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H I G H L I G H T S  

• A novel weather regime-based stochastic weather generator simulates daily precipitation and temperature in California. 
• The model reproduces a wide range of climate statistics and extremes with high fidelity at various spatiotemporal scales. 
• The model’s strong performance statewide supports climate impact assessments on water systems across California’s watersheds.  
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A B S T R A C T   

This study is the first of a two-part series presenting a novel weather regime-based stochastic weather generator 
to support bottom-up climate vulnerability assessments of water systems in California. In Part 1 of this series, we 
present the details of model development and validation. The model is based on the identification and simulation 
of weather regimes, or large-scale patterns of atmospheric flow, which are then used to condition the simulation 
of local, daily weather at a 6 km resolution across the state. We conduct a thorough validation of a baseline, 
1000-year model simulation to evaluate its ability to accurately simulate daily precipitation and minimum and 
maximum temperature at various spatial scales (grid cell, river basin) and temporal scales (daily, event-based, 
monthly, annual, inter-annual to decadal). Results show that the model effectively reproduces a large suite of 
climate statistics at these scales across the entire state, including moments, spells, dry and wet extremes, and 
extreme hot and cold periods. Moreover, the model successfully maintains spatial correlations and inter-variable 
relationships, enabling the use of model simulations in hydrologic and water resources analyses that span 
multiple watersheds across California. The weather generator can simulate physically plausible extreme events 
(e.g., multi-day extreme precipitation and severe drought) that extend beyond the worst case conditions observed 
historically, independent of climate change. Thus, the baseline simulation can be used to understand the impacts 
of natural climate variability on both flood and drought risk in regional water systems. Scenarios of climate 
change are discussed in Part 2.   

Practical Implications  

Water resource planners in California must prepare for the 
increased stress of climate change. However, there is significant 
uncertainty about how the climate will evolve over the coming 

decades. While most climate projections agree that California’s 
future will be warmer and precipitation will intensify, the rate of 
these changes is less clear, as are more nuanced climate changes 
like shifts in average precipitation or changes to atmospheric 
circulation that can impact regional weather. Furthermore, water 
systems in California are very vulnerable to natural swings in 
climate unrelated to climate change, and the range of this natural 
variability must also be considered in future planning efforts. 
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This two-part series comprises a pair of articles documenting the 
development of a stochastic weather generator for California that 
can create large ensembles of climate traces to support water re
sources planning under future climate uncertainty. The weather 
generator is an efficient tool that can quickly create long (1000- 
year) traces of statewide weather, and allows water managers to 
flexibly develop and explore climate scenarios associated with 
different signals of climate change. These include ‘thermody
namic’ changes (i.e., more intense precipitation linked to an in
crease in the moisture-holding capacity of warmer air), as well as 
more nuanced signals related to shifts in atmospheric circulation 
(i.e., dynamic climate change). 

In Part (1) of this series (this article), we present the development 
and validation of the model. The research in Part (1) demonstrates 
that baseline simulations from the weather generator (i.e., simu
lations without climate change) can reproduce historical climate 
statistics across California very well, based on a large suite of 
variables that include extreme precipitation events and droughts, 
average and extreme temperatures, wet and dry spells, and heat 
and cold waves, among others. Performance was evaluated at 
various spatial scales, including at the native resolution of the 
observations (6 km grid cell) and aggregated to HUC-8 and HUC-4 
basin scales. Performance metrics were chosen to showcase a 
range of statistical features inherent in the simulations, with an 
emphasis on the reproduction of variability across timescales and 
the representation of extreme events that are important for water 
resources planning activities. Particular attention was given to 
evaluating whether the weather generator could simulate extreme 
precipitation and drought events that exceed those observed in the 
historical record, but that are also statistically plausible. The 
analysis in Part (1) also demonstrates that baseline weather 
generator simulations compare well against the historical simu
lations from the LOCA v.2 downscaled product, which is based on 
the most recent generation of global climate model (GCM) simu
lations from the CMIP6 experiment. 

Using the weather generator, we create a publicly available 
dataset of 30 unique climate change scenarios, each consisting of 
1000 years of simulated climate data (precipitation, maximum 
temperature, minimum temperature) at a 6 km resolution across 
the entire state of California. The 30 scenarios represent a range of 
plausible climate changes to temperature, average precipitation, 
and precipitation extremes. An additional two climate scenarios 
are also created that reflect changes to the frequency of large-scale 
weather patterns. The generation of these scenarios is detailed in 
Part (2) of this series. 

The datasets created in this work highlight how even in the 
absence of climate change, water managers in California should 
plan for extreme precipitation events and droughts beyond the 
worst case from the historical record, because such events are 
quite plausible due to California’s natural climate variability 
alone. However, when such natural extremes are combined with 
the effects of anthropogenic climate change, extremes in Califor
nia become severe and will likely require significant investment in 
water resources systems to sustain adequate water services across 
the state. The weather generator and associated datasets should be 
viewed as a complementary tool to more commonly available 
downscaled GCM projections. Unlike GCMs, the weather gener
ator is not designed to create scenarios of future climate based on 
the physical laws of the Earth system and future greenhouse gas 
emission scenarios. Rather, the model provides a way to help 
translate various signals of climate change from GCMs into traces 
of weather that are tailored to support water resource planning 
efforts. In this way, the California weather generator is envisioned 
as a tool to help promote collaboration between climate scientists 
and water resource planners across the state. 

Stakeholders across California can utilize the climate scenarios 
produced by the stochastic weather generator to infer the joint 
impact of both climate change and natural climate variability on 
their systems. We recommend that stakeholders use the data 
products developed in this work in stages to help develop robust 

adaptations of water resources infrastructure under climate 
change. For example, initial adaptation strategies (e.g., new 
reservoir operational policies, new infrastructure for managed 
aquifer recharge) could be developed using the historical record to 
ensure these strategies are able to meet performance requirements 
under past and recent extreme events. Then, these strategies could 
be re-evaluated using: 1) a 1000-year baseline weather generator 
simulation; and 2) climate change scenarios applied to the 1000- 
year weather generator simulation. These evaluations would 
provide information on how robust a given adaptation strategy is 
to natural climate variability, climate change, and a combination 
of the two. 

Such information could be used in different ways to alter the 
initial adaptation strategy. For instance, if a strategy appears 
vulnerable to the 1000-year baseline weather generator simula
tion (i.e., natural climate variability) or scenarios from the model 
reflective of likely future climate conditions (e.g., a low degree of 
future warming projected in most GCMs over the next few de
cades), this might suggest an immediate need for a more robust 
strategy. Alternatively, in cases where an adaptation strategy is 
only vulnerable to the most extreme climate change scenarios 
produced by the model, the current adaptation strategy may be 
deemed adequate if coupled with plans for continued climate 
monitoring and retrofits/adjustments that could be implemented 
later if needed.   

1. Introduction 

Climate change poses a major threat to the sustainability of water 
systems in California. Over the last two decades, California has experi
enced four periods of drought (2001–2004, 2007–2009, 2012–2016, 
2020–2022), which when taken together rank as the driest 22-year 
period in at least 1,200 years (Williams et al., 2022). Each of these 
drought periods were ended by a string of atmospheric rivers (ARs) 
(Dettinger, 2013; Zechiel and Chiao, 2021), some of which led to record 
flooding, threatened major infrastructure projects (Henn et al., 2020), 
and most recently, even drove the re-emergence of the once-dry Tulare 
Lake. These extremes are only projected to worsen over the next several 
decades, highlighting the need for water resource planners across the 
state to begin preparing their systems for additional climate stress. 

