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ABSTRACT

Deep learning-based vulnerability detection has shown great per-
formance and, in some studies, outperformed static analysis tools.
However, the highest-performing approaches use token-based trans-
former models, which are not the most efficient to capture code
semantics required for vulnerability detection. Classical program
analysis techniques such as dataflow analysis can detect many types
of bugs based on their root causes. In this paper, we propose to com-
bine such causal-based vulnerability detection algorithms with deep
learning, aiming to achieve more efficient and effective vulnerability
detection. Specifically, we designed DeepDFA, a dataflow analysis-
inspired graph learning framework and an embedding technique
that enables graph learning to simulate dataflow computation. We
show that DeepDFA is both performant and efficient. DeepDFA
outperformed all non-transformer baselines. It was trained in 9
minutes, 75x faster than the highest-performing baseline model.
When using only 50+ vulnerable and several hundreds of total ex-
amples as training data, the model retained the same performance
as 100% of the dataset. DeepDFA also generalized to real-world vul-
nerabilities in DBGBENCH; it detected 8.7 out of 17 vulnerabilities on
average across folds and was able to distinguish between patched
and buggy versions, while the highest-performing baseline models
did not detect any vulnerabilities. By combining DeepDFA with a
large language model, we surpassed the state-of-the-art vulnera-
bility detection performance on the Big-Vul dataset with 96.46 F1
score, 97.82 precision, and 95.14 recall. Our replication package is
located at https://doi.org/10.6084/m9.figshare.21225413.
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1 INTRODUCTION

Software vulnerabilities cause great harm to people and corpora-
tions. Many Internet users have had their personal information
breached because of security vulnerabilities, with common reports
of breaches exposing millions of records [52]. The average data
breach costs the target company $4.24 million, according to IBM’s
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2021 report [2]. The number of vulnerabilities is growing every
year, as reported by the Common Vulnerability Enumeration (CVE)
from 2016-2021 [1]. Due to its importance, we urgently need to
develop effective and automatic vulnerability detection tools.

The rapid advance of Al technologies has motivated software
companies to invest heavily in deep learning-based vulnerability
detection tools [39, 55]. These tools have outperformed traditional
static analysis [11, 20, 38]. Recently, large language models (LLMs)
have reported state-of-the-art results; LineVul [24], a recent model
based on CodeBERT, reported 91 F1 score on a commonly used
real-world vulnerability dataset [22].

However, LLMs require large amounts of training data and com-
putational resources for training and inference (see § 5.4), but a
large volume of high-quality vulnerability detection data is hard to
get. They also can fail to detect vulnerabilities beyond the training
dataset (see § 5.5); for example, the top-performing transformer
models LineVul and UniXcoder were not able to detect any of the
real-world vulnerabilities in DBGBENCH [9]. Furthermore, by using
solely text tokens, these models may not effectively learn program
semantics, such as program values along paths, propagation of taint
values, and security-sensitive API calls along the control flow paths.
The performance of these models can be further improved when
we consider such information (see §5.3).

In this paper, we explore the idea of combining dataflow anal-
ysis (DFA) algorithms with deep learning to develop small, effi-
cient, yet effective models for vulnerability detection. In prior lit-
erature [16, 53], deep learning integrated with domain-specific
knowledge and algorithms has reported improved performance
and better generalization to unseen data, while using less data and
computational resources.

Dataflow Analysis (DFA) computes the data usage patterns and
relations in the control flow graph (CFG) of a program and reports
a vulnerability based on its root cause, i.e., whether the values and
data relations collected from the program indicate the occurrence of
the vulnerable conditions. Graph learning (learning based on graph
neural networks (GNN)) can aggregate and propagate information
in the graph in a similar fashion to DFA. In this paper, we explore
the analogy between DFA and the GNN message-passing mecha-
nism and design an embedding technique that encodes dataflow
information at each node of the CFG. Specifically, we leverage the
efficient bit-vector representation of dataflow facts to encode the
definitions and uses of the variables. Graph learning on such an
embedding propagates and aggregates dataflow information and
thus simulates the dataflow computation as done in DFA. Using this
approach, we hope that the learned graph representation can better
encode program semantic information, e.g., reaching definitions,
which will be very useful for accurate vulnerability detection.
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Figure 1: Overview of DeepDFA

Based on this rationale, we developed an abstract dataflow em- (3) We implemented DeepDFA and experimentally demonstrated
bedding that can map variable definitions of individual programs that DeepDFA outperforms baselines in vulnerability detec-
to a common space so that the model can compare and general- tion for effectiveness, efficiency, and generalization over
ize data usage patterns (dataflow) related to vulnerabilities across unseen projects (§5);
programs. We selected a graph learning architecture whose aggre- (4) We provided rationale to help understand why DeepDFA
gate and update functions worked most effectively for the dataflow performs well and is efficient (§3); and
propagation. (5) We surpassed the state-of-the-art vulnerability detection

Our evaluation shows that DeepDFA is substantially faster than performance by combining DeepDFA and UniXcoder (§5).

our baseline models in terms of both training and inference time.
It only took 9 minutes to train, and inference on a CPU took 5.8
ms/example. This remarkable efficiency permits applications for 2 OVERVIEW
personalized training and inference in non-GPU environments. It
is also efficient in its use of training data, achieving its best F1 score
using only 50+ vulnerable examples and several hundred total ex-
amples (§ 5.4). This frugality allows applications within a single
development team, where it may be impractical to collect thou-
sands of vulnerable examples. Yet, DeepDFA still outperformed all
non-transformer baselines (§ 5.3) and retained its performance on
unseen projects better than all baseline models (§ 5.5). Additionally,
when applied to a real-world benchmark of unseen projects, DBG-
BencH [9], DeepDFA detected 8.7 out of 17 of bugs (averaged over
3 runs) and correctly reported 3 out of 5 patched programs as non-
vulnerable (§ 5.5). In comparison, the highest-performing baselines,
LineVul [24] and UniXcoder [26], did not detect any vulnerabilities.
We also show that DeepDFA’s learned representation can be used
with other models to further improve their performance. By com-
bining UniXcoder with DeepDFA, we surpassed state-of-the-art
performance with 96.46 F1 score, 97.82 precision, and 95.14 recall.

In summary, we made the following contributions in this paper:

We propose DeepDFA, a deep learning framework guided by dataflow
analysis algorithms, shown in Figure 1. Given the source code of a
potentially vulnerable program (left), we convert it to a CFG and
encode the nodes using an abstract dataflow embedding which we
designed. The CFG specifies the execution order of statements, and
is the data structure on which dataflow analysis operates.

