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Subdata selection with a large number of variables

RakHI SINGH? aAnD JouN STUFKEN!

Abstract

Subdata selection from big data is an active area of research that facilitates inferences based on big data with limited
computational expense. For linear regression models, the optimal design-inspired Information-Based Optimal Subdata
Selection (IBOSS) method is a computationally efficient method for selecting subdata that has excellent statistical prop-
erties. But the method can only be used if the subdata size, k, is at last twice the number of regression variables, p. In
addition, even when k£ > 2p, under the assumption of effect sparsity, one can expect to obtain subdata with better statis-
tical properties by trying to focus on active variables. Inspired by recent efforts to extend the IBOSS method to situations
with a large number of variables p, we introduce a method called Combining Lasso And Subdata Selection (CLASS) that,
as shown, improves on other proposed methods in terms of variable selection and building a predictive model based on
subdata when the full data size n is very large and the number of variables p is large. In terms of computational expense,
CLASS is more expensive than recent competitors for moderately large values of n, but the roles reverse under effect

sparsity for extremely large values of n.

KEYWORDS AND PHRASES: Effect Sparsity, Optimal Design, Prediction, Subsampling, Variable Selection.

1. INTRODUCTION

Unprecedented advancements in modern information
technologies have resulted in an exponential growth of data
and massive datasets. Data sizes are now measured in ter-
abytes (TB) or petabytes (PB) and not in mere megabytes
(MB) or gigabytes (GB). Big data facilitates and incen-
tivizes data-driven decisions in almost every area of sci-
ence, industry, and government. Given the challenges that
big data presents due to its volume, variety, and complex-
ity, extracting high-quality information from big data is a
prerequisite for understanding the data meaningfully [5].

Some statistical methods for analyzing big data in-
clude bags of little bootstraps by [21], divide-and-conquer
[22, 6, 34, 31, for example] and sequential updating for
streaming data [32, 45, for example]. In divide-and-conquer
approaches, statistical analyses are performed on multiple
parts of the data, and then these results are combined to
form overall conclusions. In sequential updating, since the
data is made available in streams or large chunks, sequen-
tial analysis methods that do not require storing the big
data are developed. Interested readers are directed to [38]
for a comprehensive review of these approaches. Within the
subsampling-based approaches to handle big data, one ap-
proach is to work with a carefully selected small represen-
tative sample (called subdata) of size k from the big data of
size n (called full data). The sample size k should be cho-
sen so that appropriate statistical tools and methods can

*Corresponding author.
I1The authors gratefully acknowledge support through NSF grants
DMS-1935729 and DMS-2304767.

be applied to the subdata with sufficiently reduced compu-
tational complexity. Methods to identify such subdata are
called subdata selection methods.

The current literature on subdata selection is rapidly
growing. Much of the relevant literature focuses on iden-
tifying subdata that yields precise estimates of parameters
in a given statistical model, for example, for linear regres-
sion [see, 10, 23, 8, 36, 41], logistic regression [42, 39, 7],
multinomial logistic regression [46], generalized linear mod-
els [13, 36, 1, 50, 53, 16], quantile regression [40, 2, 12, 33],
and quasi-likelihood [50]. All of these methods assume a
true underlying model. Methods that allow for the misspec-
ification of a linear model [29], a non-parametric regression
model [30], a distributed computing environment [52], and
model selection [49] also exist. Typically, model-based meth-
ods aid in estimating model parameters and, as a byproduct,
in the prediction for new test data.

In addition, model-free subdata selection methods also
exist. For example, one could mirror the population distri-
bution in the subdata [26, 19, 37], or compress the full data
in a small set for prediction [18]. Selective reviews of subdata
selection methods are also provided by [48] and [47].

While subdata selection methods focus on data reduction
by drastically reducing the number of observations n, they
tend to become computationally intensive or statistically in-
efficient when the number of variables p is moderate to large.
In this paper, we consider the situation when n > p, but
p is moderate to large (in the thousands). We assume that
the response can be modeled using a linear model and use
the Information-Based Optimal Subdata Selecton (IBOSS)
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method [41] in conjunction with LASSO [35] to combine
variable selection and subdata selection.

In Section 2, we provide a brief background for the cur-
rent analysis methods and subdata selection methods. Sec-
tion 3 describes our method, explores its analytical prop-
erties, and discusses its advantages. Section 4 compares the
proposed method with competing methods on simulated and
real data. Finally, we provide some concluding remarks in
Section 5.

