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ABSTRACT

Alternative design and analysis methods for screening experiments based on locating arrays
are presented. The number of runs in a locating array grows logarithmically based on the
number of factors, providing efficient methods for screening complex engineered systems,
especially those with large numbers of categorical factors having different numbers of lev-
els. Our analysis method focuses on levels of factors in the identification of important main
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effects and two-way interactions. We demonstrate the validity of our design and analysis
methods on both well-studied and synthetic data sets and investigate both statistical and
combinatorial properties of locating arrays that appear to be related to their screening

capability.

1. Introduction

When a system is complex, it is challenging to charac-
terize and predict its behavior and performance. The
power grid, the Internet, and transportation networks
are examples of complex engineered networks that
play an increasingly critical role in society. Yet our
understanding of them remains limited (Chiang and
Rao 2012).

Screening is often the first step in experimentation
with a system, and its objective is to identify impor-
tant factors that significantly impact the response vari-
ables. Screening experiments aim to eliminate factors
that are not involved in any active effect, reducing the
number of factors included in further experimenta-
tion; screening need not ensure that all remaining fac-
tors and their effects are important.

The size of the design spaces of complex systems
dictates the need for scalable screening designs.
Supersaturated designs are among the smallest screen-
ing designs, with the expected number of runs grow-
ing linearly based on the number of factors (Gilmour
2006; Li and Lin 2003; Lin 1993; Montgomery 2017;
Nguyen 1996). Some screening designs aggregate the
factors into groups, such as sequential bifurcation
(Kleijnen, Bettonvil, and Persson 2006), to reduce the
size of the design. Grouping requires care to ensure
that factor effects do not cancel each other out. In

studies of the Internet, specific levels of factors are
known to give rise to active effects, and combinations
of levels of factors may be exploited to improve net-
work performance (see, e.g., Djama et al. 2008; Huang
et al. 2020; Melodia and Akyildiz 2010; Sagduyu and
Ephremides 2007; Shin, Park, and Kwon 2014; Song
and Hatzinakos 2007; Vadde and Syrotiuk 2004;
Verikoukis, Alonso, and Giamalis 2005). As systems
become larger and more complex, domain expertise
alone appears to be insufficient to make decisions
concerning factor restriction or grouping, and techni-
ques are needed to identify interactions and cope with
categorical factors.

This paper is the first to demonstrate the feasibility
of a locating array, a type of combinatorial design, as
a screening design to address all these issues.

1.1. Scalability

Locating arrays have an expected number of runs that
grows logarithmically based on the number of factors
(Colbourn and McClary 2008), making it practical for
experiments to consider more factors—an order of
magnitude more—than allowed by traditional screen-
ing methods. This can eliminate the need for

grouping.
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1.2. Level-wise screening

Locating arrays provide t-way coverage, ensuring that
all t-way level combinations are present in the design;
usually, the interest is in ¢ <2 because higher-order
interactions tend to have less effect (Li, Sudarsanam,
and Frey 2006; Montgomery 2017), but the definition
is general. Locating arrays also satisfy a locating prop-
erty that, together with coverage, naturally accommo-
dates categorical factors. The proposed analysis
algorithm using a locating array combined with a
compressive sensing matrix validates the results of
both widely studied experimental data and synthetic
data sets. Information about specific levels of factors
may be informative for experimenters and users of a
system.

Section 2 provides a precise definition of locating
arrays and a discussion of some of their properties.

As Section 3 details, a compressive sensing matrix
(CSM) is used as the model matrix in the analysis
method because it is well suited for identifying level-
wise effects. Although over-parameterized, it is often
effective in identifying a sparse explanation for vari-
ability in a response.

To illustrate these aspects of a CSM, we consider a
contrived example. Table 1a shows a 3? full-factorial
design with two categorical factors A and B, each with
three levels and two responses, y; and y,. The mean
value for y; is y; = %Z?:l y1; = 5. The mean response
of A at level 0, as well as at levels 1 and 2, is 2746 =
5; hence, A does not impact y;. Similarly, B does not
impact y;. Yet each of the two-way interaction effects
of A and B deviates from 5 and impacts y;.

The CSM for this example has 16 columns: three
for each of two factors, one for each of nine two-way
interactions, and one for the intercept; see Table 1b.
When the CSM is used with the proposed screening
method, nine terms with each two-way interaction of
A and B, except A =1, B =1, and the intercept, are
identified for y;. If dummy coding with A =1 and
B =1 as the reference level is used with the proposed
screening method, it also identifies nine terms: A = 0,
A =2, B=0, B=2, and the four two-way interac-
tions between these levels for A and B. Of course,
these results are not wrong, but they may be difficult
to interpret.

The mean value of y, is y; = éZ?:U’Zi = 1. The
mean value for y, is 0 at A=0, A=2, B=0, and
B=2, and it is 3 at A=1 and B = 1. Of the inter-
action terms, only A =1 and B =1 has an impact on
¥2. When the proposed screening method is used with
a CSM, a single interaction term A =1 and B=1 is
identified for y,. If dummy coding with A =1 and

Table 1. (a) Value of responses y; and y, for a 32-design. (b)
The compressive sensing matrix for the design.

()

Run A B » )7
1 0 0 2 0
2 0 1 7 0
3 0 2 6 0
4 1 0 9 0
5 1 1 5 9
6 1 2 1 0
7 2 0 4 0
8 2 1 3 0
9 2 2 8 0
(b)
| A B AB

o1 2 o0 1 2 o0 0 o0 1T 1 1 2 2 2

o 1 2 T2 0 1 2
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+ -+ - - 4+ - - - - - + - - - -
+ - + - - - - - - - 4+ - - -
+ -+ + - - - - - - - - + -
+ - -+ - + - - - - - - - - + -
+ - - + - + - - - - e

B =1 is used as the reference level, it identifies all
nine terms because it lacks A=1 and B=1 as a
choice. Again, the terms identified are not wrong; this
illustrates the issue with sparsity.

