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HIGHLIGHTS

o A weather regime-based stochastic weather generator is utilized to create thermodynamic and dynamic climate change scenarios.
e The ensemble comprises 32, 1000-yr climate scenarios for changes in temperature, precipitation, and atmospheric circulation.
e The scenarios are intended to support bottom-up climate vulnerability assessments of water systems across California.

ARTICLE INFO ABSTRACT
Keywords: This study is the second of a two-part series presenting a novel weather regime-based stochastic weather
Climate change generator to support bottom-up climate vulnerability assessments of water systems in California. In Part 2 of this

Thermodynamic change
Dynamic change
Decision-making

series, we present how the model is used to develop an ensemble of climate change scenarios based on both
thermodynamic and dynamic signals of climate change. The ensemble includes a suite of 30 climate change
Bottom-up scenarios, each consisting of 1000 years of simulated daily climate data (precipitation, maximum temperature,
Water resources minimum temperature) at a 6 km resolution across the entire state of California. The 30 scenarios represent a
California range of plausible climate changes to temperature, average precipitation, and precipitation extremes that are
reflective of thermodynamic responses of the atmosphere to warming. An additional two scenarios are also
created that represent changes in the frequency of weather regimes (e.g., dynamic climate change). Results from
these scenarios reveal that when the effects of anthropogenic climate change are combined with plausible re-
alizations of natural climate variability, the severity of extremes in California is amplified significantly. In
addition, recent changes in the frequency of large-scale patterns of atmospheric circulation can have impacts of
similar magnitude to large (>10%) declines in average precipitation, particularly with respect to drought. The
scenarios developed in this work are designed to allow water managers to systematically test the sensitivity of
their water system to different combinations of climate change, so that key vulnerabilities can be discovered and
then addressed through adaptation planning.

these changes is less clear, as are more nuanced climate changes
like shifts in average precipitation or changes to atmospheric
circulation that can impact regional weather. Furthermore, water

Practical implications

Water resource planners in California must prepare for the systems in California are very vulnerable to natural swings in
increased stress of climate change. However, there is significant climate unrelated to climate change, and the range of this natural
uncertainty about how the climate will evolve over the coming variability must also be considered in future planning efforts.

decades. While most climate projections agree that California’s

future will be warmer and precipitation will intensify, the rate of This two-part series comprises a pair of articles documenting the
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development of a stochastic weather generator for California that
can create large ensembles of climate traces to support water re-
sources planning under future climate uncertainty. The weather
generator is an efficient tool that can quickly create long (1000-
year) traces of statewide weather, and allows water managers to
flexibly develop and explore climate scenarios associated with
different signals of climate change. These include ‘thermody-
namic’ changes (i.e., more intense precipitation linked to an in-
crease in the moisture-holding capacity of warmer air), as well as
more nuanced signals related to shifts in atmospheric circulation
(i.e., dynamic climate change).

In Part (1) of this series, we presented the development and vali-
dation of the model. In this article (i.e., Part (2) of the series), we
focus on the development of climate change scenarios. The work
in Part (2) details the creation of a publicly available dataset of 30
unique climate change scenarios, each consisting of 1000 years of
simulated climate data (precipitation, maximum temperature,
minimum temperature) at a 6 km resolution across the entire state
of California. The 30 scenarios represent a range of plausible
climate changes to temperature, average precipitation, and pre-
cipitation extremes. These include five scenarios of temperature
change ranging from 1 °C to 5 °C of warming at 1 °C increments
and five scenarios of mean precipitation change ranging from
-25% to +25% of historical averages at 12.5% increments. For all
twenty-five of these scenarios, we scale extreme daily precipita-
tion with temperature at a rate of 7% per °C of warming, to reflect
the increased moisture holding capacity of the atmosphere ac-
cording to the Clausius-Clapeyron relationship. We generate four
additional climate change scenarios that use different scaling rates
(0% per °C and 14% per °C of warming) to support sensitivity
analysis with respect to extreme precipitation scaling. Together
with the baseline scenario containing no climate change, this leads
to 30 scenarios altogether, which form the primary data product
from this study. We also create two experimental climate scenarios
that reflect changes to the frequency of large-scale weather pat-
terns, based on a preliminary analysis of historical trends in these
patterns. However, these experimental scenarios are not included
in the data release associated with this work.

The datasets created in this work highlight how even in the
absence of climate change, water managers in California should
plan for extreme precipitation events and droughts beyond the
worst case from the historical record, because such events are
quite plausible due to California’s natural climate variability
alone. However, when such natural extremes are combined with
the effects of anthropogenic climate change, extremes in Califor-
nia become severe and will likely require significant investment in
water resources systems to sustain adequate water services across
the state. The weather generator and associated datasets should be
viewed as a complementary tool to more commonly available
downscaled GCM projections. Unlike GCMs, the weather gener-
ator is not designed to create scenarios of future climate based on
the physical laws of the Earth system and future greenhouse gas
emission scenarios. Rather, the model provides a way to help
translate various signals of climate change from GCMs into traces
of weather that are tailored to support water resource planning
efforts. In this way, the California weather generator is envisioned
as a tool to help promote collaboration between climate scientists
and water resource planners across the state.

Stakeholders across California can utilize the climate scenarios
produced by the stochastic weather generator to infer the joint
impact of both climate change and natural climate variability on
their systems. We recommend that stakeholders use the data
products developed in this work in stages to help develop robust
adaptations of water resources infrastructure under climate
change. For example, initial adaptation strategies (e.g., new
reservoir operational policies, new infrastructure for managed
aquifer recharge) could be developed using the historical record to
ensure these strategies are able to meet performance requirements
under past and recent extreme events. Then, these strategies could
be re-evaluated using: 1) a 1000-year baseline weather generator
simulation; and 2) climate change scenarios applied to the 1000-
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year weather generator simulation. These evaluations would
provide information on how robust a given adaptation strategy is
to natural climate variability, climate change, and a combination
of the two.

Such information could be used in different ways to alter the
initial adaptation strategy. For instance, if a strategy appears
vulnerable to the 1000-year baseline weather generator simula-
tion (i.e., natural climate variability) or scenarios from the model
reflective of likely future climate conditions (e.g., a low degree of
future warming projected in most GCMs over the next few de-
cades), this might suggest an immediate need for a more robust
strategy. Alternatively, in cases where an adaptation strategy is
only vulnerable to the most extreme climate change scenarios
produced by the model, the current adaptation strategy may be
deemed adequate if coupled with plans for continued climate
monitoring and retrofits/adjustments that could be implemented
later if needed.

1. Introduction

Climate change presents a major concern for water security at local,
regional, and global scales (Ranasinghe et al., 2021; IPCC, 2022). In
California, climate change experienced to date has already exacerbated
recent droughts via warming temperatures and enhanced drying power
of the atmosphere (Williams et al., 2022). Similarly, extreme precipi-
tation during recent, atmospheric river (AR)-related storms was likely
more intense than it otherwise would have been due to warming tem-
peratures and an associated increase in the moisture holding capacity of
the atmosphere following the Clausius-Clapeyron relationship (Gonzales
etal., 2019; Michaelis et al., 2022). These climate changes are related to
thermodynamic responses of the atmosphere to a warmer climate, and
global climate models (GCMs) project that these types of thermody-
namic climate change will accelerate over California and much of the U.
S. Southwest into the middle and end of the 21st century (Espinoza et al.,
2018; Massoud et al., 2019; Rhoades et al., 2020; Overpeck and Udall,
2020; Huang and Swain, 2022). Other first-order responses to surface
warming include greater frequency of extreme heat (Ullrich et al., 2018)
and significant changes to seasonal snow accumulation and melt pat-
terns (Berg and Hall, 2017; Ishida et al., 2019; He et al., 2021; Shulgina
et al., 2023). Generally, projections of thermodynamic climate changes
are consistent across theory, observations, and model projections (Pfahl
et al., 2017; Allan et al., 2020), leading to high confidence in the di-
rection of future change, although with residual uncertainty in the ul-
timate rate of change.

