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H I G H L I G H T S  

• A weather regime-based stochastic weather generator is utilized to create thermodynamic and dynamic climate change scenarios. 
• The ensemble comprises 32, 1000-yr climate scenarios for changes in temperature, precipitation, and atmospheric circulation. 
• The scenarios are intended to support bottom-up climate vulnerability assessments of water systems across California.  
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A B S T R A C T   

This study is the second of a two-part series presenting a novel weather regime-based stochastic weather 
generator to support bottom-up climate vulnerability assessments of water systems in California. In Part 2 of this 
series, we present how the model is used to develop an ensemble of climate change scenarios based on both 
thermodynamic and dynamic signals of climate change. The ensemble includes a suite of 30 climate change 
scenarios, each consisting of 1000 years of simulated daily climate data (precipitation, maximum temperature, 
minimum temperature) at a 6 km resolution across the entire state of California. The 30 scenarios represent a 
range of plausible climate changes to temperature, average precipitation, and precipitation extremes that are 
reflective of thermodynamic responses of the atmosphere to warming. An additional two scenarios are also 
created that represent changes in the frequency of weather regimes (e.g., dynamic climate change). Results from 
these scenarios reveal that when the effects of anthropogenic climate change are combined with plausible re
alizations of natural climate variability, the severity of extremes in California is amplified significantly. In 
addition, recent changes in the frequency of large-scale patterns of atmospheric circulation can have impacts of 
similar magnitude to large (>10%) declines in average precipitation, particularly with respect to drought. The 
scenarios developed in this work are designed to allow water managers to systematically test the sensitivity of 
their water system to different combinations of climate change, so that key vulnerabilities can be discovered and 
then addressed through adaptation planning.   

Practical implications 

Water resource planners in California must prepare for the 
increased stress of climate change. However, there is significant 
uncertainty about how the climate will evolve over the coming 
decades. While most climate projections agree that California’s 
future will be warmer and precipitation will intensify, the rate of 

these changes is less clear, as are more nuanced climate changes 
like shifts in average precipitation or changes to atmospheric 
circulation that can impact regional weather. Furthermore, water 
systems in California are very vulnerable to natural swings in 
climate unrelated to climate change, and the range of this natural 
variability must also be considered in future planning efforts. 

This two-part series comprises a pair of articles documenting the 

* Corresponding author at: 111 Wing Dr, Riley-Robb Hall 325, Ithaca 14853, NY, USA. 
E-mail address: nn289@cornell.edu (N. Najibi).  

Contents lists available at ScienceDirect 

Climate Services 

journal homepage: www.elsevier.com/locate/cliser 

https://doi.org/10.1016/j.cliser.2024.100485 
Received 26 August 2023; Received in revised form 4 April 2024; Accepted 2 May 2024   

mailto:nn289@cornell.edu
www.sciencedirect.com/science/journal/24058807
https://www.elsevier.com/locate/cliser
https://doi.org/10.1016/j.cliser.2024.100485
https://doi.org/10.1016/j.cliser.2024.100485
https://doi.org/10.1016/j.cliser.2024.100485
http://crossmark.crossref.org/dialog/?doi=10.1016/j.cliser.2024.100485&domain=pdf
http://creativecommons.org/licenses/by/4.0/


Climate Services 34 (2024) 100485

2

development of a stochastic weather generator for California that 
can create large ensembles of climate traces to support water re
sources planning under future climate uncertainty. The weather 
generator is an efficient tool that can quickly create long (1000- 
year) traces of statewide weather, and allows water managers to 
flexibly develop and explore climate scenarios associated with 
different signals of climate change. These include ‘thermody
namic’ changes (i.e., more intense precipitation linked to an in
crease in the moisture-holding capacity of warmer air), as well as 
more nuanced signals related to shifts in atmospheric circulation 
(i.e., dynamic climate change). 

In Part (1) of this series, we presented the development and vali
dation of the model. In this article (i.e., Part (2) of the series), we 
focus on the development of climate change scenarios. The work 
in Part (2) details the creation of a publicly available dataset of 30 
unique climate change scenarios, each consisting of 1000 years of 
simulated climate data (precipitation, maximum temperature, 
minimum temperature) at a 6 km resolution across the entire state 
of California. The 30 scenarios represent a range of plausible 
climate changes to temperature, average precipitation, and pre
cipitation extremes. These include five scenarios of temperature 
change ranging from 1 ◦C to 5 ◦C of warming at 1 ◦C increments 
and five scenarios of mean precipitation change ranging from 
-25% to +25% of historical averages at 12.5% increments. For all 
twenty-five of these scenarios, we scale extreme daily precipita
tion with temperature at a rate of 7% per ◦C of warming, to reflect 
the increased moisture holding capacity of the atmosphere ac
cording to the Clausius-Clapeyron relationship. We generate four 
additional climate change scenarios that use different scaling rates 
(0% per ◦C and 14% per ◦C of warming) to support sensitivity 
analysis with respect to extreme precipitation scaling. Together 
with the baseline scenario containing no climate change, this leads 
to 30 scenarios altogether, which form the primary data product 
from this study. We also create two experimental climate scenarios 
that reflect changes to the frequency of large-scale weather pat
terns, based on a preliminary analysis of historical trends in these 
patterns. However, these experimental scenarios are not included 
in the data release associated with this work. 

The datasets created in this work highlight how even in the 
absence of climate change, water managers in California should 
plan for extreme precipitation events and droughts beyond the 
worst case from the historical record, because such events are 
quite plausible due to California’s natural climate variability 
alone. However, when such natural extremes are combined with 
the effects of anthropogenic climate change, extremes in Califor
nia become severe and will likely require significant investment in 
water resources systems to sustain adequate water services across 
the state. The weather generator and associated datasets should be 
viewed as a complementary tool to more commonly available 
downscaled GCM projections. Unlike GCMs, the weather gener
ator is not designed to create scenarios of future climate based on 
the physical laws of the Earth system and future greenhouse gas 
emission scenarios. Rather, the model provides a way to help 
translate various signals of climate change from GCMs into traces 
of weather that are tailored to support water resource planning 
efforts. In this way, the California weather generator is envisioned 
as a tool to help promote collaboration between climate scientists 
and water resource planners across the state. 

Stakeholders across California can utilize the climate scenarios 
produced by the stochastic weather generator to infer the joint 
impact of both climate change and natural climate variability on 
their systems. We recommend that stakeholders use the data 
products developed in this work in stages to help develop robust 
adaptations of water resources infrastructure under climate 
change. For example, initial adaptation strategies (e.g., new 
reservoir operational policies, new infrastructure for managed 
aquifer recharge) could be developed using the historical record to 
ensure these strategies are able to meet performance requirements 
under past and recent extreme events. Then, these strategies could 
be re-evaluated using: 1) a 1000-year baseline weather generator 
simulation; and 2) climate change scenarios applied to the 1000- 

year weather generator simulation. These evaluations would 
provide information on how robust a given adaptation strategy is 
to natural climate variability, climate change, and a combination 
of the two. 

Such information could be used in different ways to alter the 
initial adaptation strategy. For instance, if a strategy appears 
vulnerable to the 1000-year baseline weather generator simula
tion (i.e., natural climate variability) or scenarios from the model 
reflective of likely future climate conditions (e.g., a low degree of 
future warming projected in most GCMs over the next few de
cades), this might suggest an immediate need for a more robust 
strategy. Alternatively, in cases where an adaptation strategy is 
only vulnerable to the most extreme climate change scenarios 
produced by the model, the current adaptation strategy may be 
deemed adequate if coupled with plans for continued climate 
monitoring and retrofits/adjustments that could be implemented 
later if needed.   