In Section 3, the proposed analysis method is pre-
sented in two algorithms. The first algorithm conducts
a search in which many possible models with level-
wise effects are developed to account for variability in
the response. Effects are scored based on their per-
ceived explanatory value. The second algorithm pro-
duces a ranking of the important terms through
aggregation of the scores across the models developed.

Results using the proposed analysis method on
widely studied data sets are presented in Section 4.
The purpose of the study is to demonstrate that the
proposed analysis method is effective, even for experi-
ments with a small number of factors, and agrees with
accepted results. To show that the method does not
depend on the CSM, results using alternative model
matrices are presented in Section 4.3.1. Guidance on
using the tools developed is provided for practitioners
in Section 4.1.

What, then, makes a locating array combined with
the proposed method of analysis effective? Section 5
examines both statistical and combinatorial properties
of designs that contribute to their ability to screen
effectively. Also included is a comparison of the
results of a locating array with a few supersaturated
designs on synthetic data sets. Keeping in mind
the coupling between design and analysis, a better



understanding of such properties and other character-
istics may yield requirements that can be integrated
into the construction of screening designs based on
locating arrays. Finally, conclusions and future
research directions are discussed in Section 6.

2. Locating arrays: Definition and background

Consider a system with k factors, each having levels
chosen from a set S; of cardinality s;, 1 <i<k. An
N x k array A with levels in the ith column chosen
from a set S; has type (s, ...,sx). A t-way level combin-
ation consists of a choice of a set I = {i},...,i;} of t
columns and the selection of levels o; € S; for i € I,
and it is represented as T = (i} = 0y, ..., iy = a;,). For
brevity, we use the term level-wise t-way interaction
for both the t-way level combination and the corre-
sponding model effect.

A covering array of strength t is an N x k array of
type (s1,....s¢) in which, for every N xt subarray,
each level-wise t-way interaction is covered (ie.,
occurs) in at least one run (Hartman 2005). This gen-
eralizes the definition of an orthogonal array, which is
a covering array of strength ¢ in which every inter-
action is covered exactly the same number of times.
Table 2a shows a covering array A; of strength two
for k = 4 factors of type (2,2,3,3). Nine runs suffice
to cover all 37 of the level-wise two-way interactions.
For example, the level-wise two-way interaction (A =
0,C=2) is covered in run five, shaded in blue.
Covering arrays are a commonly used combinatorial
testing method for real-world software (Kuhn, Kacker,
and Lei 2013).

While a covering array of strength t covers all
level-wise t-way interactions, it does not ensure that it
is possible to separate different interactions. For
example, if the response measured for run five of A,
deviates from that in the other runs, it is not possible
to determine which of the three level-wise two-way
interactions, (A =0,B=1), (A=0,C=2), or (C=
2,D = 1), is responsible because each one occurs only
in run five. Locating arrays extend covering arrays to
address this very issue.

A (d,t)-locating array (Colbourn and McClary
2008) is a covering array of strength ¢ of type
(s1,...,5) with an additional property: any set of d
level-wise t-way interactions can be distinguished
from any other such set by appearing in a distinct set
of runs. If an array satisfies this condition, it has the
(d, t)-locating property.

More precisely, for array A and level-wise t-way
interaction T, define p,(T) to be the set of runs of A

JOURNAL OF QUALITY TECHNOLOGY 3

Tab_le 2. (@) A covering array A; of strength 2; (b) a
(1,2)-locating array A,.

() (b)
Run A B C D Run A B C D
1 0 0 0 0 1 0 0 0 0
2 0 0 0 1 2 0 0 1 1
3 0 0 1 0 3 0 0 0 2
4 0 0 1 2 4 0 1 2 1
5 0 1 2 1 5 0 1 2 2
6 1 0 2 2 6 0 1 1 0
7 1 1 0 2 7 0 1 1 1
8 1 1 1 1 8 1 0 2 2
9 1 1 2 0 9 1 0 1 1
10 1 0 0 1
1 1 1 2 0
12 1 1 0 0
13 1 1 1 2

Both arrays have type (2,2,3,3).

in which T is covered. For a set 7 of level-wise t-way
interactions, p,(7) = Urerpa(T). Let Z, be the set of
all level-wise t-way interactions for an array, and let
7, be the set of all level-wise interactions of size at
most t. Consider a level-wise interaction T € Z, of
size less than t. Any level-wise t-way interaction T’ of
size t that contains T necessarily has p,(T') C p,(T).
Call a subset 7" of level-wise t-way interactions in Z,
independent if T, T' € T' does not exist with T C T".

Definition 2.1 ((d,t)-Locating Array (Colbourn and
McClary 2008)).

An array A is (d,t)-locating if, whenever 71,7, C
Z, |Ti|=d, and |7,|=d, it holds that
pa(T1) = pa(T2) <= T =T>.

The definition is extended to permit level-wise
interactions of at most t, writing ¢ in place of ¢, by
permitting that 7,7, C 7, and requiring that 7,
and 7, be independent. For all instances of locating
arrays, the relationships among them, and numerous
examples, see Colbourn and McClary (2008); see also
Section A of the Supplementary Material. For a more
detailed discussion of the combinatorial requirements
of locating arrays as generalizations of covering arrays,
see Colbourn and Syrotiuk (2018).

The covering array A; in Table 2a does not have
the (1,2)-locating property because the set of three
level-wise two-way interactions 7 = {(A =0,B = 1),
(A=0,C=2),(C=2,D=1)} has p, (7)={5}.
However, the array A, in Table 2b is a (1,2)-locating
array. For each level-wise two-way interaction in 7T
there is a run that distinguishes it from the others:
pa((A=0.B=1) = {4567},  pu((d=0,C—
2)) = {4,5}, and p,,((C=2, D= 1)) = {4}.