In the middle of the figure, we show our approach of computing
abstract dataflow embeddings. In dataflow analysis, definitions of
variables, e.g., a=3, are program specific. Applying to deep learning,
we abstract these concrete definitions from different programs, and
hypothesize that the usage patterns of the abstract definitions can
be compared and summarized across programs during learning.
To construct the abstract definitions, we used the properties of
definitions that are important for vulnerability detection, based on
domain knowledge from program analysis. Specifically, we consid-
ered the data types of the defined variable, the API calls, constants,
and operators used to define the variables. Inspired by the bit-vector
representation used in dataflow analysis, we encode the abstract
definitions in a compact and very efficient fashion. We will provide
more detailed design of this embedding in Section 4.1.

(1) We designed an abstract dataflow embedding to enable deep We used a bit-vector style of representing a set of abstraction
learning to generalize semantics/dataflow patterns of vul- definitions. This numerical representation can be directly used as
nerabilities across programs (§4.1); the initial node representations for graph learning. In the right of

(2) We applied graph learning on the control flow graph (CFG) the figure, we apply graph learning which aggregates the informa-
of the program and abstract dataflow embedding to simulate tion from nodes like the “merge” operation performed in dataflow

reaching definition dataflow analysis (§4.2); analysis, and also updates using the information at each nodes like



Dataflow Analysis-Inspired Deep Learning for Efficient Vulnerability Detection

'INpl = |J OUT[]
: )

uepred(v

(a) Dataflow Analysis

ICSE ’24, April 14-20, 2024, Lisbon, Portugal

| h = UPDATE(h: ), at) |

(b) Graph Learning

Figure 2: Analogy of information propagation in Dataflow Analysis and Graph Learning

the “update” operation performed in dataflow analysis. We provide
more background on the analogy in Section 3.

Finally, we use the learned graph representation to classify
whether the function is vulnerable or not. By directly propagating
dataflow information through graph learning, we hope to present
to the classifier a representation of the program which encodes
useful information directly related to vulnerability, achieving effi-
cient and effective vulnerability detection. The advantage of deep
learning is that the mapping from the encodings of programs to
the decisions are learned from the data, but in dataflow analysis,
we need to manually craft rules to map from the dataflow analysis
results to vulnerability decisions.

3 RATIONALE

In this section, we provide the relevant background of dataflow
analysis for vulnerability detection and graph learning. It provides
understanding on why our approach is efficient and effective. Then,
we compared the closely related work that also considers dataflow
in deep learning to clarify the novelty of our work.

3.1 Dataflow Analysis for Vulnerability
Detection

Dataflow analysis (DFA) is a method for computing data usage pat-
terns in a program. In addition to compiler optimization, dataflow
analysis is an important method for vulnerability detection. One
instance of dataflow analysis, called reaching definition analysis,
reports at which program points a particular variable definition can
reach. A definition reaches a node when there is a path in the CFG
that connects the definition and the node, and the variable is not re-
defined along the path. The reaching definition analysis can detect a
null-pointer dereference vulnerability based on its root cause when
it identifies that a definition of an NULL pointer reaches a deref-
erence of the pointer. Similarly, it is a causal step to detect many
other vulnerabilities such as buffer overflows, integer overflow,
uninitialized variables, double-free and use-after-free [12].

DFA uses two equations to propagate the dataflow information
through the neighboring nodes in the CFG, namely meet operator
and transfer function [4]. The meet operator aggregates the dataflow
sets from its neighbors. The transfer function updates the dataflow
set using the information available in the node v. In the reaching
definition analysis, the dataflow set is a set of definitions that reach
a program point. A simple approach of performing a DFA is the

Kildall method [33]. It iteratively propagates the dataflow infor-
mation to the neighbors of v in the CFG, one step at a time. The
algorithm terminates when the dataflow information of all nodes
stops changing, denoted a fixpoint. At termination, all nodes will
incorporate the dataflow information from all other relevant nodes.
When used for vulnerability detection, this information is compared
to a user-specified vulnerability condition to determine whether a
vulnerability has occurred in the program.

3.2 Analogy of Graph Learning and Dataflow
Analysis

Graph learning starts with an initial node representation, and then
it performs a fixed number of iterations of the message-passing
algorithm [25] to propagate information through the graph. The
initial node representation is generally a fixed-size continuous vec-
tor which represents the content of the node. At each iteration,
each node aggregates information from its neighbors, and then up-
dates its state to integrate the information. The two steps are done
through the AGGREGATE and UPDATE functions, similar to the two
dataflow equations of meet operator and transfer function. These
functions can be simple numerical equations or neural networks.
After iteration is done, all node representations are combined to
produce a graph-level representation, which is passed to a classifier
layer to make a prediction.

In Figure 2, we visualize the analogy between graph learning
and dataflow analysis on a snippet of CFG. In the CFG, each node
is a statement, and each edge indicates the order of execution be-
tween two statements. In Figure 2a, we show the two dataflow
equations [4] that define a reaching definition dataflow analysis.

meet operator: IN[v] = Uuepred(v) OUT [u] (1)

transfer function: OUT][v] = GEN, | J(IN[v] — KILL,) (2)

where IN[v] and OUT[v] are the sets of dataflow located at
the beginning and end of a statement. GEN, and KILL, represent
the dataflow generated (new definitions) and killed (overwritten
definition) in node v. Reaching definition is a may dataflow prob-
lem and thus the meet operator used union to merge the dataflow
information from its predecessors. Meanwhile, reaching definition
is a forward dataflow problem, and thus we used IN[v], GEN,, and
KILL, to compute the dataflow at the exit of the statement.

In Figure 2b, we show an analogous behavior of graph learning.
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al = AGGREGATE({h!, !|u € pred(v)}) (3)
ht = UPDATE(hL™!, al) (4)

aggregate:
update:

where al, denotes the aggregated information from the neighboring
nodes and k!, denotes the state of node v after t iterations of message-
passing (analogous to OUT [v]). We set t as a hyperparameter.

3.3 The Novelty of Our Work

Previously, researchers have proposed to integrate dataflow infor-
mation with deep learning for program analysis tasks. A category
of approaches similar to Devign [56] used data dependency graphs
as a part of the program representation on which deep learning
is performed. However, Devign used word embeddings to encode
statements into vector representations based on their unstructured
text content. Such an encoding, even propagated through data de-
pendency edges, cannot directly capture the dataflow patterns.