Other types of long-term climate changes are also possible, but with a
greater degree of uncertainty (Shepherd, 2014; Elbaum et al., 2022). For
instance, shifts in atmospheric circulation, or dynamic climate changes,
have been observed and projected for California. Zhang et al. (2022)
recently showed a 40-year decline (from 1980 to 2018) in the frequency
of a deep trough over Western North America that is associated with
strong moisture flux and precipitation in California. This trend in the
frequency of one large-scale atmospheric flow pattern appears to explain
much of the drying trend observed over California and the Southwestern
U.S. during that same period, and an ensemble of historical CMIP6
climate model simulations suggest these observed shifts in atmospheric
circulation have been driven by anthropogenically forced climate
change. Others have also explored how late 21st century projections of
these atmospheric flow patterns influence future climate over the
Western U.S. For instance, Swain et al. (2018) found that changes in the
spatial pattern and intensity of atmospheric circulation patterns may be
responsible for projected increases in the frequency of dry and wet re-
gimes in California. Shields and Kiehl (2016) focused specifically on the
landfall locations of ARs along the West Coast and projected that land-
falling ARs will eventually move equatorward during winter. However,
others (Gao et al., 2016; Ma et al., 2020) have identified an opposite,
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poleward movement of ARs in other regions of the world, highlighting
that there is substantial regional variability and uncertainty in this type
of dynamic climate change for ARs (Payne et al., 2020).

In Part (1) of this two-part series, we introduced and validated a
weather regime-based stochastic weather generator designed to support
bottom-up climate vulnerability assessments of water systems. Vulner-
ability assessments seek to define the range of climate conditions that
lead to critical system vulnerabilities (see Fig. 1), and therefore are most
relevant to the decision-making process of climate adaptation (Brown
et al., 2012). Such frameworks help circumvent the issue of severe un-
certainty in more traditional top-down climate impact assessments, in
which downscaled GCM projections are used to drive the entire analysis.
Bottom-up vulnerability assessments ensure a thorough exploration of
system sensitivities to small perturbations in climate that might not be
captured when using a relatively small and often biased GCM ensemble.
However, these assessments can still use GCM-based information to help
define the range of plausible future climate changes and their likelihood.
Key to these vulnerability assessments is the ability to generate long
climate traces useful for quantifying both water supply and flood risk,
and to do so for many scenarios of potential climate change selected
according to a carefully crafted experimental design (Steinschneider
et al., 2015; Schwarz et al., 2018; CA DWR, 2019; Ray et al., 2020).
Stochastic weather generators provide exactly this functionality.

In the present study (Part 2 of this two-part series), we detail how the
stochastic weather generator described in Part (1) can be used to pro-
duce an ensemble of thermodynamic and dynamic climate change sce-
narios to support bottom-up climate impact assessments of water
systems across the state of California. We review the weather generator
and describe how it is used to produce these scenarios in Section 2. In
Section 3, we present these future climate scenarios and their impacts on
different metrics of average and extreme precipitation and temperature.
We conclude in Section 4 with a discussion of model limitations and
guidance for use of these data products.

2. Methods
2.1. Overview of stochastic weather generator

In this work, we use the stochastic weather generator described in
Part (1) of this series to generate an ensemble of future climate scenarios
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Fig. 1. Overview of bottom-up vulnerability assessments for water systems
under climate uncertainty. A stochastic weather generator like the model
developed in this work can be fit to California’s historical weather and then
used to generate a large ensemble of future climate scenarios that systemati-
cally explore a range of plausible climate changes. This range can be informed
by state-of-the-art global climate model (GCM)-based information. The climate
scenarios can be used as forcing for models of hydrologic and water infra-
structure systems to develop a clear picture of water system vulnerabilities to
different types of climate change.
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across the entire state of California. The full model is described in detail
in Part (1). Here, we only provide a brief overview of the model for
context that supports the description of climate scenario development
below. The California weather generator can be used with many
different continuous climate datasets, but in this work the model uses
gridded (~6 km) daily precipitation between January 1, 1948 and
December 31, 2018 across California from the extreme-preserving
gridded daily dataset developed by Pierce et al. (2021). Gridded, daily
minimum and maximum temperature at the same resolution and for the
same domain are taken from Livneh et al. (2013) for the period between
January 1, 1948 and December 31, 2015, and are then extended to
December 31, 2018 using the PRISM daily dataset (PRISM Climate
Group, 2014). These temperature data are detrended to ensure all
temperature data reflect average temperatures experienced over the last
30 years (1991-2020).

The weather generator is a semiparametric, multivariate, and
multisite model that is designed to separately model dynamic and
thermodynamic atmospheric mechanisms of climate variability and
change through statistical abstractions of these processes. To capture
atmospheric dynamics, the weather generator simulates sequences of
weather regimes (WRs), which are recurring large-scale atmospheric
flow patterns (e.g., upper-level, quasi-stationary blocks and troughs)
that organize high-frequency weather systems (Robertson and Ghil,
1999; Robertson et al., 2015). They represent intermediary phenomena
that help link slowly varying global climate circulation with weather
experienced at the local scale. To capture thermodynamic mechanisms
of climate change, the weather generator post-processes simulated
precipitation and temperature data to reflect patterns of warming and
thermodynamic scaling of precipitation rates with that warming.

These properties of the model are represented in a hierarchical
structure composed of three primary modules. In the first module, a non-
homogenous Hidden Markov Model (NHMM) is used to identify and
simulate WRs based on geopotential height data across the Pacific-North
American sector. In the second module, 6 km gridded precipitation and
maximum and minimum temperature across California are simulated
through bootstrapping conditioned on the simulated WRs. Noise is
added to resampled heavy precipitation events using an approach that
leverages a mixture of gamma and Generalized Pareto distributions
(gamma-GPD) fit to the non-zero precipitation at each gridded location.
In the third module, perturbations to the simulation schemes in the first
two modules are applied to impose thermodynamic and dynamic
climate changes to the simulated data. The first two of these modules
were described in detail in Part (1), while in Section 2.2 below we focus
on the scenarios developed in the third module. Where necessary,
mathematical details related to the creation of these climate scenarios
are presented in Appendix A.

2.2. Thermodynamic and dynamic climate change scenarios

Most of the scenarios developed in this work focus on perturbations
to climate consisting of various levels of warming and changes to the
daily precipitation distribution. The number and range of scenarios
across different variables were developed in collaboration with partners
in the California Department of Water Resources, and were selected to
reflect the range of uncertainty in different types of climate change
while also acknowledging the desire of water resource practitioners to
maintain a manageable number of scenarios in their planning studies.

We use the weather generator to create five different scenarios of
temperature change, from +1 °C to +5 °C by 1 °C increments (see Fig. 2;
Table 1). Temperature change is treated simply by adding step changes
to simulated daily maximum and minimum temperature data (which
have already been detrended to reflect recent warming) uniformly
across the entire spatial domain. This range of temperature increase was
inferred from an ensemble of climate model projections selected by the
California Department of Water Resources Climate Change Technical
Advisory Group (CA-DWR CCTAG, 2015). Those projections, taken from
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Fig. 2. Range of climate change scenarios developed under this work.

Table 1
List of 30 climate scenarios.

