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Abstract

We study the interplay between the recently defined concept of minimum homotopy
area and the classical topic of self-overlapping curves. The latter are plane curves
which are the image of the boundary of an immersed disk. Our first contribution is
to prove new sufficient combinatorial conditions for a curve to be self-overlapping.
We show that a curve y with Whitney index 1 and without any self-overlapping
subcurves is self-overlapping. As a corollary, we obtain sufficient conditions for self-
overlappingness solely in terms of the Whitney index of the curve and its subcurves.
These results follow from our second contribution, which shows that any plane curve y,
modulo a basepoint condition, is transformed into an interior boundary by wrapping
around y with Jordan curves. Equivalently, the minimum homotopy area of y is
reduced to the minimal possible threshold, namely the winding area, through wrapping.
In fact, we show thatn + 1 wraps suffice, where y has n vertices. Our third contribution
is to prove the equivalence of various definitions of self-overlapping curves and interior
boundaries, often implicit in the literature. We also introduce and characterize zero-
obstinance curves, further generalizations of interior boundaries defined by optimality
in minimum homotopy area.
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1 Introduction

Classically, acurve y : S' — R? is called self-overlapping when there is a continuous
map F: D? — R? such that F|;,p2, is an orientation-preserving immersion, and
F|st = y. One can think of such an immersion as distorting a unit disk that lies
flat in the plane and stretching and pulling it continuously without leaving the plane
and without twisting or pinching it [17]. A consequence of the non-twisting of an
immersion is that any self-overlapping curve y makes one net counterclockwise turn.
Precisely, seta := y’/||y’| tobe the unit tangent vector and declare the Whitney index
as WHIT(y) = (1/27) fozn a df. Then self-overlapping curves have WHIT(y) = 1.

If the disk is painted blue on top and pink on the bottom, then one only sees blue.
If we also imagine the disk being semi-transparent, then the blue will appear darker
in the regions where it overlaps itself; see Fig. 1. We learn that the interior of a self-
overlapping curve always lies locally to the left. This turning condition manifests in
y as wn(x, y) > 0 for every x € R2. Here, wn(x, y) is the winding number of y
around x, which can be seen as 6(1) — 6(0) where p(t) := y () —x = (r(z), 0(¢))
is written in polar coordinates. This non-negative turning condition wn(x, y) > 0 is
called positive consistent. The necessity of Whitney index 1 and positive consistency
to be self-overlapping are well known and date back to [21]. Another simple and
intuitive view originates from Blank [1]: The curve is self-overlapping when we can
cut it along simple paths into simple positively oriented Jordan curves, i.e., a collection
of counterclockwise topological disks.

Interior boundaries are generalizations of self-overlapping curves and also have
various equivalent definitions. We defer a formal definition to Sect. 3.4. For now,
interior boundaries y can be thought of as composites of self-overlapping curves y;
(of the same orientation) that have been glued together; see Fig. 2 for an example.
In this paper, all curves y: [0, 1] — R? are assumed to be closed, immersed, and
generic, i.e., with only finitely many intersection points, each of which are transverse
double points. We also assume y’(¢) exists and is nonzero for all ¢ € [0, 1]. We show
new combinatorial properties of self-overlapping curves and interior boundaries by
revealing new connections to the minimum homotopy area of curves.

! ’
Fig. 1 A self-overlapping curve y with winding numbers for the faces circled. The Blank cuts, shown in

red, slice y into a collection of simple positively oriented (counterclockwise) Jordan curves
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Fig. 2 Example curves of different curve classes and inclusion relationships between the classes. ¥SO is
self-overlapping as indicated by the Blank cuts in red. ¥IB is an interior boundary consisting of two self-
overlapping curves (of the same orientation), one in blue the other in green. The bottom row shows curve
classes that are introduced in this paper: ¥sI is strongly irreducible as can be seen from the non-positive
Whitney indices (shown in gray) of its direct split subcurves. Similarly, ¥1 is irreducible; note that Yv has
Whitney index 1 butis not self-overlapping. Also note that ¥SO is notirreducible since Vu is self-overlapping.
YZ0 also consists of two self-overlapping curves but of different orientation and is therefore not an interior
boundary, but it has zero obstinance

1.1 Related Work

Self-Overlapping Curves and Interior Boundaries. Self-overlapping curves and inte-
rior boundaries have a rather rich history, and have been studied under the lenses of
analysis, topology, geometry, combinatorics, and graph theory [1, 4, 10, 14-17, 19,
21]. In the 1960s, Titus [21] provided the first algorithm to test whether a curve is self-
overlapping (or an interior boundary), by defining a set of cuts that must cut the curve
into smaller subcurves that are self-overlapping (or interior boundaries). In a 1967
PhD thesis [1], Blank proved that a curve is self-overlapping iff there is a sequence
of cuts (different from Titus cuts) that completely decompose the curve into simple
pieces. He represents plane curves with words and showed that one can determine
the existence of a cut decomposition by looking for algebraic decompositions of the
word. In the 1970s, Marx [15] extended Blank’s work to give an algorithm to test
if a curve is an interior boundary. In the 1990s, Shor and Van Wyk [19] expedited
Blank’s algorithm to run in O (N?3) time for a polygonal curve with N line segments.
Their dynamic programming algorithm is currently the fastest algorithm to test for
self-overlappingness. It is not known whether this runtime bound is tight or whether a
faster runtime might be achievable. In distantly related work, Eppstein and Mumford
[4] showed that it is NP-complete to determine whether a fixed self-overlapping curve
y is the 2D projection of an immersed surface f: S — R3, where S is a compact
two-manifold with boundary. Graver and Cargo [10] instead approached the problem
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from a graph-theoretical perspective. All of these algorithms also compute the number
of ‘inequivalent’ immersions.

Minimum Homotopy Area. The minimum homotopy area o (y) is the infimum of
areas swept out by nullhomotopies of a closed plane curve y . The key link between min-
imum area homotopies and self-overlapping curves arose in [8, 12], where the authors
showed that any curve y has a minimum area homotopy realized by a sequence of
nullhomotopies of special self-overlapping subcurves. The minimum homotopy area
was introduced by Chambers and Wang [3] as a more robust metric for curve compar-
ison than homotopy width (i.e., Fréchet distance or one of its variants) or homotopy
height [2]. The minimum homotopy area can be computed in O (N2 log N) time for
consistent curves [3]. For general curves, Nie gave an algorithm to compute o (y)
based on an algebraic interpretation of the problem that runs in O(N®) time, while
the self-overlapping decomposition result of [8] yields an exponential-time algorithm.
The winding area W (y) is the integral over all winding numbers in the plane. A
simple argument shows that o (y) > W (y); see [3]. Both self-overlapping curves and
interior boundaries are characterized by positive consistency and optimality in mini-
mum homotopy area, o (y) = W(y). A curve possessing both of these properties is
self-overlapping when WHIT(y) = 1 and an interior boundary when WHIT(y)>1.

1.2 New Results

In this paper, we are interested in sufficient combinatorial conditions for a plane curve
to be self-overlapping. Such conditions provide novel mathematical foundations that
could pave the way for speeding up algorithms for related problems, such as deciding
self-overlappingness or computing the minimum homotopy area of a curve. In the
first contribution of this paper (Theorem 4.6 and Corollary 4.8 in Sect. 4), we show
that a curve y with Whitney index 1 and without any self-overlapping subcurves is
self-overlapping, and we obtain sufficient conditions for a curve to be self-overlapping
solely in terms of the Whitney index of the curve and its subcurves. Here, we only
consider direct split subcurves y, that traverse y between the first and second appear-
ance of vertex v in the plane graph induced by y. Our results apply to (strongly)
irreducible curves; see Fig. 2: We call y irreducible, if every (proper) direct split is
not self-overlapping; if the Whitney index of each such direct split is non-positive,
then we call y strongly irreducible.

These results follow from our second contribution (Theorems 4.3 and 4.4 in Sect. 4),
which shows that any plane curve y is transformed into an interior boundary by
wrapping around y with Jordan curves. Equivalently, this means that the minimum
homotopy area of y is reduced to the minimal possible threshold, namely the winding
area, through wrapping. See Fig. 3 for an example of wrapping. Of course, we can make
a curve positive consistent with repeated wrapping, since a single wrap increases the
winding numbers of each face by one. However, our result shows a new and non-trivial
connection between wrapping and the minimum homotopy area.

The third contribution of this paper (in Sect. 3) is to unite the various definitions and
perspectives on self-overlapping curves and interior boundaries. We prove the equiv-
alence of five definitions of self-overlapping curves and four of interior boundaries
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Fig.3 The curve y is not self-overlapping, but its wrap Wr (y) is self-overlapping

Wri(y)

(Theorems 3.7 and 3.6). To this end, we define the new concept of obstinance of a
curve y as obs(y) = a(y) — W(y) > 0, and characterize zero-obstinance curves
(Theorem 3.10), see Fig. 2. Rephrasing our earlier characterization, self-overlapping
curves and interior boundaries are positive-consistent curves with zero-obstinance and
positive Whitney index.

We conclude by defining a new operation called balanced loop insertion, a comple-
mentary notion to that of balanced loop deletion, the key trick to proving Theorem 4.6.
As a parallel to our results on wraps, we show in Theorem 4.11 that careful iteration
of balanced loop insertion turns any curve y with WHIT(y) = 1 (and positive outer
basepoint) into a self-overlapping curve.