To quantify the degree to which level-wise t-way
interactions can be distinguished in an array, the
separation between sets of runs for different sets of
level-wise t-way interactions is introduced (Seidel,
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Sarkar, et al. 2018). More precisely, for a positive inte-
ger 0, an array A is (d,t,0)-locating if, whenever
T71,7T,CIy, |T | =4d,|T,2] =d, we have |(p,(71) U
Pa(T2))\ (pa(T1) N p4(T2))| = 0. A (d, 1, 0)-locating
array guarantees that any two sets of d level-wise
t-way interactions are separated by at least 0 runs. By
definition, a locating array has a separation of at least
one: for example, A, is (1,2,1)-locating. A locating
array with larger J is more robust to, for example,
outliers or missing data; however, there is a tradeoff
between large 6 and small array size.

Colbourn and McClary (2008) use covering arrays
of strength ¢ + 1 for constructing (1,¢)-locating arrays
and show that their size grows logarithmically based
on the number of factors. Their rate of growth is
slower than that of orthogonal arrays, which, by the
Rao bound, are known to grow polynomially based on
the number of factors (Hedayat, Sloane, and Stufken
1999). A locating array is preferable to a covering
array for screening because it can separate the effects
of any two t-way level-wise interactions; it is prefer-
able to an orthogonal array because it is more eco-
nomical in terms of run size.

Martinez et al. (2010) establish feasibility condi-
tions for a locating array to exist. Tang, Colbourn,
and Yin (2012) provide a general construction
method for locating arrays. Colbourn and Fan
(2016) develop three recursive constructions for
locating arrays when (d,t) = (1,2). The size-optimal-
ity of a (1,1)-locating array is studied in Colbourn,
Fan, and Horsley (2016). Seidel, Sarkar, et al. (2018)
discuss two randomized algorithms for constructing
locating arrays based on the Stein-Lovdsz-Johnson
paradigm and the Lovasz Local Lemma. The imple-
mentation of these algorithms is publicly available
(Seidel 2019).

3. A level-wise screening method

The proposed level-wise screening method assumes a
locating array as the screening design, with one or
more response vectors. A compressive sensing matrix
(CSM) is used to represent the model matrix for the
level-wise effects. For each response, the analysis
method identifies a user-specified number of level-
wise models that provide the “best” explanations for
the response. Aggregation over these models, usually
restricted to level-wise one- and two-way effects,
results in the identification of important factors for
each response. Each of these steps is described next.

3.1. The screening design and model matrix

A (1,2)-locating array is proposed as the screening
design for two reasons. The coverage and locating
properties of such an array are essential for separating
level-wise one- and two-way effects. And, as Section
3.2 describes, the proposed analysis method recovers
the “strongest” level-wise main effect or two-way
interaction, one iteration at a time.

For the model matrix, a =1 CSM is proposed in
which the columns correspond to an intercept and all
level-wise one- and two-way effects. A similar idea has
been used for the recovery of sparsifiable signals in
communications and storage systems (Baraniuk 2007).

A CSM for an N X k (1,2)-locating array A of type
(s1,...,sx) has as many rows as runs in A, and it has
columns corresponding to the candidate level-wise
terms. Specifically, the CSM M = (m;;) has N rows
and Y i Sit D icicjekSisj 1 columns,  where
my; = +1 if level-wise effect j is covered in the ith run
of A, and m;; = —1 otherwise. A column of all +1 is
required for the intercept. Table 3 shows the CSM for
the locating array A, in Table 2b. For compactness of
representation, we write = instead of *=1.

3.2. The screening method

To achieve a small run size, locating arrays may
exhibit a highly unbalanced structure. This requires
the development of a method for level-wise screening
that can cope with imbalance. (Locating arrays for few
factors are typically close to balanced; imbalance
increases with the number of factors.)

The proposed level-wise screening method has two
steps. First, a breadth-first search (BFS) algorithm is
developed to identify a user-specified number of level-
wise models that are the “best” explanations of a
response using orthogonal matching pursuit (OMP;
Davis, Mallat, and Avellaneda 1997), which is widely
used in signal processing (Tropp and Gilbert 2007) to
recover sparse signals. A matching pursuit is a greedy
algorithm that progressively refines an approximation
of an optimization problem with an iterative proced-
ure instead of solving it optimally. The vector selected
at each iteration by the matching pursuit algorithm is
generally not orthogonal to the previously selected
vectors. In OMP, the approximations are refined by
orthogonalizing the directions of projection.

Second, using the models produced in the BEFS,
the screening algorithm aggregates level-wise main
effects and two-way interactions to identify the candi-
date important effects. The “many-model” method
(Holcomb, Montgomery, and Carlyle 2003) also
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Table 3. The compressive sensing matrix for the locating array A, in Table 2b.

Compressive Sensing Matrix

| A B C D AB AC AD BC 8D D
01010120120011000111000111000111000111000717171222
010101201201201201201201201201201201°2
e e S R +--- - - +----- - - - - - - - - - - - - -
R e Tt AR T R +----- +-- - - - +- - - - - - - - +- - - -
R e e i e - - - - - +--- - - -
i e L e e R + -
R i A R R R +--- - - R +
e el R S R +- - - - -
e e e S e +- - - - - +----- +- - - -
T s Sl S - - - - - T fo- - - - - - - - - +
S e e St R T +--- - - +--+----- - - - - - - - - +- - - -
i R R e -+ - - - - - - +----- +- - - - - - -
e +- - - - - e T +- -
I T e e +---- - - - - - - I
e i e T e e - - - -+ ----=-- + - - - - - + - - -

The columns correspond

retains a fraction of best models based on the error
sum of squares, but it does not appear to scale to
large numbers of factors.

3.2.1. The breadth-first search (BFS) algorithm

The BFS algorithm is parameterized by three user-
specified variables: 71,5405 giving the number of fitted
models that the algorithm returns, #,,, giving the fan-
out (i.e., number of children) of each node in the BFS
tree, and 7yeys giving the number of effects in each of
the final fitted models. In the BEFS tree, the nodes at
level / correspond to fitted models with / effects. The
algorithm generates a BFS tree of height #epm;.