Scenario Incremental % Change Extreme % Change

Number Temperature Precipitation Precipitation
Change [°C] Quantile Mean

1: baseline 0 0 0

2 2 7 —25

3 3 7 -25

4 4 7 —25

5 5 7 —-25

6 1 7 -12.5

7 2 7 -12.5

8 3 7 -12.5

9 4 7 -12.5

10 5 7 -12.5

11 1 7 0

12 2 7 0

13 3 7 0

14 4 7 0

15 5 7 0

16 1 7 12.5

17 2 7 12.5

18 3 7 12.5

19 4 7 12.5

20 5 7 12.5

21 2 7 25

22 3 7 25

23 4 7 25

24 5 7 25

25 3 0 -12.5

26 3 0 0

27 3 0 12.5

28 3 14 -12.5

29 3 14 0

30 3 14 12.5

a subset of ten high-performing GCMs for California from the CMIP5
archive, suggested that 45 °C was approximately the maximum amount
of warming that could be expected towards the end of the 21st century
under the RCP 8.5 emission scenario, based on a multi-model average.

Scenarios of precipitation intensification are modeled by scaling the
distribution of daily precipitation in a way that replicates the thermo-
dynamic effects of warming temperatures on precipitation through in-
creases in the moisture holding capacity of the atmosphere. In
California, past work has shown that warming temperatures will lead to
an increase in the most intense precipitation events (often associated
with ARs) but a decline in the magnitude of smaller precipitation events
(Gershunov et al., 2019). This type of change effectively stretches the
daily precipitation distribution, making extreme events more extreme
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and suppressing the magnitude and frequency of lighter precipitation
events (see Fig. 3 for an illustration). Similar to other studies (Pender-
grass and Hartmann, 2014), we mimic this effect by imposing changes to
the moments and quantiles of the precipitation distribution as a function
of warming. Specifically, we select a scaling rate for the 99th percentile
of non-zero precipitation and adjust a gamma-GPD mixture distribution
fit to each site by month (see Part 1) to impose that selected scaling rate.
For instance, if we assume a scenario with 2 °C of warming and a 7% per
°C increase in extreme precipitation (which would match the theoretical
Clausius-Clapeyron rate of increase in atmospheric water holding ca-
pacity with warming; Najibi and Steinschneider, 2023), then the most
extreme precipitation events should increase by ~ 14.4% (1.07%). We
adjust the gamma-GPD models fit to all sites to require this percent
change in the far upper tail of the distribution. If mean precipitation is
held constant at baseline levels, this change will force smaller precipi-
tation values under the gamma-GPD model to decrease in order to
compensate for the increases in extreme events, i.e., the distribution of
non-zero precipitation will be stretched, similar to the model-based re-
sults of Gershunov et al. (2019).

Once new model parameters of the gamma-GPD model are deter-
mined for each site and month, daily simulated precipitation is adjusted
by first determining the non-exceedance probability, then jittering the
non-exceedance probability if the simulated value is associated with
heavy precipitation (to enable previously unobserved precipitation ex-
tremes), and finally determining a new precipitation value based on the
adjusted gamma-GPD distribution. This procedure is repeated for each
non-zero precipitation amount for each site simulated by the weather
generator. The mathematical details of this approach are presented in
Appendix A.1.

We enforce a 7% per °C increase in extreme precipitation for all
climate scenarios developed in this work (Fig. 2, Table 1), as this rate of
extreme precipitation scaling is theoretically the best supported based
on the rate at which the atmospheric moisture holding capacity in-
creases with warming. However, as a sensitivity analysis, we also
develop a subset of scenarios with 0% per °C and 14% per °C increase in
extreme precipitation (only for 3 °C of warming), in order to assess how
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Fig. 3. Illustration of thermodynamically driven changes to the distribution of
daily, non-zero precipitation. The historical distribution of precipitation (black
points and red line) changes under warming such that the largest precipitation
events (at high non-exceedance probabilities) become even larger (blue line). If
average precipitation does not change under warming, then low and moderate
precipitation events must scale downward to balance the increases at the upper
end of the distribution. (For interpretation of the references to color in this
figure legend, the reader is referred to the web version of this article.)
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important extreme precipitation scaling is for water systems perfor-
mance. Importantly, the degree to which extreme precipitation is scaled
is directly tied to the temperature trends imposed, thus respecting the
underlying thermodynamic mechanism that drives scaling. That is,
precipitation scaling in the model is entirely determined after specifying
a temperature trend and a scenario of precipitation scaling per degree
warming.

In addition to the thermodynamic climate changes in temperature
and extreme precipitation described above, we also develop scenarios of
change in mean precipitation. Part of the signal around mean precipi-
tation change may be related to the overall increase in atmospheric
moisture linked to warming (a thermodynamic signal), while other
components of change in mean precipitation are related to shifts in at-
mospheric circulation (a dynamic signal). Therefore, changes in mean
precipitation reflect a mix of thermodynamic and dynamic climate
changes. We consider five different scenarios of mean precipitation
change, ranging from -25% to +25% of baseline levels by 12.5% in-
crements. Similar to temperature, this range was based on a subset of
end-of-21st-century CMIP5 projections selected by the CA DWR Climate
Change Technical Advisory Group. We limit mean precipitation changes
to £12.5% for scenarios with only 1 °C of warming to acknowledge the
relationship between more intense future warming and larger changes in
average precipitation (see Fig. 2, Table 1). Altogether, there are 29
separate scenarios of climate change developed in this work, along with
a baseline scenario with no changes imposed, leading to a total of 30
scenarios.

Finally, we develop two additional scenarios of pure dynamical
climate change, which are composed of changes to the frequency of
different WRs (i.e., shifts in atmospheric circulation). We note that
changes to WRs or other modes of atmospheric circulation may result as
a direct response to a warming atmosphere (e.g., due to changes in
geopotential heights linked to thermal expansion), but are still consid-
ered a dynamic climate change if their impacts on surface weather
manifest primarily through a change in atmospheric circulation. The
direction of change for these types of climate change is very uncertain,
but the risk of such change for water systems throughout the state is
potentially very large. Hence, in this work we seek to develop a limited
number of scenarios that reflect dynamic climate change to isolate the
potential vulnerabilities that may be associated with these types of
change. As a proof-of-concept, we utilize recent trends in WR fre-
quencies over the historical record to determine which WRs have
changed in frequency most significantly in the observations, and then
enforce a scenario of dynamic climate change where these significant
changes persist into the future. We then develop a 1000-year simulation
of WRs and associated weather from the stochastic weather generator
with these adjusted WR frequencies (see Appendix A.2 for the method-
ology of this approach), assess the impacts of this scenario on key hy-
drologic metrics of interest (e.g., frequency and magnitude of drought
and extreme precipitation events), and compare these impacts to the
impacts observed under the scenarios from Table 1. This comparison
will help illustrate how the severity of impacts of dynamic climate
change compares to that of thermodynamic climate change scenarios.

3. Results

In Section 3.1, we demonstrate how extremes (droughts, extreme
precipitation events) vary across the 30 climate scenarios delimited in
Fig. 2 and Table 1. In Section 3.2, we briefly assess how these weather
generator scenarios compare against projections from a recent ensemble
of GCM projections downscaled using the LOCA v.2 methodology
(Pierce et al., 2023). In Section 3.3, we explore the impacts associated
with two dynamic climate change scenarios in which the probabilities of
individual WRs are changed based on recent trends.
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3.1. Thermodynamic climate scenario impacts

To begin, we first examine the spatial distribution of impacts from a
subset of the 30 scenarios in Fig. 2 and Table 1. Similar to Part (1), re-
sults are aggregated and visualized at the scale of major river basins (i.e.,
USGS HUC-4 unit). In Figs. 4-6 below, different climate scenarios are
selected for each figure based on their relevance for different climate
statistics. For example, when focusing on precipitation statistics (1-day
precipitation maxima and drought; Figs. 4-5), we fix the temperature
change and vary the change in mean precipitation or extreme precipi-
tation scaling rate to see their effect on those precipitation statistics.
Conversely, when focusing on temperature properties (heat waves;
Fig. 6), we fix the precipitation changes and focus instead on scenarios
with different levels of warming and their impact on heat wave
attributes.