More supplementary details on the relationship between different curve classes
studied in this paper are provided in Appendix B.

2 Preliminaries

We now lay the necessary groundwork on planar curves, homotopies, self-overlapping
curves, interior boundaries, and minimum area homotopies that are needed for this

paper.
2.1 Regular and Generic Curves

We work with regular, generic, closed plane curves y : [0, 1] — R? with basepoint
y(0) = y(1). Let % denote the set of such curves. A curve y is regular if y'() exists
and is non-zero for all #; a curve is generic if the embedding has only a finite number
of intersection points, each of which are transverse crossings. Being generic is a weak
restriction, as generic curves are dense in the space of regular curves [22]. Viewing a
generic curve y by its image [y] € R?, we can treat y as a directed plane multigraph
G(y) = (V(y), E(y)).Here, V(y) = (po, p1, .., Pn) is the set of ordered vertices
(points) of y, with basepoint pg = y (0) regarded as a vertex as well. An edge (p;, p;)
corresponds to a simple path along y between p; and p;. The faces of G(y) are the
path-connected components of R?\ [y]. Each y € % has exactly one unbounded face,
the exterior face Fex. See Fig. 4. Two curves are combinatorially equivalent when
their planar multigraphs are isomorphic. We may therefore define a curve just by its
image, orientation, and basepoint. A curve is simple if it has no intersection points.
We notate |y| = |V (y) \ {po}| as the complexity of y.
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Fig.4 A curve y that is self-overlapping. The winding numbers of each face are enclosed by circles. The
signed intersection sequence of y is 0, 1,2, 2, 1_,34,4_,5,,6_,44,5_,64,3_,0; vertex labels
are shown, and the sign of each vertex is indicated with green (positive) or red (negative). Here, the vertex
pi is labeled as i. The combinatorial relations are: p» C p1; p4, Ps, Pe C P3; P1, P2 S P3, P4, D5, P6s
P4, p5 L pe; pa L ps

For any x € R?\ [y], the winding number wn(x, y) = >, a; is defined using a
simple path P from x to Fex such that [P]NV (y) = @, the image of the path does not
touch any vertex. Here, @; = 1 if P crosses y from left to right at the i-th intersection
of P with y, and @; = —1 otherwise. Since this number is independent of the path
chosen and is constant over each face F' of G(y), we write wn(F, y) = wn(q, y)
forany ¢ € F.' If wn(F, y) > 0 for every face F on G(y), then we call y positive
consistent. If wn(F', y) < 0 for every face, then y is negative consistent. See Fig. 4
for an example curve illustrating these concepts. The winding area of a curve y is given
by W(y) = fRz lwn(x, y)|dx =) A(F)|wn(F, y)|, where A(F) is the area of the
face F and wn(x, y) = Ofor x € [y]. The depth D(F, y) of aface F is the minimum
number of crossings of any simple path P from F to Fex; with y. The depth of y is the
sum D(y) = >y A(F)D(F, y). The Whitney index WHIT () of a curve y is the
winding number of the derivative ¥’ about the origin. The Whitney index measures
the number of ‘complete counterclockwise turns’ made by y. By [13, Lem. 6.3] and
our Lemma 3.3, our definition agrees with the earlier differential-geometric definition
WHIT(y) = (1/2n) fozﬂ (') /lly’ @) do from the introduction.? A curve y is
positively oriented if WHIT(y) > 0 and negatively oriented if WHIT(y) < O.

A basepoint py = y(0) is an outer basepoint if pg is incident to Fex(. Suppose po
is an outer basepoint incident to the two faces F and Fex. Then if wn(F, y) = 1, we
call pg a positive outer basepoint. Otherwise, wn(F, y) = —1 and pg is a negative
outer basepoint. Several of our results require y to have a positive outer basepoint.
When discussing self-overlapping curves, it is more natural to treat our closed curves
as maps S! — RZ2. 3 In this context, a self-overlapping curve y is the boundary of
an orientation-preserving immersion, i.e., a map of full rank with positive Jacobian,
on the open unit disk int(ID?). More precisely, y is (positive) self-overlapping when
there is a map F: D? — R? such that F is continuous on the closed unit disk D?, the

1 By Observation 3.2, which gives an equivalent way to view winding numbers, we see this definition is
equivalent to the more intuitive one given in the introduction.

2 n practice, we compute the Whitney index with Lemma 3.3.

3 Here, we are forced to treat (potentially) self-overlapping curves as maps S — R2 to discuss extensions
to D2. On the other hand, for our constructions of subcurves, our curves are maps [0, 1] — R2. This allows
each v € V(y) to have exactly two pre-images.
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Y (@)
sgn(p;) = +1

Fig. 5 An intersection point p; of a curve y. The vertex p; is positive if the second tangent vector is a
clockwise rotation away from the first tangent vector, negative otherwise

map Fliyp2) i an orientation-preserving immersion, and Flg1 = y.% The reversal
¥ is defined by (1) = y(1 — t), viewing the original curve as y: [0, 1] — R2.
We call y negative self-overlapping when 7 : S! — R? is positive self-overlapping.
Unless stated otherwise, the term self-overlapping is used only to mean positive self-
overlapping.

2.2 Combinatorial Relations and Intersection Sequences

Following Titus [20], we now describe how the intersection points of a curve y € €
relate to each other. See Fig. 4 for an illustration of these concepts. Let p;, p; € V(y)
be two vertices such that p; = y(#;) = y (/) and p; = y(t;) = y(t;?‘) with t; < ¢}
and t; < t;‘. Then, one of the following must hold:

Di linkspj,orp,-ij,iffti <tj < ti* < l;f orf; <t < l‘; < ti*’

pi is separate from pj, or piSpj,iff t; <1 <t; <tiorty <ii <t <tf,
pi is contained in p;, or p; C p;,ifft; <#; <t¥ < t}*.

To define the intersection sequence of y, the vertices are labeled in the order they
appear on y, starting with O for the basepoint y (0), and increasing by one each time
an unlabeled vertex is encountered. The signed intersection sequence consists of the
sequence of all vertex labels along y starting at the basepoint; the first time vertex p;
is visited, the label is augmented with sgn(p;), and the second time with — sgn(p;).
Here, sgn(p;) := sgn(p;, y) is the sign of vertex p; = y(t;) = y(ti*), and is 1
if the derivative vector y’ rotates clockwise from # to ¢, and —1 otherwise. More
technically, the sign is defined as follows: set v; := y'(t;)/|ly’ ()| € S! and v, =
y/(t;“)/||y/(ti*)|| € S! to be the unit tangents of y when at v;. Then there is a unique
angle 6 € (—m, ), with 6 # 7 by regularity, such that vy is achieved by rotation by
6 from v;. Then sgn(p;) := —sgn(#). Note that sgn(p;) depends on the basepoint
of the curve. Here, we have only defined the sign of the crossing points. Signs of the
basepoint will only be discussed for outer basepoints. In this case, sgn(pg) = +1 for
po a positive outer basepoint and sgn(pg) = —1 for pg a negative outer basepoint. As
proved by Titus, interior boundariness is invariant with respect to signed intersection
sequences [21]. In other words, any two curves with the same signed intersection

4 We assume S! = 9D2.
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Fig.6 All three homotopy moves and their reversals. Figure from [8]

sequence (and positive outer basepoint) will either both be interior boundaries or both
not be.

2.3 Minimum Homotopies

A homotopy between two generic curves )y and y; is a continuous function
H: [0, 11> — R2? such that HQO, -) =ywand H(1l, -) = y;. In R2, any curve is
nullhomotopic, i.e., homotopic to a constant map y, () = g for some g € R?. Given
a sequence of homotopies (H,-)f: |» We notate the concatenation of these homotopies
in order as Y% | H;. We use the notation H for the reversal H(i, 1) = H(1 — i, 1)
of a homotopy. If H(0, -) = yp and H(1, -) = y1, we may write p, x y1. For
both homotopies H and curves y, we write H~1(q), y ~1(¢) to denote the standard
set-theoretic pre-image of a point ¢ € R,

Homotopy moves are basic local alterations to a curve defined by their action
on G (y). These moves come in three pairs [8]; see Fig. 6: The I-moves destroy/create
an empty loop, II-moves destroy/create a bigon, and III-moves flip a triangle. We denote
the moves that remove vertices as I, and II,, and moves that create vertices as I and
II;. See Fig. 6. It is well known that any homotopy such that each intermediate curve
is piecewise regular and generic, or almost generic, can be achieved by a sequence
of homotopy moves. Thus, without loss of generality, we assume that each time the
curve H (i, -) combinatorially changes is through a single homotopy move.

We define the homotopy area, as is standard practice. When discussing area, we
need homotopies to be at least piecewise differentiable. We define

oH oH
— X —H ds dt:/ |det Jy (s, t)|ds dt.
s ot [0,11x[0,1]

A(H) = f
[0,1]1x[0,1]

Here, U xT = UiV — UV for @ = (uy, up), ¥ = (v1, v2), and

—_— —
;. _ (9H 9
A=\Tos o

is the Jacobian matrix of partials. The minimum homotopy area is

o(y)= inf A(H),
) wd ) (H)
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where .4 (y) is the set of piecewise differentiable nullhomotopies of y. While the
integral for A(H) is improper, Hass’ work extending the classical Douglas—Rado
solution to Plateau’s problem tells us that for y € %, we have o (y) realized by a
smooth homotopy, excluding finitely many points [11]. With regularity assumptions
on H, such as Lipschitz or piecewise smooth, the homotopy area reduces via the area
formula of geometric measure theory to

A(H) =/ B (1)) dx.
xeR2

The following was shown in [3, 8]:
Lemma 2.1 (homotopy area > winding area) Lety € €. Then o (y) > W(y).

