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Abstract—In the era of pervasive digital connectivity, intel-
ligent surveillance systems (ISS) have become essential tools
for ensuring public safety, protecting critical infrastructure,
and deterring security threats in various environments. The
current state of these systems heavily relies on the computational
capabilities of mobile devices for tasks such as real-time video
analysis, object detection, and tracking. However, the limited
processing power and energy constraints of these devices hinder
their ability to perform these tasks efficiently and effectively.
The dynamic nature of the surveillance environment also adds
complexity to the task-offloading process. To address this issue,
mobile edge computing (MEC) comes into play by offering edge
servers with higher computational capabilities and proximity to
mobile devices. It enables ISS by offloading computationally
intensive tasks from resource-constrained mobile devices to
nearby MEC servers. Therefore, in this paper, we propose and
implement an energy-efficient and cost-effective task-offloading
framework in the MEC environment. The amalgamation of
binary and partial task-offloading strategies is used to achieve
a cost-effective and energy-efficient system. We also compare
the proposed framework in MEC with mobile cloud computing
(MCC) environments. The proposed framework addresses the
challenge of achieving energy-efficient and cost-effective solutions
in the context of MEC for ISS. The iFogSim simulator is used
for implementation and simulation purposes. The simulation
results show that the proposed framework reduces latency, cost,
execution time, network usage, and energy consumption.

Index Terms—Intelligent Surveillance System, Mobile Edge
Computing, Cloud Computing, Task offloading.

I. INTRODUCTION

INTELLIGENT surveillance systems (ISS) automatically

monitor the environment or private infrastructure without or

with minimal human interaction [1]. These systems can detect

and track objects, such as people or vehicles, identify bio-

metric features, such as faces or fingerprints, analyze events

and behaviors, such as traffic violations or suspicious activity,

and set off alarms or take other actions, such as locking

doors. ISS is deployed in public places, transit, retail, banking,

education, and healthcare, which increases security, safety,
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Fig. 1: MEC architecture in 5G scenario

and effectiveness [2]. ISS contains several components like

cameras, video processing servers, and monitoring consoles,

where camera sensors record the video footage from the

environment and send it to computing nodes for processing

and analysis.

The traditional surveillance systems process and analyze

data in the cloud. The cloud service provider and end

users maintain a service-level-agreement (SLA) between them.

Therefore, these computing nodes are generally deployed in

cloud data centers. The end customers utilize the pay-as-you-

go (PAYG) scheme for cloud computing services [3]. PAYG is

known for cost-effective solutions. Whereas, the Mobile edge

computing (MEC) is a one-time establishment that is relatively

higher. However, in the long run, MEC will provide a cost-

effective solution because no subscription is needed. The main

problems of cloud computing-based ISS include latency, cost

of execution, bandwidth, energy consumption, data security,

and user privacy [4]. Surveillance cameras generate a huge

amount of data and transmitting these data to the cloud is

time-consuming. Transferring analyzed data back and forth

response increases the latency and data centers consume a

lot of electrical energy for a tiny job due to their huge

infrastructure. Since data transfer is the necessary criterion,

data security and user privacy are vital issues of this system.

One of the potential solutions to these problems can be

MEC enables ISS. MEC [5] is a paradigm that aims to

enhance the capabilities and performance of mobile networks
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TABLE I: List of Abbreviations

Acronym Definition

AG Augmented Reality

DAG Directed Acyclic Graph

E-UTRAN Evolved UMTS Terrestrial Radio Access

EU End User

GPS Global Positioning System

HSS Home Subscriber Server

ISP Internet Service Provider

LTE Long-Term Evolution

MEC Mobile Edge Computing

MECNs Mobile Edge Computing Nodes

MCC Mobile Cloud Computing

MI Million Instructions

MIPS Million Instructions Per Second

MME Mobility Management Entity

PAYG Pay-As-You-Go

PCRF Policy and Charging Rules Function

PTZ Pan-tilt-zoom

S/P-GW Serving / Packet Gateway

by bringing computational resources closer to the network

edge [6]. MEC addresses these challenges of cloud-based

systems by deploying edge servers, known as mobile edge

computing nodes (MECNs) or MEC servers, at the edge

of the network [4]. The traditional CCTV cameras contin-

uously record all events whereas intelligent cameras record

specialized events. Intelligent cameras require less storage

space to store recorded footage. MEC-based ISS processes

the raw video footage at the MEC server instead of the cloud.

