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Cusps and commensurability classes
of hyperbolic 4—manifolds

CONNOR SELL

There are six orientable compact flat 3—manifolds that can occur as cusp cross-sections
of hyperbolic 4-manifolds. We provide criteria for exactly when a given commensu-
rability class of arithmetic hyperbolic 4—manifolds contains a representative with a
given cusp type. In particular, for three of the six cusp types, we provide infinitely
many examples of commensurability classes that contain no manifolds with cusps of
the given type; no such examples were previously known for any cusp type.

57M50; 11E20, 11F06, 16HOS, 57K50

1 Introduction

Let M = H"/T be a finite-volume noncompact hyperbolic #—manifold. A cusp of
M is homeomorphic to B x R™, where B is a compact flat (n—1)-manifold. If M is
orientable, then B must be orientable. In [13], Long and Reid proved that every compact
flat (n—1)—manifold, up to homeomorphism, must occur as a cusp cross-section of a
hyperbolic n—orbifold; this result was upgraded from n—orbifolds to n—manifolds by
McReynolds in [15]. Long and Reid [13] give a constructive algorithm which, given a
compact flat (n—1)-manifold, outputs an arithmetic hyperbolic n—orbifold with a cusp
with the specified cross-section. We discuss this algorithm in more detail in Section 5.

For ease of notation, we may refer to a cusp with cross-section B as a cusp of type B,
as the cross-section of a cusp determines its homeomorphism class. We may also refer
to a homeomorphism class of cusps, or “cusp type”, by its cross-section. See Section 4
for a description of the six possible cusp types for hyperbolic 4—manifolds, and the
names used below.

The above results tell us that each compact flat (n—1)—manifold occurs as a cusp of
some hyperbolic n—manifold, but little is known about which conditions give rise to
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each cusp type. To investigate the occurrence of cusp types further, it makes sense
to look at compact flat 3—manifolds in finite-volume hyperbolic 4-manifolds, as this
is the lowest dimension in which multiple orientable cusp types can occur. It is well
known that the 3—torus occurs as a cusp in every commensurability class of cusped
hyperbolic 4-manifolds. Indeed, in every commensurability class of cusped hyperbolic
4-manifolds, manifolds where all cusp types are the 3—torus occur; see McReynolds,
Reid, and Stover [16]. A striking result by Kolpakov and Martelli [10] showed that there
exist one-cusped hyperbolic 4-manifolds having cusp type the 3—torus. Furthermore,
Kolpakov and Slavich [11] showed that the %—twist also occurs as the cusp type of a one-
cusped hyperbolic 4-manifold. On the other hand, the %—twist and %—twist have been
obstructed from occurring as cusps of one-cusped manifolds; see Long and Reid [12].
Although it is as yet unknown whether the Hantzsche—Wendt manifold occurs as a cusp
type of a one-cusped hyperbolic 4-manifold, it was shown by Ferrari, Kolpakov, and
Slavich [9] that there exists a finite-volume hyperbolic 4-manifold where all cusp types
are the Hantzsche—Wendt manifold. We also note that the isometry classes within each
homeomorphism class that occur geometrically as cusps of hyperbolic 4-manifolds are
dense in the moduli space of any compact flat 3—manifold; see Nimershiem [20].

We provide the first known examples of commensurability classes that avoid three cusp
types. In fact, we provide infinitely many such examples, obtaining the result below.
Furthermore, given any commensurability class C of cusped arithmetic hyperbolic
4-manifolds and any cusp type B, we give conditions on when C contains a manifold
with a cusp of type B in Theorem 5.1. Notably, three cusp types occur in every such
class. We refer to Section 2 for terminology used in Theorems 1.1 and 1.2.

Theorem 1.1 Every commensurability class of arithmetic hyperbolic 4—manifolds
contains manifolds with the 3—torus, the %—twist, and the Hantzsche—Wendt manifold
as cusp types. There exist infinitely many commensurability classes C of hyperbolic
4—manifolds such that no manifold in C has a cusp of type %—twist. The same holds for
cusps of type %—twist and %—twist.

Additionally, we can use “inbreeding” of arithmetic hyperbolic 4—manifolds (see
Agol [1]) to construct some nonarithmetic manifolds that avoid some cusp types, up to
commensurability.

Theorem 1.2 There exist infinitely many commensurability classes of finite-volume
cusped nonarithmetic hyperbolic 4—manifolds that avoid each of the following cusp
types: the %—twist, the %—twist, and the %—twist.
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We briefly review the organization of the paper. In Sections 2, 3, and 4, we provide
preliminary information about quadratic forms, quaternion algebras, arithmetic hy-
perbolic manifolds, and the six orientable compact flat 3—manifolds that are the cusp
types of orientable hyperbolic 4-manifolds. In Sections 5 and 6, we prove Theorem 1.1
and generalize it to give complete conditions on when a given commensurability class
contains a manifold with a cusp of given type. In Section 7, we use this result to show
that there are some commensurability classes of hyperbolic 5-manifolds that avoid
some compact flat 4—manifold cusp types, and explain why we can’t make the same
argument in higher dimensions. In Section 8, we show that there are commensurability
classes of nonarithmetic hyperbolic manifolds in both 4 and 5 dimensions that avoid
certain cusp types as well, proving Theorem 1.2.

Acknowledgements The author wishes to thank his PhD advisor Alan Reid for his
guidance and useful discussions. This paper is partially supported by NSF grant
DMS-1745670.

2 Quadratic forms and quaternion algebras

2.1 Quadratic forms

Definition 2.1 (quadratic form) A quadratic form over a field K is a homogeneous
polynomial of degree 2 with coefficients in K.

A quadratic form ¢(x) = Y.7_, Z;’Zl ajjx;Xj in n variables is said to have rank n,
and can be written as an n x n symmetric matrix Q such that ¢(x) = x” Qx. This can
be accomplished by defining the entries by Q;; = a;; and Q;; = %ai i wheni # j.

For any quadratic form ¢ of rank » and ring R, we can define the orthogonal group
O(q, R) to be the group of all invertible n x n matrices A with entries in R such that
q(x) = q(Ax) for any x € R". We can similarly define the special orthogonal group
SO(g, R) to be the subgroup of O(q, R) of matrices with determinant 1. Note that
SO(g, R) is a Lie group, and thus has an identity component SO¢ (g, R). Then, for any
subring R C R, we define SOg(g, R) = SOy (g, R) NSO(g, R). Our focus is quadratic
forms over Q and the corresponding groups SOg (¢, Z).

Definition 2.2 (rational equivalence) Quadratic forms given by symmetric matrices
01, 0, € GL(n, Q) are rationally equivalent (or equivalent over Q) if there exists
T € GL(n,Q) such that T" QT = Q».
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All quadratic forms over QQ are rationally equivalent to a diagonal quadratic form, by
which we mean a quadratic form whose corresponding matrix is diagonal. Thus, when
working with a rational equivalence class of quadratic forms, we will always choose a
diagonal representative. For ease of notation, we will denote diagonal quadratic forms
q(x)=>"_, a,-xiz by writing their coefficients (@, ..., a,). Here all quadratic forms
will be nondegenerate; that is, a; # 0 for all 7.

There is another relevant notion of equivalence, which is closely related to rational
equivalence [18]:

Definition 2.3 (projective equivalence) Quadratic forms ¢; and g, are projectively
equivalent over QQ, or just “projectively equivalent”, if there are nonzero integers a and
b such that aq; and bg, are rationally equivalent.

Let g1 and ¢, be quadratic forms of odd rank with the same signature and discriminant.
We can check for projective equivalence by scaling ¢; and ¢, so they have the same
discriminant, and then checking for rational equivalence.

A complete set of invariants for diagonal quadratic forms up to rational equivalence is
given by the signature, discriminant, and the Hasse—Witt invariants over all primes p.
A quadratic form ¢ = (a1, ..., ay,) of signature (a, b) has a positive coefficients and b
negative coefficients. The discriminant d € Q/(Q*)? is given by d = [[/_, a;; note
that it is defined only up to multiplication by squares. The Hasse—Witt invariants are a
little harder to define, and contain the bulk of the number-theoretic information. For
integers a and b and prime p, we first define the Hilbert symbol

1 if z2 = ax? 4+ by? has a solution in Qp,

(a,b)p = {_1

Here Q, denotes the p—adic field at p, or R if p = oo.

otherwise.

Definition 2.4 (Hasse—Witt invariant) For a diagonal quadratic form ¢ = (a1, ..., ds)
over Q and a prime p, possibly oo, the Hasse—Witt invariant of q at p is given by

€p(q) = 1_[ (ai.aj)p.