A straightforward proof by induction, similar to that of Lemma 2.1 shows the follow-
ing.

Lemma 2.2 (homotopy area < depth) Lety € €. Then o (y) < D(y).

On the directed multigraph G(y), we can define the left and right face of any edge.
We call a homotopy left (right) sense-preserving if H (i + €, t) lies on or to the left
(right) of the oriented curve H (i, -) forany i, ¢ € [0, 1] and any € > 0. The following
two lemmas provide useful properties about sense-preserving homotopies; the first
was proven in [3], the second in [8].

Lemma 2.3 (monotonicity of winding numbers) Let H be a homotopy. If H is left
(right) sense-preserving, then for any x € R? the function a(i) = wn(x, H(i, -)) is
monotonically decreasing (increasing).

Lemma 2.4 (sense-preserving homotopies are optimal) Let y € C be consistent. Then
a nullhomotopy H of y is optimal if and only if it is sense-preserving.

3 Equivalences

In this section, we show the equivalence of different characterizations of interior
boundaries (Theorem 3.6) and of self-overlapping curves (Theorem 3.7). Our analysis
of curve classes hinges around the concept of obstinance. In Theorem 3.10 we classify
zero obstinance curves, which are generalizations of interior boundaries and of self-
overlapping curves.

3.1 Direct Splits

Lety € ¢ and p; € V(y) with p; = y(t;) = y(t7) and t; < t/. Then, y can be
split into two subcurves at p;: The direct split is the curve with image [y |, fi*]] with
basepoint p;, and the indirect split is the curve with image [y |;;+ 111 U [¥[0,,,7] With
basepoint y (0). We endow both of these curves with the same orientation as y. Given

a direct (or indirect) split ¥ on a curve y, we write y \ ¥ for the indirect (or direct)
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Y\ A\v\ve

G

Fig.7 A curve y and a subcurve (y \ yu) \ yv that is an indirect split (of an indirect split of ) yet is not
an indirect split itself of y

2= (V1,v2,73,V4,75) To

Us

Fig.8 A self-overlapping decomposition of a self-overlapping curve y . Here, y1 and y3 are (proper) direct
splits of y, while y7, y4, and ys are neither direct nor indirect splits of y

split complementary to . We call a direct split proper if it is not the entire curve y.
See Fig. 8. If v = p; € V(y), we may notate the direct split as y; or y,. The direct
splits carry a great deal of information about the curve. In fact, one can recover the
combinatorial relations from the direct splits: p; L p; iff p; € [y;] and p; € [y;];
pi S pjiff p; ¢ [yjland p; ¢ [y;];and p; C p; iff p; is a vertex of y;. Being a direct
split of a curve is a transitive property. Le., if y; € € is a direct split on y, and y; is
a direct split on y;, then y; is a direct split on y. The parallel statement on indirect
splits, however, is false. See Fig. 7.

3.2 Decompositions and Loops

Acurve y € € canbe entirely decomposed by iteratively removing direct splits. Given
adirect split 1 of y = Cop, set C1 = Co \ y1. Then, inductively take y; as a direct split
on C;_1 and form C; = C;_1 \ y;. Iterating until the current curve Cy is simple, we
get a decomposition 2 = (y,-)f.‘:1 of y. Note that §2 nearly induces a partition of y in
the sense that [y ] = Ule [yiland y; Ny; C V(y) foranyi # j. We call §2 a direct
split decomposition if y; is a direct split of C;_1, for all i € {1,2,...,k}. Given a
direct split decomposition £2 = (yl) _1» we write V(£2) for the set of basepomts of
all y; € £2. See Fig. 8.

Observe that no two vertices v;, v; € V(£2) may be linked. Hence, we obtain a
partial order < on V (§2) by declaring v; < v; whenever v; C v;. We define Tg to
be the rooted, directed tree with vertex set V(Tp) = V(£2) and edges e = (v;, v;)
whenever v; C v; and there is no other vertex vx # v;, v; such that v; C vy C v;.
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The root of Ty, corresponds to the basepoint of y. We consider two direct split decom-
positions £2, I' equivalent, £2 ~ I, when T; = Tr. One can easily verify that ~ is
an equivalence relation on the set of direct split decompositions of y. This means that
§2 = I as sets; the decompositions contain the same elements, just in a different order.
If every y; is self-overlapping, we call £2 a self-overlapping decomposition; it may
contain self-overlapping direct splits of positive and negative orientations. The vertex
set of a decomposition already determines the direct splits in the decomposition:

Lemma 3.1 Given a curve y € € and a subset S C V (y) such that py € S and no
two vertices in S are linked, there exists a unique equivalence class & of direct split
decompositions with V(§2) = S forall 2 € &.

Proof Let £2, W be direct split decompositions of y with V(§£2) = S. Once we pre-
scribe S, the direct splits appearing in §2 are determined; only the ordering may vary.
By definition, we see T = Ty as they have the same vertex sets and relations. Hence,
£2 ~ Y. Thus, we need only prove existence.

We now provide a simple inductive algorithm to build 2 with V(£2) = S. First,
take a minimal element w € § with respect to <. Then we set y; := y,,, the direct
split at w. Also, set C; := y \ 1. Inductively, suppose we have y1, ..., y, along with
basepoints v; € S so that y; is a direct split on C;_;. Here, C; = y \ Ule y; tracks
the current curve after the first k removals of direct splits. The fact that no u, v € S
are linked guarantees that all of S — {vi}f: | appear as vertices on Cy (). Now, take
uesS— {vl-}f.‘:l minimal with respect to < again and set y; 1 := (C;),. It follows
by induction that eventually C; is a simple curve for some index /. Since pg € S, we
then set y;+1 := C;. Thus, 2 := (yi)ﬁill is a direct split decomposition of y. It is
immediate that V(£2) C S. By (%), wesee V(£2) D S. O

The observation below follows directly from the definition of winding numbers.

Observation 3.2 Let $2 be a direct split decomposition of a curve y € €. Then for
any face F in the plane multigraph G(y), wn(F, y) = Zy,-e.Q wn(F, y;).

We define a loop as a simple direct split y,, of a curve y € €. Intersection points of y
may lie on y,, but none occur as intersections of y,, with itself. Every non-simple plane
curve has a loop; e.g., the direct split y,,, where w is the highest index vertex on y in
the signed intersection sequence. A loop y, is empty if v links no vertex w € V(y).
Letint(y,) denote its interior, as a set. We call y,, an outwards loop if the edges ey, e,
that are incident on v and lie on y \ y,, both lie outside int(y,). Otherwise y, is an
inwards loop. See Fig. 9. In the case that y € € is a simple curve, we regard it as an
outwards loop.

The lemma below follows from [9, 18]. Since it requires a digression from our main
focus, its proof is given in Appendix A.

Lemma 3.3 (Whitney index through decompositions) Let y € € and $2 be a direct
split decomposition of y. Then WHIT(y) = )", o WHIT(C).

A consequence of Lemma 3.3 is that iteratively removing loops and summing +1 for
their signs allows one to quickly compute Whitney indices. Assuming y is given as
a directed plane multigraph, one can adapt a depth-first traversal to compute such a
loop decomposition of ¥ in O (|y|) time, which yields the following corollary:
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Yu

u €1
1 Uy

Fig.9 An outwards loop (left) and an inwards loop (right)

Corollary 3.4 (compute Whitney index) Let y € € be of complexity n = |y| =
[V (y)|. One can compute a loop decomposition of y, and WHIT(y), in O (n) time.

3.3 Well-Behaved Homotopies

Let H be a nullhomotopy of a curve y, and consider all the points A = {v; }fle of R?
such that H performs a I, move to contract a loop to that point. All such points are
called anchor points of the homotopy H. Following [8] we call a homotopy H well-
behaved when the anchor points A of H satisfy A € V (y),i.e., H only contracts loops
to vertices of the original curve, not to new vertices created along the way by H. The
theorem below from [8] shows that computing minimum homotopy area is reduced to
finding an optimal self-overlapping decomposition. The homotopy H guaranteed in
the following theorem is well behaved.

Theorem 3.5 (minimum homotopy decompositions) Let y € €. Then there is a self-
overlapping decomposition §2 = (yi)fle of y as well as an associated minimum

homotopy Hg of y such that Ho = Zf‘: | Hi and each H; is a nullhomotopy of y;.
In particular, o (y) = mingeg ) Y ceo W(C), where Z(y) is the set of all self-
overlapping decompositions of y.

3.4 Equivalence of Interior Boundaries

In this section, we unify different definitions and characterizations of interior bound-
aries by showing their equivalence. We prefer to begin with interior boundaries, so that
self-overlapping curves can just be thought of as 1-interior boundaries in Sect. 3.5.
We call a curve y a k-interior boundary when (1) obs(y) = o(y) — W(y) = 0,
(2) WHIT(y) = k > 0, and (3) y is positive consistent. We call y a (—k)-interior
boundary when its reversal ¥ is a k-interior boundary. In accordance with Titus [21],
we call a curve ¢: [0, 1] — R? a Titus interior boundary if there exists a map
F:D? — R? such that F is continuous on D%, properly interior on int(D?), and
F|s1 = ¢. Here, properly interior means that pre-images are totally disconnected, and
that the map is open and orientation-preserving.

