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HIGHLIGHTS

e A novel weather regime-based stochastic weather generator simulates daily precipitation and temperature in California.

e The model reproduces a wide range of climate statistics and extremes with high fidelity at various spatiotemporal scales.

e The model’s strong performance statewide supports climate impact assessments on water systems across California’s watersheds.

ARTICLE INFO ABSTRACT

Keywords: This study is the first of a two-part series presenting a novel weather regime-based stochastic weather generator

Stochastic Wfather generator to support bottom-up climate vulnerability assessments of water systems in California. In Part 1 of this series, we

Weather regimes present the details of model development and validation. The model is based on the identification and simulation

Climate change . . . is . .
of weather regimes, or large-scale patterns of atmospheric flow, which are then used to condition the simulation

Bottom-up . . s .

Downscaling of local, daily weather at a 6 km resolution across the state. We conduct a thorough validation of a baseline,

Water resources 1000-year model simulation to evaluate its ability to accurately simulate daily precipitation and minimum and

California maximum temperature at various spatial scales (grid cell, river basin) and temporal scales (daily, event-based,
monthly, annual, inter-annual to decadal). Results show that the model effectively reproduces a large suite of
climate statistics at these scales across the entire state, including moments, spells, dry and wet extremes, and
extreme hot and cold periods. Moreover, the model successfully maintains spatial correlations and inter-variable
relationships, enabling the use of model simulations in hydrologic and water resources analyses that span
multiple watersheds across California. The weather generator can simulate physically plausible extreme events
(e.g., multi-day extreme precipitation and severe drought) that extend beyond the worst case conditions observed
historically, independent of climate change. Thus, the baseline simulation can be used to understand the impacts
of natural climate variability on both flood and drought risk in regional water systems. Scenarios of climate
change are discussed in Part 2.

decades. While most climate projections agree that California’s
future will be warmer and precipitation will intensify, the rate of
these changes is less clear, as are more nuanced climate changes
like shifts in average precipitation or changes to atmospheric
circulation that can impact regional weather. Furthermore, water
systems in California are very vulnerable to natural swings in
climate unrelated to climate change, and the range of this natural
variability must also be considered in future planning efforts.

Practical Implications

Water resource planners in California must prepare for the
increased stress of climate change. However, there is significant
uncertainty about how the climate will evolve over the coming
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This two-part series comprises a pair of articles documenting the
development of a stochastic weather generator for California that
can create large ensembles of climate traces to support water re-
sources planning under future climate uncertainty. The weather
generator is an efficient tool that can quickly create long (1000-
year) traces of statewide weather, and allows water managers to
flexibly develop and explore climate scenarios associated with
different signals of climate change. These include ‘thermody-
namic’ changes (i.e., more intense precipitation linked to an in-
crease in the moisture-holding capacity of warmer air), as well as
more nuanced signals related to shifts in atmospheric circulation
(i.e., dynamic climate change).

In Part (1) of this series (this article), we present the development
and validation of the model. The research in Part (1) demonstrates
that baseline simulations from the weather generator (i.e., simu-
lations without climate change) can reproduce historical climate
statistics across California very well, based on a large suite of
variables that include extreme precipitation events and droughts,
average and extreme temperatures, wet and dry spells, and heat
and cold waves, among others. Performance was evaluated at
various spatial scales, including at the native resolution of the
observations (6 km grid cell) and aggregated to HUC-8 and HUC-4
basin scales. Performance metrics were chosen to showcase a
range of statistical features inherent in the simulations, with an
emphasis on the reproduction of variability across timescales and
the representation of extreme events that are important for water
resources planning activities. Particular attention was given to
evaluating whether the weather generator could simulate extreme
precipitation and drought events that exceed those observed in the
historical record, but that are also statistically plausible. The
analysis in Part (1) also demonstrates that baseline weather
generator simulations compare well against the historical simu-
lations from the LOCA v.2 downscaled product, which is based on
the most recent generation of global climate model (GCM) simu-
lations from the CMIP6 experiment.

Using the weather generator, we create a publicly available
dataset of 30 unique climate change scenarios, each consisting of
1000 years of simulated climate data (precipitation, maximum
temperature, minimum temperature) at a 6 km resolution across
the entire state of California. The 30 scenarios represent a range of
plausible climate changes to temperature, average precipitation,
and precipitation extremes. An additional two climate scenarios
are also created that reflect changes to the frequency of large-scale
weather patterns. The generation of these scenarios is detailed in
Part (2) of this series.

The datasets created in this work highlight how even in the
absence of climate change, water managers in California should
plan for extreme precipitation events and droughts beyond the
worst case from the historical record, because such events are
quite plausible due to California’s natural climate variability
alone. However, when such natural extremes are combined with
the effects of anthropogenic climate change, extremes in Califor-
nia become severe and will likely require significant investment in
water resources systems to sustain adequate water services across
the state. The weather generator and associated datasets should be
viewed as a complementary tool to more commonly available
downscaled GCM projections. Unlike GCMs, the weather gener-
ator is not designed to create scenarios of future climate based on
the physical laws of the Earth system and future greenhouse gas
emission scenarios. Rather, the model provides a way to help
translate various signals of climate change from GCMs into traces
of weather that are tailored to support water resource planning
efforts. In this way, the California weather generator is envisioned
as a tool to help promote collaboration between climate scientists
and water resource planners across the state.

Stakeholders across California can utilize the climate scenarios
produced by the stochastic weather generator to infer the joint
impact of both climate change and natural climate variability on
their systems. We recommend that stakeholders use the data
products developed in this work in stages to help develop robust
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adaptations of water resources infrastructure under climate
change. For example, initial adaptation strategies (e.g., new
reservoir operational policies, new infrastructure for managed
aquifer recharge) could be developed using the historical record to
ensure these strategies are able to meet performance requirements
under past and recent extreme events. Then, these strategies could
be re-evaluated using: 1) a 1000-year baseline weather generator
simulation; and 2) climate change scenarios applied to the 1000-
year weather generator simulation. These evaluations would
provide information on how robust a given adaptation strategy is
to natural climate variability, climate change, and a combination
of the two.

Such information could be used in different ways to alter the
initial adaptation strategy. For instance, if a strategy appears
vulnerable to the 1000-year baseline weather generator simula-
tion (i.e., natural climate variability) or scenarios from the model
reflective of likely future climate conditions (e.g., a low degree of
future warming projected in most GCMs over the next few de-
cades), this might suggest an immediate need for a more robust
strategy. Alternatively, in cases where an adaptation strategy is
only vulnerable to the most extreme climate change scenarios
produced by the model, the current adaptation strategy may be
deemed adequate if coupled with plans for continued climate
monitoring and retrofits/adjustments that could be implemented
later if needed.

1. Introduction

Climate change poses a major threat to the sustainability of water
systems in California. Over the last two decades, California has experi-
enced four periods of drought (2001-2004, 2007-2009, 2012-2016,
2020-2022), which when taken together rank as the driest 22-year
period in at least 1,200 years (Williams et al., 2022). Each of these
drought periods were ended by a string of atmospheric rivers (ARs)
(Dettinger, 2013; Zechiel and Chiao, 2021), some of which led to record
flooding, threatened major infrastructure projects (Henn et al., 2020),
and most recently, even drove the re-emergence of the once-dry Tulare
Lake. These extremes are only projected to worsen over the next several
decades, highlighting the need for water resource planners across the
state to begin preparing their systems for additional climate stress.