Fig. 4 focuses on the largest maximum 1-day precipitation event
across the entire record. The far left panel in Fig. 4 shows the magnitude
of the 1-day precipitation maximum across the baseline scenario (no
climate change). The middle and right panels of Fig. 4 show how the
largest 1-day precipitation event changes under different climate sce-
narios. Results in the center panel are shown for scenario #13 from
Table 1, in which there is 3 °C of warming, an extreme precipitation
scaling rate of 7% per °C, and 0% change in mean precipitation. Here,
the increase in the 1-day precipitation maxima is largely uniform across
the state, around 22.5% above baseline values. This is precisely the
scaling one would expect given that 1.07% = 1.225. Conversely, in the
right panel of Fig. 4 there is almost no change in the 1-day precipitation
maxima over baseline levels. Under this scenario (#27 in Table 1, with 3
°C of warming, no extreme precipitation scaling, and a 12.5% increase in
mean precipitation), mean precipitation increases but extreme precipi-
tation is kept at baseline levels by construction. Therefore, it is the
smaller precipitation events under this scenario (rather than the largest)
that are shifted upward to account for the change in the mean.

Fig. 5 shows similar results to Fig. 4 but for the worst 5-year drought
on record. Here, we show baseline values in the left panel and three
climate scenarios in the three rightmost panels, including scenarios #13,
#8, and #18 from Table 1. Under all these scenarios, temperatures
warm by 3 °C and extreme precipitation scales at a rate of 7% per °C. The
only difference between the scenarios is how mean precipitation
changes (0 %, -12.5%, and +12.5% of baseline values). Two insights
emerge from Fig. 5. First, the largest impact on the magnitude of the
worst 5-year drought is caused by the change in mean precipitation,
with the magnitude of change roughly following the magnitude of
change in mean precipitation (on a percentage basis). Second, we note
that even under the scenario with no change in mean precipitation
(scenario #13), the worst 5-year drought does become slightly worse
(by ~ 5%) simply due to extreme precipitation scaling. In this scenario,
light precipitation events must become even lighter to keep mean pre-
cipitation unchanged while increasing the magnitude of extreme pre-
cipitation events (i.e., the daily precipitation distribution is stretched;
see Fig. 3). During droughts, there is a very high proportion of dry days
and light precipitation days, and so the total precipitation during these
long drought events declines because of the downward shift in light
precipitation events.

Similar to Figs. 4-5 for precipitation, Fig. 6 shows the impacts of
different climate scenarios on the spatial distribution of heat wave
characteristics, this time focused on one HUC-4 basin (the San Joaquin)
for illustration. The first row of Fig. 6 shows the average frequency of
heat waves per year based on the baseline and three climate scenarios
(#11, #12, and #13 from Table 1). These selected scenarios have a
similar extreme precipitation scaling rate of 7% per °C and 0 % changes
in mean precipitation. The only difference is how temperature (mini-
mum, maximum) increases incrementally by 1, 2, and 3 °C. We also
show the average and maximum heat wave event duration across these
three scenarios in the second and third rows of Fig. 6. The results show
that there is a consistent increase in the average frequency of heat waves
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Fig. 4. (left) The magnitude of the largest 1-day maximum precipitation event at the HUC-4 scale in the baseline scenario (no climate change). (middle) The percent
change in the largest 1-day maximum precipitation event from climate scenario #13 (see Table 1) with 3 °C of warming, an extreme precipitation scaling rate of 7 %
per °C, and 0 % change in mean precipitation. (right) Same as middle panel, but for climate scenario #27 (see Table 1) with 3 °C of warming, an extreme precipitation
scaling rate of 0 % per °C, and a 12.5 % increase in mean precipitation. Note that the color scale is identical for the middle and right panels.
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Fig. 5. (far-left) The magnitude of the worst 5-year drought on record at the HUC-4 scale in the baseline scenario (no climate change). (middle-left to far-right) The
percent change in the worst 5-year drought for three climate scenarios from Table 1, including scenarios #13, #8, and #18. In all cases, temperatures warm by 3 °C
and extreme precipitation scales at a rate of 7 % per °C. However, scenarios #13, #8, and #18 differ by their change in mean precipitation (0 %, —12.5 %, and +12.5
% of baseline values, respectively). Note that the color scale is identical for the three rightmost panels.

with warming across the scenarios. Furthermore, a more pronounced
increase can be detected in the number of heat wave events over the
southern portion of the basin. The average and maximum heat wave
event duration presented in Fig. 6 shows how even 1 °C of warming can
result in multi-day increases in both average and maximum heat wave
duration at individual grid cells. The impacts are especially prominent
on the maximum duration of heat waves, which can increase by more
than 15 days per year for a scenario with 3 °C of warming.

Figs. 7-8 show how extreme precipitation and drought events vary
across all the climate scenarios in Fig. 2 and Table 1, focusing only on
one HUC-4 region (the San Joaquin basin, HUC4: 1804). In Fig. 7, we
show how the 1-day and the 7-day largest precipitation events change
with shifts in temperature and mean precipitation, all for an extreme
precipitation scaling rate of 7% per °C. Similar to Fig. 4, we find that the
1-day precipitation maxima are largely insensitive to changes in mean
precipitation, and instead only respond to changes in temperature that
drive the absolute magnitude of extreme precipitation scaling. This is
because the 1-day maxima are entirely determined by the upper tail of
the daily distribution, which is controlled solely by the extreme pre-
cipitation scaling rate (see Fig. 3). While temperature changes and
extreme precipitation scaling also dominate the rate of increase in 7-day
maxima, changes in mean precipitation also have an effect, largely based
on how they influence the smaller precipitation values during the 7-day

events. For the most intense scenario of change (5 °C of warming and a
25% increase in mean precipitation), the 7-day maxima increase by
almost 38% over baseline values.

We focus on drought-of-record events of different durations in Fig. 8.
Here, the results show that changes in mean precipitation dominate the
change in drought magnitude for all durations, and the relationship is
close to 1-to-1 (i.e., a similar percent change in mean precipitation is
also seen for the change in drought magnitude). Interestingly, there is
also a pronounced temperature effect on the magnitude for 1-year
droughts, but this effect weakens for longer durations. This is caused
by the same phenomenon described above, where for some change in
mean precipitation, extreme precipitation scaling requires that lighter
precipitation events be scaled downward (i.e., become even lighter) to
compensate for increases in the extremes (also see Fig. 3). For 1-year
droughts, this effect is more prominent, likely because 1-year droughts
can occur with few or no heavy precipitation events, and so the down-
ward scaling is experienced across most or all days in the 1-year drought.
However, as drought durations grow longer, this temperature effect is
dampened as more heavy and extreme precipitation events that have
scaled upward are included in the long-duration drought periods.
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Fig. 6. (far-left column) At-site average frequency of heat wave events per year [number of events per year] (first row), as well as at-site mean (second row) and
maximum (third row) of heat wave event duration per year [days of event per year] in the baseline scenario (no climate change). (middle-left to far-right columns) The
change in the average frequency of heat wave events (number of additional events per year) and in the average and maximum heat wave event duration (longer event
duration per year) are shown for three climate scenarios from Table 1, including scenarios #11, #12, and #13 with 1, 2, and 3 °C of warming, respectively, an
extreme precipitation scaling rate of 7 % per °C, and 0 % change in mean precipitation. Note that the color scale is identical for the three rightmost panels in each
row. All results are shown for the San Joaquin basin (HUC4: 1804).
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Fig. 7. Percent change from baseline for the largest (left) 1-day and (right) 7-day precipitation maximum. Changes are shown for five different scenarios of tem-
perature change and five different scenarios of precipitation change, all with an extreme precipitation scaling rate of 7% per °C and for the San Joaquin basin
(HUC4: 1804).
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scenarios of temperature change and five different scenarios of precipitation change, all with an extreme precipitation scaling rate of 7% per °C and for the San

Joaquin basin (HUC4: 1804).

