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Abstract
While generalized linear mixedmodels are useful, optimal design questions for suchmodels are challenging due to complexity
of the information matrices. For longitudinal data, after comparing three approximations for the information matrices, we
propose an approximation based on the penalized quasi-likelihood method. We evaluate this approximation for logistic mixed
models with time as the single predictor variable. Assuming that the experimenter controls at which time observations are
to be made, the approximation is used to identify locally optimal designs based on the commonly used A- and D-optimality
criteria. The method can also be used for models with random block effects. Locally optimal designs found by a Particle
Swarm Optimization algorithm are presented and discussed. As an illustration, optimal designs are derived for a study on
self-reported disability in older women. Finally, we also study the robustness of the locally optimal designs tomis-specification
of the covariance matrix for the random effects.

Keywords Locally optimal design · Longitudinal study · Logistic model · Penalized quasi-likelihood · Robustness

1 Introduction

Many longitudinal studies are designed to investigate a char-
acteristic of a subject, with the characteristic being measured
repeatedly over time. If the response to measure this charac-
teristic is categorical, then generalized linear mixed models
(GLMMs) may be the appropriate choice. For instance, for a
binary response variable, logistic and probit mixed-effects
models are frequently used, while Poisson mixed-effects
models can be used for a count variable.

At which time points should measurements be made?
Answers to this optimal design question are important since
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it can improve the precision of parameter estimations. Opti-
mal designs for GLMMs are studied in the literature, such
as optimal designs for Poisson mixed-effects models (Nia-
parast 2009), for logistic mixed-effects models under a
maximinD-optimality criterion (Tekle et al. 2008), and under
BayesianD-optimality (Abebe et al. 2014).Waite andWoods
(2015) proposed locally D-optimal and Bayesian D-optimal
designs for GLMMswith random intercept in a block design,
through marginal quasi-likelihood (MQL) and an outcome-
enumeration method. Ueckert and Mentré (2017) applied
Monte Carlo and adaptive Gaussian quadrature method to
approximate the Fisher information matrix under discrete
mixed effect models, which is then proved to be better than
MQL. SequentialD-optimal designs forGLMMswere inves-
tigated by Sinha and Xu (2011). Robustness analysis to
incorrect specification of the covariance matrix of random
effects alsomatters, because thismatrix is generally unknown
at the design stage.

The reason why approximations are needed is the unavail-
ability of a closed-form expression for the informationmatrix
under a GLMM. This is also true for many other mixed effect
longitudinal models, where responses from the same subject
are correlated, like discrete-time survival models with ran-
dom effects. Zhou et al. (2021) applied the MQL method in
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approximating the information matrix under such a model
and derived optimal designs.

Section 2 presents a GLMM that, while not of the form in
Molenberghs andVerbeke (2005), is knownas a randomcoef-
ficients model, such as a random intercept or random slope
model (Schmelter 2007). We illustrate the penalized quasi-
likelihood (PQL) approximation to information matrices for
GLMMs. In Sect. 3, for a logisticmodelwith a two-parameter
linear predictor, we assess the accuracy of this approxima-
tion by comparison to exact information matrices. In Sect. 4,
using the approximation, locally D- and A-optimal designs
are found for different local parameter settings under this
logistic model. We study a real-life example on self-reported
disability among older women (Carrière and Bouyer 2002)
to identify optimal designs, and then discuss robustness of
locally optimal designs in Sect. 5. Section6 presents a sum-
mary and discussion of future work.

2 Theoretical framework

The general form for a generalized linear model (GLM) with
a link function η(·) is

μ = E(y) = η−1(f(x)Tβ). (1)

When using the maximum likelihood approach for estimat-
ing themodel parameters, as is commonly the case because of
its asymptotic efficiency, the asymptotic variance-covariance
matrix of the estimators is given by the inverse of the Fisher
information matrix. In view of this, the Fisher information
matrix is of great interest for comparing different designs.
One would like to maximize some function of this infor-
mation matrix. With a canonical link function and under
the assumption that responses are independent, for an exact
design ξ = {(xl), l = 1, . . . , k}, the information matrix
for β is M(ξ) = FTVF, where F = (f(x1), . . . , f(xk))T ,
and V = diag(var(y1), . . . , var(yk)). For a longitudinal
study with N subjects, denote yi = (yi1, . . . , yini )

T as the
response vector for subject i , i = 1, . . . , N , using design
ξi = {(xil), l = 1, . . . , ni }, where ni is the number of mea-
surements on subject i and xi1, . . . , xini are the time points at
which observations are made for that subject. The total num-
ber of observations over all subjects is then K = ∑N

i=1 ni .
Extending the GLM to a GLMM, the conditional mean for
yi j , j = 1, . . . , ni , is