PROGRAML [17] has developed graph learning on LLVM IR code
and applied it for compiler optimization tasks. It is another work
that pointed out the analogy between DFA and graph learning.
Their solution is to modify CFGs by creating instruction nodes
and data nodes separately. PROGRAML adds control-flow edges
between instruction nodes and data-flow edges between the data
nodes. However, this work encoded nodes using an embedding
which only represents LLVM IR operators and variable types. This
approach is very coarse-grained in that many statements can have
the same operators and variable types, but they will lead to different
dataflow. Therefore, similar to Devign, the propagation of such
an encoding even along dataflow edges does not directly capture
dataflow patterns.

Our abstract dataflow embedding attempts to directly represent
the variable definitions which are propagated in DFA and is modeled
after the bit-vector representation used in DFA, which allows the
network to learn the operations of the dataflow analysis algorithm.
We also target a specific problem (reaching definitions, which was
not targeted by PROGRAML), for which the results of DFA are
directly useful and pertinent to vulnerability detection (e.g. § 4.2).

4 APPROACH

Based on the analogous behaviors of DFA and GNN, we designed a
node embedding that can represent the dataflow set at each node.
We developed DeepDFA, a deep learning framework which con-
ducts graph learning on the CFG of a program and propagates
dataflow information for vulnerability detection.

4.1 Abstract Dataflow Embedding

In dataflow analysis, we use a bit vector to represent the dataflow
set at each node. A bit vector consists of n bits of 0s and 1s. Its
length is the size of the domain. A bit is set to 1 if its corresponding
element is present in the set. In reaching definition analysis, the
domain consists of all the definitions in the program, and the bits
are set to “1” if the corresponding definitions reach the node. For
example, in Figure 1, the program contains three definitions at
nodes v1, v3, and vy so the reaching definition analysis uses a bit
vector [0 0 0] to initialize each node at the beginning of the analysis.
This bit vector represents OUT [v] in the dataflow equations (See
Section 3.2). It is updated at each step of propagation, and when
the analysis terminates, the bit vectors for each node represent all
possible definitions that can reach that node.

The bit-vector representation of reaching definition analysis effi-
ciently encodes program semantic features related to vulnerability
detection. The definitions of programs can be quickly obtained at
the node via lightweight analysis locally at the statements. How-
ever, in graph learning, we cannot directly use the bit vector of
definitions as the node embedding. This is because in dataflow anal-
ysis and the domain of definitions are both specific to a program. In
other words, different programs have different variable definitions;
the bit vectors of each program thus have different lengths and the
elements (each definition) are not comparable either. Whereas, in
graph learning, we want to extract dataflow patterns of vulnerabili-
ties from all the programs in the training dataset. Thus, we need to
have a “global” definition set that can be used to specify definitions
for different programs, so that graph learning can compare them
and generalize from them.
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To address this challenge, we map all the concrete definitions in
the programs in a training dataset to abstract definitions by iden-
tifying important properties of the definitions. Following a list of
attack surfaces identified by Moshtari et al. [41], we designed the
following four properties that can encompass the attack surfaces
of a vulnerability and used them to represent a definition:

(1) API call: the call to library or system functions used to define
a variable, e.g. malloc and strlen.

(2) Data type: the data type of the variable being assigned, e.g.
int, char* and float.

(3) Constant: the constant values assigned in the definition, e.g.
NULL, -1 and the hard-coded string "foo".

(4) Operator: the operators used to define a variable, e.g. +, -
and *.

We analyze a large corpus of programs, e.g., the training set, and
collect the top-k frequently used API calls, data types, constants
and operators to construct a dictionary. k is a hyperparameter of
DeepDFA. We select only the top-k keys because the represen-
tations of user-defined names of APIs and data types cannot be
generalized across programs unless they are represented frequently
in the dataset.

In Figure 3, we show an example of abstract dataflow embedding
for an example dy in Figure 1: str = malloc(1@ * argc). This
definition used an API call, malloc, with the constant 10, opera-
tor *, and data type charx. Contrasted with the 3-bit bit vector
(the example in Figure 1 includes three variable definitions) that
represents a concrete definition in dataflow analysis for this pro-
gram, the abstract embedding is larger but a fixed size, consisting
of 5x4 elements for this example. Here, 4 is the four properties we
considered and 5 is the hyper-parameter k we mentioned above,
which defines the size of the pre-defined dictionary, and the length
5 hot-vector encoding represents the value of the property. Because
the vector that encodes the abstract dataflow embedding has a fixed
size, our embedding approach can scale to any program size in the
dataset without impacting the model’s efficiency. The vectors in
different programs encode common properties of definitions, so the
model can capture the dataflow patterns across programs.

Abstraction potentially brings in approximation. Using the ab-
stract dataflow embedding, two different definitions may lead to
the same encoding. The embedding is designed to be sparse enough
that within a program, unique definitions are often represented
by unique embedding keys, which allows the model to distinguish
definitions within the same function, similar to the bit-vector used
in dataflow analysis.

4.2 Using Graph Learning to Propagate
Dataflow Information

Our goal in utilizing graph learning is to learn a node embedding
that contains dataflow information. Without loss of generality, we
use reaching definition as an instance of dataflow analysis for our
explanations. Our approach takes the following steps. First, we con-
struct the CFG for a program. Second, we perform static analysis
to identify all the definitions in the CFG. We then initialize each
node of the CFG using the abstract dataflow embedding, based on
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whether the node is a definition or not. The abstract dataflow em-
bedding is computed from all the programs in the training dataset
(see §4.1 for details).

Once the nodes are initialized, we apply the message-passing
algorithm [25] from graph learning to propagate the dataflow infor-
mation throughout the CFG, similar to Kildall’s method [33]. The
main differences are that (1) we propagate the abstract dataflow
embeddings of the CFG nodes, and (2) instead of using the dataflow
equations of transfer function and meet operator, we alternatively
apply the AGGREGATE and UPDATE functions defined in Equa-
tions 3 and 4 (See §3.3). Although the analogy applies for all GNN ar-
chitectures trained with message-passing, we implemented our ap-
proach using a Gated Graph Sequence Neural Network (GGNN) [35],
where AGGREGATE is an Multi-Layer Perceptron (MLP) and UP-
DATE is a Gated Recurrent Unit (GRU); we will use this architecture
as an example to compare the two algorithms.

When dataflow information arrives at the merge point of a
branch in CFG, graph learning applies the AGGREGATE function.
Specifically, in GGNN, the MLP calculates a weighted sum of the
representations of multiple neighboring predecessors, resulting in
a single vector; this fulfills the same function as the meet operator.
When dataflow information arrives at a new node, the UPDATE
function in graph learning computes the next state by combining
the information in the current node with the output of AGGREGATE
from its predecessors. Specifically, in GGNN, the GRU selectively
forgets portions of the previous state and integrates new infor-
mation from the current node and from the neighboring states,
similar to the set union/difference with GEN/KILL performed in
the transfer function. Through applying AGGREGATE and UPDATE,
the initial embedding will be updated with the dataflow informa-
tion from the neighboring nodes, similar to the effect of dataflow
analysis.