We prove the equivalence of these definitions and of two further characterizations
below.

Theorem 3.6 (equivalence of interior boundaries) Let y € ¥ have WHIT(y) =
k > 0. Then, the following are equivalent:

(1) y is an interior boundary.
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(1) y is a Titus interior boundary.

(iii) y admits a self-overlapping decomposition §2 = (yi)f.‘: |» Where each y; is posi-
tive self-overlapping.

(iv) y admits a well-behaved left sense-preserving nullhomotopy H with exactly k
1,-moves.

Proof (iii)=> (ii): We proceed by induction on k. Observe that the base case is merely
that y self-overlapping implies y is a Titus interior boundary. We prove this now. Let
F be continuous on D2, an immersion of int(D?), with F|Sl = y. Since F is a local
diffeomorphism, it is open. An immersion is orientation-preserving by definition.
Finally, F a local diffeomorphism with continuous boundary values implies F~!(x)
is finite for any x € R?, so F is totally disconnected. We conclude that F is properly
interior on int(ID?) so that y is a Titus interior boundary.

Now let k£ > 1 and let our inductive assumption be that for all ¢ € {1, 2, ..., k},
if y € €, WHIT(y) = +c, and y has a decomposition §2 into ¢ positive self-
overlapping curves, then y is a Titus interior boundary. Now, let y € % such that
WHIT(y) = k + 1, and y is an interior boundary. Here, we consider the curve y
as coming in two pieces, y| := the first self-overlapping direct split from £2 and its
complement 3> := y \ y;. By Lemma 3.3, WHIT(y) = WHIT(y1) + WHIT(»),
so WHIT(y2) = k. Since §2 — {y1} is a self-overlapping decomposition of C, by
inductive hypothesis, C is a Titus interior boundary. Similarly, by the base case y;
is a Titus interior boundary. Hence, there exist continuous maps Fj, F»: D> — R?
properly interior on int(D?) such that F) |st = y1and F>2|g1 = y». Here, Titus provides
the final trick—we can glue these two curves together at v by finding an arc interior
to both. (We refer the reader to Titus’ paper [21] to see a comprehensive explanation
of his trick of gluing two properly interior mappings together along an interior arc.)
The resulting map F: D> #D?> — R?, where # denotes the connected sum, extends
both F| and F; and represents the curve y, i.e., F|g1 = y. Moreover, F is a properly
interior map on int(ID?). Thus, we have completed the inductive step.

(i))=(i): Let y be a Titus interior boundary. By [21], we have |y ~!(x)| = wn(x, y)
for all x. Thus, y is positive-consistent. Select a continuous map F, properly inte-
rior on int(D?) with boundary values y. Then we see a linear retraction of the disk
r; D* — D? induces a homotopy H with A(H) = W(y), via H;(-) = F(r;(-)). By
Lemma 2.1, we have o (y) = W (y). Thus, y is an interior boundary, and so (ii) = (i).

(i)= (ii1): Let y be an interior boundary. By Theorem 3.5, we have an optimal self-
overlapping decomposition £2 = (yi)i/:1 of y. Suppose, by contradiction, that there
exists an/ < j such that y; is negative self-overlapping. Let F be any face contained in
the interior int(y;). We know by Observation 3.2 that wn(F, y) = l.’: L wn(F, yi),
and since y is positive consistent wn(F, y) > 0. Thus there must exist a positive
self-overlapping curve y; € £2 with F' C int(y;). Consider the nullhomotopies H; and
H; that are part of the canonical optimal homotopy Hg. Then H; contracts y; and is
right sense-preserving, while H; contracts H; and is left sense-preserving. Thus by
Lemma 2.3, H; increases the winding number on F' and H; decreases the winding
number, which means F is swept more than W (F') times, a contradiction. Thus, no
negative self-overlapping subcurve y; may exist in §2. Since WHIT(C) = 1 for any
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positive self-overlapping subcurve and WHIT(y) = Zle WHIT (y;) by Lemma 3.3,
we we must have k = j.

(iii)=>(i): Suppose y has a decomposition §2 into k positive self-overlapping sub-
curves. Then, the canonical homotopy Hg, associated to §2 is left sense-preserving,
since each minimum nullhomotopy of the subcurves is left sense-preserving. Since
sense-preserving homotopies are optimal, see Lemma 2.4, we have o (y) = W(y). For
any self-overlapping decomposition §2 = (yi)i.‘zl , we may conclude that wn(x, y) =
Zle wn(x, ;) by Observation 3.2. Thus, wn(x, y) = Zle wn(x, y;) > 0 since
each y; is positive consistent, as a positive self-overlapping curve.

(i) < (v): Ify hasawell-behaved left sense-preserving nullhomotopy H with exactly
k I,-moves, then H comes naturally with an associated self-overlapping decom-
position §2 of y with |£2] = k, and WHIT(y) = k& > 0 by Lemma 3.3. We

now show that o(y) = W(y). Consider the reversal H from the constant curve
¥po(t) = po to y. Then, H is right sense-preserving and by Lemma 2.3 the func-
tion a(i) = wn(x, H(, -)) is monotonically increasing for any x € R2. Since

wn(x, yp,) = 0forallx e R?, we have that wn(x, ) > 0 for all x € R%. Thus, y is
an interior boundary. Conversely, if y is a positive interior boundary, then obs(y) = 0
and by Lemma 2.4, and since y is positive, H is left sense-preserving. Again, by
Lemma 3.3, WHIT(y) = j, where j is the number of I,-moves in any well-behaved
nullhomotopy H of y. Hence, we must have j = k, as desired. O

3.5 Equivalences of Self-Overlapping Curves

In this section, we study different characterizations of self-overlapping curves and
show their equivalence in Theorem 3.7, which also shows that self-overlapping curves
are l-interior boundaries.

First we describe a geometric formulation of self-overlappingness, inspired by the
work of Blank and Marx [1, 15]. Let y € € be self-overlapping. Let P: [0, 1] — R2
be a smooth path between P(0) = ¢ = y(#;) and P(1) = p = y(tp), where
P,q € [y]\ V(y) are not vertices. Without loss of generality, assume 7, < 7. Let
P := ylt,.t,1, and suppose that

- PN P {p. g},

~C=P=xPisa simple closed curve,

C is positively oriented, and

— P crosses y at p from left to right and at ¢ from right to left (or it crosses at p
from right to left and at ¢ from left to right).

See Fig. 10 as well as Fig. 1. Then we call P a Blank cut of . Any such cut splits
y into two pieces: y; and C. We imagine the Blank cut as removing C = PxP
from y, leaving only y7; this can be done with a left sense-preserving homotopy that
sweeps the arc P to the arc P. We are interested in iteratively performing Blank cuts.
Set yp := y and let P; be a Blank cut on yp. We obtain y; as above by removing
the simple closed curve Py % Py. Then, inductively take a smooth path P; as a Blank
cut on y;_1, and let ; be the curve after removing P % P;. We call (P; )k | a Blank
cut decomposition of y when the final curve y is a simple positively oriented curve.
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Fig. 10 A Blank cut on a small self-overlapping curve

Theorem 3.7 (equivalent characterizations of self-overlapping curves) Let y € €
have WHIT(y) = 1. Then the following are equivalent:

(1) (Analysis) y is self-overlapping.
(ii) (Geometry) y admits a Blank cut decomposition.
(iii) (Geometry/Topology) y is a 1-interior boundary.
(iv) (Topology) y admits a left-sense preserving nullhomotopy H with exactly one
I,-move.
(v) (Analysis) y is a Titus interior boundary.

Proof By property (iii) in Theorem 3.6, self-overlapping curves are 1-interior bound-
aries, since any self-overlapping curve y has the trivial self-overlapping decomposition
£2 = (y). Thus, we have already established (i) < (iii) < (iv) < (v) in Theorem 3.6.
We now prove (ii) < (iii).

(ii)) = (iii): Any Blank cut P amounts to a left sense-preserving homotopy that
deforms P to P. Hence, iterating these homotopies, the Blank cut decomposition
corresponds to a left sense-preserving homotopy from y to a simple, positively ori-
ented curve. Finally we perform a single I,-move to complete a left sense-preserving
nullhomotopy of y. By Lemma 2.4, we have o(y) = W(y). Hence, obs(y) = 0.
We now examine the reversal H, from the constant curve ¥po(t) = po to y. Then, H
is right sense-preserving and by Lemma 2.3 the function a(i) = wn(x, H(, -)) is
monotonically increasing for any x € R2. Since wn(x, Ypo) = O forall x € R?, we
have that wn(x, y) > Oforall x € R2.

(iii)) = (i1): Conversely, let y have a left sense-preserving nullhomotopy H with one
I, move. As H ends with a I, move, we may select a subhomotopy H’ such that

y g C, where C is a simple self-overlapping curve. Moreover, we may demand
H = H' + H”, where the unique I,-move of H occurs during H”. Thus, H' is
regular, i.e., consists of a sequence of homotopy moves only of types II,, II, or III,
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q

1, ﬁé 11,

P L —
—

Fig. 11 Homotopy moves II,, 115, and III each correspond to a Blank cut (shown in blue)

which deform y to C. Each of these homotopy moves is equivalent to a Blank cut, as
shown in Fig. 11. Thus, y admits a Blank cut decomposition. O

The following two lemmas provide useful properties of self-overlapping curves,
the first of which was proved in [21, Thm. 5].