Therefore, these massive amounts of data are not sent to the

data center and analyzed in the MEC server. Here, The MEC

server is responsible for object detection and object tracking.

Region detection and camera feedback operations are done in

the intelligent camera itself. The functions like alert generation

and display results are also performed by the MEC server.

Therefore, in this paper, we proposed a MEC-based ISS

framework. The binary and partial task offloading policies

are utilized for uploading the task into the MEC server for

analysis. The proposed framework is implemented in the

iFogSim simulator.TABLE I defines the list of abbreviations

used in this article. We make a comparative analysis between

the proposed MEC-based ISS and MCC-based ISS. This pro-

posed framework achieves significant improvements in several

parameters like latency, network usage, energy consumption,

execution time, and cost.

The subsequent sections of this paper are structured as

follows: In Section II various related researches are reviewed.

Section III provides a comprehensive overview of various

system parameters pertaining to MEC. Section IV delineates

the proposed system architecture and its corresponding imple-

mentation. System configurations and the experimental setup

are expounded upon in Section V. Section VI offers a detailed

exposition of the results, followed by an in-depth analysis.

Finally, Section VII concludes this article with future works.

II. LITERATURE SURVEY

MEC was proposed by ETSI (European Telecommunica-

tions Standards Institute) in 2014 [7]. The surveillance sys-

tem is essential for ensuring security. Previously, surveillance

cameras used the main cloud server and conducted data gover-

nance. The traditional cloud-based client-server architecture is

unable to stream videos from millions of source devices, which

is not suitable for time-sensitive or real-time applications.

MEC is one of the solutions to these problems. A large

and growing body of literature has investigated MEC-related

applications including surveillance systems. Computational

offloading in MEC with various aspects was highlighted in

the article [8]. Wang et al. [9] proposed a novel (L, 2) transfer

feature learning (L2TFL) approach for COVID-19 classifi-

cation in edge computing environments. A social distancing

measuring framework using edge computing was proposed in

article [10]. In this article, researchers proposed a model using

fog and edge computing that computes the distance among

several GPS-enabled edge devices in the MEC server. Also,

latency and network had improved over MCC one. Sabella et

al. [11] suggested a few related studies on the MEC. Routing

optimization using a deep learning model is proposed for better

network performance in MEC environments [12].

Elephant monitoring near railway tracks using an intelligent

surveillance system was found in article [13].Cai et al. [14]

proposed a linear multi-agent system on signed communi-

cation topology for the bipartite output consensus problem.

The researchers provided some tutorials based on the ETSI

reference MEC architecture on the 5G scenarios. Various

social issues and challenges were covered in the article. The

virtual machine (VM) provisioning algorithm was proposed in

articles [15], [16]. VM placement and VM selection policies

were proposed to reduce the system’s energy consumption. He

et al. [17] discussed dynamic opinion maximization in social

networks. Secure V2V communication in an IoT-enabled MEC

environment was discussed in article [18]. Beloglazov et

al. [19] proposed an energy ware heuristic resource allocation

model for efficient data center management. Ensuring the

data security-related study in MEC using block-chain had

found in article [20], [21]. Multi-model data fusion was used

in neuroimaging to achieve significant benefits in clinical

diagnosis and neuroscience research [22]. In article [23], the

authors focused on the behavior of the caching system, caching

insertion and expulsion policies, and caching optimization

depending on wireless networks in the MEC environment. Re-

garding energy consumption concerns, green cloud computing

significantly improves over cloud [24]. Mobile Edge Com-

puting with 5G integration detailed discussed in article [25].

Using convolutional neural networks, transfer learning, and

semi-supervised learning category of foods was recognized in

the MEC environments [26], [27].

