n/d’, P(Q)) = 1) one has

k
Z By =< ||1[N/d]||?7k(z)’
rep O

where

Bar = Z 1_[ dlln+wh ("ﬂvh P(Q)=1"
(n,h)eQ we{0, 13K

Hence it will suffice to show that
Ag K q;ggele/

forall d’ € DOV,

The constraints 1 restrict (n, h) to some finite union of cosets (a, b) + D7k

djy|In+w h
of DZ**1 where D = [lwefo,13x e with the property that dg, divides a + o - b for
all w € {0, l}k. Note from the construction that D is coprime to gsjegel and of size
O(exp(O(log'/? N))). So, denoting for brevity Q@h .= qn ((a, l;) + DZF*Y), it will
suffice to show that

to-h -
Z 1—[ X Siegel, M (n d(j) ) < qSiggel Z l_[ 1(%,P(Q))=l

(n,h)eQa.b) 0e{0,1}F (n,h)eQa.b) 0e{0, 1}k
(5.19)

for all such cosets (a, l;) + DZ**1! Using Proposition 5.2 and some elementary rescaling,
we have

> I1 Lt pigy—1
(n.iyelh) wefo, 1k o

= D1 yol(Q) 1_[ ,gp + 0((N/D)k‘"1 exp(—c logM5 N)),
p<@Q
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where

Br =K iye@spzy+ I1 1a(§7,w5+(n+w.z)d#¢o'
we{0,1}k ® ®

If any of the ,3 » vanish then both sides of (5.19) vanish and we are done. For p not dividing
D we have the crude bound

Bp=1-00/p). (5.20)
and for all p we have the lower bound

1

Bp = W (5.21)
since the Bp are non-vanishing integer multiples of 1/p**1. This gives the crude lower
bound y

[]8,> D %Wi0g?® N (5.22)
r<Q

and hence the right-hand side of (5.19) is comparable to q;%el (N/D)k+1 ]_[p <0 ,3 . Next,
we partition the left-hand side of (5.19) as

Z l_[ X Siegel (d(:))XSiegel(r +w- 3:) Fr,E» (5.23)

(rj)e[qsiegel]k+l wE{O,l}k

a n—+ h
= 3 [T (= lwrwiron-r
w

(1) €QN((a,b)+ DZKH1)N((r5) +gsiega ZK +1) @€{0,1}F

We can restrict attention to those (r, 5) for which r + w - § is coprime to (sicgel for all
w € {0, l}k, since otherwise the product in (5.23) vanishes. Under this assumption, we
can apply Proposition 5.2, the Chinese remainder theorem, and some further rescaling
(using the fact that D, gsiegel are coprime), to conclude that

Frz = (Dgsicge) * ' vol(Q) [] Bp + O((N/Dsicee)* " exp(—clog* N)),
p<Q
p+qSiege]

where

-

Q= {(n,ﬁ) ca: "M iy ve e 1}’<}.

d,,

Note the main term here is independent of r, 5. In particular, we can rewrite (5.23) as

k L ~
( 1_[ XSiegel(da/))) ”XSiegel ”?71\ (Z/gsicse)) (Dqsiegel) k=1 VOI(Q/) 1_[ :Bp
wef{0,1}F p<Q
pquSicgcl

+ O((N/D)¥ ' exp(—clog*® N)).
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By Lemma 5.6, this quantity is

L G5ica(N/ DY TT Bo + (N/D)* ' exp(—clog*”® N). (5.24)

p<@Q
p’l'qSiegel

The second term in (5.24) is acceptable thanks to (5.22). From (5.20), (5.21), (5.7) we
have

1_[ Bp > (loglog CISiegel)_O(l)
P\qSiegel

and so the first term in (5.24) is also acceptable. [

6. The Manners inverse theorem

We are now ready to state a version of the inverse theorem of Manners [33], though
formulated in a slightly different language (in particular, using the complexity notions
from [24] rather than [33]).

Definition 6.1 (Nilmanifolds). Let s > 1 be an integer, and let M > 0. A (filtered) nil-
manifold G/ T of degree s and complexity at most M consists of the following data:

(1) a nilpotent connected and simply connected Lie group G of some dimension 1,
which can be identified with its Lie algebra log G via the exponential map
exp:log G — G orits inverse log: G — log G;

(ii) afiltration Go = (Gj;);i>0 of closed connected subgroups G; of G with
G =Go=G1 > > Gy > Ggyy = {idg}
(and G; trivial for all i > s + 1) such that’ [G;, G;]1 C Gj4; foralli, j >0 (or
equivalently [log G;,log G;] C log G, in the Lie algebra log G);
(iii) a discrete cocompact subgroup I'" of G;

(iv) a linear basis X1, ..., Xdim(G) of log G, known as a Mal’cev basis (of the second
kind).

We require this data to obey the following axioms:
(a) For1 <i,j <dim(G), one has
X X]= ) X 6.1)
i,j<k<dim(G)

for some rational numbers c;;; with numerator and denominator bounded in magni-
tude by M.

7We use [, ] to denote both the commutator in the Lie group G and the Lie bracket in the Lie
algebra log G, with the two being related to each other by the Baker—Campbell-Hausdorff formula.
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(b) For each 1 <i < s, the Lie algebra log G; is spanned by the X; with dim(G) —
dim(G;) < j < dim(G).

(c) The subgroup I' consists of all elements of the form exp(#; X1) - - - exp(?4imG XdimG )
with 11, ..., timG € Z.

This data defines a metric on G/T" as described in [24, Definition 2.2], as well as the
notion of a polynomial map g: Z — G, defined in [24, Definition 1.8].

A function f : X — C is said to be 1-bounded if | f(n)| < 1foralln € X.

Theorem 6.2 (Manners inverse theorem). Let0 <§ < 1. Let f :[N]— C be a 1-bounded
function such that

I/ lgxay = 8.

Then there exist a (filtered) nilmanifold G/ T of degree k — 1, dimension O(8~°M), and
complexity at most expexp(O0(1/89M)), a 1-bounded Lipschitz function F:G/T — C of
Lipschitz constant at most exp exp(O(1/8°M)), and a polynomial map g: 7 — G, such
that

|Enepnyf(0) F (g(n)T)] 3> exp(—exp(0(1/6°M))).

Proof. By Bertrand’s postulate we can find a prime N’ such that ION < N’ < 20N’. If
we embed [N] into the cyclic group Z/N'Z and extend f by zero we may view f as a
1-bounded function on Z/N’Z, and a brief calculation reveals that

I/ lyxz/nzy > 8.

We now apply [33, Theorem 1.1.2] with s := k — 1 to produce the required data G/ T,
g, F, X;, save for two differences. Firstly, the polynomial g is described as a map from
Z/N'Z to G/ T rather than from Z to G, but one can lift the map from the former to the
latter using [33, Proposition C.17]. Secondly, instead of axiom (a) of Definition 6.1, the
basis elements X; are instead required to obey a decomposition

lexp(Xi).exp(X)] =[] explayiXi) (6.2)
i,j<l<dim(G)

for some integers a;;; bounded in magnitude by some bound My < expexp(O(1/ §0My),
where the product is taken from left to right. However, as briefly noted in [33, Sec-
tion C.2], one can pass from this control (6.2) to the control (6.1) (with M a suitable
polynomial of M), as follows. For any 1 <a <k — 1, we let P(a) denote the claim
that one has (6.1) with M of the form exp exp(O(1/6°(")) whenever one of X;, X
lies in log G,. The claim P(a) is certainly true for a = k — 1 since log G_; is cen-
tral, and we will be done if P(1) is true, so it suffices by downward induction (with at
most k — 2 steps) to show that P(a + 1) implies P(a) for any 1 < a < k — 2, where the
implied constants in the Oy () notation are allowed to vary with each step of the induction.
Call a rational number good if its numerator and denominator are bounded in magnitude
by expexp(0(1/6°M)). If one of X;, X; lies in log G, then from (6.2), the induction
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hypothesis, and the Baker—Campbell-Hausdorff formula we see that

loglexp(X;). exp(X;)] = > ¢}, X, (6.3)

I>i,j

for some good rationals clfj ; (and furthermore one can restrict to those Xj lying in
log G4+1). On the other hand, a further application of Baker—Campbell-Hausdorff reveals
that log[exp(X;),exp(X;)] is equal to [X;, X;] plus Ok (1) additional terms, which consist
of a good rational number times an iterated Lie bracket formed by starting with [X;, X;]
and taking the Lie bracket with either X; or X; one or more times (but no more than O(1)
times in all). Inverting this formula, we can then write [X;, X;] as log[exp(X;), exp(X;)]
plus O(1) additional terms, which consist of a good rational number times an iterated Lie
bracket formed by starting with log[exp(X;), exp(X;)] and taking the Lie bracket with
either X; or X; one or more times (but no more than O(1) times in all). Using (6.3)
and the induction hypothesis P(a + 1) repeatedly, we conclude P(a), thus closing the
induction. |

Remark 6.3. As noted in [33], improved bounds are available for k < 4 [18,26], but we
will not be able to take advantage of these bounds due to inefficiencies elsewhere in the
arguments (in particular, our nilsequence equidistribution theory involves exponents that
are exponential in the dimension rather than polynomial).

From Lemma 2.4 we see that the function pt — psjeger can be made 1-bounded by
multiplying by a small absolute constant. Applying Theorem 6.2 in the contrapositive
(setting § equal to a small power of (loglog N)~!, we conclude that the bound (2.10)
is an immediate consequence of (2.12). The same argument does not work directly for
A — Agiegel due to the additional factor of log N in the pointwise bounds; but we will be
able to get around this in Section 8 by employing the densification technology of Conlon,
Fox, and Zhao [5]. Assuming this for the moment, the only remaining step needed to
establish Theorem 1.4 is to prove Theorem 2.7, to which we now turn.