Conventionally, water resource planners have used downscaled
climate scenarios from global climate models (GCMs) to help plan for
necessary system adaptations to mitigate the impending impacts of
climate change. GCMs are an invaluable tool for providing internally
consistent scenarios that can be used to examine the possible pathways
of climate change under anthropogenic forcing. However, the scenarios
produced by GCMs contain a mixture of climate change signals,
including thermodynamic signals (e.g., the increased moisture holding
capacity of a warmer atmosphere) and dynamic signals (e.g., shifts in
atmospheric circulation), with the former projected to occur with more
confidence than the latter (Emori and Brown, 2005; Seager et al., 2010,
2014). GCM scenarios also exhibit significant variability and biases in
hydrologically important variables like precipitation linked to parame-
terized physics and coarse model resolution. This poses two challenges
for water resources planning. First, it is often difficult and time
consuming to separate out thermodynamic and dynamic signals of
change from natural variability in GCM simulations. However, such
separation may be of high interest to water resource planners who want
to base their planning efforts on more detectable signals of change
linked to thermodynamic mechanisms, but who may be wary of using
climate data reflecting dynamic change in which there is less scientific
consensus. Second, it is also very challenging to effectively remove
biases from GCM simulations. Statistical corrections to certain types of
model bias are far from straightforward, since they can be linked to
modeled physical processes that could change under global warming
and thus change the bias over time (Stephenson et al., 2012; Maraun
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et al., 2017).

Given these challenges, water resource planners can benefit from an
efficient alternative to climate scenario generation that can complement
downscaled GCM simulations and help investigate water system risk
under climate stress. Stochastic weather generators provide one such
alternative. Weather generators are statistical models that are parame-
terized based on existing meteorological records and used to generate
large ensembles of simulated daily or hourly weather records that are
statistically similar to the observations but differ in the sequencing,
duration, and magnitude of individual events (Richardson, 1981; Wilks
and Wilby, 1999; Fowler et al., 2007; Bird et al., 2023). For water system
applications, weather generators must often develop sequences of mul-
tiple weather variables (e.g., precipitation, maximum and minimum
temperature) at multiple locations while maintaining realistic persis-
tence and covariance structures associated with transient, multi-day
storm events and over longer (seasonal to interannual) timescales.
Once fit to historical data, model parameters can be systematically
altered to produce new traces of weather that exhibit a wide range of
change in their distributional characteristics that may be experienced
under climate change, including the intensity and frequency of average
and extreme precipitation, heatwaves, and cold spells (Wilks, 2002,
2010, 2012; Acharya et al., 2017; Mukundan et al., 2019).

Over the past few decades, there has been growing interest in using
stochastic weather generators to create large scenario ensembles for
bottom-up (or vulnerability based) climate change impact assessments
of water and agricultural systems (Semenov and Barrow, 1997;
Steinschneider and Brown, 2013; Harris et al., 2014; Ailliot et al., 2015;
Yang et al., 2020; Khazaei et al., 2020; Dyreson et al., 2022; LeNoir et al.,
2023). The main purpose of this study is to develop a stochastic weather
generator and multiple ensembles of future climate scenarios across
California to help evaluate the vulnerability of water systems and the
robustness of adaptation strategies under climate change across the
state. The stochastic weather generator will facilitate the integration of
climate change considerations into statewide water policies and long-
term planning, ensuring resilience and preparedness in the face of a
changing climate. The effort presented in this work builds on a prototype
tool (Steinschneider et al., 2019) that was used in a proof-of-concept
application for the Tuolumne River basin, which was further refined
and expanded to additional basins in California (Najibi et al., 2021;
Rahat et al., 2022). This work advances and broadens the scope of the
model developed in those previous studies to generate internally
consistent climate scenarios across the entire state of California.

The present study (Part 1 of the series) focuses on the development,
calibration, and validation of the stochastic weather generator across
California. The subsequent study (Part 2) presents the development of
publicly available climate change scenarios, which include both ther-
modynamic and dynamic signals of change and are designed to support
bottom-up climate change impact assessments of water systems across
the state. In the sections below, we describe the data used in the
development of the California stochastic weather generator (Section 2),
detail the model itself (Section 3), and present results summarizing
baseline model performance (Section 4), before concluding with a brief
discussion of key results (Section 5).

2. Meteorological data and atmospheric information
2.1. Precipitation and temperature records in California

We collected observed daily precipitation (P) [mm] between January
1, 1915 and December 31, 2018 (104 years) from the extreme-
preserving gridded daily dataset for the conterminous United States
developed by Pierce et al. (2021) (also known as the unsplit Livneh
precipitation dataset). This extreme-preserving dataset, which has a
0.0625°x0.0625° (~6 km) spatial resolution, follows the same gridding
method as employed in Livneh et al. (2013) and Livneh et al. (2015), but
omits a time adjustment in the data to avoid excessive smoothing of
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extreme events.

We further scrutinized the precipitation time series and noticed that
there were 24 dates with extremely high precipitation intensities (>10
in or 254 mm) in the summer (June-August, with a large majority in
July), while the closest GHCN-d rain gauges showed much lower mag-
nitudes (often ~ 1/10th of the gridded value). These extreme sum-
mertime precipitation intensities were deemed erroneous and were
rescaled downward by a factor of 10 to reflect the precipitation intensity
of nearby GHCN-d gauges.

We obtained observed daily minimum temperature (Tmin) [°C] and
maximum temperature (Tmax) [°C] from the data in Livneh et al. (2013)
for the period between January 1, 1915, and December 31, 2015. This
dataset was then extended to December 31, 2018 using the PRISM daily
dataset (PRISM Climate Group, 2014) to match the timeframe of the
precipitation data. Two additional post-processing steps were then
employed to prepare the temperature time series before using them in
the stochastic weather generator. First, the temperature data in the
1915-2015 timeframe (Livneh et al., 2013) were bias corrected to the
monthly PRISM dataset over the entire period. Then, the entire tem-
perature time series (1915-2018) for each grid cell was detrended so
that the long-term mean monthly temperatures between 1915-2018
matched those from 1991 to 2020. This ensured that the entire tem-
perature series reflected warming that has already occurred in recent
decades due to climate change. This is important for water resources
planning activities that are forward-looking and need to accommodate
future climate conditions, rather than past conditions that are unlikely
to return.

All of these data were collected over and slightly outside of the USGS
HUC-2 water resources region that spans the entire state of California
and some parts of Nevada and Oregon (Region 18). This led to a final
dataset consisting of 13,786 grid cells (Fig. 1). The final time series of
both precipitation and temperature were truncated to the period be-
tween 1948-2018 to match the timespan of the atmospheric data used
for weather regime classification (Section 2.2).

2.2. Atmospheric circulation over the Pacific-North American sector

We obtained daily gridded (2.5°x2.5°) geopotential heights (GPH)
[m] at the 500-hPa level from the National Centers for Environmental
Prediction (NCEP)/National Center for Atmospheric Research (NCAR)
reanalysis dataset (NCEP/NCAR Reanalysis 1; Kalnay et al., 1996) be-
tween January 1, 1948, and December 31, 2021 (74 years). The gridded
data were then extracted for the region between 30°N-60°N and 180°W-
100°W, covering much of the Pacific-North American sector (see inset in
Fig. 1). The GPH data were centered by month to remove their seasonal
cycle, producing GPH anomalies (GPHASs).

We also collected the daily occurrences of AR landfalls along the US
west coast from the Scripps Institution of Oceanography (SIO)-generated
AR catalog (SIO-R1 catalog; Gershunov et al., 2017). This catalog re-
ports individual AR events across western North America from January
1, 1948 to December 31, 2020, detected using integrated vapor trans-
port (IVT) and integrated water vapor (IWV) from NCEP/NCAR Rean-
alysis 1.