2. BACKGROUND

2.1 The model and analysis methods
2.1.1 The model

Let (X,Y) be the full data, where X is a nxp matrix with
n observations and p (independent) variables or features and
Y is the corresponding n x 1 response vector. The linear
regression model is

P
yi = Bo+x] Bitei = Po+ Y Bimij+eni=1,...,n, (21)

j=1
where 3y is the intercept parameter, 81 = (B1,...,08,)7 is
the vector of slope parameters, and x; = (z;1,...,2ip)7,

yi, and ¢; are the vector of variable values, response, and
error for the ith observation, respectively. Further, we write
z; = (LX;‘T)Tv B = (ﬁOMB{)Ta X = (leﬂ'»xn)Ta zZ =
(z1,..,2,)T, and Y = (y1,...,yn)T. We assume that the
€;’s are independent and identically distributed with mean

0 and variance o2.

2.1.2 The ordinary least squares (OLS) estimator

When using the full data and model (2.1), the least-
squares estimator of 3, which is also its best linear unbiased
estimator, is 3f = (ZTZ)"'ZTY. The covariance matrix of
this unbiased estimator is equal to the inverse of the Fisher
information matrix Iy for 8 from the full data

1
I; = —2Z"Z. 2.2
f 2 ( )
Subdata of size k can be represented by a k x (p + 1)
matrix Zg, which consists of k rows of the full data matrix
Z, and the corresponding vector of responses Y,. The OLS
estimator based on the subdata is B = (Z1Z,)"'ZTY,.

2.1.3 The LASSO estimator

For high-dimensional data (i.e., large p), it is common to
assume that only a few variables affect the response (spar-
sity). We will refer to these variables as “active” variables.
Penalized regression methods are used to analyze data in
such situations. One well-known method is LASSO with an

£1-norm regularization. The LASSO estimator BLASSO is a
solution to the following optimization problem [35]
1 n
argmingeres - > (i — 2 B)° + ABll,

i=1

(2.3)

where ||8|]1 = |Bo| + |81] + -+ + |8y is the ¢1-norm of B,
and A is the regularization parameter. If the tuning param-
eter A goes to 0 slower than 1/y/n, then, provided that Iy
is non-singular, \/ﬁ(,éL Asso — 3) converges in distribution
[15, 44] to N(O,o*2I]71)7 where Iy is as in (2.2). In practice,
cross-validation is typically used to tune . Two solutions,
one with the minimum cross-validation error (correspond-
ing to lambda.min in R package glmnet [14]) and another
with the most regularized solution within 1 standard devi-
ation of the minimum cross-validation error (corresponding
to lambda.lse in R package glmnet), are widely used.

2.2 Subdata selection methods for OLS

For a linear regression model, current subdata selection
methods can be broadly classified into two categories:

e Probabilistic methods. The k subdata observations are
randomly sampled with replacement from the full data,
each time using a selection probability ; for the ith
observation in the full data, i =1,...,n, > . m = 1.
This is often combined with the weighted least squares
estimator [cf. 41]

-1 n

n
(memﬁ) Zwiniziyiv
i=1 i=1

where 7; denotes the number of times that the ¢th data
point is included in the subsample, and the weight w; is
often taken to be proportional to 1/m;. Using m; = 1/n
and w; = 1 for i = 1,...,n constitutes simple ran-
dom sampling with replacement, to which we will refer
as uniform sampling (UNI), whereas leverage sampling
[10, 25, 23, 24, 9] uses m; = hy;/(p+ 1) and w; = 1/m;
where h;; is the leverage value of the ith observation ob-
tained as z (ZTZ)~'z;. Another probabilistic approach
uses influence functions to find the subsampling proba-
bilities [36]. One major limitation of probabilistic meth-
ods [see, 41] is that variances of the estimators in (2.4),
given some mild conditions on X, are bounded below
by quantities of order 1/k, and do not approach 0 as
n — o0o. Except for UNI, other methods can still be
computationally expensive for values of n and p consid-
ered in this paper.

e Deterministic methods: These methods, some of which
draw inspiration from the optimal design literature, aim
to select subdata of size k that optimizes an objective
function. Under model (2.1), the information matrix for
3 when using subdata of size k is

(2.4)

1 T 1 T
1(6) = 52" AZ= Z]Z., (2.5)



where A = diag(d), § = (d1,...,6,)T, & is the in-
dicator variable indicating whether the ith data point
is in the subdata or not, and >, §; = k. Based on
the structure of D-optimal designs [20], [41] devised a
deterministic subdata selection method for finding sub-
data that, approximately, maximizes the determinant
of Z(d) for a give value of k. The method is called D-
optimal Information-Based Optimal Subdata Selection
(IBOSS). The D-optimality criterion minimizes the ex-
pected volume of the joint confidence ellipsoid for 3.
When r = k/(2p) is an integer, the simple algorithm
proposed in [41], which has computational complexity
O(np), selects IBOSS subdata by sequentially consid-
ering each column of X and selecting the observations
with the r smallest and r largest values for each of the
p variables. Orthogonal subsampling, proposed by [43],
is another deterministic approach inspired by experi-
mental design. In addition to having extreme observa-
tions for each variable, a better approximate solution
to maximizing the determinant can be obtained if the
subdata has a structure that mirrors the structure of an
orthogonal array of strength 2 [17]. It can provide sub-
data that has a better spread in p-dimensional space.
[41] showed nice theoretical properties of the estimator
from the IBOSS sample (discussed in Section 3.3).