Conventionally, water resource planners have used downscaled 
climate scenarios from global climate models (GCMs) to help plan for 
necessary system adaptations to mitigate the impending impacts of 
climate change. GCMs are an invaluable tool for providing internally 
consistent scenarios that can be used to examine the possible pathways 
of climate change under anthropogenic forcing. However, the scenarios 
produced by GCMs contain a mixture of climate change signals, 
including thermodynamic signals (e.g., the increased moisture holding 
capacity of a warmer atmosphere) and dynamic signals (e.g., shifts in 
atmospheric circulation), with the former projected to occur with more 
confidence than the latter (Emori and Brown, 2005; Seager et al., 2010, 
2014). GCM scenarios also exhibit significant variability and biases in 
hydrologically important variables like precipitation linked to parame
terized physics and coarse model resolution. This poses two challenges 
for water resources planning. First, it is often difficult and time 
consuming to separate out thermodynamic and dynamic signals of 
change from natural variability in GCM simulations. However, such 
separation may be of high interest to water resource planners who want 
to base their planning efforts on more detectable signals of change 
linked to thermodynamic mechanisms, but who may be wary of using 
climate data reflecting dynamic change in which there is less scientific 
consensus. Second, it is also very challenging to effectively remove 
biases from GCM simulations. Statistical corrections to certain types of 
model bias are far from straightforward, since they can be linked to 
modeled physical processes that could change under global warming 
and thus change the bias over time (Stephenson et al., 2012; Maraun 
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et al., 2017). 
Given these challenges, water resource planners can benefit from an 

efficient alternative to climate scenario generation that can complement 
downscaled GCM simulations and help investigate water system risk 
under climate stress. Stochastic weather generators provide one such 
alternative. Weather generators are statistical models that are parame
terized based on existing meteorological records and used to generate 
large ensembles of simulated daily or hourly weather records that are 
statistically similar to the observations but differ in the sequencing, 
duration, and magnitude of individual events (Richardson, 1981; Wilks 
and Wilby, 1999; Fowler et al., 2007; Bird et al., 2023). For water system 
applications, weather generators must often develop sequences of mul
tiple weather variables (e.g., precipitation, maximum and minimum 
temperature) at multiple locations while maintaining realistic persis
tence and covariance structures associated with transient, multi-day 
storm events and over longer (seasonal to interannual) timescales. 
Once fit to historical data, model parameters can be systematically 
altered to produce new traces of weather that exhibit a wide range of 
change in their distributional characteristics that may be experienced 
under climate change, including the intensity and frequency of average 
and extreme precipitation, heatwaves, and cold spells (Wilks, 2002, 
2010, 2012; Acharya et al., 2017; Mukundan et al., 2019). 

Over the past few decades, there has been growing interest in using 
stochastic weather generators to create large scenario ensembles for 
bottom-up (or vulnerability based) climate change impact assessments 
of water and agricultural systems (Semenov and Barrow, 1997; 
Steinschneider and Brown, 2013; Harris et al., 2014; Ailliot et al., 2015; 
Yang et al., 2020; Khazaei et al., 2020; Dyreson et al., 2022; LeNoir et al., 
2023). The main purpose of this study is to develop a stochastic weather 
generator and multiple ensembles of future climate scenarios across 
California to help evaluate the vulnerability of water systems and the 
robustness of adaptation strategies under climate change across the 
state. The stochastic weather generator will facilitate the integration of 
climate change considerations into statewide water policies and long- 
term planning, ensuring resilience and preparedness in the face of a 
changing climate. The effort presented in this work builds on a prototype 
tool (Steinschneider et al., 2019) that was used in a proof-of-concept 
application for the Tuolumne River basin, which was further refined 
and expanded to additional basins in California (Najibi et al., 2021; 
Rahat et al., 2022). This work advances and broadens the scope of the 
model developed in those previous studies to generate internally 
consistent climate scenarios across the entire state of California. 

The present study (Part 1 of the series) focuses on the development, 
calibration, and validation of the stochastic weather generator across 
California. The subsequent study (Part 2) presents the development of 
publicly available climate change scenarios, which include both ther
modynamic and dynamic signals of change and are designed to support 
bottom-up climate change impact assessments of water systems across 
the state. In the sections below, we describe the data used in the 
development of the California stochastic weather generator (Section 2), 
detail the model itself (Section 3), and present results summarizing 
baseline model performance (Section 4), before concluding with a brief 
discussion of key results (Section 5). 

2. Meteorological data and atmospheric information 

2.1. Precipitation and temperature records in California 

We collected observed daily precipitation (P) [mm] between January 
1, 1915 and December 31, 2018 (104 years) from the extreme- 
preserving gridded daily dataset for the conterminous United States 
developed by Pierce et al. (2021) (also known as the unsplit Livneh 
precipitation dataset). This extreme-preserving dataset, which has a 
0.0625◦×0.0625◦ (~6 km) spatial resolution, follows the same gridding 
method as employed in Livneh et al. (2013) and Livneh et al. (2015), but 
omits a time adjustment in the data to avoid excessive smoothing of 

extreme events. 
We further scrutinized the precipitation time series and noticed that 

there were 24 dates with extremely high precipitation intensities (>10 
in or 254 mm) in the summer (June-August, with a large majority in 
July), while the closest GHCN-d rain gauges showed much lower mag
nitudes (often ~ 1/10th of the gridded value). These extreme sum
mertime precipitation intensities were deemed erroneous and were 
rescaled downward by a factor of 10 to reflect the precipitation intensity 
of nearby GHCN-d gauges. 

We obtained observed daily minimum temperature (Tmin) [◦C] and 
maximum temperature (Tmax) [◦C] from the data in Livneh et al. (2013) 
for the period between January 1, 1915, and December 31, 2015. This 
dataset was then extended to December 31, 2018 using the PRISM daily 
dataset (PRISM Climate Group, 2014) to match the timeframe of the 
precipitation data. Two additional post-processing steps were then 
employed to prepare the temperature time series before using them in 
the stochastic weather generator. First, the temperature data in the 
1915–2015 timeframe (Livneh et al., 2013) were bias corrected to the 
monthly PRISM dataset over the entire period. Then, the entire tem
perature time series (1915–2018) for each grid cell was detrended so 
that the long-term mean monthly temperatures between 1915–2018 
matched those from 1991 to 2020. This ensured that the entire tem
perature series reflected warming that has already occurred in recent 
decades due to climate change. This is important for water resources 
planning activities that are forward-looking and need to accommodate 
future climate conditions, rather than past conditions that are unlikely 
to return. 

All of these data were collected over and slightly outside of the USGS 
HUC-2 water resources region that spans the entire state of California 
and some parts of Nevada and Oregon (Region 18). This led to a final 
dataset consisting of 13,786 grid cells (Fig. 1). The final time series of 
both precipitation and temperature were truncated to the period be
tween 1948–2018 to match the timespan of the atmospheric data used 
for weather regime classification (Section 2.2). 

2.2. Atmospheric circulation over the Pacific-North American sector 

We obtained daily gridded (2.5◦×2.5◦) geopotential heights (GPH) 
[m] at the 500-hPa level from the National Centers for Environmental 
Prediction (NCEP)/National Center for Atmospheric Research (NCAR) 
reanalysis dataset (NCEP/NCAR Reanalysis 1; Kalnay et al., 1996) be
tween January 1, 1948, and December 31, 2021 (74 years). The gridded 
data were then extracted for the region between 30◦N-60◦N and 180◦W- 
100◦W, covering much of the Pacific-North American sector (see inset in 
Fig. 1). The GPH data were centered by month to remove their seasonal 
cycle, producing GPH anomalies (GPHAs). 

We also collected the daily occurrences of AR landfalls along the US 
west coast from the Scripps Institution of Oceanography (SIO)-generated 
AR catalog (SIO-R1 catalog; Gershunov et al., 2017). This catalog re
ports individual AR events across western North America from January 
1, 1948 to December 31, 2020, detected using integrated vapor trans
port (IVT) and integrated water vapor (IWV) from NCEP/NCAR Rean
alysis 1. 

2.3. Annual standardized precipitation index over California 

We collected a gridded dataset of a cold-season standardized pre
cipitation index (SPI) (0.5◦×0.5◦) across California, taken from the 
study in Borkotoky et al. (2021). Similar to the work presented by Gupta 
et al. (2022), these data will be used when fitting the weather generator 
to ensure it can characterize large-scale weather patterns with appro
priate inter-annual variance. We gathered the SPI data between 
1948–2021, which is the same period as the GPHA data described above. 
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2.4. Downscaled CMIP6 projections (LOCA v.2) 

We obtained downscaled precipitation time series at a 3 km resolu
tion from the localized constructed analogs (LOCA) v.2 statistical 
method (Pierce et al., 2023), based on climate model output from the 
Coupled Model Intercomparison Project Phase 6 (CMIP6). We collected 
daily precipitation for the historical period of 1950–2014 from 67 in
dividual CMIP6 climate model simulations. There are 13 separate 
models in this dataset, each contains some number of initial conditions 
that varies by model, with a total of 4355 years of data in the historical 
period across all 67 simulations. These data are used to evaluate the 
benefit of the weather generator in terms of producing plausible extreme 
events compared with the baseline simulations provided by downscaled 
CMIP6 climate models. 