1<i<j=n

Every Hasse—Witt invariant must have value 1 or —1. There is a closed-form equation
that allows us to easily compute a Hilbert symbol; thus, a Hasse—Witt invariant is easy
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to compute as well. Let a = p®u and b = pﬁv with u and v both relatively prime to p
in Z. Then for p > 2
B a
a.b), = (—1 aﬂr(p)(ﬁ) (2) ,
(@,0)p = (=1) AV

and, for p =2,
(a’ b)p — (_1)r(u)r(v)+aw(v)+,3w(u)‘

Here we use the Legendre symbol and the functions t(x) = %(x —1) and w(x) =
%(xz— 1), both of which only need to be defined modulo 2 [25, Chapter III, Theorem 1].

We can see from these equations that (a, b), can only be —1 if either @ or b is divisible
by p an odd number of times. This means that €,(g) = 1 for all primes p that don’t
occur as a factor of a coefficient of ¢. In particular, for any given quadratic form ¢,
€p(q) =1 for all but finitely many values of p.

Additionally, Hilbert’s reciprocity law states that the Hilbert symbols satisfy the identity
I1 » (a,b)p = 1, where the product is taken over all places p of Q, including p = oo
[25, Chapter III, Theorem 3]. From this, we deduce the identity [ ] pE€p (¢) =1 for any
quadratic form ¢. Since (a, b)oo depends on the existence of a nonzero solution to
22 = ax? + by? over the field Qoo = R, we know (@, b)oo = —1 if and only if both a
and b are negative. We’ll be working mostly with quadratic forms of signature (4, 1),
so in this case [ [ <;< j<, (@i, aj)oo = 1, as no pair (a;,a;) of distinct coefficients are
both negative. As a result, the identity ]_[P €p(q) = 1 holds when we consider only
finite places p for quadratic forms of signature (4, 1).

2.2 Quaternion algebras

Definition 2.5 (quaternion algebra) A quaternion algebra over a field F with
char(F) # 2 is an algebra consisting of elements w+xi +yj +zij, withw, x, y,z€ F,
equipped with relations i = a, j2 =b, and ij = —ji for some fixed a,b € F. We

write this as ((a, b)/ F).

Alternatively, a quaternion algebra Q over F is any central simple algebra of dimension
4 over F. Every such Q = ((a, b)/ F) has anorm form, givenby N(w+xi+yj+zij)=

w? —ax? —by? 4 abz?, which is compatible with multiplication in Q.

The pure quaternions Q¢ of Q are the elements w + xi + yj + zij with w = 0.
Restricted to the pure quaternions, the norm form of Q (or, for short, the norm form
of Q¢) becomes N (xi + yj + zij) = —ax*> —by? + abz?. Note that any quadratic
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form of rank 3 and discriminant 1 is rationally equivalent to such a form. To see
this, observe that if {a, b, ¢) has discriminant 1 then ¢ = ab up to multiplication by a
square. In particular, the quadratic form (a, b, ab) coincides with the norm form of
((—a,—b)/Q)o. We will make use of quadratic forms of signature (4, 1) that are the
direct sum of a positive definite norm form of some Qg and (1, —1).

Definition 2.6 (quaternion type) A quadratic form of quaternion type is a quadratic
form g = (a, b, ab, 1,—1) for some positive a, b € Z.

Lemma 2.7 Every quadratic form g over Q of signature (4, 1) is projectively equiva-
lent to a quadratic form g’ of quaternion type.

In order to prove this lemma we’ll need to use Conway’s p—excesses, as described in
[7, Chapter 15]. These will not appear in the rest of the paper, so readers not interested
in the proof of this lemma may ignore these definitions.

Definition 2.8 (p—excess of rank-1 quadratic form) Let p 7 2 be a prime, possibly oo,
and let ¢ = (a) be a rank-1 quadratic form such that « = pKu with u relatively prime
to p. If p = oo, then let p¥ be the sign of @ and u its magnitude. Then we define the
p—excess of g to be

p¥ +3 (mod 8) if k is odd and u is a quadratic nonresidue modulo p,

ep(q) = {

If p =2, then

ep(g) = {

pk —1 (mod 8) otherwise.

—u—3 (mod8) ifkisoddandu = 3,5 (mod38),
—u+1 (mod 8) otherwise.

Definition 2.9 (p—excess of arbitrary quadratic form) Let p be a prime, possibly co,
and let ¢ = {(ay,...,ay) be a diagonal quadratic form. Then we define the p—excess
of g to be i,

ep(9) =Y ep((ai)) (mod8).

i=1

The most notable properties of the p—excesses are that they are additive under direct
sum of quadratic forms, and that they are invariant under rational equivalence. In fact,
p—excesses are part of a complete invariant of quadratic forms up to rational equivalence,
together with the signature and, in the case of forms of even rank, the discriminant
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[7, Section 15.5.1, Theorem 3]. We can also extract the Hasse—Witt invariants of a
quadratic form ¢ from the discriminant d and p—excesses e,(q) [7, Section 15.5.3]:

1 ifep(Q)zep((d’lv---vl>)v
€ =
r(@) {—1 otherwise.
To prove Lemma 2.7, we’ll use the additivity of e, to construct a rank-3 form g3
of discriminant 1 such that g3 @ (1, —1) has certain desired Hasse—Witt invariants.
We’ll also use the following lemma, which can be found in greater generality in

[25, Chapter IV, Proposition 7].

Lemma 2.10 Let d, r, s, and n be integers, and €, be 1 or —1 for each prime p,
including oo. Then there exists a rank-n quadratic form ¢ of discriminant d, signature
(r,s), and Hasse—Witt invariants €, if and only if the following conditions are satisfied:

(1) €, =1 foralmost all p and [[e, =1 over all primes p.

(2) €p =1ifn=1,orif n =2 and the image of d in Ql”,‘/((@;)2 is—1.
3) r,s=0andn=r+s.

(4) The sign of d is equal to (—1)°.

(5) €00 = (—1)5G6—D/2,

Proof of Lemma 2.7 We can scale ¢ to ensure it has discriminant —1 by multiplying
the entire form by —d, where d is its discriminant. This will multiply the product of
the terms by —d°, and thus we’ll obtain the new discriminant —d® = —1. Note that
scaling a form does not change its projective equivalence class.

Now, compute the p—excesses e,(q) and set 61/7 =ep(q) —ep({1,—1)). By definition
ep({ay,az, ... an)) = 71—, ep(a;), so if we can find a quadratic form g3 of signature
(3,0), discriminant 1, and p—excesses equal to ¢/, then ¢’ = g3 @ (1, —1) will have
p—excesses equal to those of ¢ and discriminant —1. Since it will also have signature
(4, 1), ¢’ will be rationally equivalent to ¢.

It suffices, then, to show that g3 exists. Lemma 2.10 gives five conditions on the
Hasse—Witt invariants, signature, and discriminant under which a quadratic form must
exist. Conditions (2)—(4) hold trivially for g3, either because they only apply to forms
of rank 2 or less, or because they merely require that the signature is valid and agrees
with the sign of the discriminant. This is true because the desired signature of g3 is
(3, 0) and the discriminant is 1.
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Conditions (1) and (5) concern the desired Hasse—Witt invariants el’, of g3, which can
be determined from the desired discriminant 1 and desired p—excesses el’,. We will
show that e;, = €,(q) for all p, and thus that conditions (1) and (5) are satisfied.

Recall that €, = 1 if e, = ep({d(g3), 1, 1)) = ep((1, 1, 1)), and —1 otherwise. We
can similarly compute the Hasse—Witt invariants of g to be €,(q) = 1 if and only if
ep(q) = ep((—1,1,1,1,1)). By construction, el/, = ep(q) —ep((1,—1)). Then note
thate,((1,1,1)) =ep((—1,1,1,1,1))—ep ({1, —1)) by additivity of p—excesses. Thus,
€, = €p(q) for all p.

In particular, for any quadratic form ¢, €,(g) = 1 for all but finitely many p, and
[1€p(q) =1 over all primes p. These same properties must hold for €/, so condition (1)
holds. Similarly, €x0(¢) = 1 since ¢ has signature (4, 1), so €, = 1 as well, satisfying
condition (5). Now we can apply Lemma 2.10 to deduce that a valid quadratic form
g3 exists with signature (3, 0), discriminant 1, and Hasse—Witt invariants €,(g3) = 61’,.