μ
bi
i j = E(yi j |bi ) = η−1(f(xi j )Tbi ), (2)

where f(xi j ) andbi are vectors of lengthq,bi = (bi0, bi1, . . . ,
bi,q−1)

T = β+αi consists of the subject-independent fixed-
effects vector β and the random vector αi ∼ Nq(0,�), i.e.,
bi ∼ Nq(β,�). The covariance matrix � can be singular,

allowing some effects to be fixed effects. The conditional
variance of yi j given bi is v

bi
i j = φav(μ

bi
i j ), where v(·) is a

known function depending on η(·), a is a known constant,
and φ is a dispersion parameter. As an example, for a binary
response with the logistic link,

η[E(yi j |bi )] = η
(
P(yi j = 1 | bi )

)

= log(
P(yi j = 1 | bi )

1 − P(yi j = 1 | bi ) ), (3)

with the corresponding conditional variance being

v
bi
i j = var(yi j |bi ) = exp(f(xi j )Tbi )

{1 + exp(f(xi j )Tbi )}2 . (4)

We mainly focus on this logistic link in simulations, but the
methodology is suitable for other links as well.

Model (2) can also be used for experiments that fit a GLM
(with fixed effects) but that are run in a block design with
random block effects (Waite andWoods 2015). Thus, N now
denotes the number of blocks, and the matrix � is a singular
matrix with only the first element being nonzero. In contrast
to a longitudinal study, where the xil ’s denote time points,
in this block design setting, the values of xi1, . . . , xini need
not all be distinct. For now, we refrain from requiring that all
values must be different, but we will return to this at the end
of Sect. 4. For simplicity, we will continue to refer to subjects
rather than blocks.

For estimating β, we seek a design ξ = (ξ1, . . . , ξN ) that
is locally optimal for this goal. The likelihood function for β

and � is given by

LTotal(β,�|y) =
N∏

i=1

Li (β,�|yi )

=
N∏

i=1

∫ ni∏

j=1

h(yi j |bi = β + αi )g(αi |�)dαi ,

where h(yi j |bi ) is the conditional density function of yi j
and g(αi |�) is the density function of random effects αi

(Molenberghs andVerbeke 2005). For simplicity, wewill just
write Li (β,�) for Li (β,�|yi ). An approximation to, or a
surrogate for, the information matrix for β can be obtained
by approximating and inverting cov(β̂) based on an estima-
tion method for β. In general, the parameter estimation for
Model (2) is difficult, and there are no analytical expressions
for cov(β̂). Niaparast (2009) discussed the optimal design
based on quasi-likelihood estimation under a Poisson regres-
sion model with random intercept. Niaparast and Schwabe
(2013) and Niaparast et al. (2023) extended the results to
random slopes. Other methods for approximating cov(β̂)
include generalized estimating equations (GEE, Liang and
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Zeger 1986, cf. Atkinson and Woods 2015), PQL (Breslow
and Clayton 1993), and MQL (Breslow and Clayton 1993;
cf. Atkinson and Woods 2015). Ueckert and Mentré (2017)
also applied adaptiveGaussian quadrature to approximate the
information matrix directly. Mielke (2012) studied multiple
approximations of the Fisher information under nonlinear
mixed models.

The complicated form of the likelihood function makes
it impossible to find closed-form expressions for the max-
imum likelihood estimators (MLEs) of the parameters in
Model (2). Nonetheless, given a design and data, the MLEs
can be obtained numerically. The Fisher information matrix
depends on unknown parameters, but even with intelligent
guesses for those parameters (e.g., based on prior experience
or a pilot study), it must be evaluated numerically due to its
complicated nature. Doing this once is fine, but when search-
ing for an optimal or efficient design, this must be done for
many designs, and becomes computationally inefficient. In
order to avoid this, we seek an approximation of the Fisher
information that is sufficiently simple so that it can be used in
a design search. Besides simplicity of this approximation, we
would also like it to be, approximately, consistent in ranking
designs with the ranking that would have been obtained if
we had been able to use the Fisher information to do this.
One such simpler alternative comes from PQL estimation,
as studied in Breslow and Clayton (1993). They defined an
integrated quasi-likelihood function for estimating β and �,
and then, using the Laplace method for integral approxima-
tion andGreen (1987)’s result for a likelihood functionwith a
penalty term, simplified it to obtain the PQL approximation.
LikeMLE estimators, PQL estimators ofβ are consistent and
asymptotically normal, with a variance-covariance matrix
that can be viewed as an approximation of the inverse of
the Fisher information matrix. Motivated by the results in
Sect. 3, which suggest that this is a good approximation, our
optimal design searchwill be based on PQL estimation rather
than MLE estimation. The designs found in this way should
however also perform well with MLE estimation.