Remark 6.4. When k = 3, one can appeal instead of Theorem 6.2 to the quantitative
inverse theorem in [18], and when k = 4 one can use the fact that Manners proved in [33]
a stronger form of Theorem 6.2 for k = 4 than for k > 5. If one does so, one eventually
finds that one would be able to improve the doubly logarithmic bounds in Theorem 1.4 for
k < 4 to singly logarithmic, provided that one could increase the bound on the dimension
of G/ T in Theorem 2.7 from (loglog N)¢! to log®! N. Unfortunately, our equidistribution
theory on nilmanifolds is currently not satisfactory at this high a dimension, although in
principle it is conceivable that some variant of the methods of Schmidt [40] could resolve
this issue. We will not pursue this question further here.

7. Orthogonality to nilsequences

In this section we prove Theorem 2.7. We begin by establishing Proposition 2.2, which
will be used to establish the “major arc” case of Theorem 2.7.
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Proof of Proposition 2.2. 'We adopt the convention that any factor involving the Q-Siegel
character ysicgel is deleted if no such character exists. Any arithmetic progression P C [N]
can be expressed in the form {N” <n < N':n =a (q)} forsome 1 <a < g and 0 <
N" < N’ < N. By the triangle inequality, it thus suffices to establish the bounds

Y A = ) Asiga(n) + O(N exp(—clog"/!* N)) (7.1)
n<N’ n<N’
n=a (q) n=a (q)
and
D wm) =Y siger(n) + O(N exp(—clog'/!* N)) (7.2)
n<N’ n<N’
n=a (q) n=a (q)

forany 1 <a <gand0 < N’ < N.

If g > exp(cz logl/ 10 N) for any constant ¢, > 0 then the triangle inequality (and
Lemma 2.4) give the desired bounds after adjusting the value of ¢, so we may assume that
q <exp(ca logl/ 10 Ny for some small absolute constant ¢,. In particular, ¢ < Q. Similarly
we may assume N’ > N exp(—c; logl/10 N).

We begin with (7.1). From [29, Theorem 5.27] one has

/

N L
Z A(n) = 6(q) ( XSiegel(a) lqsiegel\q %) la,g)=1
n<N’

n=a (q)
+ O(N exp(—clog!/'° N)).

Therefore, it will certainly suffice from the triangle inequality to show for 1 <a < ¢ <
exp(log®® N) that®

> Acumeo(n) = N grmt + O(N exp(—c log"’* N) (7.3)
et ¢( )
n=a (q)
and
(N")?
Z (ACramer Q(”) ASlegel(”)) ,B¢( )XSleE,el(a)lqs,egellql(a =1
n<N’
n=a (q)
+ O(N exp(—clog*® N)). (7.4)

We first show (7.3). By a change of variables we have

Z ACramér,Q(n) = Z ACramér,Q(qn + a)
n<N’ —a§n<N’—a
n=a (q) q 5

81t would of course suffice to show this for g < exp(logl/ 10 Ay and with savings
exp(—c logl/w N), but the larger powers of log N will be useful later on.



T. Tao, J. Teravdinen 34

and then on applying Proposition 5.2 we have

N’

Z ACramér,Q(n) = 1_[ ,31; + O(N exp(—c 10g4/5 N)),
n<N’ r<Q
n=a (q)

where

p
ﬂp = IEnEZ/pr 1 lqn-‘ra;éo-

If (a,q) > 1 then (a, g) will be divisible by some prime p < g < Q, in which case 8, =0
and the claim follows. If instead (a, ¢) = 1, then §, = 1 for all p < Q not dividing ¢,
and f, = # for all p < Q dividing ¢, and the claim (7.3) follows.

Now we show (7.4). We may of course assume there is a Q-Siegel zero, in which case
(by Definition 2.1 (ii)) our task is to show that

_ (N8
Z A cramér, 0 (I’l)nﬂ 1 XSiegel (n) = mXSiegel (a) 1qSiege] gl @.q)=1
n<N’ q
n=a (q)

+ O(N exp(—c log“/5 N)).

From the fundamental theorem of calculus we have
N/
nPyn(n) = 1 (1= BMP213n(n) dM + (NP yq(n)

and
(N/)ﬂ 1 / B—2 NB—1 a7/
—_— = 1—-8)M MdM N N,
gt /1( f) V)

so from the triangle inequality it suffices to show that

M
Z ACramer Q(n)XSIegel(n) X51ege] (a) q31egel|q 1(“7‘]) 1+ O(N exp( 610g4/5 N))

oyt $(q)
n=a (9)

forall 1 < M < N. We split the left-hand side as

Z XSiegel(b) Z ACramér,Q("),

1<b=q’ n=M
b=a (q) n=b (q’)

where ¢’ := [q, Gsicgel] 1S the least common multiple of ¢ and gsjegel. By (7.3) we have

Z Acramer,0 (M) = —1p,gH=1 + O(N exp(—c log*/> N))

n<M ¢( /)

n=b (¢")
and thus
D Acrumer (1) 2siega (1) = D) Y Xsieael(D)1p,g)=1+ O(N exp(—clog*’® N)).

n<M ¢( 1<b<q’
n=a (q) b=a (q)
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The right-hand side vanishes if (a, ) > 1, and also vanishes if ¢’ > ¢ due to the orthog-
onality properties of Dirichlet characters. If instead (a,g) = 1 and ¢’ = ¢ then the right-
hand side is equal to % Xsiegel(@), and the claim (7.4) follows.

Now we turn to (7.2). We first do an easy reduction to the case of primitive residue
classes. Let d := (a, ¢). Observe that for any natural number n one has

pldn) = p(d)p(n)ln.a)=1
and also from Definition 2.1 (ii) we similarly have

Wsicgel(dn) = pu(d) sieget (M) 1 (n,d)=1

and thus
D () = psiegeien) = 1(d) Y () = psieger (1))
n<N’ n<N’/d
n=a (q) n=a/d (q/d)

(n,d)=1

=ud) > Y (wn) = fsiga(n).  (15)
1<b<d n<N’/d
(b.d)=1n=a/d (q/d)
n=b (d)

Since d < g <exp(cz logl/ 10 ), it thus suffices to establish the pseudopolynomial decay
estimate
S () — psiega(m) < N exp(—clog10 N)
n<N'/d

n=a/d (q/d)
n=b (d)

forall 1 <b < d coprime to d (where the constant ¢ here is uniform in ¢,). Writing ¢ :=
[q/d,d], we see from the Chinese remainder theorem that the constraints n = a/d (q/d)
and n = b (d) are either inconsistent, or constrain n to precisely one primitive residue
class a’ (¢’) with (@', ¢’) = 1. Thus it suffices to show the pseudopolynomial decay bound

Z (1(1) — Usiegei(n) < N exp(—c log!/1® N')
n<N’
n=a’ (q")
whenever | < N/ < Nand1 <d' <¢q' <exp(2cz logl/m N) with (a’,q") = 1.

When there is no Q-Siegel zero the claim is immediate from [35, Exercise 11.3.12]
(modified slightly due to our slightly different definition of a Siegel zero). Now suppose
that there is a Q-Siegel zero. The result previously cited in [35, Exercise 11.3.12] (again
modified slightly to account for our slightly different notion of Siegel zero) then gives the
pseudopolynomially accurate asymptotic

Aa) (N’ B
Z un) = lqsmgelq’% 4+ O(N exp(—c logl/10 N))
n<N’ A

n=a’ (q")
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where x4/ (1) = Xsiege1()1(n,g/)=1 is the character of modulus ¢” induced from ysiegel
when ¢’ is a multiple of (sicgel- Note that

L(S, Xq/) = L(S, XSiegel) 1_[ (1

pla’
p‘i'qSicgcl

X Siegel (P)
)

and thus by the product rule (and the fact that L(8, xsicger) = 0),

Xsiegel (D)
L/(ﬂ, Xq) = L/(,B’ XSiegel) H (1 - 16’%)'
plg’
p+qSiegel
We conclude that
(N)® xsieger(@’) Xsiegel (P)\ !
2. MO = laslt g o LL 1T pr
n<N’ q » X Siegel ola’ P
n=a’ (q') D1 qsiegel

+ O(N exp(—c logl/lo N)).
It will thus suffice to establish the corresponding pseodupolynomially accurate asymptotic

(N)® ysicgel(@’) Xsiegel (P)\ "
Z Msiegel () = ggipula’ ) l—=—=
neN’ :347(61/)1/(:3’ XSlegel) old’ pﬂ

n=a’ (q') D1 GSiegel
4+ O(N exp(—c logl/10 N)) (7.6)

for psiegel- It suffices to establish the variant estimate

e xsi ! ) -1
Z MSiegel(n) _ (N') XS1egel(Cl ) 1—[ (1 _ XSlegel(p))
pla’

n<N’ ,pr(q/)L/(,B, XSiegel) pﬁ
n=a’ (q¢") D1GSiegel

+ O(N exp(—clog"'* N)) (7.7)

(say) whenever 1 < a’ < ¢’ < exp(O(log"/'® N)) with (¢, ¢') = 1 and Gsiegel | ¢’ Indeed,
this estimate immediately implies (7.6) when gsiegel divides ¢’, and when ¢s;eger does not
divide ¢’, one splits up the primitive residue class a’ (¢’) into primitive residue classes
modulo [¢’, gsiege1] 0N the support of fisicgel, applies (7.7) to each such class, and sums,
using the orthogonality of Dirichlet characters to cancel out the main term.