3. Weather-regime based stochastic weather generator for 
California 

This work advances a semiparametric, multivariate, and multisite 
stochastic weather generator that was previously developed for the 
Tuolumne River basin during the cold season (Steinschneider et al., 

2019) and further refined across several other basins in California 
(Najibi et al., 2021; Rahat et al., 2022). The weather generator is 
designed to separately model dynamic and thermodynamic atmospheric 
mechanisms of climate variability and change through statistical ab
stractions of these processes. To capture atmospheric dynamics, the 
weather generator simulates sequences of weather regimes (WRs). WRs 
are recurring large-scale atmospheric flow patterns (e.g., upper-level, 
quasi-stationary blocks and troughs) that appear at fixed geographic 
locations, persist for days-to-weeks within a season, and organize high- 
frequency weather systems (Robertson and Ghil, 1999; Robertson et al., 
2015). They represent intermediary phenomena in the stochastic con
tinuum of atmospheric perturbations that connect local weather to 
large-scale atmospheric circulation, and provide a parsimonious way of 
abstracting major patterns of atmospheric circulation into stochastic 
simulations of weather. To capture thermodynamic mechanisms of 
climate change, the weather generator post-processes simulated data to 
reflect patterns of warming and thermodynamic scaling of precipitation 
rates with that warming (more details in Part 2). These properties of the 
model are represented in a hierarchical structure composed of three 
primary modules: 1) identification and simulation of WRs that dictate 
the large-scale atmospheric flow across the Pacific-North American 

Fig. 1. Domain of the HUC-2 water resources region over California (Region 18), along with HUC-4 and HUC-8 subregions. All climate grid cells modeled within the 
stochastic weather generator are also shown, and extend slightly beyond the HUC-2 water resources region. Inset shows the atmospheric boundary used for weather 
regime (WR) identification. 
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sector; 2) simulation of local weather across California conditioned on 
the WRs; and 3) perturbations to the simulation schemes in (1) and (2) 
reflective of thermodynamic and dynamic climate change. In the sub
sections below, we focus on the first two of these modules, with the third 
being the focus of Part (2) in this series. 

As part of this work, the stochastic weather generator underwent 
several refinements to improve the representation of droughts and 
pluvials, extreme multi-site precipitation events, and other climate sta
tistics. The two largest refinements included changes to how the model 
simulates new WRs and how it adds noise to resampled large precipi
tation events. Therefore, we present an overview of the new set of al
gorithms in the sub-sections below (also see Fig. 2), and then present the 
mathematical details of these algorithms in Appendix A. Comparisons 
between the refined and previous model versions are presented in 
Supplementary Material. 

3.1. Weather regime identification and simulation 

Following Najibi et al. (2021), we use a Nonhomogeneous Hidden 
Markov Model (NHMM) to identify WRs. NHMMs are nonlinear statis
tical models that use latent variables to identify clusters in state-space 
while simultaneously accounting for the distribution and temporal dy
namics of observed data (Rabiner, 1989; Hughes and Guttorp, 1994). In 
this application, we first divide the 500-hPa GPHAs into two seasons: 
November-April (cold season) and May-October (warm season). We then 
project the separated GPHAs onto their first J empirical orthogonal 
functions (EOFs), where J is chosen using a scree test to ensure that the 
selected EOFs explain the majority (e.g., > 90 %) of the variance in the 
data (here, J = 10). We subsequently evaluate a first-order NHMM on 
the J PCs of GPHAs to assign each day in the record to one of K separate 
WRs. This is done separately for the cold and warm season, and K can 
differ across the two seasons (the selection of K is described further in 
Section 3.2.2 below). The NHMM is fit using two harmonics as exoge
nous variables to account for seasonality in the WRs. In addition, the 
first four PCs of the SPI dataset over California (which explain ~ 80 % of 

the variance) are also incorporated as exogenous variables to improve 
the inference of inter-annual variability of cold-season WRs. Impor
tantly, by using the NHMM, days are classified into WRs in a way that 
explicitly considers WR persistence, which will lead to persistent 
weather in the weather generator simulations. The Expectation- 
Maximization algorithm (Dempster et al., 1977) with the for
ward–backward algorithm (Baum and Petrie, 1966; Baum et al., 1970) is 
used to estimate the parameters of the NHMM. The most probable 
sequence of hidden states is computed using the Viterbi algorithm 
(Forney, 1973; Rabiner, 1989). More details related to the NHMMs are 
provided in Appendix A.1. 

Future time series simulations of WRs of an arbitrary length could be 
created through forward simulation of the fitted NHMM, as in Najibi 
et al. (2021). However, we found that WR simulation using this 
approach, when coupled with the local weather generation algorithm 
described below in Section 3.2, underestimated the magnitude of 
extreme, multi-year droughts and pluvials (i.e., simulations were over- 
dispersed at inter-annual timescales). Therefore, we developed a novel 
non-parametric approach to WR simulation that addresses the issue of 
overdispersion, in which we first cluster the historically identified WRs 
into four-year segments across the historical record of 1948–2019. We 
then resample four-year segments with equal probability to develop 
future time series of WRs of an arbitrary length. This approach 
(described in more detail in Appendix A.2) ensures that inter-annual WR 
dynamics are almost completely preserved. The benefits of this approach 
for model performance as compared to an older model version (Najibi 
et al., 2021) are shown in Supplementary Material. 

3.2. Local weather generation conditioned on weather regimes 

3.2.1. Weather generation algorithm 
Local weather is simulated by bootstrapping weather data (e.g., daily 

precipitation, minimum and maximum temperature) based on se
quences of simulated WRs. Starting on simulation day t, the algorithm in 
Section 3.1 will determine a sequence of n days containing the ith WR (i. 

Fig. 2. Overview of the weather regime-based stochastic weather generator algorithm. During model fitting, daily weather regimes (WRs) are identified from 
historical atmospheric circulation data using a Nonhomogeneous Hidden Markov Model (NHMM). Historical daily precipitation (Phist) and temperature (Thist) data 
across the state of California are associated with historically identified WRs (WRhist). During simulation, the model creates new sequences of WRs (WRsim), with the 
option to change their frequency of occurrence as a signal of dynamic climate change. Simulations of daily precipitation and temperature (Psim and Tsim) across the 
state are then generated by bootstrapping values from the historical record, based on the simulated and historical sequences of WRs. Finally, additional thermo
dynamic climate changes are imposed on the simulations of precipitation and temperature using post-processing methods, creating the final precipitation (P*sim) and 
temperature (T*sim) data. 
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e., WRt through WRt+n-1 equal i). Here, n usually varies from a single day 
to a few weeks, although it can extend longer than one month due to the 
persistence of WRs. To generate weather for those n days, we resample 
an n*-day block of historical data that was also classified into the ith WR, 
based on the absolute difference between the historical and simulated 
block length (i.e., a historical block with length n* closer to n will receive 
a higher probability and will be resampled with a higher likelihood). We 
also require that any resampled blocks meet two other criteria: 1) the 
central day of the historical block is within a 3-day window of the day of 
year for simulation day t; and 2) the day prior to the historical block has 
the same state of regionally averaged precipitation (i.e., dry (pavg < 
0.25 mm) or wet (pavg > 0.25 mm), where 0.25 mm is trace precipita
tion). This ensures that the resampled data will preserve the seasonality 
of local weather and better maintains precipitation persistence across 
sites. We define regionally averaged precipitation using daily precipi
tation averaged over the Calaveras, Stanislaus, Tuolumne, Merced, and 
Upper San Joaquin watersheds (425 grids in total), which are centrally 
located in California. This approach helps ensure that inter-daily pre
cipitation dynamics are preserved in the center of the state, which also 
helps to preserve these dynamics in the northern and southern ends of 
the state due to regional coherence in storm tracks that pass over 
California. 

If a historical block happens to be resampled with a longer length 
than the simulated one (i.e., n* > n), we reduce the length of the 
resampled block by discarding days from that block randomly from one 
of its two ends until n* =n. If the length n* < n, then the remaining 
length n − n* is used as the basis to resample another block for WR i, and 
this process is continued until data has been resampled for the entire 
block of n days. At this point, the WR will change states and the 
resampling procedure begins again. By using this block bootstrap pro
cedure, the resampled data are more likely to capture the entire life cycle 
of passing storms (and the resulting space–time structure in weather). 

The block bootstrap will preserve many of the properties of the 
marginal and joint distributions of local weather variables, but at the 
expense of being able to simulate values outside the range of the 
instrumental record. To address this drawback specifically for heavy 
precipitation, the weather generator uses a copula-based jittering 
approach that adds noise to resampled heavy precipitation data as a 
post-processing step. To do this, we first fit a mixture model to the 
observed, non-zero precipitation at each site, which uses a gamma dis
tribution for the bulk distribution (by month) up to a threshold and a 
Generalized Pareto distribution (GPD) to model the tail of the distri
bution beyond that threshold. For this work, we selected the site-specific 
99th percentile of non-zero values as the separating threshold. Then, for 
heavy precipitation values above the 99th percentile that are resampled 
in the block bootstrap, we calculate the non-exceedance probability 
associated with that event based on the fitted gamma-GPD. Spatially 
correlated random noise is then added to these non-exceedance proba
bilities across sites, which are then mapped back through the gamma- 
GPD models to develop new heavy precipitation values across loca
tions. This approach is designed such that final values of simulated, 
jittered precipitation can extend beyond the range of historical precip
itation values, but preserve the marginal distribution of precipitation at 
each site and the rank correlation structure across sites. More details on 
this approach are provided in Appendix A.3. The benefits of this 
approach for model performance as compared to an older model version 
(Steinschneider et al., 2019) are shown in Supplementary Material. 