For PQL estimation of β, the approximate conditional
variance-covariance matrix given the random effects b,
cov(β̂ | b), underModel (2) is given by (BreslowandClayton
1993; Tekle et al. 2008)

cov(β̂ | b) ≈
( N∑

i=1

FT
i U

−1
i Fi

)−1

, (5)

where b = (bT1 , . . . ,bTN )T , Ui = V−1
i + Fi�FT

i is a weight
matrix for the i th subject, Fi is the design matrix for design
ξi , i.e., Fi = Fi (ξi ) = (f(xi1), . . . , f(xini ))

T . Observations
from different subjects are assumed to be independent, while
observations from the same subject are considered to be con-
ditionally independent given the random effects. Here, we

also assume a canonical link function, although, as discussed
by Breslow and Clayton (1993), PQL estimation remains
valid for other link functions. With these assumptions, Vi =
Vi (ξi ) = diag(vbii1 , . . . , v

bi
ini

). Design specification requires
choices for the number of distinct covariate values xi j for
each subject, the values of these covariates, and the number
of measurements at each of these values. Since cov(β̂) in (5)
depends on the unknown β and �, we will substitute val-
ues based on prior knowledge. This will eventually result in
locally optimal designs. An approximation of the conditional
Fisher information, denoted byMTotal(ξ | b), is obtained by
taking the inverse of the matrix in Equation (5). Taking its
expectation with respect to b,

Eb(MTotal(ξ | b)) =
N∑

i=1

Eb(FT
i (V−1

i + Fi�FT
i )−1Fi )

(6)

gives the expectation of this PQL-based approximation to
the information matrix. It becomes the information matrix
for the corresponding fixed-effects model when � goes to 0.

Since some subjects may receive the same design, it is
convenient to change the notation for a design from ξ =
(ξ1, . . . , ξN ) to ξ = {(ξp,mp), p = 1, . . . , Ns}, where
ξp = {(xpl), l = 1, . . . , n p}, Ns ≤ N is the number of dis-
tinct designs ξp, mp is the number of subjects receiving ξp,
and

∑
p m p = N . At this stage we also switch from exact

designs to approximate designs, so that we can ignore N .
We represent the design by ξ = {(ξp, wp), p = 1, . . . , Ns},
where

∑
p wp = 1. If we start from an exact design for N

subjects inwhich sequence ξp is usedmp times, then it is con-
verted to an approximate design by takingwp = mp/N . The
design ξ is also known as the population design, while the
ξp’s, which remain exact, are known as individual designs.
One could use the same individual design for each subject,
i.e., Ns = 1. But as noted by Schmelter (2007), for exact
individual designs, optimal population designsmay usemore
than a single individual design. The number ofmeasurements
on a subject, n p, is in practice often the same for all subjects,
and we will assume from now on that n p = n. Based on (6),
in the approximate design setting we define

MPQL(ξ) = MPQL(ξ | β,�)

=
Ns∑

p=1

wpEb(FT
p (V−1

p + Fp�FT
p )−1Fp) (7)

as an approximation to the information matrix for β under
population design ξ . Each expectation in (7) can be approx-
imated by an average based on a representative sample from
N (β,�), say {bisp }Sis=1, p = 1, . . . , Ns .
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For a balance between running time and accuracy, a judi-
cious selection of the samples {bisp }Sis=1 is important. Tekle
et al. (2008) suggested using S = 500 with random samples.
We will instead use the support points method introduced by
Mak and Joseph (2018), which provides stable estimates of
the expectations with a much smaller sample size. We will
return to this in Sect. 3.

Computations for the expression in (7) can be further sim-
plified by the following lemma.

Lemma 1 (Miller 1981) Let A and A+B be invertible matri-
ces, with the rank of B equal to r > 0. Let B = B1+· · ·+Br ,
where each Bi has rank 1 and, for k = 1, . . . , r , each
Ck+1 = A + ∑k

i=1 Bi is invertible. Setting C1 = A, then

C−1
k+1 = C−1

k − gkC
−1
k BkC

−1
k ,

where gk = 1
1+tr(C−1

k Bk )
. In particular,

(A + B)−1 = C−1
r − grC

−1
r BrC

−1
r .

