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Ballistic transport for limit-periodic Schrodinger operators
in one dimension

Giorgio Young

Abstract. In this paper, we consider the transport properties of the class of limit-periodic con-
tinuum Schrodinger operators whose potentials are approximated exponentially quickly by a
sequence of periodic functions. For such an operator H, and Xz (¢) the Heisenberg evolution
of the position operator, we show the limit of %X ()Y as t — oo exists and is nonzero for
¥ # 0 belonging to a dense subspace of initial states which are sufficiently regular and of suit-
ably rapid decay. This is viewed as a particularly strong form of ballistic transport, and this is
the first time it has been proven in a continuum almost periodic non-periodic setting. In par-
ticular, this statement implies that for the initial states considered, the second moment grows
quadratically in time.

1. Introduction

For a bounded function V: R — R, we consider the Schrédinger operator H defined

by the expression
d2
H=——+V
dx?

with domain Dom(H) = H?(R), where H?(R) is the Sobolev space of twice weakly
differentiable functions with second derivative in L?(R). H is a bounded-operator
perturbation of Hy := —%, Dom(Hy) = H?(R), and is thus an unbounded self-
adjoint operator on L2(R).
In this paper, we study the quantum evolution corresponding to H described by
the Schrodinger equation:
0y

iP5 = Hy, v(0) =y e H*R). (1.1)

Since H is self adjoint, one may use the spectral theorem to define e~/ | which forms

a strongly continuous one-parameter unitary group, and find the solution e~ *H y

2020 Mathematics Subject Classification. 35Q41.
Keywords. Almost periodic Schrodinger operators, ballistic transport.


https://creativecommons.org/licenses/by/4.0/

G. Young 452

to (1.1). From this expression and the associated machinery, one can describe the
dynamics of the equation.

We will be particularly interested in the transport properties of solutions to (1.1)
for H in a particular class of limit-periodic operators. To be more precise, we will
need to introduce some objects used to describe transport. The position operator X is
the unbounded operator defined as

(Xy)(x) = x¢(x). Dom(X):={y € L2 (R):xy € L*(R)},

and for a Schrodinger operator H, the Heisenberg evolution of the position operator
X is defined as
Xy (1) = '™ xem 11

For p > 0 and suitably localized states ¢, the moments are defined by

IXIZ(0) o= X [P2e 1 H g = [ 7] e ) ()2 d x,
R

and the transport exponents are

,B(j(p) := lim sup M, B, (p) = liminfM
t—oo  plogt ¢ t—oo  plogt
measuring the growth of the moments in time on a power law scale.

In the continuum setting, ballistic transport is often described as quadratic growth
of the second moment for a dense set of suitably localized and regular initial states.'
For the operators we consider, this will follow from our main theorem. Namely, we
finda Q¢ € L?(R) with

1

for ¥ # 0 in a subset of L2(IR) which contains the Schwartz functions. This condition
is the strong form of ballistic transport referenced in the abstract; indeed, from (1.2),
one has

. 1 2 2
Jim S1XE@) = [0y > 0.

which in turn implies ,BIf (2) = 1 for these .

IBallistic upper bounds ﬂ[; (2) < 1 are available in great generality in the continuum set-
ting [34].
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There is a relationship between transport properties and the spectral theory for
Schrodinger operators. More qualitatively, the connection between spectral type and
transport is seen through the RAGE theorem [11,36]. More quantitative results illus-
trating this connection are also available. For example, it is known that Schrodinger
operators with pure point spectrum satisfy

R TR
Jim S[X[3(0) =0 (1.3)

for all ¢ of compact support [39], which is described there as the absence of ballistic
motion. There are also the works of Guarneri, Combes, and Last [10, 20, 21, 28]. In
particular, the Guarneri-Combes—Last theorem [28] implies that, in one dimension
and in the presence of absolutely continuous spectrum, there is transport in a quantit-
ative sense. Defining the spectral measure corresponding to a state ¢ € L?(R) and a
self adjoint operator H to be the unique positive finite Borel measure p, on R such
that forall z € C \ R

1
(0.t =27'0) = [ - dn(o)
R

the Guarneri-Combes—Last theorem implies that in one dimension, and for states ¢
whose spectral measures have a nonzero absolutely continuous part, an averaged bal-
listic lower bound holds: there exists a ¢ dependent constant C such that

T

1

7/|X|;(z)dz >CT>. (1.4)
0

Since B (2) is bounded from below by its time averaged analog, 1, having a nonzero
absolutely continuous part is enough to imply ﬂ; (2) = 1. However, it is not yet
known whether in one dimension p, having nonzero absolutely continuous part is
enough to ensure B, (2) = 1. We note this is known to be false in higher dimen-
sions [4,26], where work often seeks to show averaged ballistic lower bounds of the
form (1.4), for example [24] in the two-dimensional almost periodic setting. Typic-
ally, showing the quantitative characterizations of transport beyond the scope of the
Guarneri—-Combes—Last theorem requires model dependent methods. To better con-
textualize our results, we will focus our introductory discussion on non-time averaged
results in one-dimensional, almost periodic models.

Given the relationship described above and the diverse spectral properties of
almost periodic operators [38], it is perhaps not surprising that the transport properties
for these operators are similarly varied. In [1, 15], strong ballistic transport is shown
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for periodic continuum Schrodinger operators and (block) Jacobi matrices respect-
ively, both of which are well known to have absolutely continuous spectrum. Spe-
cifically, in [1], (1.2) is shown for a dense subspace of suitably regular and localized
states . Meanwhile, in [15], the corresponding notion of strong ballistic transport
in the discrete setting is shown to hold. Namely, they prove strong resolvent conver-
gence of the operators %X g (t) to an operator with trivial kernel, and use this to show
ﬂ;ot (p) = 1 for p > 0 and another dense set of ¢.

On the other hand, in [2,5-7, 18,40], certain quasi-periodic operators are shown
to exhibit pure point spectrum, and in fact Anderson localization. As we noted above,
the pure point spectrum implies the absence of ballistic motion as described by (1.3).
See also the results [8] which imply strong dynamical localization for the almost
Mathieu operator under a certain regime. In the discrete limit-periodic setting, work of
Damanik and Gorodetski [14] found a set of limit-periodic operators with pure point
spectrum which is dense in the space of all limit-periodic operators. Further work of
Po6schel [33] and Damanik and Gan [12,13] gives examples of limit-periodic operators
which exhibit an extremely strong form of Anderson localization; in particular, it is
known that this notion of localization implies strong dynamical localization.

However, ballistic transport is often hoped for in classes of one-dimensional almost
periodic operators that are known to have absolutely continuous spectrum. There
have been a number of recent results showing ballistic transport for such operators,
which we summarize briefly. The paper [16] is the main inspiration for our work. In
that paper, Fillman shows that limit-periodic Jacobi matrices which are exponentially
quickly approximated exhibit strong ballistic transport. There have also been results in
the setting of quasi-periodic operators, particularly those with “small,” analytic poten-
tials, which often have purely absolutely continuous spectrum. In Kachkovskiy’s work
in the discrete setting [23], what is described there as “frequency-averaged strong bal-
listic transport” is shown for a large class of these operators; in particular, this implies
strong ballistic transport along a subsequence of time scales and for almost every fre-
quency. The works of Zhao [42,43], in both the discrete and continuous setting show
that for Diophantine frequencies and small enough potentials, the second moment
grows quadratically, a weaker notion of transport than that of [23] which, however,
holds without passing to a subsequence of times and a full measure set.