2.3. Annual standardized precipitation index over California

We collected a gridded dataset of a cold-season standardized pre-
cipitation index (SPI) (0.5°x0.5°) across California, taken from the
study in Borkotoky et al. (2021). Similar to the work presented by Gupta
et al. (2022), these data will be used when fitting the weather generator
to ensure it can characterize large-scale weather patterns with appro-
priate inter-annual variance. We gathered the SPI data between
1948-2021, which is the same period as the GPHA data described above.
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Fig. 1. Domain of the HUC-2 water resources region over California (Region 18), along with HUC-4 and HUC-8 subregions. All climate grid cells modeled within the
stochastic weather generator are also shown, and extend slightly beyond the HUC-2 water resources region. Inset shows the atmospheric boundary used for weather

regime (WR) identification.
2.4. Downscaled CMIP6 projections (LOCA v.2)

We obtained downscaled precipitation time series at a 3 km resolu-
tion from the localized constructed analogs (LOCA) v.2 statistical
method (Pierce et al., 2023), based on climate model output from the
Coupled Model Intercomparison Project Phase 6 (CMIP6). We collected
daily precipitation for the historical period of 1950-2014 from 67 in-
dividual CMIP6 climate model simulations. There are 13 separate
models in this dataset, each contains some number of initial conditions
that varies by model, with a total of 4355 years of data in the historical
period across all 67 simulations. These data are used to evaluate the
benefit of the weather generator in terms of producing plausible extreme
events compared with the baseline simulations provided by downscaled
CMIP6 climate models.

3. Weather-regime based stochastic weather generator for
California

This work advances a semiparametric, multivariate, and multisite
stochastic weather generator that was previously developed for the
Tuolumne River basin during the cold season (Steinschneider et al.,

2019) and further refined across several other basins in California
(Najibi et al., 2021; Rahat et al., 2022). The weather generator is
designed to separately model dynamic and thermodynamic atmospheric
mechanisms of climate variability and change through statistical ab-
stractions of these processes. To capture atmospheric dynamics, the
weather generator simulates sequences of weather regimes (WRs). WRs
are recurring large-scale atmospheric flow patterns (e.g., upper-level,
quasi-stationary blocks and troughs) that appear at fixed geographic
locations, persist for days-to-weeks within a season, and organize high-
frequency weather systems (Robertson and Ghil, 1999; Robertson et al.,
2015). They represent intermediary phenomena in the stochastic con-
tinuum of atmospheric perturbations that connect local weather to
large-scale atmospheric circulation, and provide a parsimonious way of
abstracting major patterns of atmospheric circulation into stochastic
simulations of weather. To capture thermodynamic mechanisms of
climate change, the weather generator post-processes simulated data to
reflect patterns of warming and thermodynamic scaling of precipitation
rates with that warming (more details in Part 2). These properties of the
model are represented in a hierarchical structure composed of three
primary modules: 1) identification and simulation of WRs that dictate
the large-scale atmospheric flow across the Pacific-North American
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sector; 2) simulation of local weather across California conditioned on
the WRs; and 3) perturbations to the simulation schemes in (1) and (2)
reflective of thermodynamic and dynamic climate change. In the sub-
sections below, we focus on the first two of these modules, with the third
being the focus of Part (2) in this series.

As part of this work, the stochastic weather generator underwent
several refinements to improve the representation of droughts and
pluvials, extreme multi-site precipitation events, and other climate sta-
tistics. The two largest refinements included changes to how the model
simulates new WRs and how it adds noise to resampled large precipi-
tation events. Therefore, we present an overview of the new set of al-
gorithms in the sub-sections below (also see Fig. 2), and then present the
mathematical details of these algorithms in Appendix A. Comparisons
between the refined and previous model versions are presented in
Supplementary Material.

3.1. Weather regime identification and simulation

Following Najibi et al. (2021), we use a Nonhomogeneous Hidden
Markov Model (NHMM) to identify WRs. NHMMs are nonlinear statis-
tical models that use latent variables to identify clusters in state-space
while simultaneously accounting for the distribution and temporal dy-
namics of observed data (Rabiner, 1989; Hughes and Guttorp, 1994). In
this application, we first divide the 500-hPa GPHAs into two seasons:
November-April (cold season) and May-October (warm season). We then
project the separated GPHAs onto their first J empirical orthogonal
functions (EOFs), where J is chosen using a scree test to ensure that the
selected EOFs explain the majority (e.g., > 90 %) of the variance in the
data (here, J = 10). We subsequently evaluate a first-order NHMM on
the J PCs of GPHAs to assign each day in the record to one of K separate
WRs. This is done separately for the cold and warm season, and K can
differ across the two seasons (the selection of K is described further in
Section 3.2.2 below). The NHMM is fit using two harmonics as exoge-
nous variables to account for seasonality in the WRs. In addition, the
first four PCs of the SPI dataset over California (which explain ~ 80 % of

Historical precipitation and temperature associated with each WR

oo

WRs identified historically with NHMM

Model Fitting
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the variance) are also incorporated as exogenous variables to improve
the inference of inter-annual variability of cold-season WRs. Impor-
tantly, by using the NHMM, days are classified into WRs in a way that
explicitly considers WR persistence, which will lead to persistent
weather in the weather generator simulations. The Expectation-
Maximization algorithm (Dempster et al., 1977) with the for-
ward-backward algorithm (Baum and Petrie, 1966; Baum et al., 1970) is
used to estimate the parameters of the NHMM. The most probable
sequence of hidden states is computed using the Viterbi algorithm
(Forney, 1973; Rabiner, 1989). More details related to the NHMMs are
provided in Appendix A.1.

Future time series simulations of WRs of an arbitrary length could be
created through forward simulation of the fitted NHMM, as in Najibi
et al. (2021). However, we found that WR simulation using this
approach, when coupled with the local weather generation algorithm
described below in Section 3.2, underestimated the magnitude of
extreme, multi-year droughts and pluvials (i.e., simulations were over-
dispersed at inter-annual timescales). Therefore, we developed a novel
non-parametric approach to WR simulation that addresses the issue of
overdispersion, in which we first cluster the historically identified WRs
into four-year segments across the historical record of 1948-2019. We
then resample four-year segments with equal probability to develop
future time series of WRs of an arbitrary length. This approach
(described in more detail in Appendix A.2) ensures that inter-annual WR
dynamics are almost completely preserved. The benefits of this approach
for model performance as compared to an older model version (Najibi
et al., 2021) are shown in Supplementary Material.

3.2. Local weather generation conditioned on weather regimes

3.2.1. Weather generation algorithm

Local weather is simulated by bootstrapping weather data (e.g., daily
precipitation, minimum and maximum temperature) based on se-
quences of simulated WRs. Starting on simulation day ¢, the algorithm in
Section 3.1 will determine a sequence of n days containing the i WR (i.

Simulated precipitation and temperature, after post-processing for

thermodynamic climate changes

Simulated precipitation and temperature based on bootstrapping
from historical record, given simulated WRs

Simulated WRs, with option for climate changes in the average
frequency of each WR

Fig. 2. Overview of the weather regime-based stochastic weather generator algorithm. During model fitting, daily weather regimes (WRs) are identified from
historical atmospheric circulation data using a Nonhomogeneous Hidden Markov Model (NHMM). Historical daily precipitation (Py;s) and temperature (Th;s) data
across the state of California are associated with historically identified WRs (WRy;s). During simulation, the model creates new sequences of WRs (WRgin), with the
option to change their frequency of occurrence as a signal of dynamic climate change. Simulations of daily precipitation and temperature (Ps;n, and Tg,) across the
state are then generated by bootstrapping values from the historical record, based on the simulated and historical sequences of WRs. Finally, additional thermo-
dynamic climate changes are imposed on the simulations of precipitation and temperature using post-processing methods, creating the final precipitation (P*g,) and

temperature (T*g,,) data.
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e., WR, through WR,. ,.; equal i). Here, n usually varies from a single day
to a few weeks, although it can extend longer than one month due to the
persistence of WRs. To generate weather for those n days, we resample
an n*-day block of historical data that was also classified into the i¥ WR,
based on the absolute difference between the historical and simulated
block length (i.e., a historical block with length n* closer to n will receive
a higher probability and will be resampled with a higher likelihood). We
also require that any resampled blocks meet two other criteria: 1) the
central day of the historical block is within a 3-day window of the day of
year for simulation day t; and 2) the day prior to the historical block has
the same state of regionally averaged precipitation (i.e., dry (payg <
0.25 mm) or wet (pgyg > 0.25 mm), where 0.25 mm is trace precipita-
tion). This ensures that the resampled data will preserve the seasonality
of local weather and better maintains precipitation persistence across
sites. We define regionally averaged precipitation using daily precipi-
tation averaged over the Calaveras, Stanislaus, Tuolumne, Merced, and
Upper San Joaquin watersheds (425 grids in total), which are centrally
located in California. This approach helps ensure that inter-daily pre-
cipitation dynamics are preserved in the center of the state, which also
helps to preserve these dynamics in the northern and southern ends of
the state due to regional coherence in storm tracks that pass over
California.