To apply Lemma 1, if � is full rank, we simply partition �

into a sumof�i ’s, where�i is thematrix obtained from� by
replacing all its elements by 0 except for those in the i th row.
Then, the inverse of V−1

p + Fp�FT
p in (7) can be computed

by multiplication and summation of matrices, which is much
faster than computing an inverse. For the case where the rank
� is R(�) < q, we can do an eigen decomposition to get
R(�) matrices and apply the Lemma.

The contribution to the likelihood function by a single
subject can also be obtained by enumerating all possible
outcomes. For the logistic link in Model (2), the likelihood
function for a subject, say i , who is assigned to individual
design ξp is

Li (β,�)

=
∫ n∏

l=1

exp[f(xpl)Tbi ]yil
1 + exp[f(xpl)Tbi ]�(bi ;β,�)dbi .

This corresponds to a contribution to the information matrix
given by

Ii (ξp|β,�)

= Eyi

(∂ log Li (β,�)

∂β

∂ log Li (β,�)

∂β ′
)

=
∑

yi∈{0,1}n
1

Li (β,�)

∂Li (β,�)

∂β

∂Li (β,�)

∂β ′ .

(8)

Using numerical integration, this expression can serve as
a benchmark for other approximations of the information
matrix. We will pursue this in Sect. 3.

3 Comparison of approximations

Without a closed-form expression for an information matrix,
finding a design that optimizes a function of the information
matrix is computationally challenging. If we can use a reli-
able and computationally simpler approximation or surrogate
of the information matrix for comparing different designs,
then this could be used for finding optimal designs. We con-
duct a comparison using the D- and A-optimality criteria
to study different approximations. The D-optimality crite-
rionmaximizesφD(ξ) = det(M)1/q , while theA-optimality
criterionmaximizes 1/tr(M−1),whereM is theFisher infor-
mation matrix or an approximation of it. The two optimality
criteria focus on slightly different aspects of the design. For
a fixed confidence level, a D-optimal design minimizes the
expected volume of a simultaneous confidence ellipsoid for
the parameters, while an A-optimal design minimizes the
sum of the variances of the parameter estimators. The PQL-
and MQL-based approximations that we use in the com-
parison are shown in Table 1. As explained in Sect. 2, to
reduce computing time for the PQL-based approximation,
we explore the use of support points introduced by Mak and
Joseph (2018) to reduce the sample size S for evaluating the
expectations. We also consider the PQL-based approxima-
tion using a larger sample sizewithout support points to show
that using support points is a good choice. We use a fixed test
set of designs and multiple parameter settings for the logistic
model with a single covariate and random coefficients.

The choices for β and � are shown in Table 2. The values
for β correspond to different scenarios of the complete class
results for fixed effects models in Yang and Stufken (2009).
For �, we use a fixed correlation ρ = .5 and three choices
for the diagonals (I, II, and III in Table 2) that reflect different
levels of uncertainty for the random intercept and slope.

All designs in the test set of designs consist of a single
sequence, i.e., Ns = 1. Based on additivity of the infor-
mation, a good approximation for Ns = 1 implies a good
approximation for moderately larger values of Ns . We select
[1, 6] as the design region, and include every design that is
supported on exactly two points from {1, 2, 3, 4, 5, 6} and a
total number of measurements of n = 10 in the test set. Thus,
the test set consists of 9 × (6

2

) = 135 designs.
For evaluating the performance of the approximations,

correctly identifying the best designs is more important than
matching values of the optimality criteria.We focus therefore
on how well the approximations perform in distinguishing
between better and worse designs. To do this, we identify
the B best designs in the test set based on the exact infor-
mation matrix, and rank the 135 designs for each of the
approximations. For each approximation, we then compute
the proportion of pairs of designs with precisely one from
the B = 5 best designs for which the approximation ranks
the two designs correctly. Thinking of this as a classification
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Table 1 Candidates in the
comparison of the
approximations

Candidates Description

PQL PQL approximation in (7) using random sample (S = 1000)

PQL SP PQL approximation in (7) using support points (S = 100)

MQL MQL approximation cf. Breslow and Clayton (1993)

adj. MQL MQL approximation adjusted by Zeger et al. (1988)

Exact Info. Exact Information defined in (8) as a benchmark

Table 2 Parameter choices for
comparing the approximations Choices for β (1,−1) (3,−1) (7/2,−1) (4,−1) (6,−1)

Diagonals of � I: (1.7145, 1.05) II: (6,.3) III: (.3, 6)

problem (classifying a design as a better design or not), this
measure corresponds to the area under the curve (AUC) of
the receiver operating characteristic (ROC) curve (cf. Provost
and Fawcett 1999). The results for B = 5 are shown in
Table 3. The PQL approximation achieves a very high AUC
in all cases, also when using the faster approach with support
points (PQL SP). TheMQL approximation is relatively poor,
while the adjusted MQL works well except for Type I and
β = (6,−1)′. Similar conclusions hold for other values of
B.