Subsequently, a paper by Zhang and Zhao [41] explicitly linked the values of
the transport exponents and absolutely continuous spectrum in the setting of discrete
one frequency quasi-periodic operators. They find ﬁ(pi (p) = 1 for suitably localized
states ¢ # 0 and almost every frequency whenever the operator has purely absolutely
continuous spectrum. Finally, there is the recent work of Kachkovskiy and Ge [19],
which proves a form of ballistic transport not quite as strong as the strong ballistic
transport referenced above, but sufficient to deduce that the second moment grows
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at least quadratically. Their results hold for a broad class of discrete quasi-periodic
operators.

This paper contributes to the limit-periodic literature. We find strong ballistic
transport for a class of continuum limit-periodic operators known to have absolutely
continuous spectrum. These results may be viewed as an extension of the main result
of [16] to the continuum. To introduce our results, we define the class of limit-periodic
operators considered. A limit-periodic operator is one with a potential that is a limit-
periodic function, i.e., there is a sequence of continuous p,-periodic functions V,,
with

lim ||V = Vylleo = O,
n—oo

where ||V || denotes the essential supremum of the function V. It is a standard fact
for limit-periodic functions that the potentials can be chosen so that p,+1/pn € N.
We define those operators whose potentials are approximated exponentially quickly
by the above sequence, or are in “exponential class 7,” as follows.

Definition 1.1. Let n > 0. A limit-periodic Schrodinger operator H is said to be of
exponential class 7 if there is a sequence of continuous p,-periodic functions V;, such
that

lim e"+1||V,, — Voo = 0
n—>oo

where p,41/pn € N and p, # py4+1 forany n € N. We say H € EC(00) if H is of
exponential class 7 for any n > 0.

The class EC(00) is well-studied, beginning with the work of Pastur and Tkachenko
[31] and Chulaevskii [9]. Despite the varied spectral properties of limit-periodic oper-
ators generally, this class does behave similarly to periodic operators in important
ways. In particular, like periodic operators, members of this class are known to have
absolutely continuous spectrum [3, 9, 30-32]. However, the spectrum of operators in
EC(00) is also generically nowhere dense and perfect, i.e. a Cantor type set [3, 9,
30-32,38]. As we have noted, the former of these properties is of particular interest
given the thesis of this paper.

We are now ready to state our results precisely. We will make use of the following
subspace of L2, defined for a given s > 0 as

D, 1= {y € H2(R) N Dom(|X[*): ¥ € Dom(|X ")}

where Dom(| X |*) := {¢ € L?(R): |x|*¥ € L?(R)}. The subspace D will allow us
to optimize certain statements in terms of the regularity and decay of the initial states
considered. Of course, Dy contains the Schwartz functions, and is dense in L?(R).
We prove the following.
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Theorem 1.2. For each R > 0, there is a constant 1 = n(R) such that if H € EC(n)
and ||V ||eo < R, then for each € Ds with s > 2, there is a Q¥ € L*(R) so that (1.2)
holds. In particular, if H € EC(00), (1.2), holds for ¥ € Ds, s > 2.

Before proceeding to the proofs of the above, we make some comments on the
methodology and organization of the paper. The general strategy is based on Fillman’s
work in the discrete setting [16]. However, in addition to the technical difficulties that
arise naturally when working with unbounded operators, new arguments and tech-
niques are required to deal with new obstacles in key places. For example, as in [16],
finding a quantitative version of the convergence result that yields strong ballistic
transport for periodic operators is critical to our work; this is our Theorem 3.1. The
proof of this theorem requires an estimate on a normed difference given by an integral
over quasimomenta k in the Brillouin zone. This estimate is found by first partition-
ing the Brillouin zone into two time-dependent sets: one “good” set of k on which
we have decay in time for a quantity that appears in the integrand, and a “bad” set of
k that must have Lebesgue measure that decays in time at an explicit rate, and then
finding an estimate on the integrand that is uniform in both k and the operator. In the
discrete setting, this uniform estimate is found using the Hilbert-Schmidt norm of the
operators involved, which are finite matrices for each k. In the continuum, the ana-
logous operators are unbounded, and this estimate is significantly more delicate. The
estimate on the measure of the “bad” set in [16] takes advantage of an explicit finite
product formula for a derivative. While in the continuum setting, there is a similar
product formula, it is generally over infinitely many terms. To circumvent difficulties
that arise in suitably controlling this product, our proof is by different methods.

Section 2 contains some estimates on the Hill discriminant of a periodic operator,
culminating in the estimate on the Lebesgue measure of the “bad” set of quasimo-
menta described above. The quantitative version of the convergence result of [1] is
proved in Section 3. The control given by this theorem will allow us to extract the
Qv of Theorem 1.2 for a limit-periodic operator as a limit of the associated quant-
ity for the periodic approximants, and show that Qv # 0; this argument is found in
Section 4, along with some propagation estimates it requires. The appendix contains
estimates on the expectation of powers of the position operator with careful control of
the constants appearing in the bounds.

2. Periodic operators and Hill discriminant estimates
We introduce some of the Floquet—Bloch theory for periodic operators, for which

[3,27,37] all serve as helpful references. Fundamental to this theory is the Floquet
transform and direct integral decomposition. We take I'* = 27”Z to be the dual lattice
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corresponding to the lattice I' = pZ, and define the tori
T=R/T, T*=R/T*

We will refer to k € T* as the quasimomentum, and when needed, we will fix the

Brillouin zone B := (—Z, Z] as a fundamental domain for T"*. We define the constant

i ) p’p
fiber direct integral

dk dk
L(T%, i L2(T.dg)) = {f:T* — L2049 [ 1f Baqragyrrer < oo},
’]I‘*

T
as well as the Floquet transform

dk
T

dk
U:L2(R) — L2<T*, : LZ(T,dq))

@
. . | L*(T,dq)
T /
’]I‘*

given by the ff . L*(T.d q)%-convergent series
Uyk.q) =) e *atry (g + po).
LeZ

The Floquet transform is unitary, with inverse U~! = U* given by

dk
T~

U* f(g + pl) = [ PO £k g)
T*

for £ € Z. As our notation suggests, f;B* L*(T, d‘1)\1dr_]i| is canonically isomorphic to
L*(T* x T).

For a p-periodic V' € L°°(R), the Floquet transform conjugates the Schrodinger
operator H = —dd7 + V with domain H?(R) to a direct integral of the operators

H(k) = (D +k)>+V, Dom(H(k)) = H*(T)

where D = —i %. Symbolically,

dk
T

(&)
UHU* =[H(k)
’]I‘*

Each of the H (k) is a bounded-operator perturbation of the operator

Ho(k) := (D +k)?,  Dom(Ho(k)) = H*(T),
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and thus has a compact resolvent. Let E, (k) be the eigenvalues of H (k) listed in
ascending order,
E,(k) <E,i1(k), keT* neN,

with strict inequality for k & %Z when the eigenvalues are simple, see, for example,
Avron and Simon [3].
Then, for k ¢ %Z, H (k) admits the eigenfunction expansion

H(k) =Y En(k)Pa(k),
n=1

where P, (k) are rank-one orthogonal projections onto the associated eigenspaces.’
For k € 8, H(k) and H(—k) are antiunitarily equivalent, so that £, (k) = E,(—k).
E, (k) is analytic on (0, %) and continuous at the endpoints, with (—1)"*! % >0
on this interval.

Using the theory of direct integrals and the properties of the E,, (k) outlined above,
the spectrum of H may be seen to have a “band” structure:

o(H) = U [A2j,A2j41]

Jj=0

where A»; < Az;41 and the intervals [A,;, A»;41] are referred to as bands. These
bands are parametrized by the eigenvalues £, (k):
4 .
A2j = Ej11(0), Agjy1 = Ej+1(;)7 J even,
bid .
Aaj = Ej+1(;>7 Azj+1 = E;j1+1(0), j odd.