3.2.2. Selection of the number of weather regimes 
The identification and simulation of the WRs (Section 3.1) plays a 

critical role in the performance of the weather generator. A key 
parameter of the model is K, the number of WRs that should be used in 
each of the two seasons. To calibrate the value of K, we followed the 
approach in Najibi et al. (2021) and generated a very long trace (time 
series) from the weather generator for the entire state and for values of K 

ranging from 2 to 10 WRs separately for the cold season and warm 
season. This simulation is 1008 years long, although for simplicity we 
hereafter refer to it as the 1000-year simulation (the use of 1008 years is 
related to a nuance of the simulation strategy described in Appendix 
A.2). We then evaluated the distribution of a variety of climate perfor
mance measures for a random selection of 100 grid cells across the state 
of California for different values of K. We quantified performance based 
on percent bias between simulated and observed statistics of interest, 
which are listed in Table 1 (for precipitation) and Table 2 (for temper
ature). These metrics were carefully chosen to showcase a range of 
statistical features inherent in the simulations, providing valuable in
sights into their reliability and accuracy for statewide users. We placed 
an emphasis on the reproduction of variability across timescales (e.g., 
the distribution of cumulative precipitation across months; standard 
deviation of annual precipitation totals; distribution of cumulative 
precipitation across multi-year windows), as well as the representation 
of extreme events (e.g., extreme 1-day and 5-day annual precipitation 
maxima; the worst period-of-record drought magnitude for different 
durations). These features are particularly important to water resources 
planning activities (e.g., flood risk assessment, drought management, 
climate risk adaptation, and climate resilience). We select K for each 
season that results in the best weather generator performance across 
statistics. No one value of K (i.e., number of WRs) for either season is 
likely to maximize performance across all these measures for the entire 
state of California. Therefore, we selected K based on the value that 
provided the best balance across all statistics over all sampled grid cells. 

4. Results 

4.1. Weather regime identification 

As discussed in Section 3.2.2, we select the number of WRs (i.e., K) 
for both the cold season and the warm season by evaluating the weather 
generator’s ability to reproduce a variety of weather statistics (see Ta
bles 1 and 2) for values of K ranging from 2 to 10 WRs, separately in each 
season. We do not show the model’s performance on all statistics above 
for all combinations of K here, but rather focus on the final selected WRs 
and their interpretation. In Section 4.2 below, we present the perfor
mance of the final selected model across all metrics in Tables 1 and 2. 

The calibration procedure resulted in the identification of 7 and 3 
WRs in the cold and warm seasons, respectively (10 WRs in total). Fig. 3 
presents the composites of 500-hPa GPHAs for days categorized under 

Table 1 
Statistics of precipitation used for model evaluation.  

No Statistic Description [unit] 

1 Daily mean Average of daily precipitation [mm] 
2 Daily standard deviation Standard deviation of daily precipitation [mm] 
3 Inter-annual standard 

deviation 
Standard deviation of water-year (October 01 – 
September 30) total precipitation [mm] 

4 Seasonal variation Monthly totals and the distribution of cumulative 
water-year precipitation across months (mean, 
median, 10th, and 90th percentiles) 

5 Annual maxima of 1-day 
events 

Annual maxima of daily precipitation in each 
water-year [mm] 

6 Daily peaks over 
threshold 

Distribution of daily precipitation greater than or 
equal to the 99th percentile of site-specific non- 
zero precipitation [mm] 

7 Annual maxima of 5-day 
events 

Annual maxima of 5-day rolling average 
precipitation in each water-year [mm] 

8 Mean and maximum wet 
spell length 

Average and maximum length of a wet spell 
(consecutive non-zero precipitation days) [days] 

9 Inter-annual 
precipitation totals 

Distribution of 1, 2, 3, 5, 10, and 30-year rolling 
average water-year precipitation totals [mm] 

10 Worst multi-year 
drought intensity 

Minimum 1, 2, …, 10-year water-year 
precipitation totals across the entire record [mm] 

11 Mean and maximum dry 
spell length 

Average and maximum length of a dry spell 
(consecutive zero precipitation days) [days]  
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each WR, along with their average temporal frequency over a calendar 
year. WRs 1 to 7 occur in the cold season, while WRs 8 to 10 occur in the 
warm season. WR1 exhibits a widespread trough centered over the 
eastern Pacific and off the western US coastline, which is located south 
of a high-pressure anomaly anchored over the Bering Sea. Under WR2, 
there is a ridge and trough directly over the northwest US and Aleutian 
Islands, respectively. This pattern is reversed in WR4 and WR7, which 
differ only in the longitudinal location of the pressure dipole. WR3 ex
hibits a ridge directly over the northwest US that is slightly more elon
gated and less intense compared to the ridge in WR2. This ridge is shifted 
further to the west over the eastern Pacific in WR5. The most notable 
feature of WR6 is an intense low over the Gulf of Alaska. Finally, the 
WRs in the summer (WRs 8–10) all exhibit weaker GPHAs, but resemble 
some of the same spatial patterns as seen in the cold season. 

An analysis of California-wide precipitation and temperature 
anomalies under the WRs in Fig. 3 showed climate varies considerably 
across the state depending on the prevailing WR. For example, condi
tions across the Central Valley are wettest in the cold season under WR1, 
followed by WRs 4, 7, and 6. This is consistent with the deep troughs 
under each of these WRs that direct storm tracks and moisture over the 
state. In contrast, conditions across the Central Valley are driest in the 
cold season under WRs 2, 3, and 5 (in that order), which aligns with the 
ridging under these WRs that blocks moisture flow over California. 
Precipitation reaches its absolute lowest under WRs 8–10, because these 
WRs occur in the warm season when a semi-permanent ridge of high 
pressure expands further north and pushes storm tracks north of the 
state (this is not seen in Fig. 3, because seasonality was removed from 
the GPHAs). 

4.2. Validation of simulated weather 

Following WR identification, the weather generator was then vali
dated based on the reproduction of weather statistics across the entire 
state. For the purposes of validation, the precipitation and temperature 
metrics (Tables 1 and 2) were evaluated at the scale of HUC-4 basins 
(Fig. 4; Table 3), with some metrics shown based on an average across 
grid cells within the HUC-4 and other metrics shown for individual grid 
cells within the HUC-4. Note that some areas at the boundary of the state 
are located in HUC-4 regions that largely sit outside of California, and 
for those locations we evaluated the weather generator in HUC-8 basins 
that are mostly within California (also shown in Fig. 4). For illustration, 

Figs. 5-13 below show the validation results for one HUC-4 subregion 
(HUC-4: 1804 – San Joaquin). All results in these figures are based on a 
1000-year baseline simulation of the stochastic weather generator with 
no climate change. All precipitation and temperature validation statis
tics for the rest of the HUC-4 subregions in California are available in the 
Supplementary Material. Results presented for the San Joaquin HUC-4 
are very representative of the model’s performance for the other HUC- 
4 regions. Finally, we also present a brief validation of the reproduc
tion of AR landfall frequencies near and along the coast of California. 

4.2.1. Precipitation validation 
Fig. 5 shows metrics that quantify the characteristics of daily, 

monthly, and water-year precipitation totals, including: the full distri
bution of HUC-4 basin-scale water-year precipitation totals (Fig. 5a); 
inter-annual standard deviation of basin-scale water-year precipitation 
totals (Fig. 5b); site-specific mean and standard deviation of the daily 
precipitation time series at each grid cell within the HUC-4 (Fig. 5c,d); 
basin-scale water-year cumulative precipitation totals (Fig. 5e); and the 
distribution of monthly precipitation totals (Fig. 5f). The results show 
that the mean and standard deviation of daily precipitation is extremely 
well preserved (Fig. 5c,d), and the full distribution and variability of 
water-year precipitation totals falls well within the range of uncertainty 
for the observed statistics (Fig. 5a,b). We note though that the inter- 
annual variance of simulated water-year precipitation falls slightly 
below that of the observed inter-annual variance, and this pattern is seen 
for several other basins across the state (see Supplementary Material). 
The mean, 10th, and 90th percentiles of basin-scale water-year cumu
lative precipitation totals also follows the observations very closely 
(Fig. 5e), with only a slight overestimation of the median cumulative 
precipitation that emerges during the spring. The median and range of 
monthly precipitation totals also matches the observations very closely 
(Fig. 5f). Overall, these results show that the weather generator pro
duces daily, monthly, and water-year precipitation totals that agree very 
well with observations, both at the HUC-4 scale and at the scale of in
dividual grid cells. 