As stated above, we can take the form ¢’ = g3 @ (1, —1), which is rationally equivalent
to ¢, has discriminant —1, and is of the form (a, b, ¢, 1, —1), where g3 = {a,b,c). O

On the pure quaternions of any quaternion algebra, we can define the orthogonal group

O(N, Qo) ={f:0Q0— Qo | fislinear and N(f(x)) = N(x) forall x € Q¢}

as the set of linear transformations on Q¢ that preserve the norm form. These transfor-
mations can be described as conjugation by the units Q* of Q. This is the intuition
behind the following theorem from [14, Section 2.4]:

Theorem 2.11 Let Q = ((—a, —b)/Q) and ¢ = {a, b, ab). Then SO(g, Q) is isomor-
phic to Q*/ Z(Q*), where Z(G) denotes the center of G.

There are three more theorems from [14] that are used in our argument. We state them
here, along with a relevant definition, and remark that it will be important to obstruct
certain torsion from occurring in Q*/Z(Q%).

Definition 2.12 (ramification) A prime p ramifies a quaternion algebra Q over Q
if Q0 ®q Qp is isomorphic to the unique division algebra of dimension 4 over Q.
Otherwise, Q ®q Q) is isomorphic to the algebra of 2 x 2 matrices M>(Q)), and we
say Q splits over p.

Theorem 2.13 [14, Lemma 12.5.6] Let &, forn > 2 be a primitive n'™ root of unity,

and Q be a quaternion algebra over Q. Then Q*/Z(Q¥) contains an element of
order n if and only if &, + én_l € Q and Q(&,) embeds in Q.
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Theorem 2.14 [14, Theorem 7.3.3] Given a quaternion algebra Q over Q and a
quadratic extension L of Q, then L embeds in Q if and only if, for each prime p that
ramifies Q, p does not splitin L.

Theorem 2.15 [14, Theorem 2.6.6] Let p # 2,00 be a prime in Q. Consider the
quaternion algebra Q = ((a, b)/Q), with both a and b squarefree.
(1) If p does not divide a or b, then p does not ramify Q.
(2) If p divides a but not b, then p ramifies Q if and only if b is a quadratic
nonresidue modulo p.
(3) If p divides both a and b, then p ramifies Q if and only if —a~'b is a quadratic
nonresidue modulo p.

3 Arithmetic hyperbolic manifolds

3.1 Hyperbolic manifolds

Let g = x12 + o4 x,% — xiH be a quadratic form of signature (n,1). We define

hyperbolic space using the hyperboloid model H"” = {x e R"T1 | g(x) =—1, x,,41 >0},
equipped with the metric derived from the inner product

X0y =+ /X1y1 4+ XnVn— Xnt1Vn+1

so that (x ox)? = ¢(x). A hyperplane in H” is an intersection of a subspace V C R”*!
with H”, and H"” has a boundary dH" consisting of 1-dimensional subspaces of light-
like vectors y € R"*1 such that ¢(y) = 0. The isometries of H” must preserve ¢, and
in fact Isom™ (H") = SOy (¢, R).

Observe that we can perform this construction with any form ¢’ of signature (1, 1) in
place of g. The resulting space HZ/ is isometric to H", although both are different
subsets of R”*! and points in Q”*! in one model may not correspond to points in
Q"* ! in the other. Thus, Isom™ (H") is isomorphic to Isom™ (HZ,). In particular, there
is a linear transformation A that maps any ]HIZ, to H” isometrically, so any isometry
y € Isom+(Hg,) can be said to sit in Isom™ (H") as AyA~!. We will sometimes abuse
notation and refer to any HZ, as H" when it is clear which quadratic form is being used.

We will use the notion of hyperplanes P sitting rationally inside Hy. By this, we mean
P is the intersection of Hy with a subspace V' C R”*+1 determined by a system of
equations with rational coefficients. This notion depends on our choice of ¢, which in
our case will always have coefficients in Z.
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A hyperbolic n—manifold is a quotient H" /" of hyperbolic n—space by a discrete,
torsion-free group I' acting on H” via isometries. If T" is not torsion-free, a hyperbolic
orbifold results instead. A cusp of a finite-volume hyperbolic n—manifold or orbifold is
a subset of the manifold homeomorphic to B x R for some cross-section B. Cusps
result from the parabolic elements of I" that fix a single point y of dJH". Specifically,
since Stabr(y) acts on a horosphere centered at y, which has a flat geometry, the
cross-section of the corresponding cusp is given by B = E”~!/ Stabr(y). We consider
only finite-volume hyperbolic manifolds, so B is compact. Furthermore, if H"/ T" is
orientable then so is B. For more information on cusps of hyperbolic manifolds and
the thick—thin decomposition we refer the reader to [23, Chapter 12].

Definition 3.1 (commensurability) Two subgroups I} and I, of a group I' are
commensurable if T7 N I has finite index in both I and I. Two hyperbolic orbifolds
H”/ Ty and H”/ T, are commensurable if yTyy !

Isom(H") for some y € Isom(H").

and I, are commensurable in

Note that two orbifolds are commensurable if and only if they share a finite cover.

3.2 Arithmetic manifolds

Since we are working solely with cusped hyperbolic manifolds, all arithmetic hyperbolic
manifolds in this paper are of simplest type. This allows us to use a simpler definition
of arithmetic hyperbolic manifolds than the more involved general definition. This is
stated, for example, in [19, Proposition 6.4.2] with the condition n # 3, 7, although
this condition is unnecessary.

Definition 3.2 (arithmetic hyperbolic orbifold/arithmetic group) Let M be a finite-
volume cusped hyperbolic n—orbifold with 71 (M) = ' < Isom(H"). Then M is
arithmetic if there exists a quadratic form ¢ of signature (n, 1) such that A7'T'4 <
Isom(H7) is commensurable to SOg(q, Z), where A4 is the linear transformation that
maps Hy to H" isometrically. We say I' is arithmetic under the same condition, that
is, when T is conjugate to a subgroup of Isom™ (HZ) commensurable to SOq(q, Z).

A hyperbolic arithmetic n—manifold is a hyperbolic arithmetic n—orbifold that is also a
hyperbolic manifold. Henceforth we may refer to the arithmetic orbifold Hy /SO (¢, Z)
as H" /SO (g, Z) using this particular embedding, without ambiguity.

To any cusped arithmetic hyperbolic n—orbifold M we can associate the (nonunique)
quadratic form ¢ from the definition. There are easily checkable conditions on quadratic
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forms ¢; and ¢, that determine whether Iy = SOq(g1,Z) and I, = SOy (g, Z) are
commensurable as subgroups of Isom(H"), identifying both Isom(Hy ) and Isom(H, )
with Isom(HH"), and are thus associated to the same orbifolds.

Proposition 3.3 [18, Theorem 1] Let M; and M, be arithmetic hyperbolic orbi-
folds with associated quadratic forms q; and q,, respectively. Then M| and M, are
commensurable if and only if ¢q; and ¢, are projectively equivalent.

One way to determine whether two quadratic forms ¢; and ¢, of signature (4, 1) are
projectively equivalent is to scale both so they have the same discriminant, and then
compare Hasse—Witt invariants. In particular, since such forms have odd rank, if ¢;
has discriminant —d; then the form d;¢g; must have discriminant —1. Thus, we can
deal with rational equivalence rather than projective equivalence by associating to a
commensurability class of arithmetic hyperbolic 4-manifolds a (nonunique) quadratic
form ¢ of discriminant —1. Furthermore, by Lemma 2.7 we can take ¢ to be of
quaternion type. We summarize this discussion:

Corollary 3.4 Every commensurability class C of cusped arithmetic hyperbolic 4—
orbifolds has an associated quadratic form q of quaternion type such that H*/SO¢(q,7)
liesin C.

3.3 Systoles

Definition 3.5 (systole length) The systole length of a manifold M is the minimal
length of a closed geodesic in M .

The arithmetic n—manifolds we deal with have a minimum bound on the systole length.
The following proposition is an application of Corollary 1.3 or 1.8 from [8], depending
on whether 7 is even or odd:

Proposition 3.6 There is a lower bound on the systole length of a cusped arithmetic
hyperbolic 4—manifold.

We will use this fact to show that certain finite-volume hyperbolic n—manifolds are
nonarithmetic.