As Cummins et al. [17] noted, DFA iterates to a fixpoint and
thus propagates information throughout the entire graph, while
graph learning performs a fixed number of iterations ¢ and thus
propagates to neighbors in a distance t. We set t to the setting
which maximized validation-set performance.

Finally, we combine the learned abstract node embeddings to pro-
duce graph level representation using Global Attention Pooling [35],
and pass it to a classifier to predict the function as vulnerable or
non-vulnerable.

The AGGREGATE and UPDATE functions are learned from la-
beled data during training, rather than using a fixed formula as in
dataflow analysis. By learning from data, we provide an alternative
solution to the challenges that often block dataflow analysis such
as tracking pointers and handling library calls. Importantly, we
no longer need to explicitly specify vulnerability conditions, as
required in static analysis. Through learning from training exam-
ples, the classifier can capture patterns of dataflow information
that represent various types of vulnerabilities and also select the
relevant dataflow information for vulnerability detection.

In Table 1, we step through a reaching definition analysis for the
CFG example in Figure 1 to demonstrate how dataflow information
propagates through the graph and how our approach uses dataflow
information for vulnerability detection.

The row Iteration 0 shows the initialization of each node in
the reaching definition analysis. At iteration 1, the DFA updates
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Table 1: OUT|[v] at each iteration of DFA

Iteration 01 vy U3 U4
0 [000] [000] [000] [000]
1 [100] [000] [010] [001]
2 [100] [100] [010] [011]
3 [100] [100] [010] [111]

OUT[v1], OUT[v3] and OUT[v4] using the transfer function to
indicate that the new definitions are introduced at the nodes. At it-
eration 2, OUT [v1] (including d1 ) propagates to vy and OUT [v3] (in-
cluding dz) propagates to vy, through the CFG edges. At iteration 3,
the meet operator is used to combine OUT [v3] and OUT [v3]. Specif-
ically, IN[v4] = U{OUT|v2],OUT[v3]}, computed as [100] V
[010] = [110];then the transfer function combines IN[v4] with
GEN,,, resulting in OUT [v4] = [111].

After the DFA algorithm terminates, the final states of the nodes
are used to detect vulnerabilities. The state of v4 is [1 1 1], which
indicates that both d;i and d2 may reach v4 depending on the pro-
gram values. Because the definition d; : str = NULL can reach
the dereference at v4, we can conclude that this program has a
null-pointer dereference vulnerability. Similarly, in graph learning,
after a fixed number of iterations, all the node representations are
combined using a graph readout operation to produce a graph-level
representation, which is used to predict for vulnerability detection.
Programs with the null-pointer dereference bugs will have the same
abstract definitions characterized by the char* type and the con-
stant NULL to reach the pointer dereference statements. We believe
that the dataflow information represented by DeepDFA will allow
a relatively simple classifier to recognize this pattern among the
training dataset.

5 EVALUATION

In the evaluation, we studied 3 research questions:

(1) Is DeepDFA effective for finding vulnerabilities?

(2) Is DeepDFA efficient, both in terms of training data and
computational resources?

(3) Can DeepDFA generalize to unseen projects?

We also performed ablations on DeepDFA to understand the
effects of each feature on its performance.

5.1 Implementation

To explore whether DeepDFA can advance the state-of-the-art, we
created two settings, DeepDFA and DeepDFA+LLM. We imple-
mented DeepDFA using the GGNN architecture [35] and based on
LineVD’s implementation®, using PyTorch and DGL?. We used
Joern® to parse the CFGs because it does not require compila-
tion; this allows our approach to be utilized out-of-the-box given
only the source code, without extra configuration. To implement
DeepDFA+LLM, during training and inference, we combine the
graph embedding generated by DeepDFA’s graph readout stage

Ihttps://github.com/davidhin/linevd
2All of our code and data are available at https://doi.org/10.6084/m9.figshare.21225413
3Joern version 1.1.1072, available at https:/joern.io
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Table 2: Hyperparameters used for training DeepDFA.

Hyperparameter Value
A (learning rate) le73
L, weight le7?
k (threshold) 1000
t (number of GNN steps) 5
Hidden size 32
# output layers 3
Batch size 256

with the sentence embedding produced by the final self-attention
layer of LLM. The embeddings are concatenated and fed into a
feed-forward classifier layer; both embeddings and the classifier
are trained jointly. We believe that providing dataflow information
can improve the LLM embedding, as LLM is trained exclusively
from text and it is hard to learn dataflow relations among all the
dependencies of tokens.

To avoid data leakage, we extracted the initial abstract dataflow
embedding from the training set only. We set the hyperparameters
k and t based on the best validation performance through our ex-
perimentation. When k = 1000, the model covered most (79.38%) of
the definitions in the test dataset. That means, the dictionary still
misses some APIs, constants, data types or operators that occur in
the test data set but are not frequent in the training dataset. To learn
a more general representation and improve the coverage for test
dataset, in future work, we can train the abstract dataflow embed-
ding using a very large dataset of code, e.g., using self-supervised
learning without the need of vulnerability labels.

For reproducibility, Table 2 documents the hyperparameters we
used for training DeepDFA.

5.2 Experimental setup

In the recent literature [13, 24, 36], vulnerability detection models
are typically evaluated with the Devign [56] or Big-Vul [22] datasets,
both of which contain real-world open-source C/C++ projects. In
our evaluation, we used the Big-Vul dataset because (1) it is big-
ger than Devign, consisting of 188,636 functions with 10,900 (6%)
vulnerable labels and 177,736 (94%) non-vulnerable labels, and (2)
it reflects the imbalanced distribution of real-world code (Devign
is a balanced dataset), with the minority of code being labeled as
vulnerable [13]. To corroborate our results, we also evaluated the
models on DBGBENCH [9], explained further in RQ3.

Scope: Currently, DeepDFA reports whether a function is vulnera-
ble or not. We can further apply deep learning explanation tools to
report line level vulnerabilities, as done in Li et al’s work [36]. We
leave this evaluation for future work. We evaluated DeepDFA on
C/C++ programs, as done by the most deep learning-based vulner-
ability detection tools. However, we believe that DeepDFA can also
be applied to other popular programming languages, such as Python
and Java. This is because we extract the abstract dataflow embed-
ding (API, datatype, literal, operator) from the training dataset,
independent of the programming language.