In the one-dimensional setting, we have access to the discriminant, an important
tool in the theory. We introduce the operator

~ d2

with

Dom(H (k)) = {y € H*([0, p]): ¥(0) = e *Py (p), ¥/'(0) = e Py’ (p)}.

There is an eigenfunction expansion for all k, but due to possible degeneracy in the E;, (k)
for k € %Z, the projections could be of rank-two at these points, requiring a re-indexing for
these k. Since our statements involving the expansion concern integrals over T *, we may avoid
the issue by introducing the formula away from these k.
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We note that conjugating H (k) by the multiplication operator v/ (-) = e ~*'1(-) yields
H(k), so that the two operators are unitarily equivalent. Let u1(z, x) and u(z, x)
the Neumann and Dirichlet solutions to the differential equation —u” + Vu = zu
associated to H (k); uy(z,0) = uz(z,0) = 0and u;(z,0) = u,(z,0) = 1. Then, the
monodromy matrix is defined by

_ ul(zvp) MZ(Z’p)
Mz) = (u’1<z,p) u;(z,p))

and the discriminant is defined as
A(z) = e M(z) = u1(z, p) + ub(z, p).

Since M(z) is the one step transfer matrix for the differential equation associated to
H(k), E is an eigenvalue for H(k), and so H (k), if and only if ¢?? is an eigenvalue
of the matrix M(E). Since det(M(z)) = 1, this yields

A(En(k)) = 2cos(pk), ke [o, 5]. 2.1)
p

Our results in this section will rely on an upper bound on the derivative of the
discriminant on the spectrum, established in [17, Lemma 2.1]. As noted in that paper,
such an estimate is likely well known, although we also could not find a reference.
Since we require a cruder estimate with more assumptions on the potential than they
do, we record the version of their statement which suffices for our work.

Lemma 2.1 ([17], Lemma 2.1). Let V a p periodic potential with ||V ||coc < R. Then
the corresponding discriminant A satisfies

|A' (V)] < C2p? exp(2C2RY? p)
forall A € o(H) and where Cs is a constant independent of p, V, and R.

We will also need the following lemma, consisting of two estimates. The first
provides a lower bound on the group velocity in a band, and the second is a closely
related lower bound on the difference of an eigenvalue E, evaluated at different
quasimomenta. Since both estimates will be useful in what follows, we state them
separately.

Lemma 2.2. Let V a p periodic potential with ||V ||co < R. For k € 8 we have

’ 2| sin(pk)|
Cap

exp(—2C, RY/? p) 2.2)

and for k1, ks € [0, %],

exp(—2C,R'/2 p)

2
<G (k2 — k1)~ (2.3)

|Em(k2) — Em(k1)| =
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Proof. Differentiating (2.1) in k yields

dEn _ —2psin(pk)
dk — A(En(k))

and (2.2) follows from the symmetry E,,(k) = E;(—k) and Lemma 2.1.
To prove (2.3), we assume without a loss of generality that 0 < ky < kp <

Thus, since (—1)m+1% >0for0 <k < %,

N I

dE

|E(k2) — Em(kp)| = (—1y"*1 / Lo g
ky

m2ps1n(pk)
/ O A E iy 4

2psm(pk)
= | ——dk
A En ()]

k1

since (—1)"A’(E,;(k)) > 0. Thus, by Lemma 2.1,

k
exp(—2C,R/2 p)
Cyp?

2
|Em(k2) — Em(k1)| > 2p sin(pk) dk.

ky

We now show that for uy,u, € [0, 7] f 2sm(u)du (uz—ul)2 Forui,u, €

=2

[O, 71 we have f 2sin(u)du > L —(uz — u1)2 by integrating the inequality sin(u) >
;u, the same bound then holds for uy,us € [, ] by symmetry. Thus, for 0 < u; <

7 <up < m, we have
u
1 2 1 2 1
/Sin(u)du = —(z —Ml) + —(z —Mz) > —(up —uy)?
T2 T2 2

Ui

where the final inequality can be seen by setting u; = x + 5 and up = y + 7, for
x,y € R and using %(x +y)?2>0.
Thus, by the change of variables pk +— k,

ko

/sm(pk)p dk > —(kz — k1),
ki

and (2.3) follows. ]
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Remark. Exploiting the relationship p(E) = |%|_1, where p(E) is the Radon—

d
Nikodym derivative of the density of states measﬁre with respect to Lebesgue meas-
ure, and E = E, (k) [3], (2.3) provides a Holder estimate for the density of states
measure. Such estimates are mentioned in the literature [3,29], however, critically for
this paper, the estimate above provides a Holder constant with explicit dependence on

the period.

The latter of these estimates allows us to find a bound on the measure of the set
of quasimomenta for which the eigenvalues corresponding to different bands can be
nearby. This will be used to prove the main result of the next section.

Lemma 2.3. Define the set
B = {k € B:there existsn,m € N, n % m such that |E,, (k) — E, (k)| < &}.
Then,
Leb(8;) < 4/Cam exp(C2R'?p) - V. (24)

Proof. Since for each m, and k € (0, %), En(k) = E,; (—k), excluding k = 7/ p, B,
is symmetric, and

Leb(B,) = 2Leb(§8€ N [o, %D

Using that bands do not overlap, we find

B ey
e N [07 ;] < 4=LJ1 By
where we define
By = {k c [o, %]; |Eg(k) — E¢(0)] < g}
U {k c [o, %]: ‘Eg(k) _ Eg(%)‘ < s}.

By (2.3), we have

By < ([0, @CXP(Cle/ZP)\/E]

[~ VemenCaep i ) n 0.2
for each £ € N. Thus,
Leb(Bs N [0, %]) <2/ Comexp(CLRY?p) - /e,

from which (2.4) follows. ]
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3. An estimate on the rate of convergence of %X H ()Y for periodic H

In this section, H will denote a p periodic Schrédinger operator with bounded poten-
tial on L?(R). Theorem 2.3 of [1] shows that for these operators and ¥ € H(R) N
Dom(X),

(5]

1 . > dk
lim -Xg @)y =U n n Uy
t—oo IT*|
T* n=1
D

(/ZdE (k)P(")Hr |)U‘/"

Critically for our purposes in this paper, the proof in [1] relies on uniform bounded-
ness of the difference and uses density of truncated eigenfunction expansions to show
convergence, and thus does not provide a quantitative estimate on the speed of con-
vergence. The main result of this section is then to provide such an estimate. We will
denote

« dEp (k)
Ony =U (/Z IT |)U¢. (3.1)

*nl

We establish a power law in time upper bound on the difference %X gy —
Qu Y. Since we will be examining sequences of periodic operators with increasing
periods and seeking information on their limit, it is important that we record pre-
cisely how the constants that appear in this estimate depend on the period. This bound
will follow as a corollary of the below theorem. We denote by D(r) = ¢! De=i"H
the Heisenberg evolved momentum operator, and we remind the reader that we have

defined Dy := {v € H*(R) N Dom(| X |*): ¥" € Dom(| X |*)}.

Theorem 3.1. Let R >0, s >2and p > . If H is a p-periodic Schrodinger operator
with |V ||eo < R, and ¥ € Dy, then

1

t
1 1
HEQHw - ;/ (ryydr| < CiM3p*? exp(ECgRl/zp)t_l/s, (3.2)
0

where C1 = C1(R), and M3 = M5({) are constants.

Remark. We make the assumption p > 7 here and in some of the statements that
follow because it simplifies some of our estimates, here the right-hand side of (3.2).
A similar bound holds for small p. Since we will be examining a sequence of poten-
tials with periods tending to infinity, this assumption poses no issues.
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Using the equality [1,34] for v € H'(R) N Dom(X)
t

Xay =Xy + 2/ D(r)ydr, 3.3)

0
the following corollary follows immediately.
Corollary 3.2. Let R > 0, s > 2 and p > n. If H is a p-periodic Schridinger oper-
ator with ||V ]eo < R, and ¥ € D, then
1 _ 1 _
|0ny = ~Xu@y| 171XV +20 My 2 exp(SC:RY2p )i,

where C; = C1(R), and M3 = M3(y) are constants.