In what follows, we use IBOSS as a subdata selection
method owing to its computational and statistical superior-

ity.
2.3 Challenges with using IBOSS for large p

Since IBOSS attempts to select at least 2 data points
for each variable, it can only be applied if & > 2p. But
even when this condition is satisfied, the subdata that is
obtained by applying IBOSS may not be great for large p
given that many variables are likely to be inactive. For k <
2p, [44] recently proposed first selecting p™ variables with
the largest absolute correlation with the response by the sure
independence screening (SIS) method [11] and then only
using these p* variables for selecting the IBOSS subdata.
They call this procedure SIS-IBOSS. They then analyzed
the subdata, using all p variables, by using LASSO. They
also used this analysis for £ > 2p, in which case they selected
the subdata simply by using IBOSS. If the tuning parameter
A of LASSO goes to 0 slower than 1/4/n, then [44] showed
that the asymptotic behavior of the 8 in (2.3) is the same
as that of an OLS estimator. Therefore, both IBOSS and
SIS-IBOSS work well with LASSO. Note, however, that SIS
only considers the marginal relation of each variable with the
response and works best when the variables are independent
[11]. SIS-IBOSS also suffers from this problem (see Section
4) and does not work well when the variables are correlated.
Another challenge with SIS-IBOSS is that a good value of
pT is generally unknown and is hard to guess.

We therefore develop a subdata selection method that
mitigates these challenges for high-dimensional data.
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3. METHODOLOGY

3.1 Overview of our method

With the ultimate goal of prediction, our method first
screens variables to identify the active variables, and then
performs the subdata selection using only the identified vari-
ables. Finally, a linear regression model with only the vari-
ables identified as active is fitted using the subdata and
OLS estimation. Algorithm 1 provides more details for our
method, which we call CLASS for Combining Lasso and
Subdata Selection. Steps 1 to 8 of Algorithm 1 focus on
variable selection. The novel variable selection method runs
LASSO multiple times on small randomly selected subsets
of the full data. Variables that are consistently selected in
different LASSO runs are declared active. Unlike [28] and
[3], we use a kmeans-based data-driven approach for decid-
ing which variables are consistently selected. Step 9 of Algo-
rithm 1 focuses on the subdata selection using IBOSS only
on the selected variables. Finally, in step 10 of Algorithm
1, we fit a linear regression model to the subdata and se-
lected variables using OLS estimation. This model can then
be used to obtain predictions on test data.

Algorithm 1: CLASS

inputs : the number of times LASSO is run ntimes, the
sample size for each LASSO run nsample, the
matrix Z, and the response vector Y
for j =1 — ntimes do
Let Znsampie,p+1 be a nsample X (p + 1) matrix
based on a uniform random sample of size nsample
from the rows of Z, and Y nsampie be the
corresponding response vector;
3 Run LASSO on Y nsampie and Zysample,p+1, With
tuning parameter corresponding to lambda.min in
10-fold cross-validation;
4 Save the selected active variables to the list By;

[

5 end

6 Let C' = (C4,...,Cp), where C; is the number of lists
Bi1, Ba, ..., Bntimes that contain the ¢-th variable;

7 For the counts in C, form two clusters using kmeans;

8 Variables with counts in the cluster with the largest
mean are selected as the active variables;

9 Use IBOSS to select subdata of size k only using the
active variables from step 8;

10 Fit a linear regression model, with intercept and the
active variables from step 8, using the subdata from
step 9 and OLS estimation;

output: Fitted model from step 10

In the next two subsections, we provide evidence for the
superior performance of CLASS.

3.2 Variable selection with large n and large p

We perform repeated applications of LASSO in step 3
of Algorithm 1, each time on a randomly selected subset of
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size nsample x p. Therefore, for CLASS to perform well, we
need to identify conditions under which LASSO performs
well. Regular consistency and the model selection consis-
tency of ,éL Asso are well-studied in the literature. Writing
the tuning parameter as A, if A,, tends to zero slower than
n_1/2, then ,éLASSO converges to 3, that is, the solution is
consistent [15]. With the same condition on the tuning pa-
rameter, BL ASSo 1s strong sign consistent as n — oo if and
only if the following condition is satisfied [54, 51]:

|Z5cZ(Z52Z.) " sign(By)|o <1, (3.1)