1. Introduction 

Climate change presents a major concern for water security at local, 
regional, and global scales (Ranasinghe et al., 2021; IPCC, 2022). In 
California, climate change experienced to date has already exacerbated 
recent droughts via warming temperatures and enhanced drying power 
of the atmosphere (Williams et al., 2022). Similarly, extreme precipi
tation during recent, atmospheric river (AR)-related storms was likely 
more intense than it otherwise would have been due to warming tem
peratures and an associated increase in the moisture holding capacity of 
the atmosphere following the Clausius-Clapeyron relationship (Gonzales 
et al., 2019; Michaelis et al., 2022). These climate changes are related to 
thermodynamic responses of the atmosphere to a warmer climate, and 
global climate models (GCMs) project that these types of thermody
namic climate change will accelerate over California and much of the U. 
S. Southwest into the middle and end of the 21st century (Espinoza et al., 
2018; Massoud et al., 2019; Rhoades et al., 2020; Overpeck and Udall, 
2020; Huang and Swain, 2022). Other first-order responses to surface 
warming include greater frequency of extreme heat (Ullrich et al., 2018) 
and significant changes to seasonal snow accumulation and melt pat
terns (Berg and Hall, 2017; Ishida et al., 2019; He et al., 2021; Shulgina 
et al., 2023). Generally, projections of thermodynamic climate changes 
are consistent across theory, observations, and model projections (Pfahl 
et al., 2017; Allan et al., 2020), leading to high confidence in the di
rection of future change, although with residual uncertainty in the ul
timate rate of change. 

Other types of long-term climate changes are also possible, but with a 
greater degree of uncertainty (Shepherd, 2014; Elbaum et al., 2022). For 
instance, shifts in atmospheric circulation, or dynamic climate changes, 
have been observed and projected for California. Zhang et al. (2022) 
recently showed a 40-year decline (from 1980 to 2018) in the frequency 
of a deep trough over Western North America that is associated with 
strong moisture flux and precipitation in California. This trend in the 
frequency of one large-scale atmospheric flow pattern appears to explain 
much of the drying trend observed over California and the Southwestern 
U.S. during that same period, and an ensemble of historical CMIP6 
climate model simulations suggest these observed shifts in atmospheric 
circulation have been driven by anthropogenically forced climate 
change. Others have also explored how late 21st century projections of 
these atmospheric flow patterns influence future climate over the 
Western U.S. For instance, Swain et al. (2018) found that changes in the 
spatial pattern and intensity of atmospheric circulation patterns may be 
responsible for projected increases in the frequency of dry and wet re
gimes in California. Shields and Kiehl (2016) focused specifically on the 
landfall locations of ARs along the West Coast and projected that land
falling ARs will eventually move equatorward during winter. However, 
others (Gao et al., 2016; Ma et al., 2020) have identified an opposite, 
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poleward movement of ARs in other regions of the world, highlighting 
that there is substantial regional variability and uncertainty in this type 
of dynamic climate change for ARs (Payne et al., 2020). 

In Part (1) of this two-part series, we introduced and validated a 
weather regime-based stochastic weather generator designed to support 
bottom-up climate vulnerability assessments of water systems. Vulner
ability assessments seek to define the range of climate conditions that 
lead to critical system vulnerabilities (see Fig. 1), and therefore are most 
relevant to the decision-making process of climate adaptation (Brown 
et al., 2012). Such frameworks help circumvent the issue of severe un
certainty in more traditional top-down climate impact assessments, in 
which downscaled GCM projections are used to drive the entire analysis. 
Bottom-up vulnerability assessments ensure a thorough exploration of 
system sensitivities to small perturbations in climate that might not be 
captured when using a relatively small and often biased GCM ensemble. 
However, these assessments can still use GCM-based information to help 
define the range of plausible future climate changes and their likelihood. 
Key to these vulnerability assessments is the ability to generate long 
climate traces useful for quantifying both water supply and flood risk, 
and to do so for many scenarios of potential climate change selected 
according to a carefully crafted experimental design (Steinschneider 
et al., 2015; Schwarz et al., 2018; CA DWR, 2019; Ray et al., 2020). 
Stochastic weather generators provide exactly this functionality. 

In the present study (Part 2 of this two-part series), we detail how the 
stochastic weather generator described in Part (1) can be used to pro
duce an ensemble of thermodynamic and dynamic climate change sce
narios to support bottom-up climate impact assessments of water 
systems across the state of California. We review the weather generator 
and describe how it is used to produce these scenarios in Section 2. In 
Section 3, we present these future climate scenarios and their impacts on 
different metrics of average and extreme precipitation and temperature. 
We conclude in Section 4 with a discussion of model limitations and 
guidance for use of these data products. 

2. Methods 

2.1. Overview of stochastic weather generator 

In this work, we use the stochastic weather generator described in 
Part (1) of this series to generate an ensemble of future climate scenarios 

across the entire state of California. The full model is described in detail 
in Part (1). Here, we only provide a brief overview of the model for 
context that supports the description of climate scenario development 
below. The California weather generator can be used with many 
different continuous climate datasets, but in this work the model uses 
gridded (~6 km) daily precipitation between January 1, 1948 and 
December 31, 2018 across California from the extreme-preserving 
gridded daily dataset developed by Pierce et al. (2021). Gridded, daily 
minimum and maximum temperature at the same resolution and for the 
same domain are taken from Livneh et al. (2013) for the period between 
January 1, 1948 and December 31, 2015, and are then extended to 
December 31, 2018 using the PRISM daily dataset (PRISM Climate 
Group, 2014). These temperature data are detrended to ensure all 
temperature data reflect average temperatures experienced over the last 
30 years (1991–2020). 

The weather generator is a semiparametric, multivariate, and 
multisite model that is designed to separately model dynamic and 
thermodynamic atmospheric mechanisms of climate variability and 
change through statistical abstractions of these processes. To capture 
atmospheric dynamics, the weather generator simulates sequences of 
weather regimes (WRs), which are recurring large-scale atmospheric 
flow patterns (e.g., upper-level, quasi-stationary blocks and troughs) 
that organize high-frequency weather systems (Robertson and Ghil, 
1999; Robertson et al., 2015). They represent intermediary phenomena 
that help link slowly varying global climate circulation with weather 
experienced at the local scale. To capture thermodynamic mechanisms 
of climate change, the weather generator post-processes simulated 
precipitation and temperature data to reflect patterns of warming and 
thermodynamic scaling of precipitation rates with that warming. 

These properties of the model are represented in a hierarchical 
structure composed of three primary modules. In the first module, a non- 
homogenous Hidden Markov Model (NHMM) is used to identify and 
simulate WRs based on geopotential height data across the Pacific-North 
American sector. In the second module, 6 km gridded precipitation and 
maximum and minimum temperature across California are simulated 
through bootstrapping conditioned on the simulated WRs. Noise is 
added to resampled heavy precipitation events using an approach that 
leverages a mixture of gamma and Generalized Pareto distributions 
(gamma-GPD) fit to the non-zero precipitation at each gridded location. 
In the third module, perturbations to the simulation schemes in the first 
two modules are applied to impose thermodynamic and dynamic 
climate changes to the simulated data. The first two of these modules 
were described in detail in Part (1), while in Section 2.2 below we focus 
on the scenarios developed in the third module. Where necessary, 
mathematical details related to the creation of these climate scenarios 
are presented in Appendix A. 

2.2. Thermodynamic and dynamic climate change scenarios 

Most of the scenarios developed in this work focus on perturbations 
to climate consisting of various levels of warming and changes to the 
daily precipitation distribution. The number and range of scenarios 
across different variables were developed in collaboration with partners 
in the California Department of Water Resources, and were selected to 
reflect the range of uncertainty in different types of climate change 
while also acknowledging the desire of water resource practitioners to 
maintain a manageable number of scenarios in their planning studies. 

We use the weather generator to create five different scenarios of 
temperature change, from +1 ◦C to +5 ◦C by 1 ◦C increments (see Fig. 2; 
Table 1). Temperature change is treated simply by adding step changes 
to simulated daily maximum and minimum temperature data (which 
have already been detrended to reflect recent warming) uniformly 
across the entire spatial domain. This range of temperature increase was 
inferred from an ensemble of climate model projections selected by the 
California Department of Water Resources Climate Change Technical 
Advisory Group (CA-DWR CCTAG, 2015). Those projections, taken from 

Fig. 1. Overview of bottom-up vulnerability assessments for water systems 
under climate uncertainty. A stochastic weather generator like the model 
developed in this work can be fit to California’s historical weather and then 
used to generate a large ensemble of future climate scenarios that systemati
cally explore a range of plausible climate changes. This range can be informed 
by state-of-the-art global climate model (GCM)-based information. The climate 
scenarios can be used as forcing for models of hydrologic and water infra
structure systems to develop a clear picture of water system vulnerabilities to 
different types of climate change. 
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a subset of ten high-performing GCMs for California from the CMIP5 
archive, suggested that +5 ◦C was approximately the maximum amount 
of warming that could be expected towards the end of the 21st century 
under the RCP 8.5 emission scenario, based on a multi-model average. 