We will need a pair of estimates uniform in the quasimomentum and independent
of the potential V with ||V ||coc < R, the first of which is below.

Lemma 3.3. Let R > 0 and suppose ||V ||lco < R. Then, the operator
(H(k) +2R)>(D + k)(H(k) + 2R)"": L*(T.dq) — L*(T.dq)
is bounded uniformly in k: there is an M1 = My (R) such that
I(H (k) +2R)*(D + k)(H(k) + 2R)"!||* < M. (3.4)
Proof. For ¢ € H?(T), we have by self-adjointness

I(H (k) + 2R)?¢|* = (¢. (H(k) + 2R)¢)
< (e, (Ho(k) + 3R)p)
= [|Ho(k)' 9| + 3R||¢|>.
For 9 € H'(T), we take ¢, € H?(T), with ||, — @511y — 0. Then, by the above
bound, the sequence (H (k) + 2R)/2¢, is Cauchy in L2(T). Since (H (k) + 2R)'/?

with domain H'(T) is closed, (H (k) + 2R)"/?¢, — (H(k) + 2R)"/?¢. Thus, we
may conclude the same bound for ¢ € H!(T),

ICH (k) +2R)0l> < | Hotk)'¢l> + 3Rl > (3.5)
Using (3.5) with ¢ = (D + k)(H(k) + 2R)" !y for v € L?(T) we have

I(H (k) +2R)"/*Ho (k)" /*(H (k) + 2R) 'y ||?
< |Ho(k)'/*(D + k)(H(k) +2R) "y ||> + 3R|(D + k)(H(k) + 2R) 'y |2
= ||Ho(k)(H (k) +2R) "'y ||* + 3R| Ho (k) /> (H (k) + 2R) "'y ||
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Using the triangle inequality on the first term yields

| Ho(k)(H (k) +2R) 'y || < [yl 4+ I(V + 2R)(H (k) + 2R) 'y |
< ¥l +3RI(H(k) +2R) "'y

For the second, (H (k) +2R)™': L?(T) — H?(T) implies

| Ho (k) /*(H (k) + 2R) "y ||?
= ((H(k) +2R)""y, Ho(k)(H (k) + 2R) ")
= (H(k) + 2R) "'y, ¥) — ((H(k) + 2R) "'y, (V + 2R)(H (k) + 2R) ")
< |(H (k) +2R) v

by the Cauchy—Schwarz inequality and since ||V ||co < R. Since info (H(k)) > —R,
we have for ||¢|| =1,

T 1 1
10 + 20761 = [ s dine) < 5
“R

by the functional calculus. Thus, ||(H (k) +2R)7!| < % and we may put these estim-
ates together and conclude (3.4) with M (R) = % + 16. [

Remark. The extension of the bound (3.5) from H?(T) to H!(T) would also follow
from the theory of quadratic forms [25, 35]; indeed, relative boundedness of a self-
adjoint operator yields relative boundedness of the associated closed quadratic form,
which has a representation in terms of the positive square root of the operator.

Before proving Lemma 3.6, our second uniform estimate needed to prove The-
orem 3.1, we prove the auxiliary Lemmas 3.4 and 3.5. The first is a simple pointwise
estimate for functions in H!(R) N Dom(|X|*), s > 0, which will allow us to min-
imize the assumptions on the regularity and decay of our initial states in many of
the statements which follow. The second shows that the series defining Uy (k, q) for
these initial states converges pointwise. We will use the Sobolev norms defined by

1V 1y = 112 + 1K1 = Iy I + )2

forn = 1,2, where 1@ denotes the Fourier transform of ¥, and ¥ denotes the n-th
weak derivative.

Lemma 3.4. Let v € H'(R) N Dom(|X|*) for s > 0. Then, there is a constant C
with |y (x)| < 1+|gwforau)c eR.
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Proof. By the definition of Dom(| X |*), we have for ¥ € Dom(|X|*),

/(1 + tPH|v()]*dt < oo.
R

Thus, there exists an N > 0 such that for |x| > N

(1+ IXI”)/ ly@®dr < /(1 + Py @) dr < 1,

7]=]x| |7]=]x]

and we may bound the tails of || || as

1
2
/W(ZN dt < m (3.6)

[t]=1x]

We now use that v € H!(R) to make this estimate a pointwise one. Indeed, by the
fundamental theorem of calculus and the Cauchy—Schwarz inequality, we have for
x >N,

. ee 1/2 , % 1/2
WP = —2Re(/w<t)wr)dz) < 2([ W(oﬁdr) (/ |w<z>|2dz)

since ¥ € H'(R) implies limy_ 100 ¥ (x) = 0. So, bounding the right-hand side
with (3.6), and using the inequality
1 2
<
1+y2 = (1+y)?

for y > 0, we have

wep < 22

“Tie V11 1wy

for x > N. Thus, by a similar computation for x < —N and taking a square root, we
have for [x| > N,

5/4 1/2
v < 2 W e
T 1+ |x]/?

The lemma then follows by taking

€ = max(2¥ Y 7y (1 + N sup [y
X<
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Lemma 3.5. For € L2(R) N L'(R), the series Y,z e K@ PYy (g + pl) defin-
ing Uy (k, q) is absolutely convergent for a.e. ¢ € T and all k € T*. Furthermore,
for s > 2, Dom(|X|*) € L'(R), and for ¥ € H'(R) N Dom(|X|*), this series is
absolutely uniformly convergent for allk € T* and q € T.

Proof. Let ¥ € L>(R) N L'(R). Then, by the monotone convergence theorem and
an affine change of variables, we have

p p(+1)
[ waspoida =3 [lwa+poiaa=Y [w@ldg
T LeZ ZGZO LeZ L

=[|w<q>|dq <00
R

sothat ) ,cz e tk@+rOy (¢ + pl) converges absolutely for all k and a.e. g.
By the Cauchy—Schwarz inequality, for ¥ € Dom(| X |*) we have

/|w(q)|dq - / @I+ 1910 + 1)~ dg
R R

1/2 1/2
<([waravierran) ([ Goms99)
R R

which is finite by our choice of s. Thus, Dom(|X|*) c L'(R). For v € H'(R) N
Dom(| X %), using Lemma 3.4, we have

+ ) <— < CM 3.7
V(g p)|_1+|q+p£|s/2_ ( (3.7
where
! >0
T+ [pl72 -
(= |
) g S _1,
1+ |p(t + 1)]*/2
and absolute uniform convergence follows. ]

We now prove our last lemma before the main result of this section. The purpose

, I%I’il : L%(T,dq)) estimate for quantities appearing

in the proof of Theorem 3.1, allowing the separation of an integral over T * into one

of this lemma is to give an L°°(T*

over a set on which we have a good time dependent estimate of the integrand, and
another on a set whose measure decays in time by Lemma 2.3.
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Lemma 3.6. Let R > 0, s > 2, p > 7 and suppose ||V ||co < R. For ¢ € D; and a
set Z C T* with Leb(Z) = 0, we have

o I(H (k) + 2R UY (kM7 2p gy < (1+3R)> M, (3.8)
e *

where My, = M, (V) is a constant.