The BES algorithm is given in Algorithm 1; Figure 1
illustrates the BFS tree. The root of the tree is a single
model consisting of the mean response and a score ini-
tialized to zero. A BFS expands each node at level / to
Npew Nodes at level /+ 1 (line 8). For efficiency, the
search tree is stored implicitly, with each model of
length ¢ stored in priority queue g,. Each child
expands the fitted model of its parent by adding the ith
most important effect for 1 <i < n,,, using OMP
(line 9). Specifically, the ith most important effect cor-
responds to the ith effect in the ranking of the absolute
values of the dot products or correlations of each col-
umn in the CSM with the current residual vector. The
model is expanded to include the ith effect. Then the
ordinary least squares (OLS) method (Searle 1987) is
used to update coefficient estimates in the expanded
model, after which the residuals are updated and the
score of the added effect is computed (lines 10-14).
(OMP for logistic regression (Lozano, Swirszcz, and
Abe 2011) can be used for binary responses.)

The increment in R*> of the expanded model that
results from adding the ith effect is used as the score
of the effect. The model, its residuals, its R* and
adjusted R2, and its scores are then inserted into the

to the intercept (I), followed by each main effect and two-way interaction given level-wise.

priority queue of length # + 1 (line 15). The priority
queue of length /41 retains at most #yp4s in
decreasing order by R? rank. These steps are repeated
until a stopping criterion is met. To simplify the algo-
rithm, it stops when each model has ., level-wise
effects (line 5). The model matrix, stopping criterion,
and scoring method of the BFS algorithm can each be
chosen differently. Indeed, even the search tree itself
can be explored using a different method, such as a
branch-and-bound or Least-Absolute Shrinkage and
Selection Operator (LASSO) (Tibshirani 1996) approach
to solving the best-subset selection problem (Miller 1990).

When only level-wise main effects and two-way
interactions are considered, a (1,2)-locating array suffi-
ces. All effects are separable under such a design—that
is, all columns in the CSM are distinct. For binary fac-
tors, the absolute values for the two main-effects col-
umns are equal, and either can be selected. The dot
product is easy to compute, and it ranks effects based on
absolute correlation with residuals of the current model.

Algorithm 1 BFS(terms, M, data, tyodels> Nterms> Pinew)

Input: List of candidate effects, CSM M, response vec-
tor data, number of fitted models 7,,,4.; to return,
number of effects in each final fitted model #eps,
fan-out of the BFS tree #,,,,

Output: List of 7,04 best fitted models ranked by R*

with #4e,s terms each

: model,,,, < mean of data

: residuals,,,, +— data — model,,,,,

1 scoresSyey —— 0

: enqueue(qy, (model,e,, residuals ., R*, adjR?,

SCOTeSpery))

[N R S

5:for £ «— 1,..., yepms dO
6: while g, is nonempty do
7: (model, residuals, R, adjR?, scores) < dequeue(q,)
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8: for i < 1,...,M,., do

9: effectsy < argmax;|M; - residuals|

10: model,e,, <— OLS(effects(model) U effectsy, data)
11: residuals,,, «— data — model,;,,

12: R2,., — R? value of model,,,

13: adjR? ., < adjusted R* value of model,,,,

14: scores,q, < append increment in R? attributed

to effectsy to scores {Retain at most o405 in
the priority queue ranked by R? value}

15: enqueue(q/. 1, (model,,e,, residuals ey, R sews
adjR? e, SCOTESpey))

16: end for

17:  end while

18: end for

19: return list of #4055 fitted models from gy,
ranked by R? value

It is possible for duplicate fitted models to arise in gy,
such as when the same terms are selected but in a differ-
ent order. While only unique fitted models are kept in
the queue, duplicates are accounted for by adding the
scores of each effect from the duplicate. Thus, duplica-
tion is not ignored; it allows more models to be explored.

3.2.2. The screening algorithm

In screening, the objective is to identify a few impor-
tant main effects and two-way interactions. One
approach is to examine the scores of the level-wise
effects in the list of fitted models produced and select
those with higher scores. Instead, the approach in
Algorithm 2 aggregates the effects of all 1,4 With-
out explicitly considering levels.

Algorithm 2 Screening(effects, qn,,,..» Mmodels> terms)

Input: List of all candidate effects, list of fitted models
qn,.... and corresponding scores from Algorithm 1,
number of fitted models 7,040 in the list, number
of effects ny.,ms in each fitted model

Output: A list of effects in nonincreasing order by

score
1: Initialize the score of each effect to zero
2: for i < 1,..., Nyoders dO

3:  (model;, scores;) <« dequeue(q)

4:  forj« 1,..., Nyerms do

5: k «— index of effects corresponding to term
j in model;

6: effect-scorey, = effect-scorey + scores;,

7:  end for

8: end for

9: return list of effects ranked by effect-score

Effects are reported in nonincreasing order by their
aggregate scores to support user interpretation of the
results. Screening results are usually reported with a
consideration of heredity; therefore, if an interaction
effect X x Y is reported as active, then X and Y are also
considered active (Li, Sudarsanam, and Frey 2006).

4. Analyzing data from real experiments:
Guidance and validation

4.1. Guidance for practitioners

To construct a locating array with parameters (d,t, )
for k factors of type (si,...,sx), see Section B of the
Supplementary Material for available construction
tools; it also describes tools to extract a locating array
from an existing design and a tool to extend an array
with additional runs until it satisfies the requirements
of a locating array. Locating arrays appear to have no
strong competitors as screening designs capable of iso-
lating one- and two-way effects efficiently.

