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ABSTRACT

Deep learning vulnerability detection has shown promising results
in recent years. However, an important challenge that still blocks it
from being very useful in practice is that the model is not robust
under perturbation and it cannot generalize well over the out-of-
distribution (OOD) data, e.g., applying a trained model to unseen
projects in real world. We hypothesize that this is because the model
learned non-robust features, e.g., variable names, that have spurious
correlations with labels. When the perturbed and OOD datasets no
longer have the same spurious features, the model prediction fails.
To address the challenge, in this paper, we introduced causality
into deep learning vulnerability detection. Our approach CausalVul
consists of two phases. First, we designed novel perturbations to
discover spurious features that the model may use to make predic-
tions. Second, we applied the causal learning algorithms, specifically,
do-calculus, on top of existing deep learning models to systemati-
cally remove the use of spurious features and thus promote causal
based prediction. Our results show that CausalVul consistently im-
proved the model accuracy, robustness and OOD performance for
all the state-of-the-art models and datasets we experimented. To
the best of our knowledge, this is the first work that introduces
do calculus based causal learning to software engineering models
and shows it’s indeed useful for improving the model accuracy,
robustness and generalization. Our replication package is located
at https://figshare.com/s/0ffda320dcb96c249ef2.
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1 INTRODUCTION

A source code vulnerability refers to a potential flaw in the code
that may be exploited by an external attacker to compromise the
security of the system. Vulnerabilities have caused significant data
and financial loss in the past [1, 2]. Despite numerous automatic
vulnerability detection tools that have been developed in the past,
vulnerabilities are still prevalent. The National Vulnerability Data-
base received and analyzed a staggering number of 16,000 vulnera-
bilities in the year 2023 alone !. The Cybersecurity Infrastructure
Security Agency (CISA) of the United States government reported
that, since 2022, there have been over 850 documented instances
of known vulnerabilities being exploited in products from more
than 150 companies, including major tech firms such as Google,
Microsoft, Adobe, and Cisco 2.

Due to the recent advancements in deep learning, researchers
are working on utilizing deep learning to enhance vulnerability
detection capabilities and have achieved promising results. Earlier
models like Devign [27] and ReVeal [7] relied on architectures such
as GNNs, while more-recent state-of-the-art (SOTA) models have
moved towards transformer-based architectures. CodeBERT [13]
uses masked-language-model (MLM) objective with a replaced token
detection objective on both code and comments for pretraining.
GraphCodeBERT [16] leverages semantic-level code information
such as data flow to enhance their pre-training objectives. The more
recent model UniXcoder [15] leverages cross-modal contents like
AST and comments to enrich code representation.

However, an important challenge of deep learning tools is that
the models learned and used spurious correlations between code
features and labels, instead of using root causes, to predict the vul-
nerability. We call these features used in the spurious correlations
spurious features. As an example, in Figure 1a, this code contains
a memory leak. The SOTA model CodeBERT detected this vul-
nerability correctly with very high confidence (probability = 0.95).
However, after we refactored the code and renamed the variables
(Figure 1b), the model predicted this function as non-vulnerable. In
Figure 2, we show that the change of the variable names caused
its code representation to move from vulnerable to non-vulnerable
clusters.

!https://nvd.nist.gov/general/nvd-dashboard
https://www.cisa.gov/known-exploited-vulnerabilities- catalog
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Apparently, the model did not use the cause of the vulnerability
that "the allocated memory has to be released in every path" for
prediction. In this example, av_malloc and av_freep are causal
features—it is the incorrect use of av_freep API that leads to the
vulnerability. However, the model associated s, nbits and inverse
with the vulnerable label and associated out1, dst@ and out® with
the non-vulnerable label. Such correlations are spurious; those
variable names are spurious features. We believe that spurious
correlations are an important reason that prevent the models from
being robust and being able to apply to unseen projects.

To address this challenge, in this paper, we introduce causality
(a branch of statistics) into deep learning vulnerablity detection.
We developed CausalVul and applied a causal learning algorithm
that implements do calculus and the backdoor criterion in causality,
aiming to disable models to use spurious features and promote the
models to use causal features for prediction.

Our approach consists of two phases. In the first phase, we
worked on discovering the spurious features a model uses. This task
is challenging due to the inscrutable nature of deep learning models.
To tackle this issue, we designed the novel perturbation method,
drawing inspiration from adversarial robustness testing [24]. The
perturbation changes lexical tokens of code but preserves the se-
mantics of code like compiler transformations. In particular, we
hypothesized that the models may use variable names as a spurious
feature like Figure 1, and the models may also use API names as
another spurious features. Correspondingly, we designed Perturb-
Var and PerturbAPI two methods to change the programs and then
observe if the models’ predictions for these programs are changed.
Through our empirical studies, we validated that the models indeed
use certain variable names and API names as spurious features,
and for vulnerable and non-vulnerable examples, the models use
different sets of such names (Section 3).

To disable the models from using such spurious features, in the
second phase, we applied causal learning, which consists of special
training and inference routines on top of existing deep learning
models. The causal learning puts a given model under intervention,
computing how the model would behave if it does not have spurious
features. This can be done via backdoor criteria from just the training
data as well as our knowledge of spurious features. Specifically, we
first train a model and explicitly encode a known spurious feature
F into the model. At the inference time for an example x, we use
the x’s representation joint with a set of different spurious features,
so that the model cannot use F to make the final decision for x.

We evaluated CausalVul using Devign [27] and Big-Vul [12],
two real-world vulnerability detection datasets and investigated on
three SOTA models — CodeBERT, GraphCodeBERT, and UnixCoder.
Experimental evaluation shows that the causal model in CausalVul
learns to ignore the spurious features, improving the overall per-
formance on vulnerability detection by 6% in Big-Vul and 7% in
the Devign dataset compared to the SOTA. The CausalVul also
demonstrates significant improvement in generalization testing,
improving the performance on the Devign dataset trained model up
to 100% and Big-Vul dataset trained model up to 200%. Experimen-
tal results also show that our CausalVul is more robust than the
current SOTA models. It improves the performance up to 62% on
Devign and 100% on Big-Vul on the perturbed data we constructed
for robustness testing.

Md Mahbubur Rahman, Ira Ceka, Chengzhi Mao, Saikat Chakraborty, Baishakhi Ray, and Wei Le

In summary, this paper made the following contributions:

e We discovered and experimentally demonstrated that vari-
able names and API names are used as spurious features in
the current deep learning vulnerability detection models,

e We formulate deep learning vulnerability detection using
causality and applied causal deep learning to remove spuri-
ous features in the models, and

e We experimentally demonstrated that causal deep learning
can improve model accuracy, robustness and generalization.

2 AN OVERVIEW OF OUR APPROACH AND
ITS NOVELTY

In Figure 3, we present an overview of our approach, CausalVul.
CausalVul consists of two stages: (i) discovering spurious features
and (ii) using causal learning to remove the spurious features.

