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ABSTRACT. We consider half-line Dirac operators with operator data of Wigner-von Neumann
type. If the data is a finite linear combination of Wigner-von Neumann functions, we show absence
of singular continuous spectrum and provide an explicit set containing all embedded pure points
that depends only on the LP decay and frequencies of the operator data. For infinite sums of
Wigner-von Neumann-like terms, we bound the Hausdorff dimension of the singular part of the
spectrum.

1. INTRODUCTION

In the spectral theory of Schrodinger operators with slowly decaying potentials, i.e., potentials
that are not L', an alternative to the classical WKB methods is needed. One approach to studying
these so-called ‘long-range’ operators uses the sum rules of the well-known work by Deift-Killip [9].
Another approach, which we will take in this article, is to study boundedness of eigensolutions.
The historical development of spectral analysis via boundedness of eigensolutions involves many
authors studying many different species of potentials (see |10] for a more thorough review than
we provide here). For instance, for Schrodinger operators with sparse potentials, Pearson [36] and
then Kiselev-Last-Simon [21] identified a transition with respect to spectral type at p = 2 for
LP potentials. For power-decaying potentials, work of Christ, Kiselev, Molchanov, and Remling
[7,[18L|19L[32L38] established conditions for the preservation of the absolutely continuous spectrum.
Even in cases where the absolutely continuous spectrum is preserved, constructions have been
given which produce singular, and even singular continuous spectrum embedded in the absolutely
continuous spectrum [28}|33,/43].

The first and perhaps most famous construction producing embedded singular spectrum is that of
von Neumann and Wigner [35] (see also [41]), who in 1929 introduced a one-dimensional Schrodinger
operator H with potential V' behaving at infinity as

sin(2x)
x

V(z) = —8 +0(z7?),

which Schrodinger operator has £ = 1 as an eigenvalue embedded in the absolutely continuous
part of the spectrum. Since 1929 many variants of this model have been used to demonstrate and
study various forms of ‘exotic’ singular spectrum (e.g., |1,/4,/12,(15/17,[22}29}/341|44}/49]). Simon’s
construction in [43] uses the Wigner-von Neumann model as the basic building block in a potential
for which the associated Schrodinger operator exhibits dense embedded point spectrum. Two results
of Simonov even precisely describe the asymptotics of the spectral density near a critical point for
certain Wigner-von Neumann-like perturbations of a periodic potential [45].

E.G. was supported in part by NSF grant DMS-1745670.
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Functions of generalized bounded variation, of which von Neumann and Wigner’s potential is a
special case, combine slower decay with additional Wigner-von Neumann-like terms with differing
frequencies, producing a mixture of bounded variation, decay at infinity, and almost periodicity [50].
This combination is an interesting one for at least three reasons: potentials of bounded variation
with decay at infinity preserve the absolutely continuous spectrum [48]; L' potentials preserve the
purely absolutely continuous spectrum (see, for example, |[42]), which underscores the importance of
the decay rate for producing an embedded eigenvalue; and there is a generic set of almost periodic
potentials producing purely singular spectrum [2].

Historically, most exploration of exotic spectra arising from models based on the Wigner-von
Neumann potential restricted to the L? case, with a result of Janas-Simonov [16] from the discrete
case allowing ¢ decay. Lukié [24-27] used functions of generalized bounded variation to progress
to the LP setting for any integer 2 < p < oo, showing the absence of singular continuous spectrum
and explicitly providing p-dependent finite sets containing all possible instances of embedded pure
points. In [27], Luki¢ extended this work to include potentials with infinitely many summands of
generalized bounded variation, in which case the set of possible pure points is in general infinite
and singular continuous spectrum is possible, but may be bounded in Hausdorff dimension.

Schrédinger operators and Dirac operators have often been studied in tandem. For example,
Naboko [33] demonstrated dense point spectrum in the absolutely continuous spectrum of Dirac-
type operators and deduced the same for Schréodinger operators as a special case, and we will below
use criteria due to Behncke [3| for the existence of subordinate solutions, which [3] gives in both the
Schrodinger and Dirac settings. While Dirac operators with Wigner-von Neumann type operator
data have been considered (e.g., [5,31]), the case of decay slower than L? remained open. Here we
describe this case by adapting for the half-line Dirac operator the work of Luki¢ on spectral type
characterization of models with Wigner-von Neumann type data. The analysis begins in much the
same way as in |26, but an important adaptation is required that alters the analysis throughout
and the results we obtain.