Proof. Fork € T* and ¢ € H?(T), we find

[(H(k) + 2R)¢l12(T aq) = 1Ho(K)@llL2(r,ag) + IV + 2R)¢ | 12T 0 9)
= (1 +3R)(|Ho()ll2(T,ag) + l@ll2(T ag)- (39

Thus, it will suffice to find a uniform bound on || Ho(k)U v (k, )| and ||U v (k, )|
Fix s > 2 and ¢ € D;. There exists a set Z C T* with Leb(Z) = 0 and such that
fork e T*\ Z,

Ho(k)Uyr(k.q) = = e @trDy" (g + pi)
LeZ

in L?(T,dgq). By Lemma 3.5, the series on the right is absolutely convergent for
keT*\ Zandae.q.

Using this expression, we may bound |Ho(k)U vy (k, q)|? pointwise for a.e. ¢ as
follows:

HoOU k) = Y- 3 7 + pO7Gq e 4

LeZ meZ

<> ) W@+ pollY" @@+ pm)l.

teZ meZ
Then, by the monotone convergence theorem,

[ Ho( U (k. q) dg

T

D
=% [ W 0l @+ pmildg

LteZ meZ |,
D 1/2 4 1/2
52(/W”(q+p€)lqu) > (/IW”(q+pM)I2dq)
teZ meZ

p(L+1) p(m+1)

1/2 1/2
- Z( /|1//”(q)|2dq) ) ( /W(q)ﬁdq)
LeZ Pt

meZ pm
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by the Cauchy—Schwarz inequality. For the N of Lemma 3.4 corresponding to ¢ €
Dom(| X|*) and since p > m, we have for £ > N + 1

p(L+1)
/ W (@) d

pl

q < 1 < 1
- 1+p25|€|23 - 1+ |£|2s

by (3.6). Similarly, we have for £ < —(N + 1)

pU+1)

[w@r

)24

I
dg < ——M—
=T

so that

p(L+1) N P+

1/2 1/2 >
Z( /|w“(q)|2dq) <3 ( /wf”(qnqu) s %
ez N 5y =N 2 [t|>N
Thus,

p+1)

1/2
Z( / |1/f”<q)|2dq) < QN+ DIV e + Y

LEZ Pt [€|>=N

V2
14 [€

where we emphasize that N only depends only on . By the same argument, for the

N’ corresponding to v,

V2
1+ £

Uy k. )? < QN+ DY l2@) + Y

[€]=N’
and (3.8) follows from (3.9). ]

We are now ready to prove Theorem 3.1. Its proof involves a comparison using
2
the min-max theorem; we note here that the eigenvalues of Hy(0) are {%}g‘;o,

while those for Ho(%) are {((22-;—;)71)2}20:0'

Proof of Theorem 3.1. By unitarity of U, it will suffice to bound the norm of

. t
U(;/D(r)lﬁdr)—UQHw
0

in L2(T*, [§4: L2(T, dg)).
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We use the identity

1d En(k)

Pa(k)(D + k) Pu (k) = 5=

Py (k)
for almost every k € T * [1] to compute

t D
1 2. 1dE,(k)
HU(?/D(’)‘/’M)_(/Z@ G )
0 T+ "=

2

t
1 > 2
_ - _ . (k k) P, (k
lo(; O/D(r)wdr) (T[;P (D + 0 Pl U
1 e dk 2
=(- * - . (k k) Py (k) ——
H(l O/UD(r)U der) (T/*’;P (k)(D + k) Py( )IT*IW)
(3.10)
We now show
; dk
UD(r)U*Uy = /e”H(k)(D +k)e_irH(k)WU1/f (3.11)
’]I‘*

as follows. Since

®
FirHypr* _ +irH(k dk * dk
Ue™Hy _/ ()IT*I UDU /(D+k)|T*|
T

it will suffice to verify ff _”H(k) dk ;U is in the domain of fT* (D +k) |dk for
¥ € Dy C H?(R). Since ¢ € HZ(IR) forafull -measure set of k € T*, Uy (k,-) €
H?2(T). Thus, for these k, e "H® Uy (k,-) € H?(T), and in particular, ¥ (k, ) €
H'(T). Using that inf o (H (k)) > —R we may compute (H (k) + 2R)"/2 and find

/II(D +k)e""H(")Uw(k,.)||2|%ﬁ|

’]I‘*
/II(D + ke THO (H (k) + 2R)TV2(H (k) + 2RV 2Uy (k, )”le*'
/ 1D + k) (HK) + 2Ry 2l O U(H +2R) Py (k, )ll2|qr]i|

’]I‘*
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since
(H(k) +2R)\2Uy = UH +2R)"?y

for a.e. k € T*. Finally, using the bound

(D + k)(H(k) +2R)™V?|| <1,

and that U is an isometry, we may estimate

; d
/ I(D + k)™ HOUY eI 7y

dk
U((H +2R)?y) (k,)|?
ET/*” (CH + 2R 29 k) P
= [(H +2R)?Y |1} 2

Thus, using (3.11), we may expand the final expression in (3.10) in terms of eigen-
projections twice to find

H( / ZelEm(k)rp (k)(D —i—k)Ze_lE”(k)rP (k)mUl// dr)
T m=1

2

(/ZP (k)(D + k) P, (k)m| )
T*

Using that € H?(R) again, we may justify interchanging the sum and (D + k) for
eachk ¢ %Z with U (k,-) € H?(T), as follows:

(D +k) e En®sp Uy

n=1

= (D + k) (H(k) +2R) /2> " e En®s p (k) (H (k) + 2R) > Uy
n=1

=Y e EO(D + k) Py (k) Uy,

since

(D + k)(H (k) +2R) 72| < 1/VR,
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as in the proof of Lemma 3.3. Thus, passing the projections Py, (k) through the sum
in n, we find

G / / Ze’E'"(k)rP ® +k)2€_’E" v er)

2

([ZP K)(D + k)P, (k>| £ w)

T),Fnl

- /”( /Z Ze“Em(k) En(Dr p,, (k)(D + k) Py (k)der)
']I‘*

m=1n=1

> dk

Z Pa(k)(D + k)P, (k)Uw)

%/ Z Z Pm(k)ei(Em(k)—En(k))r(D + k) Py(k) Uy (k,-)dr
o m=1

=1
m

2

T

-/

canceling the diagonal terms. We commute the time integral with the sum in m using

==

dominated convergence for the Bochner integral [22]. Namely, we note that for M € N
and a.e. k, we have by orthogonality of the projections

b

. 2
P ()" EnOEnON (D 4 ) P (k) U (k)|

ok

S 3
Il
R

=3 [Palt) 3o B9 D PO k)|
m=1 i
< (D + k)(H(K) +2R) V22 Y || Puk)(H (k) + 2R) Uy (k. -)|1?
n=1
n#m
< (D + k)(H(k) + 2R) 2|2 (H (k) + 2R)?Uy (k. -)|?

so that
M o '
sup | 32 3 Pu(k)e EnO-EON (Dt ) P () UY (k.|
ref0,1]” =1 n=1
n#m

< (D + k) (HK) + 2R) [ (H (k) +2R) Uy (k, )|
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which is finite for a.e. k. Thus, using uniform convergence to pass the integral through
the sum in n, we have

2

fz Z P (k)e! EmE=EnDr (p 1 joy P, (k) Uy (k) d r

T* m=1 n=1

n#m
-[x

T*ml

T

P, (k)z / §(Em (k)= En())r
n;ém

by the orthogonality of the projections Py, (k).