where J is the index set for active variables, J¢ is the com-
plement of J, and 3; and Z; are the subvector of 3 and
submatrix of Z with elements and columns, respectively, cor-
responding to J. Since the condition in (3.1) is not trivial
to verify, it is difficult to guarantee strong sign consistentcy
of LASSO for any Z. For the special case that the tuning
parameter \, = A\on~ /2, [3] showed that under regularity
conditions, (a) the sign of Brasso matches with that of the
true @ for indices in J with probability tending to 1 expo-
nentially fast, and (b) all variables with indices in J¢ are
selected with a probability strictly between (0, 1). Therefore,
[3] proposed Bolasso where LASSO is applied multiple times
on a different bootstrapped sample of the original data. The
variables that appear consistently in either all or at least in
90% of LASSO models are declared to be active variables.
The latter version is called the soft-threshold version of the
Bolasso. Except for the fact that we use samples of much
smaller size than that of the original data and that we do
not use a fixed cutoff for deciding which variables are active
in a LASSO run, the Bolasso idea mirrors our approach and
our method shares the theoretical properties outlined in [3].

The variable selection component of Algorithm 1 is also
closely related to the stability selection method developed
n [28]. They proposed using nsample = n/2 and obtained
good results by declaring variables active if counts exceed a
threshold of 20%-80% of ntimes. Their simulations suggest
that ntimes = 100 is a reasonable choice. With Steps 7-8 of
Algorithm 1, by using kmeans with two clusters, we provide
a data-driven way to soft threshold the value above which
a variable is declared active. In Section 4, we will demon-
strate that the choices nsample = 1000 and ntimes = 100
for Algorithm 1 and using kmeans with two clusters gives
good results. Other choices for nsample and ntimes are ex-
plored in the Supplementary Material. Simulations in Sec-
tion 4 confirm that CLASS tends to select all active variables
and a much smaller number of inactive variables than other
competing methods.

3.3 Subdata selection on selected variables

In the previous section, we demonstrated that the se-
lected variables contain (a) true active variables with a very
large probability and (b) some inactive variables with a pos-
itive probability. In Steps 9-10 of Algorithm 1, we first use

IBOSS to select subdata of size k£ only using the variables
selected in step 8. We then fit a linear regression model with
the intercept and these variables using the subdata and OLS
estimation. This section discusses the asymptotic properties
of the OLS estimator of 3 obtained as a result of Algorithm
1. If we select all active variables in Step 8 of Algorithm 1,
then the OLS estimators for the slopes of the active variables
obtained in Step 10 of Algorithm 1 are unbiased.

IBOSS subdata attempts to maximize the determinant of
the information matrix of the model based on the selected
variables. Since we apply IBOSS only using the selected vari-
ables, IBOSS subdata for CLASS gives a larger determinant
of the information matrix corresponding to these selected
variables than a method that uses IBOSS on all variables. If
the selected variables are precisely the active variables, again
indexed by J, then D-optimal IBOSS subdata obtained by
only using those variables, minimizes the determinant of the
variance-covariance matrix of the estimator B? of the pa-
rameter vector in the linear regression model that only uses
the active variables. Provided that the column means for
the full data are available, the estimate of the intercept pa-
rameter is adjusted in [41] to maintain the predictive power
of the model, that is,

B =Y - X780,

where Y and X ; are means based on the full data and BlDJ
are the slope parameter estimates from Bf’ . We will use this
adjustment for estimating the intercept parameter.

Theorem 5 in [41] provides a general result for the vari-
ance of individual parameter estimators for IBOSS subdata.
This result also applies to the individual parameter estima-
tors of the selected variables obtained using IBOSS sub-
data in Algorithm 1 if all active variables are among those
that were selected. As argued in Section 3.2, and as will be
demonstrated through simulation, the chance of this hap-
pening is high. Theorem 6 in [41] discusses the asymptotic
results of these variances when the joint variable distribution
is either multivariate normal or lognormal. This result also
applies to the subdata of CLASS provided that all active
variables are among those that were selected.

For a multivariate normal or lognormal distribution of the
variables, this would then imply that for the overall mean,
Var(BS%|X ), is proportional to 1/k and never converges to 0
with a fixed k. However, the variance of the estimators of the
slope parameters for the selected variables would converge
to 0 as the full data size n — co. As shown in [41], this
nice property of IBOSS subdata is in contrast with other
subsampling-based estimators, such as leverage sampling,
where the variances of the slope parameter estimators do
not converge to 0 because, under mild assumptions, they
are bounded from below by terms that are proportional to
1/k.

The discussion up to this point has focused on variable
selection and parameter estimation rather than prediction



even though our goal is good prediction. However, the strong
variable selection properties of our method (see Section 3.2)
combined with selecting subdata that optimizes the estima-
tion of the coefficients of the selected variables is bound to
result in good prediction properties provided that the model
assumptions hold.