RQ1: To evaluate the models’ performance, we trained the mod-
els on the train/validation/test splits of 80/10/10% published by


https://github.com/davidhin/linevd
https://doi.org/10.6084/m9.figshare.21225413
https://joern.io
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the LineVul paper [24]. To address class imbalance while training
DeepDFA, we undersampled the majority class (non-vulnerable)
following Japkowicz et al. [31]; our initial studies found that this
improved our performance on the validation set. We kept the orig-
inal ratio of vulnerable/non-vulnerable labels for the validation
and test sets. We used Joern? [54] to parse the code into its CFG
representation. Joern could not parse some programs in the dataset
(0.8%; see Appendix B for details), so we used the remaining data
in our experiments. The performance of the baseline models was
similar to the full dataset (see Appendices C & F for details).
We report the following performance metrics:

e Precision reports the portion of positive predictions which
were correct: P = %.

e Recall calculates the portion of positive examples which
were recalled correctly: R = %.

e F1 is the harmonic mean between Precision and Recall:
F1=2x gﬁg. We used F1 to decide the highest performing
model because it balances precision and recall, which are
both important in an imbalanced dataset.

Since the model performance can vary with different random

seeds [48], we trained the models 3 times with different random
seeds and reported the mean score and standard deviation for each
metric. We used McNemar’s statistical test, following best prac-
tices [18], to confirm that our improvement is statistically signifi-
cant, using the implementation in statsmodels v0.14.0 [47].
RQ2: To evaluate the models’ efficiency in terms of computational
resources, we measured the runtime and memory usage. These
are often contested resources in deep learning workloads [30]. We
report the following metrics for runtime and memory usage:

e Training time: the wall-clock time to execute one training
run with one validation run per epoch

o Inference time: the average wall-clock time to predict for
one example.

e MACs: the average number of Multiply-Accumulate opera-
tions® to predict for one example; this measures the perfor-
mance independently of the computing platform [30, 49].

e Parameter count: the number of trainable parameters in
the neural network model.

We evaluated the runtime on an AMD Ryzen 5 1600 3.2 GHz
processor with 48GB of RAM and an Nvidia 3090 GPU with 24GB
of GPU memory.

To evaluate the models’ efficiency in terms of training data,
we trained the models on progressively smaller subsets which we
randomly sampled from Big-Vul (100%, 10%, 1%, 0.5%, 0.1%, shown
in the columns of Table 6). Each subset includes the smaller subsets
(e.g. 10% subset includes the 1% subset and 1% includes 0.5%). We
generated 3 versions of the subsets using different random seeds
and reported the mean and standard deviation F1 score. The goal
of this study is to discover what are the minimum training data
needed for these models to perform well on the test dataset.

RQ3: We prepared two experiments for this RQ. In the first experi-
ment, we created a dataset from Big-Vul to evaluate how well the
models generalize to unseen projects. This dataset consists of the

“https://joern.io
SWe used DeepSpeed profiler to measure MACs [44]. https://www.deepspeed.ai
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mixed-project and cross-project two settings. To set up the mixed-
project setting, we held out 10k randomly selected examples for the
validation and test sets and used the rest for training, similar to the
original method of partitioning the dataset. The training set and
test set can and often do contain examples from the same project,
though individual examples will not be duplicated between the two
sets. To set up the cross-project setting, we held out 10k examples
from randomly selected projects in Big-Vul for the validation and
test sets, and used the rest of the projects for training. The projects
in the test set are distinct from the projects in the training set.
To mitigate the potential bias caused by the selection of projects,
we repeated this process 5 times with different selections of the
cross-project data and report the results of 5-fold cross validation.
In order to further evaluate generalization to unseen projects,
we applied DeepDFA on buggy and patched programs from DBG-
BeNcH [9]. DBGBENCH consists of a set of real-world C programs
with bugs, which were analyzed and fixed by professional software
engineers. The DBGBENCH programs are distinct from the programs
in the Big-Vul dataset. We labeled the buggy functions using the
fault locations documented in DBGBENCH; these were labeled by
the consensus of multiple developers and were manually checked
for correctness, and thus are more reliable than Big-Vul’s labeling
process based on bug-fixing commits. We included all functions
which had a bug location marked as “buggy” and their correspond-
ing patched versions in our study. We excluded the bugs marked
as “Functional” because these bugs cannot be detected without
program-specific bug constraints. We only included the patched
versions which were modified by the developers’ fixes, taking the
first correct® developer patch which could be applied to the pro-
gram. We included only one patch to reduce the effects of code
duplication, which can unfairly bias test performance [5]. Since the
models only view the function-level context, they will not produce
a different prediction on the functions which were not modified
by the patch. We also excluded 8 examples which could not be
processed by Joern in order to fairly compare the models’ perfor-
mance scores. This resulted in a dataset of 22 programs: 17 buggy +
5 patched. We evaluated the checkpoints trained from 3 random
seeds in Section 5.3 and report the mean performance scores.
Ablation study: We ran two ablation settings for each of the four
abstract dataflow embedding features, resulting in eight settings:
(1) using one feature at a time and (2) using three features at a
time (leaving one out). In each setting, we trained DeepDFA on the
Big-Vul [22] training dataset, and then evaluated on the Big-Vul
test dataset and DBGBENCH [9].
Baselines: We compared against 7 non-transformer models: VulDeeP-
ecker, SySeVR, Draper, Devign, ReVeal, ReGVD, IVDetect, and 4
large language models: CodeBERT, LineVul, UniXcoder, and CodeT5
7. These models were developed recently with diverse architectures,
and they represent the state-of-the-art of vulnerability detection
models [48]. See Section 7 for an overview of the models and Ap-
pendix A in the supplementary materials for the details of our
reproductions.

®Marked in DBGBENCH as “Developer fix” or “Different but Correct Fix”,
eg. https://github.com/dbgbench/dbgbench.github.io/blob/master/patches/find.
dbcb10e9/README.md

"We could not reproduce LineVD and ContraFlow on Big-Vul for function-level vul-
nerability detection.
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Table 3: DeepDFA outperformed the baselines and can be
used to further improve the existing model performance. All
scores are reported as Mean (Standard deviation). Note that
VulDeePecker, SySeVR, Draper, and IVDetect performance
were directly taken from the IVDetect paper [36], so we do
not report the variance.

(a) Comparison with non-transformer models.