Fig. 6 presents statistics for extreme precipitation attributes. Fig. 6a 
shows a return period plot for 1-day extreme precipitation at the HUC-4 
scale from the observations, based on a GEV distribution fit to annual 
maxima (red) and a GPD-Poisson model fit to a partial duration series 
(blue). The black points show annual maxima from the 1000-year sto
chastic weather generator simulation, sorted and plotted against 
empirical return periods. The return levels estimated by the weather 
generator simulation match that of the GEV and GPD-Poisson models fit 
to the observations very well. Importantly, the weather generator is able 
to perturb the annual maxima higher than the largest observed value 
using the copula-based jittering algorithm (Appendix A.3), and does so 
in a way that the simulated annual maxima follow the observation-based 
GEV and GPD-Poisson model estimates for larger return periods (e.g., 
the 500-year and 1000-year events). We note that this behavior occurs 
even though the jittering algorithm is conducted at the grid cell (and not 
HUC-4) scale, and on daily data and not the annual maxima. The 
reproduction of 500-year and 1000-year extreme precipitation events at 
the HUC-4 scale is encouraging, as this requires that correlation of ex
tremes be preserved across locations within the basin while still being 
perturbed upward above the range of the historical data. A similar result 
is seen for annual maxima of 5-day precipitation events at the HUC-4 
scale (Fig. 6b), except that the simulated 5-day annual maxima are 
somewhat biased below the GEV model fit to the observations for very 
high return periods. Still, the simulated values are well within the wide 
GEV-based uncertainty bounds at these high return periods, suggesting 
that the weather generator adequately preserves the correlation of 
extreme precipitation across locations within the basin over durations 
longer than 1 day. 

Fig. 6c shows 1-day precipitation extremes that fall over a high 
threshold (the 99th percentile) in the observations, and also these same 
events that are bootstrapped in the 1000-year long weather generator 

Table 2 
Statistics of temperature used for model evaluation.  

No Statistic Description [unit] 

1 Daily mean Average of daily temperatures [◦C] 
2 Daily standard deviation Standard deviation of daily temperatures [◦C] 
3 Inter-annual standard 

deviation 
Standard deviation of annual average 
temperatures [◦C] 

4 Heat wave frequency Number of instances with three or more 
consecutive days with temperature over 32.2 ◦C 
(90◦F) [number of events] 

5 Heat stress frequency Number of instances with 3-day rolling mean 
temperature above 30 ◦C (86◦F) [number of 
events] 

6 Mean and maximum of 
heat wave duration 

Average duration and longest duration of heat 
waves in the record [days] 

7 Mean and maximum of 
heat wave intensity 

Average intensity and highest intensity of heat 
waves in the record [◦C] 

8 Cold wave frequency Number of instances with five or more 
consecutive days with temperature below −7◦C 
(20◦F) [number of events] 

9 Cold stress frequency Number of instances of 3-day rolling mean 
temperature below 0 ◦C (32◦F) [number of 
events] 

10 Mean and maximum of 
cold wave duration 

Average duration and longest duration of cold 
waves in the record [days] 

11 Mean and maximum of 
cold wave intensity 

Average intensity and highest intensity of cold 
waves in the record [◦C]  
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simulation. Results here are shown for all grid cells within the HUC-4 
region. For each event in the observations, the weather generator 
often resamples that event multiple times in the 1000-year simulation, 
which accounts for the scatter and horizontal stratified points in Fig. 6c. 
The results here show that the simulated extremes are centered around 
and very highly correlated with the historical extremes (Pearson r of 
0.99, as expected with the bootstrap), but that the simulation adds noise 
around these extremes with the copula-based jittering algorithm that 
allows both smaller and larger values than those seen historically. For 
instance, the maximum 1-day precipitation in the simulation is 517.2 
mm, while it is only 429.8 mm in the observations. 

Finally, Fig. 6d shows the distribution of average wet spell lengths 
across gridded locations within the HUC-4 region. Across grid cells, 
average wet spell length matches that in the observations well, with only 
a slight (<1%) downward bias on average. 

Fig. 7 focuses on metrics relevant to HUC-4 scale multi-year droughts 

and pluvials. Fig. 7a shows the water-year total precipitation during the 
worst 1-year, 2-year, through 10-year drought in both the observations 
and the 1000-year simulation. For all durations, the simulation exhibits 
a more severe drought-of-record than the historical period, as should be 
expected given the longer period of record. We use independent prob
ability models fit to observed annual precipitation totals to confirm (via 
order statistics) that the intensity of the most extreme droughts from the 
1000-year weather generator simulation are statistically plausible (see 
Supplementary Material). We also confirm that the observed worst 
drought magnitudes for different durations fall well within the simu
lated distribution if the stochastic weather generator is used to simulate 
multiple traces of equal length to the historical record (also see Sup
plementary Material). The weather generator produces average dry spell 
lengths across gridded locations within the HUC-4 that align very well 
with the observations (Fig. 7b), but is also able to produce maximum dry 
spells that extend beyond the observations (i.e., maximum dry spell of 

Fig. 3. Composites of 500-hPa GPHAs [m] for days categorized under each WR during the cold season (November-April; WRs 1 to 7) and warm season (May-October; 
WRs 8 to 10). The number of days (t) classified under each WR is shown above each composite. California is colored with yellow shading on the map. The temporal 
frequency of WRs per calendar day based on a 30-day rolling average smooth is also shown (1948–2021). (For interpretation of the references to colour in this figure 
legend, the reader is referred to the web version of this article.) 
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248 days in the simulation vs. 217 days in the observations). Fig. 7c 
shows the distribution of 1, 2, 3, 5, 10, and 30 water year rolling average 
precipitation totals, and demonstrates that the frequency of water-year 
precipitation totals over different multi-year durations is very well 
preserved in the simulation compared to the observations. However, the 
simulation is able to generate multi-water year precipitation totals that 

extend beyond the observed range for all durations (i.e., more severe 
worst-case multi-year droughts and pluvials), showing how the model 
can be used to explore plausible extremes not yet experienced in the 
observations strictly due to internal climate variability. 

We also compared the ability of the weather generator to produce 
plausible extreme events against the historical simulations derived from 
the LOCA v.2 dataset. We focus our investigation on basin-average 
precipitation over the Upper Tuolumne watershed, one of the water
sheds in the San-Joaquin basin (HUC4: 1804), and retain a focus on the 
historical period in the CMIP6 data in order to compare how these model 
simulations represent extremes due to natural climate variability 
without climate change. Similar to Fig. 6a, Fig. 8a shows a return period 
plot of 1-day precipitation extremes at the watershed scale from the 
observations, based on a GEV distribution fit to annual maxima (red). 
The black points show annual maxima from the 1000-year stochastic 
weather generator simulation, sorted and plotted against empirical re
turn periods. The blue triangles show a similar result for the LOCA v.2 
downscaled data, where the annual maxima at the watershed scale are 
concatenated across the 67 model simulations (a total of 4355 years), 
sorted, and plotted against empirical return periods. The results show 
that while the 1000-year weather generator simulation of watershed- 
scale annual maxima follow the observation-based GEV model very 
well, the LOCA v.2 data are biased low for return periods greater than 
10 years. This bias is especially apparent at the higher return periods. 

Fig. 8b focuses instead on drought events, and shows the worst 1-, 2-, 
3-, 4-, and 5-year drought events in the observed record, the concate
nated 4355 historical years from LOCA v.2, and the 1000-year weather 
generator simulation. Interestingly, both the weather generator and the 

Fig. 4. HUC-4 domains (subregion level) across California, with HUC-8 domain (subbasin level) boundaries shown in the inset.  

Table 3 
Properties of HUC-4 basins across California.  