Discovering Spurious Features. First, we work on discovering
spurious features used in deep learning vulnerability detection
models. Spurious features are the attributes of the input dataset,
e.g., variable names, that exhibit correlation with the target labels
(i.e., vulnerable/non-vulnerable) but are not the root causes of be-
ing (non)-vulnerable, and thus, may not generalize to a desired test
distribution. To discover the spurious features, in our approach, we
first hypothesize a spurious feature based on our domain knowl-
edge. For instance, we assumed variable names can be spurious
features for vulnerability detection tasks—models should not make
a decision based on the names. Next, we design perturbations based
on each hypothesized feature. Specifically, we transform the pro-
grams via a refactoring tool that changes the feature, but does not
change the semantics of code (similar to compiler transformations).
After we observe the model changes its prediction for many such
examples, we conclude that the model likely relied on this spurious
feature. Discovering spurious features is a very challenging task.
As an instance, randomly altering variable names does not reveal
its spurious nature. We need to carefully identify which variable(s)
need to be changed by which name(s) to maximize its impact. To
the best of our knowledge, we have not seen a systematic study on
finding spurious features in vulnerability detection models.

Removing Spurious Features. Once we discovered spurious fea-
tures, in this step we try to reduce the impact of these features
on the model decision. One easy way to achieve that could be to
augment the training data by randomizing the spurious features
and then retrain the model. However, it will take much time for
big, pretrained, code representations/deep models. So instead, we
take existing representation and apply causal learning to disable
the model to use spurious features at inference time. This ensures
the model can rely mostly on the causal features for prediction.

We accomplish this goal as follows. First, as an input, we take the
existing representation and the known spurious feature to be elimi-
nated. We then train a model such that the representation learned
in this step is especially biased towards the targeted spurious fea-
ture. Next, during inference, the model makes a decision based on
the input representation while ignoring the bias representation
learned in the previous step. In particular, we marginalized over a
set of examples that contain different spurious features and prevent
the inference from utilizing the targeted spurious feature while



N O G W =

Towards Causal Deep Learning for Vulnerability Detection

FFTContext *av_fft_init(int nbits,
FFTContext *s =

int inverse}){
av_malloc(sizeof (xs));

if (s && ff_fft_init(s, nbits, inverse))
av_freep(&s);
return s;
3
// Prediction probability: ©.9493

(a) Vulnerable code - Correctly Predicted
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FFTContext *av_fft_init(int dst@, int out@){
FFTContext *outl = av_malloc(sizeof (*outl));
if (outl && ff_fft_init(outl, dst@, out0))

av_freep(&outl1);
return out1;

3

// Prediction probability: ©.2270

(b) Perturbed Vulnerable code - Mispredicted

Figure 1: A vulnerable example predicted as vulnerable with 0.9493 but predicted as non-vulnerable with probability 0.2270
when names are perturbed by some of the spurious names from the opposite class.
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Figure 2: Visualization using Principle Component Analysis
(PCA) of Figure 1’s code representations generated by Code-
BERT before and after perturbed the names.

Stage 2: Causal Learning:

Stage 1: Discovering Spurious Removing Spurious Features

Features

Hypothesized Spurious
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bias model prediction towards
targeted spurious feature

J——
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Semantic-Preserving
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features via marginalization

Does medel prediction
change?

Figure 3: CausalVul: an overview
making the final decision. This approach relies on the principles of
"do-calculus" and the "backdoor criterion," which we will explain
in detail in Sections 4 and 5, respectively.
To the best of our knowledge, this is the first work to bridge
causal learning with deep learning models for vulnerability detec-
tion. It helps researchers understand to what degree causality can

help deep learning models remove spurious features and to what de-
gree we can improve model accuracy, robustness and generalization
after removing spurious features. Such causal learning approaches
have been applied in computer vision [9]. A key difference is that
the vision domain is continuous in that the pixel values are contin-
uous real numbers, while program features are discrete. Thus, in
the domain of program data, we can explicitly discover spurious
features and then apply causal learning in a targeted manner.

3 DISCOVERING SPURIOUS FEATURES

In this section, we illustrate our technique for discovering spurious
features through semantic-preserving perturbations.

Spurious features are features that spuriously correlate to the
output. Those spurious correlations often only exist in training but
not in testing, especially testing under perturbed data or unseen
projects. That is because a feature that is spurious, as opposed
to causal, will change across domains and is no longer useful for
prediction, as shown in Figure 1. Thus, a standard way to determine
whether one feature is spurious is to perturb the values of the feature
and observe how the output changes.

Following this idea, we first hypothesized two spurious features,
variable names and API names that the current deep learning models
may use for vulnerability detection. We chose these two spurious
features as a proof of concept to check if we perturb in lexical
and syntactic characteristics respectively while keeping the overall
semantic of the program the same, whether the model prediction
would change. We applied an existing code refactoring tool, Nat-
Gen [3], to perturb the code in test dataset, and observe whether the
model performance is changed between the original test set and the
perturbed test set (see problem formulation in Section 3.1). Inter-
estingly, we found that randomly changing the variable names and
function names do not bring down the model performance. Thus
we designed novel perturbation methods that can demonstrate the
two spurious features. See Sections 3.2 to 3.4.

3.1 Problem Formulation
Given a perturbation p, a code sample s, and a trained model
M, we discover a spurious feature if the following conditions are
met: (1) the application of the perturbation, p(s), does not alter
the semantics of the function, (2) the model’s prediction changes
upon transformation, and (3) the candidates for a perturbation p
are drawn from the training distribution.
We will use F1 score as a more-thorough evaluation metric for
our imbalanced datasets and condition number (2). A degraded F1
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score indicates the application of the perturbation p(s) has resulted
in mis-classifications (flipped labels).

3.2 PerturbVar: Variable Name as a Spurious
Feature

To demonstrate that some variable names are indeed used by the
models as spurious features, we design an extremely perturbed test
set. We analyze the training dataset and sort the variable names
based on their frequency of occurrences in vulnerable functions and
non-vulnerable functions, respectively. When replacing existing
variable names in the test set, we randomly select a name from the
top-K most-frequent variable names of the opposite-class labels: for
a non-vulnerable sample, we replace the existing variable names
with a name from the vulnerable training set, but which does not
occur in the non-vulnerable training set, and vice-versa. We apply
this perturbation to every sample in the test set.

Table 1: PerturbVar: Impact of Variable Name Perturbation

Ton-K CodeBERT UniXcoder GraphCodeBERT

(FrPe) ) Devign Big-Vul | Devign Big-Vul | Devign  Big-Vul
¢ F1 F1 F1 F1 F1 F1
Baseline | 0.61 036 | 0.63 038 | 0.2 037
Random | 0.61 032 | 063 036 | 0.62 0.35
Top 100 | 0.61 0.25 0.52 0.24 0.60 0.27
Top50 | 0.55 0.25 0.55 0.22 0.59 0.26
Top25 | 0.54 0.26 0.56 0.25 0.59 0.27
Top20 | 055 0.25 0.56 0.24 0.59 0.28
Top15 | 0.54 0.23 0.56 0.24 0.59 0.27
Top10 | 0.54 0.26 0.53 0.23 0.57 0.28
Top 5 0.52 0.21 0.52 0.18 0.58 0.26

Observation. As shown in Table 1, we are able to degrade the
F1 score as much as 11.5 % on the Devign dataset, and as much as 20
% on the Big-Vul dataset. We have observed the performance degra-
dation across all the datasets and multiple architectures: CodeBERT,
GraphCodeBERT, and UniXcoder. However, in the randomized set-
ting, the performance almost does not change relative to the base-
line. Introducing common vulnerable names into non-vulnerable
code-samples causes the model to misclassify the sample as vulner-
able. Conversely, introducing common non-vulnerable names into
vulnerable code samples causes the model to misclassify the sample
as non-vulnerable. The more common the variable names are used
(i.e. the lower the Top-K), the more the performance degrades.