Computing the exact information matrix for a single
design takes about 800CPU seconds inMathematica on a 3.9
GHz Intel CPU. This would be too slow in a search algorithm
for optimal designs. In comparison, the PQL approximation
takes about 0.16 CPU seconds without support points and
about 0.011 CPU seconds with support points on the same
platform.

Overall, the PQL approximation performs well in order-
ing the designs correctly and is fast, especially when using
support points.

4 Optimal designs

In this section, we use the PQL approximation to the infor-
mation matrix and Particle Swarm Optimization (PSO) to
search for locally A- or D-optimal designs for the mixed-
effects logistic model. PSO is a widely used meta-heuristic
algorithm in optimal design searching (Zhou et al. 2021).
To illustrate the results, we use the same settings for β as
in Table 2. We take � = r · �1 as a diagonal matrix,
where r ∈ {5, 7, 10, 15, 25} and �1 = diag(σ 2

1 , σ 2
2 ) with

(σ 2
1 , σ 2

2 ) = (.1143, .07), (.4, .02), or (.02, .4). We refer to
these three choices for (σ 2

1 , σ 2
2 ) as type I, II and III, respec-

tively. For fixed r , the generalized variance, det(r�1), is
approximately the same for all three types. The design region
is set to be [1, 6].

Due to correlated observations, neither the information
matrix nor its approximations are additive for observations

on the same subject. Additivity does hold when combin-
ing information from different subjects. Therefore, using an
approximate design approach, we use a population design
ξ = {(ξp, wp), p = 1, . . . , Ns}, where wp > 0,

∑
p wp =

1, and each individual design ξp is an n-point design for a
fixed value of n. For a fixed value of Ns , there are Ns(n + 1)
unknowns when trying to determine the best design. These
unknowns correspond to the n design points in each sequence
ξp and the corresponding weight wp. There are constraints
on each element of this vector since the design points must
be in the design region and the weights must be nonnegative
and sum to 1. Since Ns is unknown, a search may be needed
for different values of Ns , although a single search can suf-
fice if Ns is taken to be large enough so that some sequences
receiveweight 0 for the best design. For a given Ns , each vec-
tor of length Ns(n + 1) corresponds to a particle in the PSO
algorithm. A swarm is a collection of multiple particles that,
through communication with each other and certain rules
for particle movement, explore this Ns(n + 1)-dimensional
constraint space for finding a design thatmaximizes an objec-
tive function corresponding to, in our case, A-optimality or
D-optimality. The algorithm terminates when the best value
for the objective function does not change after a sufficient
number of iterations. We do not insist that the n points in
the design region [1, 6] are distinct. In a situation where it
is not possible to have repeated values (for example when
the design variable denotes the time at which an observa-
tion is to be made in a longitudinal study), we can distribute
the design points around the repeated value. Alternatively, if
there is a specified minimum distance d0 between any two
design points, we can build this constraint into the PSO algo-
rithm. We considered optimal designs for n = 2 through 6,
and show results for n = 2 and 5.

Since we use exact individual designs, the optimization
problem is a discrete problem, and we can no longer use a
general equivalence theorem to verify optimality of a design.
Even though we are not able to guarantee that our designs
are indeed optimal, by running the PSO algorithm multiple
times with different starting designs and a large number of
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Table 3 AUC using the top 5
designs for PQL, PQL with
support points, MQL, and
adjusted MQL

β = (1,−1)′ β = (6,−1)′

� Optimality PQL PQL SP MQL adj. MQL PQL PQL SP MQL adj. MQL

I A .997 .997 .854 .994 1 1 .815 .882

D .998 .998 .872 .994 .975 .975 .803 .874

II A .997 .997 .854 .997 .998 .998 .815 .989

D .997 .997 .826 .997 .994 .997 .832 .988

III A .974 .971 .909 .974 .920 .911 .797 .922

D .966 .968 .925 .966 .918 .914 .798 .918

iterations, we are confident that the population designs are
highly efficient.