Scenarios of precipitation intensification are modeled by scaling the 
distribution of daily precipitation in a way that replicates the thermo
dynamic effects of warming temperatures on precipitation through in
creases in the moisture holding capacity of the atmosphere. In 
California, past work has shown that warming temperatures will lead to 
an increase in the most intense precipitation events (often associated 
with ARs) but a decline in the magnitude of smaller precipitation events 
(Gershunov et al., 2019). This type of change effectively stretches the 
daily precipitation distribution, making extreme events more extreme 

and suppressing the magnitude and frequency of lighter precipitation 
events (see Fig. 3 for an illustration). Similar to other studies (Pender
grass and Hartmann, 2014), we mimic this effect by imposing changes to 
the moments and quantiles of the precipitation distribution as a function 
of warming. Specifically, we select a scaling rate for the 99th percentile 
of non-zero precipitation and adjust a gamma-GPD mixture distribution 
fit to each site by month (see Part 1) to impose that selected scaling rate. 
For instance, if we assume a scenario with 2 ◦C of warming and a 7% per 
◦C increase in extreme precipitation (which would match the theoretical 
Clausius-Clapeyron rate of increase in atmospheric water holding ca
pacity with warming; Najibi and Steinschneider, 2023), then the most 
extreme precipitation events should increase by ~ 14.4% (1.072). We 
adjust the gamma-GPD models fit to all sites to require this percent 
change in the far upper tail of the distribution. If mean precipitation is 
held constant at baseline levels, this change will force smaller precipi
tation values under the gamma-GPD model to decrease in order to 
compensate for the increases in extreme events, i.e., the distribution of 
non-zero precipitation will be stretched, similar to the model-based re
sults of Gershunov et al. (2019). 

Once new model parameters of the gamma-GPD model are deter
mined for each site and month, daily simulated precipitation is adjusted 
by first determining the non-exceedance probability, then jittering the 
non-exceedance probability if the simulated value is associated with 
heavy precipitation (to enable previously unobserved precipitation ex
tremes), and finally determining a new precipitation value based on the 
adjusted gamma-GPD distribution. This procedure is repeated for each 
non-zero precipitation amount for each site simulated by the weather 
generator. The mathematical details of this approach are presented in 
Appendix A.1. 

We enforce a 7% per ◦C increase in extreme precipitation for all 
climate scenarios developed in this work (Fig. 2, Table 1), as this rate of 
extreme precipitation scaling is theoretically the best supported based 
on the rate at which the atmospheric moisture holding capacity in
creases with warming. However, as a sensitivity analysis, we also 
develop a subset of scenarios with 0% per ◦C and 14% per ◦C increase in 
extreme precipitation (only for 3 ◦C of warming), in order to assess how 

Fig. 2. Range of climate change scenarios developed under this work.  

Table 1 
List of 30 climate scenarios.  

Scenario 
Number 

Incremental 
Temperature 
Change [◦C] 

% Change Extreme 
Precipitation 
Quantile 

% Change 
Precipitation 
Mean 

1: baseline 0 0 0 
2 2 7 −25 
3 3 7 −25 
4 4 7 −25 
5 5 7 −25 
6 1 7 −12.5 
7 2 7 −12.5 
8 3 7 −12.5 
9 4 7 −12.5 
10 5 7 −12.5 
11 1 7 0 
12 2 7 0 
13 3 7 0 
14 4 7 0 
15 5 7 0 
16 1 7 12.5 
17 2 7 12.5 
18 3 7 12.5 
19 4 7 12.5 
20 5 7 12.5 
21 2 7 25 
22 3 7 25 
23 4 7 25 
24 5 7 25 
25 3 0 −12.5 
26 3 0 0 
27 3 0 12.5 
28 3 14 −12.5 
29 3 14 0 
30 3 14 12.5  

Fig. 3. Illustration of thermodynamically driven changes to the distribution of 
daily, non-zero precipitation. The historical distribution of precipitation (black 
points and red line) changes under warming such that the largest precipitation 
events (at high non-exceedance probabilities) become even larger (blue line). If 
average precipitation does not change under warming, then low and moderate 
precipitation events must scale downward to balance the increases at the upper 
end of the distribution. (For interpretation of the references to color in this 
figure legend, the reader is referred to the web version of this article.) 
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important extreme precipitation scaling is for water systems perfor
mance. Importantly, the degree to which extreme precipitation is scaled 
is directly tied to the temperature trends imposed, thus respecting the 
underlying thermodynamic mechanism that drives scaling. That is, 
precipitation scaling in the model is entirely determined after specifying 
a temperature trend and a scenario of precipitation scaling per degree 
warming. 

In addition to the thermodynamic climate changes in temperature 
and extreme precipitation described above, we also develop scenarios of 
change in mean precipitation. Part of the signal around mean precipi
tation change may be related to the overall increase in atmospheric 
moisture linked to warming (a thermodynamic signal), while other 
components of change in mean precipitation are related to shifts in at
mospheric circulation (a dynamic signal). Therefore, changes in mean 
precipitation reflect a mix of thermodynamic and dynamic climate 
changes. We consider five different scenarios of mean precipitation 
change, ranging from -25% to +25% of baseline levels by 12.5% in
crements. Similar to temperature, this range was based on a subset of 
end-of-21st-century CMIP5 projections selected by the CA DWR Climate 
Change Technical Advisory Group. We limit mean precipitation changes 
to ±12.5% for scenarios with only 1 ◦C of warming to acknowledge the 
relationship between more intense future warming and larger changes in 
average precipitation (see Fig. 2, Table 1). Altogether, there are 29 
separate scenarios of climate change developed in this work, along with 
a baseline scenario with no changes imposed, leading to a total of 30 
scenarios. 

Finally, we develop two additional scenarios of pure dynamical 
climate change, which are composed of changes to the frequency of 
different WRs (i.e., shifts in atmospheric circulation). We note that 
changes to WRs or other modes of atmospheric circulation may result as 
a direct response to a warming atmosphere (e.g., due to changes in 
geopotential heights linked to thermal expansion), but are still consid
ered a dynamic climate change if their impacts on surface weather 
manifest primarily through a change in atmospheric circulation. The 
direction of change for these types of climate change is very uncertain, 
but the risk of such change for water systems throughout the state is 
potentially very large. Hence, in this work we seek to develop a limited 
number of scenarios that reflect dynamic climate change to isolate the 
potential vulnerabilities that may be associated with these types of 
change. As a proof-of-concept, we utilize recent trends in WR fre
quencies over the historical record to determine which WRs have 
changed in frequency most significantly in the observations, and then 
enforce a scenario of dynamic climate change where these significant 
changes persist into the future. We then develop a 1000-year simulation 
of WRs and associated weather from the stochastic weather generator 
with these adjusted WR frequencies (see Appendix A.2 for the method
ology of this approach), assess the impacts of this scenario on key hy
drologic metrics of interest (e.g., frequency and magnitude of drought 
and extreme precipitation events), and compare these impacts to the 
impacts observed under the scenarios from Table 1. This comparison 
will help illustrate how the severity of impacts of dynamic climate 
change compares to that of thermodynamic climate change scenarios. 

3. Results 

In Section 3.1, we demonstrate how extremes (droughts, extreme 
precipitation events) vary across the 30 climate scenarios delimited in 
Fig. 2 and Table 1. In Section 3.2, we briefly assess how these weather 
generator scenarios compare against projections from a recent ensemble 
of GCM projections downscaled using the LOCA v.2 methodology 
(Pierce et al., 2023). In Section 3.3, we explore the impacts associated 
with two dynamic climate change scenarios in which the probabilities of 
individual WRs are changed based on recent trends. 

3.1. Thermodynamic climate scenario impacts 

To begin, we first examine the spatial distribution of impacts from a 
subset of the 30 scenarios in Fig. 2 and Table 1. Similar to Part (1), re
sults are aggregated and visualized at the scale of major river basins (i.e., 
USGS HUC-4 unit). In Figs. 4–6 below, different climate scenarios are 
selected for each figure based on their relevance for different climate 
statistics. For example, when focusing on precipitation statistics (1-day 
precipitation maxima and drought; Figs. 4–5), we fix the temperature 
change and vary the change in mean precipitation or extreme precipi
tation scaling rate to see their effect on those precipitation statistics. 
Conversely, when focusing on temperature properties (heat waves; 
Fig. 6), we fix the precipitation changes and focus instead on scenarios 
with different levels of warming and their impact on heat wave 
attributes. 