Mahmoodi et al. [28] introduced an innovative approach that

integrates scheduling and cloud offloading for mobile comput-

ing. They discussed various factors such as business values,

market drivers, and computing services like augmented reality,

video acceleration, and IoT applications for connected vehi-

cles. The study also highlighted the feasibility of deploying

MEC servers at multiple locations, including LTE macro base

stations (eNodeB), 3G radio access controllers (RNC), and

various multi-radio access technology (RAT) points. Mondal

et al. [29] proposed a tiger monitoring framework in edge and

fog architecture. Collectively, these studies outline the crucial
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TABLE II: Components of MEC

Name of Components Description

Low Latency
Devices being near to edge server,
latency is very low.

Location Awareness
MEC server knows the geographical
location of end devices.

Network context information
MEC server has network information
based on the business model.

Proximity Setting at a convenient location.

On-Premise Use local resources, isolated from others.

role of ISS in the MEC environment.

III. BACKGROUND AND OVERVIEW

In this section, we introduce several terminologies related

to the MEC system. This section contains four subsections. It

includes two types of task offloading policies (Binary, and

Partial) related to MEC, components of MEC, and energy

consumption of mobile devices and MEC servers. Fig. 1

depicts the general architecture of MEC in the 5G scenario.

Here, various services are accessed from the user’s end (UE).

E-UTRAN is associated with EPC. EPC consists of PCRF,

HSS, MME, and S/P-GW [25]. PCRF is used for policy

enforcement, data flow detection, and charging. User and

subscriber information is stored in the HSS database. Sub-

scriber authentication roaming and handover-related support

are provided by MME.S/P-GW are responsible for routing-

related activities in EPC.

A. Components of MEC

As per the European Telecommunications Standards In-

stitute (ETSI) white paper regarding MEC, it has several

components. The components of MEC and its brief description

are shown in TABLE II. The important components of MEC

are low latency, location awareness, proximity, on-premises

deployment, and network context information.

B. Binary Offloading

Task offloading is an essential feature for cost-efficient

task management. Two types of task offloading are available

in MEC, binary task offloading, and partial task offloading.

Binary overloading states that either the task is completely

uploaded to the MEC server or not uploaded. Binary offloading

can be represented as:

T (L, τd, Cb) (1)

This widely used equation (1) represents data offloading, the

fact of input-data size of the task L (in bits), the task comple-

tion deadline τd (in second), and Cb represents computation

workload. The deadline can be two types, hard deadline and

soft deadline. These parameters depend on the nature of the

task [30], [31].

C. Partial Offloading

Due to the nature of the task and computation capability,

binary offloading is not always ideal for offloading. Hence

partial offloading comes into account. In partial offloading,

the tasks are partitioned into parts. Some parts of the task are

offloaded to the MEC server, others are executed on the mobile

device itself. It is also called fine-grained (partial) computation

offloading. The task input data are bit-wise independent and

can be distributed over several MEC servers for parallel

execution. This model belongs to the data partition model.

Another partial offloading model is the task-call graph

model where the task will be uploaded or not depending

on the dependency of other tasks. This model includes three

variations, sequential dependency, parallel dependency, and

general dependency. In the task-call graph model, the graph is

a directed acyclic graph (DAG). G{V,E}, where V represents

the set of vertices as different procedures and E represents the

set of dependencies [32]. Fig. 2 depicts these three types of

dependency using task-call graphs.

D. Energy Consumption

In MEC systems, the CPU of mobile devices is fundamen-

tally used for regional computations. The performance of the

CPU depends on CPU-cycle frequency fm. It is also called

CPU clock speed. Generally, low-power mobile systems used

dynamic frequency and voltage scaling (DVFS) [16], [33].

Execution latency of a particular task T (L, τd, Cb) can be

estimated by the equation as:

tm =
LCb

fm
(2)

Total energy consumption of a task T (L, τd, Cb) along with

the CPU cycle frequency fm of a mobile device can be derived

as:

Em = κLCbf
2

m (3)

where κ is a constant related to hardware architecture. The

server execution time is computed as ts,k = wk

fs,k
where wk

denotes the CPU cycle and fs,k denotes CPU cycle frequency

required for the offload task. For MEC servers the energy

consumption is different from mobile devices. The queuing

delay along with total server computation latency for a device

k is symbolized by Ts,k and can be calculated as:

Ts,k =
∑

i≤k

ts,i (4)

The energy consumption of the CPU at the MEC server can

be derived as:

Es =

K∑

k=1

κwkf
2

s,k (5)

where wk is the number of required CPU cycles for processing

the offloaded workload at the MEC server.Equation (3), and (5)

represent the energy consumption for mobile devices and MEC

servers respectively [34].