We use Definition 2.1 to expand the left-hand of (7.7) as

Youd) Y W,

deD n<N’/d

dn=a’ (q’)
where D consists of all the factors d of P(Q) with (d,¢") = 1. As in the proof of (5.18),
we can decompose D< U D-, where D< are those d’ € D with d’ < exp(log!/? N)
(say) and D-. are those d’ € D with d’ > exp(logl/2 N). The contribution of - can be
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disposed of by the same argument used to prove (5.18), so it remains to show that
(Nl)ﬂXSie el(a,) XSle el(p) -1
2@ D WO = s LT
deD< n<N'/d PASIEES plg!
dn=a’ (q) p+qSlegel
+ O(N exp(—clog'/'* N)).
By Definition 2.1, we have
P(P(Q))
Yo W= ““p0) Y (Acumeno (1) = Asiegar (1))
n<N'’/d n<N'/d
dn=a’ (q) n=a’/d (q')
Applying (7.4), as well as Lemma 5.5, we can write this as
¢(P(Q)) (N'/d) :
o Aiegel (@) X siegel (d)
P(Q) Bl T *
up to acceptable error terms. Canceling some terms, it thus suffices to show that
(P(Q)) Z M(d)XSwgel(d) 1 (1 _ XSiegel(p))_l
P(Q) deD L/(ﬂ, XSiegel) 7’ pﬂ
P+qSiegel
+ O(exp(—clog"/'* N)).
A standard Euler product calculation using (2.3) gives
LPP(Q) Z u(d)xSlegel(on ! (1 _ xSiegd(p))‘l
P(0) L/(ﬂ, XSiegel) a’ pﬂ ,
PJ(qSiegel
so it suffices to show that
P d) ysiegel (d
¢( (Q)) Z /’L( )XS egel( ) < exp(—c logl/lo N))
CPQ) ol
By Lemma 5.5 and the triangle inequality it suffices to show that
1
Z 75 < exp(—clog!/® N)).
deD~
But we can bound
1 1 2/5 2/5
d_ﬂ S dﬂ—log—_l/loN exp(—c 10g N) S dI—ZIOg—_I/IOIV exp(—c IOg N)
when d € D, and from Euler products we have
1
2 iy = | (1+ pl_mg—/N) < exp(O(loglog N)).
r=Q
and the claim follows. u
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We return now to the proof of Theorem 2.7. Throughout this section we assume that
€ > 0 is fixed and small in terms of k, and that ¢, (¢) > 0 is sufficiently small depending
on k (and we reserve the right to decrease ¢ (¢) later in the argument if necessary). We can
assume that N is sufficiently large depending on ¢ (€), k, as the claim is trivial otherwise.
Let P, G/T, F, g be as in that theorem. We use m = O((loglog N)¢1(®) to denote the
dimension of G; to avoid some minor notational issues we will assume that m > 2 (as can
be achieved trivially by adding some dummy dimensions).

We repeat the arguments from [23], but now performing a more quantitative account-
ing of the dependence on constants (particularly on the dimension). We first use a dimen-
sion-uniform version of the factorization theorem in [24, Theorem 1.19], which we estab-
lish in Theorem A.6. We apply that theorem with My := exp(logl/ 10-€¢/2 Ny and A =
exp((loglog N)'/2) to obtain a quantity

exp(log'/197¢/2 N) < M < exp(log!/1~</3 N), (7.8)

a subgroup G’ C G which is M -rational with respect to G, and a decomposition g = eg’y
into polynomial sequences ¢, g’, y: Z — G such that

(1) eis (M, N)-smooth;

(i) g’ takes values in G" and (g’ (n)T)neqn) is totally 1/ M “-equidistributed in G’/ T,
with respect to a Mal’cev basis X’ consisting of M -rational linear combinations of
the basis elements of X;

(iii) y is M -rational and y(n)T is periodic with period at most M.

We can partition the arithmetic progression P into O(M ’”O“)) components P’ such
that on each of these components the periodic function y(n)I" is equal to an M -rational
constant yp/I", and the smooth sequence ¢ differs by at most O (M _’”C) from a constant
epr € G of distance at most M from the origin, for a large constant C. We can also
normalize yps to be distance O(M ’”0(1)) from the origin. From this and the Lipschitz
nature of F, we see (for C large enough) that

F(gmT) = F(ep:g'(n)ypT) + O(M™)

for n € P’. By (7.8), the triangle inequality, and Lemma 2.4, it thus suffices to establish
the bounds

D (1= siege) (1) F (epr g’ (n)ypT)
nepP’

< NMEOD) (exp(—log/107¢/4 ) 4 pg=A/ exem?D))

and

D (A = Asiege)) (1) F (ep1g’ (n)yp:T)

nep’
< NMEOD) (exp(— log/107¢/4 ) 4 pp=A/ exem?D))
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for all of the progressions P’, where the implied constants in the O(1) notation on the
right-hand sides of the estimates can be taken to be uniform in € for € sufficiently small.
We introduce the conjugated group

Gpr =yp G'ypr

and conjugated polynomial
gpr = ypg'vp

that takes values in G p/, and the normalized function

Fr(x) = Fepryrn) = [ Flepryr).
Gp//(Gp/NT)
where the integral is with respect to the Haar probability measure on Gp//(Gps N T')
(which we can view as a subnilmanifold of G/TI'). Using Proposition 2.2 to dispose of
the contribution of the constant '[GP’ /(G piOT) F(eprypr-) (which can be viewed as the
“major arc” contribution to these correlations), we are reduced to establishing the bounds

D (1= asiege)) (1) Fpr(gpr (m)T)

nep’

< NMe"P(mom)(eXp(— log!/10-¢/4 Ny 4 M—A/exp(mo(l)))

and

D (A = Asicge) (n) Fpr(gpr(m)T)
ner 0(1)))

< NMexp(mO(l))(eXp(_ 10g1/10—5/4 N) + M—A/exp(m
The advantages of this reduction are that the function Fp is not only 1-bounded and
O(M™°")-Lipschitz (with respect to the Mal’cev basis of Gp//(Gps N T), which is
a filtered nilmanifold of complexity O (M ”’0(1))), but it also has mean zero. By repeat-
ing the arguments from [23, p. 547] and keeping track of the constants, we see that the
polynomial sequence gp- is totally 1/M 4/ mo(l)-equidistributed (note that multiplicative
factors of exp(exp(m (1)) can be absorbed into the M4/ mO® denominator, and all the
O, (1) exponents appearing in this portion of [23] (and [24]) are polynomial in m).
We can use the Gowers uniformity of ysiegel t0 obtain the following bound on the
Siegel terms which is acceptable when gsiegel is large enough:

Proposition 7.1. We have

o) — o(l)
Y Bsieaet(n) Fpr(gpr()T) < NM™ g gl
nepP’
and

o) — o)
>~ (Asieget (1) = Acramer,0 (1)) Fpr (g (m)T) < NM™ gl

nepP’
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Proof. We apply [22, Proposition 11.2], noting that all bounds’ can be shown to be poly-
nomial in the parameters M, ¢ with exponents that are polynomial in the dimension m, to
decompose

Fp(gp (n)T) = Fi(n) + F2(n).

where F} obeys the dual norm bound

o(l)

Eneny f(n)Fi(n) < (M/e)™ | fllyr g

forany f:[N] — C, and F, obeys the pointwise bound
Ln)<e

for all n € [N]. Here 0 < & < 1 is a parameter that we are at liberty to choose.
By Theorem 2.5, the functions fsicgel, Asicgel — Acramér,o already have a U kIN]
norm of 0(Q§§ge1)? a standard Fourier expansion of 1p/(n) in terms of additive char-
acters and the triangle inequality then show that the truncated versions 1p/iisicgel,
1p/(Asicgel — Acramér,0) have a U k [N] norm of O(M 0(1)q§§gel) (note that any log-
arithmic factors can be easily absorbed into the MM factor). Applying the above
decomposition as well as Lemma 2.4, we see that

moM ¢

Y Hsiega(n) Fpr(gp(mT) < NMOD(M/e)™" g5,y + &N

nepP’

and

o _,

D (Asiegel (1) = Acramer,0 (1) Fpr (gp ()T) < NM OO (M/e)™" g6, +2N log N,

nepP’

and the claim then follows by a suitable choice of ¢ (noting that the log N factor can be
absorbed into the M factor). [

Based on this proposition, we may now delete the Q-Siegel zero contributions except
in the regime where
<1
Gsiegel < MA/FPCTD) (7.9)

9The argument as stated in that paper appeals to the Stone—Weierstrass theorem and the Arzela—
Ascoli theorem, but this can be replaced by more quantitative approximation results without
difficulty, such as [20, Lemma A.9], combined with standard smooth partitions of unity to allow one
to work on regions such as the unit cube rather than on the original nilmanifold. As pointed out to us
by James Leng, the required smoothness bounds on the function P constructed in [22, Proposition
11.5] also need to be established. To do this, one can first take advantage of the fact that HKS +1 (G)
acts transitively on the graph of P to reduce to establishing smoothness bounds at the origin. Then
one can lift from G/T" to G, and reduce to establishing that one corner of a parallelepiped in
HKS*1(G) is a smooth function of all the other corners near the origin with the required bounds.
But one can express the first corner as a word in the other corners of length depending only on s,
and from many applications of the Baker—Campbell-Hausdorff formula this will give the desired
quantitative bounds on this corner completion function.
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where C; is a large constant depending on & (but not on €) that we are at liberty to choose;
we can also assume N to be sufficiently large depending on C; (as well as k and €). To
simplify the notation we assume henceforth that the Q-Siegel zero exists and obeys (7.9);
the remaining cases follow by a simplified version of the same argument that deletes all
the steps and terms that treat the contribution of the Q-Siegel zero. It will now suffice to
obtain estimates of the form

D (1= fasiege)) (1) Fpr(gpr (m)T)
nepP’

< N(MqSiegel)eXP(mO(l)) (exp(— log!/10=¢/4 Ny + M4/ e"P("’O(”))

and

D (A = Asiege) (1) Fpr (g (1)T)
nepP’

< N(MQSiegel)eXp(mo(”) (exp(— log!/10=¢/4 N) + M_A/e"p(mo(”)),

where the implied constants do not depend on Cj.
To treat these sums, we make the following standard Vaughan-type decompositions.
Call a sequence a4, d € N of complex numbers divisor bounded if one has

ag < (logN)°M2W(q)
forall d € [N], where t(n) = Zd‘n 1 is the divisor function.