Lemma 3.8 (empty positively oriented loop) Let y € € have a positive outer base-
point and an empty positively oriented loop. Then, y is not self-overlapping.

We conclude this section with a simple yet powerful lemma.

Lemma 3.9 (sense-preserving homotopies) Let H be a regular homotopy with
H
y ~v.
(i) If H is right sense-preserving and vy is self-overlapping, then y' is self-
overlapping.
(ii) If H is left sense-preserving and y is not self-overlapping, then y' is not self-
overlapping.

Proof To prove (i), assume y is self-overlapping. Then it has a left sense-preserving
nullhomotopy H’ by Theorem 3.7. Let us reverse our given homotopy H to obtain
H by H(s,t) = H(1 — s, t). Then we note that the concatenation H” = H + H' is
a left sense-preserving nullhomotopy for y’. Since sense-preserving homotopies are
optimal, o (y") = W(y’). Also, as H” is regular, W(y') = W(y) = 1. Applying
Theorem 3.7 again, we conclude that y’ is self-overlapping. Part (ii) follows by con-
trapositive with a single application of (i): if y’ were self-overlapping then y must be
self-overlapping as well. O

3.6 Zero Obstinance Curves

In this section, we classify curves y € ¥ with zero obstinance, obs(y) := o (y) —
W (y) = 0. See Figs. 2 and 12 for examples of zero-obstinance curves. We show that
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o

Fig.12 A zero obstinance curve, with its minimum homotopy decomposition, and winding numbers shown.
Each curve in the decomposition is self-overlapping and shown in a different color. The vertices with labels
1,2,5,8,9 are sign-changing

Fig.13 A sign-changing vertex v. The winding numbers of the faces incident to v, are up to cyclic reordering,
-1,0,1,0

just as interior boundaries can be decomposed into self-overlapping curves, so too can
zero-obstinance curves be decomposed into interior boundaries.

If a curve y has zero obstinance, then there is a nullhomotopy H which sweeps each
face F on G(y) exactly wn(F, y) times. Note that such a homotopy H is necessarily
minimal by Lemma 2.1. Intuitively, this implies that the homotopy H should be locally
sense-preserving. We expect it to sweep leftwards on positive consistent regions and
rightwards on negative consistent regions. Hence, we might expect regions of the
curve where the winding numbers change from positive to negative to be especially
problematic. Indeed, let v € V (y) be incident to the faces {F, F2, F3, F1}. We call v
sign-changing when, as a multiset, {wn(y, F1), wn(y, F2), wn(y, F3), wn(y, F1)} =
{—1,0,0, 1}; see Figs. 12 and 13.

Theorem 3.10 (zero obstinance characterization) Let y € € and let ./ be the sign-
changing vertices of y. Then obs(y) = 0 iff no two vertices in . are linked and
any direct split decomposition §2 with vertex set V(§2) = . U {po} contains only
interior boundaries.

Proof Suppose obs(y) = 0. By definition, any zero obstinance curve with consistent
winding numbers must be an interior boundary and . = (. Hence, suppose y is
inconsistent so that . # (). We claim any sign-changing vertex v is an anchor point
of every well-behaved minimum homotopy H of y of the form guaranteed by Theo-
rem 3.5. Let us now proceed by contradiction. Suppose v € V (y) is a sign-changing
vertex with incident faces labeled as in Fig. 13 such that v is not an anchor point of
a minimum homotopy H for y. Write I"(H) as the self-overlapping decomposition
of H. As y has obs(y) = 0, we know that W(y) = o(y) = A(H). In particular,
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the homotopy H sweeps each face F' € G(y) precisely wn(y, F) times. Of course,
since our homotopy H consists of a sequence of nullhomotopies of self-overlapping
subcurves, this means each face F' must lie in the interior of wn(y, F') distinct self-
overlapping subcurves C € I'(H). In particular, if either face F», F4 incident to v
is contained in the interior of any curve C € I'(H), we have a contradiction. Let us
now examine the edge e = (v, w3). This edge must lay on precisely one subcurve
C € I'(H) by our definition of a direct split decomposition. We now have two cases.

Case 1: C is positively self-overlapping. We now recall that for a positive self-
overlapping curve, the interior of the curve always lies, locally at each edge,
to the left. Since v is not an anchor point of H, it must be the case that C
also contains the edge e; = (w1, v). As the face F> lies to the left of ey, this
implies F> C int(C).

Case 2: C is negative self-overlapping. Here, we use that the interior of a negative
self-overlapping curve lies locally to the right. In this case, we see that Fy,
lying to the right of edge e, satisfies F4 C int(C).

We conclude that all sign-changing vertices are anchor points of H. This is only
possible if none of the sign-changing vertices link each other. Now, let ® = (yi)i.‘zl
be any direct split decomposition with V(®) = .¥ U {po}. We claim that each curve
y; € O is an interior boundary. It suffices to prove this claim for any decomposition
£2 ~ ©. So, we now choose an §2 with ordering compatible with the ordering of
I’ (H). Note here that each sign-changing vertex is an anchor point of H, so V(£2) C
V(I"'(H)).Sety; € §2,Y; € I'(H) as the subcurves with basepoint v; € V(§2). Then
£2 is prescribed by demanding that y; appear in the same order on §2 as the subcurves
Yion I (H).

Now, by Theorem 3.5, there is a subhomotopy H; of H which is a nullhomotopy
of y;. As subhomotopies of a minimum homotopy H, each H; must be minimum as
well, A(H;) = o (y;). Observe that

k k k
D W) =Wy)=AH) =Y AH) =) o).
i=1 i=1

i=1

So, we must have equality, o (y;) = W(y;), for every curve in the decomposition. By
Lemma 2.1, this means each y; € £2 has obs(y;) = 0. Hence, if each y; is consistent,
they are all interior boundaries, by definition. Of course, if some y; were inconsistent,
then the winding numbers would change somewhere along the curve. Wherever the
winding numbers of y; change, we will see a sign-changing vertex u € V (y;). But
since u is not the basepoint of y;, this is a contradiction. Indeed, by the fact that
< U{po} = V(£2), no sign-changing vertex can be a crossing point on a curve
yi € £2.

Conversely, suppose no sign-changing vertices link each other and that each decom-
position 2 = (y,-)f.‘:1 of y with vertex set V(§£2) = % U {pg} contains only
interior boundaries. Then let Hp; be the homotopy associated to §2. Thus, we have
W(y) = Zf;l W) = ZLI o(y;) = A(H). We conclude H is optimal and
o(y) = W(y). Thus, obs(y) = 0. O
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I Wr+(y)
Po a 0
intersection sequence intersection sequence
0,1-,14,0 0,14,2-,24.,1.,0

Fig. 14 Left: A curve y (shown in black) with positive outer basepoint, and the curve « (shown in blue).
Right: The positive wrap Wr4 (y). While y is not self-overlapping, its wrap Wr (y) is self-overlapping

4 Wraps and Irreducability

In this section, we show (Theorems 4.3 and 4.4) that wrapping around a curve y until
its obstinance is reduced to zero results in an interior boundary. This key result is used
to prove sufficient combinatorial conditions for a curve to be self-overlapping based
on the Whitney index of the curve and its direct splits (Theorem 4.6 and Corollary 4.8).

4.1 Wraps

Let us now define the construction of the wrap of a curve. Let y € %, and let I be
its signed intersection sequence. Form I’ by removing the occurrences of 0 (corre-
sponding to the basepoint) and incrementing each label by one. If y has a positive
outer basepoint y (0), then its (positive) wrap Wr (y) is the unique (class) of curves
with signed intersection sequence 0, 1, I, 1_, 0. This corresponds to gluing a sim-
ple positively oriented curve « to y at y (0), where the interior int(«) 2 [y]; the new
basepoint pp = Wr1.(y)(0) is on «. See Fig. 14. If y has a negative outer basepoint,
the negative wrap Wr_(y) is defined by reversing orientations: Wr_(y) = Wr(y);
this corresponds to gluing a simple negatively oriented curve to y at y (0). We write
Wrﬁ(y) for the curve achieved from y by wrapping k times.

To wrap a curve in the direction opposed to the sign of the basepoint, we must
be more careful. Without loss of generality, we describe the construction of Wr_(y)
when y has a positive outer basepoint. Perform a I-move to add a simple loop y of
the opposite orientation tangent to the basepoint y (0). Let 3’ be the curve after the
I,-move, with a basepoint chosen to lie on 7. We then define Wr_(y) = Wr_(y").
See Fig. 15.

Clearly one can always wrap any curve ¥y € ¢ a sufficient number of times to
make Wrﬁ_(y) positive consistent. Indeed, setting k to be the maximum depth across
all faces in G(y) suffices. On the other hand, it is not at all obvious that wrapping
always turns a curve into an interior boundary. We prove in Theorem 4.3 that, in fact,
positively wrapping always transforms a curve y € % with positive outer basepoint
into a positive interior boundary. Thus one can think of wrapping as a rectifying
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Y Wr_ ()

intersection sequence
0,14,2-,24,1-, 0

intersection sequence
0,1-,2-,34,4_,44,3_,24.,1-,0

Fig. 15 A curve y with positive outer basepoint and its transformation into its negative wrap Wr_(y).
First, we perform a I,-move and then wrap normally on y’

operation with respect to minimum homotopy, as it always eventually removes all
obstinance.