If the array used for a screening experiment is an
N X k (1,2)-locating array of type (sy,...,sx), then the
corresponding CSM has N rows and ) ., si +
D i< <j<k Sisj + 1 columns. The run time of Algorithm 1
is

O(”terms X Nmodels X Nnew <( Z Sit Z S,'S]'—l- 1) X N2> > >

1<i<k 1<i<j<k

that is, it runs in polynomial time. As the fan-out
N,ew iNcreases, more models are evaluated. As the
number of models 7,,,4.s decreases, many models are
likely to be discarded, as the priority queue retains
only #1040 models at each level. As #yys increases,
successive effects identified by OMP in each iteration
are likely to have a lower score.

While the choice of #,e, Mmoderss and Hgepms is appli-
cation dependent, we have found that 7,4, = 50 and
Npew = 50 work well in practice. For the number of
terms, we suggest starting with #y,,s = 2 when using
the analysis tool (see Section B.3 of the Supplementary
Material). When #1;s is incremented but the screening
result (i.e., the list of top effects returned by Algorithm
2) remains the same, there is likely no need to incre-
ment 75 again and explore models with more terms.

4.2. Validation of widely studied screening
experiments

To validate the results of a screening experiment, a
locating array must be extracted as a subset of the runs
of the original screening designs because it is not feas-
ible to conduct new runs of the experiment; see
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root node, level zero, intercept

nodes at level one,
intercept + one level-wise term

------- nodes at level two,
intercept + two level-wise terms

J

best n,.qes ranked by score

Figure 1. The breadth-first search tree generated by the analysis method. It has a fan-out npe, from which the best npoz models
ranked by a score of R? are retained at each level in the priority queue. Nyoges €ach with at most Neems level-wise terms are ultim-

ately returned.

Section B.1 of the Supplementary Material for details.
If a locating array can be extracted, along with the data
collected in each run, the analysis can be performed.

Next, we validate the results of several widely
studied real-world screening experiments using
Hmodels = 50, Mpew = 50, and starting at ey = 2.
The purpose of this validation study is not to advocate
the use of locating arrays but to demonstrate that the
proposed analysis method is effective, even for experi-
ments with a small number of factors, and agrees with
accepted results.

4.3. Chemical reactor experiment

Box, Hunter, and Hunter (2005) describe a chemical
reactor experiment with five binary factors A-E. The
experiment is run as a 2° full-factorial, and the ori-
ginal analysis indicates that B,D,E,B x D, and D x E
are active. Miller and Sitter (2001) extract runs from
the full-factorial design that correspond to a folded-
over 12-run Plackett-Burman design and identify the
same set of effects.

Table 4 shows a (1,2, 1)-locating array with 9 runs
and a (1,2,2)-locating array with 11 runs extracted
from the full-factorial design. The fitted models gener-
ated for the 9-run locating array have R*> < 0.71 when
Merms = 2, 0.72 < R* < 0.92 when #1yepms = 3, 0.93 <
R?> <0.97 when #nypmms =4, and R?>> 0.98 when
Nierms = 5. Table 5a lists the top five terms and their
scores reported by Algorithm 2. Similarly, the fitted
models generated for the 11-run locating array have

R? < 0.74 when #pms =2, 0.74 < R> < 0.95 when
Nierms = 3, and R? > 0.95 when #;es = 4. Table 5b
reports these results.

The interaction B x D has the highest score for
both locating arrays. Because the score for D x E is
much lower, it may or may not be active. If the top
two terms are considered and heredity is used, then
B,D,E,B x D, and D X E are the selected effects. This
suggests that the factors B, D, and E should be
included in follow-up experimentation.

Algorithms 1 and 2 identify the influential factors
using fewer runs. Moreover, our screening results are
consistent across different locating arrays. This indi-
cates that the proposed screening method is robust
and does not rely on the choice of runs in a locating
array. Similar conclusions were found for a contamin-
ant and a cast fatigue experiment; see Sections C and D,
respectively, of the Supplementary Material.

4.3.1. Other model parameterizations instead of the
compressive sensing matrix
For illustration, we consider alternative parameteriza-
tions for the chemical reactor experiment in Section 4.3.
To use dummy coding, for a factor with k levels, we add
{0, 1} indicator columns for the first k — 1 levels of the
factor and add two-way interaction-effect columns by
multiplying pairs of main-effect columns for different
factors. Then we replace the Os in those columns by —1s.
The resulting matrix is used instead of the CSM for
screening the data with the two locating arrays in Table
4. When 7y = 8, R? > 0.98; Table 6 lists the top five
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Table 4. (a) A 9-run (1,2,1)-locating array; (b) an 11-run
(1,2,2)-locating array for the chemical reactor experiment.

(a) (b)

Run A B ¢ D E y Run A B ¢ D E y
1 + 4+ + + + 82 1 - + + - 4+ 67
2 + - - + - 6 2 - 4+ - + + 78
3 - 4+ - - 4+ 70 3 + 4+ + + + 82
4 + + - - 61 4 - - - - - 6
5 - - - + + 44 5 + - - + + 45
6 - - - - - 6 6 + + - - - 6
7 - 4+ + + - 9 7 - - + 4+ + 49
8 + + - + + 77 8 + - + - 6l
9 - - + - - 53 9 - + 4+ - 9

M + - 4+ - - 56

1" + - - - + 63

Table 5. Top five effects and their scores for the chemical
reactor experiment using: (a) the 9-run locating array and (b)
the 11-run locating array in Table 4.

(@) (b)
Term Score Term Score
BxD 153.08 BxD 145.74
DxE 29.31 DxE 28.76
CxD 15.74 B 3.90
AXB 11.53 E 1.00
B 8.72 BxC 0.87

Table 6. Top five effects and their scores for the chemical
reactor experiment using dummy coding: (a) the 9-run locat-
ing array; (b) the 11-run locating array in Table 4.