Proposition 7.2 (Vaughan-type decompositions). Any of the four functions [, Usiegel,
A, Asicgel 0n [N] can be expressed as a convex linear combination of functions of one
of the following four classes (with uniform constants in the bounds):

(1) (Type Isum) A function of the form

ne Y aglguling ().
d<N?2/3

where the coefficients ag are divisor-bounded and 1 < N' < N.

(i1) (Twisted type I sum) A function of the form

ne> Y aglapgsiesa(n/d) 1y (n),
d<N?2/3

where the coefficients ag are divisor-bounded and 1 < N’ < N.

(iii) (Type Il sum) A function of the form

n = Z adbwldu):n
dw>N1/3

for some divisor-bounded coefficients ag, by,.
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(iv) (Negligible sum) A divisor-bounded function n — f(n) with
> 1fm)] < N exp(—log'/? N).
ne[N]
Proof. For A we can use the familiar Vaughan identity [43]
A(n) = A(n)1,_y1/3
n
= 2 dalam+ Y p@laplogo+ 3, Adbulaw=n,
d<N2/3 d<N1/3 d,w>N1/3

where ag =3 4. g.pc<n1/3 (B)A(c) and by = 3", o= y1/3 f(c). The first term is
negligible, the second term is a Type I sum (restricting to [N]), and the fourth term is a
Type II sum; the third term can be converted to a convex combination of Type I sums by
using the fundamental theorem of calculus to write

n N dt
10g—=10gN—/ lysy — —logd
d 1 t

and absorbing all the various logarithmic factors into the divisor-bounded coefficients.
Similarly, for u we can use the variant identity

)= > aglan— Y w(d)bylaw=n,
d<N?2/3 d,w>N1/3

where al; ==} . _y.pc<n1/3 (D) ju(c) and by, is as before; see e.g. [20, Lemma 4.1].
To handle A iegel, it suffices (using the estimate P(Q)/¢(P(Q)) < (log N)°™ com-
ing from Mertens’ theorem) to show that the functions

n = e, po)=1 (7.10)
and
n > 0P p0))=1 Xsicgel (1)
can be expressed in the desired form (absorbing all the constant factors into the divisor-
bounded coefficients). But if /\;, )L; are the upper and lower linear sieve coefficients,
respectively, with level D = Q100oe % and sifting parameter Q, one can write

Z Aglgin < 1g,po)y < Z A g,
d<D d<D

and by the fundamental lemma [29, Lemma 6.3] (bounding the error terms R* there
as O(D)) we have

2. ‘l(n,P(Q)) =D Aaldm

ne[N] d<D

<N exp(—1010g3/5 N)

(say). Therefore, one can express (7.10) as a Type I sum plus an error term of L![N]
norm < N exp(—10log*® N), and by multiplying by ysieeess ONe can then express
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n > 1 p(0))=1Xsiegel(n) as a twisted Type I sum plus an error term of L![N] norm
at most K N exp(—1010g3/5
old on d to something much smaller, such as exp(O(log’/1° N)). Finally, the n#~1 weight
can be handled using the fundamental theorem of calculus identity (5.12).

Now we turn to fsiegel = [iocal * ('. From the previous discussion and Lemma 5.5, u’
is already expressible as a convex combination of twisted Type I sums (where d can
be constrained to be at most exp(0(10g7/ 19°N))) plus an error term of L'[N] norm
<& N exp(—10 10g3/ SN ). We can then convolve by Mlocall[exp(s 10g3/5 N)] and conclude
that I’Llocall[exp(s l0g3/5 N)] * ' is also expressible as a convex combination of twisted
Type I sums plus a negligible error (note that the values of d encountered stay well below
the threshold N2/3). Finally, the remaining term fjoca(1 — Lexp(s10g3/5 v)p) * 14" can be
seen to be negligible by the same arguments used to dispose of the .. contributions to
(5.18) (namely, using the fact that the density of Q-smooth numbers in any dyadic interval
[M,2M] with exp(51og®®> N) < M < N is < exp(—=5(log'/2 N)). .

N). Indeed, in these cases one can lower the N 2/3 thresh-

The contributions of the negligible sums to the previous estimates are acceptable from
the triangle inequality. By a further application of the triangle inequality, it thus suffices
to establish the bound

> F)Fpr(gp )T < N(M gsiegen) P pp=A/ exom) (7.11)
nepP’
whenever f is a Type I sum, a twisted Type I sum, or a Type II sum.

The Type I and Type II sums were already essentially treated in [23, Section 3], and it
turns out that the methods also easily extend to cover the twisted Type I case. We briefly
review the argument as follows. We begin with the twisted Type I case; the Type I case is
treated by a simplification of the argument that deletes the role of the Q-Siegel character,
and is omitted here (and in any case would follow closely the treatment in [23, Section 3]).
Suppose that

| s Fe(grnT)| = 6N (7.12)
nepP’

for some 0 < § < Mqls'egel and a twisted Type I sum f. By the definition of such sums and

the triangle inequality, this implies that

Y@ Y st/ (g )| > $OON
d<N?2/3 neP’"NdZ

for some constant C = O(1), where P” := P’ N [N’] (note that all log®) N terms can
be easily absorbed into the §() factor). Standard divisor sum estimates give

Z 12€(d)/d < 1og® D N
d<N?2/3
(with the implied constant depending on C), hence by Cauchy—Schwarz,

2
> dl Y asewan/d)Fe(gp D] > sOON2,
d<N?2/3 neP’NdZ
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and hence by dyadic decomposition there exists 1 < D < N2/3 such that

2 oy N?
Y| Xt/ Fe(gp )| > 500
D<d<2D neP’"NdZ

Since the inner sum is O(N/ D), we conclude that

N
| Y s /) Ferlgp )T | > 890
neP’"NdZ

for 3> 89 D 1og= %M N natural numbers d in [D, 2D]. For such a d, we partition into
residue classes modulo d¢sicee1 and use the triangle inequality to conclude that

N
| Y Frer d@sigan +aa)D)| > 820
n€[Ng]

forsome 1 < Ny < N/D and 1 < ag < gsicgel (note that all gsiegel factors can be absorbed
into the %M factor). Applying Theorem A.3, we can then find a horizontal character ny4
of G’ with

O(l))

0 < |ng| < §-cxwlm (7.13)

such that

Ind © &P (d(Gsicger - + aa))llcoopyypy < 67,
where | - ||ceeo is defined in [24, Definition 2.7]. The parameter a4 is annoying, but we
can remove it'" by applying [24, Lemma 8.4] to conclude that

— exn(mOM
7 0 gpr(d(gsieger )l coopnyp) K §~ P

for some 7/, that continues to obey (7.13). The total number of such 7/, is O(8 _e"p('”o(l))).
Thus by the pigeonhole principle, we can find one such horizontal character 1 such that

_ o(l1)
1m0 gp/(d(gsieget -)) || coopny py &K 8P

for > 8™ D values of d € [D,2D]. If we expand out the polynomial
1 0 8P/ (qsicgel’) = ,Bknk +---+ Bomod 1 (7.14)

for some real numbers By, ..., B, then by applying [23, Lemma 3.2] we conclude that
there is a positive integer ¢ = O(1) such that

lgd’ B, |rjz < (N/ D)~/ §~o#n™)

forall j =0,...,k, where | x||r/z denotes the distance to the nearest integer. Applying
a Waring-type result from [23, Lemma 3.3], we then have, foreach j =0, ..., k,

— i e—exp(mOM
lgd'B;|lrjz < (N/D)™7 §=expm=T)

10We thank the anonymous referee for this suggestion, which patched a gap in a previous version
of this argument.
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for > §°m?) DJ integers d’ of size d’ = O(D7). Applying Vinogradov’s lemma [23,
Lemma 3.4], and clearing denominators, we then conclude that there is a positive integer
K < §pm?D) quch that

||K/3_j||R/Z < N_fg—eXp(mO(l))

forall j =0,...,k, and thus by (7.14),

exp(m @)

”Kqéciegeln o gP’”COO[N] <L §

On the other hand, gp- is totally 1/ M4/ mo(l)—equidistributed. Arguing as in [23, Sec-
tion 3] and noting that all exponents of the form O,, (1) are in fact polynomial in 72, these
two facts are incompatible unless

S—exp(mo(”) > MA/m

o(1)

(7.15)

which (when combined with the constraint § < 7 qlsiegel) gives the desired bound (7.11).
For the Type II case, we can again start by assuming (7.12) for some 0 < § < 1/M

and some Type II sum f. The contribution of those n less than §€ N for a large abso-

lute constant C can easily be seen to be negligible, so one can assume without loss of

generality that | P’| lies in the interval [§¢ N, N]. One has

Yo ) aghyFei(gp(dw)D)1p(dw) > §OON
d>N1/3w>N1/3

for some divisor-bounded a4, by, , and then after some dyadic decomposition and Cauchy—
Schwarz (cf. [20, Proposition 7.2]) one can find N'/3 « D, W « § 9 N?2/3 with
DW = §9MWN such that

S Felgr @)D F(gr ()N Fp (gpr(d w)T)
d,d’e[D2D]w,w’e[W,2W
e[ Jw,w’e[ ] x FP/(gP/(d/w/)F) > SO(I)N.