4 Compact flat 3—-manifolds

Recall from Section 3.1 that finite-volume cusped hyperbolic n—manifolds M =H"/ T’
have compact flat (n—1)-manifolds B for the cross-sections of their cusps, and if M
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M (M) Hol(rr1 (M))
3—torus 23 =(t1, 12,83 | t:t; = 1j1;) 1
s-twist  (a.t1. 0.6 |Gt =, 0> =t b =17 atzaT =15") 7.)27

H-W (x,y.z1xy2x7 12 =1, px?y Ix2 =1, xyz=1) [4] Z]27.x7.]27
-twist (.10, |Gt =t,0° =t aba™ =6, ana” =171 7./37
F-twist (.t b | Gt =G0t =t abaT =65, a0 =171) 7./47
s-twist (.t 0.t |Gt =1t a® =t anha™ =6, ana”! =15 '1) 7./67

Table 1: The six orientable compact flat 3—manifolds [21].

is orientable then so is B. Considering only orientable manifolds, this means that
hyperbolic 2— and 3—-manifolds only have one type of cusp cross-section each: S
and T2, respectively. However, there are six orientable compact flat 3—manifolds up
to homeomorphism, which means there are six possible cusp cross-sections for an
orientable finite-volume hyperbolic 4—manifold. We give a brief description of each in
Table 1 and Figure 1.

In the images depicting the fundamental domains, a face without a label is paired with
its opposite face via translation, and labeled faces are paired in such a way that the
labels align. Note that all but the Hantzsche—Wendt manifold differ from the 3—torus by
at most a twist on one of the face pairings. All six flat manifolds are commensurable,
and are in fact finitely covered by the 3—torus.

P b
P d AR
P P F ' .G
R . B
3—torus %—twist Hantzsche—Wendt
J J
[a W
P
a4 a4
1-twist F-twist $-twist

Figure 1: The fundamental domains for the manifolds in Table 1.
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Every isometry of Euclidean 3—space E? is an affine transformation v — Av + w for
some A € SO(3). For a group G < Isom(E?), the holonomy of G is given by

Hol(G) = {4 € SO(3) | (v Av+ w) € G for some w € R*}.

Hol(G) is independent of the faithful representation of G into Isom(IE?).

S Classes with a given cusp

One goal of the next two sections is to prove Theorem 1.1. In fact, we generalize
Theorem 1.1 to a full description of exactly when a commensurability class of cusped
arithmetic hyperbolic 4-manifolds contains a manifold with a given cusp type.

Theorem 5.1 Let C be a commensurability class of cusped arithmetic hyperbolic
4—manifolds, with associated quadratic form ¢, scaled so that the discriminant of g
is —1. Then:
e (C must contain a manifold with a 3—torus cusp, a manifold with a %—twist cusp,
and a manifold with a Hantzsche—Wendt cusp.
e (C contains a manifold with a %—twist cusp if and only if €,(q) = 1 for all
p =1 (mod4).
e (C contains a manifold with a %—twist cusp if and only if €,(q) = 1 for all
p =1 (mod 3). C contains a manifold with a %—twist cusp under the same

condition.

In this section, we prove the positive portion of the theorem, namely that C does indeed

contain certain cusp types.

Proposition 5.2 Let C be a commensurability class of arithmetic hyperbolic 4—
manifolds, with associated quadratic form g of discriminant —1. Then:
e C must contain a manifold with a 3—torus cusp, a manifold with a %—tWist cusp,
and a manifold with a Hantzsche—Wendt cusp.
e Ifep(g)=1forall p=1 (mod4), then C contains a manifold with a %—tWiSt
cusp.
e Ifep(g)=1forall p=1 (mod3), then C contains a manifold with a %—twist
cusp and a manifold with a %—twist cusp.

Our primary tool for showing that a commensurability class must contain a given cusp
type is the algorithm given by Long and Reid [13]. Given a compact flat n—manifold B,
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this algorithm yields an arithmetic hyperbolic (n+1)—orbifold with a cusp of type B. We
can always find an (n+1)-manifold with a cusp of type B covering this orbifold by [15].

Given a cusp type B of dimension n, the algorithm works as follows. Consider the
holonomy group of 1 (B). We can find a faithful representation of Hol(sr; (B)) into
GL(n, Z), which yields an embedding Hol (st (B)) C GL(n, Z). Further, we can choose
a signature-(7, 0) quadratic form ¢, that is invariant under Hol(sz{ (B)) by considering
an arbitrary signature-(n, 0) quadratic form r and taking the average of all the quadratic
forms r o A over A € Hol(;r1(B)), since Hol(sr{(B)) is finite. Then, using linear
algebra, the algorithm extends the representation into GL(n + 2, Z) in such a way that
Hol(7r1(B)) leaves a quadratic form ¢’ rationally equivalent to ¢, @ (1, —1) invariant.
As a result, we see that some cover of H”*!/SOq(¢’, Z) must contain a cusp of type B,
and is commensurable to H”*!/SO¢ (g, ® (1, —1), Z).

By investigating properties of quadratic forms ¢, invariant under Hol(mr{(B)), we
characterize the commensurability classes of arithmetic hyperbolic manifolds that can
be output by this algorithm. Since we’re working with flat 3—manifolds and hyperbolic
4—manifolds, we apply the algorithm with n = 3.

Proof of Proposition 5.2 Given the commensurability class C, we can choose a
quadratic form ¢ = (x, y, xy, 1, —1) of quaternion type such that H*/SO¢ (¢, Z) € C
by Lemma 2.7. Note that ¢ has discriminant —1. We can compute the Hasse—Witt
invariants €,(q).

First let B be the 3—torus, %—twist, or Hantzsche—Wendt manifold. These have holo-
nomy groups of 1, Z /27, and Z /27 x 7./ 27, respectively. Each holonomy group has
a representation into GL(3, R) consisting solely of diagonal matrices with 1 along
the diagonal. In particular, these representations fix any quadratic form {a, b, ab) of
rank 3. Thus, we can apply the Long—Reid algorithm to find a representation of the
corresponding Bieberbach group into SO ({a, b,ab,k,—k), 7). Seta = x and b = y.
Then (a, b, ab, k,—k) is rationally equivalent to (@, b,ab,1,—1) = (x, y,xy, 1,—1).
This yields an orbifold commensurable to H*/SOq (g, Z) that has the desired cusp
type. By [15], there is also a manifold with the desired cusp type.

Next, consider the %—twist cusp. This flat manifold has holonomy group Z /47, and
has a representation p into SL(3, Z) mapping its generator g4 to

010

p(ga)=1-100
001
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This holonomy preserves any quadratic form g3 = (a, a, b), so the Long—Reid al-
gorithm finds a representation of B into SOg({a,a, b, k,—k), Z), which is commen-
surable to SOg({ab,ab,1,1,—1),7Z). The Hasse—Witt invariant at p of the form
q' = (ab,ab, 1,1, —1) is equal to the Hilbert symbol (ab,ab),. Let ab = up®, where
u is an integer not divisible by p. By definition, for p > 2 and 7(p) = %( p—1),
_ r(p)aa (U\E [ U\¥ _ (p)a
(ab, ab), = (—1)*®) (;) (;) = (=1)*Pe,
Note that T(p) is even if p = 1 (mod 4) and odd if p = 3 (mod 4).

Soif p =1 (mod 4), we always have €,(¢") = (ab,ab), = 1. But if p =3 (mod 4),
then €,(¢") = —1 if and only if p divides ab an odd number of times. Given the finite set
of primes p; > 2 such that €,(¢) =—1, as long as there is no p; such that p; =1 (mod 4),
we can now ensure that there is a quadratic form ¢” = (]_[ pi-[1pri, 1,1, —1) such that
€p(q”) = €p(q). Note that the identity [[€,(g) = 1 ensures that €;(¢”) = €2(g) as
well. Thus ¢” and ¢g both have the same Hasse-Witt invariants, as well as discriminant
—1 and signature (4, 1). Hence ¢” is rationally equivalent to ¢ and, taking ab =[] p;,
we see that H*/SOg(g”, Z) must have a finite cover with a %—twist cusp. Thus we can
construct a manifold in C with a %—twist cusp.

The arguments for the %—twist and the %—twist cusps are similar. The holonomy groups
7./37 and 7 /67 have representations p3 and pg into SL(3, Z) mapping the respective
generators g3 and g¢ as

-1 —-10 0-10
p3(g3)=| 1 00| and pg(ge)=|1 10
0 01 0 01

Under this representation, both holonomy groups preserve quadratic forms of the
form ¢’(x) = 4axf + 4ax§ —4axixy + 3bx§. With some effort, we can show that
this form is projectively equivalent to ¢” = (ab,3ab,3,1,—1). We then compute
that €,(¢”) = (ab, 3ab),(3,3),. The second Hilbert symbol (3, 3), is equal to —1
at p = 2,3 and equal to 1 everywhere else. To compute the first Hilbert symbol
(ab, 3ab),, we consider the case p = 3 separately from p # 2, 3. (We’ll ignore p =2
for now since the identity [ [ €,(q) = [ €p(¢”) = 1 will ensure that €3(¢”) = €2(q) if
all other Hasse—Witt invariants are equal.)