Basin 
Number 

Basin Name HUC4 State Area 
[km2] 

# Grid- 
Points 

1 Klamath-Northern 
California Coastal 

1801 CA, 
OR 

67,762 1758 

2 Sacramento 1802 CA, 
OR 

72,013 1941 

3 Tulare-Buena Vista 
Lakes 

1803 CA 42,498 1084 

4 San Joaquin 1804 CA 40,986 1072 
5 San Francisco Bay 1805 CA 13,910 259 
6 Central California 

Coastal 
1806 CA 34,287 728 

7 Southern California 
Coastal 

1807 CA, 
MX 

35,863 703 

8 North Lahontan 1808 CA, 
NV 

11,791 318 

9 Northern Mojave- 
Mono Lake 

1809 CA, 
NV 

73,269 1874 

10 Southern Mojave- 
Salton Sea 

1810 CA, 
MX 

44,245 1028  
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downscaled climate model data produce worst-case droughts that 1) fall 
well below the worst-case drought in the observational record, and 2) 
are of very similar magnitude for all durations. This is particularly 
surprising because these products were developed independently, where 
the LOCA v.2 data are derived from physically based GCMs, and the 
weather generator is a statistical model fit to observations. However, it is 
worthwhile to note that although the most extreme droughts in both the 
weather generator simulation and the downscaled (historical) climate 
model data are of similar magnitudes, it took 4355 years of downscaled 
GCM data to produce these droughts but only 1000 years of the weather 
generator simulation. This leads to two important implications: 1) the 
extreme droughts simulated by the weather generator are physically 
plausible, because an ensemble of GCM simulations produced droughts 
of similar magnitude; and 2) those droughts may be much more likely to 
occur due to natural climate variability than suggested by the GCMs, 
since the weather generator was able to produce them in less than a 
quarter of the years required to produce them in the GCMs. We note that 
we repeated this analysis using only 1000 years from the LOCA v.2 
dataset and found worst-case droughts to be of the same magnitude as 
the observations (not shown), further suggesting that the GCMs struggle 
to produce extreme droughts that are driven by natural climate 
variability. 

We repeated a similar comparison of the LOCA v.2 historical data to 
the baseline weather generator simulation for additional watersheds (e. 
g., Upper Feather, Upper American, Lake Millerton), and found that in 
general the 1000-year baseline weather generator simulation was better 
able to capture basin-scale extreme precipitation frequencies and pro
duced similar extreme droughts compared to the 4355 years of historical 
LOCA v.2, although with some variation across watersheds (see Sup
plementary Material). 

4.2.2. Temperature validation 
Fig. 9 is similar to Fig. 5 a-d, but for average temperature. It should 

be noted that we computed average temperature using simulated daily 
minimum and maximum temperature at each gridded location. Overall, 

the distribution of HUC-4 scale average annual temperatures across 
water years is well preserved in the simulation compared to the obser
vations (Fig. 9a), although with a small underestimation of the inter- 
annual variance (Fig. 9b). Median daily means and standard de
viations across grid cells are very well preserved, as are their range 
across water years (Fig. 9c,d). 

Fig. 10 highlights characteristics related to temperature extremes 
across grid cells within the HUC-4 region, including heat waves and cold 
waves. The average and maximum duration of heat and cold waves are 
shown in Fig. 10a,b, while the average and maximum intensity are 
shown in Fig. 10c,d. The model performs well for all these statistics 
across sites. There is a minor upward bias in the mean duration and 
mean and maximum intensity of heat waves, but this bias is small. 
Overall, there is a high level of agreement between the observed and 
simulated attributes of heat waves and cold waves. 

Finally, Fig. 11 shows the spatial distribution of the frequency of heat 
waves and heat stress events derived from the observations (Fig. 11a,c) 
and the 1000-year simulation (Fig. 11b,d) across the HUC-4 region. A 
similar result is also shown for cold waves and cold stress events in the 
observations (Fig. 11e,g) and simulation (Fig. 11f,h). The distributions 
are normalized using the site-specific time-series length, so that results 
are shown as the average frequency of heat or cold events per year in 
each gridded location. As shown in Fig. 11, the model is able to repro
duce the spatial distribution of these events extremely well as compared 
to the observations, implying that the stochastic weather generator can 
fully preserve the spatial organization of multi-day temperature ex
tremes across sites in the basin. 

Finally, we note that the validation performance showcased in 
Figs. 5-7 and Figs. 9-11 for the San Joaquin basin (HUC4: 1804) is 
consistent across the rest of the HUC-4 subregions throughout Califor
nia, with a small number of exceptions we highlight here (see Supple
mentary Material). There are a few HUC-4 subregions with no cold wave 
(HUC4: 1805, 1806, 1810) or heat wave (HUC4: 1801, 1808) events, 
which the stochastic weather generator also replicates in the baseline 
simulation. The weather generator underestimates interannual 

Fig. 5. Observed vs. simulated (a) distribution of basin-scale water-year precipitation totals, with the red shaded area representing the uncertainty in the observed 
distribution using a 95% confidence interval based on bootstrapping from the historical record; (b) standard deviation of basin-scale water-year precipitation totals, 
with the boxplot showing the uncertainty in the observed standard deviation based on bootstrapping from the historical record; (c) mean and (d) standard deviation 
of daily precipitation at individual sites (grid cells) within the HUC-4, with dots and whiskers showing the 50th, 5th, and 95th percentiles across individual water 
years; (e) basin-scale cumulative precipitation over the water year, including the mean, median, 10th, and 90th percentiles; (f) the distribution of basin-scale 
monthly total precipitation, including the 5th, 50th, and 95th percentiles. All results are shown for the San Joaquin basin (HUC4: 1804). (For interpretation of 
the references to colour in this figure legend, the reader is referred to the web version of this article.) 
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temperature and precipitation standard deviations by less than 5 % in 
several basins, although still within the sampling uncertainty of this 
statistic for the observations. Small biases (<10 %) in heat and cold 
wave intensity and duration are also observed in some grid cells within 
basins across the rest of the HUC-4 regions. Finally, for one HUC-4 re
gion (HUC4:1809 − Northern Mojave-Mono Lake), the worst 1-year 
drought is underestimated, even though the maximum dry spells are 
longer than observed for the gridded locations in this subregion. 

4.2.3. AR landfall frequency validation 
As a final validation of the 1000-year baseline simulation of the 

stochastic weather generator with no climate change, we evaluate the 
frequency of AR landfalls near and along the California coastline 
(Fig. 12). The observed frequency, expressed as the number of events per 
year for each calendar month, was taken from the historical AR archive 
in Gershunov et al. (2017). We focus on five locations and observed that 
for the most northern location (labeled ‘1′ in Fig. 12), AR landfalls are 
most frequent in the earlier part of the cold season (November- 
December) and become less frequent as the cold season progresses. 

Conversely, the location furthest south (labeled ‘5′ in Fig. 12) shows an 
increase frequency of ARs later in the cold season (January-March). This 
general pattern of more ARs later in the cold season is followed across 
locations moving north to south. By using the resampled historical dates 
from the block bootstrap in the stochastic weather generator, we can 
also derive the monthly frequencies of landfalling ARs in the 1000-year 
baseline simulation. We find that the weather generator near-perfectly 
reproduces the monthly frequencies of AR landfalls at all locations. 

5. Conclusions and final remarks 

This work presented the first of a two-part series of studies intro
ducing the development of a stochastic weather generator suitable for 
the creation of gridded (~6 km) climate change scenarios across the 
entire state of California. The stochastic weather generator is novel in 
comparison with other downscaling techniques, because it is designed to 
distinguish thermodynamic and dynamic mechanisms of climate 
change, allowing analysts to separately consider those mechanisms they 
deem most credible for planning purposes. In this work, the weather 

Fig. 6. (a) Observed and simulated empirical distribution of HUC-4 scale water-year 1-day precipitation maxima, along with GEV and GPD-Poisson based return 
level estimates and their 95% uncertainty bounds fitted to the observed precipitation; (b) similar to (a) but for 5-day precipitation maxima, and without a fitted GPD- 
Poisson model; (c) the magnitude of precipitation in partial duration series for all grid cells in the HUC-4 region, along with the same events in the weather generator 
simulation after the values are jittered; and (d) the distribution of average wet spell lengths (in days) across sites. The maximum wet spell length among grid cells for 
the observations and simulation is shown in blue text. All results are shown for the San Joaquin basin (HUC4: 1804). (For interpretation of the references to colour in 
this figure legend, the reader is referred to the web version of this article.) 

N. Najibi et al.                                                                                                                                                                                                                                   



Climate Services 34 (2024) 100489

12

generator was calibrated across the state of California and then used to 
create a 1000-year baseline weather simulation, which was subse
quently validated against observations. 

Results showed that the statewide stochastic weather generator is 
able to simulate long sequences of daily precipitation and minimum and 
maximum temperature that very accurately mimic the behavior of his
torical observations at multiple spatial scales (grid cell, basin) and 
temporal scales (daily, event-based, monthly, annual, inter-annual to 
decadal). The model reproduces well a large suite of climate statistics at 
these scales, including moments (averages, variances), spells, both dry 
and wet extremes, and extreme hot and cold periods. The high degree of 

performance is in part driven by refinements to the weather generator 
algorithm presented in this work, particularly changes to the WR 
simulation algorithm and the technique used to jitter extreme precipi
tation events. Moreover, the stochastic weather generator accurately 
reproduces the monthly frequencies of AR landfalls at locations along 
the California coastline using resampled historical dates based on the 
block bootstrap method. 