One now repeats the arguments used to treat the Type II case in [23, Section 3] more
or less verbatim (noting that all exponents are of order exp(m (1)) at worst) to obtain a
contradiction to the total 1/M 4/ ’”O(])-equidistribution of gps unless (7.15) holds, and we
again obtain (7.11) as desired. This concludes the proof of Theorem 2.7.

8. Applying densification

We now use densification methods to establish a general transference principle (which
seems of independent interest) that converts inverse theorems for the Gowers norms for
1-bounded functions to inverse theorems for Gowers norms for v-bounded functions for
various “pseudorandom” weights v. Our pseudorandomness condition will be relatively
mild (a U?* estimate on v — 1), and the losses in the transference argument will only
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be polynomial in nature. However, one drawback of the theorem is that the input inverse
theorem must also have polynomial bounds.

In Section 8.2, we will use Theorem 8.1 to complete the proof of Theorem 2.6 in the
von Mangoldt case.

8.1. Transferring inverse theorems

Theorem 8.1 (Transference principle for U* inverse theorems). Let k > 2 be fixed. Let
G = (G, +) be a finite abelian group. Suppose that for every 0 < § < 1/2 there is a family
Ws of 1-bounded functions ¥: G — C, non-increasing in § and closed under translations
and complex conjugation, obeying the following U* inverse theorem:

() If0 <8 <1/2and f:G — C is 1-bounded with || f ||y« ) = 8, then there exists

W € Ws such that |Exeg f(xX)¥(x)| > 88 for some B > 0.

Let Cy be sufficiently large depending on k, let 0 < § < 1/2, and let v:G — R* be a
weight with

v = g2k gy < 8<°. (8.1)
Let f: G — C be v-bounded with
I/ lyx ) = 8- (3.2)
Then there exist Y1, ..., Vyx_1 € Wgoa) such that

2k—1
Exec /() [T (0] > 890,
j=1

We remark that this theorem strengthens a similar result in [9], in that the class Wg
is allowed to be more general than the space of “dual functions”, and the bounds are
polynomial in nature rather than qualitative.

We now begin the proof of this theorem. Let the notation and hypotheses be as in
Theorem 8.1. From (8.2) we have

Eiegit 1] ol +o-h)| > 500, (8.3)

we{0,1}k

where fo = f, and all the other f,: G — C are either equal to f or its complex conjugate.
The key step is

Proposition 8.2 (Densification of a single factor). Suppose that the bound (8.3) holds for
some v + 1-bounded functions f,,w € {0, 1}*. Let wy € {0, 1}¥. Then

E(x,i[)eGk-*-l 1_[ fw(x +ow-h)|> 50(1),
we{0,1}k

where fw = fo for w € {0, 1}*\{wo}, and ];a)o € Yso0q).
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Indeed, after applying this proposition 2¥ — 1 times starting with (8.3), we conclude
that

Epiecin /@[] Vol +o-m| > 520
we{0,1}4\{0}F

for some ¥, € Ws00) and all w € {0, 1Y¥\{0}* (one can use the non-decreasing nature
of W to make the implied constant in O(1) uniform in w). In particular, by the pigeonhole
principle there exist i1, ..., hx € G such that

Exeo /() ] Volx +o-h)| > 00,
we{0,1}k\{0}k

giving Theorem 8.1 thanks to the translation and conjugation invariance of Wso).

It remains to prove Proposition 8.2. By relabeling we may assume wo = 0F. By replac-
ing v with % (and adjusting Cy if necessary), and then rescaling by various factors of 2,
we may assume that the f,, are v-bounded rather than v + 1-bounded. Now we adapt the
arguments of Conlon—-Fox—Zhao [5]. We have

|Exeq for (x)F(x)] > 8§90,
where F: G — C is the dual function
F)=Ejg || folrto-h).
we{0,1}K\{0}k
Since fy« is v-bounded, we conclude from Cauchy—Schwarz that
(Exev(¥)(Execv ()| F(x)[*) 3> 670,
Since
Exegv(x) = [Vigre) = Vv =1+ IIv = 1yre < 1,
we conclude that
Exegv(x)|F(x)|? > §°W. (8.4)
Next we claim that
Exec(v — 1) (x)|F(x)]? <« §0. (8.5)
We can write the left-hand side of (8.5) as
Egipener 1 folx+o-h.
wef{0,1}2K

where

fox(X) =v(x) =1, fz () = f3(x).  for 5(x) = f3(x)

for @ € {0, 1Y¥\{0}¥, and f,,(x) := 1 for all other w € {0, 1}** not covered by the pre-
ceding definitions. By the Gowers—Cauchy—Schwarz inequality (4.1), we thus have

2k _
Exec(v—=D@IFOP =[] Ifollvae < v = Hyxgllv + s g,

we{0,1}2K

and the claim now follows from (8.1) and the triangle inequality.
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From (8.4), (8.5) and the triangle inequality we conclude (for Cy large enough) that
Exeg|F(x)> > §°0. (8.6)

The function F is not quite bounded. However, as the f,, are all v-bounded, we certainly
have the pointwise bound |F| < Dv, where Dv is the dual function

Dv(x) =Bpegr || v +o-h).
wef{0,1}4\{0}*

We observe the moment estimates
EregDv(x)) =1+ 0(8°) (8.7)

for j =0,1,2. We just prove this for j =2, asthe j =0, 1 claims are similar (and easier).
We can expand

ExecDv(x)’ =E i gur || golx+o-h),

we{0,1}2K
where
g0k (X) = v(X),  gok 5(x) = v(x)

for @ € {0, 1Y¥\{0}*, and g, (x) := 1 for all other @ € {0, 1}?* not covered by the pre-
ceding definitions. We split each g, that is of the form v into 1 and v — 1. Applying the
triangle inequality (1.2) and the Gowers—Cauchy—Schwarz inequality (4.1), we can thus
write
2 22k —1
ExegDv(x)” =1+ O([[v — g2k ) (1 + [lv — g2k (g)) ).

and the claim follows from (8.1).
From (8.7) we have
Ereg|Dv(x) — 17 « §€0. (8.8)

Now define the truncated version
F(x) := min(| F(x)[. 1) sgn(F (x)).

where sgn(F(x)) is equal to F(x)/|F(x)| when F(x) # 0 and equal to zero when
F(x) = 0. Then F is 1-bounded and

|F(x) = F(x)| < max(|F (x)| = 1,0) < [Dv(x) — 1], (8.9)
so from (8.8) and Cauchy—Schwarz we have
Exec F(¥)(F(x) = F(x)) < Exec(IF(x) = F()I> + |F(x) = F(x)]) < 8%/,
Hence by (8.6) and the triangle inequality we have

|Exeq F (x)F(x)| > §°0,
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We rewrite the left-hand side as
Bige 1 o0+
wef{0,1}

where

foe@) = Fx),  fo(x) = folx)

for w € {0, 1}¥\{0}*. The /.y all have Uk (G) norm of at most [vilgx @) < 1 thanks to
(8.1), hence by the Gowers—Cauchy—Schwarz inequality (4.1) one has

”F”Uk(G) > 80(1).

Applying the hypothesis in Theorem 8.1 (i), we conclude that there exists ¢ € Wso0a)
such that
[Exeg F ()Y (x)] > §90.

On the other hand, from Cauchy—Schwarz we have
Exeq (F(x) = F())Y(x) € (Breg|F(x) = F(0))'/? < 59/
thanks to (8.8), (8.9). Hence by the triangle inequality (for Cy large enough) we have
Exec F(x)¥(x) > §90.

But this rearranges to give the conclusion of Proposition 8.2. The proof of Theorem 8.1 is
now complete.

‘We now combine this theorem with Manners’ inverse theorem to obtain

Theorem 8.3 (Transferred inverse theorem). Let 0 < § < 1/2, and let v:[N] — C be
such that
v = Ulgarpy < 80

for some constant Cy that is sufficiently large depending on k. Let f:[N] — C be a
v-bounded function such that

I f gk = 6. (8.10)

Then there exist a (filtered) nilmanifold G/ T of degree k — 1, dimension O(8~°M), and
complexity at most expexp(O0(1/89M)), a 1-bounded Lipschitz function F:G/T — C of
Lipschitz constant at most exp exp(O(1/8°M)), and a polynomial map g: 7. — G, such
that

|Enepnyf () F (g(n)T)] 3> exp(—exp(0(1/6°M))).

Proof. As in the proof of Theorem 6.2, we pick a prime N’ with 10N < N’ < 20N
and extend f by zero to Z/N'Z; we also extend v by 1 to Z/N'Z, and observe that
v = g2z nz) < 8.