3.3 PerturbAPI: API Name as a Spurious
Feature

Modern programs frequently use API calls. We conjecture that the
models may establish spurious correlations between API names
with vulnerabilities. Similar to the approach used in PerturbVar,
we ranked the frequency of the API calls in the training data, for
vulnerable examples and non-vulnerable examples respectively.
We then insert API calls (that are ranked in the top-100 occurring
calls in non-vulnerable examples, but which are not frequently-
occurring in the vulnerable examples) into vulnerable examples
and vice-versa. To preserve the semantics of code, we insert these
API calls as "dead-code", i.e., this code will never be executed.
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We inject dead-code at n random positions within the code sam-
ple. The dead-code block is composed of m distinct function/API
calls (m and n are configurable and we used m = 5,n = 5 to pro-
duce the results in Table 2). We guard the block of API-calls with
an unsatisfied condition, ensuring the loop is never executed, as
shown in Figure 4:

while ( _i_4 > _i_4 ) {

tcg_out_r(s , args[1]); help_cmd(argv[e]);

cris_alu(dc , CC_OP_BOUND , cpu_R[dc -> op2]
1, 1o, 4);

RET_STOP (ctx); tcg_out8(s , args[31); }

, cpu_R[dc -> op2

Figure 4: Dead-code composed of our spurious feature, API
calls

Table 2: PerturbAPI: Impact of API Name Perturbation

| CodeBERT | UniXcoder | GraphCodeBERT
Dead-code - - 8 - - .
Type Devign Big-Vul | Devign Big-Vul | Devign  Big-Vul
P F1 F1 F1 F1 F1 F1
Baseline | 0.61 036 | 063 038 | 0.62 0.37
Random | 0.1 035 | 062 036 | 062 035
API | 052 010 | 034 011 | 047 0.09

Observation. We compare our results to (1) baseline perfor-
mance and (2) random dead-code transformation performance,
shown in Table 2. Our results show that dead-code composed of
API calls severely hurts model performance compared to the vanilla
baseline and random dead-code transformation. Model performance
degrades proportionally with the inclusion of increased API calls
and increased injection locations. Performance in the vanilla model
degrades as much as 28.73 % on Devign and 27.99 % on Big-Vul.

3.4 Perturbjoint: Combine Them Together

We hypothesize that the composition of the two spurious features
will further degrade model performance. We setup the study, where
for every sample constructed in the PerturbAPI dataset from Sec-
tion 2, we replace existing variable names with a random selection
from the top-K most-frequent variable names of the opposite class
(using the same approach from Section 1).

Observation. In Table 3, our results show that the composition
of API dead-code and variable renaming further degrades the model.
The model degradation is more severe when applying the composi-
tion of the settings. In the combined setting, performance degrades
as much as 41.37 % for Devign and 33.89 % for Big-Vul.

Summary. In this section, we investigated multiple datasets
and multiple SOTA models, revealing that variable names and API
names are spurious features frequently utilized by these models.
Interestingly, the models associate different variable names and
API names as spurious features for different labels. Consequently,
it became evident that only meticulously designed perturbations,
not random ones, showcased the usage of these spurious features,
consequently leading to a decline in the models’ performance on
the perturbed datasets.
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Table 3: PerturbJoint: Impact of Joint Perturbation

Ton-K CodeBERT UniXcoder GraphCodeBERT
F P ) Devign Big-Vul | Devign Big-Vul | Devign  Big-Vul
red F1 F1 F1 F1 F1 F1
Baseline ‘ 0.61 0.36 0.63 0.38 0.62 0.37
Top 100 0.38 0.07 0.23 0.07 0.59 0.06
Top 50 0.37 0.07 0.25 0.06 0.60 0.07
Top 25 0.36 0.07 0.28 0.08 0.60 0.07
Top 20 0.38 0.08 0.27 0.08 0.48 0.07
Top 15 0.36 0.07 0.27 0.06 0.52 0.07
Top 10 0.37 0.08 0.24 0.07 0.45 0.08
Top 5 0.33 0.06 0.22 0.05 0.47 0.07
4 CAUSAL LEARNING TO REMOVE

SPURIOUS FEATURES

In this section, we present how to apply causal learning to re-
move spurious features in the vulnerability models.

4.1 Causal Graph for Vulnerability Detection

To apply causal learning, our first step is to construct a causal graph
to model how vulnerability data is generated from a statistics point
of view, shown in Figure 5 (a). A causal graph visually represents
the causal relationships between different variables or events. In
the graph, nodes represent random variables, and directed edges
between nodes indicate causal relationships. Thus, A—B means
variable A directly influences variable B. The absence of an edge be-
tween two nodes implies no direct causal relationship between them.
In Figure 5 (a), X represents a function in the program. Whether
there is a vulnerability or not in the code is directly dependent on
the function. So we add an edge from X to Y, where Y is the label
of vulnerability detection, 1 indicates vulnerable, and 0 indicates
not vulnerable.

—
M; |
M

Intervention
.-/_

(=)

Figure 5: Causal Graph Before and After Do Calculus

In the causal graph, we use E, namely environment, to model
the domain where the dataset is generated. For example, at train-
ing time, namely E = 0, this environment indicates e.g., the code
is written by certain developers and for certain software applica-
tions. At testing or deployment time of the model, namely E = 1,
the code may link to different developers and applications. Such
environment-specific factors are modeled using U. It is a latent
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variable and not directly observed in the training data distribu-
tion. For example, U can denote the expertise or coding style of
the programmer or the type of software application. Because of U,
there can be different spurious features in the code, like the two we
showed in Section 3, denoted as M; and M.

M; represents variable naming styles, as developers may like
to use certain formats of variable names in their code. Similarly,
M represents API names, as certain developers or applications
may more likely use a particular set of API calls. These basic (text)
features of M; and M3 influence the code. Thus, we add the edges
X to M; and My, respectively. Note that the causal graph can be
expanded to integrate more of such spurious features. We leave
this to future work.

In Figure 5 (a), we also have the edge U to Y, indicating that
U can impact Y. For example, a junior developer may more likely
introduce vulnerabilities; similarly, certain APIs may more likely
introduce vulnerabilities, e.g., SQL injection.

4.2 Applying Causality

When we train a deep learning model, using the code X as input, to
predict the vulnerability label Y, we learn the correlation P(Y|X) in
the training dataset. However, when we deploy this trained model
in a new environment, e.g., handling perturbed datasets or unseen
datasets., the domain will be changed. Due to the shifting of E
from 0 to 1, the correlation P(Y|X) will be different, denoted as
P(Y|X,E = 0) # P(Y|X,E = 1). From the causal graph point of
view, X and Y are both the descendants of E and therefore will be
affected by its change.

To improve the models’ performance in generalizing to new en-
vironments beyond the training, our goal is to learn the signal that
is invariant across new environment and domains. Applying causal
learning, we intervene on the causal graph so that the correlation
between X and Y is the same no matter how the environment E
changes. In causality, such intervention is performed via do-calculus,
denoted as P(Y|do(X = x)).