The high level of performance shown for the San Joaquin basin was 
found to be consistent across other HUC-4 basins throughout the state 
(shown in Supplementary Material). However, there were a few notable 
limitations to model performance that were consistent across HUC-4 

Fig. 7. (a) Observed vs. simulated worst multi-year basin-scale droughts (1 to 10 years) based on water-year precipitation totals; (b) the distribution of average dry 
spell lengths (in days) across sites. The maximum dry spell length among grid cells for the observations and simulation is shown in blue text. (c) The distribution of 
basin-scale water-year precipitation totals at 1, 2, 3, 5, 10, and 30-year rolling averages, including the minimum, median, and maximum totals. All results are shown 
for the San Joaquin basin (HUC4: 1804). (For interpretation of the references to colour in this figure legend, the reader is referred to the web version of this article.) 

Fig. 8. (a) Observed distribution of watershed-scale annual precipitation maxima, along with GEV-based return level estimates fitted to the observed annual maxima 
(red). Also shown are annual maxima from the 1000-year weather generator simulation (black) and 4355 years of historical LOCA v.2 data (blue). (b) The worst 1, 2, 
3, 4, and 5-year drought events in the observed record, across the historical LOCA v.2 ensemble, and in the 1000-year weather generator simulation. All results are 
shown for the Upper Tuolumne River watershed within the San Joaquin basin (HUC4: 1804). (For interpretation of the references to colour in this figure legend, the 
reader is referred to the web version of this article.) 
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basins and deserve mention here. First, the weather generator tends to 
underestimate the interannual variance of annual average temperature 
for almost all HUC-4 basins by approximately 5%. In addition, for 
several HUC-4 basins, the interannual variance of water-year precipi
tation totals is also slightly underestimated (by ~ 5%). We also found 
that for some HUC-4 basins, there were small biases (<10%) in the in
tensity and duration of heat waves and cold waves for subsets of indi
vidual grid cells within each basin. Overall, there were no clear spatial 
patterns to these biases across the state. 

Despite the limitations above, the overall high performance of the 
model allows the resulting weather generator data products to be used 
by stakeholders throughout California. Importantly, simulated weather 
across the state is correctly correlated across space and between 
different variables (precipitation, temperature), ensuring that weather 
generator simulations can be used in hydrologic and water resources 
analyses that span multiple watersheds across California. The stochastic 
weather generator can also simulate extreme weather conditions, 
including extreme precipitation across multi-day periods and extreme 
droughts of varying intensities and durations, that are physically plau
sible but extend well beyond the range seen in the historical record. 

These extremes are simulated even in the absence of climate change, 
highlighting that water resource managers can use the baseline 1000- 
year weather generator simulation to better understand how natural 
climate variability could negatively impact their system. 

The ability of the weather generator to generate spatially correlated 
extremes that extend beyond the magnitude of extreme events in the 
historical record forms one of the core practical benefits of this model for 
the water resources community. The 1000-year, ~6 km baseline 
weather generator simulation across the state discussed in this work is 
publicly available through the California Natural Resources Agency 
Open Data (https://data.cnra.ca.gov/dataset/ca-weather-generator- 
gridded-climate-pr-tmin-tmax-2023). Practitioners can use these data 
in conjunction with rainfall-runoff models to create long hydrologic 
traces for their watershed of interest that contain hydrologic extremes 
not previously seen in the historical record. Such traces are critical to 
test the robustness of adaptation strategies (e.g., new reservoir opera
tional policies, new infrastructure for managed aquifer recharge) and to 
ensure those strategies can meet performance requirements under 
plausible hydrologic conditions not previously observed. When coupled 
with different scenarios of climate change, weather generator output can 

Fig. 9. Observed vs. simulated (a) distribution of basin-scale water-year average temperature (based on the minimum and maximum temperature time series), with 
the red shaded area representing the uncertainty in the observed distribution using a 95% confidence interval based on bootstrapping from the historical record; (b) 
standard deviation of basin-scale water-year average temperature, with the boxplot showing the uncertainty in the observed standard deviation based on boot
strapping from the historical record; (c) mean and (d) standard deviation of daily average temperature at individual sites (grid cells), with dots and whiskers showing 
the 50th, 5th, and 95th percentiles across individual water years. All results are shown for the San Joaquin basin (HUC4: 1804). (For interpretation of the references 
to colour in this figure legend, the reader is referred to the web version of this article.) 
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then be used to evaluate the combined impacts of natural climate vari
ability and long-term climate change on water system performance. The 
generation of these climate scenarios is the focus of Part (2). 
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Fig. 10. Observed vs. simulated at-site (a) duration of heat wave (mean, maximum); (b) duration of cold wave (mean, maximum); (c) intensity of heat wave (mean, 
maximum), and (d) intensity of cold wave (mean, maximum). Each point represents a gridded location in the San Joaquin basin (HUC4: 1804). 

Fig. 11. Frequency of (a) observed and (b) simulated heat waves; frequency of (c) observed and (d) simulated heat stress events; frequency of (e) observed and (f) 
simulated cold waves; frequency of (g) observed and (h) simulated cold stress events. All results shown for the San Joaquin basin (HUC4: 1804). 
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Appendix A:. Mathematical formulation of the stochastic weather generator 

A.1. Non-homogeneous hidden markov models for identifying weather regimes 

We utilize a variant of hidden Markov models (HMMs) to identify weather regimes (WRs) from 500-hPa geopotential height anomalies (GPHAs). 
An HMM involves a finite set of hidden states that transition over time according to the Markov property (Markov, 1954). Each hidden state represents 
a division of the random field’s state space. This process is akin to cluster analysis, but with the clusters exhibiting Markovian temporal dynamics. At 
each time step, the spatial field may correspond to a particular hidden state with a certain probability. By leveraging the transition probabilities, each 
time period can be assigned to a specific state, optimizing the likelihood of the assignment throughout the data’s time span (Rabiner, 1989). Addi
tionally, an external predictor (i.e., a set of exogenous variables, or covariates) can be utilized to influence the transition probabilities over time with a 
specific period. In such cases, the model is referred to as a nonhomogeneous hidden Markov model (NHMM). NHMMs are an extension of HMMs that 
allow for time-varying transition probabilities, where the transition probabilities between hidden states change over time according to an external 
predictor or a set of covariates. 

Following Najibi et al. (2021), we use an NHMM to infer WRs from the spatiotemporal evolution of 500 hPa GPHAs, including their persistence, 
seasonal evolution, and long-term trends. A short description of the mathematical formulation for this approach is provided below. 

First, we define the following notations: 

K: The number of hidden states (i.e., number of WRs). 
T: The number of time steps or observations. 
π: The initial state probabilities, a K-dimensional vector where π(i) represents the probability of starting in hidden state i. 
A: The transition probability matrix, a K × K matrix that can vary through time, where A(i,j,t) represents the probability of transitioning from 
hidden state i to hidden state j at time t. 

Fig. 12. (a) Location of AR landfalls along Western North America (blue), with 5 locations near and along the California coastline highlighted (pink). (b-f) Observed 
versus weather generator simulated frequency of AR landfalls, expressed as an average number of days per year for each calendar month, across five locations near 
and along the California coastline. (For interpretation of the references to colour in this figure legend, the reader is referred to the web version of this article.) 
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B: The emission probabilities, a K × T matrix where B(i,t) represents the probability of observing the t-th observation given hidden state i. 
X: The external predictors or covariates, a K × T matrix where each column X(:,t) represents the covariates at time t. 

The NHMM workflow can be mathematically described in the following steps:  

1. Initialization:  
o Set the initial state probabilities: π(i) for i = 1 to K.  

2. Time-varying transition probabilities:  
o Compute the time-varying transition probabilities using the external predictor, or set of covariates: A(i,j,t) = Pr(S(t + 1) = j | S(t) = i, X(:,t)), 

where S(t) represents the hidden state at time t. A multinomial regression framework is used here to parameterize the hidden state transitions.  
o Two types of exogenous variables (i.e., covariates in X) are considered in the NHMM: a) two seasonal harmonics {1 + Cos(ψ), 1 + Sin(ψ)}, where 

ψ = 2πt
365 represents a periodic signal over the annual cycle; and b) a state-wide wetness index, quantified using the first four principal components 

from a gridded, water-year standardized precipitation index (SPI) product over California {PC1, PC2, PC3, PC4}.  
3. Emission probabilities:  

o Compute the emission probabilities using the observations: B(i,t) = P(O(t) | S(t) = i), where O(t) represents the vector of observations at time t.  
4. Forward-Backward algorithm: 

o Use the forward–backward algorithm (Baum and Petrie, 1996; Baum et al., 1970) to compute the forward probabilities and backward proba
bilities (i.e., model coefficients) for each hidden state i and time step t.  