(a) (b)
Term Score Term Score
BxD 2571.77 BxD 5189.11
DXxE 528.26 DxE 1061.99
CxD 476.19 BxC 208.21
B 454.00 CxE 105.16
C 114.91 B 63.47

Table 7. Top five effects and their scores for the chemical
reactor experiment using common effects model: (a) the 9-run
locating array; (b) the 11-run locating array in Table 4.

(a) (b)
Term Score Term Score
B 1842.99 B 5597.76
BxD 477.66 BxD 2976.89
AXE 431.26 DxE 1095.41
AxB 374.05 D 714.69
DxE 309.29 E 223.36

terms and their scores. With these parameters, the
scores for some effects become very high because they
occur in many of the 71,,040;s = 50 fitted models, some of
which are duplicated more than 200 times.

Table 7 presents the top five terms and their scores
using the more typical parameterization for two-level
factors consisting of a matrix that contains a single col-
umn for each main effect and each two-way interaction
instead of using the CSM for the two locating arrays in
Table 4 (Hyepms = 8, R? > 0.98).

Table 8. Top five effects and their scores for the rubber experi-
ment using 20-run locating arrays (a) A;; (b) Ay (c) the 28-run
design from Sundberg (2008), which is a (1,2, 4)-locating array.

() (b) ()
Term Score Term Score Term Score
N 68.43 IxN 40.57 N 69.16
PxS 8.44 DxP 13.50 IxP 17.44
HxP 6.96 MxU 11.25 PxS 1043
ExS 3.53 AxD 8.81 DxS 8.01
CxP 1.87 DxH 1.30 DxM 6.53

The results in Tables 6 and 7 indicate that using the
common main effects and two-factor interactions agree
with the original analysis better than using dummy-
coded variables. They also suggest that the 11-run locat-
ing array performs better than the 9-run locating array.

4.4. Rubber experiment

Williams (1968) conducted an experiment to improve
a rubber-making process. This data set has appeared
in numerous studies focusing on supersaturated
designs; see Section E of the Supplementary Material
for a history of the analyses performed. Sundberg
(2008) observed that the original data set has an out-
lier in run 14 and suggested that the data be analyzed
on the log scale. We extracted two distinct
(1,2,1)-locating arrays A; and A, (in Tables E.1 and
E.2 in Section E) with 20 runs from the 28-run data
set in Sundberg (2008). A log transformation of the
data was performed before analysis.

Table 8a reports the top five terms and their scores
for A, when s =5; all fitted models have
R?> > 0.96. Table 8b reports the same results for A,
when #yms = 7; all fitted models have R? > 0.97.
Screening using A, indicates that the main effect of N
dominates all other terms, while screening using A,
suggests that the interaction I X N has a significant
impact on the response. A possible reason for these
scores could be the presence of the outlier in Ay;
because A, has 6 =1, a single outlier reduces its
locating ability. Nevertheless, by heredity, N is identi-
fied as one of the important factors. Therefore, we are
able to recover the active effect by screening using 20-
run instead of 28-run designs.

As it turns out, the 28-run design used by
Sundberg (2008) is a (1,2,4)-locating array. Table 8c
reports the top five effects and their scores when
Nyerms = 7. The proposed screening method identifies
factor N as the dominant active effect, even though
the outlier is included in this data set. This suggests
that a locating array with higher separation (6 = 4) is
able to reduce the impact of outliers.
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4.5. Wireless network test bed experiment

Seidel, Mehari, et al. (2018) studied a Wi-Fi confer-
encing scenario where a speaker broadcasts voice traf-
fic over a Wi-Fi network testbed to listeners. The
speaker can configure 24 different factors of type
(2,2,2,3,3,3,3,3,3,3,4,4,4,4,4,5,5,5,5,5,5,5,5,5)
that may influence the responses. These factors span
the operating system kernel’s networking stack, the
Wi-Fi card driver, the audio codec used, and a source
of interference implemented via a dedicated radio.
The listeners continuously calculate audio quality and
exposure to radio frequencies (RF).

The original analysis indicated that the factors
interference channel occupancy (intCOR), channel
band (band), transmission power (txpower), and
Wi-Fi bit rate (rate) have a significant impact on
audio quality. Similarly, rate, txpower, audio
codec bit rate (codecBitrate), frame length aggre-
gation (frameLen), and band show a significant
impact on RF exposure.

Using the proposed analysis method based on a 109-
run (1,2, 1)-locating array, Table 9a shows the top five
effects and their scores for audio quality when #ms =
9; in this case, the fitted models have 0.74 < R?> < 0.76.
For #gepms = 21, all the fitted models have R?* > 0.96;
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the results are shown in Table 9b. The method identifies
txpower and the interaction intCOR X band as hav-
ing a significant impact on audio quality.

Table 9c lists the top five effects and their scores
for RF exposure when #y,s = 10; these fitted models
have R* > 0.96. The proposed screening method iden-
tifies txpower and band as the important factors
for RF exposure.

We also analyze the data from the wireless network
experiment using two additional methods: the Dantzig
selector method (Phoa, Pan, and Xu 2009) and
LASSO regression (Tibshirani 1996). For each method,
we use two different coding schemes: dummy coding
(as described in Section 4.3.1) and orthogonal polyno-
mial coding.

For the Dantzig selector, we use the R package “flare”
(Li 2013). We scale the columns of the model matrix and
set the tuning parameter dpaurig = 0.1 and the number
of Opantzig to 11; for how to choose these parameters, see
Phoa, Pan, and Xu (2009). We fix y (a threshold between
signal and noise) at zero to keep all selected effects. In
LASSO regression, we use the R package “glmnet” for
analysis (Friedman, Hastie, and Tibshirani 2009).

Table 10 summarizes the terms found by each of
the three methods. There is good agreement on the
screening results for both responses when the

Table 9. Top five effects and their scores for audio quality when (a) neems = 9 and (b) Neerms = 21 and for

(c) RF exposure in the wireless network experiment.