The key idea is that we imagine to have an oracle that can write
perfect, unbiased code x; we then use such code to replace the
original code X for vulnerability detection. Doing so, we created a
new causal graph by removing all the incoming edges to the node
X and put the new code here X = x. See Figure 5 (b). In this new
causal graph, E only can affect Y, not X, and thus the correlation
of X and Y will no longer be dependent on E. In other words, the
correlation of x and Y in the new causal graph then becomes the
invariant signal across different domains, e.g., from training to
testing. When we learn the correlation in this new causal graph,
the learned model can generalize to new environments since this
relationship also holds at testing. In the next section, we explain
how we compute P(Y|do(X = x) from the observational data.

4.3 Estimating Causality through
Observational Data

Figure 5 (a) models the joint distribution of vulnerability data from
a data generation point of view. Figure 5 (b) presents the causal
graph after performing do calculus on X, allowing us to generalize
across the domains. The challenge is that performing intervention
and obtaining the perfect, unbiased code is almost impossible. To
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estimate the causal effect without actually perform the interven-
tion, we apply the backdoor criterion [21] to derive causal effect
P(Y|do(X)) from the given observational data of X and Y.

Backdoor criterion teaches how to block all the non-causal paths
from X to Y in the causal graph so we can compute the causal effect.
For example, in Figure 5 (a), node U can cause X, U can cause Y; as
a result, there can exist correlations between X and Y in the obser-
vational data. However, such correlation do not necessarily indicate
the causal relation from X to Y. For example, the junior developers
may like to write their code with the variable name myvar and the
junior developers may more likely introduce the vulnerability into
their code. In this case, we might often see the code with myvar
is detected with vulnerability in the dataset. However, myvar is
not the cause for the vulnerability. The correlation of myvar and
vulnerability is spurious. To remove such spurious correlations, the
backdoor criterion states that we need to condition X on M; and
Mpy; as a result, we can remove the incoming edges to X and thus
impact from U to X. Mathematically, we will have the following
formula for Figure 5 (b).

P(Y|do(X =x)) = ) P(Y|X = x, My, My)P(M1)P(Mp) (1)
My, M,

To compute Eq.(1), we adopted an algorithm from [9]. First, we
train a model that predicts Y from R and M (we denote M;, My as M
for simplicity), denoted as P(Y|R, M), where R is the representation
of X computed by an existing deep learning model, and M is the
representation of X that encodes the spurious features. For example,
if we encode each token of X into M, we will have variable names
and API names encoded in M. Since R is a representation learned
by models, the algorithm assumes R encoded both causal and spu-
rious features. The goal of taking R and M jointly for training is to
especially encode targeted spurious feature(s) in the M component
of the model P(Y|R, M).

Atinference, we use the model P(Y|R, M) to compute P(Y|do(X =
x)) via Eq. (1). The backdoor criterion instructs that we first ran-
domly sample examples from X that contains different spurious fea-
tures. We will then marginalize over the spurious features through
weighted averaging, that is, ZM],MZ P(Y|X = x, My, M2)P(M1, Ma).
This can be computed using the model trained above P(Y|R, M).
Intuitively, the spurious features in the data have been cancelled out
due to the weighted averaging (please refer to [22] to understand
why this is the case). The model will make predictions based on
the remaining signals, which are the causal features left in R.

5 THE ALGORITHMS OF CAUSAL
VULNERABILITY DETECTION

In this section, we present the algorithms that compute the terms
Eq. (1). In Algorithm 1, we will train a model of P(Y|R, M). In Algo-
rithm 2, we show how to apply P(Y|R, M) and use backdoor criteria
to undo the spurious features during inference.

5.1 Training P(Y|R,M)

Algorithm 1 takes as input the training dataset D as well as the
spurious feature(s) we aim to remove, namely targeted spurious
feature(s) t. For example, it can be variable names and/or API names,
as presented in Section 3.
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The goal of Algorithm 1 is to learn P(Y|R, M) from the training
data. We use the embedding (r) of the original input x computed
by an existing deep learning model. At line 4, the training iterates
through n epochs. For each labeled data point (x, y), we first obtain
r of x at line 6.

At line 7, we select x that shares the targeted spurious feature ¢
with x but differ in root cause r. This means (1) x” should have the
same label as x; as shown in Section 3, spurious features are label
specific; (2) x” should share t with x, so that the model will more
likely encode t in the M component of P(Y|R, M); and (3) x” should
not be x so that training with (r, My, y) at line 9, the model will
rely on the spurious feature in M, instead of r to make prediction.
Our final goal is to encode in the model the root cause of x in the
R component, and the targeted spurious feature ¢ shared across x
and x’ in the M component.

In Table 4, we designed different ways of selecting x’ at line 7,
Settings Var1-Var2 for removing the spurious feature of variable
name, Settings API1-API3 for API names, Setting Var+APIis for both
variable and API names.

The first idea is to select x’ from the training dataset such that it
shares the maximum number of spurious variable or API names with
x. See the rows of Var1 and API1. The second idea is to construct
an example x’ such that x and x’ share k variable/API names. See
the rows of Var2 and API2. Similarly, Setting API3 constructs x’
to have the top k spurious API names. We have also tried this
approach for variable names, but it does not report good results.
In Setting Var+API for removing both spurious features, we take x’
from Setting Var1 and then perform transformation using Setting
API3. This achieved the best results in our experiments compared
to other combinations.

Algorithm 1: Causal Learning Model Training

1 Input: Training dataset D over (X, Y); Targeted spurious
feature t

2 Phase 1: Compute P(R|X) by the SOTA code representation
model

3 Phase 2:

4 for i < 1 to n epochs do

5 foreach (x,y) in D do

6 Extract r for x using PRIX).
7 Select x” by one of the selection procedures in Table 4
8 Encoding x’ to My
9 Train P(Y|R, M) using (r, My, y) via minimizing the
classification loss
10 end
11 end

2 Output: Model P(R|X) and P(Y|R, M)

=

5.2 Undo Spurious Features during Inference

In Algorithm 2, we explain our inference procedure. To predict the
label for a function x, we first extract r at line 2. Existing work
directly predict the output y using r. Since there are both spurious
features and core features in r, both of them are going to be used to
predict the vulnerability. Here, we will use our causal algorithm to
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Table 4: Selection Procedures for x’ in Algorithm. 1

Spurious Feature Setting ‘ x’: same label of x

. Varl select x” which shares the maximum number of spurious variable names with x.
Variable name ; - — -
Var2 random select x’, replace at most k variable names of x’ with the variable names from x
API1 select x” which shares the maximum number of spurious API names with x
API2 random select x’, randomly select k APIs from x and insert them in x” as dead code
API name — - -
API3 random select x’, pick k APIs from the top 10% most frequent spurious APIs and insert them
in x” as deadcode

Variable and API names | Var+API ‘ select x” based on setting Varl; then insert dead code according to setting API3.

remove the spurious features in our inference. The key intuition is
to cancel out the contribution of the spurious features by averaging
over the prediction from all kinds of spurious features. To do so, at
line 4, we randomly sample different x’ K times from the training
dataset D. At line 8, we then compute Eq (1). We assumed uniform
distribution for P(My,). Finally, at line 9, we make the prediction.
argmax_y means select the label that has the better probability
among the vulnerable/nonvulnerable classes.