If a historical block happens to be resampled with a longer length
than the simulated one (i.e., n* > n), we reduce the length of the
resampled block by discarding days from that block randomly from one
of its two ends until n* =n. If the length n* < n, then the remaining
length n — n" is used as the basis to resample another block for WR i, and
this process is continued until data has been resampled for the entire
block of n days. At this point, the WR will change states and the
resampling procedure begins again. By using this block bootstrap pro-
cedure, the resampled data are more likely to capture the entire life cycle
of passing storms (and the resulting space-time structure in weather).

The block bootstrap will preserve many of the properties of the
marginal and joint distributions of local weather variables, but at the
expense of being able to simulate values outside the range of the
instrumental record. To address this drawback specifically for heavy
precipitation, the weather generator uses a copula-based jittering
approach that adds noise to resampled heavy precipitation data as a
post-processing step. To do this, we first fit a mixture model to the
observed, non-zero precipitation at each site, which uses a gamma dis-
tribution for the bulk distribution (by month) up to a threshold and a
Generalized Pareto distribution (GPD) to model the tail of the distri-
bution beyond that threshold. For this work, we selected the site-specific
99th percentile of non-zero values as the separating threshold. Then, for
heavy precipitation values above the 99th percentile that are resampled
in the block bootstrap, we calculate the non-exceedance probability
associated with that event based on the fitted gamma-GPD. Spatially
correlated random noise is then added to these non-exceedance proba-
bilities across sites, which are then mapped back through the gamma-
GPD models to develop new heavy precipitation values across loca-
tions. This approach is designed such that final values of simulated,
jittered precipitation can extend beyond the range of historical precip-
itation values, but preserve the marginal distribution of precipitation at
each site and the rank correlation structure across sites. More details on
this approach are provided in Appendix A.3. The benefits of this
approach for model performance as compared to an older model version
(Steinschneider et al., 2019) are shown in Supplementary Material.

3.2.2. Selection of the number of weather regimes

The identification and simulation of the WRs (Section 3.1) plays a
critical role in the performance of the weather generator. A key
parameter of the model is K, the number of WRs that should be used in
each of the two seasons. To calibrate the value of K, we followed the
approach in Najibi et al. (2021) and generated a very long trace (time
series) from the weather generator for the entire state and for values of K
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ranging from 2 to 10 WRs separately for the cold season and warm
season. This simulation is 1008 years long, although for simplicity we
hereafter refer to it as the 1000-year simulation (the use of 1008 years is
related to a nuance of the simulation strategy described in Appendix
A.2). We then evaluated the distribution of a variety of climate perfor-
mance measures for a random selection of 100 grid cells across the state
of California for different values of K. We quantified performance based
on percent bias between simulated and observed statistics of interest,
which are listed in Table 1 (for precipitation) and Table 2 (for temper-
ature). These metrics were carefully chosen to showcase a range of
statistical features inherent in the simulations, providing valuable in-
sights into their reliability and accuracy for statewide users. We placed
an emphasis on the reproduction of variability across timescales (e.g.,
the distribution of cumulative precipitation across months; standard
deviation of annual precipitation totals; distribution of cumulative
precipitation across multi-year windows), as well as the representation
of extreme events (e.g., extreme 1-day and 5-day annual precipitation
maxima; the worst period-of-record drought magnitude for different
durations). These features are particularly important to water resources
planning activities (e.g., flood risk assessment, drought management,
climate risk adaptation, and climate resilience). We select K for each
season that results in the best weather generator performance across
statistics. No one value of K (i.e., number of WRs) for either season is
likely to maximize performance across all these measures for the entire
state of California. Therefore, we selected K based on the value that
provided the best balance across all statistics over all sampled grid cells.

4. Results
4.1. Weather regime identification

As discussed in Section 3.2.2, we select the number of WRs (i.e., K)
for both the cold season and the warm season by evaluating the weather
generator’s ability to reproduce a variety of weather statistics (see Ta-
bles 1 and 2) for values of K ranging from 2 to 10 WRs, separately in each
season. We do not show the model’s performance on all statistics above
for all combinations of K here, but rather focus on the final selected WRs
and their interpretation. In Section 4.2 below, we present the perfor-
mance of the final selected model across all metrics in Tables 1 and 2.

The calibration procedure resulted in the identification of 7 and 3
WRs in the cold and warm seasons, respectively (10 WRs in total). Fig. 3
presents the composites of 500-hPa GPHAs for days categorized under

Table 1
Statistics of precipitation used for model evaluation.

No Statistic Description [unit]

1 Daily mean Average of daily precipitation [mm]

2 Daily standard deviation ~ Standard deviation of daily precipitation [mm]

3 Inter-annual standard Standard deviation of water-year (October 01 —

deviation September 30) total precipitation [mm]

4 Seasonal variation Monthly totals and the distribution of cumulative
water-year precipitation across months (mean,
median, 10th, and 90th percentiles)

5 Annual maxima of 1-day =~ Annual maxima of daily precipitation in each

events water-year [mm]
6 Daily peaks over Distribution of daily precipitation greater than or
threshold equal to the 99th percentile of site-specific non-
zero precipitation [mm]
7 Annual maxima of 5-day =~ Annual maxima of 5-day rolling average
events precipitation in each water-year [mm]

8 Mean and maximum wet  Average and maximum length of a wet spell

spell length (consecutive non-zero precipitation days) [days]

9 Inter-annual Distribution of 1, 2, 3, 5, 10, and 30-year rolling

precipitation totals

10 Worst multi-year
drought intensity

11 Mean and maximum dry
spell length

average water-year precipitation totals [mm]
Minimum 1, 2, ..., 10-year water-year
precipitation totals across the entire record [mm]
Average and maximum length of a dry spell
(consecutive zero precipitation days) [days]
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Table 2
Statistics of temperature used for model evaluation.

No Statistic Description [unit]

1 Daily mean Average of daily temperatures [°C]

2 Daily standard deviation Standard deviation of daily temperatures [°C]

3 Inter-annual standard Standard deviation of annual average

deviation temperatures [°C]

4 Heat wave frequency Number of instances with three or more
consecutive days with temperature over 32.2 °C
(90°F) [number of events]

5 Heat stress frequency Number of instances with 3-day rolling mean
temperature above 30 °C (86°F) [number of
events]

6 Mean and maximum of Average duration and longest duration of heat

heat wave duration waves in the record [days]

7 Mean and maximum of Average intensity and highest intensity of heat

heat wave intensity waves in the record [°C]

8 Cold wave frequency Number of instances with five or more
consecutive days with temperature below —7°C
(20°F) [number of events]

9 Cold stress frequency Number of instances of 3-day rolling mean

temperature below 0 °C (32°F) [number of
events]

Average duration and longest duration of cold
waves in the record [days]

Average intensity and highest intensity of cold
waves in the record [°C]

10 Mean and maximum of
cold wave duration

11 Mean and maximum of
cold wave intensity

each WR, along with their average temporal frequency over a calendar
year. WRs 1 to 7 occur in the cold season, while WRs 8 to 10 occur in the
warm season. WR1 exhibits a widespread trough centered over the
eastern Pacific and off the western US coastline, which is located south
of a high-pressure anomaly anchored over the Bering Sea. Under WR2,
there is a ridge and trough directly over the northwest US and Aleutian
Islands, respectively. This pattern is reversed in WR4 and WR7, which
differ only in the longitudinal location of the pressure dipole. WR3 ex-
hibits a ridge directly over the northwest US that is slightly more elon-
gated and less intense compared to the ridge in WR2. This ridge is shifted
further to the west over the eastern Pacific in WR5. The most notable
feature of WR6 is an intense low over the Gulf of Alaska. Finally, the
WRs in the summer (WRs 8-10) all exhibit weaker GPHASs, but resemble
some of the same spatial patterns as seen in the cold season.