3.2. Comparison against LOCA v.2 projections

In this section we provide a comparison between some of the ther-
modynamic climate scenarios generated by the weather generator and
the ensemble of future projections in the recently released LOCA v.2
archive derived from CMIP6 (Pierce et al., 2023). We conduct this
comparison in the Upper Tuolumne River basin, which is located within
the San Joaquin HUC-4 region. LOCA v.2 is bias corrected and down-
scaled using the same historical observations as are used in the weather
generator (Pierce et al., 2021), making a comparison between the two
products more comparable.

To facilitate this comparison, we first took each climate model
simulation from LOCA v.2 and identified the 30-year period in the future
that exhibited an average of 2 °C of warming over the baseline period of
1981-2010 in the simulation. Using those 30 years for each simulation,
we then concatenated these data across all model simulations, and
compared them against the 1000-year stochastic weather generator
simulation associated with climate scenario #12 in Table 1 (2 °C
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warming, 0% change in mean precipitation, and 7% per °C scaling of
extreme precipitation).

Fig. 9 focuses on the worst 1-, 2-, 3-, 4-, and 5-year drought events in
the observed record, the LOCA v.2 data associated with 2 °C of warming,
and the 1000-year weather generator simulation associated with climate
scenario #12 from Table 1. More intense droughts than those histori-
cally observed can be seen in the 2 °C warming scenario for all durations
in both the weather generator simulation and LOCA v.2. Drought
intensification is linked to both natural variability under a longer record
(1000 years for the weather generator; 3750 years for LOCA v.2), but
also the suppression of low and moderate precipitation events under
thermodynamic climate change during years that were already dry, as
described earlier. For LOCA v.2, declines in the 2-year drought are more
severe under 2 °C warming compared to the other durations, but this
may be due to natural variability in the ensemble. Overall, the differ-
ences in drought intensity between the weather generator under a future
2 °C warming and LOCA v.2 projections around that same amount of
warming are relatively small.

Fig. 9. The worst 1, 2, 3, 4, and 5-year drought events in the observed record (red), across the ensemble of future LOCA v.2 projections centered around 2 °C
warming (blue), and in the 1000-year weather generator simulation for climate scenario #12 (2 °C warming, 0% change in mean precipitation, and 7% per °C scaling
of extreme precipitation) (black). All results are shown for the Upper Tuolumne River basin. (For interpretation of the references to color in this figure legend, the

reader is referred to the web version of this article.)



N. Najibi et al.

Another way to compare the weather generator simulations to LOCA
v.2 is to quantify the relative contribution of the upper and lower
quantiles of daily precipitation to long-term total precipitation. As
shown in Dettinger (2016), historically, the wettest 5% of days
contribute disproportionately to total annual precipitation, yielding a
precipitation regime that is highly dependent on a few large storms at
annual and interannual timescales. Thermodynamic precipitation
scaling acts to amplify this regime, concentrating greater and greater
portions of total precipitation into the largest storm events (and less and
less into smaller to moderate-sized storms).

We explore this property for both the 1000-year weather generator
simulation and the LOCA v.2 ensemble following methods applied in
Dettinger (2016). First, all non-zero precipitation days (>0.01 mm) are
extracted, averaged at the watershed basin scale, and split into the
wettest 5% of precipitation days and all other precipitation days. This is
done for the 50-year historical period 1950-1999 in each LOCA v.2
model-SSP-variant. For the weather generator, we break the 1000-year
simulations into 20 non-overlapping 50-year blocks and split precipi-
tation days in each block using the same approach. For the LOCA v.2
ensemble data, we extract 50-year periods from the projection period
where the average temperature change (relative to 1981-2010) has
reached incremental warming levels of 1 °C, 2 °C, 3 °C, and 4 °C, and
split those daily precipitation accordingly. Finally, for each 50-year
precipitation block of the weather generator and LOCA v.2 ensemble,
the change in precipitation of the wettest 5% of days and all other days is
divided by the total historical precipitation, thus yielding the contri-
bution of each quantile to the total precipitation change in a 50-year
block.

Fig. 10a shows the results of this analysis for weather generator
scenario #12 compared to the current condition scenario #1 (i.e., no
perturbation). The effect of thermodynamic scaling is visible and mostly
equivalent for all 50-year blocks: the contribution of the wettest 5% of
days to total precipitation is ~5% higher (and all other days ~5% lower)
under 2 °C warming. For example, in the 50-year block which has ~13%
more total precipitation compared to historical, the wettest 5% of days
contribute 9% (14%) without (with) thermodynamic scaling, while all
other days contribute 4% (-1%) without (with) thermodynamic scaling.
In other words, the scaling of extreme precipitation has made it so that
overall wetter periods have become wetter due only to large storm
events, while overall drier periods have become drier due mostly to
“losing” precipitation from small to moderate sized storms.

Climate Services 34 (2024) 100485

Fig. 10b shows the results of this analysis for weather generator
scenario #12 compared to that of the LOCA v.2 ensemble at the average
warming of 2 °C. The LOCA v.2 ensemble does not show the same level
of extreme precipitation scaling as used in the weather generator, thus
changes in contributions from the wettest 5% and all other days in
overall wetter and drier 50-year periods are not as severe as those
generated in scenario #12. Similarly, Fig. 10c compares the weather
generator and LOCA v.2 for each incremental warming level between
1-4 °C, showing that the rate of extreme precipitation scaling is not as
high in LOCA v.2 as is assumed in the weather generator scenarios,
which reaches approximately twice that of LOCA v.2 at the 4 °C
warming level.

These results suggest two important takeaways: 1) thermodynamic
scaling as applied in the weather generator produces an effect on overall
wetter and drier precipitation regimes where more (less) of total pre-
cipitation is derived from large (small to moderate) storms; 2) the rate of
thermodynamic scaling (7% per °C) might be considered a conservative
assumption relative to what is shown in the LOCA v.2 ensemble. The
latter may be attributable to both biases in the LOCA v.2 statistical
downscaling product and the presence of reduced rates of extreme
precipitation scaling due to underlying and counteracting effects of at-
mospheric thermodynamics and dynamics (Gu et al., 2023).

3.3. Exploration of dynamic climate changes

The results in Sections 3.1 and 3.2 are based on climate scenarios that
were largely developed from a thermodynamic perspective, i.e., changes
in extreme precipitation that are tied to changes in the moisture holding
capacity of the atmosphere under warming. The changes in mean pre-
cipitation could be considered partially thermodynamically driven,
although not entirely. In this section, we consider climate changes that
are entirely dynamic in nature, in that they are driven only by changes in
atmospheric circulation.

As discussed in Section 2.2, we select two dynamic climate scenarios
based on recent trends in WR frequencies over the 72-year historical
record. Fig. 11 shows these trends for the 10 WRs considered in this
work. A red asterisk is used to highlight those WRs with significant
trends at the 1% significance level. WRs 3, 8, 9, and 10 all exhibit sig-
nificant trends at this level. Recall that WRs 1-7 are cold season WRs,
while WRs 8-10 occur in the warm season. As the vast majority of
precipitation occurs in the cold season, the increased frequency of WR3
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Fig. 10. Contribution of daily quantile precipitation changes (normalized by historical precipitation) to total precipitation changes in LOCA v.2 and the stochastic
weather generator (SWG), where (a) compares the 20, 50-year blocks of the 1000-year weather generator simulation under current climate (scenario #1) to the
simulation from scenario #12 (2 °C warming, 0 % change in mean precipitation, and 7 % per °C scaling of extreme precipitation); (b) compares the scenario #12
weather generator simulation to the ensemble of LOCA v.2 projections centered around 2 °C warming; and (¢) compares the trends of weather generator simulations
(scenario #11, #12, #13, and #14) and the ensemble of LOCA v.2 projections centered around 1 °C, 2 °C, 3 °C, and 4 °C warming. All results are shown for the Upper

Tuolumne River basin.
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Fig. 11. Historical trends in each of the 10 WRs. The blue line indicates a linear regression of WR frequency against time. Significant trends at the 1% significance
level are denoted by a red asterisk (*). (For interpretation of the references to color in this figure legend, the reader is referred to the web version of this article.)

has the largest implications for recent changes in California weather.
WR3 is characterized by a ridge over western North America and is
associated with dry conditions across California. The recent increases in
WR3 are consistent with the 2-decade long drought conditions experi-
enced over California since 2000. While we do not attempt explain the
causes of the WR trends observed here, we do note that recent attribu-
tion studies have highlighted possible explanations for such trends,
including anthropogenic warming (Zhang et al., 2022) and rising aero-
sol emissions across southeast Asia (Kuo et al., 2023).