To apply Theorem 8.1, we will need an inverse theorem that has polynomial corre-
lation bounds. This is not directly provided by Theorem 6.2; however, such an inverse
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theorem does appear in the work of Manners [33]. Indeed, we see from [33, Lem-
mas 5.4.1, 5.5.1] (applying [33, Lemma 5.5.1] inductively, as in [33, p. 102]), that if
f:Z/N'Z — C is 1-bounded with || /||y (z/n'z) > §. then there exists a 1-bounded
function v: Z/N'Z — C with the polynomial correlation bound

|Enez/nz f ()Y m)] > §°0

such that v is of the form

T
Y(n) = e Fi(gi(my).

i=1
where T < exp(exp(§~9(M)), the «; are complex numbers with |o;| < 1, and for each
i, G;/ T is a filtered nilmanifold of degree k — 1, dimension 0(8_0(1)), and complex-
ity at most exp exp(0(1/6°M)), F;: G;/T; — C is a 1-bounded Lipschitz function of
Lipschitz constant at most exp exp(0(1/6°M)), and g;: Z — G; is a polynomial map
with g; T" periodic with period N'. Let us call the collection of all such v (with appropri-
ate choices of implied constants) F; note that this collection is invariant under translation
and complex conjugation. We may now apply Theorem 8.1 to the v-bounded function f
in the hypotheses of this theorem, and conclude that there exist Y1, ..., ¥x_; € Fzom

such that
2k_1

Exez/nz /() [ #;(0] > 620,
j=1

Applying the pigeonhole principle, and taking the tensor product of various nilsequences,
we conclude a correlation

[Enez/nz f(0)F(g(n)T)] 3> exp(—exp(8~°M)),

where G/ T is a filtered nilmanifold of degree k — 1, dimension 0(8_0(1)), and com-
plexity at most exp exp(O(1/8°M)), F:G/T — C is a 1-bounded Lipschitz function
of Lipschitz constant at most exp exp(O(1/6°M)), and g: Z — G is a polynomial map
with gT" periodic of period N'. Now argue as in the proof of Theorem 6.2 to conclude. =

8.2. Completing the proof of the main theorem

Now we can show how the bound (2.11) in Theorem 2.6 follows from the bound (2.13)
given by Theorem 2.7. This will complete the proof of Theorem 2.6 and hence that of
Theorem 1.4. We begin with an application of the “W -trick”. Let W := P (log® N'), where
& > 0 is a small constant depending on k to be chosen later; we may assume that N is
sufficiently large depending on ¢. Observe that the set {n € [N] : (n, W) = 1} contains
the entire support of Agjeger, as well as the support of A except for 0(1og0(1) N') numbers
which give a negligible contribution to the U*[N] norm. Thus it will suffice to show the
doubly logarithmic decay bound

(A = Asiege) 1¢,w)=1llyxn) < (loglog N)~°.
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By Corollary 4.2, this will follow once we show that

w
H #( )(A Asicgel) (W - +b) H N < (loglog N)™¢ (8.11)
7]
forall 1 <b < W coprime to W.
Fix b. Now we use a quantitative variant of the well known fact (see [19]) that
%W)A — 1 can be bounded by a pseudorandom weight, but now observing that we can
attain logarithmic accuracy in the pseudorandomness bound.

Proposition 8.4. d’(W) (A — Asieget) (W - 4b) is Cv-bounded for some C = O(1)
depending only on k and some v: [N b] — R with ||v — ]||U2k Nob < log™“® N.

Proof. By the triangle inequality (1.2), it suffices to establish this for ¢(W)A(W +b)
and ¢( Aslegel(W +b) separately. In the latter case, we see from Definition 2.1 that

o) (W)
W W

ASlegel(Wn + b) ACramér,Q(Wn + b)

and the claim in this case follows from Corollary 5.3.

Now we turn to %W)A(W - +b). Here we can basically follow the analysis of
Goldston—Y1ldirim correlation estimates from [22, Appendix D], though with a slightly
more careful accounting in order to obtain suitable estimates. We choose a smooth func-
tion y: R — R supported on [—2, 2] that equals 1/2 on [—1, 1] with flz 1 (x)?dx = 1.
We set R := NV for some sufficiently small constant 0 < y < 1/2 depending only on k
(and independent of ¢). Following [22, Appendix D], we introduce the truncated divisor

sum >
_ logd
Arra(n) = log R- (; nan( %))

From [22, Lemma D.2] and the choice of y, the sieve factor c,,» = fooo |x' (x)|? dx asso-
ciated to this divisor sum via [22, Definition D.1] is simply

Cy2 = 1. (8.12)
‘We then set
v(n) = %Ax rR2(Wn +b). (8.13)

Let A’ be the restriction of A to those primes greater than R2. It is not difficult to see that
the error %A(W -+b) — %W)A’(W - +b) (supported on primes up to R?, as well as
powers of primes, and bounded in size by O(log N)) is non-negative with U 2]‘[NT_I’]
norm as small as O(N~°), so by (1.2) we may freely replace %A(W - +b) with
%A’(W - +b). By the definition of v in (8.13) and the fact that y(0) = 1/2, we easily
verify the pointwise bound

¢( )A "(Wn +b) <y v(n)
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for all n. It will thus suffice to show the logarithmic decay bound
2k -
v = 1k gy < log™* N,

Expanding out the left-hand side, it suffices to show that

o) .
E(n,fz)esz l_[ W Ay r2(W(n +w-h) +b)
weS

= vol(Q) + O(N/W)*+11og™* N)  (8.14)
for all subsets S of {0, 1)2%, where @ C R is the convex body
Q= {(x,5) e R*T0 < W(x +w-7)+b < N Vo € {0, 1}%*}.

Suppose that we directly apply the estimate'! in [22, Theorem D.3], using (8.12) to elim-
inate the role of the sieve factors. Then we can express the left-hand side of (8.14) as

#S 2k+1
(—"5(;/[/)) (vol(Q) ]_[ﬂ,, + 0(—(]1\1;?20 - eO(X))), (8.15)
V4

where B, are the usual local factors

. . P .
Br = E o ie@ipzyn H p—1 Yntohtbro

w€eS

X is the quantity

X:=> p'?

pEP
and P is the set of primes p which are “exceptional” in the sense that at least two of the

affine forms
) =>Wkx+w-y)+b (8.16)

for @ € {0, 1)k are linearly dependent modulo p.

Since W = P(log® N), one has 8, = #)#S for p < log® N, while from the inclu-
sion-exclusion calculation used in the proof of Proposition 5.2 one has 8, = 1 + O(1/ p?)
for p > log® N. Thus

w #S .
[18 = (</>(—W)) (14 O(log™® N)). (8.17)
p

' This theorem as stated requires y to be sufficiently small depending on W (represented in [22]
by the parameter L), but the bound R < N7 is only used before [22, (D.4)] to show that an expres-
sion of the form O(LO(I) ROMW yd-1 log’ R) (here we have made the dependence on L explicit)
is equal to o(N d ), and this can be achieved with R < NV and y independent of L, so long as we
also have L < N7, which is also the case here since L = O(W) and N is assumed to be sufficiently
large.
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Since vol(Q2) <« (N/W)?*1 the main term in (8.15) is acceptable. If it were not for
the e X term, the error term in (8.15) would similarly be acceptable; unfortunately, as
defined in [22, Appendix D], the exceptional primes consist precisely of all the primes p
up to log® X, and this would ostensibly lead to an unacceptably large error term in (8.15).
But, an inspection of the proof of [22, Proposition D.4] reveals that the ¢ ™) loss arises
from three sources. One is from the crude bound

[]8r <% (8.18)
14
(see [22, (D.14)]); one is from the variant
[[ Br=1+0°®10g /> R) (8.19)
p>log!/10 R

(see [22, equation after (D.15)]); and the third arises from the estimate

Z = 0(X1log /2 R) (8.20)
PEPy: p>10gl/10 R

appearing in the fourth display after [22, (D.16)]. Of course, for the first estimate (8.18) we
may use the superior bound (8.17) instead in our case. In our cases none of the exceptional
primes exceed log® N < 10g1/10 R, and so one can replace X with 0 in (8.19), (8.20). As
a consequence of these observations, the ¢?X) factor in [22, Proposition D.4] may be
replaced with (%)#S , and the error term in (8.15) is now also acceptable, giving the
claim. ]

Proof of Theorem 2.6 for A. Combining Proposition 8.4 with (the contrapositive of)
Theorem 8.3, we see that it suffices to show (for a sufficiently small constant ¢; > 0)
that one has the pseudopolynomial bound

o)
W

E, e[zt (A — Asiege) (Wn + b)F (g(n)T) < exp(—c log® N) (8.21)
whenever G/T" is a (filtered) nilmanifold G/I" of degree k — 1, dimension at most
(loglog N)€! and complexity at most exp(log! N), F:G/T — C is a 1-bounded Lips-
chitz function of Lipschitz constant at most exp(log! N), and g:Z — G is a polynomial
map. Using [34, Lemma 4.2], we can write g(n) = g(Wn + b) for another polynomial
map g:Z — G. But from Theorem 2.7 we have

Y (A= Asiga)MF@EMT) < N exp(—clog® N)
n<N:n=b (W)

for some ¢ > 0 independent of ¢, and the claim (8.21) then follows for ¢ small enough.
This (finally!) completes the proof of Theorem 2.6, and hence that of Theorem 1.4. ]

We can now quickly deduce Corollary 1.5 from our main theorem.
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Proof of Corollary 1.5. Let w = (loglog N)/2. By Theorem 2.5, we have

”ASiegel - ACramér,Q ”Uk[N] < lOg_C N. (822)

Using the Fourier expansion 1,=, (w) = % >y <a<W e(“(" b)) the triangle inequality

for the Gowers norms, and the fact that || fe(§)||yx;n; = || f |yxnq for any function f
and any £ € R, we deduce from (8.22) that

H ¢(V://V)_ (ASiegel(W -+b) — ACramér,Q(W . +b))

UK N2

« Wk+D/2* log * N <log “N. (8.23)

From Proposition 5.3, we have

o) -
‘ W i <Lw ™. (8.24)

ACramér,Q(VV : +b) -1

Let w’ = log® N where ¢ is as in Section 8.2. Also let W/ = Hpsw’ p- Then by Corol-
lary 4.2 and (8.11) we have

¢(W)
max
b W)=1

2
w

Uk 2521

%\

« o)

max < (loglog N)~°.
o — (loglog N)

Now the claim follows by combining this with (8.23), (8.24) and applying the triangle
inequality for Gowers norms. ]

9. Quantitative linear equations in primes result

In this section we sketch the derivation of Theorem 1.6 from Theorem 1.4. The argu-
ments follow those in [22] extremely closely, and we will assume familiarity with those
arguments in this section.