Algorithm 2: Causal Learning Model Inference

1 Input: Query x, training dataset D over (X, Y), models
P(R|X) and P(Y|R, M)

2 Extract r for x using P(R|X).

3 fori < 1toK do

4 Randomly select x” from the training set D.

5 Extract spurious features M, from x’.

6 Compute P(y ilr, M. x;)

7 end

8 Calculate the causal effect P(y|do(X = x)) =
3iP(yilr, My )P(My)

9 Output: Class § = argmaxy, P(y|do(X = x)).

6 EXPERIMENTAL SETUP

6.1 Implementation

We use Pytorch 2.0.1% with Cuda version 12.1 and transformers*

library to implement our method. All the models are fine-tuned
on single NVIDIA RTX A6000 GPU, Intel(R) Xeon(R) W-2255 CPU
with 64GB ram. The pretrained weights and tokenizers of the trans-
former models were obtained from the link provided by the original
authors °. We used Adam Optimizer to fine-tune our models. The
models were trained until 10 epochs while the batch size is set to
32. The learning rate is set to 2e-5. We trained the models with our
training data and the best fine-tuned weight is selected based on
the f1 score against the validation set. We used this weight during
the evaluation of our test set. We set K=40 (Algorithm 2 line 3), as
it reported the best results among the values we tried.

3https://github.com/pytorch/pytorch
“4https://github.com/huggingface/transformers
Shttps://github.com/microsoft/CodeBERT

6.2 Datasets and Models

We considered two vulnerability detection datasets: Devign [27]
and Big-Vul [12]. Devign is a balanced dataset consisting of 27,318
examples (53.22% vulnerable) collected from two different large
C programming-based projects: Qemu and FFmpeg. As Zhou et
al. [27] did not provide any train, test, and validation split, we used
the split published by CodeXGLUE authors [19]. Big-Vul dataset
is an imbalanced dataset consisting of 188,636 examples (5.78%
vulnerable) collected by crawling the Common Vulnerabilities and
Exposures (CVE) database. For this dataset, we used the partitions
published by the LineVul authors [14].

We evaluated the three SOTA models, CodeBERT, GraphCode-
BERT and UniXcoder as the model P(R|X) in Algorithm 1. The
representation R is extracted from the output embedding of the last
hidden layer of these models. To construct the network B(Y|R, M),
at first, we pass x” through the first four encoder block of these
transformer models. The obtained output embedding is considered
as M. We used the first fourth encoder block (empirically it is the
best layer we found) from the twelve blocks to compute M because
the early layers learn the low-level features and spurious features
tend to be the low-level features [20]. M is then concatenated with
R. Finally, a 2-layer fully-connected network is used to predict Y.

7 EVALUATION

We studied the following research questions:

RQ1: Can CausalVul improve the accuracy of the model?

RQ2: Can CausalVul improve the robustness and generalization of
the model?

RQ3: (ablation studies) How do different design choices affect the
performance of CausalVul?

7.1 RQ1: Model Accuracy

Experimental Design. To answer this RQ, we implemented our
causal approach on top of three state-of-the-art transformer-based
vulnerability detection models - CodeBERT, GraphCodeBERT, and
UniXcoder. We used the default (w/o causal) versions of these mod-
els as baselines. We address these default versions as Vanilla models.

We experimented with all the causal settings shown in Table 4,
namely Varl and Var2, API1, API2 and API3, and Var+APL We eval-
uated both the vanilla models and the causal models on the same
unperturbed original test set and use the metrics of F1. We trained
all the models three times with different random seeds and consider
the average F1 score as our final score (this is done for all the RQs).
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Table 5: The F1 score of CausalVul and the vanilla model on
the test set of Devign and Big-Vul dataset.

Settings‘ CodeBERT ‘GraphCodeBERT‘ UniXcoder

| Devign | Big-Vul | Devign | Big-Vul |Devign |Big-Vul
Vanilla | 061 | 038 | 063 | 038 | 0.64 | 039

CausalVul
Varl 0.65 | 0.40 | 0.63 0.38 0.66 | 0.40
Var2 0.64 | 040 | 0.63 0.40 0.65 | 0.41
API1 0.63 | 0.40 | 0.62 0.41 0.64 | 0.40
API2 0.65 | 0.40 | 0.64 0.40 0.66 | 0.40
API3 0.66 | 040 | 0.5 0.38 0.68 | 0.40
Var+API| 0.65 | 041 | 0.66 | 039 | 0.66 | 040

Result: Table 5 shows the result. CausalVul outperforms the vanilla
models for all the settings, all the datasets and all the models. For De-
vign data, CausalVul Varl, API3, and VAR+API show 4, 5, and 4 per-
centage points improvement respectively in terms of the F1-score
against the CodeBERT vanilla model. In the UniXcoder models,
the improvement for these three approaches are 2, 4 and 2 per-
centage points respectively. With the GraphCodeBERT model, our
approaches API3 and Var+API show 2 and 3 percentage points im-
provement against the vanilla model. Overall, our approaches show
2-5 percentage points F1 score improvement against the vanilla
model. For the Big-Vul dataset, our causal approaches with the
CodeBERT model show a 2-3 percentage points improvement, so
do the GraphCodeBERT and UniXcoder models.

To the best of our knowledge, these are the best-reported vul-
nerability detection results in these widely studied datasets ®. One
may suspect that while ignoring spurious features, a model may
reduce some of the in-distribution accuracies, as the spurious fea-
tures also contribute in benign settings. In contrast, to our surprise,
we find that CausalVul is learning more significant causal signals,
which compensate for the loss of spurious features and also improve
in-distribution accuracy.

Result:RQ1. CausalVul outperforms other pre-trained models,
suggesting causal learning focuses on the root causes of the
vulnerabilities by learning to ignore spurious features. Overall,
our causal settings show up to 6% improvement in F1 in Devign
Dataset and 7% improvement in F1 in Big-Vul dataset.

7.2 RQ2: Model Robustness and Generalization

Experimental Design. For robustness evaluation, we compare the
performance of the causal models with the vanilla model on the
three perturbed datasets presented in Section 3. Varl and Var2 run
on the PerturbVar dataset, which has the worst performance on the
corresponding vanilla model as per Table 1. For example, PerturbVar
dataset perturbed with Top 5 and Top 10 most frequent variable

bour setting keep the inputs in their original form without any perturbation or

normalization.
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names perform the worst in vanilla CodeBERT and GraphCode-
BERT models, respectively. Hence, we select the Top 5 for compari-
son with CodeBERT and the Top 10 to compare with GraphCode-
BERT. Similarly, API1-API3 runs on the worst PerturbAPI dataset,
and Var+API runs on the worst Perturbjoint dataset for the corre-
sponding models.

To investigate the generalization performance of the models, we

evaluated the model trained on the Devign dataset using the Big-
Vul test dataset (excluding overlapped project FFMPEG). Similarly,
we trained on Big-Vul and tested on the Devign dataset. For both
experiments, we experimented all the settings in Table 4 and used
the F1 as metrics.
Results for Robustness: Table 6 shows the robustness perfor-
mance in three blocks: the upper block presents the results from
running with the worst PerturbVar data, and similarly, the middle
and lower blocks present the results from running with the worst
PerturbAPI and with the worst Perturbjoint data respectively.