For p = 3, suppose ab = 3%u where u is not divisible by 3. Then 3ab = 3**1u, so

s = oo (1) (4 < (1),

Thus (ab, 3ab); =1 if u =1 (mod 3) and —1 if u =2 (mod 3).
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For p # 3, let ab = p*u where u is not divisible by p, so that 3ab = p®(3u). Then

a0 = (4 ()= (a7 (2)

Combining (—1)7?) with quadratic reciprocity, we can see that, for p > 2, (ab, 3ab) p=
1%if p =1 (mod 3) and (—1)* if p = 2 (mod 3). Consider the finite set of primes
pi > 2 such that €,(q) = —1. As long as there is no p; such that p; = 1 (mod 3),
we can take ab = [ [ p; over all p; = 2 (mod 3). Additionally, we can multiply ab
by 2 if necessary to set ab = 1 or 2 (mod 3) to obtain the desired value of €3(q”).
Now €,(q) = €,(¢q") for all p > 2 and, as before, €;(¢) = €2(¢”) due to the identity
[Tep(q9) =11€p(¢”) = 1. Now ¢” is rationally equivalent to ¢, and from SO¢(¢”, Z)
1

we can construct a manifold in C with a 3 twist or %—twist cusp, as desired. O

Remark 5.3 In addition to the six orientable compact flat 3—manifolds, there are four
nonorientable ones: two double-covered by the 3—torus and two double-covered by
the %—twist. A thorough description of these manifolds can be found in [6]. Notably,
all of them have holonomies generated by orthogonal reflections. In particular, this
means each fundamental group has a holonomy representation into GL(3, R) with
image consisting of diagonal matrices with =1 along the diagonal. Thus, for the same
reasons as the 3—torus, %—twist, and Hantzsche—~Wendt manifold, all four nonorientable
compact flat 3—manifolds occur as a cusp cross-section in every commensurability class
of arithmetic hyperbolic 4-manifolds.

6 Classes without a given cusp

The goal of this section is to prove the negative part of Theorem 5.1, that is, to obstruct
some cusp types from occurring in some commensurability classes of hyperbolic 4—
manifolds. This obstruction will yield infinitely many commensurability classes that
avoid each of the %—twist, %—twist, and %—twist.

Proposition 6.1 Let C be a commensurability class of arithmetic hyperbolic 4—
manifolds, with associated quadratic form g with discriminant —1. Then:

e Ifep(g) # 1 for some p =1 (mod 4), then C does not contain a manifold with
a %—twist cusp.

e Ifey(q) # 1 forsome p =1 (mod 3), then C contains neither a manifold with a
%—twist cusp, nor a manifold with a %—twist cusp.
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Proof By Lemma 2.7, we can take g to be of quaternion form. Thus, without loss of
generality, we can set ¢ = (a, b, ab, 1,—1) for some positive integers a and b.

Let B be the cusp type that we want to obstruct, and let A = 1 (B). We will show that
it suffices to obstruct the existence of an injective homomorphism A — SOg (g, Q).

For the sake of contradiction, suppose C contains a manifold M with the cusp type in
question. This yields an embedding A — 71 (M) =T". Because I" is an arithmetic lattice
in SO(4, 1), we know that I" lies in the Q—points of some quadratic form ¢’ [3]. Because
M € C, g and ¢’ are projectively equivalent. Thus by Proposition 3.3, there exists a
matrix F € GL(5, Q) such that FA F~! is commensurable with SOy (g, Z) and embeds
into SO (g, Q). Note that A acts on a horosphere centered at some point y in 9H#.

Since y is fixed by isometries that lie in SO¢(q, Z), we can take y itself to lie in Q.
Additionally, since SO (¢, Q) acts transitively on the rational points of 9H#*, we can
choose y to be (0,0,0, 1, 1) without loss of generality. Specifically, we can conjugate
the image of A by some matrix A’ € SOg(¢, Q) such that A’y = yo = (0,0,0,1,1) to
get a new rational representation of A acting on a horosphere H centered at yg.

Let g3 = (a, b, ab) be the quadratic form such that g3 @ (1, —1) = ¢g. Given any affine
transformation ¢ € Isom(E?), we can write the isometry as ¢(v) = Av + w, with
A €S0¢(q3,R). Then we can map ¢ to an action p(¢) on H by taking p to be induced
by an isometry from E3 to H. Imitating [22], we can write p as

A w —w
ple): v | f(W)'A 1+ 3q3(w) —343(w) |v.
fw)y'4 Igs(w) 1-1g3(w)

Here £ is the linear function f(x) = (axy,bx,,abx3)" such that f(x)’x = ¢3(x) for
any x € R3. Since one can recover 4 from the top left and —w from the top right
of p(¢), we see that p must be injective. One can check through manual calculation that
o is a homomorphism, and that all elements in p(Isom(IE?)) preserve both ¢ and yy,
and thus act on H. All isometries of H must be of the form p(¢) above for some
¢ € Isom(E?), so in particular, every element of p(A) has this form.

If A is the fundamental group of the %—twist, %—twist, or %—twist cusp, it has holonomy
group 7 /37, 7./4Z, or 7 /67, respectively. The holonomy is represented by the
matrix A above, so in order to embed A into SOg(g, Q) there must exist an isometry ¢
with A that is 3—torsion or 4—torsion. Since A is a submatrix of p(¢), which has rational
entries, it must have rational entries. Thus, if we can obstruct 3—torsion or 4—torsion
from SOy (g3, Q), then we can obstruct the existence of an embedding A — SOq(g, Q).
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Now consider the quaternion algebra Q = ((—a, —b)/Q). The norm form of Qy is
given by ax12 + bx% +abx§ = ¢3(x), so by Theorem 2.11, SO(g3, Q) is isomorphic to
Q*/Z(Q%*). Thus, if we obstruct torsion of some degree from appearing in Q*/ Z(Q*),
then we obstruct it from SOg (g3, Q) < SO(g3, Q) as well.

Now we apply Theorem 2.13. For n = 3 and n = 4, clearly &, + £, ! € Q. So
there are no order-n elements of Q*/Z(Q*) if and only if Q(&,) does not embed
in Q. Furthermore, by Theorem 2.14, the field Q(&,) embeds in Q if and only if
Q(én) ®q Qp is a field for each p € Ram(Q). The latter occurs exactly when p does
not split in Q(&,). Thus, in order to obstruct n—torsion, we wish to show there is some
p € Ram(Q) such that p splits in Q(&,).

To check this condition, we must first determine when p € Ram(Q). If neither —a nor
—b is divisible by p an odd number of times, then p does not ramify by Theorem 2.15(1).
Note that if both —a and —b are divisible by p an odd number of times, then ab is
not. Since a, b, and ab are interchangeable when constructing Q, in this case we can
pass to Q' = ((—a, —ab)/Q) to ensure that p divides only one of —a and —b an odd
number of times. Without loss of generality, say p divides —a but not —b. Then, by
Theorem 2.15(2), p ramifies if and only if b is a nonsquare modulo p.

We claim that p ramifies over Q exactly when the Hasse—Witt invariant €, (¢) equals —1.
Using the definitions of the Hasse—Witt invariant and the Hilbert symbol, we can
expand €,(gq). Leta = p%*j and b = pPk with j and k relatively prime to p. Then
ab = p*+Bjk, so

ep(q) =€p({a,b,ab,1,—1)) = (a,b)p(ab,ab),

- [(_1)aﬂr(p) (i)'3 (ﬁﬂ |:(_1)(a+ﬂ)(a+ﬂ)r(p) ( jk )“+ﬂ ( jk )a+ﬂ}
p) \p » p
_ (1) DB ratp) (i)ﬁ ( k )“.
r) \p

If both o and B are even, then €,(q) = (—1)°(j/p)°(k/p)° = 1. As shown above,
p does not ramify over Q in this case.

If both « and B are odd, then we can choose to use Q' = ((—a, —ab)/Q) as before. So,
unless both & and f are even, without loss of generality we can assume « is odd and
B is even. Then €,(q) = (—1)*@)(k/ p). Note that (—1/p) is 1 when p =1 (mod 4)
and —1 when p = 3 (mod 4), so (—1)*?) = (—1/p). Thus, since b = pPk with g
even, we have €,(q) = (—1/p)(k/p) = (=k/p) = (—b/ p). We already showed that
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p ramifies over Q exactly when —b is a nonsquare modulo p in this case, which is
equivalent to the condition €,(q) = (—b/p) = —1. Now, in all cases, p ramifies over
Q exactly when €,(q) = —1.