Based on the trends in Fig. 11, we consider two dynamic climate
change scenarios to explore. In the first scenario (Dynamic Scenario #1),
we simulate from the stochastic weather generator after adjusting the
long-term mean frequency of WR3 upwards from its 1948-2019 mean
(~7.7% of days) to its end of record average (~10% of days), and adjust
the frequency of all other WRs uniformly downward to accommodate
this change. This represents an approximate 30% increase in the fre-
quency of days classified as WR3 (see Appendix A.2 for methods on how
this change is implemented in the simulation process). Given the asso-
ciation between WR3 and dry conditions in California, we anticipate this
climate change scenario will lead to worsening droughts and possibly a
reduction in extreme precipitation events, although the magnitude of
the effect is unclear a priori. We will juxtapose the effects of this climate
change scenario to one scenario from those listed in Table 1 (scenario #8
with 3 °C of warming, extreme precipitation scaling of 7% per °C, a
-12.5% change in mean precipitation) as a point of comparison. We will
also combine these two scenarios to see their joint impact, i.e., a scenario
with 30% more frequent WR3 days along with 3 °C of warming, extreme
precipitation scaling of 7% per °C, and a -12.5% change in mean
precipitation.

In the second dynamic climate change scenario (Dynamic Scenario
#2), we shift the frequency of all WRs (not just WR3) to their average
frequency at the end of the period of record, based on regression esti-
mates for the last year on record from a linear regression against time (i.
e., the value estimated by the blue line in Fig. 11 for the year 2019).
Therefore, recent trends in any WR (significant or not) will be reflected
in the weather simulated by the stochastic weather generator. This dy-
namic climate change scenario implicitly assumes that the atmospheric
circulation experienced more recently reflects a “new normal” that will
persist over the next several decades. Importantly, we emphasize here

10

that these dynamic climate change scenarios should not be interpreted
as confident projections of what will happen to atmospheric circulation
under climate change, but rather as “what if” scenarios that allow us to
explore the potential impact of these types of change to decision-
relevant climate statistics over areas in California. The results of this
exploration will help determine how important such dynamic climate
changes could be to water systems planning and management
throughout the state, which would provide insight into the degree of
effort that should be expended in resolving uncertainties around these
types of future climate change.

Fig. 12 shows the impact of Dynamic Scenario #1 (a 30% increase in
the frequency of WR3) on drought, specifically the magnitude of the
worst 5th percentile 2-year, 3-year, and 5-year droughts on record (i.e.,
the 5th percentile of all 2-year, 3-year, and 5-year water-year precipi-
tation totals across the 1000-year record). Four scenarios are shown,
including a baseline (no climate change), Dynamic Scenario #1 (termed
‘dynamic change’), the results from Scenario #8 in Table 1 (termed
‘thermodynamic change’), and the combined scenario where the
changes in Scenario #8 in Table 1 are imposed on the weather generator
output forced with a 30% increase in WR3 frequency (termed ‘both’).
The results show that for shorter duration droughts (2-year, 3-year), the
dynamic climate change scenario has more intense droughts compared
to the baseline, but the impact is not as intense as that of the thermo-
dynamic scenario. However, for long-duration droughts (5-year), the
impact of the dynamic climate change scenario is very similar compared
to that of the thermodynamic scenario. This suggests that for intense
long-duration droughts, the importance of a single WR (and the synoptic
scale atmospheric flow pattern it represents) becomes increasingly
important, likely because the increased frequency of that pattern has
more time to manifest in the long-term droughts. When both scenarios
are combined, droughts become even more intense; for the 3-year
drought, the precipitation total of the drought under the baseline de-
clines by 22% under the combined scenario.

Fig. 13 shows similar results to Fig. 12, but for the 20-year and 100-
year extreme 1-day precipitation event estimated from a GEV distribu-
tion fit to annual maxima. Here, we see that an increase in frequency in
WR3 has a small negative effect on both the 20-year and 100-year storm,
as compared to the baseline. However, the magnitude of this effect is
small, especially when compared to the increase in these design events
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Fig. 12. The total precipitation during the worst 5th percentile 2-year, 3-year, and 5-year drought from the baseline scenario (no climate change), Dynamic Scenario
#1 (‘dynamic change’), Scenario #8 in Table 1 (‘thermodynamic change’), and the combined scenario where the changes in Scenario #8 in Table 1 are imposed on

Dynamic Scenario #1 (‘both’), for the San Joaquin basin (HUC4: 1804).
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Fig. 13. The magnitude of the 20-year and 100-year 1-day extreme precipitation event from the baseline scenario (no climate change), Dynamic Scenario #1
(‘dynamic change’), Scenario #8 in Table 1 (‘thermodynamic change’), and the combined scenario where the changes in Scenario #8 in Table 1 are imposed on

Dynamic Scenario #1 (‘both’), for the San Joaquin basin (HUC4: 1804).

under the thermodynamic scenario with extreme precipitation scaling
with warming. The combined effect of these two scenarios appears ad-
ditive, with design events that are slightly smaller than the thermody-
namic scenario but still much larger than the baseline.

Figs. 14-15 show the same results as Figs. 12-13, but for Dynamic
Scenario #2 (i.e., the most recent frequencies for all WRs based on
regression estimates against time). Similar to Dynamic Scenario #1, the
results in Fig. 14 show that droughts generally become more intense
under Dynamic Scenario #2. However, the effect is not as apparent as
compared to that seen in Fig. 12, especially for the shorter duration
droughts (2-year, 3-year). Conversely, the results in Fig. 15 show that
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the propagation of trends in all WRs has a large negative effect on both
the 20-year and 100-year storm, as compared to the baseline. This effect
is much stronger than that seen for Dynamic Scenario #1 (Fig. 13).
Therefore, the results for Dynamic Scenario #2 suggest that by propa-
gating recent trends in all WRs into the weather generator, the resulting
simulations are slightly drier than the baseline on average, but re-
ductions in extreme events are significant. The reasons for these dif-
ferences with Dynamic Scenario #1 are not immediately clear, but they
do suggest that shifting frequencies in multiple WRs at once can result in
complex dynamics and emergent climate changes in decision-relevant
metrics that are difficult to anticipate a priori.



N. Najibi et al.

Climate Services 34 (2024) 100485

3-yr 5-yr

2-yr
500
400
1S
£
(]
T 300
=
c
()]
(0]
1S
= 200
()]
>
o
©
100

scenario

[ baseline [ dynamic change [l thermodynamic change [l both

Fig. 14. The total precipitation during the worst 5th percentile 2-year, 3-year, and 5-year drought from the baseline scenario (no climate change), Dynamic Scenario
#2 (‘dynamic change’), Scenario #8 in Table 1 (‘thermodynamic change’), and the combined scenario where the changes in Scenario #8 in Table 1 are imposed on

Dynamic Scenario #2 (‘both’), for the San Joaquin basin (HUC4: 1804).
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Fig. 15. The magnitude of the 20-year and 100-year 1-day extreme precipitation event from the baseline scenario (no climate change), Dynamic Scenario #2
(‘dynamic change’), Scenario #8 in Table 1 (‘thermodynamic change’), and the combined scenario where the changes in Scenario #8 in Table 1 are imposed on

Dynamic Scenario #2 (‘both’), for the San Joaquin basin (HUC4: 1804).