3.4 Desirable features of CLASS

First, howsoever large the full data is, variable selection
can be done in a feasible time since CLASS runs LASSO on
small subsets of the full data. Second, CLASS does better
at selecting active variables correctly and in not identify-
ing inactive variables as active than LASSO on full data
or than other competing subdata selection methods. The
superior performance remains true irrespective of whether
the variables are correlated. These claims are validated via
simulations in the next section. Third, since CLASS em-
ploys IBOSS only on the selected variables for obtaining
the subdata and since the active variables are almost al-
ways among the selected variables, subdata corresponding
to CLASS gives a larger determinant for the information ma-
trix for the active variables than the subdata obtained from
competing methods. As a result, CLASS leads to better pa-
rameter estimation for the selected variables and prediction.

The computational complexity of LASSO for data of size
nx pis O(p®+p?n). Therefore, the computational complex-
ity of CLASS for steps 1-8 of Algorithm 1 is O(ntimes(p> +
p?nsample)). Step 9’s computational complexity is O(np*),
where p* is the number of selected variables in step 8. Fi-
nally, for step 10, it is O(kp*?). Assuming that p* < p and
k < nsample x ntimes, the overall computational complex-
ity of CLASS is O(ntimes(p® + p?nsample) + np*). With
ntimes = 100 and nsample < n/100, CLASS is much faster
than LASSO on the full data. CLASS is computationally
more expensive than [44] for moderately large n, but with
appropriate values of nsample and ntimes, it becomes less
expensive for very large n and large p.

4. NUMERICAL EXPERIMENTS

In this section, we compare the performance of CLASS
with competing methods through simulation studies. The
comparison focuses on variable selection and prediction ac-
curacy for test data.

Data are generated from the linear model (2.1) with the
value of p = 500 and p = 5000. Let p; be the number of
true active variables; without loss of generality, we take the
first p; variables to be active. The coefficients of the active
variables and independent error terms are generated from
N(5,1) and N(0, 1), respectively, for p = 500 and p = 5000.
Similar to [41], we also generate error terms from N(0,9)
with coefficients of active variables equal to 1 for p = 500.
Let ¥ = X;; be a p x p correlation matrix for the p variables.
For p = 500, we considered uncorrelated variables (X;; = 0),
a constant correlation of 0.5 (Xij = 0.5/(#7)) and a random
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Table 1. Simulation scenarios, with highlighted scenarios
presented in the main paper. Results for the remaining cases
are relegated to the Supplementary Material

p p1 Bact and o7 X; ~ i;
500 | 10,25, | Bact ~ N(5,1), Normal, 0,0.5,
50 o?=1 LogNormal, Tij
t2, Mixture
500 | 10,25, Bact =1, Normal, 0,0.5,
50 o> =9 LogNormal Tij
ta, Mixture
5000 | 25,50, | Bact ~ N(5,1), Normal, 0,0.5
75 o?=1 LogNormal
t2, Mixture

correlation matrix generated with the R package randcorr.
For p = 5000, we did not consider a random correlation
matrix as, for p = 500, the comparisons were not very dif-
ferent from the other two correlation structures. Variables
x;’s were generated according to the following scenarios:

e Normal: x;’s have the multivariate normal distribution
N(0,%)

e LogNormal: x;’s have the multivariate lognormal dis-
tribution LN (0, %)

e ty: x;’s have the multivariate ¢ distribution t¢5(0,X)

e Mixture: x;’s have the mixture distribution of four dif-
ferent distributions, N(0,3), LN(0,3), ¢t2(0,X), and
t3(0,3), with equal proportions.

The simulation scenarios that we considered are summa-
rized in Table 1. We relegate most results to the Supplemen-
tary Material and only present the three highlighted cases
in Table 1 in the main paper. Methods are evaluated on two
characteristics:

e Variable selection: For variable selection we considered
average power and average error. Power is defined as the
proportion of active variables being correctly identified
as active, whereas error is defined as the proportion
of inactive variables that are incorrectly declared as ac-
tive. High power and low error are desired. Therefore, a
method with higher power and lower error is preferred.

e Prediction accuracy: We used the mean squared error
(MSE) for test data,

1 Ntest

T T 3\ 2
Z (Zi, zfestl8 - Zi, testﬁ) )

i=1

MSE =

(4.1)

Niest

where nyes; is the number of observations in the test
data, z; tcs: corresponds to the ith data point in the test
data, and ﬁ consists of OLS estimates from a reduced
model with zeros added for parameters of variables that
were not selected for the reduced model. We set niesr =
1000 and use the same joint variable distribution for
the full data and test data.
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We compare CLASS to four other approaches:

1. Fitting the linear regression model with all p variables
using LASSO and the full data (FULL)

2. Fitting the linear regression model with all p variables
using LASSO and subdata from a uniform sample of
size k (UNT)

3. Fitting the linear regression model with all p variables
using LASSO and D-optimal IBOSS subdata obtained
by using all p variables (IBOSS) [44]