Fig. 4 focuses on the largest maximum 1-day precipitation event 
across the entire record. The far left panel in Fig. 4 shows the magnitude 
of the 1-day precipitation maximum across the baseline scenario (no 
climate change). The middle and right panels of Fig. 4 show how the 
largest 1-day precipitation event changes under different climate sce
narios. Results in the center panel are shown for scenario #13 from 
Table 1, in which there is 3 ◦C of warming, an extreme precipitation 
scaling rate of 7% per ◦C, and 0% change in mean precipitation. Here, 
the increase in the 1-day precipitation maxima is largely uniform across 
the state, around 22.5% above baseline values. This is precisely the 
scaling one would expect given that 1.073 = 1.225. Conversely, in the 
right panel of Fig. 4 there is almost no change in the 1-day precipitation 
maxima over baseline levels. Under this scenario (#27 in Table 1, with 3 
◦C of warming, no extreme precipitation scaling, and a 12.5% increase in 
mean precipitation), mean precipitation increases but extreme precipi
tation is kept at baseline levels by construction. Therefore, it is the 
smaller precipitation events under this scenario (rather than the largest) 
that are shifted upward to account for the change in the mean. 

Fig. 5 shows similar results to Fig. 4 but for the worst 5-year drought 
on record. Here, we show baseline values in the left panel and three 
climate scenarios in the three rightmost panels, including scenarios #13, 
#8, and #18 from Table 1. Under all these scenarios, temperatures 
warm by 3 ◦C and extreme precipitation scales at a rate of 7% per ◦C. The 
only difference between the scenarios is how mean precipitation 
changes (0 %, -12.5%, and +12.5% of baseline values). Two insights 
emerge from Fig. 5. First, the largest impact on the magnitude of the 
worst 5-year drought is caused by the change in mean precipitation, 
with the magnitude of change roughly following the magnitude of 
change in mean precipitation (on a percentage basis). Second, we note 
that even under the scenario with no change in mean precipitation 
(scenario #13), the worst 5-year drought does become slightly worse 
(by ~ 5%) simply due to extreme precipitation scaling. In this scenario, 
light precipitation events must become even lighter to keep mean pre
cipitation unchanged while increasing the magnitude of extreme pre
cipitation events (i.e., the daily precipitation distribution is stretched; 
see Fig. 3). During droughts, there is a very high proportion of dry days 
and light precipitation days, and so the total precipitation during these 
long drought events declines because of the downward shift in light 
precipitation events. 

Similar to Figs. 4-5 for precipitation, Fig. 6 shows the impacts of 
different climate scenarios on the spatial distribution of heat wave 
characteristics, this time focused on one HUC-4 basin (the San Joaquin) 
for illustration. The first row of Fig. 6 shows the average frequency of 
heat waves per year based on the baseline and three climate scenarios 
(#11, #12, and #13 from Table 1). These selected scenarios have a 
similar extreme precipitation scaling rate of 7% per ◦C and 0 % changes 
in mean precipitation. The only difference is how temperature (mini
mum, maximum) increases incrementally by 1, 2, and 3 ◦C. We also 
show the average and maximum heat wave event duration across these 
three scenarios in the second and third rows of Fig. 6. The results show 
that there is a consistent increase in the average frequency of heat waves 
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with warming across the scenarios. Furthermore, a more pronounced 
increase can be detected in the number of heat wave events over the 
southern portion of the basin. The average and maximum heat wave 
event duration presented in Fig. 6 shows how even 1 ◦C of warming can 
result in multi-day increases in both average and maximum heat wave 
duration at individual grid cells. The impacts are especially prominent 
on the maximum duration of heat waves, which can increase by more 
than 15 days per year for a scenario with 3 ◦C of warming. 

Figs. 7-8 show how extreme precipitation and drought events vary 
across all the climate scenarios in Fig. 2 and Table 1, focusing only on 
one HUC-4 region (the San Joaquin basin, HUC4: 1804). In Fig. 7, we 
show how the 1-day and the 7-day largest precipitation events change 
with shifts in temperature and mean precipitation, all for an extreme 
precipitation scaling rate of 7% per ◦C. Similar to Fig. 4, we find that the 
1-day precipitation maxima are largely insensitive to changes in mean 
precipitation, and instead only respond to changes in temperature that 
drive the absolute magnitude of extreme precipitation scaling. This is 
because the 1-day maxima are entirely determined by the upper tail of 
the daily distribution, which is controlled solely by the extreme pre
cipitation scaling rate (see Fig. 3). While temperature changes and 
extreme precipitation scaling also dominate the rate of increase in 7-day 
maxima, changes in mean precipitation also have an effect, largely based 
on how they influence the smaller precipitation values during the 7-day 

events. For the most intense scenario of change (5 ◦C of warming and a 
25% increase in mean precipitation), the 7-day maxima increase by 
almost 38% over baseline values. 

We focus on drought-of-record events of different durations in Fig. 8. 
Here, the results show that changes in mean precipitation dominate the 
change in drought magnitude for all durations, and the relationship is 
close to 1-to-1 (i.e., a similar percent change in mean precipitation is 
also seen for the change in drought magnitude). Interestingly, there is 
also a pronounced temperature effect on the magnitude for 1-year 
droughts, but this effect weakens for longer durations. This is caused 
by the same phenomenon described above, where for some change in 
mean precipitation, extreme precipitation scaling requires that lighter 
precipitation events be scaled downward (i.e., become even lighter) to 
compensate for increases in the extremes (also see Fig. 3). For 1-year 
droughts, this effect is more prominent, likely because 1-year droughts 
can occur with few or no heavy precipitation events, and so the down
ward scaling is experienced across most or all days in the 1-year drought. 
However, as drought durations grow longer, this temperature effect is 
dampened as more heavy and extreme precipitation events that have 
scaled upward are included in the long-duration drought periods. 

Fig. 4. (left) The magnitude of the largest 1-day maximum precipitation event at the HUC-4 scale in the baseline scenario (no climate change). (middle) The percent 
change in the largest 1-day maximum precipitation event from climate scenario #13 (see Table 1) with 3 ◦C of warming, an extreme precipitation scaling rate of 7 % 
per ◦C, and 0 % change in mean precipitation. (right) Same as middle panel, but for climate scenario #27 (see Table 1) with 3 ◦C of warming, an extreme precipitation 
scaling rate of 0 % per ◦C, and a 12.5 % increase in mean precipitation. Note that the color scale is identical for the middle and right panels. 

Fig. 5. (far-left) The magnitude of the worst 5-year drought on record at the HUC-4 scale in the baseline scenario (no climate change). (middle-left to far-right) The 
percent change in the worst 5-year drought for three climate scenarios from Table 1, including scenarios #13, #8, and #18. In all cases, temperatures warm by 3 ◦C 
and extreme precipitation scales at a rate of 7 % per ◦C. However, scenarios #13, #8, and #18 differ by their change in mean precipitation (0 %, −12.5 %, and +12.5 
% of baseline values, respectively). Note that the color scale is identical for the three rightmost panels. 
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Fig. 6. (far-left column) At-site average frequency of heat wave events per year [number of events per year] (first row), as well as at-site mean (second row) and 
maximum (third row) of heat wave event duration per year [days of event per year] in the baseline scenario (no climate change). (middle-left to far-right columns) The 
change in the average frequency of heat wave events (number of additional events per year) and in the average and maximum heat wave event duration (longer event 
duration per year) are shown for three climate scenarios from Table 1, including scenarios #11, #12, and #13 with 1, 2, and 3 ◦C of warming, respectively, an 
extreme precipitation scaling rate of 7 % per ◦C, and 0 % change in mean precipitation. Note that the color scale is identical for the three rightmost panels in each 
row. All results are shown for the San Joaquin basin (HUC4: 1804). 