An analysis of California-wide precipitation and temperature
anomalies under the WRs in Fig. 3 showed climate varies considerably
across the state depending on the prevailing WR. For example, condi-
tions across the Central Valley are wettest in the cold season under WR1,
followed by WRs 4, 7, and 6. This is consistent with the deep troughs
under each of these WRs that direct storm tracks and moisture over the
state. In contrast, conditions across the Central Valley are driest in the
cold season under WRs 2, 3, and 5 (in that order), which aligns with the
ridging under these WRs that blocks moisture flow over California.
Precipitation reaches its absolute lowest under WRs 8-10, because these
WRs occur in the warm season when a semi-permanent ridge of high
pressure expands further north and pushes storm tracks north of the
state (this is not seen in Fig. 3, because seasonality was removed from
the GPHAS).

4.2. Validation of simulated weather

Following WR identification, the weather generator was then vali-
dated based on the reproduction of weather statistics across the entire
state. For the purposes of validation, the precipitation and temperature
metrics (Tables 1 and 2) were evaluated at the scale of HUC-4 basins
(Fig. 4; Table 3), with some metrics shown based on an average across
grid cells within the HUC-4 and other metrics shown for individual grid
cells within the HUC-4. Note that some areas at the boundary of the state
are located in HUC-4 regions that largely sit outside of California, and
for those locations we evaluated the weather generator in HUC-8 basins
that are mostly within California (also shown in Fig. 4). For illustration,
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Figs. 5-13 below show the validation results for one HUC-4 subregion
(HUC-4: 1804 - San Joaquin). All results in these figures are based on a
1000-year baseline simulation of the stochastic weather generator with
no climate change. All precipitation and temperature validation statis-
tics for the rest of the HUC-4 subregions in California are available in the
Supplementary Material. Results presented for the San Joaquin HUC-4
are very representative of the model’s performance for the other HUC-
4 regions. Finally, we also present a brief validation of the reproduc-
tion of AR landfall frequencies near and along the coast of California.

4.2.1. Precipitation validation

Fig. 5 shows metrics that quantify the characteristics of daily,
monthly, and water-year precipitation totals, including: the full distri-
bution of HUC-4 basin-scale water-year precipitation totals (Fig. 5a);
inter-annual standard deviation of basin-scale water-year precipitation
totals (Fig. 5b); site-specific mean and standard deviation of the daily
precipitation time series at each grid cell within the HUC-4 (Fig. 5¢,d);
basin-scale water-year cumulative precipitation totals (Fig. Se); and the
distribution of monthly precipitation totals (Fig. 5f). The results show
that the mean and standard deviation of daily precipitation is extremely
well preserved (Fig. 5c,d), and the full distribution and variability of
water-year precipitation totals falls well within the range of uncertainty
for the observed statistics (Fig. 5a,b). We note though that the inter-
annual variance of simulated water-year precipitation falls slightly
below that of the observed inter-annual variance, and this pattern is seen
for several other basins across the state (see Supplementary Material).
The mean, 10th, and 90th percentiles of basin-scale water-year cumu-
lative precipitation totals also follows the observations very closely
(Fig. 5e), with only a slight overestimation of the median cumulative
precipitation that emerges during the spring. The median and range of
monthly precipitation totals also matches the observations very closely
(Fig. 5f). Overall, these results show that the weather generator pro-
duces daily, monthly, and water-year precipitation totals that agree very
well with observations, both at the HUC-4 scale and at the scale of in-
dividual grid cells.

Fig. 6 presents statistics for extreme precipitation attributes. Fig. 6a
shows a return period plot for 1-day extreme precipitation at the HUC-4
scale from the observations, based on a GEV distribution fit to annual
maxima (red) and a GPD-Poisson model fit to a partial duration series
(blue). The black points show annual maxima from the 1000-year sto-
chastic weather generator simulation, sorted and plotted against
empirical return periods. The return levels estimated by the weather
generator simulation match that of the GEV and GPD-Poisson models fit
to the observations very well. Importantly, the weather generator is able
to perturb the annual maxima higher than the largest observed value
using the copula-based jittering algorithm (Appendix A.3), and does so
in a way that the simulated annual maxima follow the observation-based
GEV and GPD-Poisson model estimates for larger return periods (e.g.,
the 500-year and 1000-year events). We note that this behavior occurs
even though the jittering algorithm is conducted at the grid cell (and not
HUC-4) scale, and on daily data and not the annual maxima. The
reproduction of 500-year and 1000-year extreme precipitation events at
the HUC-4 scale is encouraging, as this requires that correlation of ex-
tremes be preserved across locations within the basin while still being
perturbed upward above the range of the historical data. A similar result
is seen for annual maxima of 5-day precipitation events at the HUC-4
scale (Fig. 6b), except that the simulated 5-day annual maxima are
somewhat biased below the GEV model fit to the observations for very
high return periods. Still, the simulated values are well within the wide
GEV-based uncertainty bounds at these high return periods, suggesting
that the weather generator adequately preserves the correlation of
extreme precipitation across locations within the basin over durations
longer than 1 day.

Fig. 6¢ shows 1-day precipitation extremes that fall over a high
threshold (the 99th percentile) in the observations, and also these same
events that are bootstrapped in the 1000-year long weather generator
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simulation. Results here are shown for all grid cells within the HUC-4
region. For each event in the observations, the weather generator
often resamples that event multiple times in the 1000-year simulation,
which accounts for the scatter and horizontal stratified points in Fig. 6¢.
The results here show that the simulated extremes are centered around
and very highly correlated with the historical extremes (Pearson r of
0.99, as expected with the bootstrap), but that the simulation adds noise
around these extremes with the copula-based jittering algorithm that
allows both smaller and larger values than those seen historically. For
instance, the maximum 1-day precipitation in the simulation is 517.2
mm, while it is only 429.8 mm in the observations.

Finally, Fig. 6d shows the distribution of average wet spell lengths
across gridded locations within the HUC-4 region. Across grid cells,
average wet spell length matches that in the observations well, with only
a slight (<1%) downward bias on average.

Fig. 7 focuses on metrics relevant to HUC-4 scale multi-year droughts

and pluvials. Fig. 7a shows the water-year total precipitation during the
worst 1-year, 2-year, through 10-year drought in both the observations
and the 1000-year simulation. For all durations, the simulation exhibits
a more severe drought-of-record than the historical period, as should be
expected given the longer period of record. We use independent prob-
ability models fit to observed annual precipitation totals to confirm (via
order statistics) that the intensity of the most extreme droughts from the
1000-year weather generator simulation are statistically plausible (see
Supplementary Material). We also confirm that the observed worst
drought magnitudes for different durations fall well within the simu-
lated distribution if the stochastic weather generator is used to simulate
multiple traces of equal length to the historical record (also see Sup-
plementary Material). The weather generator produces average dry spell
lengths across gridded locations within the HUC-4 that align very well
with the observations (Fig. 7b), but is also able to produce maximum dry
spells that extend beyond the observations (i.e., maximum dry spell of
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Table 3
Properties of HUC-4 basins across California.