Next, we investigate when p splits in Q(&,). When n = 3 or 6 we have Q(&,) =
Q(+/=3), and if n = 4 we have Q(&,) = Q(~/—1). It is well known that p splits in
Q(+/a) if and only if @ is a quadratic residue modulo p, so p splits in Q(+/—3) exactly
when p =1 (mod 3) and in Q(+/—1) exactly when p = 1 (mod 4).

Now, suppose there is some prime p such that €,(¢) = —1 and p =1 (mod 4). Then,
p ramifies over Q and p splits in Q(&,). Thus, as stated above, SOy(¢3, Q) =~
0*/Z(Q%) has no 4-torsion. As a result, the %—twist group B cannot possibly embed
into SOg(¢q, Q), so there is no %—twist cusp in the associated commensurability class
of hyperbolic 4-manifolds. In fact, this same argument suffices to show there are no
%—twist cusps in the class of orbifolds, either.

By similar logic, we can also see that if there is a prime p such that €,(¢) = —1 and
p = 1 (mod 3), then there is no 3—torsion in SOy(¢3, Q) = Q*/Z(Q*). Thus the
commensurability class of hyperbolic 4-manifolds (or orbifolds) associated to ¢ must
avoid %—twist cusps and %—twist cusps. O

Between Propositions 5.2 and 6.1, we’ve exhausted all possible commensurability
classes for each cusp type. This suffices to prove Theorem 5.1. Theorem 1.1 follows.

Example 6.2 For g6 = (1, 1,7,7,—1) the commensurability class of H*/SOq(gs, Z)
avoids the %—twist and %—twist, since €7(qg) = —1 and 7 = 1 (mod 3).

Example 6.3 For g4 =(1,2,5, 10, —1) the commensurability class of H* /SO (¢4, Z)
avoids the %—twist, since €5(q4) = —1 and 5 =1 (mod 4).

7 Obstructions in higher dimensions

Using Theorem 5.1, we can prove a version of Theorem 1.1 one dimension higher.
Namely, some commensurability classes of hyperbolic 5—manifolds avoid some cusp
types associated to flat 4—manifolds. Our strategy will be to show that an arithmetic
hyperbolic 5—manifold with cusp B x S must contain a 4-dimensional totally geodesic
submanifold with cusp B, and then manipulate Hasse—Witt invariants to show that,
sometimes, no such submanifold can contain B as a cusp.
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Proposition 7.1 Let B be either the %—twist, l—twist, or %—twist. Then any arithmetic
hyperbolic 5—-manifold M with B x S! as a cusp cross-section contains an immersed
finite-volume totally geodesic submanifold W of codimension 1 with B as a cusp
cross-section.

Proof LetI' be the fundamental group of M. As M is arithmetic, it is commensurable
to some orbifold H?>/SO¢(q, Z). Let y be a light-like vector in Hg that lies above the
B x S cusp under the universal covering map of M.

The parabolic elements of I' that fix y act on a horosphere E centered at y which
is isomorphic to E4. Without loss of generality, we can take E to be the horosphere
passing through (0, 0, 0,0, 0, 1) by conjugating by an element of SO (g, Q). Note that
Stabr () is isomorphic to 71 (B x S') = 1 (B) x Z, which acts on E3 x E'. We can
choose a flat subspace P’ C E of dimension 3 such that H = Stabr(y) N Stabp (P’)
is isomorphic to w1 (B). Let yy, ¥», and y3 be three translations that generate the
translation subgroup of H.

Unlike in Isom™ (H*), we can’t assume that each y; lies in SO(gq, Q) fori = 1,2, 3.
However, we can argue as follows. The y; act by translation on E, and so are parabolic
translations. One can check, by applying p from Proposition 6.1 to any translation
v — Iv + w, that this means each j; must be unipotent as an element of SOg (g, R).
For each y;, there is some positive integer k such that )/l.k lies in SOy (q, Z), since I is
commensurable to SOy (¢, Z). Hence, the field of coefficients of yl-k , denoted by F ()/l.k),
is Q. This allows us to argue that F(y;) = Q, and so y; € SOg(q, Q). The justification
of the previous sentence is somewhat technical, so we defer it to Lemma 7.6.

The three translations y; act on the three-dimensional subspace P’ C E. Since each
vi € SOg(q. Q), P’ must sit rationally in £ C H;. To see this, pick any rational point
in E,say O = (0,0,0,0, 1), and notice that y;(0) € Q7 for all i.

The four points O, y1(0), y2(0), and y3(0), together with y a rational line in
B]H[g C R®, determine a four-dimensional hyperplane P which must also sit rationally
in H 3. Hence, after an appropriate change of basis over QQ, the quadratic form ¢ restricts
to a rank-5 form f on the 5—dimensional subspace V C R® containing P. Then since P
consists of exactly the points in V' satisfying f(x) =¢(x) =—1and x¢ >0, P sitsin V'
as Hj;. In particular, this means Isom™ (P) = SOq( £, R), so Isom™ (P)NSOy (g, Z) =
SO ( f,Z). Note that this group is commensurable to Isom™ (P) N T, as SOy(q, Z)
is commensurable to I'. Thus Isom™ (P) N T is arithmetic and its action on P has
finite covolume. Furthermore, Isom™ (P) N Stabr(y) = Isom™ (P’) N Stabr(y) = H,
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so W = P/(Isom™(P)NT) has a cusp at y with cross-section B. Now, W is an
immersed finite-volume totally geodesic submanifold of M with cusp B. O

This completes the first half of the proof. For the second, using Hasse—Witt invariants
we prove that we should not find any totally geodesic 4—manifolds in our 5-manifold
class with a cusp of type B, yielding a contradiction. The next step, then, is to find the
Hasse—Witt invariants associated to such submanifolds.

Proposition 7.2 Let g be a quadratic form of signature (5, 1), discriminant —1, and
Hasse—Witt invariants €,(q), and let M be a hyperbolic 5—-manifold commensurable to
H3/SOq(q. Z). Then any immersed finite-volume totally geodesic 4—dimensional sub-
manifold W C M must be commensurable to H* /SO ( f, Z), where f is a quadratic
form of signature (4, 1), discriminant —1, and Hasse—Witt invariants €, ( ') = €,(q).

Proof Since M is arithmetic, W is also arithmetic [17, Theorem 3.2]. Thus, we know
W is commensurable to H*/SO( £, Z) for some quadratic form f of signature (4, 1),
which we can scale to ensure discriminant —1. All that remains to be shown is that
€p(f) = €p(q) at all primes p.

Let f = (a,b,c,d,—abcd) over a quadratic space with basis {vy,...,vs}. Since
W is an arithmetic manifold commensurable to H*/SOq( £, Z), we know (W) <
SO0 ( £, Q) [3]. In particular, 7r; (W) acts on H? in such a way that it preserves f and
a 4—dimensional hyperplane P. Taking a vector w transverse to P and adding it to the
basis above, we have a basis {vy, ..., vs, w} upon which we can define our quadratic
form ¢. Though ¢ may not be diagonal, we can use the Gram—Schmidt process to find a
basis which makes ¢ diagonal. And, since ¢ restricted to span({vy, ..., vs}) is already
diagonal, the only basis element that is affected is w. Thus, since ¢ has signature (5, 1),
it can be written as a diagonal form (a, b, ¢, d, —abcd, e) for some positive e € Z. Since
we started with the assumption that the discriminant of ¢ is —1, we can conclude e = 1.

It is now easy to show that the Hasse—Witt invariants of f = (a,b,c,d, —abcd) are
equal to the Hasse—Witt invariants of ¢ = (a, b, ¢, d,—abcd, 1). Since any Hilbert
symbol (1, x), equals 1,

ep(q) = (a,b)p(a,c)p(a,d)p(a,—abed)p(b,c)p(b,d)p(b, —abed)p(c,d)y
(¢, —abcd)p(d, —abed)p(1,a)p(1,0)p(1,¢)p(1,d)p(1, —abed),
=(a,b)p(a,c)pla,d)p(a,—abcd)p(b,c)p(b,d)p(b,—abed)y(c, d)p
(¢, —abed)p(d, —abed)),
=¢p(f). O
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Theorem 7.3 Let B be either the %—twist, %—twist, or %—twist. Then there exist
infinitely many commensurability classes of arithmetic hyperbolic 5—manifolds that
contain no manifolds with cusp cross-section given by B x S!.