Model F1
VulDeePecker 12.00 49.00 19.00

Precision Recall

SySeVR 1500 7400  27.00
Draper 1600 4800  24.00
ReGVD 1915  63.67 1133

(2.65)  (443)  (1.94)
IVDetect 2300  72.00  35.00
Devign 2685  29.00  25.03

(0.97)  (038)  (1.67)
ReVeal 3294 3427 3173

(0.75)  (1.58)  (0.65)
DeepDFA 68.26 5398  92.81

(0.16)  (0.06)  (0.40)

(b) Comparison with transformer models.

Model F1 Precision Recall
CodeBERT 21.04 68.48 12.91
(6.72)  (11.76)  (5.51)
CodeT5 45.61 56.47 38.56
(0.71)  (6.22)  (2.45)
LineVul 93.23 97.32 89.48
031)  (0.66)  (0.42)
UniXcoder 95.11 96.96 93.34
(0.21)  (1.14)  (1.23)
DeepDFA 68.26 53.98 92.81

(0.16)  (0.06)  (0.40)

DeepDFA+CodeT5 81.39 94.23 71.67
(0.96) (2.98) (1.09)

DeepDFA+LineVul 9640  98.69  94.22
(0.13)  (0.28)  (0.46)

DeepDFA+UniXcoder 96.46  97.82  95.14
0.09)  (0.99)  (1.09)

5.3 Effectiveness

Comparison with non-transformer models: In Table 3a, we
show that DeepDFA performed much better than the baseline mod-
els on F1 score and recall. DeepDFA’s score was 47.51 higher than
the average F1 score computed over all the baselines. In addition,
compared to the other 6 models, DeepDFA reported lower variances
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Table 4: Results of statistical tests for model comparison.

Models compared X statistic p-value
LineVul vs. DeepDFA+LineVul 20.0 2.77x 1077
UniXcoder vs. DeepDFA+UniXcoder 25.0 5.35x107%

for all the three metrics. This indicates that DeepDFA was more
robust to random noise throughout training, and thus more likely
to perform as expected after training.

The results show that our abstract dataflow embedding indeed
encodes useful information for vulnerability detection, despite the
fact that the node representation is small and the graph is simple.
It is more effective than property graphs (a combination of AST,
CFG, and PDG) used in Devign and Reveal. These baseline models
represented nodes using unsupervised word embeddings [34, 40,
43], which do not have a direct relationship with vulnerabilities. In
contrast, DeepDFA’s node representation encodes the dataflow sets
of reaching definitions, related to the root causes of vulnerabilities.
Comparison with transformer models: We compared DeepDFA
with CodeBERT, LineVul, UniXcoder, and CodeT5 - the state-of-
the-art among the transformer language models we evaluated. (see
Appendix C for the performances of all the baseline models). Ta-
ble 3b shows that DeepDFA performed considerably better than
CodeBERT and CodeT5 in F1 score and had the smallest variance
(among all the models) between runs.

Although UniXcoder and LineVul performed better than DeepDFA
in terms of F1 score, DeepDFA’s embedding can be combined with
UniXcoder and LineVul to further improve their performance. We
achieved state-of-the-art performance on all three metrics by adding
DeepDFA’s embedding to UniXcoder, with an F1 score of 96.46 (1.35
improvement), a Precision score of 97.82 (0.86 improvement), and a
Recall score of 95.14 (1.80 improvement). Adding DeepDFA’s em-
bedding improved CodeT5 considerably - by 35.78 F1 score — and
improved LineVul by 3.17 F1 score. We used McNemar’s signifi-
cance test, as recommended by Dietterich et al. [18], to confirm
that the differences in performance were statistically significant
(p < 0.05; see Table 4).

DeepDFA does not use any text-/token-level information such
as variable and function names, yet it has achieved excellent perfor-
mance. We believe that leveraging the domain-specific algorithm of
reaching definition analysis to guide graph learning indeed plays
an important role and that the embedding indeed encodes semantic
features (e.g., data relations) that are important for vulnerability
detection. The fact that DeepDFA can further improve the top-
performing LLMs indicates that LLMs, which exclusively leverage
text information, may not sufficiently learn the dataflow of code;
DeepDFA thus provides the complementary information for vul-
nerability detection. We further believe that the examples which
DeepDFA predicted incorrectly could be attributed to the fact that
reaching definition analysis cannot handle all types of vulnerabili-
ties. Thus, by adding other dataflow analyses such as live variable
analysis, DeepDFA could further improve its performance. We will
leave such an investigation to our future work.
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Table 5: DeepDFA’s training/inference time was faster than
the baselines.

Inference cost per example

Train time
Model (ms) GPU (ms) CPU (ms) MACs
LineVul 10h19m 11.1 1068.2 4832 B
DDFA+LV 10h40m 154 1571.5 48.32 B
UniXcoder 11h16m 9.5 486.0  48.32B
DDFA+UXC 13h22m 13.3 922.1 48.32 B
DeepDFA 9m 4.6 5.8 40.27M

RQ1 result: DeepDFA performed much better than all non-
transformer baselines. When combined with transformer
models, it achieved the highest SOTA score on all metrics.

5.4 Efficiency

Efficiency of computational resources: In Table 5, we present
the runtime comparison of DeepDFA, LineVul, and UniXcoder. Here,
we did not list other models because their performances are much
worse (shown in Table 3), and they took hours to train (see Appendix
D in the supplementary material), compared to DeepDFA which
finished training in 9 minutes (excluding data preprocessing time).
In Appendix E, we also listed the sizes of the models in terms of
the number of parameters.

Compared to UniXcoder, DeepDFA took 75x less time to train, 2x
faster inference on GPU, and 84x faster inference on CPU. DeepDFA
had the least parameters of all models, equal to 67% of the smallest
model (ReVeal) and 0.3% of the highest-performing baseline model
(UniXcoder). These results consistently indicate that DeepDFA ex-
cels in its efficiency compared to other models. This is possible
because DeepDFA is based on the dataflow analysis’s compact
representation — bitvector, which captures the relevant semantic
information in bits and thus is more efficient compared to tokenized
strings. DeepDFA propagated information along only the domain-
specific CFG edges, rather than associating every pair of tokens in
an exhaustive fashion.

DeepDFA’s short inference time due to a low number of MAC
operations enables its use in non-GPU environments (which are
common for software development) where large language models
may not be easily deployed. DeepDFA’s short training time enables
techniques like per-project fine-tuning and hyperparameter tuning,
which would be much more costly with the LLMs’ training times
of over 10 hours. Because of DeepDFA’s small parameter count, it
is ideal for resource-limited computing platforms such as mobile
devices, where large models cannot be used [30].