Between Varl and Var2, Varl performs better on Devign data
and shows 6, 3, and 2 percentage points improvement in F1 with
CodeBERT, GraphCodeBERT and UniXcoder model respectively.
For the Big-Vul data, Var1 works better on the Codebert model with
1 percentage point improvement while Var2 is better for the other
two models with 4 and 3 percentage points improvement respec-
tively. Overall, both of Varl and Var2 approaches work better than
the vanilla model in terms of robustness. Among API1, API2 and
API3, API3 works better in Devign data and demonstrates 10, 5, and
22 percentage points improvement with the three models respec-
tively. For the Big-Vul data, API2 works better with the CodeBERT
model and improves by 3 percentage points over CodeBERT vanilla.
In GraphCodeBERT, both AP1 and API2 show similar performance
and show 2 percentage point improvement. The VAR+API setting
shows a similar improvement trend over vanilla performance.

In Figure 6, we show the predicted probability density for the
Devign vulnerable data. In each subplot, X-axis is the predicted
probability of being vulnerable, and Y-axis is the count of the ex-
amples whose predictions are that probability. The orange lines
plot the causal model and the blue lines plot the vanila model. The
figure demonstrates that the overall prediction probability for vul-
nerable data increases, which means the model is more confident in
predicting vulnerabilities. Experiment result show that the overall
difference of the probability density between vanilla and the causal
approach is statistically significant with p — value <<< 0.05. with
varying effect size, as documented at Table 7.

We also investigate how many examples from robustness data are
predicted incorrectly in Vanilla models like Figure 1 and predicted
correctly in CausalVul. Table 8 shows that CausalVul correctly
predict a significant amount of data which are predicted incorrectly
in Vanilla models.

Results for Generalization: We present the generalization re-
sults in Table 9. The Devign column defines the F1 score of the
Big-Vul test set when evaluated on the model trained with the De-
vign train set. Similarly, the Big-Vul column presents the F1 score of
the Devign test set evaluated on the model that is trained with the
Big-Vul train set. Our results show that when the model is trained
on the Devign train set and the Big-Vul test set is used as the out-
of-distribuition (OOD), our causal approach shows 1-2 percentage
points improvement for CodeBERT and UniXcoder models. But
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Table 6: The Robustness performance of CausalVul and the
vanilla models.

Settings‘ CodeBERT ‘GraphCodeBERT‘ UniXcoder

| Devign | Big-Vul | Devign | Big-Vul |Devign |Big-Vul

Vanilla 0.52 0.22 0.58 0.26 0.52 0.19

Varl 0.58 0.23 0.61 0.28 0.54 0.21
Var2 0.55 0.22 0.58 0.30 0.53 0.22
Vanilla 0.52 0.10 0.47 0.09 0.35 0.09
API1 0.52 0.13 0.35 0.11 0.45 0.14
API2 0.56 0.13 0.39 0.11 0.49 0.13

API3 0.62 0.10 0.52 0.09 0.57 0.13

Vanilla 0.52 0.06 0.45 0.07 0.22 0.05
Var+API| 0.55 0.07 0.54 0.08 0.31 0.10
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Figure 6: Predicted probability density of the Devign data
from Vanilla and Causal approach.

Table 7: Cohen’s d effect size of the difference of the proba-
bility density between Vanilla and Causal approach for vul-
nerable data.

Setting ‘ CodeBERT ‘ GraphCodeBERT ‘ UniXcoder

| Devign|Big-Vul | Devign|Big-Vul |Devign|Big-Vul
var trivial |midium| trivial | small | trivial | small
api large |midium| small | small | large | small

combine| large | small | large | small | small |midium

Table 8: Number of pertubed examples whose predictions
are incorrect in Vanilla model (see Figure 1) but correct in
CausalVul.

Dataset ‘ CodeBERT ‘ GraphCodeBERT ‘ UniXcoder
Devign | 298 | 255 | 368
Big-Vul | 205 | 93 | 130

when the Devign test set is used as the OOD data on the model
trained with Big-Vul data, CodeBERT model shows 7-10 percent-
age points improvement, GraphCodeBERT model shows at most 4
percentage points improvement and the UniXcoder model shows
6-14 percentage points improvement.

In this RQ, we show that causal learning has the potential of
significantly improving the robust accuracy and generalization. In
such a setting, since the spurious features may not be present in
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Table 9: The generalization performance of CausalVul and
the vanilla models.

Settings‘ CodeBERT ‘GraphCodeBERT‘ UniXcoder

| Devign | Big-Vul | Devign | Big-Vul |Devign |Big-Vul

Vanilla | 0.11 | 008 | 011 | 010 | 010 | 0.07
Varl 012 | 017 | o0.11 0.11 0.12 | 013
- Var2 0.12 | 0.18 | 0.11 0.14 | 0.12 | 0.15
API1 012 | 017 | o0.11 012 | 0.12 | o.11
API2 0.12 | 016 | 0.11 0.14 | 0.12 | 0.18
API3 0.13 | 0.15 | 0.11 010 | 0.12 | 0.21
Var+API| 012 | 017 | 011 | 012 | 012 | 018

the evaluation data, learning to ignoring them helps CausalVul to
significantly improve the performance.

Result:RQ2. CausalVul shows up to 62% and 100% improvement
in Devign and Big-Vul robustness data respectively. CausalVul
also improves the generalization performance up to 100% and
200% for both datasets respectively.

7.3 RQ3: Ablation Studies

Experiment Design. In this RQ, we investigate the design choices
for CausalVul. In the first setting, we use K=1 and set x’ = x in
Algorithm 2. Here, we investigate if we don’t use marginalization,
how our approach performs. We evaluated the models on the ro-
bustness testing data. Due to space, we show the results for the
setting of Var+APL

In the second setting, we investigated how our approach per-
forms when using different early layers to represent M. Hence, we
extract M from the first, second, third, and fourth layers and use
that M in our causal approach respectively.
Results. In Figure 7, we used the probability density plots similar
to Figure 6. The orange lines plot K=40, and the blue lines plot
K=1. From the results, we can clearly see that for both vulnerable
and non-vulnerable labels, K=40 learned better and reported more
confident predictions towards ground truth labels.
UniXcoder + Devign Vul Data
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Figure 7: Prediction Probability Density of CausalVul for
K=1 and K=40.

Table 10 demonstrates the result of using different early layers to
extract M. We choose the Var+API settings for all models to present
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Table 10: The performance of the Causal Approach when dif-
ferent early layer is used.

Devign Big-Vul
Model Early Layer | v, APT) | (Var+API)
CodeBERT 1 0.6494 0.4034
CodeBERT 2 0.6528 0.4018
CodeBERT 3 0.6501 0.4026
CodeBERT 4 0.6546 0.4055
GraphCodeBERT 1 0.6156 0.3916
GraphCodeBERT 2 0.6170 0.3903
GraphCodeBERT 3 0.6363 0.3908
GraphCodeBERT 4 0.6570 0.3927
UniXcoder 1 0.5728 0.4049
UniXcoder 2 0.5720 0.4055
UniXcoder 3 0.5550 0.4056
UniXcoder 4 0.6609 0.4058

the result. For all the models and datasets, layer four reported the
best performance.

Result:RQ3. Our results show that marginalization (backdoor
criterion) helps the model to focus on the causal features instead
of spurious features. On the other hand, we found Layer four is
better to use to compute M from x’ than the early three layers.

8 THREATS TO VALIDITY

To discover spurious features, our experiment design follows the
literature [3] and ensures our perturbation follows consistency,
naturalness, and semantic-preservation.