In Figs. 1, 2, 3, 4, we show D- and A-optimal population
designs for n = 2 and 5. In all cases, the design either has
Ns = 1 or 2. When Ns = 1, which occurs most often, we
simply present the n points of the corresponding individual
design ξ1. For n = 5, repeated points are presented slightly
apart so that the number of points at a location is discernible.
For n = 2 and A-optimality, some cases yield Ns = 2.
Different plotting symbols (dot and cross) are then used for
the two individual designs ξ1 and ξ2, and weights are shown
for ξ2 next to one of the design points.

The optimal designs have several noteworthy features.
First, for n = 5, the number of distinct design points
increases with the value of r for both A- and D-optimality.
This increase can especially be seen in results for β =
(6,−1)′ in Figs. 2 and 4. For other β’s in these figures, a
larger design region would have exhibited a similar pattern.
Also for n = 5, for the smallest value of r that is considered
here, r = 5, most of the optimal designs are 2-point designs,
except for some type III cases. It is known that for the limit-
ing case r → 0, which corresponds to a (fixed-effects) GLM,
a 2-point design is A-optimal among approximate designs
(Yang and Stufken 2009). Optimal approximate designs for
GLMs are shown in Table 4 for reference. However, since
the individual designs here are exact designs, with a n = 5
we cannot match the weights for the A-optimal approximate
designs in Table 4 precisely.

Second, for β = (1,−1)′ or (6,−1)′, an optimal design
for the GLM includes one of the endpoints of the design
region (Yang and Stufken 2009). This need not be the case
for the mixed-effects model (see, for example, Fig. 1 with
β = (6,−1)′ for type III and r=10). Third, while the results
in Schmelter (2007) do not apply here, optimal population
designs still consist often (but not always) of the same indi-
vidual design for all subjects. Figure5 shows A-efficiencies
of the best one-sequence designs for n = 2 as measured
by φA(ξ)

φA(ξ∗) , where φA(ξ) = 1/tr((MPQL(ξ))−1) denotes the
A-optimality criterion, and ξ∗ is an A-optimal design. As
illustrated by Fig. 5, the best one-sequence design tends to
be highly efficient for virtually all values of r , and tends to

becomeA-optimal for larger values of r . The efficiencies and
optimality do however vary with β and �.

These general conclusions extend to other choices for β1,
even though optimal designs show some differences. Results
for other choices of β1 are reported in the Online Resource
Supplementary Material.

Finally, for our PSO algorithm, the number of measure-
ments n per subjectmust be specified. For the optimal designs
reported in this paper, we use 20 particles and 500 iterations
to get a near optimal design ξa . Next, we use a new ran-
dom start while keeping ξa as the initial global optimum,
with additional 1500 iterations. The final design may con-
tain replicated points. While not done here, if replicated
points are undesirable, we can run PSO with a constraint
that enforces a lower bound on the minimum distance, such
as d0, between any pair of design points. Alternatively, we
could retain one replicate of the distinct design points, and
use PSO to add additional points, enforcing a minimum dis-
tance of d0 between any two points. In our examples, this
approach allowed us to replace replicated points with the
nearest points with distance d0 = .25 or .5. We will revisit
this approach in the following section.

As a special case of model (2), if a random block effects
model is of interest as discussed in Sect. 2, we don’t need to
worry about these replicated points.

5 An application and robustness analysis

For illustration of the methodology, we focus on the French
EPIDOS study (Epidétiology de l’ostéoporose), a prospec-
tive multi-center study of the risk factors for hip fractures in
women who were 75 years or older in 1992-1993. The par-
ticipating women completed health-related questionnaires
annually for six years. Carrière and Bouyer (2002) analyzed
the data from Montpellier, one of the 5 participating cen-
ters, using a generalized linear mixed model with a logistic
link function as in model (2). After testing the significance
of random effects, the authors finally determined the covari-
ance structure with random intercept and random slope. Let
yi j be the indicator of disability, “needing help to go out-
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Fig. 1 D-optimal designs for n = 2 observations per subject. The covariance type is shown in the top bar and the choice for β in the right-hand
bar. The value of r for the covariance matrix � is shown along the vertical axis, and the design region [1, 6] is shown along the horizontal axis

Fig. 2 D-optimal designs for n = 5 observations per subject. The covariance type is shown in the top bar and the choice for β in the right-hand
bar. The value of r for the covariance matrix � is shown along the vertical axis, and the design region [1, 6] is shown along the horizontal axis
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Fig. 3 A-optimal designs with n = 2 observations per subject. The
covariance type is shown in the top bar and the choice for β in the right-
hand bar. The value of r for the covariance matrix � is shown along the

vertical axis, and the design region [1, 6] is shown along the horizontal
axis. The plots of the second individual design is vertically adjusted to
avoid overlapping

doors or home-confined”, for woman i and year j (i =
1, . . . , 1548; j = 1, . . . , 6). The proposed logistic mixed-
effects model is

logit[E(yi j | bi )]
= log(

P(yi j = 1 | bi )
1 − P(yi j = 1 | bi ) )