Basin Basin Name HUC4  State Area # Grid-

Number [km?] Points

1 Klamath-Northern 1801 CA, 67,762 1758
California Coastal OR

2 Sacramento 1802 CA, 72,013 1941

OR

3 Tulare-Buena Vista 1803 CA 42,498 1084
Lakes

4 San Joaquin 1804 CA 40,986 1072

5 San Francisco Bay 1805 CA 13,910 259

6 Central California 1806 CA 34,287 728
Coastal

7 Southern California 1807 CA, 35,863 703
Coastal MX

8 North Lahontan 1808 CA, 11,791 318

NV

9 Northern Mojave- 1809 CA, 73,269 1874
Mono Lake NV

10 Southern Mojave- 1810 CA, 44,245 1028
Salton Sea MX

248 days in the simulation vs. 217 days in the observations). Fig. 7c
shows the distribution of 1, 2, 3, 5, 10, and 30 water year rolling average
precipitation totals, and demonstrates that the frequency of water-year
precipitation totals over different multi-year durations is very well
preserved in the simulation compared to the observations. However, the
simulation is able to generate multi-water year precipitation totals that

extend beyond the observed range for all durations (i.e., more severe
worst-case multi-year droughts and pluvials), showing how the model
can be used to explore plausible extremes not yet experienced in the
observations strictly due to internal climate variability.

We also compared the ability of the weather generator to produce
plausible extreme events against the historical simulations derived from
the LOCA v.2 dataset. We focus our investigation on basin-average
precipitation over the Upper Tuolumne watershed, one of the water-
sheds in the San-Joaquin basin (HUC4: 1804), and retain a focus on the
historical period in the CMIP6 data in order to compare how these model
simulations represent extremes due to natural climate variability
without climate change. Similar to Fig. 6a, Fig. 8a shows a return period
plot of 1-day precipitation extremes at the watershed scale from the
observations, based on a GEV distribution fit to annual maxima (red).
The black points show annual maxima from the 1000-year stochastic
weather generator simulation, sorted and plotted against empirical re-
turn periods. The blue triangles show a similar result for the LOCA v.2
downscaled data, where the annual maxima at the watershed scale are
concatenated across the 67 model simulations (a total of 4355 years),
sorted, and plotted against empirical return periods. The results show
that while the 1000-year weather generator simulation of watershed-
scale annual maxima follow the observation-based GEV model very
well, the LOCA v.2 data are biased low for return periods greater than
10 years. This bias is especially apparent at the higher return periods.

Fig. 8b focuses instead on drought events, and shows the worst 1-, 2-,
3-, 4-, and 5-year drought events in the observed record, the concate-
nated 4355 historical years from LOCA v.2, and the 1000-year weather
generator simulation. Interestingly, both the weather generator and the
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Fig. 5. Observed vs. simulated (a) distribution of basin-scale water-year precipitation totals, with the red shaded area representing the uncertainty in the observed
distribution using a 95% confidence interval based on bootstrapping from the historical record; (b) standard deviation of basin-scale water-year precipitation totals,
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monthly total precipitation, including the 5th, 50th, and 95th percentiles. All results are shown for the San Joaquin basin (HUC4: 1804). (For interpretation of
the references to colour in this figure legend, the reader is referred to the web version of this article.)

downscaled climate model data produce worst-case droughts that 1) fall
well below the worst-case drought in the observational record, and 2)
are of very similar magnitude for all durations. This is particularly
surprising because these products were developed independently, where
the LOCA v.2 data are derived from physically based GCMs, and the
weather generator is a statistical model fit to observations. However, it is
worthwhile to note that although the most extreme droughts in both the
weather generator simulation and the downscaled (historical) climate
model data are of similar magnitudes, it took 4355 years of downscaled
GCM data to produce these droughts but only 1000 years of the weather
generator simulation. This leads to two important implications: 1) the
extreme droughts simulated by the weather generator are physically
plausible, because an ensemble of GCM simulations produced droughts
of similar magnitude; and 2) those droughts may be much more likely to
occur due to natural climate variability than suggested by the GCMs,
since the weather generator was able to produce them in less than a
quarter of the years required to produce them in the GCMs. We note that
we repeated this analysis using only 1000 years from the LOCA v.2
dataset and found worst-case droughts to be of the same magnitude as
the observations (not shown), further suggesting that the GCMs struggle
to produce extreme droughts that are driven by natural climate
variability.

We repeated a similar comparison of the LOCA v.2 historical data to
the baseline weather generator simulation for additional watersheds (e.
g., Upper Feather, Upper American, Lake Millerton), and found that in
general the 1000-year baseline weather generator simulation was better
able to capture basin-scale extreme precipitation frequencies and pro-
duced similar extreme droughts compared to the 4355 years of historical
LOCA v.2, although with some variation across watersheds (see Sup-
plementary Material).

4.2.2. Temperature validation

Fig. 9 is similar to Fig. 5 a-d, but for average temperature. It should
be noted that we computed average temperature using simulated daily
minimum and maximum temperature at each gridded location. Overall,
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the distribution of HUC-4 scale average annual temperatures across
water years is well preserved in the simulation compared to the obser-
vations (Fig. 9a), although with a small underestimation of the inter-
annual variance (Fig. 9b). Median daily means and standard de-
viations across grid cells are very well preserved, as are their range
across water years (Fig. 9¢,d).

Fig. 10 highlights characteristics related to temperature extremes
across grid cells within the HUC-4 region, including heat waves and cold
waves. The average and maximum duration of heat and cold waves are
shown in Fig. 10a,b, while the average and maximum intensity are
shown in Fig. 10c,d. The model performs well for all these statistics
across sites. There is a minor upward bias in the mean duration and
mean and maximum intensity of heat waves, but this bias is small.
Overall, there is a high level of agreement between the observed and
simulated attributes of heat waves and cold waves.

Finally, Fig. 11 shows the spatial distribution of the frequency of heat
waves and heat stress events derived from the observations (Fig. 11a,c)
and the 1000-year simulation (Fig. 11b,d) across the HUC-4 region. A
similar result is also shown for cold waves and cold stress events in the
observations (Fig. 11e,g) and simulation (Fig. 11f,h). The distributions
are normalized using the site-specific time-series length, so that results
are shown as the average frequency of heat or cold events per year in
each gridded location. As shown in Fig. 11, the model is able to repro-
duce the spatial distribution of these events extremely well as compared
to the observations, implying that the stochastic weather generator can
fully preserve the spatial organization of multi-day temperature ex-
tremes across sites in the basin.

Finally, we note that the validation performance showcased in
Figs. 5-7 and Figs. 9-11 for the San Joaquin basin (HUC4: 1804) is
consistent across the rest of the HUC-4 subregions throughout Califor-
nia, with a small number of exceptions we highlight here (see Supple-
mentary Material). There are a few HUC-4 subregions with no cold wave
(HUC4: 1805, 1806, 1810) or heat wave (HUC4: 1801, 1808) events,
which the stochastic weather generator also replicates in the baseline
simulation. The weather generator underestimates interannual
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this figure legend, the reader is referred to the web version of this article.)

temperature and precipitation standard deviations by less than 5 % in
several basins, although still within the sampling uncertainty of this
statistic for the observations. Small biases (<10 %) in heat and cold
wave intensity and duration are also observed in some grid cells within
basins across the rest of the HUC-4 regions. Finally, for one HUC-4 re-
gion (HUC4:1809 — Northern Mojave-Mono Lake), the worst 1-year
drought is underestimated, even though the maximum dry spells are
longer than observed for the gridded locations in this subregion.

4.2.3. AR landfall frequency validation

As a final validation of the 1000-year baseline simulation of the
stochastic weather generator with no climate change, we evaluate the
frequency of AR landfalls near and along the California coastline
(Fig. 12). The observed frequency, expressed as the number of events per
year for each calendar month, was taken from the historical AR archive
in Gershunov et al. (2017). We focus on five locations and observed that
for the most northern location (labeled ‘1’ in Fig. 12), AR landfalls are
most frequent in the earlier part of the cold season (November-
December) and become less frequent as the cold season progresses.
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Conversely, the location furthest south (labeled ‘5’ in Fig. 12) shows an
increase frequency of ARs later in the cold season (January-March). This
general pattern of more ARs later in the cold season is followed across
locations moving north to south. By using the resampled historical dates
from the block bootstrap in the stochastic weather generator, we can
also derive the monthly frequencies of landfalling ARs in the 1000-year
baseline simulation. We find that the weather generator near-perfectly
reproduces the monthly frequencies of AR landfalls at all locations.