Fig. 7. Percent change from baseline for the largest (left) 1-day and (right) 7-day precipitation maximum. Changes are shown for five different scenarios of tem
perature change and five different scenarios of precipitation change, all with an extreme precipitation scaling rate of 7% per ◦C and for the San Joaquin basin 
(HUC4: 1804). 
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3.2. Comparison against LOCA v.2 projections 

In this section we provide a comparison between some of the ther
modynamic climate scenarios generated by the weather generator and 
the ensemble of future projections in the recently released LOCA v.2 
archive derived from CMIP6 (Pierce et al., 2023). We conduct this 
comparison in the Upper Tuolumne River basin, which is located within 
the San Joaquin HUC-4 region. LOCA v.2 is bias corrected and down
scaled using the same historical observations as are used in the weather 
generator (Pierce et al., 2021), making a comparison between the two 
products more comparable. 

To facilitate this comparison, we first took each climate model 
simulation from LOCA v.2 and identified the 30-year period in the future 
that exhibited an average of 2 ◦C of warming over the baseline period of 
1981–2010 in the simulation. Using those 30 years for each simulation, 
we then concatenated these data across all model simulations, and 
compared them against the 1000-year stochastic weather generator 
simulation associated with climate scenario #12 in Table 1 (2 ◦C 

warming, 0% change in mean precipitation, and 7% per  ◦C scaling of 
extreme precipitation). 

Fig. 9 focuses on the worst 1-, 2-, 3-, 4-, and 5-year drought events in 
the observed record, the LOCA v.2 data associated with 2 ◦C of warming, 
and the 1000-year weather generator simulation associated with climate 
scenario #12 from Table 1. More intense droughts than those histori
cally observed can be seen in the 2 ◦C warming scenario for all durations 
in both the weather generator simulation and LOCA v.2. Drought 
intensification is linked to both natural variability under a longer record 
(1000 years for the weather generator; 3750 years for LOCA v.2), but 
also the suppression of low and moderate precipitation events under 
thermodynamic climate change during years that were already dry, as 
described earlier. For LOCA v.2, declines in the 2-year drought are more 
severe under 2 ◦C warming compared to the other durations, but this 
may be due to natural variability in the ensemble. Overall, the differ
ences in drought intensity between the weather generator under a future 
2 ◦C warming and LOCA v.2 projections around that same amount of 
warming are relatively small. 

Fig. 8. Percent change from baseline for the worst (left) 1-year drought, (middle) 2-year drought, and (right) 5-year drought. Changes are shown for five different 
scenarios of temperature change and five different scenarios of precipitation change, all with an extreme precipitation scaling rate of 7% per ◦C and for the San 
Joaquin basin (HUC4: 1804). 

Fig. 9. The worst 1, 2, 3, 4, and 5-year drought events in the observed record (red), across the ensemble of future LOCA v.2 projections centered around 2 ◦C 
warming (blue), and in the 1000-year weather generator simulation for climate scenario #12 (2 ◦C warming, 0% change in mean precipitation, and 7% per  ◦C scaling 
of extreme precipitation) (black). All results are shown for the Upper Tuolumne River basin. (For interpretation of the references to color in this figure legend, the 
reader is referred to the web version of this article.) 
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Another way to compare the weather generator simulations to LOCA 
v.2 is to quantify the relative contribution of the upper and lower 
quantiles of daily precipitation to long-term total precipitation. As 
shown in Dettinger (2016), historically, the wettest 5% of days 
contribute disproportionately to total annual precipitation, yielding a 
precipitation regime that is highly dependent on a few large storms at 
annual and interannual timescales. Thermodynamic precipitation 
scaling acts to amplify this regime, concentrating greater and greater 
portions of total precipitation into the largest storm events (and less and 
less into smaller to moderate-sized storms). 

We explore this property for both the 1000-year weather generator 
simulation and the LOCA v.2 ensemble following methods applied in 
Dettinger (2016). First, all non-zero precipitation days (>0.01 mm) are 
extracted, averaged at the watershed basin scale, and split into the 
wettest 5% of precipitation days and all other precipitation days. This is 
done for the 50-year historical period 1950–1999 in each LOCA v.2 
model-SSP-variant. For the weather generator, we break the 1000-year 
simulations into 20 non-overlapping 50-year blocks and split precipi
tation days in each block using the same approach. For the LOCA v.2 
ensemble data, we extract 50-year periods from the projection period 
where the average temperature change (relative to 1981–2010) has 
reached incremental warming levels of 1 ◦C, 2 ◦C, 3 ◦C, and 4 ◦C, and 
split those daily precipitation accordingly. Finally, for each 50-year 
precipitation block of the weather generator and LOCA v.2 ensemble, 
the change in precipitation of the wettest 5% of days and all other days is 
divided by the total historical precipitation, thus yielding the contri
bution of each quantile to the total precipitation change in a 50-year 
block. 

Fig. 10a shows the results of this analysis for weather generator 
scenario #12 compared to the current condition scenario #1 (i.e., no 
perturbation). The effect of thermodynamic scaling is visible and mostly 
equivalent for all 50-year blocks: the contribution of the wettest 5% of 
days to total precipitation is ≈5% higher (and all other days ≈5% lower) 
under 2 ◦C warming. For example, in the 50-year block which has ≈13% 
more total precipitation compared to historical, the wettest 5% of days 
contribute 9% (14%) without (with) thermodynamic scaling, while all 
other days contribute 4% (-1%) without (with) thermodynamic scaling. 
In other words, the scaling of extreme precipitation has made it so that 
overall wetter periods have become wetter due only to large storm 
events, while overall drier periods have become drier due mostly to 
“losing” precipitation from small to moderate sized storms. 

Fig. 10b shows the results of this analysis for weather generator 
scenario #12 compared to that of the LOCA v.2 ensemble at the average 
warming of 2 ◦C. The LOCA v.2 ensemble does not show the same level 
of extreme precipitation scaling as used in the weather generator, thus 
changes in contributions from the wettest 5% and all other days in 
overall wetter and drier 50-year periods are not as severe as those 
generated in scenario #12. Similarly, Fig. 10c compares the weather 
generator and LOCA v.2 for each incremental warming level between 
1–4 ◦C, showing that the rate of extreme precipitation scaling is not as 
high in LOCA v.2 as is assumed in the weather generator scenarios, 
which reaches approximately twice that of LOCA v.2 at the 4 ◦C 
warming level. 

These results suggest two important takeaways: 1) thermodynamic 
scaling as applied in the weather generator produces an effect on overall 
wetter and drier precipitation regimes where more (less) of total pre
cipitation is derived from large (small to moderate) storms; 2) the rate of 
thermodynamic scaling (7% per ◦C) might be considered a conservative 
assumption relative to what is shown in the LOCA v.2 ensemble. The 
latter may be attributable to both biases in the LOCA v.2 statistical 
downscaling product and the presence of reduced rates of extreme 
precipitation scaling due to underlying and counteracting effects of at
mospheric thermodynamics and dynamics (Gu et al., 2023). 

3.3. Exploration of dynamic climate changes 

The results in Sections 3.1 and 3.2 are based on climate scenarios that 
were largely developed from a thermodynamic perspective, i.e., changes 
in extreme precipitation that are tied to changes in the moisture holding 
capacity of the atmosphere under warming. The changes in mean pre
cipitation could be considered partially thermodynamically driven, 
although not entirely. In this section, we consider climate changes that 
are entirely dynamic in nature, in that they are driven only by changes in 
atmospheric circulation. 

As discussed in Section 2.2, we select two dynamic climate scenarios 
based on recent trends in WR frequencies over the 72-year historical 
record. Fig. 11 shows these trends for the 10 WRs considered in this 
work. A red asterisk is used to highlight those WRs with significant 
trends at the 1% significance level. WRs 3, 8, 9, and 10 all exhibit sig
nificant trends at this level. Recall that WRs 1–7 are cold season WRs, 
while WRs 8–10 occur in the warm season. As the vast majority of 
precipitation occurs in the cold season, the increased frequency of WR3 

Fig. 10. Contribution of daily quantile precipitation changes (normalized by historical precipitation) to total precipitation changes in LOCA v.2 and the stochastic 
weather generator (SWG), where (a) compares the 20, 50-year blocks of the 1000-year weather generator simulation under current climate (scenario #1) to the 
simulation from scenario #12 (2 ◦C warming, 0 % change in mean precipitation, and 7 % per ◦C scaling of extreme precipitation); (b) compares the scenario #12 
weather generator simulation to the ensemble of LOCA v.2 projections centered around 2 ◦C warming; and (c) compares the trends of weather generator simulations 
(scenario #11, #12, #13, and #14) and the ensemble of LOCA v.2 projections centered around 1 ◦C, 2 ◦C, 3 ◦C, and 4 ◦C warming. All results are shown for the Upper 
Tuolumne River basin. 
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has the largest implications for recent changes in California weather. 
WR3 is characterized by a ridge over western North America and is 
associated with dry conditions across California. The recent increases in 
WR3 are consistent with the 2-decade long drought conditions experi
enced over California since 2000. While we do not attempt explain the 
causes of the WR trends observed here, we do note that recent attribu
tion studies have highlighted possible explanations for such trends, 
including anthropogenic warming (Zhang et al., 2022) and rising aero
sol emissions across southeast Asia (Kuo et al., 2023). 