= bi0 + bi1xi j ,

(9)

where the design points are xi j = j , j = 1, . . . , 6;
bi = (bi0, bi1)T ∼ N2(β,�), β = (β0, β1)

T , and � =(
σ11 0
0 σ22

)

. The estimated parameters from this study are

displayed in Table 5.
While there may have been practical reasons for using

the same equally spaced design for each of the women, one
may wonder whether such a design is optimal or efficient.
Considering n = 6 observations for each woman, using a
PSO algorithm, the estimated parameters in Table 5, and
design space [1, 6], locally optimal designs for this model
are presented in Table 6. Both A- and D-optimal designs are
one-sequence designs.

From Table 6, both designs require each woman to com-
plete multiple questionnaires at the first time point, which is

clearly infeasible. We could simply replace replicated points
by nearest neighbors, with all design points at least sepa-
rated by a specified distance d0. Alternatively, as already
suggested, we can use PSO again keeping one copy of the
replicated point and forcing a distance of d0 between any
two design points. In this example, these two methods pro-
vide the same answers. Using half a year, a quarter of a year,
and one month for d0, the obtained designs are ξ1, ξ2 and ξ3,
respectively, where

ξ1 =
{ {1, 1.5, 2, 2.5, 3, 6}, A-optimality

{1, 1.5, 2, 5, 5.5, 6}, D-optimality,

ξ2 =
{ {1, 1.25, 1.5, 1.75, 2, 6}, A-optimality

{1, 1.25, 1.5, 5.5, 5.75, 6}, D-optimality,

and

ξ3 =
{ {1, 1.08, 1.17, 1.25, 1.33, 6}, A-optimality

{1, 1.08, 1.17, 5.83, 5.92, 6}, D-optimality.

Efficiencies of these designs and thedesign ξ0 = {1, 2, 3, 4, 5, 6}
used in the study relative to an optimal design ξ∗ are com-
puted as the ratio φ(ξ)/φ(ξ∗), where φ(ξ) = φA(ξ) =
1/tr((MPQL(ξ))−1)orφ(ξ) = φD(ξ) = det(MPQL(ξ))1/q
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Fig. 4 A-optimal designs with n = 5 observations per subject. The covariance type is shown in the top bar and the choice for β in the right-hand
bar. The value of r for the covariance matrix � is shown along the vertical axis, and the design region [1, 6] is shown along the horizontal axis

Fig. 5 A-efficiencies of the best one-sequence designs for n = 2 for different choices of β and �. The axes shows the values of r (horizontal) and
the efficiency (vertical). The top bar in each panel shows β, and different line types correspond to the three choices for � that were also used in
Figs. 1, 2, 3, 4

Table 4 D- and A-optimal
designs for the fixed effects
GLM for three choices of the
regression parameters

Optimality (1, −1) (3.5, −1) (6, −1)

D (1,3.399;.5,.5) (1.957,5.043;.5,.5) (3.601,6;.5,.5)

A (1,4.009;.553,.447) (1.211,5.789;.789,.211) (2.920,6;.828,.172)
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Fig. 6 Robustness study: Efficiencies of A-optimal Designs, n = 5.
The covariance type is shown in the top bar and the choice for β in the
right hand bar. Value of rm is along the horizontal axis, which corre-
sponds to the true covariance matrix, and values of rl are represented

by the six different lines, each corresponds to the optimal design under
such rl . The efficiencies of these designs are shown along the vertical
axis

Table 5 Parameter estimates for French EPIDOS study

Parameter β0 β1 σ11 σ22

Estimate −3.61 0.17 7.25 0.18

Table 6 A- and D-optimal designs ξ∗ for self-reported disability study

Optimality x1 x2 x3 x4 x5 x6

A 1 1 1 1 1 6

D 1 1 1 6 6 6

for A- and D-optimality, respectively, and ξ∗ is an A-optimal
or D-optimal design. The results are shown in Table 7.

Table 7 indicates that designs remain highly efficient
if d0 is not large. There is more loss of efficiency under
A-optimality because the proposed replacement moves us
further from the A-optimal design in Table 6, which places
more emphasis on one of the endpoints.