4. Fitting the linear regression model with all p vari-
ables using LASSO and D-optimal IBOSS subdata ob-
tained by using p* variables selected by applying SIS
(SIS(p™*)-IBOSS) [44]

For all four of the above methods, we obtain improved MSE
values by using OLS estimators in a linear regression model
that is only based on the variables selected by LASSO. We
compare the performance of CLASS with these improved
MSEs. Adjusting estimators for a model selected by LASSO
is not without precedence; for example, Relaxed LASSO [27]
adjusts the LASSO estimators by using OLS estimators with
a shrinkage parameter. The glmnet function in R is used to
apply LASSO. Ten-fold cross-validation is used to find the
value of the tuning parameter, and the LASSO solution cor-
responding to lambda. 1se is selected. For CLASS, we base
variable selection and MSE computation on the fitted model
from step 10 of Algorithm 1. [44] showed that their IBOSS
and SIS(p*)-IBOSS methods are better than the leverage-
based sampling methods, which are therefore omitted from
our comparisons.

For each scenario in Table 1, we repeat generating full
data and test data 100 times. For each method considered,
the average power, error, and MSE over the 100 replications
are reported in the subsequent figures.

Figures 1 (variable selection) and 2 (prediction) compare
the five methods when p = 500, p; = 50, and ¥ = I,,, the
identity matrix of order p. The regression coefficients for the
active variables were generated from the N (5, 1) distribution
and the error variance was 0 = 1. The panels of the figures
correspond to the four different joint variable distributions:
Normal, logNormal, to, and Mixture. The full data sizes n
are 10%,2 % 104, 4  10%,8 x 10*,10°, and the subdata size is
fixed at k = 1000. For SIS(p™)-IBOSS, we use p* = 100 and
for Algorithm 1, we use nsample = 1000 and ntimes = 100.
All methods have a similar power (close to 100%) for all
distributions, but, especially for heavier-tailed distributions
such as t5 and Mixture, CLASS has a smaller error. This
is not surprising because all other methods select variables
based on a single LASSO run, thereby consistently declar-
ing a large number of inactive variables as active. CLASS
also has the smallest MSE among all the subdata selection
methods, coming close to that for using the full data for
heavier-tailed distributions.

For Figures 3 and 4, the only change is that now X =
(0.57G#9). The MSE performance in Figure 4 is similar to

that in Figure 2, except that CLASS outperforms prediction
using LASSO-OLS on the full data for heavy-tailed distribu-
tions. For the variable selection performance, CLASS stands
out as the big winner when variables are correlated. In Fig-
ure 3, all methods except CLASS select too many variables
(high error) as a result of using LASSO for variable selec-
tion.

In Figure 5, we keep n fixed at 10° and change the sample
size k from 1000 to 5000. We set p = 500, p; = 50, the joint
variable distribution is 5, and 3 = (0.57(#7)). As expected,
all methods perform better on variable selection and MSE
as the sample size k increases. CLASS continues to perform
better than LASSO-OLS on the full data because the latter
declares too many inactive variables as active.

Finally, Figure 6 demonstrates the results when p = 5000,
p1 = 50 and the joint variable distribution is t. We keep
k fixed at 1000, use ¥ = (0.57¢#7)), and change the full
data size n from 10* to 10°. Since doing IBOSS on p = 5000
variables is not possible, we use p™ = 100 and p™ = 250 for
SIS(p™)-IBOSS. Similar to Figures 3 and 4, CLASS clearly
outperforms other methods on both variable selection and
prediction accuracy.

For p; = 50, 3 = (0.57#9))  joint variable distribution #,
and k£ = 1000, Tables 2 and 3 illustrate computing times for
different values of n and p averaged over 50 iterations on a
Desktop with an AMD Ryzen Threadripper PRO 5955WX
@4.00 GHz and 64GB RAM. UNI, IBOSS, and SIS-IBOSS
are fastest, with CLASS being slower due to the repeated
application of LASSO. However, for larger n, CLASS actu-
ally becomes faster than IBOSS and SIS-IBOSS. For exam-
ple, Table 4 shows that CLASS is faster for n = 107 with
p = 100,p; = 50, = I, joint variable distribution ¢, and
k = 1000. CLASS is also much faster than LASSO-OLS
on the full data. Despite the slightly higher run-time for
datasets with smaller n, as seen in Figures 1-6, CLASS is
a clear winner in terms of statistical performance. In addi-
tion, note that, in contrast to LASSO-OLS on the full data,
CLASS can be applied in situations when n is ultra-large.