We begin by bounding the integrand above pointwise for all m and a.e. k. For
k ¢ %Z, let vg(k) be the basis of normalized eigenfunctions of H(k), i.e., for ¢ €
L*(T,dg),

Pe(k)p = (g, Ué(k))LZ(T,dq)Ue(k)-
Then, defining the shorthand
1 t
Jmn = fmn(t. k) = ;/ei(Em(k)_E”(k))rdr
0

in the above, we have

[ 3] (k)men<D+k)P wooy| 2
T* m=1 ¢m

/ Z‘ Y fmn(D +k)Pn(k)ka")’v’”(k)Mz%
T+ m=1 =1

= / Z ’((H(k) + 2RV fun(HK) + 2R)V2(D + k) () U (k. ),

m=1 n=1
T n#m

2 dk
T~

o (k)
— / i’(men(H(k)+2R)1/2(D+k)P (U (k. ),

- n;ém

1
VEm(k) + 2R

T* m=1

o)
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using that (H (k) + 2R)~1/2 is self-adjoint, and each v, (k) is an eigenfunction in the
last line. Thus,

/ i H P (k) i Sma(D +k)P”(k)U¢(k,-)”2|%k|
D=
< / i” i Fnn(H(K) +2R)"/*(D +k)P”(k)U‘”(k")HzEm(k)l+2R l%{i'

m=1 n=1
T n#m

by the Cauchy-Schwarz inequality. Then, using (3.4), we may insert a factor of
(H(k) +2R)"'(H (k) + 2R) = I in the above to find

dk
T

/ SIS S H ) + 202D + by Py )0 |
T+ m=1 n=l1

n#m

= [ S S Pat G +2R)UW(1<,')”2|%—E|

T* m=1 n=1

n#m
:le > ||fm,nPn(k)(H(k)+2R)UW(1€,')||2|T*|
RS

by orthogonality of the projections P, (k). In summary, we thus far have shown

(5 [ pewar) - on
0

<M [ 303 U PaRIHE) + 2BV P
T* m=1 n=1

n#m

2

1 dk
Em(k) + 2R |T*|’

(3.12)

Before integrating the right-hand side of (3.12) in k, we partition the Brillouin
zone into the sets of “good” and “bad” k € B. Using the notation of Lemma 2.3, we
define

1
B; .= 8B,,, —— T
t &t &t Cort

Then, for k € G, := 8 \ B;, computing the integral defining f;, », we have

2 - 2
t|Em(k)_En(k)| T ote

| fm.n| <



G. Young 474

so that

1 dk

2
DD N fmn Pat)(H (k) + 2R U (k. )| En() + 2R T

4 [ = [1Pak)(H (k) + 2R U (k. )| 1 dk
2 22 |Em(k) — En(k)[2 Em(k) + 2R |T*|

2
= 12g2 Em(k) + 2R T

by Bessel’s inequality.
Instead, for k € By, now using

t

1 .
: / ol EnO=Entor g | < |

0

we have
00 00 2 1 dk
/El; I fman PaOCHK) + 2RVUY (e G
3 f © N(HEK) + 2R UY (k) 20p gy dk
= En(k) + 2R =]

Summarizing once again, we have

(G foower)-

2 (o] 2
- [(H(k) +2R)Uv(k,)|* dk
—lez Em(k) + 2R |T*|

4M1 ||(H(k) +2R) Uy (k,-)|I* dk
G/Z En(k) +2R |T*|"

which after an application of Lemma 3.6 becomes

;[ ooar)-

1 dk
Em(k) 4+ 2R |T*|

2 o]
<(1+43R)>M M, / >
m=1

401 + 3R)2M1 M, dk
+ /ZE (k) + 2R |T*

(3.13)
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Before summing in 7z and integrating in k, we find an upper bound on 1/(E,, (k) +
2R) which is uniform in k and summable in m. Since (—1)"+14E2 > 0 on (0, %) and
E,(k) = E,(—k), we have forn € N,

4(n —1)%n? 2
2

Ean-1(k) + 2R > Ezp_1(0) + 2R > +R> %(4(,1 “ 124+ R)

by the min-max theorem and since p > x. Similarly,

2n — 1)272 72
Eon(k) + 2R > Ean(n/p) + 2R > 21— | g > 5 (@n =17+ R),
so that
o 2
5 st <
= Enk)+2R ~ &
for

> 1 1
4=AR) ‘2(24(;1—1)2“% * (2n—1)2+R)'

n=1

Finally, we note that by Lemma 2.3,
Leb(B;) < 4y/Cam exp(C2RY? p) J&; = 4exp(CLRY? p)t=2/3,

With these facts in hand, and defining M = M(R) := 4(1 + 3R)>M, A, we may
bound the integrals in (3.13) as follows:

t ) )
(5 [oowar)-ouv
0

p p 1
PM . MZ(ELeb(Bt) + _8%1‘2)

IA

p* 2p 1/2 2_2\,-2/5
< —2M-M2(— exp(C2 R p) + C2r )z— /
T .

M- -M, /2
< > 2 (— + C22n2)p3 exp(Co R 2 p)1=2/3
4 b4
since % > %. The result then follows from taking a square root and setting M3 =
My and €; = 22 4 C272)1/2, -

4. Proof of ballistic transport

In this section, we will prove Theorem 1.2. First, we must prove some final lemmas.
The first is an elementary propagation estimate, which we record below.
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Lemmad.1. For H; = —5 + Vi, and V; € L®(R),
e H — M2 < ][V = Valloo.

Proof. Let ¢ € H*(R). Using strong differentiability of (I — e~/*H1¢/H2)¢ we have

by the fundamental theorem of calculus and unitarity of e*/#i

t
(" — e )| = H / e = Va)e' ™ 2g dr
0

=

t
/uvl—vzuoouwndr
1]

= [t]IV1 = Vallollll-

Since H?(R) is dense in L2(R), the result follows by approximation. ]

We will also require the following estimate showing that the difference of the
Heisenberg evolution of the position operator for two Schrodinger operators with
bounded potentials applied to a suitable state can diverge at most quadratically in
time. As we will soon see, the presence of the normed difference of the two potentials
on the right-hand side of the estimate is critical to the proof of Theorem 1.2.

Lemma 4.2. Let H; be as in Lemma 4.1, and suppose Vi, — Vo € L*°(R). Then, for
v € HXR)N D(X?)andt € R,

| X, Y = Xet, OV 1) < D)2 + 2)|Vi = Vall 2
forT' = T'(R, ¥) a constant.

Proof. Let
771#([) = XH] (l)l// - XHz(t)w

fory € H2(R) N D(X2).

We define
X

F, =
) = T

and
nfp = eitHl FE(X)B_”HI'W _eitHZFa(X)e—itsz’

which we will estimate above for each ¢ > 0 and take & \( 0.
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We note that, fori =1, 2,
lle"Hi Fy(X)e ™ Hivy — o tHi xe~itHiy |2 = / (Fe(x) — x)?|(e iy (x)[* d x
R

g2x4

= m|(e_i’HiW)(x)|2dx.
R

Since for & < 1, the integrand is bounded above by x*|(e ~**#iyr)(x)|?, which is
integrable for each t € R by [34][Theorem 2.2], we have

lim e/ F, ()¢~ — & e My | = 0
e\ 0

by the dominated convergence theorem. In particular, limg\ o nfp () = ny ().
We find by the triangle inequality and Lemma 4.1,

I ] < 1eI1Vi = Valloo| Fe(X)e 1y |
+ [ Fe(X) (e — o7 2y .
Using the Cauchy—Schwarz inequality and that F¢(X) is a bounded self-adjoint oper-
ator, we have
| Fe(X) (e — 7 2)y |2
< [le M — TRl || - | Fe(X)? (e — e 7Ty
< 1tlIVi = ValloolW I (1 Fe(X)?e ™ 1y | + | Fo(X)?e™ 2]y
by Lemma 4.1. Thus, taking ¢ N\ 0 and using the monotone convergence theorem for
the terms on the right-hand side, we have
Iy @1 < 1111Vi = Valloo| Xe ™1y
+ 12V = Vol 2 12 (X |+ (| X 2e T oy )2
< T2 + )V = Va3

o0
where I' = I'(R, ¥) is a constant by Theorems 5.1 and 5.2. [

Before proving Theorem 1.2, we prove a final lemma, which provides a lower
bound on the Floquet transform U, ¥ integrated over a subset of