4.2 Simple Path Decompositions

We now describe another type of decomposition for y € € that we will need for
proving Theorem 4.4. First we prove a simple lemma which states that a curve y € ¢
with an outer basepoint has an outwards loop.

Lemma 4.1 (existence of an outwards loop) Let y € € be non-simple and have an
outer basepoint. Then y has an outwards loop.

Proof Let v be the first self-intersection of . Note that v # 3 (0) since y is not
simple. Then y, is a loop. Write y ' (v) = {t,t*}, where t < t,. Since y(0) lies
outside of int(y,), as an outer basepoint, we note that if y,, were inwards, the path
P = y0,) would cross [y,] to get from outside the simple curve to inside it. This is
then a contradiction, for if the crossing occurred at a point ¢ on [y,], then g would
be the first self-intersection of y. Indeed, we would reach ¢ a second time before we
reach v a second time. Thus, y, is outwards. O

We now introduce another decomposition. Here, we imagine walking along y until it
self-intersects. To this end, set 75 := 0 and inductively put

7 :=supft €[t |, 1]: ¥z .1 is injective}.

If tl.* = 1, then we terminate. By definition of tl.*, it follows that p; = y (ti*) is a vertex
of y. Write the pre-image as y_l(p,-) = {t, tl.*}, where 1; < tl.*. The intersection
sequence from r = y (/") until the second occurrence of p; = y(t;) = y(¢) is of
the following form: r - -- p; - - - p;, where no intersection point occurs twice, except
for p;. Thus, y; = Yt ] is a loop. We call the loop y; the first loop of y. By the
proof of Lemma 4.1, we know that y; is an outwards loop.
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V2

0, QIO

intersection sequence
0,1,2,3,4,5,3,6,7,2,8,9,10,10,5,4,6,7,1,8,9,0

———o———o — .

0 f t h B 1
y= P ¥ y % Yy ¥

Fig. 16 A strongly irreducible curve with its simple path decomposition shown

/(1) ,
4 ; Y (®
Y (%) - AW
sgn(v) =-1 sgn(v) = +1

Fig. 17 Two outwards loops; negatively oriented (left) and positively oriented (right). In this setting,
sgn(v) = WHIT()

Let k be the largest value such that #;’ < 1. Then we set Py = Ve 1) Observe that
we have (nearly) partitioned the curve y into a sequence of paths y = Pysyy*- - -x P
vk * Px11, where * denotes concatenation. We call the sequence (Py, y1, ..., Pk+1)
the simple path decomposition of y; see Fig. 16.

4.3 Wrapping Resolves Obstinance

We are now equipped to prove our second main result on wraps, which shows that
repeated wrapping can be used to reduce the obstinance of a curve to zero. This reveals
anon-trivial connection between minimum homotopy area and wrapping, and is a core
ingredient in the proof of Theorem 4.6. Before the proof, we make a small observation
which will be useful.

Observation 4.2 (loop orientations equal basepoint signs) Lety € € and v € V(y)
be the basepoint of an outwards loop y,. Then sgn(v) = WHIT(y,). This means that
sgn(v) = 1 iff yy is positively oriented; see Fig. 17. Similarly, if y is simple, then
sgn(y (0)) = WHIT(y).

Theorem 4.3 (wrapping resolves obstinance) Lety € € have positive outer basepoint
and set n = |y|. Then there is a positive integer k < n so that obs(Wr]j_ (y)) =0.
Moreover, Wr’i(y) is a positive interior boundary.

Proof Let k be the number of negative vertices in V (y). We claim that Wri (y)isan
interior boundary. We will show this by iteratively constructing a left sense-preserving
nullhomotopy H for y. By property (iv) of Theorem 3.6 it then follows that y is a
positive interior boundary and obs(y) = 0.
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Fig. 18 The combinatorial structure necessary to apply balanced loop deletion: a wrapped curve, with outer
wrap « and a negatively oriented loop y— as first loop in the simple path decomposition

We first introduce a trick that we call balanced loop deletion. See Fig. 18, where
all of the following objects are shown. Suppose that C € ¥ is positively wrapped,
that is C = Wr(C’) for some curve C' € €. And suppose that the first loop y—
(shown in red) in the simple path decomposition of C is negatively oriented. Let
b = C(tp) = C(t}), with 1, < t;, be the basepoint of y_. Balanced loop deletion

performs a left sense-preserving homotopy H so that C e \ (e U y_), where o
(shown in purple) is the positive outer wrap on C.

Let P (shown in blue) be the simple subpath of C froma = C(t,) = C(t}) to b,
where a is the unique outer intersection point on [C], i.e., the basepoint of the wrap
o, and 7, < 1. For ¢ > 0 sufficiently small, let o’ = C(t} 4+ &) and b’ = C (1} — ¢)
and let P, (shown in dashed green) be a simple path between a’ and b’ that is s-close
to P in the Hausdorff distance. Let P = Clrye, i —e] (shown in thick beige) be the

simple subpath of C from a’ to »’. Then P is the concatenation of (i) the path from a’
to a along «, (ii) the path P from a to b, and (iii) the path from b to b along y—_. The
path P is simple because each of these subpaths are simple and none of them intersect
each other since b is the first self-intersection point of the curve. We now make a
crucial observation: P % P, is a simple, positively oriented, closed curve. By definition,
this means P is a Blank cut. Thus, there is a left sense-preserving homotopy which
sweeps P to P.. The effect of this homotopy on C is that both the outer wrap « and
the negatively oriented loop y_ are deleted. Thus, we have established the existence
of left sense-preserving balanced loop deletion.

Now we construct a left sense-preserving nullhomotopy H of Wr]_‘l_(y) = y1 by
iteratively concatenating several left sense-preserving subhomotopies, so H = ) _; H;.
We proceed inductively as follows. Suppose Hi, ..., H;—1 have been defined and y;
is the current curve. Consider the first loop C;, which is outwards by Lemma 4.1, in
the simple path decomposition of y;. If C; is positively oriented we let H; be the left
sense-preserving nullhomotopy that contracts this loop. Otherwise C; is negatively
oriented and we let H; be the homotopy performing balanced loop deletion. We claim
that there is a wrap available to perform this balanced loop deletion. Indeed, for
Jj=1,...,i—1,each homotopy H; deletes one direct split and at most one indirect
split of y;, including their basepoints as well as any additional intersections points
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Y Wr (y)

Fig. 19 An example of a family of curves that require k = n wraps to resolve obstinance, where & is the
number of negative vertices in V(y). Here, k = n = 3. In general, y, has positive outer basepoint and

signed intersection sequence 0, 1, 14,2_,24,...,n—,n4,0. Since WHIT(Wr{F(y,,)) =1l—-n+j,it

follows that Wri(yn) is not a positive interior boundary until j = n. This shows that our bound k¥ < n
cannot be improved

of y; that appear on these splits.> The signs of the remaining intersection points are
not affected. Since there are k negative vertices on Wr’i(y), there can be at most k
distinct integers i1, .. ., i; such that the first loop on y;, is negatively oriented. Thus,
there are a sufficient number of wraps available on Wrﬁ(y). We conclude here that
all negative vertices will be removed by the algorithm, either during balanced loop
deletion or contraction of a positive loop, before the curve becomes simple.

The process of constructing homotopies H; never gets stuck, and |y;+1| < |yil.
Therefore, at some index m, the current curve y,, has |y, | = 0, i.e., is simple. Of
course, ¥, (0) is a vertex from Wr’i(y). Since all negative vertices were removed,
¥m must have a positive basepoint. Therefore, by Observation 4.2, y,, is positively
oriented. Hence, set H,, to contract y,, with a final left sense-preserving nullhomotopy
and H = )_[' | H; is a left sense-preserving nullhomotopy of Wr]j_(y). O

The bound k < n is tight, as shown in Fig. 19. We now show that wrapping resolves
obstinance in either direction of wrapping.

Theorem 4.4 (wrapping resolves obstinance (general)) Let y € € with outer base-
point and set n = |y|. Then there are constants k_,ky < n + 1 such that

obs(er_’ (y) = obs(Wr]r(y)) =0, er: (y) is a negative interior boundary, and
erf: (y) is a positive interior boundary.

Proof Without loss of generality suppose y (0) is a positive basepoint, or we may
work with the reversal . Then k. < n exists directly by Theorem 4.3. To prove the
existence of k_, consider the intermediary curve y’ obtained from y by performing a
Ip,-move on the outer edge to create a negatively oriented loop that is entirely outer to
the curve. The basepoint of y’ is set on this new negatively oriented loop; therefore
has a negative outer basepoint, and the additional vertex on y’ created by the I,-move

is positive. By definition we have Wr_(y) = Wr_(y’) = Wry . By Theorem 4.3

5 Note: if q € V(y) lies on the image [y ], then removing yj from y removes a pre-image of ¢, so it is no
longer a vertex.
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there exists k.. for ZDue to the additional positive vertex on y’, which is an additional
negative vertex on y’, we have k_ = k4 < k4 + 1.