(a) (b) (c)

Term Score Term Score Term Score
intCORXxband 325.51 txpower 24961.10 txpower 1489.92
txpower 320.00 intCORxband 18237.70 band 1035.76
intCOR 68.29 intCOR 14748.40 rate 589.91
intCORXsensing 35.36 intCORXsensing 7358.25 frameLen 149.49
codecBitratex 35.47 sensingxband 5242.84 codecBitrate 44,02
channel

Table 10. Screening results for wireless network experiment listed by the method used. Only significant factors

are listed.

Method Audio Quality RF Exposure

Proposed method txpower txpower
intCOR band
band rate

Dantzig selector (polynomial coding) txpower txpower
intCOR band
band rate

Dantzig selector (dummy coding) txpower band
band txpower
rate
udp_mem_pressure
ipfrag_high_thresh

LASSO regression (polynomial coding) txpower txpower
intCOR band
band rate

LASSO regression (dummy coding) band txpower
rate band

txpower
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Table 11. A comparison of properties of the three designs Dy, D, and D, used in the study.

Covering Locating Factor-Level E(s?)- or UE(s?) max|s|
Design Array Array Balance Optimality Value r-Rank
Do strength 2 1,2) X X 8 17
D, strength 2 (1,1 X v 8 9
D, strength 2 1,1 v X 6 15

polynomial model is used. However, with dummy
coding, neither the Dantzig selector nor the LASSO
regression method appears to be as accurate.

5. Combinatorial and statistical properties of
designs

In an effort to understand what contributes to the abil-
ity of locating arrays to screen effectively, we discuss a
few of their combinatorial and statistical properties.

To understand the significance of the locating
property in our screening method, we study it in a
more controlled environment. For the study, we use
three supersaturated designs, Dy, D;, and D,, each
with 18 runs for 21 binary factors; see Tables F.1,
F.2, and F.3, respectively, in Section F of the
Supplementary Material.

All three designs are strength-two covering arrays.
Only Dy is a (1,2,1)-locating array. While the
minimum size of a strength-two covering array for 21
binary factors is eight runs, additional runs are
required to satisfy the locating property. The lower
bound on the number of runs for a (1,2)-locating
array for 21 binary factors is 12; see Theorem 2.2 in
Tang, Colbourn, and Yin (2012).

The E(s?)-criterion for choosing binary supersatu-
rated designs minimizes the sum of squares of the
information matrix entries for a main-effects model
over balanced designs. The UE(s?)-criterion is similar
to the E(s?)-criterion, except that the requirement of
factor-level balance is dropped (Jones and Majumdar
2014; Cheng et al. 2018). Both Dy and D; are unbal-
anced in terms of factor-level occurrences, but only
D, is UE(s*)-optimal. The locating array D, does not
satisfy either optimality criterion. Though balanced,
D, is not E(s*)-optimal.

The max|s|-criterion for binary designs considers
correlations between columns of the model matrix for
the main-effects model and selects a design that mini-
mizes the maximum absolute correlation. D, has a
smaller max|s|-criterion than D, and Dj. The reso-
lution rank (r-rank) for a binary design is the largest
value r so that all main effects are estimable for any
model with r main effects (Deng, Lin, and Wang
1999); a discussion of this property follows a

generalization of r-rank later in this section. The
properties of Dy, D;, and D, are summarized in
Table 11.

We obtain simulated data from Dy, D;, and D,
using the 98 linear models in Table G.1 in Section G
of the Supplementary Material. The models studied
explore the impact of indistinguishable pairs of level-
wise interactions. The arrays D; and D,, which do
not satisfy the (1,2)-locating property, have 21 and 22
pairs of level-wise interactions not separated by any
runs, respectively.

Table G.1 lists the results of our proposed screen-
ing method with #y,s = 6 and the Dantzig selector
method with standard orthogonal polynomial coding,
minimum  dpanrzig = 0.1,0.25, number of Jpunizig =
11, and y = 0. The results indicate that the proposed
screening method using the locating array D, is able
to recover the interactions.

Here we discuss the first two models in Table G.1,
y1 and y,, in some detail:

yn=7xInd(D=1,0=-1)+Ind(D=1,0=1)
+Ind(D=-1,0=1)+Ind(D=-1,0=—-1)+¢
(1]
y2=7xInd(B=1,P=—-1)+Ind(B=1,P=1)
4+Ind(B=—-1,P=1)+Ind(B=—1,P=—1)+¢
(2]

where the indicator function Ind(-) =1 only in runs
where the factors equal the levels specified. The error
term ¢ is randomly selected from N(0,1).

The two-way interactions (D=1,0= —1) and
(L=1,S= —1) are indistinguishable in D, because
po,(D = 1,0 = —1)) = pp,((L = 1,S = 1)) =
{6, 13, 18}. Table 12 shows that, for y;, the inter-
action D x O has a relatively high score for D, and
D, whereas both D x O and L x S have high scores
for D,.

Table 13 shows the top five scores for y,. In this
case, the two-way interactions (B=1,P = —1) and
(§=1,T = —1) are indistinguishable in D; because
pp,(B=1LP=-1)) =pp((§=1T = -1)) =
{8, 10, 12}. The proposed method identifies the inter-
actions B x P when analyzing y, using D, and D.
However, two interactions, B x P and S x T, have
the same score when analyzing y, using D;. Not
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Table 12. The top five scores for response y; in Model 1 pro-
duced by the proposed screening method using each of the
arrays Dy, Dy, and D..

Do D, D,
Term Score Term Score Term Score
DxO0 86.37 DxO0 155.15 DxO0 36.43
IxJ 11.30 AxQ 34.30 LxS 36.41
IxN 1.65 B 1.20 BxU 6.17
DxL 1.26 Mx0 1.85 xS 4.67
Mx N 1.24 BxD 1.46 LxR 2.69

Table 13. The top five scores for response y, in Model 2 pro-
duced by our screening method using each of the arrays D,
D,, and D..