Proof Consider any quadratic form ¢ of signature (5, 1) and discriminant —1. We
claim that if €,(¢) = —1 for any p =1 (mod 3) then the commensurability class C
of H%/SO0¢(q,Z) cannot contain B x S! for B the %—twist or the %—twist, and if
€p(q) = —1 for any p =1 (mod 4) then this commensurability class cannot contain
B x S! for B the 1-twist.

By Proposition 7.1, any manifold M in C witha BxS! cusp must contain an immersed
totally geodesic submanifold W with a B cusp. By Proposition 7.2, W must be
commensurable to some H* /SOy (¢, Z) with €p(q’) = €p(q) for all primes p. But by
Theorem 5.1, a manifold with these Hasse—Witt invariants cannot have a cusp with cross-
section B. Thus we’ve reached a contradiction, and such an M cannot existin C. O

It is tempting to apply this argument repeatedly to find commensurability classes in
higher-dimensional hyperbolic manifolds that avoid certain cusp types. Unfortunately,
this argument fails to work even in dimension 6, because Proposition 7.2 fails to
generalize. Proposition 7.2 relies on the fact that we can rescale a quadratic form of
rank 5 to control the discriminant. In rank 6, rescaling a quadratic form by k& multiplies
the discriminant by k©, so the discriminant does not change in Q*/(Q*)2.

In fact, we can prove that repeatedly taking products of a compact flat manifold B with
S will eventually yield a manifold that occurs as a cusp cross-section in all arithmetic
hyperbolic manifolds of the appropriate dimension. Thus, if we want to find cusp types
with obstructions in higher dimensions, we’ll have to use nontrivial high-dimensional
flat manifolds.

Theorem 7.4 Let B be a compact flat n—manifold. Then B x (S Yk occurs as a
cusp cross-section in every commensurability class C of cusped arithmetic hyperbolic
(n+k+1)—manifolds of simplest type for sufficiently high k.

Proof First, we prove the result for n + k + 1 even. When n + k + 1 is even, any
commensurability class C is associated with a quadratic form ¢ of discriminant —1,
since ¢ has odd rank and we can scale ¢ to control the discriminant.

Note that B x (S!)¥ has the same associated holonomy group as B. Since B is a
flat manifold, the holonomy of its fundamental group Hol(7r; (B)) must be finite. As
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such, Hol(sr; (B)) must be a subgroup of a symmetric group S,,. Let ¢, denote
the quadratic form (1,...,1) of rank m. The natural representation o of S, into
permutation matrices in GL(m, Z) clearly preserves ¢,,. Restricting o to Hol(rr; (B)),
we have a representation of Hol(sr{ (B)) that preserves ¢, and must have entries in Z.
Let g;, = ¢m P (1, —1). We can use the Long-Reid algorithm [13] as in Proposition 5.2
to construct an orbifold with cusp cross-section B x (S 1% in the commensurability
class of H"T*+1/S00(¢’ @ - Z) for any positive definite quadratic form ¢’ of rank
n+k—m=>0.

Now, if m is even, let k =m —n+ 3 so thatn +k + 1 =m + 4, and if m is odd, let
k=m-—n+4sothatn +k + 1 =m+ 5. This ensures n + k + 1 is even. Consider
the class C of (n+k+1)-manifolds with quadratic form ¢ of discriminant —1. We can
show that ¢ must be rationally equivalent to a quadratic form f = (a,b,c) ®g,, (or
f={a,b,c,1)®q,, if m is odd) by the same argument used to prove Lemma 2.7, with
4., in the place of (1, —1). Then H"*tk+1 /SOy ( f, Z) lies in C and is commensurable
to a manifold with a cusp of type B x (S1)¥.

When n + k + 1 is odd, we cannot control the discriminant of the quadratic form
g associated to C. However, we can take a rank-(n+k) subform ¢’ of ¢ such that
g = q' @ (x) for some positive integer x. Then we can scale ¢’ by y so that it
has discriminant —1, and, as in the paragraph above, ¢’ is rationally equivalent to
f=(abc)ydq,or f={(ab,c1)®q,. Butnow yg = yq’' ® (xy) is rationally
equivalent to / @ (xy), and we can conclude that H"T4+1/SO¢(f @ (xy)) lies in C
and is commensurable to a manifold with a cusp of type B x (S l)k, as before. O

Corollary 7.5 Every commensurability class C of cusped arithmetic hyperbolic 8—
manifolds contains a manifold with a cusp of type B x (S')3, where B is any compact
flat 3—manifold.

Proof According to Theorem 5.1, every B occurs in the commensurability class of
H*/SO((1,1,1,1,—1), Z). The result follows from the third paragraph of the proof
of Theorem 7.4, using m = 3. |

7.1 Fields of coefficients of unipotent matrices

In proving Proposition 7.1, we used the fact that, for a unipotent matrix M, the field of
coefficients F' (M), defined to be the number field obtained by adjoining the entries of
M to Q, is unchanged under powers of M. We prove this result here:
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Lemma 7.6 For any unipotent matrix M and any positive integerk, F(M) = F(M*).

Proof Because the entries of M are polynomial in the entries of M, F(M*) c F(M).
This holds for any M , so in particular, F(M 9K) ¢ F(M*) for any nonnegative integer a.
We will show that M can be written as a linear combination over QQ of matrices M ak

and thus that each entry in M is polynomial in entries of M k. This will suffice to
show F(M) C F(Mk).

By definition, a unipotent matrix M can be written as M = I + T, where T is a
nilpotent matrix. There is a positive integer / such that T! = 0. Now we can expand
Mk =(I+T) using binomial coefficients:

“ k _\k
k _ i_ i
M=) =200
i=0 i=0
Consider the vector space V over Q consisting of the matrices spanned by all 7" for
nonnegative integers i. V must have dimension at most /, since only / of the T* are
nonzero. We will show that if 7/ = 0 then the / + 1 matrices M fora € {0,1,...,1}
span V. Since M € V, this will show that M is a linear combination of these M ak

Choose some 7 € Z T, and consider the linear combination of matrices M ak

n n ak
;(_l)n-i-a(’a’l)Mak _ ;(_l)n—i-a(’;) |:b2=%)(alj€)Tbi|
n ak

=2 e () ()
a=0b=0

-5 3 )
b=0a=[b/k]

SR POEAICHIR

Note that when we interchange the summations in line three, we see that a is indexed
from [b/ k] to n. However, when ak < b, (“Zf) = 0 anyway, so we can start ¢ at 0 in
line four to get the same value.

The coefficient of T in this sum is given by Y r_,(—1)"*¢ ) (alf‘ ). Note that for
fixed b, (2) is a degree-b polynomial in ¢, defined over all nonnegative integers . When
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b < n, the coefficient of 70 is 0; we apply Lemma 7.7, proven below, with f(z) = (2)
and y = k. Since the function g}’k (x) is uniformly O, it is 0 at x = 0 in particular.
Furthermore, when b = n, (}) is a degree-n polynomial, a,x" + ap—1 X" "1 + -+ + aq.
The coefficient of 7% then must be a,n!(—k)" # 0, by Lemma 7.7.

Now we can use induction on 7 to construct each 7" as a linear combination of M2k
For the base case, consider i =/ — 1. Choose n =/ — 1, and in the above summation,
T? has coefficient 0 when » <n=1—1, and T? = 0 when b > n because b > /. Thus
we’ve obtained a rational multiple of T'=!, which we can rescale to write 7'~! as a
linear combination of M

For the induction step, assume 7/ can be written as such a linear combination for all
i < j <I—1. Consider the linear combination above with n = i. Then, by Lemma 7.7,
the coefficients of T2 are 0 for b < i, nonzero for b =i, and Tb =0 for b > 1. Since
T® can already be written as a linear combination for i < b <[ — 1 by the induction
hypothesis we can subtract out the appropriate linear combinations to leave only a
multiple of 7.

This suffices to show that every T is a linear combination of M ak " and thus M =
T° + T is some linear combination of matrices M K. Since F(M ) c F(M¥) for
all ¢ and we have already proven F(M*) c F(M), we conclude F(M) = F(M*). o

Finally, we prove here the technical result that allowed us to conclude certain coefficients

Wwere Zero or nonzero:
Lemma 7.7 Let f:R — R be a function, and fix y € R and n € Z*. Let
n

n
g @ =YD +an)(]).
a=0

If f is a polynomial of degree less than n, then g}’y = 0 uniformly. Furthermore, if
f(x) = x", then g}’y is the constant function n!(—y)".