As suggested by one of the reviewers, since CLASS is com-
putationally slower than the other subdata selection meth-
ods in Tables 2 and 3, one should make statistical perfor-
mance comparisons after allowing the same amount of CPU
time for each method. Doing this would allow the other
methods to use a larger subdata size than CLASS and, pre-
sumably, show a better statistical performance than on sub-
data of the same size as that used for CLASS. Based on this
suggestion, we added Tables 5 and 6, which make a compar-
ison between the different subdata selection methods while
keeping CPU time approximately constant. Tables 5 and 6,
which report averages over 100 iterations for each method
and combinations for n and k, list the performances when
p = 500, p; = 50, & = (0.5/(#9)) and the joint variable dis-
tribution is to and Normal, respectively. We consider n to be
either 10° or 10% and use nsample = 1000 and ntimes = 100
for CLASS. In Table 5, we see that CLASS performs better
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Figure 1: Variable selection performance for k£ = 1000, p = 500, p; = 50, and 3 = I,,. Average power and error are shown
by solid lines and dashed lines, respectively.
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Figure 2: MSE for k£ = 1000, p = 500, p; = 50, and X = I,
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Figure 3: Variable selection performance for k& = 1000, p = 500, p; = 50, and ¥ = (0.57 (i7éj)). The solid lines represent

the power whereas the dashed lines represent the error.
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Figure 4: MSE for k = 1000, p = 500, p; = 50, and ¥ = (0.57(7))

Normal logNormal

3 N O O
109 -1.0-

T = i

"r

—~ —~
L L
() ()
Eo’ ~201 Eo/ =2.01 -\-\-\H
o o
o o
-2.5- -25-
-3.0- -3.0-
4.I00 4.I25 4.;50 4.I75 5.bO 4.I00 4.I25 4.;50 4.I75 5.2)0
log1o(n) log1o(n)
t Mixture

m w
[72] [72]
= =
N N
2 -1- El
8 g
_2_
=21 -\-\-\.‘
_3_
) ) ) 1 ) ) ) ) 1 1
4.00 4.25 4.50 4.75 5.00 4.00 4.25 4.50 4.75 5.00
log1o(n) log1o(n)
=B CLASS Ful == IBOSS = SIS-IBOSS =@- UNI
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Figure 6: Variable selection and MSE for k = 1000, p = 5000, to, p; = 50, and 3 = (0.57(#9))
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on all criteria despite utilizing a far smaller subdata size of
k = 1000 compared to other subdata selection methods. The
differences in MSE are large which we attribute to CLASS
being more successful at identifying virtually all of the ac-
tive variables and collecting subdata that facilitates precise
estimation of the corresponding parameters. The results in
Table 5 are not entirely surprising. When CLASS performs

better than FULL in terms of the MSE for prediction, it is
expected to perform better than the other subdata meth-

k = 1000
n | Full UNI IBOSS SIS(100)- CLASS
-IBOSS
5x10° | 235 054  0.98 0.58 51.82
5x10° | 33.96 053  1.81 0.91 50.39
5x10° | 361.66 0.54  9.21 3.88 51.36

ods since they are not expected to beat FULL. These other
subdata methods perform the same analysis as FULL, but
on fewer data points. Also, irrespective of the subdata size,

Table 3. CPU times (seconds) for different p with
n=>5x10°, p; =50, & = (0.5/079)), joint variable
distribution to and k = 1000

p| Full UNI IBOSS SIS(100)- CLASS
-IBOSS
100 | 1678 019  1.95 2.31 18.31
250 | 55.03 042  4.79 2.95 43.11
500 | 361.66 0.54  9.21 3.88 51.36

Table 4. CPU times (seconds) for n = 107, p = 100, p; = 50,

3 = I, joint variable distribution t and k = 1000

n | UNI IBOSS SIS(80)- CLASS
-IBOSS
107 | 0.10  32.22 32.83 25.86

the error rates for these methods tend to be no better than
those for FULL, and can thus be much worse than those
for CLASS. Similar results are seen for the mixture distri-
bution (see the Supplementary Material). In addition, as
demonstrated in Table 4, CLASS will become faster than
IBOSS and SIS-IBOSS for very large n while continuing to
perform better statistically. Table 6 for the Normal distri-
bution shows a different picture. With this variable distri-
bution, the difference between CLASS and other subdata
selection methods was smaller when all the methods used
subdata of the same size, and now that other methods can
use more subdata (in some cases almost all of the data), they
start to outperform CLASS in terms of MSE. However, in
contrast to Table 5, the differences in MSE for Table 6 are
very small. Also, CLASS is not outperformed in terms of
variable selection. Similar observations as for the Normal
distribution also apply for the logNormal distribution (see
the Supplementary Material). In conclusion, with the same
amount of CPU time, CLASS is for all cases studied here
highly competitive, and in two of the four cases the clear
winner in terms of both MSE and variable selection.
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Table 5. MSE and variable selection performance for different
subdata methods with approximately equal CPU times,
different n and k, p = 500, p; = 50, 3 = (0.5'(#9)) and
joint variable distribution t