Tow
By (2]
Pn Pn
for large enough periods p,. To emphasize the dependence on n, we also denote

2
T, :=R/psZ and T):=R/ZZ.
P
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Lemma 4.3. Let v € H'(R) N Dom(|X |*) for s > 2 and define the set
S, = [_ 3 " ]U [L3_”]
4pn - 4pn 4pn 4pn
Then, there exists an No(V) so that for n > No(yr),

,dk 1,
[ WP = Sl @
Sn

Proof. By Lemma 3.5, there is a set Z, C T,’ with Leb(Z,) = 0 and such that for a
givenk € T} \ Z,,

Up, ¥ (k.q) = e (Y (q) + €7y (q — pn)) + ) _ e *@t POy (g + p,t)
££{0,—1}

for a.e. g. We will use the first two terms in the above to estimate the integral in (4.1)
from below. For these k and ¢,

Up, ¥ (k. q) — e (W (q) + Py (g — pa))| < Y 1¥(q + pab).
£¢{0,—1}

and by (3.7)

C 1 1
nﬁ < —
W+ 0l = (s + )

for £ € {0, —1}. Thus, since p,, — oo as n — oo,

lim  sup [|Up, ¥(k,q) — e (W (q) + ™"y (q = pu)lI72er, aq) = O-

N0 LT\ Z,

4.2)
By Fubini’s theorem and the change of variables p,k — k, for S := p, S,
dk

T

[ 1@ + - pl?
Sn
, dk
— [ [w@+etva=pPs aq
T
T, S
2 2 T ik dk
= [ [ W@P + g = pl + 2ReF @ v a  pun S dg
S

Tn

1
- E/W@P (g — po)lPda,
Ty
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since

[ Re@@e™vta - paryak = Re(mm ~p [ e dk) _

S
Thus,
/ I9)+ €79 = )P / V@Pdg. @3
_Pn
Since p, — oo, lim, o f_p;n [¥(¢q)|>dq = ||¥||?, and we may use the triangle
inequality to combine (4.2) and (4.3) to find (4.1). [ ]

We are now ready to prove Theorem 1.2. The proof will largely follow the path
laid out by Fillman in [16]. Indeed, to extract the limit Qv in Theorem 1.2, we define

1
Quy = lim —Xp, (). “4)

for H,, = —% + V,, where V,, approximate V' exponentially quickly, and show Q, v
has a limit, denoted Q. We then show that Qv = lim;—. Xy (¢)¥. Finally, to
conclude Qv # 0, we show Q, ¥ — Q1 faster than || Q, v || can tend to O.

Proof of Theorem 1.2. Fix s > 2 and a V such that |V | < R and V € EC(n) with
n > 12k C, R'/2 for a constant k > 9/2. Let V,, with V;,(- + p») = V,(:) be such that

lim "+ ||V, — Voo = O. 4.5)
n—>oo

By enlarging R if necessary, we may assume ||V} ||co < R foreachn € N.

Let ¥ € Dy. Defining H, = —% + V;, with domain H?(R), we denote Q,V
as in (4.4) where the limit exists for v € H'(R) N Dom(X) C Dy by [1] (or The-
orem 3.1).

We find a limit for the Qv using a telescoping sum; namely we show that

D 1Qnt1¥ — Qu¥|| < oo 4.6)

n=1

To this end, we set

tn = C py T exp(5kCaRY py ).
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Since p, — oo, we may take p, > m throughout what follows. Then, denoting by
D, (t) = e'*Hn De~*Hn we have by Theorem 3.1,

tn

1 1
HEQnH\/f P, / Dyy1(r)ydr

< C1M3P3/2
0

1 _
1 exp(§C2Rl/2pn+l)tn 13

|
= M, exp(§(1 —2K)C2R1/2pn+1). 4.7)
Similarly,

tn

1 1
o [ Daewar

0

1 _
< C1M3p,3,/2 exp(ECZRl/zpn)tn 1/5

1
< Myexp(5(1=20CR puyr ). (48)

using that p,+1 > p, for alln € N. We find an Ny(R) large enough to ensure #,, > 1
for n > Ny(R). Then, by (3.3) and Lemma 4.2,

In

In

/ Du(F)¥ — D1 (N dr
0

< T/t + t) | Ve = Vg1 | 12

< 2Tty ||V — Vi1 | 12
forn > Ny(R).

Summing (4.7) and (4.8), we find,

4.9)

tn

1 1
Hanw—a[Dn(r)wdr
0

tn

1 1
+ HEQn—HW - ;/Dn+1(r)wdr

0
1 1/2 1/2
<2M; eXP(E(l —2k)C2 R Pn+l) < 2M3zexp(=4Co R pyy1),

where the last inequality uses ¥ > 9/2.

By (4.5), for n large, we have ||V, — Vn_|_1||<1>é2 < e~ 2Pn+1, So, by enlarging
No(R) if necessary, (4.9) yields for n > Ny(R),

tn
1

In

/ Du(F)¥ — Dur (N dr
0

< Zf‘t,,e_g"”’+l < 2I'ty, exp(—6KC2R1/2pn+1)
= 2I“C15p,fr/12 exp(—kCaR? pp i),

since > 12k C> RY/2. Increasing No(R) again, we may take
2Clspls/z

2
n+1 exp(—k C2R?pyy1) < CXP(—EKczRI/ZPnH),
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so that, for n > Ny (R),

n

1
/ Dy(NY — Dyp1(r)ydr
0

; < Texp(—3C2RY? pyiy)
n

since k > 9/2.
Thus, for A(y, R) = A :=2(I" +2M3) and n > Ny(R), we have

100V — Qui1¥ || < Aexp(—=3C2RY?p,i1), (4.10)

and iterating the inequality p,4+1 > 2p, in the above, we find

10n¥ — Ont1¥ |l <= A exp(_3C2Rl/22npo)

from which (4.6) follows.

Thus, for each ¥ € Dy, lim, oo On ¥ exists, and we define Q1 to be the limit.
We now show that for these v, lim;_, %X g ()Y = Q. Using the triangle inequal-
ity, we have for ¢y € D5 andany t € R,n € N,

| X 0w - v
< NXn O ~ X,y + | X, v — Qavr| + 100% — 0.
Taking 7, as in the above, for 7,1 <t < t,, we have by Lemma 4.2
Xk O~ X,y < DO/ + )V =Vl

which tends to 0 as n — oo by (4.5), and thus as t — ooc.
To bound the second term, we may use Corollary 3.2 to find

1 - | )
H;XHn Oy — in/f” <t L I1Xy| +2C M3 p3? exp(icle/an),n_I{S
1 1 12
= i, 1 XV + 2Ma exp(5(1 = 20CR ).

which, for our choice of «, clearly tends to 0 as n — o0, and thus as t — oco. Lastly,
by the definition of Qv, |Qn¥ — Q|| — 0 as n — oo, and we may conclude that

1
z1—1>n;o ;XH(Z)W = 0v.
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Finally, we show that for ¢ € D; with ¢ # 0, || Q|| > 0. The first step is to find
a quantitative lower bound on Q, v, using the expression defined in (3.1). For a fixed
n € N and S, defined as in Lemma 4.3, we compute

0017 = [[| 32 S5 patton, vk

T =

= [| Z S Pty vk

Sn
/Z\dE O by )y, k7

2exp(—4C,R"?p,,
Sl e g 5 1 Pa Uy, o P
2 Fn

Snml

I,,I

2exp(—4C,RV? p,,) dk
- e LT,
Sn

C2p2 T

by Lemma 2.2 and Parseval’s identity. Using Lemma 4.3, we have for n > Ny ()

exp(—4C, RV 2 py,)

10,y >
" 4C3p?

w112

Now, we find a bound for || 0, — Q. Using (4.10) and py, > 2¢p, for each
£ € N, we may estimate for a given n > Ny(R),

10n¥ — QYN < D 1Qe¥ — Qe ¥l < A D exp(=3C2R"? peyy)

{=n {=n

o0 o0
=AY exp(-3C2RY?pup) =AY exp(=3CRV?2 py)
=1 (=1

exp(=3CaR'? py)
1 —exp(=3C2RY/2 py)

where we have estimated by a much larger geometric series.
Finally, putting these two estimates together, we have forn > N := max{Ny, N1},

0¥ = 10n¥ |l — 1(Q — Ou)V I
exp(—2C,RV? p,,) exp(—3C,R? p,,)
= 2C2 pn ||W|| — A, R) 1— exp(_3C2Rl/2pn) ’
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By comparing the exponents in the two terms above, it is clear that we may find an
n > N large enough such that the right-hand side of the above is greater than 0. Thus,

0y #0. .