4. Conclusions, final remarks, and guidance for use

This work presented the second of a two-part series of studies
demonstrating the application of a stochastic weather generator for the
development of gridded climate change scenarios across the entire state
of California. The model was used to create a 30-member ensemble of
1000-year climate scenarios that primarily reflect thermodynamic
climate changes, including temperature increases and the scaling of
extreme precipitation with temperature, as well as additional changes in
mean precipitation. A limited set of proof-of-concept dynamic climate
change scenarios were also developed with the stochastic weather
generator that represent shifts in the frequency of major atmosphere
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circulation patterns. By developing thermodynamic and dynamic
climate change scenarios separately, water managers are able to use the
generated data from this work to systematically explore the sensitivity of
their systems to various types of climate change. The results of such
vulnerability analyses would then empower water managers to work
more closely with the climate science community to understand the
likelihood of climate futures that threaten the reliability of water ser-
vices, thereby providing more direct information to support adaptation
decision-making.

One benefit of the weather generator is that it can efficiently
generate long records of weather data (1000’s of years) that are useful
for uncovering climate vulnerabilities in water systems. However, there
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are currently limitations in the way the model can be used to generate
scenarios of future climate. For example, when imposing thermody-
namic climate changes in which the distribution of daily precipitation is
stretched, the weather generator scales up extreme precipitation events
and scales down light to moderate events. However, it does not change
the frequency of precipitation occurrence (i.e., more zero precipitation
days). Future adjustments to the model are needed to be able to impose
this change directly in scenario development. One possibility for this
would be the introduction of an autologistic regression model that can
simulate the occurrence of spatially correlated zero and non-zero pre-
cipitation. The parameters of this model could then be perturbed
directly to create scenarios of more frequent zero precipitation days.

A broader limitation of the weather generator is that all scenarios
generated with the model must be explicitly specified by the analyst.
That is, the weather generator will — by design — only create scenarios of
future climate that it is directed to create. This is in direct contrast to
GCMs, where the governing physics of the Earth system and specified
boundary conditions (i.e., emission scenarios) lead to plausible sce-
narios that emerge through internal, interacting processes within the
model. This difference is critical in highlighting how the weather
generator should (and should not) be used to support climate change
adaptation planning.

In the context of climate change adaptation planning for water sys-
tems, scenarios of future climate created by the weather generator
should be viewed as complementary to, rather than in competition with,
other downscaled climate projections from GCMs. The weather gener-
ator cannot replace GCMs, which are the primary tool for uncovering
robust signals of climate change. Rather, the weather generator is
designed to provide flexibility in scenario development, so that water
resource planners and engineers can first openly communicate with the
climate science community about which signals within GCM projections
are most robust or worthy of focused attention. After those signals have
been identified, they can be embedded into climate traces from the
weather generator in a way that is tailored to support planning efforts.
For example, water resources planning often requires many models in
sequence (e.g., hydrologic, reservoir operations, hydraulic, and
groundwater models), many of which can be computationally
demanding. The high computational expense often precludes using all
data from an entire ensemble of downscaled GCM projections. However,
with the weather generator an analyst can quickly create 1000’s of years
of weather meant to represent a pre-specified set of climate change
signals, and then can select a subset of that trace of an arbitrary length
(e.g., 100 years) that i) is limited in length and so computationally
feasible for complex modelling chains; and ii) contains both robust
climate change signals and also plausible but challenging extreme
events useful for stress testing water system performance. This func-
tionality can support robust climate change adaptation planning in a
way that leverages state-of-the-science climate understanding while also
accommodating the constraints of typical water resources planning
studies.

We envision the process above to be iterative, in which new
knowledge derived from climate change projections or emerging ob-
servations can quickly be incorporated into new scenarios with the
weather generator. For example, in Fig. 10, results from the LOCA v.2
ensemble suggest that a smaller scaling rate of extreme precipitation
with warming (i.e., less than 7% per °C) may be warranted. This is also
supported by a similar result based on a very recent observational study
of extremes in California (Najibi and Steinschneider, 2023). The climate
scenarios developed in this work mostly assume a more conservative 7%
per °C in extreme precipitation scaling. However, it is straightforward to
generate new sets of climate scenarios with a lower scaling rate, based
on the knowledge revealed through the analysis of LOCA v.2 and
observational records. These new scenarios can be generated quickly (in
a matter of hours to days, depending on the spatial scale of the analysis).
In this way, the weather generator can be used as a tool to shorten the
period between climate knowledge generation and data production to
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support planning. One could take a similar approach using other
downscaled climate projection products besides LOCA v.2 (e.g., MACA,
STAR-ESDM; Abatzoglou and Brown, 2012; Hayhoe et al., 2023), which
would enable the creation of climate scenario ensembles with a single
approach (the weather generator) that contain differences in key climate
change signals from various downscaling methods. If paired with
rainfall-runoff and water systems models, this approach would help
assess whether such differences in climate signal matter from the
perspective of water resources impacts.

For the data developed and presented in this work, stakeholders can
utilize the 1000-year weather generator trace under 30 different climate
scenarios to infer the joint impact of both climate change and natural
climate variability on their systems. We recommend that stakeholders
use these different data products in stages to help develop robust ad-
aptations of water resources infrastructure under climate change. For
example, initial adaptation strategies (e.g., new reservoir operational
policies; new infrastructure of managed aquifer recharge) could be
developed using the baseline record to ensure these strategies are able to
meet performance requirements under past and recent extreme events.
Then, these strategies could be re-evaluated using the 30 climate change
scenarios for the 1000-year weather generator simulation. These eval-
uations would provide information on how robust a given adaptation
strategy is to climate change, natural climate variability, and a combi-
nation of the two.

Such information could be used in different ways to alter the initial
adaptation strategy. For instance, if a strategy appears vulnerable to the
1000-year baseline weather generator simulation (i.e., natural climate
variability) or likely future climate scenarios (e.g., a low degree of future
warming projected in most GCMs over the next few decades), this might
suggest an immediate need for a more robust strategy. Alternatively, in
cases where an adaptation strategy is only vulnerable to the most
extreme climate change scenarios or to certain climate change scenarios
coupled with the longer (and more extreme) weather generator simu-
lation, the current adaptation strategy may be deemed adequate if
coupled with plans for continued climate monitoring and retrofits/ad-
justments that could be implemented later if needed.
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Appendix A. Mathematical formulation of the stochastic weather generator
A.1. Thermodynamic climate changes to extreme precipitation using the Gamma-GPD extreme mixture model

We use quantile mapping to shift and stretch the distribution of daily, non-zero precipitation in a way that replicates the effects of warming
temperatures on precipitation through increases in the moisture holding capacity of the atmosphere. In this approach, we must first specify a target
value for daily average precipitation and a target scaling for extreme precipitation events under a particular future scenario. For instance, let yu* =
(1 + ©)u be the desired mean for a future climate scenario such that x* is @ x100% greater than the historic mean y, and let (1 + #)*T be the target
scaling rate for extreme precipitation events, where # x 100 % is the percentage increase in extremes per °C of warming. In this work we assume the
same mean change for every calendar month, although a different change for each month is also permissible.

In the weather generator, we resample daily precipitation via a block bootstrap to develop an initial simulation and then adjust heavy precipitation
values with a copula-based jittering algorithm and a gamma-GPD extreme mixture model to develop previously unexperienced extreme events. Here,
we expand that jittering algorithm and adjust the parameters of the gamma-GPD extreme mixture model to impose the changes to mean and extreme
precipitation specified above.