If y(0) is a negative outer basepoint, then the constants k_ and k exist for the
reversal . And thus we are done by setting k. = k_ and k_ = k. since

Wi () = Wit () = Wil ) and Wil o) = Wil o) = Wit ).

m}

Let us make a simple observation: once eri(y) is an interior boundary, so too is

Wrl (y) for any integer j > k. This holds because we can simply add the extra
Jj — k wraps to the self-overlapping decomposition 2 of Wr’i(y). Consequently,
Theorem 4.4 implies that interior boundaries are the equilibrium point for plane curves
with respect to the action of wrapping. No matter where we begin, we will always
eventually land and stay within the set of interior boundaries.

4.4 Irreducible and Strongly Irreducible Curves

We are now ready to apply Theorem 4.4 to prove sufficient combinatorial conditions for
a curve y to be self-overlapping based on WHIT(y) and properties of its direct splits.
If y € € has no proper positive self-overlapping direct splits, we call y irreducible.
A special case of irreducibility is of particular interest to us: If WHIT(y,) < 0 for
all proper direct splits, we call y strongly irreducible. See Figs. 4 and 8, and ys50 in
Fig. 25 for examples of strongly irreducible curves. Note that a strongly irreducible
curve is irreducible since any positive self-overlapping curve y has WHIT(y) = 1.
We need one simple lemma before proving irreducible curves are self-overlapping.

Lemma 4.5 (existence of a direct split) Let y € € and $2 be a direct split decompo-
sition of y, with |$2| > 2. Then §2 contains a proper direct split.

Proof A leaf v; in the tree T, necessarily corresponds to the basepoint of a direct split
y; in the decomposition £2. Since |§2| > 2, this direct split y; must be proper. O

Theorem 4.6 (irreducible curves are self-overlapping) Assume y has WHIT(y) = 1
and positive outer basepoint. If y is irreducible, then it is self-overlapping.

Proof Apply Theorem 4.3 to find a k € Z such that Wr’i(y) is a positive interior
boundary. We know from property (iii) of Theorem 3.6 that there is a self-overlapping
decomposition £2 of Wr’j_ (y) into positive self-overlapping subcurves. By Lemma 4.5,
we know that £2 must have a self-overlapping direct split of Wr’fIr (y), and we will show
that y is the only direct split of Wrﬁ (y) that can be self-overlapping.

Let w; be the vertex created by the i-th wrap. The intersection sequence of Wr’i v)
therefore has the prefix wy, wg—1, ..., wi. Then the direct split Wr’i(y)wi at w; on
Wrk () has WHIT(Wr% (y)y,) = 1+ (i — 1) = i by Lemma 3.3, and is therefore not
self-overlapping for i > 2. And any direct split Wrﬁ(y) at a vertex of y which is also
a proper direct split on y cannot be self-overlapping since y is irreducible. Note that
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Fig.20 This curve y does not have an outer basepoint. It is not self-overlapping, yet y is strongly irreducible
due to the empty positively oriented loop on the indirect split y

by our notation w; is the vertex corresponding to the original basepoint y (0). And
this is the only vertex at which the direct split Wrﬁ(y)w , = v could potentially be
self-overlapping. Thus, it follows with Lemma 4.5 that y is self-overlapping. O

Corollary 4.7 Let y have WHIT(y) = 1 and positive outer basepoint. Then if y is not
self-overlapping, it has a positive self-overlapping direct split y,.

Again, since strongly irreducible curves are irreducible, Theorem 4.6 implies

Corollary 4.8 (strongly irreducible curves are self-overlapping) Assume y has
WHIT(y) = 1 and positive outer basepoint. If y is strongly irreducible, then it is
self-overlapping.

Corollary 4.8 tell us something remarkable—conditions on the Whitney indices of
a curve and its subcurves alone can be sufficient for self-overlappingness. Note that
strongly irreducible curves are a proper subset of irreducible curves, see y; in Fig. 2.
Also, Corollary 4.8 is false without the basepoint assumption, see Fig. 20.

One can decide whether a piecewise linear curve y is (strongly) irreducible by
checking the required condition for each direct split. Let N be the number of line
segments of y and n = |y| = |V (y)| € O(N?). Then irreducibility can be tested in
O (nN?) time, using Shor and Van Wyk’s algorithm to test for self-overlappingness
in O(N?) time [19]. Strong irreducibility can be decided in O (n?) time by applying
Corollary 3.4 to each direct split of y.

4.5 Global Balanced Loop Insertion

We now introduce an operation called balanced loop insertion, which is complemen-
tary to the balanced loop deletion applied in the proof of Theorem 4.3. We show in
Theorem 4.11 that any curve y with positive outer basepoint and WHIT(y) = 1 can
be transformed into a self-overlapping curve, more specifically, a strongly irreducible
self-overlapping curve, through a sequence of balanced loop insertions. This result is
a nice parallel to Theorem 4.3.

Let y € € have a positive outer basepoint. Then given any edge e from G(y),
we define balanced loop insertion on y with respect to e as follows: First, perform
a I,-move to insert a negatively oriented loop, on the right side of the edge e, and
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Balanced Loop Insertion on e

Fig.21 Balanced loop insertion on a self-overlapping curve y with respect to an edge e. Note that the curve
produced, y”, is also self-overlapping

smooth the resulting curve ¥’ until it is generic and regular. Then, wrap around y’ to
create y” = Wr4(y’). See Fig. 21. This operation is ‘balanced’ in the sense that we
have added both a positive and a negative loop. Hence, by Lemma 3.3, we have

Observation 4.9 Ler y” be obtained from y through balanced loop insertion. Then
WHIT(y”) = WHIT(y).

The following is an interesting property of balanced loop insertion.

Lemma4.10 Let y have WHIT(y) = 1 and positive outer basepoint. If y is strongly
irreducible, and y' is obtained from y by balanced loop insertion, then vy is strongly
irreducible as well.

Proof Let i: V(y) — V(y') be the inclusion map, sending vertices on y to the
corresponding vertices on y’. Then the only possible change to the direct split was
that we added a negatively oriented loop, so WHIT(y; ) = WHIT(yy) < 0.The only
other direct splits we need to check are those of the vertices u, v created by balanced
loop insertion. We note immediately that WHIT(y,)) = —1 where u is the basepoint
of the new negatively oriented loop. Meanwhile, if v is the vertex created by the wrap,
then WHIT(y,) = WHIT(y) — 1 = 0. Hence, ' is strongly irreducible. O

Strong irreducibility is preserved by balanced loop insertion, and consequently, so too
is self-overlappingness. If y has a positive outer basepoint and WHIT(y) = 1, we need
a stronger operation to transform a non-self-overlapping curve into a self-overlapping
curve.

Let y € ¥. Global balanced loop insertion, denoted by M: 4 — ¥, applies
balanced loop insertion simultaneously once on every edge of y. More precisely,
M applies balanced loop insertion with respect to every edge of the multigraph G (y),
in any order. Up to signed intersection sequence, the resulting curve is independent
of ordering. By Observation 4.9, it follows that WHIT(M(y)) = WHIT(y). Since
there are 2|y | 4+ 1 edges on G(y), the operator M ( -) applies balanced loop insertion
2|y | + 1 times. Equivalently, M (y) can be obtained by performing a I,-move to the
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M)

Fig. 22 Global balanced loop insertion applied to a curve y. Since y has empty positively oriented loops
it is not self-overlapping (by Lemma 3.8). The curve M (y) is strongly irreducible and self-overlapping by
Theorem 4.11

right of every edge of y, adding a new negatively oriented loop, and then wrapping
the curve 2|y |+ 1 times. See Fig. 22 for an example of global balanced loop insertion.

We now show that this operation transforms any curve y with positive outer base-
point and WHIT(y) = 1 into a strongly irreducible curve and hence a self-overlapping
curve by Corollary 4.8.

Theorem 4.11 Let y have positive outer basepoint and WHIT(y) = 1. Then M(y) is
strongly irreducible and self-overlapping.

Proof Let y be a curve with positive outer basepoint. We will utilize the identity
WHIT(y) = Zvev(y) sgn(v) shown by Titus and Whitney [20, 22]; note the inclusion

of the basepoint po with sgn(po) = +1 in the vertex set.® It follows immediately that
WHIT(y) < |y| + 1 for y € ¥ with outer basepoint. While a direct split y, may
not have an outer basepoint, we can instead consider a curve y,, with the same image
and orientation as y;,, and hence the same number of intersection points, and an outer
basepoint. We then have WHIT(y,,) = WHIT(y,) < |y}l +1 = |yy|+ 1. On the other
hand, since every edge of y, received at least one negatively oriented loop, as edges of
y» may be further subdivided on y, we note that we inserted at least 2|y, |+ 1 negatively
oriented loops on the direct split y,,. Thus, if we write i: V(y) — V(M (y)) for the
natural inclusion map and set v = i(v), then we see WHIT(M(y)3) < —|yy| < 0.
Hence, all the vertices on M (y) that came from y will not yield direct splits of Whitney
index 1 or greater.