5. Conclusions and final remarks

This work presented the first of a two-part series of studies intro-
ducing the development of a stochastic weather generator suitable for
the creation of gridded (~6 km) climate change scenarios across the
entire state of California. The stochastic weather generator is novel in
comparison with other downscaling techniques, because it is designed to
distinguish thermodynamic and dynamic mechanisms of climate
change, allowing analysts to separately consider those mechanisms they
deem most credible for planning purposes. In this work, the weather
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Fig. 7. (a) Observed vs. simulated worst multi-year basin-scale droughts (1 to 10 years) based on water-year precipitation totals; (b) the distribution of average dry
spell lengths (in days) across sites. The maximum dry spell length among grid cells for the observations and simulation is shown in blue text. (¢) The distribution of
basin-scale water-year precipitation totals at 1, 2, 3, 5, 10, and 30-year rolling averages, including the minimum, median, and maximum totals. All results are shown
for the San Joaquin basin (HUC4: 1804). (For interpretation of the references to colour in this figure legend, the reader is referred to the web version of this article.)
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generator was calibrated across the state of California and then used to
create a 1000-year baseline weather simulation, which was subse-
quently validated against observations.

Results showed that the statewide stochastic weather generator is
able to simulate long sequences of daily precipitation and minimum and
maximum temperature that very accurately mimic the behavior of his-
torical observations at multiple spatial scales (grid cell, basin) and
temporal scales (daily, event-based, monthly, annual, inter-annual to
decadal). The model reproduces well a large suite of climate statistics at
these scales, including moments (averages, variances), spells, both dry
and wet extremes, and extreme hot and cold periods. The high degree of

12

performance is in part driven by refinements to the weather generator
algorithm presented in this work, particularly changes to the WR
simulation algorithm and the technique used to jitter extreme precipi-
tation events. Moreover, the stochastic weather generator accurately
reproduces the monthly frequencies of AR landfalls at locations along
the California coastline using resampled historical dates based on the
block bootstrap method.

The high level of performance shown for the San Joaquin basin was
found to be consistent across other HUC-4 basins throughout the state
(shown in Supplementary Material). However, there were a few notable
limitations to model performance that were consistent across HUC-4
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Fig. 9. Observed vs. simulated (a) distribution of basin-scale water-year average temperature (based on the minimum and maximum temperature time series), with
the red shaded area representing the uncertainty in the observed distribution using a 95% confidence interval based on bootstrapping from the historical record; (b)
standard deviation of basin-scale water-year average temperature, with the boxplot showing the uncertainty in the observed standard deviation based on boot-
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the 50th, 5th, and 95th percentiles across individual water years. All results are shown for the San Joaquin basin (HUC4: 1804). (For interpretation of the references
to colour in this figure legend, the reader is referred to the web version of this article.)

basins and deserve mention here. First, the weather generator tends to
underestimate the interannual variance of annual average temperature
for almost all HUC-4 basins by approximately 5%. In addition, for
several HUC-4 basins, the interannual variance of water-year precipi-
tation totals is also slightly underestimated (by ~ 5%). We also found
that for some HUC-4 basins, there were small biases (<10%) in the in-
tensity and duration of heat waves and cold waves for subsets of indi-
vidual grid cells within each basin. Overall, there were no clear spatial
patterns to these biases across the state.

Despite the limitations above, the overall high performance of the
model allows the resulting weather generator data products to be used
by stakeholders throughout California. Importantly, simulated weather
across the state is correctly correlated across space and between
different variables (precipitation, temperature), ensuring that weather
generator simulations can be used in hydrologic and water resources
analyses that span multiple watersheds across California. The stochastic
weather generator can also simulate extreme weather conditions,
including extreme precipitation across multi-day periods and extreme
droughts of varying intensities and durations, that are physically plau-
sible but extend well beyond the range seen in the historical record.
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These extremes are simulated even in the absence of climate change,
highlighting that water resource managers can use the baseline 1000-
year weather generator simulation to better understand how natural
climate variability could negatively impact their system.

The ability of the weather generator to generate spatially correlated
extremes that extend beyond the magnitude of extreme events in the
historical record forms one of the core practical benefits of this model for
the water resources community. The 1000-year, ~6 km baseline
weather generator simulation across the state discussed in this work is
publicly available through the California Natural Resources Agency
Open Data (https://data.cnra.ca.gov/dataset/ca-weather-generator-
gridded-climate-pr-tmin-tmax-2023). Practitioners can use these data
in conjunction with rainfall-runoff models to create long hydrologic
traces for their watershed of interest that contain hydrologic extremes
not previously seen in the historical record. Such traces are critical to
test the robustness of adaptation strategies (e.g., new reservoir opera-
tional policies, new infrastructure for managed aquifer recharge) and to
ensure those strategies can meet performance requirements under
plausible hydrologic conditions not previously observed. When coupled
with different scenarios of climate change, weather generator output can
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then be used to evaluate the combined impacts of natural climate vari-
ability and long-term climate change on water system performance. The
generation of these climate scenarios is the focus of Part (2).
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Appendix A:. Mathematical formulation of the stochastic weather generator
A.1. Non-homogeneous hidden markov models for identifying weather regimes

We utilize a variant of hidden Markov models (HMMs) to identify weather regimes (WRs) from 500-hPa geopotential height anomalies (GPHAs).
An HMM involves a finite set of hidden states that transition over time according to the Markov property (Markov, 1954). Each hidden state represents
a division of the random field’s state space. This process is akin to cluster analysis, but with the clusters exhibiting Markovian temporal dynamics. At
each time step, the spatial field may correspond to a particular hidden state with a certain probability. By leveraging the transition probabilities, each
time period can be assigned to a specific state, optimizing the likelihood of the assignment throughout the data’s time span (Rabiner, 1989). Addi-
tionally, an external predictor (i.e., a set of exogenous variables, or covariates) can be utilized to influence the transition probabilities over time with a
specific period. In such cases, the model is referred to as a nonhomogeneous hidden Markov model (NHMM). NHMMs are an extension of HMMs that
allow for time-varying transition probabilities, where the transition probabilities between hidden states change over time according to an external
predictor or a set of covariates.

Following Najibi et al. (2021), we use an NHMM to infer WRs from the spatiotemporal evolution of 500 hPa GPHAs, including their persistence,
seasonal evolution, and long-term trends. A short description of the mathematical formulation for this approach is provided below.

First, we define the following notations:

K: The number of hidden states (i.e., number of WRs).

T: The number of time steps or observations.

7: The initial state probabilities, a K-dimensional vector where n(i) represents the probability of starting in hidden state i.

A: The transition probability matrix, a K x K matrix that can vary through time, where A(i,j,t) represents the probability of transitioning from
hidden state i to hidden state j at time t.
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B: The emission probabilities, a K x T matrix where B(i,t) represents the probability of observing the t-th observation given hidden state i.
X: The external predictors or covariates, a K x T matrix where each column X(:,t) represents the covariates at time t.

The NHMM workflow can be mathematically described in the following steps:

1. Initialization:
o Set the initial state probabilities: 7t(i) for i = 1 to K.
2. Time-varying transition probabilities:
o Compute the time-varying transition probabilities using the external predictor, or set of covariates: A(i,j,t) = Pr(S(t + 1) =j | S(t) = i, X(,1)),
where S(t) represents the hidden state at time t. A multinomial regression framework is used here to parameterize the hidden state transitions.
o Two types of exogenous variables (i.e., covariates in X) are considered in the NHMM: a) two seasonal harmonics {1 + Cos(y), 1 + Sin(y)}, where
Y= 327"; represents a periodic signal over the annual cycle; and b) a state-wide wetness index, quantified using the first four principal components
from a gridded, water-year standardized precipitation index (SPI) product over California {PC1, PC2, PC3, PC4}.
3. Emission probabilities:
o Compute the emission probabilities using the observations: B(i,t) = P(O(t) | S(t) = i), where O(t) represents the vector of observations at time t.
4. Forward-Backward algorithm:
o Use the forward-backward algorithm (Baum and Petrie, 1996; Baum et al., 1970) to compute the forward probabilities and backward proba-
bilities (i.e., model coefficients) for each hidden state i and time step t.
5. Baum-Welch algorithm:
o Use the Baum-Welch algorithm (also known as the expectation-maximization (EM) algorithm) (Moon, 1996) to estimate the NHMM parameters
7, A, and B based on the forward and backward probabilities.
6. Viterbi algorithm:
o Use the Viterbi algorithm (Forney, 1973; Rabiner, 1989) to estimate the most probable sequence of hidden states (i.e., historical sequence of
WRs).