5. Appendix

The two results of this section are essentially the main results of [34]. However, since
we must take extra care in the dependencies of the constants which appear in their
estimates, we include statements tailored to our setting as well as proofs where neces-
sary. More precisely, Theorems 5.1 and 5.2 correspond to [34, Theorem 2.1] and [34,
Theorem 2.2], respectively. However, in that paper, the dependencies critical in our
work are not recorded. We note also that those authors work in the more general set-
ting of Hy-form-bounded or Hy-operator-bounded potentials with relative bound less
than 1, while we deal with bounded potentials.

Theorem 5.1. Suppose there is an R > 0 with ||V ||ooc < R. Then, for v € H'(R) N
Dom(X),

| Xe ™ iy |l < @l + )Y 1 g + IX VI

Sor a constant a(R) = a.

Theorem 5.2. Suppose there is an R > 0 with |V ||oo < R. Then, for ¥ € H*>(R) N
D(X?),

X%~y < B+ )1V 2wy + IX W17 (5.1)

for a constant B(R) = B.

Theorem 5.1 follows from taking ¢ = 0 and b = R in the proof of [34][The-
orem 2.1]. Instead, the proof of the statement corresponding to Theorem 5.2 in [34] is
formal. We provide a rigorous proof in our setting below for completeness.

Proof of Theorem 5.2. Since we will reduce position estimates to momentum estim-
ates, we begin by recording a pair of estimates of the latter type. For ¢ € H?(R),

1Hy e |2 < ||(Ho + V + R)V2e™ ™y |12 < |Hy >y | + 2R | v |12
where we have used that

(™ v (Ho + V)e "My = (7 "y e H (Ho + VYY) = (V. (Ho + V)¥).
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In particular,
| Ho e g2 < (1 + 2R ¥ 1 - (5.2)
Similarly, we have
| Hoe ™| < |(Ho + V)e "y || + Ve || < | How || + 2R||¥ ||
and

| Hoe "y || < V2(1 + 2R) ¥ | 2w - (5.3)

We now define Fy(y) := lJ;V:y4 and take F,(X(¢)) := e'#' F,(X)e™"H. Our first

task is to compute the strong derivative dd—tFS(X )y, for ¥ € H*(R). Fix ¢ €
H?(R), then
ei(t-l—h)H FS(X)e—i(t-i-h)Hw _ eitH FS(X)e—itHw
— ei(t+h)H Fg(x)e—i(l—l-h)Hw _ ei(t+h)H FE(X)B_itHw
+ ei(t+h)HFg(X)€_itHw _ e”HFg(X)e_”HI//.

We examine the difference quotient of each term individually. For the first, using

unitarity of e ~/*H | we have

H %(ei(t+h)H Fo(X)e I CHIH _ i@ H | (x)o=itH )y, | joitH Fg(X)e_”HHwH

-

which tends to 0 as # — 0 for ¥ € H?(R) by strong continuity of e
Dom(H) = H?(R). For the second term, we note that a quick computation shows
that F.(X)(H?(R)) € H?(R), and we may compute again

’

1. . . .
Fg(X)E(e_l(t+h)H _ e—ll‘Hw) + l'e—thFs(X)e—ltHHv/)

itH and since

H%(ei(t—l—h)HFa(X)e—itHw — eH F(X)e it )y — I-HeitHFE(X)e—itHwH
= H%(é’” — DF:(X)y —iHFs(X)e—itH¢|‘

which again tends to 0 as & does. Thus, as a map from H?(R) to L2(R), Fs(X(¢)) is
strongly differentiable with

S R(X0) = i1, F(X@)] = i [Ho, F,(Ol

= Ge(X(1)) D) + D(1)Ge(X(1))
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where G.(y) = 0, Fe(y) =
—eltH L ~itH ag before.

Fixing ¥ € H?(R) N D(X?), we use the above to find

(1 +8y4)2, and G¢(X (1)) = "™ G.(X)e ", D(t) =

d
7; W (Fe(X(@) + DY) = 2{Go(X(1)¥. DY)

. 2
where we note that G4(y) = 4F8(y)1/2W and so, setting g.(y) = m’

we have
Ly mxan + )
< 8(y, F(X()Y) (D), g(X () D(t)y)'/? (5.4)

by the Cauchy—Schwarz inequality.
We note that since g, € H!(R), for f € H'(R),

ge(X)Df = Dge(X) f +i(0x8:)(X) f
by the product rule. Thus, since e 77 : H2(R) — H?(R) C H'(R), we have

(D). gs(X(1))D(1)y)
= (D). D(t)ge(X()¥) + i(DO)Y, (9x8:) (X (1)) V),
and so by the Cauchy—Schwarz inequality again
(D). ge(X(1))D(1)y)
< (|1 Ho e ™1y | + || Hoe 7 iy |2)1/2
(g (X)e™ |12 + | @xge (X)e ™y )12,

We compute

Iyge(y) | |(L+eyHV4 12y — 10ey°
2F ()41 ) 2y " (1+ ey
_) 1 —5ep* ‘<1+5€y4
(1+ 8y4)15/4 - 1+ 8y4
5ey*
1 —i—);y“ =

<1+

’

yielding 9, g:(y)? < 144 F,(y)!/?. Thus,

|(Bxge(X))e iy |2 < 144(y, Fo(X (1) /2y).
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We also have g¢(y)? < Fy(y), which implies
lge(X)e iy |2 < (v, Fo(X(1)¥),
so that
19 ge(X))e™ 1y 12 + | ge(X)e 1 yr||? < 288(y, (Fe(X(1)) + DY),

by the elementary inequality (y + /y) < 2(1 + y).
The inequality (5.3) and the form bound (5.2) yields

| Ho e 1y |2 4 | Hoe " iy |2 < (1 4+ 2R) 1Y 12y + 20 + 2RV 12
<41+ 2RV 72 w)-
Combining the above inequalities to estimate (5.4), with
A(R) =2"4/3(1 +2R)'/?
we have
= (R (X@) + DY)
< 8(y, Fo(X(1)) ) />(D (1), go(X (1)) D))"/
< ARV Il 2 gy (¥ Fe (X)) 2, (Fe(X () + yr) /*
< ARV [l 2 gy (¥, (Fe(X(0)) + D)2,
and integrating the inequality yields
(V. (Fe(X(0)y)"/*
< (Y. (Fe(X(1)) + Dy)/*
< . F O+ ARy b2 .

Taking & \ 0 in the above inequality and using the monotone convergence theorem,

we have
. A(R)
2 —itH . 11/2 2 ,11/2 1/2
IXZe™ g 157 < XIS+ — = 1 o gy 2]
Squaring and applying some elementary inequalities, (5.1) follows. ]
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