IV. PROPOSED FRAMEWORK

This article proposed a MEC-based intelligent surveillance

system and compared it with MCC in various parameters.

We have taken a case study of surveillance systems. Using

the module placement algorithm deployed applications in the

MEC and MCC servers based on computational capability.
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Fig. 2: Topologies of the task-call graphs

Fig. 3: Proposed MEC-based Intelligent Surveillance System

framework

Binary task offloading is not as complex as partial offloading.

As per the latency concern, binary offloading is more suitable

than partial offloading. We have used both the task offloading

schemes in the module placement algorithm to achieve cost-

effectiveness. The complete job is divided into a few modules.

The partial task offloading determines whether a module will

be placed on the MEC server or the device itself.

Fig. 3 depicts the architecture of the ISS in the MEC

environment. It is a three-tier architecture, the topmost layer

contains a cloud data center. The middlemost layer contains

the MEC server. The bottom layer consists of all the devices

(sensor and actuator) called the device layer. The cameras

generate video streams and upload them to the MEC server via

the proxy server for video analytics. Cloud is used for storage

purposes of video footage for future use. This figure contains

three sites, each site having four surveillance cameras and one

MEC server.

The workflow diagram of the proposed framework is de-

picted in Fig. 4. It consists of four modules Region Detection,

Object Tracking, Decision Making, Camera Feedback that

need to be deployed for the simulation. The Alert Generation

function produces an alert signal in the MEC server and the

result is reflected in the users via display units. In MCC-based

placement, some modules deploy in the cloud. Whereas in

MEC-based placements, some modules deploy in the MEC

server. Sometimes few modules can be deployed in the in-

telligent camera itself and the rest of the modules deploy in

the MEC server. Here, the application model consists of a

DAG (Directed Acyclic Graph) S = G{V,E}. The vertices

set V represents the modules and the edge set E represents

connections among the modules. The four modules depicted

in Fig. 4 belong to the set V . Modules are connected via some

directed edges belonging to set E.

The Algorithm 1 demonstrates the scenario of how the

modules are deployed in MCC and MEC servers. The MEC

servers consist of VMs for processing the tasks simultaneously.

Each VM is deployed for the processing of one task module.

The number of VMs deployed on each MEC server depends

on the hardware configurations of the MEC server. In the

proposed algorithm, d represents the number of edge devices,

f represents the number of MEC servers, w represents the

number of task modules belonging to apps, and θ represents

the total number of modules. MEC server is selected as the

parent among the edge devices. The parent device places the

hierarchically upper layer in physical topology. The PATHS

of DAG with G{V,E} represented by p. The maximum time

required to place the modules is O(p×d×w). The maximum

time required for choosing the appropriate servers (f) for θ

modules is O(f × θ). The time required to traverse the graph

is O(V +E). Additionally, Fig. 5 depicts the flowchart of the

module placement algorithm 1 in the MEC environment.

Fig. 4: Workflow diagram of proposed MEC-based intelligent

surveillance system
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Algorithm 1 Module placement in MEC

Input: module θ

Output: placeList

for p ∈ PATHS do

Over all available paths of DAG

init. placeList := {};
for Edge device d ∈ p do

traverse from leaf to root

for module w ∈ app do

if total predecessors of w are alloted then

add each w to placeList;
end if

end for

for module θ ∈ placeList do

if θ is previously alloted on device f ∈ p then

Combine θ with its other upstream instance;

f :=device grasp combine instance;

while CPUrec
θ ≥ CPUavail

f do

f := parent(f)
end while

else if CPUrec
θ ≤ CPUavail

d then

Append θ on device d;

end if

end for

end for

end for

V. SYSTEM CONFIGURATIONS FOR SIMULATIONS

To get unbiased results of research, an unbiased sys-

tem configuration is mandatory. In this study, the iFogSim

simulation toolkit is used to get the outcomes. It provides

customized experiments, resource management, and effortless

simulation [35]. For simulation, we have used Intel Core i9

12th-generation processor with 44GB of RAM.