DO D] DZ
Term Score Term Score Term Score
BxP 70.42 BxP 20.30 BxP 80.05
IxJ 8.47 SxT 20.30 BxU 3.61
DxL 1.55 AxQ 10.22 LxU 2.51
DxQ 1.53 BxS 2.95 FxM 2.09
IxM 1.48 AXxS 0.87 LxR 1.03

surprisingly, these examples indicate that arrays with-
out the locating property are unable to distinguish
level-wise interactions that are not separated.

We now look for some statistical properties that
contribute to locating arrays’ ability to screen effect-
ively. The r-rank of a design has been used as a
statistical indicator of screening effectiveness for
main-effect models for binary factors. Since we are
also interested in two-way interaction effects, we pro-
pose a generalization for binary designs that also con-
siders interaction effects:

Definition 5.1 ((r,i)-Rank)

Let X = (X;]|X;), where X; corresponds to all
main-effects columns and X, to all two-factor inter-
action columns under the common parameterization
for binary factors. For a given i > 0, the (r,i)-rank of
X is defined as the largest value r so that all effects
are estimable for any model with r — i columns from
X, and i columns from X,.

The (r,0)-rank is just the usual r-rank. The
(r,i)-ranks for the three designs used in the simulation
study are given in Table 14. The (r,0)- and (r,2)-ranks
of Dy are greater than those of D; and D,. When we
compare the screening performance of D; and D, in
Table G.1, the design D, appears better able to recover
the interactions. This suggests the possibility of sequen-
tially maximizing the (r,i)-rank for improved screening
and estimation of interaction effects.

Table 14. The (r, i)-ranks for the designs Dq, D,, and D..

Rank Do D] Dz
(r,0)—rank 17 9 15
(r,1)—rank 12 8 16
(r,2)—rank 5 3 3

JOURNAL OF QUALITY TECHNOLOGY 11

Returning to combinatorial properties, the separ-
ation between sets of runs for different sets of
level-wise interactions is an indicator of screening
effectiveness. It quantifies the degree to which level-
wise interactions can be distinguished, and a high sep-
aration can be useful when dealing with outliers or
missing data. Intuitively, the better the ability to dis-
tinguish between sets of interactions, the better the
screening effectiveness. For example, both the 28-run
design and the 20-run design A, in the rubber experi-
ment in Section 4.4 contain an outlier. The 28-run
design has a separation of four, while A, has a separ-
ation of one. The screening results in Table 8 indicate
that the 28-run design performs better.

To compare locating arrays of the same dimensions
with the same separation, we introduce a new quantifier:

Definition 5.2 ((d, t, d)-Separation Deficiency)

For a given strength t locating array A and positive
integers d and o, the (d, t, 0)-separation deficiency is the
number of pairs of sets 7,7, C Z, of cardinality d for
which [(p4(71) U pa(T2)) \ (pa(T1) N pa(T2))| < 0.

The (d,t,0)-separation deficiency is defined in a
similar fashion by considering level-wise interactions
of strength at most t. An array with a (d,t,)-separ-
ation deficiency of zero is a (d,t,0)-locating array.
When 6 = 1, such an array is simply a (d, t)-locating
array. A (d, t,d)-locating array with lower (d,¢,0 + 1)-
separation deficiency is preferred over the other
(d,t,0)-locating arrays for the proposed screening
method.

We believe that an array with lower deficiency is
better able to distinguish between sets of level-wise
interactions. For example, the design matrix in the
rubber experiment with 24 binary factors in Section
4.4 has 1012 level-wise two-way interactions in 7,
and no two of them are covered in the same set of
runs in arrays A; and A, in Tables E.1 and E.2. For
any T, T € To (o (T1) Upa,(T2)\ (ps, (T1) 1
pa,(72))] > 1. Therefore, A; is a (1,2,1)-locating
array. However, A is not (1,2,2)-locating. There are
218 pairs of two-way interactions that can be distin-
guished using only one run in A;. Therefore, the
(1,2,2)-separation deficiency of A, is 218.

Similarly, A, is a (1,2,1)-locating array, and there
are 161 pairs of two-way interactions that can be dis-
tinguished using only one run in A,. Consequently,
A, is not a (1,2,2)-locating array. The (1,2,2)-separ-
ation deficiency of A, is 161. The (1,2,d)-separation
deficiencies for A;, A,, and the 28-run design in
Sundberg (2008) used in the rubber experiment in
Section 4.4 are given in Table 15.
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Table 15. The (1,2,0)-separation deficiency for the designs
Aq, A,, and 28-run design in Sundberg (2008)

(1,2, 0)-separation deficiency

Design 0=1 06=2 0=3 0=4 =5
Ay 0 218 1925 9727 37308
A, 0 161 1832 10432 38972
28-run design (Sundberg 2008) 0 0 0 0 2544

Keeping in mind the coupling between design and
analysis, a more thorough understanding of these and
other statistical and combinatorial properties may yield
requirements that can be integrated into the construc-
tion of screening designs based on locating arrays.

6. Conclusions and future work

This paper proposed designs and methods of analysis
for screening experiments based on locating arrays.
Locating arrays grow logarithmically based on the
number of factors and are therefore well suited for
identifying the factors that significantly impact the
response variables of complex systems. Because such
systems may have a large number of categorical fac-
tors with many levels, the proposed analysis method
focuses on level-wise effects. This suggests the use of a
parameterization method that works well to identify
these effects, such as the compressive sensing matrix.
As demonstrated by results on many real data sets,
the analysis method appears to screen correctly using
fewer runs than the original designs. Locating arrays
with high separation may also provide some resistance
to outliers or missing responses.

While we have demonstrated that the proposed
design and analysis methods validate results of small,
well-studied data sets, we anticipate additional advan-
tages for studies of more complex systems with many
factors, some of which are categorical. A more diverse
and in-depth study of the statistical and combinatorial
properties of locating arrays may better inform design
construction and analysis.
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