Proof First, we prove that g;’y = 0 when f is a polynomial of degree less than n by
induction on n. For the base case, consider n = 1. In order for f to be a polynomial of
degree less than 1 it must be a constant function f(x) = c¢. Then

1
g}’y(x) = Z(—l)“f(x +ay)(cll) =f(x)— f(x+y)=c—c=0.

a=0
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Now assume the statement holds for n — 1. We can compute

g ()= ;)(—1)“f(x+ay)(2)
a

n n—1
=Z(—l)“f(xwy)(Z:})+Z(—1)“f(x+ay>(”
a=1 =

n—1
==Y 0 frtan(” )+Z( D f(x+ay)

a=0

)

)
("
1 (el () = [ D )ai= / o () di

The second line above follows from the identity (%) = (~}) + (", "'). The final equality
follows from the fact that g;’y is a particular linear combination of f(x + ay), with
fixed coefficients depending on 7; concisely, g is linear in f. Since f is a polynomial
of degree less than n, its derivative f” is a polynomial of degree less than n — 1. Thus,

I fr Ly (t) = 0 everywhere by induction, and therefore g f’y =0.

Next, we prove that g f’y = n!(—y)" for f = x" by induction on x. For the base case,
consider n = 1. Then

1
700 = LD rap)(}) =0 -Gty =-

Now assume the statement holds for n — 1. Let f(x) = x" and h(x) = x"~!, so that
f' =nh. Then

X X
o= [ g od=n [ g wa
x+y XTy

=n /x (n—DW(=y)"Vdt =nl(—y)".

x+y
We proved the first equality in the first part of this proof. The rest follows from the fact
that g;,y is linear in £, and the induction hypothesis. i

8 Commensurability classes of nonarithmetic manifolds

We can turn arithmetic commensurability classes that avoid certain cusp types into
nonarithmetic ones by “inbreeding” the arithmetic manifolds with themselves, in a
manner introduced by Agol [1]. We mimic the argument in [1] to construct a manifold
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with arbitrarily short geodesic, which must be nonarithmetic by Proposition 3.6. Further,
this nonarithmetic group is constructed in such a way that it still lies in the Q—points of
the original quadratic form, so we can conclude by the same argument as our proof of
Proposition 6.1 that it avoids the same cusps. Since this construction can be performed
on any of the infinitely many classes that avoid the %—twist, %—twist, and %—twist cusps,

there are infinitely many nonarithmetic commensurability classes that avoid such cusps.

Proof of Theorem 1.2 Let ¢ be a quadratic form such that the commensurability class
of H*/S0¢ (g, Z) does not contain any manifolds or orbifolds with a certain cusp B.
Let M be any manifold in this commensurability class, and I' its fundamental group.
By [5, Theorem 4.2], there exist infinitely many closed totally geodesic hyperbolic
3—-manifolds immersed in M . These 3—manifolds lift to copies of H? in H#; pick one
such copy and call it P. Since the immersed 3—manifold is compact, H =Isom(P)NT
acts cocompactly on P.

By Margulis’ commensurability criterion for arithmeticity [19, Theorem 16.3.3], since
I' is arithmetic, its commensurator Comm(I") contains PO(g, Q). Thus for any € > 0,
we can choose y € Comm(I") such that y(P) is disjoint from P and the distance
d(P,y(P)) is less than %e. Since y € Comm(I'), the stabilizer of y(P), namely
(yHy~ ') NT, acts cocompactly on y(P). Then H, = Isom(y(P)) N " must act
cocompactly on y (P), since (yHy " 1)NT < H,.

Let g be the geodesic segment orthogonal to both P and y (P) intersecting P at p,
and y(P) at p,. Because H is discrete and residually finite, as a finitely generated
linear group we can choose a finite-index subgroup H; < H such that d(pq, h(p1)) >
2 arctanh(sech(%e)) for all nonidentity # € H;. Similarly, choose H, < H,, such that
d(p2, h(py)) > 2arctanh(sech(%e)) for all nonidentity & € H,. Let ¥; = P/H; and
Y, = y(P)/H,. Let E; C H* be the Dirichlet domain of H; centered at p;.

Now, U = X Up, g Up, X5 is an embedded compact spine for £; N E,, with one
component of H*— P retracting to X1, the opposite component of H*—y ( P) retracting
to X», and the space in between P and y (P) retracting to g.

We claim G := (H;, H,) = H; %« H, and G is geometrically finite, and defer the proof
to Lemma 8.1.

Then G is separable in I' [2]. By Scott’s separability criterion [24], for some finite
index subgroup It < I', U embeds in H*/I'. Thus, ¥, and ¥, embed in H*/T}.
Now let N = (H*/T}) — (Z; U £5), and D be the double of N along its boundary.
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D is a hyperbolic manifold, since N is a hyperbolic manifold with totally geodesic
boundary. Note that the double of g is a closed geodesic of length bounded by e, since
g is perpendicular to 31 and X,. Through choice of €, we can construct D so that it
has a geodesic of arbitrarily small length. Thus, by Proposition 3.6, we can construct
D to be nonarithmetic.

Next, we claim that 771 (D) < SOg(gq, Q). First, note that the universal cover of N is
H* with some half-spaces removed, with its group action given by I';. By construction,
I < T <SOy(g, Q). Thus, we can find a fundamental domain S for N such that all
the face pairings of S lie in SOy (¢, Q). We can construct a fundamental domain for D
by taking two copies of S glued together at one of the boundary faces F that lifts
to X1, and pairing the remaining boundary faces by mapping each to its counterpart
in the other copy of S. We will show that 71 (D) < SOy (¢, Q) by showing that these
face pairings, which generate 71 (D), each lie in SOq(g, Q).

By construction, the face pairings ¢; on the original copy of S must lie in SOy (g, Q).
The corresponding face pairings in the other copy of S are given by rp¢;rp, where rp
is reflection across P. Recall that P was constructed as a hyperplane perpendicular to
some v € Q7, so the reflection rp across P lies in SOg (g, Q). Thus each rp¢;rp must
also lie in SOq(g, Q).

The remaining face pairings are the new ones formed from identifying boundary
components of N. To pair a boundary component C with its corresponding mirror
component, we can use the isometry rprg, where rr is the reflection across the
hyperplane F containing C. Note that F must be the image of y(P) under some

1y~1rpya. Since we chose y to lie in

isometry o € 7 (N), sorp = a_lry(p)oe =a”
SOp(¢, Q) and o must be an element of 7{(N), rr lies in SOqy(g, Q) as well. Now
rrrp lies in SOy (g, Q), and thus every face pairing does as well. Therefore, 771 (D) is

generated by elements of SOg (g, Q), and so 7; (D) < SOy (g, Q).

Now, if we choose the quadratic form ¢ in such a way that the commensurability class
of H*/S0¢ (g, Q) avoids cusps with cross-section B, then D cannot have cusps with
cross-section B, using the same argument as in the proof of Proposition 6.1. In this
way, we use Theorem 1.1 to construct infinitely many commensurability classes of
nonarithmetic manifolds that avoid the %—twist, %—twist, and %—twist. O

The same proof can be applied to provide examples of commensurability classes of
nonarithmetic hyperbolic 5-manifolds that avoid certain cusp types, with Theorem 7.3.
We finish the proof by proving the claim we deferred:
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Lemma 8.1 Let H; and H, be as above. Then G = (Hy, H;) is isomorphic to
Hy x Hy, and is geometrically finite.

Proof As in the proof of Theorem 1.2, we let g be the geodesic segment connecting
p1 € P with p, € y(P), meeting both planes perpendicularly. Let L be the 3—
plane that perpendicularly bisects g, and consider the projections pr; : H* — P and
pr,: H* — y(P) that map each point in H* to the closest point on the target 3—plane.
Using hyperbolic geometry (see Theorem 3.5.10 in [23]), we can see that pr; (L) is a
disk with radius bounded by arcsinh(csch(1e)) = arctanh(sech(4¢)) centered at p;.
We defined H; so that d(p;,h(py)) > 2 arctanh(sech(j¢)) for all nonidentity 4 € Hj,
so pry (L) must lie inside E, the Dirichlet domain of H; centered at p;. Thus, since
Hy < Isom(P), L must lie inside of E;. Similarly, L lies in E, as well. Now L
splits H* into two parts, with dE lying in the part with P, and 0E, lying in the part
with y(P). Thus dE| N JE, = @. Since E; and E, are each geometrically finite,
E | N E,, the fundamental domain of G, is geometrically finite too. Also, note that
EiNE, = FE#FE,, with the two sets glued along L, so it’s a fundamental domain of
Hy % Hy. We can conclude that G is geometrically finite and G = H; * H>. m|
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