This procedure follows two main steps. First, for all precipitation values that are designed as heavy events (i.e., precipitation p;, at site s and time t
is greater than the site-specific threshold ¢;), we assume that these values will scale at the rate (1 +7)”. Therefore, these heavy precipitation values
will first be jittered and then multiplied by (1 + 7).

Second, all other non-heavy precipitation values must be adjusted so that 1) the entire series of both non-heavy and heavy precipitation have a new
mean y"; and 2) non-heavy precipitation values that approach the threshold ¢; are also scaled upward so that they approach an asymptotic scaling of
(1 +n)"". To do this, we infer new parameters for the gamma component of the gamma-GPD extreme mixture model and then impose quantile
mapping on resampled, non-heavy precipitation through that gamma component.

Let asm, f5m be the parameters of a gamma distribution fit to non-zero, non-heavy precipitation at site s in calendar month m, let o5, ¢; be the
parameters of a GPD distribution fit to heavy precipitation values at site s greater than the threshold ¢, and let z;,, be the probability of precipitation
exceeding the threshold ¢, (which can vary by month). The mean of the GPD distribution is given by ugpp, = ¢ + 2, which becomes

1-&°
Hepp = (1 + O (Cs +1T55

develop daily non-zero precipitation with a new mean of ", then the mean of a new gamma distribution Hgamma* Ti€€dS t0 take into consideration the
new mean of the heavy precipitation under the scaled GPD. Thus, we derive a scaling factor (1 +5) for the mean of the gamma distribution (#ggnm) fit

) after the extreme event scaling is applied in step 1 to all heavy precipitation events. Therefore, if the ultimate goal is to

to the original non-heavy precipitation data as follows:

1+w) (1 - ﬂsvm)ﬂgamma - [(1 + ’7)” -(1+w) }”s,m.”GPD*
(1 - ”sm)ﬂgamma

1+06) = (A1.1)
Heamma® = (1 + ’s)ﬂgama (A12)

Here, 5 x 100% represents a required percentage change in the gamma distribution’s mean so that, after accounting for the new mean of the heavy
precipitation under the scaled GPD (upp), the new mean of all non-zero precipitation (4*) will be ® x 100% of the original mean y.
We then identify new parameters o, §* for the gamma distribution by optimizing a multiplicative factor p as follows:

(Fd (g B i)
gamma _
mﬂm( Fogma(glar. B) (d+n) (AL3)

such that
o =a(l+d)p

B =pp

Here, fymma: = % = "(1/,;5)/’ = (1 +6)Mgamma> guarantying the correct change to the mean of the gamma distribution. The optimization then selects p and

subsequently «”, 4" in order to minimize the squared difference between the target change in extreme precipitation ((1 + 17)”) and the ratio of

quantile functions of the new and old gamma distributions for some quantile g. We set g equal to some very large quantile (e.g., 0.9999999) so that the
optimization tries to find new gamma parameters a”, " that force the tail of the gamma distribution (i.e., the very largest non-heavy precipitation
events) to scale at the same rate as the heavy precipitation events.

Once the new gamma parameters are determined for each site and month, daily simulated non-heavy precipitation ps, from the bootstrap is

adjusted by first determining the non-exceedance probability i, camma = Fgamma <ﬁs‘[ |, ﬁ) , and then replacing the resampled precipitation value with

a new value derived from the adjusted gamma distribution:
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Fg’a}nma (ﬁs‘,gamma |a*,ﬁ*). This procedure is repeated for each nonzero, non-heavy precipitation amount for each site synthesized by the weather

generator.
A.2. Non-parametric simulation of weather regimes for dynamic climate change

Following the approach present in Part (1) related to non-parametric simulation of WRs for baseline weather, the probabilities p, can be then
adjusted to alter the frequencies of each of the K WRs in the final sequence of WR simulation, enabling the generation of dynamic climate change
scenarios (i.e., scenarios in which the frequencies of different atmospheric flow patterns change compared to their historical frequencies). This is
achieved using a linear program. The goal of this model is to identify new sampling probabilities p, that, when used in the nonparametric simulation
approach above, create a sequence of WRs with long-term average frequencies that approach some vector of target frequencies 8" = {01 RETEN GK} which
define a scenario of dynamic climate change.

Let 6;, be the average frequency of occurrence (expressed as a probability) of WR i occurring in segment n. This value can be calculated simply by
adding up the historical number of daily WR i occurrences in segment n and dividing it by the total number of days in the segment. We develop a series
of K equations (for the K WRs) relating the WR frequencies in each segment to the target frequencies " based on the sampling probabilities of each
segment, as follows:

P1011 + -+ Pubin + - + Dy, — 77 + 77 =0,
: (A2.1)
P11 + = +Pubkn + -+ + Py Ok, — T + T = ‘9;
Here, 7;” and #; are slack variables for the i™ WR, which allow the weighted average frequency across the N, segments to deviate from the target
frequency 6;. We also require that the sampling probabilities across segments sum to unity:
p1+ e+ pat N, =1 (A2.2)

We seek to minimize the slack variables 7", z; for i = 1,...,K in the objective function in order to force the solution to find sampling probabilities
{p1, . pn, } that help achieve the target WR frequencies ¢':

5=3F Gl +m7) (A2.3)

where J; is the first component of the objective function to be minimized, and C, is a cost coefficient. If the model is defined only by the constraints
in Egs. (A2.1)-(A2.2) and the objective function in Eq. (A2.3), there can be a tendency for the solution to force the sampling probabilities for many
segments towards zero, and applying non-zero probability to only a handful of segments. This is undesirable, because we do not want to repeat only a
few D-year segments of daily WRs in our final simulation. Therefore, we further adjust the model to incentivize equal sampling probabilities across
segments (i.e., minimize the deviation of p, from A}—D) as much as is possible while still achieving long-term WR frequencies that approach the target

values 6°. To do this, we introduce a series of additional constraints on the sampling probabilities themselves:

Dn—Vn +v, = N, (A2.9)

Here, y; and y; are slack variables for the n'™ sampling probability that quantify its deviation from a uniform probability NLD Each slack variable is

further partitioned into two components that can be minimized in the objective function, allowing for a piecewise linear cost function on these
deviations:

o =Tn1tTn2ln =Vn1 a2 (A2.5)
And:
7wy <tforallne {1, Np}

Yu1 <7y (A2.6)
With:
Nj _ _
Jo = Znil (Ch a1+ Gy a1+ Gy, Yozt C727n,2> (A2.7)

Here, J3 is the second component of the objective function to be minimized, such that the final objective function is J = J; + J2. 7, is a user-selected
threshold, and C,, and C,, are cost coefficients such that C,,>>C, >>C,. This formulation will seek solutions that drive the sampling probabilities p,
towards a uniform probability g, and will penalize small deviations from g (i.e., deviations smaller than z,) less than large deviations. Both C,, and C,,
are significantly greater than C,, which will force the model to prioritize keeping the sampling probabilities close to NLD over adjusting the sampling
probabilities to achieve the target WR frequencies 6. To force the model to achieve WR frequencies that are close to the target, we also constrain the
slack variables ;" and #;" with a user-defined threshold (z,) to ensure that the weighted average frequency across the Np segments is within some small
distance of the target for all WRs, as below:
forallie {1, K},

n
T < T

(A2.8)

The value of 7, can be set small at first (e.g., 0.0001) and iteratively adjusted upward if the model is initially infeasible. 7, can be further adjusted
upward to strike a balance between achieving the target WR frequencies and retaining sampling probabilities for each segment that are close to a
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uniform probability. This balance is ultimately subjective and left to the analyst to decide. We recommend that this initial calibration step can be taken
with 7, = 0 (i.e., no piecewise linear cost). Then, the value of 7, can be fine-tuned to better balance deviations of sampling probabilities across

segments. Our experience suggests that values for 7, between 0 and 0.4 provide adequate results.
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