Now, the only other vertices to consider are the basepoints of the new negatively
oriented loops and the basepoints of the wraps. Clearly, for any vertex u of the former
kind, we have WHIT(M (y),) = —1 for the direct split at u. We now address the
basepoints of the wraps. Let M (y); be the direct split and M (y);+ be the indirect split
at the i-th vertex of M (y). By definition M (y) contains 2|y | + 1 outer wraps, which
implies WHIT(M (y);=) =i foralli € {1,...,2|y|+ 1}. And since direct splits and
indirect splits are complementary, it follows from Lemma 3.3 that WHIT(M (y)) =
WHIT(M (y);) + WHIT(M (y);+) and hence WHIT(M (y);) = 1 —i < 0 for any
i efl,...,2|y|+ 1}. Thus, M(y) is indeed strongly irreducible. O

6 Here, we differ from convention. Typically V (y) contains only the crossing points, but for our purposes
the basepoint belongs.
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Y1

2 Q)

Fig. 23 A loop decomposition of a curve y

5 Discussion

We introduced new curve classes (zero-obstinance, irreducible, and strongly irre-
ducible curves; see Fig. 2), which help us understand self-overlapping curves and
interior boundaries. We proved combinatorial results and showed that wrapping a
curve resolves obstinance. These new mathematical foundations for self-overlapping
curves and interior boundaries could pave the way for related algorithmic questions.
For example, is it possible to decide whether a curve is self-overlapping in o(N?)
time? How fast can one decide self-overlappingness of a curve on the sphere? Can one
decide irreducability in o(n?) time, even in the presence of a large number of linked
subcurves?
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Appendix A: Whitney Indices & Loop Decompositions

In this section are interested in a refinement of self-overlapping decompositions. Let
£2 = (y;)i_, be a self-overlapping decomposition. If each y; is simple, i.e., a loop,
then we call §2 a loop decomposition. See Fig. 23 for an example.

We now recall a construction of Seifert [9, 18]. He introduced a decomposition of
plane curves by performing so-called “uncrossing moves”, which essentially split a
curve y at a vertex v into the two (nearly) disjoint pieces y, and y,+. See Fig. 24. If
we cut the two curves at the vertex v, and smooth them, we obtain two completely
disjoint plane curves. Iterating this process across many vertices of y, one can achieve
a decomposition of the original curve y into a set of Jordan curves.
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Fig. 24 An uncrossing move applied to a vertex v, splitting the curve into two pieces

Suppose y € ¢ is decomposed into Jordan curves {C; }le using these uncrossing

moves. Then Seifert and Gauss [9, 18] showed that WHIT(y) = Zf: 1 WHIT(C i).7
Using our terminology and replacing the Jordan curves with loops in a loop decom-
position, we obtain the equivalent fact:

Lemma 5.1 (Whitney index through loops) Let y € €, let §2 be a loop decomposition
of v, and let n be the number of positively oriented loops and n_ be the number of
negatively oriented loops in 2. Then WHIT(y) = ny —n_.

As a consequence of this lemma, we can prove linearity of Whitney indices across a
direct split decomposition.

Lemma 3.3 (Whitney index through decompositions) Let y € € and $2 be a direct
split decomposition of y. Then WHIT(y) = )., WHIT(C).

Proof The key is to piece together loop decomposition’s of each subcurve C € 2.
Write 2 = (C,-)f?=1 and take ¥; to be a loop decomposition of C;. Then ¥ =
1, ..., ¥) is a loop decomposition of y. Since WHIT(C;) = p; — n; where p; is
the number of positively oriented subcurves in ¥; and n; the number of negatively
oriented subcurves, we conclude that

k

k k k
WHIT(y) =Y " pi = > ni =) (pi —ni) = ) WHIT(C)). o
i=1 i=l1 i=1

i=1

Appendix B: Lattice

We introduce two more classes of curves. We say a face F is good when its depth
is equal to its winding number. If a curve y € ¥ is positive consistent and all
faces on G(y) are good then we call the curve good. We call a curve basic if all
of its self-overlapping decompositions are loop decompositions. That is, the only self-
overlapping decompositions are decompositions into loops. By Theorem 3.10, basic
curves with zero obstinance can be decomposed into good curves.

We define SIMPLE, BASIC-ZERO-OBSTINANCE, ZERO-OBSTINANCE as classes of
those curves that have the property described by the class name. The classes SO,
INTERIOR-BOUNDARY ™', CONSISTENT', GOOD™ consist of the curves with the posi-
tive property described by the class name (positive self-overlapping, positive interior

7 1t is crucial that the crossing points of y are all transverse double points for this to work.
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boundary, positive consistent, and good curves that are positive consistent). Figure 25
and Theorem 5.3 show the relationship between these curve classes. The curves in
Fig. 25 show that the inclusions in parts (i), (ii), and (iii) of Theorem 5.3 are proper.
We first state a lemma that we need in the proof of the theorem.

Lemma 5.2 (negatively oriented loop) Let y € € be a non-simple, positive self-
overlapping curve with positive outer basepoint. Then y has a negatively oriented

loop yy.

Proof Let V = {v € V(y) : y, is aloop}. By Lemma 4.1, we know V # (. Define
the relation v < w for v, w € V whenever int(v) C int(w). It is straightforward
to verify that (), <) is a poset. Of course, since |V] is finite, we can choose vy € V
minimal with respect to <. Now, suppose that y,,, were a positive loop. We show this is
a contradiction to complete the proof. Indeed, by minimality of vy, there are no loops
of y completely contained inside int y,,. This means every time a strand of y crosses
from outside to inside y,,, the strand does not cross itself inside of y. Topologically,
then, int(y,,) looks like a disk with finitely many simple arcs traveling from boundary
to boundary. By way of a (regular) right sense-preserving homotopy, we can sweep
each such arc until it no longer intersects y,,. As we need only sweep finitely many
such arcs, let us denote y’ as the result of this process. By Lemma 3.9, we know y’
is self-overlapping. On the other hand, ¥’ has an empty positive loop, namely the one
we just emptied, which contradicts Lemma 3.8. O

Theorem 5.3 (curve classes) If y € € has a positive outer basepoint, then:

(i) SIMPLE C SO' C INTERIOR-BOUNDARY ™ C CONSISTENT™,
(ii) SIMPLE C GooD™" C BASIC-ZERO-OBSTINANCE C ZERO-OBSTINANCE,
(iii) GooDT C INTERIOR-BOUNDARY™T C ZERO-OBSTINANCE,
(iv) CONSISTENT' N ZERO-OBSTINANCE = INTERIOR-BOUNDARY ™,
(v) CONSISTENTT N BASIC-ZERO-OBSTINANCE = GOOD™,
(vi) SOt N Goob™ = SIMPLE.

Proof By definition, a simple curve with a positive outer basepoint is positive self-
overlapping, and +k-boundaries are positive consistent. By Theorem 3.7, a positive
self-overlapping curve is a 1-boundary, which proves (i). A simple curve is trivially
good. By Lemmas 2.1 and 2.2, good curves have zero obstinance. We now show
that good curves are basic by contradiction. Suppose y admitted a self-overlapping
decomposition 2 = (y,-)f?zl with a non-simple self-overlapping curve y;. Then y;
must contain a negatively oriented loop by Lemma 5.2. But we could then create a
finer decomposition of y by decomposing y; into loops. Precisely, let ¥ be a loop
decomposition of y; and consider I' = (y1, ..., V-1, ¥, ¥j+1,..., ¥x). Then I" is
a direct split decomposition of y refining £2. Let C be a negatively oriented loop
in ¥ and take any face F contained in the interior of C. Now, take a path P from F
to the exterior face on G(y) such that the depth is monotonically decreasing along
the path P. Since F is contained inside C, the path P must cross C to reach Fey;.
However, when P crosses past C, we see the depth either decrease by 1 or remain
unchanged, while the winding number increases by 1, since C is negatively oriented.
We learn that wn(F, y) < D(F, y), which is a contradiction. This proves (ii), with
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INTERIOR-BOUNDARY* CONSISITENT*

—> VB —>
© ©
SIMPLE / @ @ _

\ GOOD* ¢ A1 | BASIC-ZERO-OBSTINANCE ZERO-OBSTINANCE

dicaten

Fig. 25 Lattice of curve classes. Solid arrows are inclusions. Two dashed lines meet to form an inclusion.
A member curve of each class is displayed, along with appropriate information to justify membership in its
curve class: A set of Blank cuts of ygo are shown in red, a self-overlapping decomposition of yjg in blue, the
winding numbers of yc, the loop decompositions of yg and ygz0, and the self-overlapping decomposition
of yz0. The inclusions are proper: ygzo is not consistent and consequently not good; yjg is not good, and
since WHIT (y1g) = +2 it is not self-overlapping; yc is not an interior boundary because WHIT(yc) = 1
but since it has an empty positively oriented loop it is not self-overlapping; yzo is not an interior boundary
because it is not consistent. See Theorem 5.3

the last inclusion being trivial. Since a good curve is basic and positive consistent, it is
a positive interior boundary by property (iii) of Theorem 3.6. And interior boundaries
have zero obstinance by definition, which proves (iii).

By definition, interior boundaries are consistent and have zero obstinance, which
proves (iv). If a curve y is basic and positive consistent, it follows that y admits a
loop decomposition §2 with only positively oriented subcurves. Since by Observa-
tion 3.2, wn(F, y) = Zyl_e_q wn(F, y;) and each wn(F, ;) € {0, 1}, we must have
wn(F, y;) > D(F, y;). The bound wn(F, y) < D(F, y) holds generally. Thus y is
good, which together with (i) and (ii) proves (v). By Lemma 5.2, a good curve that is
self-overlapping may not have a negatively oriented loop and hence must be simple,
which together with (i) and (ii) proves (vi). O
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