In [22, Section 4], the qualitative version of Theorem 1.6 was derived from [22,
Theorem 4.5] using some elementary linear algebra and convex geometry. The same argu-
ments, replacing all qualitative decay terms with doubly logarithmic ones instead, show
that Theorem 1.6 will follow if one shows the following.

Theorem 9.1 (Primes in affine lattices in normal form). The statement of [22, Theo-
rem 4.5] continues to hold if the qualitative error term o(N?) in that theorem is replaced
with the doubly logarithmic term Og g ,((log log N)°N?) for some ¢ = csde > 0
depending only on the parameters s, d,t. (Also one ignores the references to the now
proven conjectures Gl(s), MN(s) in that theorem.)
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Next, we apply the W-trick arguments in [22, Section 5], setting w equal'’ to
(loglog N)" for a sufficiently small n > O depending on s, d, ¢ rather than the more
conservative choice of logloglog N. These arguments then reduce matters to showing

Theorem 9.2 (W -tricked primes in affine lattices). The statement of [22, Theorem 5.2]
continues to hold if the qualitative error term o(N ) in that theorem is replaced with the
doubly logarithmic term O g ;((loglog N)"¢N?) for some c = Cs,d.t > 0 depending only
on the parameters s, d, t. (Again one ignores the references to the now proven conjectures
GI(s), MN(s) in that theorem.)

The statement of [22, Theorem 5.2] involves the functions

w
A},i’W(n) = —¢E/V )

where W := P(w) and A’ is the restriction of A to the primes. From Corollary 1.5, we
have the doubly logarithmic bound

N Wn + by),

”AZ,-,W - 1||US+1[NI;/bi] K,y (loglog N)™"

for some ¢ > 0 depending only on s (and assuming as we may that N is sufficiently large
depending on s, d, ¢, 7). On the other hand, a routine modification of Proposition 8.4 (see
also [22, Proposition 6.4]) reveals that for any D, the function 1 + AZ] wteo Tt AZ;,W
on the interval [N3/5, N] can be bounded by Cv for some C = Op (1) and some v
that obeys the (D, D, D) linear forms condition from [22, Definition 6.2] with the op (1)
term in [22, (6.2)] replaced by Op ((loglog N)~P.n) for some cp,, > 0. (We will not
need the now largely obsolete “correlation condition” in [22, Definition 6.3].) The claim
now follows from the generalized von Neumann theorem in [22, Theorem 7.1] proven
in [22, Appendix C], after replacing all o(1) type terms with O((loglog N)~¢) type terms,
noting that all the functions denoted « in that appendix can be taken to be polynomial in
nature; we leave the details to the interested reader.

Remark 9.3. It seems likely that one can improve Theorem 1.6 further, by allowing the
parameter L to be as large as (loglog N)¢ with uniform control on error terms; one may
even be able to handle significantly larger values of the linear coefficients v; than this by
incorporating the various methods used in this paper. We will not pursue such refinements
here, however.

10. Arithmetic progressions with shifted prime difference

In this section we prove Theorem 1.8.

12Note that for this choice of w, the prime number theorem in arithmetic progressions of modulus
W = P(w) has an effective error term with good decay, as we can use the effective lower bounds
on L(1, y) in this case rather than Siegel’s theorem. It should however be possible to work with
larger choices of w by incorporating the contribution of a Q-Siegel zero, as is done elsewhere in
this paper.
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Proof of Theorem 1.8. In what follows, let A’ stand for the von Mangoldt func-
tion restricted to the primes. Let A C [N] be any set with |[A] > §N and § =
(log log loglog N)~¢ for small enough ¢ > 0 depending on k. Let w = (loglog N)/2,
and let W = ]_[p <w P- By the pigeonhole principle, we can pick 1 < b < W such that
A" :={n:Wn+ b € A} has size > §N/W. Then the count of k-term arithmetic progres-
sions in A with shifted prime difference is

1
R — S > LuWn+b)aWn+b+Wd)--14(Wn + b+ Wd(k — 1))
g n<N/Wd<N/W
= = x N'(Wd + 1)
1
= ]/ 1/ "'1/ —1 A/ 1 ::T.
oz N D) M+ d) - ly(n +d(k — D)AN (Wd + 1)

n<N/W d<N/W

Note that we have the trivial bound ), _y [A(n) — A'(n)] K N 1/210g N . Using this
and our quantitative Gowers uniformity result in the form of Corollary 1.5, we have

NW 1) —1

H (W)
W

H (W)
W

UK[N/W]

AW -+1)—1 + O(N~V2+oM) « (loglog N)~¢

UK[N/W]

for some ¢’ > 0 depending on k. Therefore, by applying the generalized von Neumann the-
orem for pseudorandomly majorized functions [22, Theorem 7.1] (with similar remarks
on quantitative error terms to those in the proof of Theorem 1.6), we see that T is equal
to

w

AT > Yo el +d)-1a(n+dk = 1))

n<N/W 0<d<N/W
+ O((N/W)*(loglog N)™).  (10.1)

For p > 0, let N (p) denote the smallest positive integer such that, for any m > Ng(p),
any subset of [m] of size > pm contains a non-trivial k-term arithmetic progression. Let
c(k,8) := 8% /(16N (8/2)3). Then, by a well known argument of Varnavides for quanti-
fying Szemerédi’s theorem (see e.g. [41, Theorem 18, Remark 1]), for N/ W > 2N (§/2)
the expression (10.1) is

c(k,8)(N/W)2 4+ O((N/W)?(loglog N)~°).

>
(W)

We have c(k, §) > exp(—exp(§~C)) for some C > 1 (depending on k) by Gowers’s
bound Ni(p) < exp(exp(p~C")), proved in [13]. Now, if ¢ is chosen small enough in
the definition of 8, we have c(k, §) > (loglog N)~°() which proves the statement of
the theorem for k > 4. For k = 4, the same argument works, except that we now use
the bound N4(p) < exp(p~C) from [25] to get c(4,8) > exp(—C$~C), which enables
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taking § = (logloglog N)~¢ for some ¢ > 0. Finally, for k = 3, using the very recent
bound (see [30]) N3(p) < exp((log(1/p))€) we have ¢(3,8) > exp(—C(log(1/8))°),
which enables taking § = exp(—(logloglog N)¢) for some ¢ > 0. L]

Appendix A. Quantitative Leibman theory with explicit dimension dependence

In this appendix we refine the equidistribution theory on nilmanifolds from [24], tracking
more carefully the dependence on dimension m (but allowing all constants to depend
on the degree d, which in our context will be equal to k — 1). The key point is that all
bounds will be at most doubly exponential in this dimension parameter, basically because
the arguments rely on applying the Cauchy—Schwarz inequality (or variants such as the
van der Corput inequality) a number of times that is polynomial in the dimension. (Many
of the estimates here require only single exponential dependence on m at worst, but the
induction on dimension we use only closes if we allow double exponential dependence.)
In order to improve this double exponential dependence it would seem necessary to adopt
a different approach to equidistribution that is not as reliant on so many applications of
the Cauchy—Schwarz inequality.

We freely use the notation from [24], and let m be a dimensional parameter. To
conveniently track bounds that depend in double exponential fashion on the dimen-
sion we adopt the following notation. For any 0 < § < 1/2 let poly,,(§) be any
quantity > exp(— exp(mo(l)))SexP(mOm), and for any Q > 2 let poly,,(Q) be any
quantity < exp(exp(mo(l)))QCXP(’"O(I)). In particular, poly,,(1/8) is any quantity
< exp(exp(mOW))s—exwmD),

We begin with a more quantitative version of [24, Lemma 3.1]:

Lemma A.1 (Quantitative Kronecker Theorem). Letm > 1 and 0 < § < 1/2, @ € R™,
N > 1. If (an mod Z™) e[ n] is not §-equidistributed in R™ | ™, then there exists k € Z™
with 0 < |k| < poly,,(1/8) such that ||k - a|r/z < poly,,(1/8)/N.

Proof. The “simple calculation” used to establish [24, (3.3)], when done a little more
carefully, gives

> |K(k)| < poly,, (1/8)M ! (A1)
kez™
|k|=M

and by chasing through the argument with this bound we obtain the claim. ]

This gives a version of [24, Lemma 3.7]:

Lemma A.2 (Vertical oscillation reduction). Let G/T" be a filtered nilmanifold of
degree d, with vertical torus dimension my. Let 0 < § < 1/2, and let g:7 — G be a
polynomial sequence for which (g(n)I'),e[n7 is not 8-equidistributed. Then there is a
vertical character § with |§| < poly,, ,(1/8) such that (g(n)I")ne[ny is not poly,, ,(5)-
equidistributed along the vertical oscillation §.
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Proof. Repeat the proof of [24, Lemma 3.7] verbatim, using the estimate (A.l) in place
of [24, (3.3)]. ]

Now we state the main technical theorem on quantitative Leibman theory (a version
of [24, Theorem 7.1]):

Theorem A.3 (Variant of Main Theorem). Let m > my > 0 be integers, 0 < § < 1/2,
N > 1. Let G/ T be a filtered nilmanifold of degree d, nonlinearity dimension m. (defined
in [24, Section T]), and complexity at most 1/8. Let g: Z — G be a polynomial sequence.
If (g(m)T), e[y is not 8-equidistributed then there exists a horizontal character 1 with
0 < || < 8= tmI D) gyop hay

||n ° g||C°°[N] < S—exp((M+m*)Cd)

where Cy is a sufficiently large constant depending only on d.