The Baum-Welch algorithm iteratively updates the NHMM parameters until convergence, maximizing the likelihood of the observed data (i.e., J
PCs of GPHAs in each season). Note that we only used the first four SPI PCs for identifying the WRs in the cold season, but the harmonics in both warm
and cold seasons.

We run the EM algorithm 10 times using different random initializations, and utilize the solution with the largest likelihood over all 10 runs to
avoid any poor local maxima (Rojo Hernandez et al., 2020). We utilized the R-package ‘depmixS4’ (Visser and Speekenbrink, 2010) to fit the NHMM.

A.2. Non-parametric simulation of weather regimes for baseline weather

We developed a novel non-parametric approach to WR simulation that addresses the issue of overdispersion in simulated WRs while still allowing
for future climate change scenarios with altered WR probabilities. Leti = 1, ---, K denote the K different WRs, which are available as a daily time series
over the historical record (1948-2019). Suppose that the historical time series of WRs are clustered into non-overlapping, consecutive segments,
where each segment is D years long and there are Np segments in total (in this work, D=4 and Np=18). In the non-parametric approach for WR
simulation, each of the n = 1,...,Np segments is given a sampling probability p,. To simulate a new sequence of daily WRs for an arbitrary number of
years, we simply resample (with replacement) the nth D-year segment of daily WRs with probability p,, until a sufficient number of years has been
generated. The final segment can be truncated to ensure a precise number of years of simulated WRs. In this work, WR simulations are set to 1008
years, which corresponds to 14 times the length of the 72-year historical record. By maintaining the simulation length as a whole multiple of the
historical record length, we can compare the historical record directly to 14 separate weather generator traces without any differences in sequence
length.

In the baseline scenario for the weather generator with no dynamic climate change, p, = Nl—D forn = 1,...,Np. That is, each segment is considered
equally likely. This is the approach taken for those weather generation scenarios that do not incorporate any dynamic climate changes, i.e., no changes
to large-scale circulation patterns.

A.3. Copula-based jittering algorithm

We use a copula-based jittering approach that enables bootstrapped values of daily, heavy precipitation to extend beyond the range of the
instrumental record. Let p; be a vector of simulated precipitation values from the bootstrap at time t across all sites. Assume the non-zero, daily
precipitation amounts at each site s can be modeled by a distribution with cdf F(p|6s). In this study, we assume precipitation follows an extreme value
mixture model (Scarrott and MacDonald, 2012), using a gamma distribution for the bulk density (which varies by month) and a Generalized Pareto
distribution (GPD) for values in the tail of the distribution. The cumulative distribution function (cdf) of this model evaluated for precipitation at site s
and day t is given by:

Fgamma (ps,tlasm(t) ’ Bs.m(t))
2 Py <&
F(ps_t|'95.t) = Fgamma (u‘asvm(t)’ Bs.m(t)) (A3.1)

s + (1 - 7rS)FGPD (Ps,r‘ﬁs-, és) Ps ¢ > C.as

Here, (; is a threshold that separates heavy from non-heavy precipitation, Fgamma is the cdf of a gamma distribution with parameters o (), Bs m)
that vary through time based on calendar month m(t), Fgpp is the cdf of a GPD with parameters o;,&, and 7 is the probability of precipitation exceeding
the threshold ¢;. The full vector of model parameters is given by 6;,.

For each simulated day tand site s, let Uy = F (5“05,{) be the non-exceedance probability associated with ps ;. We focus specifically on those non-
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exceedance probabilities associated with heavy precipitation and utilize the conditional non-exceedance probabilities for the GPD given that ps > {:

Ust — T

Usipp = m (A3.2)

The U ¢y, Values are the non-exceedance probabilities for the GPD component of the extreme value mixture model and will range from 0 to 1. At
any time t, let Uy, denote the vector of values Use, pp, Only for sites s € y, where p, > (. That is, y, is the subset of sites with heavy precipitation on
day ¢, so that |y,| <S.

We perturb the values in the vector Uy, to create a new vector of values ﬁ;m that are centered around but are not equal to Uy, . The perturbations
are simulated using a Gaussian copula. Let ¥ be an S x S Spearman (rank) correlation matrix for the vector of all daily, observed precipitation across

sites, and let Zg rg,, = ¢! (ﬁs‘tm> be a z-score (i.e., ¢ is the standard normal cdf) for simulated heavy precipitation at time t and site s in the set y,. Note

that for simplicity we drop the notation y,, but emphasize that z-scores at time t ('is,tGpD> are only calculated for sites s with heavy precipitation at time

t. We create a covariance matrix to simulate new z-scores z, _ from a multivariate normal distribution centered around the original scores Z,,:

toep

Z,,, MVN(Z,,. Q) (A3.3)
With

A=M

Q= AZAT (A3.9)

Here, A is a diagonal matrix of dimension |y,| x |y,| with constant diagonal term A, which is a user-defined parameter. If . = 1, then Q = X and E:Gm

will deviate substantially from the original values Z,, (which are based on the bootstrapped precipitation values), but will retain the observed
correlation structure across sites. However, as ) is made small, the matrix Q will have small variances along the diagonal and E:GPD will not vary much

from Z,,. Then, for each site, the perturbed z-score can be back-transformed to a proposed non-exceedance probability for the GPD, u,

¢<E:,tm)’ and an associated proposed precipitation value 5:-@9 = Fopp <ﬁ:‘tm|cs,§s>. The proposed non-exceedance probability will then be

selected over the original one based on the following conditional probabilities of observing a different precipitation value given the value that was
simulated:

Pr (P > Ap';,tGPD7 P> ﬁs.tspu> Pr (P > ﬁ;thPD> 1— ﬁ*
Pr (P > 55,‘GPD|P >5S.t(‘.PD> = = 1= 'uVS‘IGPD 7551@1) > iss.tgpb
~ ~ s.tgpp
Pr <P > pslapu) p (P > ps-tGPD>
T =
Pr (P < ﬁ;.t(‘,pD7P < ﬁsicm) Pr <P < ﬁ;.tgmp) ﬁ
Pr (P S ﬁs.tgpu ‘P S AP'51GPD> = = = ﬁs-,:GPD 7§S.tGPD S ﬁs.tcpu
~ ~ S,lgpD
Pr <P < Ps,tm> Pr <P < Ps.tGPD>
~final ff T < Tst

s.tGpp

~ (A3.5)
Ustpp T3> Iy

sitgpp

where the random variable P is daily precipitation depth and r;, is a random draw from a uniform distribution between 0 and 1 for site s and time t.
The final heavy precipitation value for each site is then set equal to

Feep ' (ﬁﬁlﬁjjn [os, ~’§S> (A3.6)

By virtue of the perturbations embedded in 'i;m and thus ﬁ;m, the final values of simulated heavy precipitation can extend beyond the range of
historical heavy precipitation values, but they preserve the rank correlation structure across sites and the space-time structure captured by the block
bootstrap, as long as ) is small. We calibrate A to balance the reproduction of extreme events beyond the range of the historical record (e.g., estimates
of the 500-year and 1000-year storm) while maintaining the general spatial structure of bootstrapped storms. We find that satisfactory results are
generally achieved with A € (0.1,0.5). In this work, we set A = 0.4.

Appendix B. Supplementary data

Supplementary data to this article can be found online at https://doi.org/10.1016/j.cliser.2024.100489.
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