5. Baum-Welch algorithm:  
o Use the Baum-Welch algorithm (also known as the expectation–maximization (EM) algorithm) (Moon, 1996) to estimate the NHMM parameters 

π, A, and B based on the forward and backward probabilities.  
6. Viterbi algorithm:  

o Use the Viterbi algorithm (Forney, 1973; Rabiner, 1989) to estimate the most probable sequence of hidden states (i.e., historical sequence of 
WRs). 

The Baum-Welch algorithm iteratively updates the NHMM parameters until convergence, maximizing the likelihood of the observed data (i.e., J 
PCs of GPHAs in each season). Note that we only used the first four SPI PCs for identifying the WRs in the cold season, but the harmonics in both warm 
and cold seasons. 

We run the EM algorithm 10 times using different random initializations, and utilize the solution with the largest likelihood over all 10 runs to 
avoid any poor local maxima (Rojo Hernández et al., 2020). We utilized the R-package ‘depmixS4′ (Visser and Speekenbrink, 2010) to fit the NHMM. 

A.2. Non-parametric simulation of weather regimes for baseline weather 

We developed a novel non-parametric approach to WR simulation that addresses the issue of overdispersion in simulated WRs while still allowing 
for future climate change scenarios with altered WR probabilities. Let i = 1, ⋯, K denote the K different WRs, which are available as a daily time series 
over the historical record (1948–2019). Suppose that the historical time series of WRs are clustered into non-overlapping, consecutive segments, 
where each segment is D years long and there are ND segments in total (in this work, D=4 and ND=18). In the non-parametric approach for WR 
simulation, each of the n = 1,…,ND segments is given a sampling probability pn. To simulate a new sequence of daily WRs for an arbitrary number of 
years, we simply resample (with replacement) the nth D-year segment of daily WRs with probability pn, until a sufficient number of years has been 
generated. The final segment can be truncated to ensure a precise number of years of simulated WRs. In this work, WR simulations are set to 1008 
years, which corresponds to 14 times the length of the 72-year historical record. By maintaining the simulation length as a whole multiple of the 
historical record length, we can compare the historical record directly to 14 separate weather generator traces without any differences in sequence 
length. 

In the baseline scenario for the weather generator with no dynamic climate change, pn = 1
ND 

for n = 1,…,ND. That is, each segment is considered 
equally likely. This is the approach taken for those weather generation scenarios that do not incorporate any dynamic climate changes, i.e., no changes 
to large-scale circulation patterns. 

A.3. Copula-based jittering algorithm 

We use a copula-based jittering approach that enables bootstrapped values of daily, heavy precipitation to extend beyond the range of the 
instrumental record. Let p̃t be a vector of simulated precipitation values from the bootstrap at time t across all sites. Assume the non-zero, daily 
precipitation amounts at each site s can be modeled by a distribution with cdf F(p|θs). In this study, we assume precipitation follows an extreme value 
mixture model (Scarrott and MacDonald, 2012), using a gamma distribution for the bulk density (which varies by month) and a Generalized Pareto 
distribution (GPD) for values in the tail of the distribution. The cumulative distribution function (cdf) of this model evaluated for precipitation at site s 
and day t is given by: 

F
(
ps,t|θs,t

)
=

⎧
⎪⎪⎨

⎪⎪⎩

πs
Fgamma

(
ps,t|αs,m(t), βs,m(t)

)

Fgamma
(
u|αs,m(t), βs,m(t)

) ps,t ≤ ζs

πs + (1 − πs)FGPD
(
ps,t|σs, ξs

)
ps,t > ζs

(A3.1) 

Here, ζs is a threshold that separates heavy from non-heavy precipitation, Fgamma is the cdf of a gamma distribution with parameters αs,m(t), βs,m(t)

that vary through time based on calendar month m(t), FGPD is the cdf of a GPD with parameters σs,ξs, and πs is the probability of precipitation exceeding 
the threshold ζs. The full vector of model parameters is given by θs,t. 

For each simulated day t and site s, let ̃us,t = F

(

p̃s,t|θs,t

)

be the non-exceedance probability associated with ̃ps,t. We focus specifically on those non- 
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exceedance probabilities associated with heavy precipitation and utilize the conditional non-exceedance probabilities for the GPD given that ̃ps,t > ζs: 

ũs,tGPD =
ũs,t − πs

(1 − πs)
(A3.2) 

The ũs,tGPD values are the non-exceedance probabilities for the GPD component of the extreme value mixture model and will range from 0 to 1. At 
any time t, let ̃utGPD denote the vector of values ̃us∈ψt ,tGPD only for sites s ∈ ψt where ps,t > ζs. That is, ψt is the subset of sites with heavy precipitation on 
day t, so that |ψt| ≤ S. 

We perturb the values in the vector ̃utGPD to create a new vector of values ̃u*
tGPD 

that are centered around but are not equal to ̃utGPD . The perturbations 
are simulated using a Gaussian copula. Let Σ be an S × S Spearman (rank) correlation matrix for the vector of all daily, observed precipitation across 

sites, and let ̃zs,tGPD = ϕ−1
(

ũs,tGPD

)

be a z-score (i.e., ϕ is the standard normal cdf) for simulated heavy precipitation at time t and site s in the set ψt. Note 

that for simplicity we drop the notation ψt, but emphasize that z-scores at time t 
(

z̃s,tGPD

)

are only calculated for sites s with heavy precipitation at time 

t. We create a covariance matrix to simulate new z-scores z̃*
tGPD 

from a multivariate normal distribution centered around the original scores z̃tGPD : 

z̃*
tGPD

MVN(z̃tGPD , Ω) (A3.3) 

With 

Λ = λI  

Ω = ΛΣΛT (A3.4) 

Here, Λ is a diagonal matrix of dimension |ψt| × |ψt| with constant diagonal term λ, which is a user-defined parameter. If λ = 1, then Ω = Σ and ̃z*
tGPD 

will deviate substantially from the original values z̃tGPD (which are based on the bootstrapped precipitation values), but will retain the observed 
correlation structure across sites. However, as λ is made small, the matrix Ω will have small variances along the diagonal and ̃z*

tGPD 
will not vary much 

from z̃tGPD . Then, for each site, the perturbed z-score can be back-transformed to a proposed non-exceedance probability for the GPD, ũ*
s,tGPD

=

ϕ
(

z̃*
s,tGPD

)

, and an associated proposed precipitation value p̃*
s,tGPD

= FGPD
−1

(

ũ*
s,tGPD

|σs, ξs

)

. The proposed non-exceedance probability will then be 

selected over the original one based on the following conditional probabilities of observing a different precipitation value given the value that was 
simulated: 

π =

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

Pr

(

P > p̃*
s,tGPD

|P > p̃s,tGPD

)

=

Pr

(

P > p̃*
s,tGPD

, P > p̃s,tGPD

)

Pr

(

P > p̃s,tGPD

) =

Pr

(

P > p̃*
s,tGPD

)

P

(

P > p̃s,tGPD

) =
1 − ũ*

s,tGPD

1 − ũs,tGPD

, p̃*
s,tGPD

> p̃s,tGPD

Pr

(

P ≤ p̃*
s,tGPD

|P ≤ p̃s,tGPD

)

=

Pr

(

P ≤ p̃*
s,tGPD

, P ≤ p̃s,tGPD

)

Pr

(

P ≤ p̃s,tGPD

) =

Pr

(

P ≤ p̃*
s,tGPD

)

Pr

(

P ≤ p̃s,tGPD

) =
ũ*

s,tGPD

ũs,tGPD

, p̃*
s,tGPD

≤ p̃s,tGPD  

ũfinal
s,tGPD

=

⎧
⎪⎨

⎪⎩

ũ*
s,tGPD

π ≤ rs,t

ũs,tGPD π > rs,t
(A3.5) 

where the random variable P is daily precipitation depth and rs,t is a random draw from a uniform distribution between 0 and 1 for site s and time t. 
The final heavy precipitation value for each site is then set equal to 

FGPD
−1

(

ũfinal
s,tGPD

|σs, ξs

)

(A3.6) 

By virtue of the perturbations embedded in ̃z*
tGPD 

and thus ũ*
tGPD

, the final values of simulated heavy precipitation can extend beyond the range of 
historical heavy precipitation values, but they preserve the rank correlation structure across sites and the space–time structure captured by the block 
bootstrap, as long as λ is small. We calibrate λ to balance the reproduction of extreme events beyond the range of the historical record (e.g., estimates 
of the 500-year and 1000-year storm) while maintaining the general spatial structure of bootstrapped storms. We find that satisfactory results are 
generally achieved with λ ∈ (0.1, 0.5). In this work, we set λ = 0.4. 

Appendix B. Supplementary data 

Supplementary data to this article can be found online at https://doi.org/10.1016/j.cliser.2024.100489. 
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