We now prove this theorem. We assume inductively that the claim has already been
established for smaller values of d, or for the same value of d and smaller values of mx.
Henceforth we refine the poly,, notation by permitting the implied constants to depend
on the constant Cy;_1, but not on C;.

By repeating the derivation of [24, (7.1)] (using Lemma A.2 in place of [24,
Lemma 3.7]) we may find some function F: G/T" — C with || F || < poly,,(1/8)
and vertical frequency § with || < poly,,(1/8) such that (g(n)I'),e[n] is not §O0M.
equidistributed along &, and such that

]Ene[N]F(g(n)F) _/G/F F' > pOIYm((g)'

If £ = 0 then a repetition of the arguments after [24, (7.1)] gives the claim from the
induction hypothesis, so without loss of generality we assume & # 0, thus we now have

|Enern) F(g(m)T)] >> poly,, (8).

Repeating the reductions after [24, (7.2)], we may assume that g(0) = idg and |y (g(1))]
< 1, where ¥: G — R™ is the Mal’cev coordinate map. Continuing the argument down
to [24, (7.8)] we conclude that

[Enetn FL (g7 (1) TO)| > poly,, (5)

with F; hD, ghD,l“_D defined as in [24].

One can rather tediously verify that all the estimates in [24, Appendix A] can be
refined by replacing all estimates of the form X <, 097y with X « poly,,(Q)Y.
As a consequence, we can refine [24, Lemma 7.4] (by exact repetition of the proof) to

Lemma A .4 (Rationality bounds for the relative square). There is a poly,,(1/8)-rational
Mal’cev basis XU for G5 /TP adapted to the filtration (G)e with the property that
Vyo(x,x") is a polynomial of degree O(1) with rational coefficients of height poly,, (1/8)
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in the coordinates V(x), ¥ (x"). With respect to the metric dyno we have || F, hD”Lip <
poly,, (1/8) uniformly in h.

Continuing the arguments down to [24, Lemma 7.5], one can find horizontal char-
acters 11: G — R/Z , n2: G, — R/Z with 5, annihilating [G, G3] and |n1], |n2] <
poly,, (1/8) such that the character n: G¥ — R/Z defined by

n(g'.g) = m(g) +n2g's™")
is such that
1m0 g lcoepny < poly,, (1/6)
for > poly,, (§) N values of h € [N].
Continuing the argument down to [24, (7.16)], and using the induction hypothesis for

Theorem A.3 (with d replaced by d — 1, and m, m. replaced by quantities not exceeding
2m), we can find 1 < g < poly,,(1/8) such that

I (g(D) + ¢ -{yh} + qahlr/z < poly, (1/8)/N
for > poly,, (§)N values of i € [N], where
(i) o € R/Z is the quantity o := 0%(n2 o g2)(0), where g>(n) = g(n)g(1)™" is the
nonlinear part of g;
(i) y € (R/Z)™in is (the first my;, components of) ¥ (g(1));
(iii) ¢ € R™in jg the vector such that

n2([g(1), x]) = £+ ¥ (x) mod Z
for all x € G (extending ¢ by zero to R™).

Here it is important that the implied constants in the poly,, notation are allowed to depend
on Cy_1 (but not on Cy).

It is routine to verify that |{| < poly,, (1/6). An inspection of the proof of [24, Propo-
sition 5.3] and [24, Claim 7.7], using Lemma A.1 in place of [24, Lemma 3.1], shows that
we may replace all bounds of the form X <, §~97(Y appearing in these statements
by X < poly,,(1/8)Y, to obtain one of the following claims:

(D) there is r < poly,,(1/8) such that ||r{; mod Z|r;z < poly,,(1/8)/N for alli =
1,...,myy,; or

(II) there exists k € Z™n with 0 < |k| < poly,,(1/§) such that

Ik - ylr/z < polyy,(1/8)/N.

In case (II) we conclude exactly as in [24], so suppose we are in case (I). Arguing
as in [24] we can easily close the induction except in the case when 7, (and hence 1)
annihilates [G, G], at which point the arguments in [24] lead to

n2 © g2llr/z < poly,, (1/8)
(possibly after first multiplying 71, 72 by a positive integer of size poly,,(1/§).
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Repeating the rest of the proof of [24, Theorem 7.1] (replacing all bounds of the
form X <, § %Y with X < poly,,(1/8)Y) and using the induction hypothesis with
(d, my) replaced by (d,m, — 1), we see that

X .— C
170 gllcootny < poly,, (1/8)exptn+ms—DTd)

for some horizontal character n : G — R/Z with |n| < polym(1/8)eXP((’”+m*_1)Cd).
For C,; large enough, we have

poly (1/5)exp((m+m*—l)C4) <5—exp((m+m*)cd)
" - )

and Theorem A.3 follows.
Repeating the proof of [24, Proposition 9.2] (specializing to the single-parameter case
t = 1), we then obtain

Proposition A.5S (Factorization of poorly-distributed polynomial sequences). Let m > 1,
0<8<1/2, N=>1,d=>0,let G/T be an m-dimensional filtered nilmanifold of complex-
ity at most 1/8, and let g: 7. — G be a polynomial sequence. Suppose that (g(n)I"),e[ny is
not totally §-equidistributed. Then there is a factorization g = g’y withe, g',y: 7 — G
polynomials such that

(i) &:Z — G is (poly,,(1/8), N)-smooth;
(il) g":Z — G takes values in a connected proper poly,, (1/8)-rational subgroup G’
of G;
(iii) y:Z — G is poly,,(1/8)-rational.

In [24, Lemma 10.1] with # = 1, one easily verifies that the bound M Om @) in the con-
clusion can be sharpened to poly,, (M). We now claim the following quantitative version
of [24, Theorem 1.19]:

Theorem A.6 (Factorization theorem). Letm >0, My >2, A>2, N >1,d > 0. Let
G/ T be an m-dimensional filtered nilmanifold of degree d and complexity at most My,

and let g: 7 — G be a polynomial sequence. Then there is some M with My < M <

@+m)QaD L . .
M(;‘l " , a subgroup G' C G which is M -rational with respect to X, and a decom-

position g = g’y with e, g’,y:Z — G polynomials such that
(1) eis (M, N)-smooth;
(i) g’ takes values in G' and (g’ (n)T)neqn) is totally 1/ M A-equidistributed in G'/ T,
with respect to a Mal’cev basis X' consisting of M -rational linear combinations of
the basis elements of the Mal’cev basis for G;

(iii) y is M -rational and y (n)T is periodic with period at most M .

mC
Proof. Repeat the proof of [24, Theorem 10.2] with ¢ = 1, setting 8;+; 1= 8;4 for a
sufficiently large constant C = C; depending only on d (in particular, 1/8;4+; is much
larger than any quantity of the form poly,, (1/ 8§i)4 if C is large enough). ]
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Appendix B. Proof of Theorem 1.3

Proof of Theorem 1.3. Part (i) follows easily from the prime number theorem with Vino-
gradov—Korobov error terms (for the Mobius case, see [44, Satz 3 in Section V.5]). Part (ii)
for the Mobius function follows from the strongly logarithmic exponential sum estimates

up [E e (me(8m)] <3 log™ N
6

of Davenport [7], the Plancherel estimate

1
/ |Enevii(n)e(@n)|* do < N, (B.1)
0

the circle method, and Cauchy—Schwarz. For the second part of (ii), observe from Propo-
sition 1.2 and (1.2) that we may take w = logl/ 100 v/ (say) without loss of generality. The
standard Vinogradov estimates for exponential sums over primes (see e.g. [29, Ch. 13])
eventually reveal the logarithmic bounds

sup |EnE[N] (A(I’l) - ACramér,w(n))e(enN <<ineff log_c N,
0

while the Fourier restriction estimate from [17, Proposition 4.2] gives

1
/ [Enepny(A (1) — Acramena (1)e(@m)|7 d <4 1
0

for any 2 < g < oo, and the claim now follows from the circle method and Holder’s
inequality. Finally, for (iii), we see from Proposition 1.2 and (1.2) that we may assume
that w grows sufficiently slowly in NV, and then the bounds in (iii) follow easily from the
main theorems in [22] as well as Corollary 4.2, after inserting the resolution of the inverse
conjecture for the Gowers norms (first proven in [27]) and the strong orthogonality of the
Mbobius function to nilsequences (first proven in [23]). ]

Remark B.1. An alternative approach to (1.4) proceeds by comparing A(n) =
—_a|n #(d)logd first with a truncated divisor sum Af(n) = — Y dma<ne1 H(d)logd
for some small absolute constant ¢; > 0, and establishing the strongly logarithmic esti-
mate

1A = A* g2y <4 log™ N

from the circle method (here we can use a Plancherel bound analogous to (B.1) that loses
a factor of log N, thus avoiding the need to invoke the restriction theory from [17]), and
the logarithmic estimate

”A# - ACramér,w ||U2[N] < log_c N

from sieve theory with (say) w = logl/ 100 & and then applying the triangle inequality
(1.2); we leave the details to the interested reader. In this paper we found the Cramér
models Acramer,w to be slightly more convenient technically to work with than the trun-
cated divisor sum model A“, and therefore made no further use of A# here.
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