Based on the trends in Fig. 11, we consider two dynamic climate 
change scenarios to explore. In the first scenario (Dynamic Scenario #1), 
we simulate from the stochastic weather generator after adjusting the 
long-term mean frequency of WR3 upwards from its 1948–2019 mean 
(~7.7% of days) to its end of record average (~10% of days), and adjust 
the frequency of all other WRs uniformly downward to accommodate 
this change. This represents an approximate 30% increase in the fre
quency of days classified as WR3 (see Appendix A.2 for methods on how 
this change is implemented in the simulation process). Given the asso
ciation between WR3 and dry conditions in California, we anticipate this 
climate change scenario will lead to worsening droughts and possibly a 
reduction in extreme precipitation events, although the magnitude of 
the effect is unclear a priori. We will juxtapose the effects of this climate 
change scenario to one scenario from those listed in Table 1 (scenario #8 
with 3 ◦C of warming, extreme precipitation scaling of 7% per ◦C, a 
-12.5% change in mean precipitation) as a point of comparison. We will 
also combine these two scenarios to see their joint impact, i.e., a scenario 
with 30% more frequent WR3 days along with 3 ◦C of warming, extreme 
precipitation scaling of 7% per ◦C, and a -12.5% change in mean 
precipitation. 

In the second dynamic climate change scenario (Dynamic Scenario 
#2), we shift the frequency of all WRs (not just WR3) to their average 
frequency at the end of the period of record, based on regression esti
mates for the last year on record from a linear regression against time (i. 
e., the value estimated by the blue line in Fig. 11 for the year 2019). 
Therefore, recent trends in any WR (significant or not) will be reflected 
in the weather simulated by the stochastic weather generator. This dy
namic climate change scenario implicitly assumes that the atmospheric 
circulation experienced more recently reflects a “new normal” that will 
persist over the next several decades. Importantly, we emphasize here 

that these dynamic climate change scenarios should not be interpreted 
as confident projections of what will happen to atmospheric circulation 
under climate change, but rather as “what if” scenarios that allow us to 
explore the potential impact of these types of change to decision- 
relevant climate statistics over areas in California. The results of this 
exploration will help determine how important such dynamic climate 
changes could be to water systems planning and management 
throughout the state, which would provide insight into the degree of 
effort that should be expended in resolving uncertainties around these 
types of future climate change. 

Fig. 12 shows the impact of Dynamic Scenario #1 (a 30% increase in 
the frequency of WR3) on drought, specifically the magnitude of the 
worst 5th percentile 2-year, 3-year, and 5-year droughts on record (i.e., 
the 5th percentile of all 2-year, 3-year, and 5-year water-year precipi
tation totals across the 1000-year record). Four scenarios are shown, 
including a baseline (no climate change), Dynamic Scenario #1 (termed 
‘dynamic change’), the results from Scenario #8 in Table 1 (termed 
‘thermodynamic change’), and the combined scenario where the 
changes in Scenario #8 in Table 1 are imposed on the weather generator 
output forced with a 30% increase in WR3 frequency (termed ‘both’). 
The results show that for shorter duration droughts (2-year, 3-year), the 
dynamic climate change scenario has more intense droughts compared 
to the baseline, but the impact is not as intense as that of the thermo
dynamic scenario. However, for long-duration droughts (5-year), the 
impact of the dynamic climate change scenario is very similar compared 
to that of the thermodynamic scenario. This suggests that for intense 
long-duration droughts, the importance of a single WR (and the synoptic 
scale atmospheric flow pattern it represents) becomes increasingly 
important, likely because the increased frequency of that pattern has 
more time to manifest in the long-term droughts. When both scenarios 
are combined, droughts become even more intense; for the 3-year 
drought, the precipitation total of the drought under the baseline de
clines by 22% under the combined scenario. 

Fig. 13 shows similar results to Fig. 12, but for the 20-year and 100- 
year extreme 1-day precipitation event estimated from a GEV distribu
tion fit to annual maxima. Here, we see that an increase in frequency in 
WR3 has a small negative effect on both the 20-year and 100-year storm, 
as compared to the baseline. However, the magnitude of this effect is 
small, especially when compared to the increase in these design events 

Fig. 11. Historical trends in each of the 10 WRs. The blue line indicates a linear regression of WR frequency against time. Significant trends at the 1% significance 
level are denoted by a red asterisk (*). (For interpretation of the references to color in this figure legend, the reader is referred to the web version of this article.) 
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under the thermodynamic scenario with extreme precipitation scaling 
with warming. The combined effect of these two scenarios appears ad
ditive, with design events that are slightly smaller than the thermody
namic scenario but still much larger than the baseline. 

Figs. 14-15 show the same results as Figs. 12-13, but for Dynamic 
Scenario #2 (i.e., the most recent frequencies for all WRs based on 
regression estimates against time). Similar to Dynamic Scenario #1, the 
results in Fig. 14 show that droughts generally become more intense 
under Dynamic Scenario #2. However, the effect is not as apparent as 
compared to that seen in Fig. 12, especially for the shorter duration 
droughts (2-year, 3-year). Conversely, the results in Fig. 15 show that 

the propagation of trends in all WRs has a large negative effect on both 
the 20-year and 100-year storm, as compared to the baseline. This effect 
is much stronger than that seen for Dynamic Scenario #1 (Fig. 13). 
Therefore, the results for Dynamic Scenario #2 suggest that by propa
gating recent trends in all WRs into the weather generator, the resulting 
simulations are slightly drier than the baseline on average, but re
ductions in extreme events are significant. The reasons for these dif
ferences with Dynamic Scenario #1 are not immediately clear, but they 
do suggest that shifting frequencies in multiple WRs at once can result in 
complex dynamics and emergent climate changes in decision-relevant 
metrics that are difficult to anticipate a priori. 

Fig. 12. The total precipitation during the worst 5th percentile 2-year, 3-year, and 5-year drought from the baseline scenario (no climate change), Dynamic Scenario 
#1 (‘dynamic change’), Scenario #8 in Table 1 (‘thermodynamic change’), and the combined scenario where the changes in Scenario #8 in Table 1 are imposed on 
Dynamic Scenario #1 (‘both’), for the San Joaquin basin (HUC4: 1804). 

Fig. 13. The magnitude of the 20-year and 100-year 1-day extreme precipitation event from the baseline scenario (no climate change), Dynamic Scenario #1 
(‘dynamic change’), Scenario #8 in Table 1 (‘thermodynamic change’), and the combined scenario where the changes in Scenario #8 in Table 1 are imposed on 
Dynamic Scenario #1 (‘both’), for the San Joaquin basin (HUC4: 1804). 
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4. Conclusions, final remarks, and guidance for use 

This work presented the second of a two-part series of studies 
demonstrating the application of a stochastic weather generator for the 
development of gridded climate change scenarios across the entire state 
of California. The model was used to create a 30-member ensemble of 
1000-year climate scenarios that primarily reflect thermodynamic 
climate changes, including temperature increases and the scaling of 
extreme precipitation with temperature, as well as additional changes in 
mean precipitation. A limited set of proof-of-concept dynamic climate 
change scenarios were also developed with the stochastic weather 
generator that represent shifts in the frequency of major atmosphere 

circulation patterns. By developing thermodynamic and dynamic 
climate change scenarios separately, water managers are able to use the 
generated data from this work to systematically explore the sensitivity of 
their systems to various types of climate change. The results of such 
vulnerability analyses would then empower water managers to work 
more closely with the climate science community to understand the 
likelihood of climate futures that threaten the reliability of water ser
vices, thereby providing more direct information to support adaptation 
decision-making. 