In system configuration tables various terms have been

used. Where Level means the hierarchical position of the

components, level-0 represents the topmost level, level-1 is the

middle layer and, level-2 is the bottom layer. RAM represents

the physical memory of the system. MIPS represents the

CPU processing capability. RatePerMIPS represents the cost

per MIPS. BusyPower and IdlePower represent the energy

consumption in working mode and idle mode [35].

The network latency between the components of the phys-

ical topology is shown in TABLE IX. Physical topology

represents the network configurations used for simulation.

Gigabit LAN is installed between the Intelligent Camera and

the MEC server as a communication link in each topology.

A. MEC Configurations

In this article, the MEC-based proposed model contains

a cloud module, proxy module, MEC server module, and

TABLE III: Intelligent Camera configurations

CPU Length NW Length Interval Time

1200 million instructions 24000 byte 5 milliseconds

Fig. 5: Flowchart of module placement algorithm

intelligent cameras. The intelligent cameras are connected to

MEC servers via some proxy servers. The task is offloaded

to the MEC server from the device layer. After completion

of the task, it is uploaded to the cloud via a router for future

use. TABLE IV and TABLE V show the system configurations

of the could and proxy module in the MEC-based placements.

TABLE VI shows the system configurations of the MEC server

itself.
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TABLE IV: Configurations of Cloud module in MCE place-

ment

Parameter Cloud (Datacenter)

Hierarchical Level 0

Size of RAM 80000MB

Processing Capability 44800MIPS

RatePerMIPS 0.01

BusyPower Consumption 16× 106.665Watt

IdlePower Consumption 16× 83.50Watt

UploadLink 100MB

DownloadLink 10000MB

TABLE V: Configurations of Proxy module in MEC placement

Parameter Proxy Server

Hierarchical Level 1

Size of RAM 4800MB

Processing Capability 3200MIPS

RatePerMIPS 0.00

BusyPower Consumption 16× 107.339Watt

IdlePower Consumption 16× 83.4333Watt

UploadLink 10000MB

DownloadLink 10000MB

TABLE VI: Configurations of MEC server module in MEC

placement

Parameter MEC Server

Hierarchical Level 2

Size of RAM 4800MB

Processing Capability 3200MIPS

RatePerMIPS 0.00

BusyPower Consumption 16× 107.339Watt

IdlePower Consumption 16× 83.433Watt

DownloadLink 10000MB

UploadLink 10000MB

TABLE VII: Configurations of Cloud module in MCC place-

ment

Parameter Cloud (Datacenter)

Hierarchical Level 0

Size of RAM 80000MB

Processing Capability 44800MIPS

RatePerMIPS 0.01

BusyPower Consumption 16× 106.665Watt

IdlePower Consumption 16× 83.50Watt

UploadLink 100MB

DownloadLink 10000MB

B. MCC Configurations

The MCC model contains a cloud module and a router mod-

ule. Due to the absence of the MEC server in the middle layer,

the tasks are fully offloaded to the MCC layer for computation.

TABLE VII and TABLE VIII show the configurations of the

cloud module and router module in the MCC environment.

VI. RESULT AND ANALYSIS

For simulations, four sets of configurations have been

considered. Config-1 contains 16 intelligent cameras, Config-2

contains 32 intelligent cameras, Config-3 contains 48 intelli-

gent cameras, and Config-4 contains 64 intelligent cameras.

Each camera produces the same amount of data every 5

milliseconds (see TABLE III). The simulation results are

shown in TABLE X.

TABLE VIII: Configurations of Router module in MCC place-

ment

Parameter Router

Hierarchical Level 1

Size of RAM 4000MB

Processing Capability 3200MIPS

RatePerMIPS 0.00

BusyPower Consumption 16× 107.339Watt

IdlePower Consumption 16× 83.4333Watt

UploadLink 10000MB

DownloadLink 10000MB

TABLE IX: Network description

Source Destination Latency(milliseconds)

Intelligent Camera MEC server 2

MEC server Proxy server 2

Intelligent Camera Router 2

Proxy server Router 4

Router MCC server 100

A. Cost matrices

Fig. 6a shows the execution cost in MEC and MCC envi-

ronments. The following formulas are used to calculate the

total cost:

Ecost = unit× cost per unit (6)

Tcost = Ecost+(TMIPS ×Lu×RMIPS ×Ltimes×Ci) (7)

where, Tcost represents total cost, Ecost denotes execution

cost, Ci denotes the clock of iFogSim simulator. TMIPS repre-

sents the total MIPS of the MEC server. The last utilization and

last utilization update time are represented by Lu and Ltimes

respectively. Fig. 6a demonstrates the MEC-based system is

more cost-effective than the MCC system.