Efficiency on training data: In Table 6, we report the performance
of DeepDFA over reduced training dataset sizes, compared to the
SOTA models, LineVul and UniXcoder. The columns “# data” and
“# vul” list the number of training examples in each subset and, of
these, the number of vulnerable examples. The results show that
DeepDFA maintained a stable performance across small dataset
sizes, even with only 0.1% of the training dataset, using only 151
training examples. In contrast, LineVul and UniXcoder steadily
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Table 6: DeepDFA retained its performance on limited data.

F1
Portion  #data #vul LineVul UniXcoder DeepDFA

0.1% 151 11 29.75 4.36 55.24
0.5% 755 56 77.69 79.37 68.17
1.0% 1,510 90 84.62 79.60 68.40
10.0% 15,091 885 86.67 92.53 68.44
100.0% 150,908 8,736 93.23 95.11 68.26

dropped in performance as the size of the training dataset decreased.
At 0.1% data, LineVul’s mean performance was only 29.75 in F1 and
UniXcoder’s was 4.36.

For project-specific training in applications within a single de-
velopment team, a model which can learn efficiently from a small
dataset is useful.

We believe that our model’s stable performance over the reduced
dataset and good performance with very small training datasets
demonstrate the advantage of the small models and the effectiveness
of domain-specific algorithms to guide model learning. DeepDFA is
less prone to overfitting to datasets of limited size since it has fewer
parameters than LineVul [8]. On the other hand, the transformer
models require a large corpus of programs to learn the patterns
among the unstructured token data.

RQ2 result: DeepDFA was considerably faster than the
baselines; it took 9 minutes to train, 4.64 milliseconds for
inference on GPU, and 5.8 milliseconds for inference on
CPU. DeepDFA retained stable performance as the training
dataset size was reduced. In a low-data scenario, DeepDFA
outperformed LineVul and UniXcoder by 25.49 and 50.88
points F1 score.

5.5 Generalization

Cross-project evaluation on Big-Vul: We compared the models’
F1 scores on the cross-project (shown as Cross F1) and mixed-project
(shown as Mixed F1) settings to evaluate the models’ capabilities
of generalizing over unseen projects. Table 7 presents the highest-
performing baseline models, LineVul and UniXcoder, compared to
DeepDFA (the results of the other baseline models are available in

Table 7: How do the models handle unseen projects? Note
the performance drop (AF1) from the cross-project to mixed-
project setting.

Model Mixed F1  Cross F1 AF1
LineVul 84.03 71.37 -12.66
UniXcoder 86.30 76.72  -9.58
DeepDFA 70.49 68.58 -1.91
DeepDFA+LineVul 87.89 71.88 -16.02
DeepDFA+UniXcoder 89.85 78.07 -11.77
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the supplementary material, Appendix F). Among the most impor-
tant metrics, AF1 shows how performance changes when the model
is applied to unseen projects. Shown under Column AF1, DeepDFA
only dropped 1.91 (2.7%) F1 score, compared to 12.66 (15.1%) drop for
LineVul and 9.58 (11.1%) drop for UniXcoder. DeepDFA+UniXcoder
reported the best performance for both the mixed-project and cross-
project settings, improving on UniXcoder’s mean F1 score by 3.55
and 1.35 points respectively; DeepDFA+LineVul also improved Line-
Vul’s F1 score in both settings.

Applying to DBGBENCH:

In Table 8, we report our experience of applying deep learning
tools to real-world bug benchmarks. DeepDFA detected 8.7 out of
17 total bugs on average across 3 runs. DeepDFA also correctly
predicted non-vulnerable for 3 out of 5 patched programs. On the
other hand, neither of the competing LLMs, LineVul and UniXcoder,
detected any bugs and in fact both models reported all programs
as non-vulnerable with high confidence. This implies that these
models were heavily biased to predict all examples in DBGBENCH as
non-vulnerable. With the addition of DeepDFA, DeepDFA+LineVul
and DeepDFA+UniXcoder’s generalization greatly improved, yet
they did not perform as well overall as DeepDFA alone. It should
be noted that the bugs in DBGBENCH are very complex and took
human experts hours to diagnose [9]. In the past, we have tried a
variety of static analysis tools, such as Cppcheck® and Polyspace”,
to detect bugs in DBGBENCH, but we have not detected any of these
bugs.

We believe that DeepDFA generalizes better because it does not
rely on spurious features that may exist at token and text level, such
as variable names and function names, as reported by previous
research [13]. These spurious features are no longer correlated
with vulnerabilities in unseen projects, as their input tokens will
likely change. Our abstract dataflow embedding encodes the usage
patterns of commonly used API calls, operators, constants, and data
types. Such patterns can be extracted from unseen text and are
directly related to the cause of the vulnerabilities, and thus might
help DeepDFA generalize better over unseen projects.

RQ3 result: DeepDFA had the smallest drop in F1 score
(A F1) when applying to the vulnerabilities in the projects
that are not seen in training datasets. DeepDFA was able
to detect complex bugs in DBGBENCH and was able to
distinguish the buggy and patched versions. The SOTA
models, LineVul and UniXcoder, did not detect any bugs
in DBGBENCH.

5.6 Ablation studies

Table 9 shows the model’s performance on DBGBENCH. The model
detected the most bugs when using all four features compared to
other ablation settings. When using only one feature at a time,
the model consistently missed 1-2 bugs which were detected by
DeepDFA. When using three features at a time (leaving one out), the
model still consistently failed to detect 1 bug which was detected
by DeepDFA.

8https://cppcheck.sourceforge.io/
https://www.mathworks.com/products/polyspace.html
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Table 8: DeepDFA generalized to real-world bugs in DBG-
BENCH. Results are averaged over checkpoints from 3 ran-
dom seeds. Buggy/Patched columns show the number of cor-
rect predictions on buggy/patched programs respectively.

Model Buggy Patched Accuracy F1
LineVul 0.0 5.0 22.73 0.00
DeepDFA+LineVul 2.0 1.3 46.97  60.67
UniXcoder 0.0 5.0 22.73  0.00
DeepDFA+UniXcoder 9.0 1.3 46.97  60.67
DeepDFA 8.7 3.0 53.03 64.29
Total 17.0 5.0 - -

Table 9: Ablation study evaluated on DBGBENCH

Feature set Buggy Patched Acc F1

DeepDFA 8.7 3.0 53.03 64.29
API only 7.7 3.0 4848 57.50
Datatype only 8.0 3.0 50.00 59.26
Literal only 7.7 3.0 4848 57.50
Operator only 7.7 3.0 4848 57.50
Api+datatype+literal 8.0 3.0 50.00 59.26
Api+datatype+operator 8.0 3.0 50.00 59.26
Api+literal+operator 8.0 3.0 50.00 59.26
Datatype+literal+operator 8.0 3.0 50.00 59.26
Total 17.0 5.0 - -

Table 10 shows the model’s performance on the Big-Vul test
dataset. DeepDFA (integrating all the four features) performed the
best out of all configurations. When testing one feature at a time,
datatype by itself performed better than the other 3 features alone.
When we used the combined feature sets, the model performed
better than using only one feature.