One benefit of the weather generator is that it can efficiently 
generate long records of weather data (1000’s of years) that are useful 
for uncovering climate vulnerabilities in water systems. However, there 

Fig. 14. The total precipitation during the worst 5th percentile 2-year, 3-year, and 5-year drought from the baseline scenario (no climate change), Dynamic Scenario 
#2 (‘dynamic change’), Scenario #8 in Table 1 (‘thermodynamic change’), and the combined scenario where the changes in Scenario #8 in Table 1 are imposed on 
Dynamic Scenario #2 (‘both’), for the San Joaquin basin (HUC4: 1804). 

Fig. 15. The magnitude of the 20-year and 100-year 1-day extreme precipitation event from the baseline scenario (no climate change), Dynamic Scenario #2 
(‘dynamic change’), Scenario #8 in Table 1 (‘thermodynamic change’), and the combined scenario where the changes in Scenario #8 in Table 1 are imposed on 
Dynamic Scenario #2 (‘both’), for the San Joaquin basin (HUC4: 1804). 
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are currently limitations in the way the model can be used to generate 
scenarios of future climate. For example, when imposing thermody
namic climate changes in which the distribution of daily precipitation is 
stretched, the weather generator scales up extreme precipitation events 
and scales down light to moderate events. However, it does not change 
the frequency of precipitation occurrence (i.e., more zero precipitation 
days). Future adjustments to the model are needed to be able to impose 
this change directly in scenario development. One possibility for this 
would be the introduction of an autologistic regression model that can 
simulate the occurrence of spatially correlated zero and non-zero pre
cipitation. The parameters of this model could then be perturbed 
directly to create scenarios of more frequent zero precipitation days. 

A broader limitation of the weather generator is that all scenarios 
generated with the model must be explicitly specified by the analyst. 
That is, the weather generator will – by design – only create scenarios of 
future climate that it is directed to create. This is in direct contrast to 
GCMs, where the governing physics of the Earth system and specified 
boundary conditions (i.e., emission scenarios) lead to plausible sce
narios that emerge through internal, interacting processes within the 
model. This difference is critical in highlighting how the weather 
generator should (and should not) be used to support climate change 
adaptation planning. 

In the context of climate change adaptation planning for water sys
tems, scenarios of future climate created by the weather generator 
should be viewed as complementary to, rather than in competition with, 
other downscaled climate projections from GCMs. The weather gener
ator cannot replace GCMs, which are the primary tool for uncovering 
robust signals of climate change. Rather, the weather generator is 
designed to provide flexibility in scenario development, so that water 
resource planners and engineers can first openly communicate with the 
climate science community about which signals within GCM projections 
are most robust or worthy of focused attention. After those signals have 
been identified, they can be embedded into climate traces from the 
weather generator in a way that is tailored to support planning efforts. 
For example, water resources planning often requires many models in 
sequence (e.g., hydrologic, reservoir operations, hydraulic, and 
groundwater models), many of which can be computationally 
demanding. The high computational expense often precludes using all 
data from an entire ensemble of downscaled GCM projections. However, 
with the weather generator an analyst can quickly create 1000’s of years 
of weather meant to represent a pre-specified set of climate change 
signals, and then can select a subset of that trace of an arbitrary length 
(e.g., 100 years) that i) is limited in length and so computationally 
feasible for complex modelling chains; and ii) contains both robust 
climate change signals and also plausible but challenging extreme 
events useful for stress testing water system performance. This func
tionality can support robust climate change adaptation planning in a 
way that leverages state-of-the-science climate understanding while also 
accommodating the constraints of typical water resources planning 
studies. 

We envision the process above to be iterative, in which new 
knowledge derived from climate change projections or emerging ob
servations can quickly be incorporated into new scenarios with the 
weather generator. For example, in Fig. 10, results from the LOCA v.2 
ensemble suggest that a smaller scaling rate of extreme precipitation 
with warming (i.e., less than 7% per ◦C) may be warranted. This is also 
supported by a similar result based on a very recent observational study 
of extremes in California (Najibi and Steinschneider, 2023). The climate 
scenarios developed in this work mostly assume a more conservative 7% 
per ◦C in extreme precipitation scaling. However, it is straightforward to 
generate new sets of climate scenarios with a lower scaling rate, based 
on the knowledge revealed through the analysis of LOCA v.2 and 
observational records. These new scenarios can be generated quickly (in 
a matter of hours to days, depending on the spatial scale of the analysis). 
In this way, the weather generator can be used as a tool to shorten the 
period between climate knowledge generation and data production to 

support planning. One could take a similar approach using other 
downscaled climate projection products besides LOCA v.2 (e.g., MACA, 
STAR-ESDM; Abatzoglou and Brown, 2012; Hayhoe et al., 2023), which 
would enable the creation of climate scenario ensembles with a single 
approach (the weather generator) that contain differences in key climate 
change signals from various downscaling methods. If paired with 
rainfall-runoff and water systems models, this approach would help 
assess whether such differences in climate signal matter from the 
perspective of water resources impacts. 

For the data developed and presented in this work, stakeholders can 
utilize the 1000-year weather generator trace under 30 different climate 
scenarios to infer the joint impact of both climate change and natural 
climate variability on their systems. We recommend that stakeholders 
use these different data products in stages to help develop robust ad
aptations of water resources infrastructure under climate change. For 
example, initial adaptation strategies (e.g., new reservoir operational 
policies; new infrastructure of managed aquifer recharge) could be 
developed using the baseline record to ensure these strategies are able to 
meet performance requirements under past and recent extreme events. 
Then, these strategies could be re-evaluated using the 30 climate change 
scenarios for the 1000-year weather generator simulation. These eval
uations would provide information on how robust a given adaptation 
strategy is to climate change, natural climate variability, and a combi
nation of the two. 

Such information could be used in different ways to alter the initial 
adaptation strategy. For instance, if a strategy appears vulnerable to the 
1000-year baseline weather generator simulation (i.e., natural climate 
variability) or likely future climate scenarios (e.g., a low degree of future 
warming projected in most GCMs over the next few decades), this might 
suggest an immediate need for a more robust strategy. Alternatively, in 
cases where an adaptation strategy is only vulnerable to the most 
extreme climate change scenarios or to certain climate change scenarios 
coupled with the longer (and more extreme) weather generator simu
lation, the current adaptation strategy may be deemed adequate if 
coupled with plans for continued climate monitoring and retrofits/ad
justments that could be implemented later if needed. 
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Appendix A. Mathematical formulation of the stochastic weather generator 

A.1. Thermodynamic climate changes to extreme precipitation using the Gamma-GPD extreme mixture model 

We use quantile mapping to shift and stretch the distribution of daily, non-zero precipitation in a way that replicates the effects of warming 
temperatures on precipitation through increases in the moisture holding capacity of the atmosphere. In this approach, we must first specify a target 
value for daily average precipitation and a target scaling for extreme precipitation events under a particular future scenario. For instance, let μ* =

(1 + ω)μ be the desired mean for a future climate scenario such that μ* is ω ×100% greater than the historic mean μ, and let (1 + η)
ΔT be the target 

scaling rate for extreme precipitation events, where η × 100 % is the percentage increase in extremes per ◦C of warming. In this work we assume the 
same mean change for every calendar month, although a different change for each month is also permissible. 

In the weather generator, we resample daily precipitation via a block bootstrap to develop an initial simulation and then adjust heavy precipitation 
values with a copula-based jittering algorithm and a gamma-GPD extreme mixture model to develop previously unexperienced extreme events. Here, 
we expand that jittering algorithm and adjust the parameters of the gamma-GPD extreme mixture model to impose the changes to mean and extreme 
precipitation specified above. 

This procedure follows two main steps. First, for all precipitation values that are designed as heavy events (i.e., precipitation ps,t at site s and time t 
is greater than the site-specific threshold ζs), we assume that these values will scale at the rate (1 + η)

ΔT . Therefore, these heavy precipitation values 
will first be jittered and then multiplied by (1 + η)

ΔT. 
Second, all other non-heavy precipitation values must be adjusted so that 1) the entire series of both non-heavy and heavy precipitation have a new 

mean μ*; and 2) non-heavy precipitation values that approach the threshold ζs are also scaled upward so that they approach an asymptotic scaling of 
(1 + η)

ΔT. To do this, we infer new parameters for the gamma component of the gamma-GPD extreme mixture model and then impose quantile 
mapping on resampled, non-heavy precipitation through that gamma component. 