Deep learning models may report improved results due to a
better random seed. All of our experiments have been run with
three random seeds. Our causal models have consistently shown
improvement across all the datasets and all the models. We have
done a statistical test to show that our improvement is statistically
significant. In addition to F1, our probability density plots shown
in Figures 6 and 7 also strongly demonstrated our improvement.

The causal learning makes the assumption that the code repre-
sentation R learned the causal features. Although we are not sure if
that’s the case, we see the improvement of our results in all settings.

Our evaluation worked on two real-world vulnerability datasets,
including both balanced and imbalanced data, and the three SOTA
models. In the future, we plan to experiment with more datasets
and models.

9 RELATED WORK

Deep learning for Vulnerability: Deep learning vulnerability
models can be separated into graph neural-network (GNN) based
or transformer-based models. GNN-based models capture AST,
control-flow, and data-flow information into a graph representa-
tion. Recent GNN-based models [6, 7, 17, 25, 27], have proposed
statement-level vulnerability prediction.

In contrast, the transformer models are pre-trained in a self-
supervised learning setting. They can be categorized by three dif-
ferent designs: encoder-based, decoder-based [8], and hybrid ar-
chitectures [3, 4, 15] that combine elements from both approaches.
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Encoder-based models such as CodeBERT [13, 16] often employ
the masked-language-model (MLM) pre-taining objective; some are
coupled with a contrastive learning approach [5, 10], while others
aim to make pre-training more execution aware [11], bi-modal [4]
or naturalized [3]. Vulnerability detection has been one of the im-
portant downstream tasks for these models. In this paper, we used
three recent SOTA transformer-based models: GraphCodeBERT,
CodeBERT, and UniXcoder and show that causality can further
improve their performance.

There have been also studies for vulnerability detection mod-
els regarding their robustness and generalization. In recent work,
Steenhoek et al. [23] evaluated several SOTA vulnerability mod-
els to assess their capabilities to unseen data. Furthermore, they
touch on spurious features and found some tokens such as "error"
and "printf" are frequently used to make predictions, which can
lead to mispredictions. In another systematic investigation of deep
learning-based vulnerability detection, Chakraborty et al. [7] stated
that vulnerability detection models did not pick up on relevant code
features, but instead rely on irrelevant aspects from the training
distribution (such as specific variables) to make predictions. Our
work designed novel perturbations to confirm the hypothesized
spurious features, and we found different names are used for dif-
ferent labels as spurious features. None of the existing work have
conducted such studies.

Causal learning in SE: To our knowledge, applying causality is
relatively new in SE. Cito et al. [9] is the most relevant recent work
that investigates perturbations on source code which cause a model
to “change its mind”. This approach uses a masked language model
(MLM) to generate a search space of "natural” perturbations that
will flip the model prediction. These natural perturbations are called
“counterfactual explanations.” Our work also seeks for natural per-
turbations, and uses variable names and API names in programs to
perform the perturbation. However, our work is different in that we
require our perturbation to be semantic-preserving. Furthermore,
our goal of promoting models to flip their decision is to discover
spurious features, instead of explaining the cause of a bug. There
has also been orthogonal work that uses counterfactual causal anal-
ysis in the context of ML system debugging [18, 26]. Unlike our
work, these approaches do not use the backdoor criterion to remove
spurious features.

Causal learning in Other Domains: Our work drew inspirations
from Mao et al. [20]. This work addresses robustness and general-
ization in the vision domain using causal learning. They use "water
bird" and "land bird" as two domains and show that by applying
the backdoor criterion, the causal models can learn "invariants" of
the birds in two domains and achieve better generalization. Their
work does not discover spurious features, and their causal learning
does not target spurious features.

10 CONCLUSIONS AND FUTURE WORK

This paper proposed the first step towards causal vulnerability de-
tection. We addressed several important challenges for deep learn-
ing vulnerability detection. First, we designed novel perturbations
to expose the spurious features the deep learning models have used
for prediction. Second, we formulate the problem of deep learning
vulnerability detection using causality and do calculus so that we
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can apply causal learning algorithms to remove spurious features
and push the models to use more robust features. We designed
comprehensive experiments and demonstrated that CausalVul im-
proved accuracy, robustness and generalisation of vulnerability
detection. In the future, we will plan to discover more spurious
features and explore the causal learning for other applications in
software engineering.

11

ACKNOWLEDGEMENTS

We thank the anonymous reviewers for their valuable feedback.
This research is partially supported by the U.S. National Science
Foundation (NSF) under Award #2313054.

REFERENCES

(1]

(2]

(3]
(4]

(9]

[10]

[11]

[12]

[13]

[n.d.]. Cybercrime To Cost The World $10.5 Trillion Annually By 2025, howpub-
lished =https://cybersecurityventures.com/hackerpocalypse-cybercrime-report-
2016/.

[n.d.]. Microsoft Exchange Flaw: Attacks Surge After Code Published, howpub-
lished =https://www.bankinfosecurity.com/ms-exchange-flaw-causes-spike-in-
trdownloader-gen-trojans-a-16236.

2022. NatGen: Generative Pre-training by “Naturalizing” Source Code - Code
and scripts for Pre-Training. https://doi.org/10.5281/zenodo.6977595

Wasi Uddin Ahmad, Saikat Chakraborty, Baishakhi Ray, and Kai-Wei Chang. 2021.
Unified Pre-training for Program Understanding and Generation. In 2021 Annual
Conference of the North American Chapter of the Association for Computational
Linguistics (NAACL).

Nghi D. Q. Bui, Yijun Yu, and Lingxiao Jiang. 2021. Self-Supervised Contrastive
Learning for Code Retrieval and Summarization via Semantic-Preserving Trans-
formations (SIGIR "21). Association for Computing Machinery, New York, NY,
USA, 511-521. https://doi.org/10.1145/3404835.3462840

Sicong Cao, Xiaobing Sun, Lili Bo, Rongxin Wu, Bin Li, and Chuangqi Tao. 2022.
MVD: Memory-Related Vulnerability Detection Based on Flow-Sensitive Graph
Neural Networks. In Proceedings of the 44th International Conference on Soft-
ware Engineering (Pittsburgh PA) (ICSE 22). 1456-1468. https://doi.org/10.1145/
3510003.3510219

Saikat Chakraborty, Rahul Krishna, Yangruibo Ding, and Baishakhi Ray. 2021.
Deep Learning based Vulnerability Detection: Are We There Yet. IEEE Trans-
actions on Software Engineering (2021), 1-1. https://doi.org/10.1109/TSE.2021.
3087402

Mark Chen, Jerry Tworek, Heewoo Jun, Qiming Yuan, Henrique Ponde de
Oliveira Pinto, Jared Kaplan, Harri Edwards, Yuri Burda, Nicholas Joseph, Greg
Brockman, Alex Ray, Raul Puri, Gretchen Krueger, Michael Petrov, Heidy Khlaaf,
Girish Sastry, Pamela Mishkin, Brooke Chan, Scott Gray, Nick Ryder, Mikhail
Pavlov, Alethea Power, Lukasz Kaiser, Mohammad Bavarian, Clemens Winter,
Philippe Tillet, Felipe Petroski Such, Dave Cummings, Matthias Plappert, Fo-
tios Chantzis, Elizabeth Barnes, Ariel Herbert-Voss, William Hebgen Guss, Alex
Nichol, Alex Paino, Nikolas Tezak, Jie Tang, Igor Babuschkin, Suchir Balaji, Shan-
tanu Jain, William Saunders, Christopher Hesse, Andrew N. Carr, Jan Leike, Josh
Achiam, Vedant Misra, Evan Morikawa, Alec Radford, Matthew Knight, Miles
Brundage, Mira Murati, Katie Mayer, Peter Welinder, Bob McGrew, Dario Amodei,
Sam McCandlish, Ilya Sutskever, and Wojciech Zaremba. 2021. Evaluating Large
Language Models Trained on Code. arXiv:2107.03374 [cs.LG]