Locally optimal designs depend on “guessed” parame-
ters, and poor guesses may lead to poor designs. We are
particularly interested in robustness to mis-specification of
the variance-covariance matrix �. With the notation from

Table 7 Efficiencies (in percentage) of designs in practice

Optimality ξ0 ξ1 ξ2 ξ3

A 82.57 92.60 97.03 99.25

D 94.22 98.12 98.98 99.62

Sect. 4, let ξr denote a locally optimal design under A- or D-
optimality for �r = r · �1 and a given vector β. The A- and
D-efficiencies eAlm and eDlm for design ξrl relative to design ξrm ,
where rl , rm ∈ {0, .01, .05, .1, .5, 1, 3, 5, 7, 9, 11, 13, 15, 17
, 19, 21}, were computed for β = (1,−1)′ or (6,−1)′ and
�rm . Results for n = 5 are shown in Figs. 6 (A-optimality)
and 7 (D-optimality), but, for clarity of the figures, only for
rl = 0, .1, 3, 9, 15, 21. Notice that ell = 1 for all l. From the
figures we see that when rm (the true r ) is 0, a larger guessed
value rl can cause significant loss in efficiency. This says that
using an optimal design for a GLMMwhen the true model is
a GLM can result in an inefficient design. For β = (1,−1)′,
if we use an optimal design for the GLM, from the line for
rl = 0, we can see that it performs well for any rm , with the
efficiency even increasing for larger rm . For β = (6,−1)′,
both underestimation and overestimation of the true rm can
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Fig. 7 Robustness study: Efficiencies of D-optimal Designs, n = 5.
The covariance type is shown in the top bar and the choice for β in the
righthand bar. Value of rm is along the horizontal axis, which corre-
sponds to the true covariance matrix, and values of rl are represented

by the six different lines, each corresponds to the optimal design under
such rl . The efficiencies of these designs are shown along the vertical
axis

result in designs that are not very efficient. In Fig. 6, some
of the lines reach values slightly higher than 1, such as in
the panel for Type II and β = (1,−1)′. This is due to PSO
finding highly efficient designs, but not necessarily optimal
designs.

Mis-specification of � can also be studied using Wishart
distributions. We can set a true � = diag(1.7145, 1.05), say,
then generate G from the Wishart distribution W2(�, d f ),
and useG/d f as amis-specified guess.We do this for d f =2,
4, 7 and 15 and for β = (1,−1)′ and (6,−1)′. Note that the
coefficient of variation for the diagonals ofG/d f is

√
2/d f ,

so that it is smaller when r is larger. For each d f , 100 G’s
are generated, and the corresponding locally optimal designs
are found. The efficiencies of these locally optimal designs
relative to the locally optimal design for the true� are shown
in Fig. 8. By examining these box plots, we can conclude that
the designs are quite robust against the mis-specification.
When the coefficient of variation is largest, corresponding
to the case where r = 2, the efficiencies tend to be lower,
but remain high with very few exceptions, both for A- and

D-optimality. The efficiencies are slightly lower for β =
(6,−1)′ than for β = (1,−1)′.

6 Summary and discussion

The primary objective of this paper is to identify optimal
designs for GLMMs, focusing primarily on the logistic link.
As closed-form expressions for the information matrix for
GLMMs are not available, we propose using the PQL-based
approximation, which performs better than the MQL- and
adjusted MQL-based approximations. Computationally, We
evaluate the PQL-based approximation using support points,
which reduces computing time and enables us to use a PSO
algorithm for finding optimal population designs. Through
this approach, we observe characteristics of the optimal
designs and their relationship to optimal designs for corre-
sponding fixed-effects models. For the cases studied, optimal
population designs for GLMMs often use a single individual
design for all subjects, but not always. Also, in part because
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Fig. 8 Efficiencies of D- and A-optimal Designs with mis-specified �

fromWishart distributions. The optimality criterion is shown on the top
bar, and the choice for β is in the righthand bar. The degrees of free-

dom in the Wishart distribution are shown along the horizontal axis,
and efficiency is along the vertical axis

individual designs are treated as exact designs, the individual
designs may have more support points than optimal approx-
imate designs for fixed-effects.

For future study, besides making the methodology avail-
able for other link functions, we plan to explore use of
the PQL-based approximation for other optimality criteria,
including Bayesian or minimax criteria. We also plan to
investigate the use of more complex linear predictors, such
as quadratic predictors or predictors with multiple variables,
which will be more challenging.

Online Resource

The file Supplementary Material contains optimal designs
for n = 2 and n = 5 when the slope parameter is β1 = −2
and β1 = 1 rather than β1 = −1 as used in Sect. 4 of the
paper.

Supplementary Information The online version contains supplemen-
tary material available at https://doi.org/10.1007/s11222-023-10279-
3.
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