Let αs,m, βs,m be the parameters of a gamma distribution fit to non-zero, non-heavy precipitation at site s in calendar month m, let σs, ξs be the 
parameters of a GPD distribution fit to heavy precipitation values at site s greater than the threshold ζs, and let πs,m be the probability of precipitation 
exceeding the threshold ζs (which can vary by month). The mean of the GPD distribution is given by μGPD = ζs + σs

1−ξs
, which becomes 

μGPD* = (1 + η)
ΔT

(

ζs + σs
1−ξs

)

after the extreme event scaling is applied in step 1 to all heavy precipitation events. Therefore, if the ultimate goal is to 

develop daily non-zero precipitation with a new mean of μ*, then the mean of a new gamma distribution μgamma* needs to take into consideration the 
new mean of the heavy precipitation under the scaled GPD. Thus, we derive a scaling factor (1 +δ) for the mean of the gamma distribution (μgamma) fit 
to the original non-heavy precipitation data as follows: 

(1 + δ) =
(1 + ω)

(
1 − πs,m

)
μgamma −

[
(1 + η)

ΔT
− (1 + ω)

]
πs,mμGPD*

(
1 − πs,m

)
μgamma

(A1.1)  

μgamma* = (1 + δ)μgamma (A1.2) 

Here, δ × 100% represents a required percentage change in the gamma distribution’s mean so that, after accounting for the new mean of the heavy 
precipitation under the scaled GPD (μGPD* ), the new mean of all non-zero precipitation (μ*) will be ω × 100% of the original mean μ. 

We then identify new parameters α*, β* for the gamma distribution by optimizing a multiplicative factor ρ as follows: 

min
ρ

(
F−1

gamma(q|α*, β*)

F−1
gamma(q|α, β)

− (1 + η)
ΔT

)2

(A1.3) 

such that 

α* = α(1 + δ)ρ  

β* = βρ  

Here, μgamma* = α*

β* =
α(1+δ)ρ

βρ = (1 +δ)μgamma, guarantying the correct change to the mean of the gamma distribution. The optimization then selects ρ and 

subsequently α*, β* in order to minimize the squared difference between the target change in extreme precipitation 
(

(1 + η)
ΔT

)
and the ratio of 

quantile functions of the new and old gamma distributions for some quantile q. We set q equal to some very large quantile (e.g., 0.9999999) so that the 
optimization tries to find new gamma parameters α*, β* that force the tail of the gamma distribution (i.e., the very largest non-heavy precipitation 
events) to scale at the same rate as the heavy precipitation events. 

Once the new gamma parameters are determined for each site and month, daily simulated non-heavy precipitation p̃s,t from the bootstrap is 

adjusted by first determining the non-exceedance probability ̃us,t gamma = Fgamma

(

p̃s,t |α, β

)

, and then replacing the resampled precipitation value with  

a new value derived from the adjusted gamma distribution: 
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F−1
gamma

(

ũs,t gamma |α*, β*
)

. This procedure is repeated for each nonzero, non-heavy precipitation amount for each site synthesized by the weather 

generator. 
A.2. Non-parametric simulation of weather regimes for dynamic climate change 

Following the approach present in Part (1) related to non-parametric simulation of WRs for baseline weather, the probabilities pn can be then 
adjusted to alter the frequencies of each of the K WRs in the final sequence of WR simulation, enabling the generation of dynamic climate change 
scenarios (i.e., scenarios in which the frequencies of different atmospheric flow patterns change compared to their historical frequencies). This is 
achieved using a linear program. The goal of this model is to identify new sampling probabilities pn that, when used in the nonparametric simulation 
approach above, create a sequence of WRs with long-term average frequencies that approach some vector of target frequencies θ* =

{
θ*

1, ⋯, θ*
K

}
which 

define a scenario of dynamic climate change. 
Let θi,n be the average frequency of occurrence (expressed as a probability) of WR i occurring in segment n. This value can be calculated simply by 

adding up the historical number of daily WR i occurrences in segment n and dividing it by the total number of days in the segment. We develop a series 
of K equations (for the K WRs) relating the WR frequencies in each segment to the target frequencies θ* based on the sampling probabilities of each 
segment, as follows: 

p1θ1,1 + ⋯ + pnθ1,n + ⋯ + pND θ1,ND − π+
1 + π−

1 = θ*
1

⋮
p1θK,1 + ⋯ + pnθK,n + ⋯ + pND θK,ND − π+

K + π−
K = θ*

K

(A2.1) 

Here, π+
i and π−

i are slack variables for the ith WR, which allow the weighted average frequency across the ND segments to deviate from the target 
frequency θ*

i . We also require that the sampling probabilities across segments sum to unity: 

p1 + ⋯ + pn + ⋯ + pND = 1 (A2.2) 

We seek to minimize the slack variables π+
i , π−

i for i = 1,…,K in the objective function in order to force the solution to find sampling probabilities 
{
p1, ⋯, pND

}
that help achieve the target WR frequencies θ*: 

J1 =
∑K

i=1
Cπ

(
π+

i + π−
i

)
(A2.3) 

where J1 is the first component of the objective function to be minimized, and Cπ is a cost coefficient. If the model is defined only by the constraints 
in Eqs. (A2.1)-(A2.2) and the objective function in Eq. (A2.3), there can be a tendency for the solution to force the sampling probabilities for many 
segments towards zero, and applying non-zero probability to only a handful of segments. This is undesirable, because we do not want to repeat only a 
few D-year segments of daily WRs in our final simulation. Therefore, we further adjust the model to incentivize equal sampling probabilities across 
segments (i.e., minimize the deviation of pn from 1

ND
) as much as is possible while still achieving long-term WR frequencies that approach the target 

values θ*. To do this, we introduce a series of additional constraints on the sampling probabilities themselves: 

pn − γ+
n + γ−

n =
1

ND
(A2.4) 

Here, γ+
i and γ−

i are slack variables for the nth sampling probability that quantify its deviation from a uniform probability 1
ND

. Each slack variable is 
further partitioned into two components that can be minimized in the objective function, allowing for a piecewise linear cost function on these 
deviations: 

γ+
n = γ+

n,1 + γ+
n,2 γ−

n = γ−
n,1 + γ−

n,2 (A2.5) 

And: 

γ+
n,1 ≤ τγfor all n ∈ {1, ⋯, ND}

γ−
n,1 ≤ τγ (A2.6) 

With: 

J2 =
∑ND

n=1

(
Cγ1 γ+

n,1 + Cγ1 γ−
n,1 + Cγ2 γ+

n,2 + Cγ2 γ−

n,2

)
(A2.7) 

Here, J2 is the second component of the objective function to be minimized, such that the final objective function is J = J1 + J2. τγ is a user-selected 
threshold, and Cγ1 and Cγ2 are cost coefficients such that Cγ2 ≫Cγ1 ≫Cπ . This formulation will seek solutions that drive the sampling probabilities pn 

towards a uniform probability 1
ND

, and will penalize small deviations from 1
ND 

(i.e., deviations smaller than τγ) less than large deviations. Both Cγ2 and Cγ1 

are significantly greater than Cπ , which will force the model to prioritize keeping the sampling probabilities close to 1
ND 

over adjusting the sampling 
probabilities to achieve the target WR frequencies θ*. To force the model to achieve WR frequencies that are close to the target, we also constrain the 
slack variables π+

i and π+
i with a user-defined threshold (τπ) to ensure that the weighted average frequency across the ND segments is within some small 

distance of the target for all WRs, as below: 

for all i ∈ {1, ⋯, K},

π+
i ≤ τπ

π−
i ≤ τπ

(A2.8) 

The value of τπ can be set small at first (e.g., 0.0001) and iteratively adjusted upward if the model is initially infeasible. τπ can be further adjusted 
upward to strike a balance between achieving the target WR frequencies and retaining sampling probabilities for each segment that are close to a 
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uniform probability. This balance is ultimately subjective and left to the analyst to decide. We recommend that this initial calibration step can be taken 
with τγ = 0 (i.e., no piecewise linear cost). Then, the value of τγ can be fine-tuned to better balance deviations of sampling probabilities across 
segments. Our experience suggests that values for τγ between 0 and 0.4 provide adequate results. 
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