Jirgen Cito, Isil Dillig, Vijayaraghavan Murali, and Satish Chandra. 2022. Coun-
terfactual Explanations for Models of Code. In Proceedings of the 44th International
Conference on Software Engineering: Software Engineering in Practice (Pittsburgh,
Pennsylvania) (ICSE-SEIP ’22). Association for Computing Machinery, New York,
NY, USA, 125-134. https://doi.org/10.1145/3510457.3513081

Yangruibo Ding, Luca Buratti, Saurabh Pujar, Alessandro Morari, Baishakhi Ray,
and Saikat Chakraborty. 2022. Towards Learning (Dis)-Similarity of Source
Code from Program Contrasts. In Proceedings of the 60th Annual Meeting of the
Association for Computational Linguistics (Volume 1: Long Papers). 6300-6312.
Yangruibo Ding, Ben Steenhoek, Kexin Pei, Gail Kaiser, Wei Le, and
Baishakhi Ray. 2023. TRACED: Execution-aware Pre-training for Source Code.
arXiv:2306.07487 [cs.SE]

Jiahao Fan, Yi Li, Shaohua Wang, and Tien N. Nguyen. 2020. A C/C++ Code
Vulnerability Dataset with Code Changes and CVE Summaries. In Proceedings of
the 17th International Conference on Mining Software Repositories (Seoul, Republic
of Korea) (MSR 20). Association for Computing Machinery, New York, NY, USA,
508-512. https://doi.org/10.1145/3379597.3387501

Zhangyin Feng, Daya Guo, Duyu Tang, Nan Duan, Xiaocheng Feng, Ming Gong,
Linjun Shou, Bing Qin, Ting Liu, Daxin Jiang, and Ming Zhou. 2020. CodeBERT:

[14

[15

[16

(17

[18

[19

[24

[25

[26

]

]

]

]

ICSE ’24, April 14-20, 2024, Lisbon, Portugal

A Pre-Trained Model for Programming and Natural Languages. In Findings of the
Association for Computational Linguistics: EMINLP 2020. 1536-1547.

Michael Fu and Chakkrit Tantithamthavorn. 2022. LineVul: A Transformer-
based Line-Level Vulnerability Prediction. In 2022 IEEE/ACM 19th International
Conference on Mining Software Repositories (MSR). 608—620. https://doi.org/10.
1145/3524842.3528452

Daya Guo, Shuai Lu, Nan Duan, Yanlin Wang, Ming Zhou, and Jian Yin.
2022. UniXcoder: Unified Cross-Modal Pre-training for Code Representation.
arXiv:2203.03850 [cs.CL]

Daya Guo, Shuo Ren, Shuai Lu, Zhangyin Feng, Duyu Tang, Shujie Liu, Long
Zhou, Nan Duan, Jian Yin, Daxin Jiang, et al. 2021. GraphCodeBERT: Pre-training
Code Representations with Data Flow. In International Conference on Learning
Representations.

David Hin, Andrey Kan, Huaming Chen, and M. Ali Babar. 2022. LineVD:
Statement-Level Vulnerability Detection Using Graph Neural Networks. In Pro-
ceedings of the 19th International Conference on Mining Software Repositories
(Pittsburgh PA) (MSR °22). 596-607. https://doi.org/10.1145/3524842.3527949
Md Shahriar Igbal, Rahul Krishna, Mohammad Ali Javidian, Baishakhi Ray,
and Pooyan Jamshidi. 2022. Unicorn: Reasoning about Configurable System
Performance through the Lens of Causality. In Proceedings of the Seventeenth
European Conference on Computer Systems (Rennes, France) (EuroSys "22). As-
sociation for Computing Machinery, New York, NY, USA, 199-217.  https:
//doi.org/10.1145/3492321.3519575

Shuai Lu, Daya Guo, Shuo Ren, Junjie Huang, Alexey Svyatkovskiy, Ambro-
sio Blanco, Colin Clement, Dawn Drain, Daxin Jiang, Duyu Tang, et al. 2021.
CodeXGLUE: A Machine Learning Benchmark Dataset for Code Understanding
and Generation. arXiv preprint arXiv:2102.04664 (2021). https://arxiv.org/abs/
2102.04664

C. Mao, K. Xia, ]. Wang, H. Wang, ]. Yang, E. Bareinboim, and C. Vondrick. 2022.
Causal Transportability for Visual Recognition. In 2022 IEEE/CVF Conference on
Computer Vision and Pattern Recognition (CVPR). IEEE Computer Society, Los
Alamitos, CA, USA, 7511-7521. https://doi.org/10.1109/CVPR52688.2022.00737
Judea Pearl. 2000. Causality: Models, reasoning, and inference.

Judea Pearl and Elias Bareinboim. 2011. Transportability of causal and statistical
relations: A formal approach. In Proceedings of the AAAI Conference on Artificial
Intelligence, Vol. 25. 247-254.

Benjamin Steenhoek, Md Mahbubur Rahman, Richard Jiles, and Wei Le. 2023.
An Empirical Study of Deep Learning Models for Vulnerability Detection.
arXiv:2212.08109 [cs.SE]

Shiqi Wang, Zheng Li, Haifeng Qian, Chenghao Yang, Zijian Wang, Mingyue
Shang, Varun Kumar, Samson Tan, Baishakhi Ray, Parminder Bhatia, Ramesh
Nallapati, Murali Krishna Ramanathan, Dan Roth, and Bing Xiang. 2022. ReCode:
Robustness Evaluation of Code Generation Models. arXiv:2212.10264 [cs.LG]
Wenbo Wang, Tien N. Nguyen, Shaohua Wang, Yi Li, Jiyuan Zhang, and Aashish
Yadavally. 2023. DeepVD: Toward Class-Separation Features for Neural Network
Vulnerability Detection. In 2023 IEEE/ACM 45th International Conference on Soft-
ware Engineering (ICSE). 2249-2261. https://doi.org/10.1109/ICSE48619.2023.
00189

Ziyuan Zhong, Zhisheng Hu, Shengjian Guo, Xinyang Zhang, Zhenyu Zhong,
and Baishakhi Ray. 2022. Detecting Multi-Sensor Fusion Errors in Advanced
Driver-Assistance Systems. In Proceedings of the 31st ACM SIGSOFT International
Symposium on Software Testing and Analysis (Virtual, South Korea) (ISSTA 2022).
Association for Computing Machinery, New York, NY, USA, 493-505. https:
//doi.org/10.1145/3533767.3534223

Yaqin Zhou, Shangging Liu, Jingkai Siow, Xiaoning Du, and Yang Liu. 2019.
Devign: Effective Vulnerability Identification by Learning Comprehensive Pro-
gram Semantics via Graph Neural Networks. In Advances in Neural Information
Processing Systems, Vol. 32. 10197-10207.