B. Latency

Fig. 6b shows the overall latency of the systems in MEC

and MCC environments. The overall latency of the proposed

framework is calculated as:

Lt = α+ υ + ϕ+ λ (8)

Where Lt denotes total latency. α denotes the latency of

interested region detection from the raw video footage. υ

defines the latency for object tracking. Similarly, ϕ denotes the

latency of decision-making. And finally, λ defines the latency

of camera feedback. This latency completely depends on the

deployment of the module in the simulator. The result shows

that the system consistently maintains low latency in the MEC

environment.

C. Execution time

Fig. 6c portrays the execution time in MEC and MCC

environments. Execution time is a summation of all execution

times of all the module applications. It contains the process-

ing time and latency between source (sensor) to destination

(actuator) devices. The execution time is calculated as:

Xt = E − S (9)
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Fig. 6: Comparison analysis

TABLE X: Simulation Results

Parameters −→ Cost of Execution
Latency

(milliseconds)
Execution time
(milliseconds)

Network usage
(Bytes)

Energy consumption
(kWh)

MEC MCC MEC MCC MEC MCC MEC MCC MEC MCC

Config.-1 39675.37 288054.8161 7.096644 214.4897267 1953 2463 16943.4 328797.3 2700573 2879451

Config.-2 26396.23 551050.4141 7.096725 215.29209 4432 5125 34466.8 657102.1 2691010 3068855

Config.-3 112528.4 810070.8054 7.097117 216.077933 6140 8999 55744.2 985406.9 2753041 3255396

Config.-4 34971.03 832139.200 7.096624 416.940381 7961 9265 67708.6 1042812 2697185 3271289

Where Xt denotes execution time, E denotes task end time

and S represents task start time in the simulator. Fig. 6c clearly

shows that the MEC system requires a shorter execution time

than the MCC system.

D. Network usages

Network usage is the utilization of resources in the system

in terms of sending and receiving data through network inter-

faces.NetworkUsageMonitor class is used to calculate network

usages using the formula:

Nu = L× ψ (10)

In equation (10) the Nu denotes the entire network usage

by the system in MEC and MCC-based environments. L

represents latency. Where ψ denotes the toupleNeWSize in the

iFogSim simulator. Fig. 6d shows that the higher workload

will require higher system resources. The result clearly shows

that the network usage in the MEC environment is relatively

lower than the MCC in different configurations.

E. Energy consumption

The energy consumption of each MEC server is calculated

by the power of all hosts in the specific time quantum. In

the iFogSim simulator, a method called UpdateEnergyCon-

sumption is used to calculate total energy consumption. That

method is used for MEC and MCC in both cases. Fig. 6e

shows the energy consumption in MEC-based placements is

comparatively lower than in MCC-based placements. Overall,

these results indicate that the proposed task offloading frame-

work provides cost-effective and energy-efficient ISS in the

MEC environment.

VII. CONCLUSION

This study set out to develop an energy-efficient and cost-

effective framework for ISS in the MEC environment. The

second aim of this study was to make a comparative study

of the proposed MEC-based framework with MCC based

framework. The research has found that the amalgamation

of binary and partial task offloading policy in the MEC

environment is more cost-effective and energy-efficient than

in the MCC environment. The findings of this study confirm
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that the proposed framework provides impressive results on

latency, cost of execution, network usage, execution time, and

energy consumption. The primary limitation of this research

lies in its implementation within simulation environments.

Furthermore, the incorporation of stochastic task offloading

is absent in this study. Thirdly, the assessment of the efficacy

of object detection and tracking algorithms is not undertaken.

Subsequent research endeavors may delve into the exploration

of module placement strategies and the formulation of energy-

aware resource management policies, aiming to enhance the

energy efficiency and cost-effectiveness of intelligent surveil-

lance systems.
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