6 THREATS TO VALIDITY AND DISCUSSIONS

Threats: We evaluated performance primarily on the Big-Vul dataset
because this dataset was supported by all the baseline models. Com-
pared to the Devign dataset, Big-Vul is imbalanced and can better

reflect a real-world vulnerability detection scenario. However, Big-
Vul’s data collection process based on bug-fixing commits can in-
troduce label noise and selection bias and as a result, the evaluation

could fail to represent real-world performance. To address the selec-
tion bias, we studied settings which reflect more realistic scenarios

with reduced training datasets and cross-project generalization;

to address the label noise, we evaluated the models on additional

real-world bugs collected in DBGBENCH, which were labeled by

developers and manually checked.

The performances reported in RQ1, RQ2, and RQ3 will be af-
fected by the random noise in the model training and, for RQ2,
dataset selection. To mitigate this effect, we generated 3 versions
of the subsets using different random seeds and reported the mean
performance.
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Table 10: Ablation study evaluated on the Big-Vul test dataset

Feature set F1 Precision Recall
DeepDFA 68.26 53.98 92.81
(0.16)  (0.06)  (0.40)
Datatype only 68.04 53.83 92.46
(0.19)  (031)  (0.30)
Literal only 62.50 50.52 82.46
(0.81) (1.83) (7.26)
Operator only 64.47 52.82 82.98
(033)  (1.59)  (4.90)
API only 63.67 50.66 86.14
(045)  (236)  (5.58)
API + datatype + literal 68.18 54.06 92.28

0.10)  (0.13)  (0.15)

API + datatype + operator 68.16 54.03 92.28
(0.13)  (0.18)  (0.15)

API + literal + operator 68.11 53.98 92.28
(0.14)  (0.20)  (0.15)

Datatype + literal + operator  68.12 54.04 92.11
(0.20) (0.11) (0.46)

The mixed-project and cross-project performance reported in
RQ3 will be affected by the random selection of projects in the
training/held-out datasets. To mitigate this effect, we performed
5-fold cross-validation and reported the mean performance.
Discussions: We believe our approach can be extended to bit-
vector dataflow problems [29, 45]. All problems in this category
contain a finite set of dataflow facts and have the same form of
transfer functions and meet operators (see Equations 1 and 2). For
example, live variables and available expressions [45] are bit-vector
problems that are important for vulnerability detection [12]. We
believe a new dataflow analysis can be integrated by: (1) defining
an abstract dataflow embedding which can capture the dataflow
set of the analysis, (2) configuring the neural network used as the
aggregate function in GGNN to better simulate the meet operator
(based on whether it is a union or intersection operation), and
(3) reversing the CFG edges for backward dataflow problems (as
reaching definition is a forward dataflow problem).

7 RELATED WORK

Many works have used GNN for vulnerability detection [6, 10, 14,
19, 21, 42, 51]. In several recent approaches, Devign [56], ReVeal
[13], IVDetect [36], and LineVD [28] used GNN on program graph
representations such as AST, CFG, and PDG, and annotated the
nodes with unsupervised or pretrained word embeddings. The nov-
elty of our work is a bit-vector inspired abstract dataflow embedding
based on the analogy of graph learning and DFA algorithms.
Transformer models such as CodeBERT [23], LineVul [24], and
UniXcoder [26] used a token-based program representation pre-
trained on a large body of NL-PL pairs, and then fine-tuned for
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vulnerability detection. Using CFGs, our graph learning only prop-
agates the information along semantically important edges instead
of trying to learn the relations of each pair of tokens. Thus, our
approach is substantially more efficient. Since we have used a
semantic-based embedding, we show that we can improve the per-
formance of token based models. The most recent work, ContraFlow
[15], learns embeddings of def-use paths (an output of dataflow
analysis), then predicts vulnerability detection using a transformer
model. Our work directly emulates dataflow analysis and does not
require an expensive pretraining phase.

There were also models that used sequence and CNN architec-
tures. VulDeePecker [38] used BiLSTM on slices considering data
dependencies. SySeVR [37] used BiGRU on slices and adds data
dependencies. Draper [46] used CNN and Random Forest. However,
none of these models integrates dataflow analysis in its algorithm.

Cummins et al. [17] formulated dataflow analyses as supervised
learning tasks and applied it for device mapping and algorithm
classification; we discuss the differences from our work in-depth
in Section 3.3. Other relevant work that explores dataflow analysis
and deep learning include: (1) VenkataKeerthy et al. [50] used the
output of dataflow analysis, reaching definitions and live variables,
to learn flow-aware embeddings; and (2) Bielik et al. [7] and Jeon
et al. [32] learned static analysis formulas from a dataset based on
a fixed language. None of these works aims to develop a model for
vulnerability detection.

8 CONCLUSIONS AND FUTURE WORK

We propose DeepDFA, an efficient graph learning framework and
embedding technique for vulnerability detection. Our abstract dataflow
embedding leverages the idea of bit-vector in dataflow analysis and
integrates data usage patterns from semantic features: commonly
used API calls, operations, constants, and data types that potentially
capture the causes of the vulnerabilities. DeepDFA emulates the
Kildall method of dataflow analysis using the analogous message-
passing algorithm. Our experimental results show that DeepDFA is
very efficient. It is trained in 9 minutes and used only 50 vulnerable
examples to achieve its top performance. Yet, it still outperformed
all non-transformer baselines and generalized the best among all
the models. DeepDFA found bugs in real-world programs from DBG-
BeNcH while neither of the highest-performing baselines, LineVul
and UniXcoder, detected any bugs. Importantly, DeepDFA can be
used to improve other models. By combining DeepDFA with the top
performing models, we surpassed the state-of-the-art performance
for vulnerability detection.

In the future, we plan to incorporate other dataflow analyses, e.g.,
live variable analysis, that have been used for or vulnerability de-
tection [12]. We also plan to explore the application of explanation
tools to precisely pinpoint the vulnerability location at specific lines
in the code, and evaluate our framework on detecting vulnerabilities
in other programming languages.
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