Method k time (s) MSE Power  Error
For n = 10°
UNI | 90000 63.13  93.00642 0.9892 0.1957
IBOSS | 60000 54.53 53.00148 0.9932  0.2010
SIS(100)- | 75000 53.73  49.58365 0.9936  0.2005
IBOSS
CLASS | 1000 50.13  0.084747 0.9998  0.0000
For n = 10°
UNI | 80000 55.58 110.0874 0.9906 0.1932
IBOSS | 50000 59.72 103.6516  0.9800 0.1970
SIS(100)- | 70000 56.03  96.07541 0.9808 0.1963
IBOSS
CLASS | 1000 52.47  0.000104 1 0.0000

Table 6. MSE and variable selection performance for different
subdata methods with approximately equal CPU times,
different n and k, p = 500, p; = 50, 3 = (0.5/(#9) and
Jjoint variable distribution Normal

Method k time (s) MSE Power  Error
For n = 10°
UNT | 90000 53.74 0.001053 1
IBOSS | 60000 51.60 0.000843 1 0
SIS(100)- | 75000 46.89 0.000663 1 0
IBOSS
CLASS | 1000 43.56 0.044859 1 0
For n = 10°
UNI | 80000 48.97 0.000687 1 0.0000
IBOSS | 50000 69.27 0.001016 1 0.0000
SIS(100)- | 70000 64.64 0.000679 1 0.0002
IBOSS
CLASS | 1000 44.90 0.045218 1 0.0000

4.1 Real Data

Similar to [44], we consider the Blog Feedback data as
a real case study. This data is obtained from blog posts,
with the ultimate goal of predicting the number of com-
ments to a future blog post. The data is available at the
UCI repository at https://archive.ics.uci.edu/ml/datasets/
BlogFeedback and is described in [4]. The raw HTML docu-
ments of the blog posts are crawled and processed to select
the blog posts that were published no earlier than 72 hours
before the selected base date/time. Counting both the train-
ing and test datasets together, this data has n = 52,397
and p = 280. The 280 variables in the data include average,
standard deviation, min, max, and median of the length of
time between the publication of the blog post and “current”
time, the length of the blog post, the number of comments
in the last 24 hours before the base time and so on. We
use a random 80-20% split of this dataset as training and
test data and with & = 5600, we compute the mean squared
prediction error of the test set, where

1 Ntest .
MSPE = —— > (v — i)’
est =1

and g; is the predicted value. For the full data (Full) and
IBOSS subdata on p = 280 variables (IBOSS), predicted
values are obtained by first fitting a LASSO model followed
by OLS. For CLASS, predicted values come from the model
obtained by Algorithm 1. The choice of k£ = 5600 is inspired
by previous studies such as [44] so that IBOSS can select 20
observations per variable. In Table 7, we present the aver-
age mean squared prediction errors for these three methods
computed over 100 random splits of the full data in train-
ing and test data. CLASS produces a smaller MSPE than
IBOSS, and the full data does better than the two subsam-
pling methods.

Table 7. MSPE over 100 random training-test splits on the
Blog Feedback data

Full IBOSS  CLASS
902.04 1043.65 1003.25

5. CONCLUDING REMARKS

With a very large number of observations n and a large
number of variables p, it can be computationally challenging
to identify the active variables and build a good model for
prediction. Subdata selection methods are one way to deal
with this problem. If a linear regression model is a reason-
able model for the data, then IBOSS is known to be an ex-
cellent method for subdata selection. However, as discussed
in previous sections, IBOSS subdata can only be found when
the sample size k > 2p. Moreover, even when k < 2p, the


https://archive.ics.uci.edu/ml/datasets/BlogFeedback
https://archive.ics.uci.edu/ml/datasets/BlogFeedback

subdata tends to be better when selecting IBOSS subdata
by only using the active variables.

In this work, under the assumption of effect sparsity, we
propose a method, CLASS, that attempts to do just that.
We first devise a variable selection method that uses small
uniform random samples of the full data to conduct mul-
tiple LASSO runs. As demonstrated, our variable selection
approach is better than applying Lasso to IBOSS subdata,
SIS(p*)-IBOSS subdata, or the full data. We then obtain
IBOSS subdata using only these selected variables, and fit a
linear model to the subdata using OLS estimation. CLASS
results in much smaller mean squared errors than IBOSS
and SIS-IBOSS, even after adding OLS estimation at the
end of these methods. For heavy-tailed joint distributions
of the variables, CLASS can also improve on using the full
data.

Due to the repeated applications of LASSO, CLASS takes
a larger computing time than the competing subdata selec-
tion methods. However, if n is very large, CLASS becomes
computationally less expensive than IBOSS and, with values
of p* that are not too small, than SIS-IBOSS. The superior
statistical performance of CLASS, both in terms of variable
selection and prediction accuracy, makes a strong case for
its use over the competing methods. CLASS is faster than
analyzing the full data and is applicable in situations where
full data analysis may not be possible.
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