The Dirac operator commonly appears in at least two unitarily equivalent forms:

i 0\ d 0 o)
A, = L= 1.1
(0 -1\ d Rep(z) Ime(x)
Lo = (1 0 ) dx + (Im p(r) —Rep(z))” (1.2)
The form (1.2)) is more classical, but the form (L.1)) is often more convenient for calculations, and
below we opt to work with A,. Additionally, the form (L.1)) appears in the Zakharov-Shabat Lax

pair representation of the defocusing nonlinear Schrodinger equation [14]. More details regarding
this gauge distinction are available in [6|]11,/14]. We will study the eigenequation for A,

A‘PU(xan) ZEU(%U)v (13)

where n = 2E. Our operator data ¢ will be of almost the same form as the potentials in [27], which
form generalizes the famous Wigner-von Neumann potential of [35]. We recall that the variation of
a function v on an interval I is defined as

k

Var(y,I) =sup sup v(@;) = v(zj-1)l-
k€N zxg,...,xp €l i—=1

To< < Tp J
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Definition 1.1. We say ¢ is of Wigner-von Neumann type if it takes the form
N
plz) = cje "1 (@), (1.4)
j=1

for N € NU {oo}, where ¢; € C, ¢; € R, and all of the following conditions hold:
(i) (uniformly bounded variation) the functions ; : (0,00) — C obey

sup Var(v;, (0, 00)) < co. (1.5)
J
(ii) (uniform L? condition) for some odd p € Z, p > 3,

oo
sup/ |y ()[Pdt < 0. (1.6)
Jj Jo

. 1
(ili) (a-type decay of coefficients) for some o € (0, ;=5),

Z le;|* < oo. (1.7)

When p is odd in the definition of Wigner-von Neumann type potentials in |27, Theorem 1.1],
that definition coincides with Definition (except that the range of allowable « is slightly larger
in our case). For reasons to be explained below, it is without loss of generality that we restrict to
odd integers p here. If N < oo in , we say  is of finite Wigner-von Neumann type.

In this latter case, of course, the condition becomes vacuous and the uniform conditions
(1.5) and simplify to requiring that each function +y; is of bounded variation and, for some
odd p > 3, each v; € LP. We call the ¢; frequencies and denote the set of all frequencies by
& ={¢;:jeN}L

The differential expression with operator data ¢ of Wigner-von Neumann type has zero as
a regular endpoint and, since ¢ decays at infinity, is in the limit point case at +o0o. Thus, for any
w € ID, A defines an unbounded self-adjoint operator with domain

D(A2) ={f € H'((0,00),C?) : (w @) f(0) = 0}.

The choice of w is unimportant to the analysis—our results hold regardless of the choice of self-adjoint
boundary condition at zero, and we suppress w hereafter.

Before stating any theorems, let us recall the precise definition of an embedded eigenvalue. First,
for any ¢ € D(A,) and for xg(A,) a spectral projection defined via the functional calculus, the
unique finite positive Borel measure pi, satisfying (1, xg(Ay)1) = py(S) for any S C Ris called the
spectral measure for ¢». Then, D(A,) admits a decomposition into absolutely continuous, singularly
continuous, and pure point parts as D(Ay) = Doc®Dsc®Dpp, for Dy = {1t € D(Ay) : djiy is purely o}.
Lastly, we have

0(Ap) = 04c(Ay) Use(Ay) Uopp(Ay),

where 04(A,) denotes the spectrum of the restriction of A, to D,. An embedded eigenvalue in the
absolutely continuous spectrum is an element of g4.(A,) Nopp(Ay). When embedded eigenvalues
exist, D(Ay) # Dae, even for cases in which o(Ay) = 040(Ay).

The first of our main results shows absence of singular continuous spectrum and provides an
explicit set containing all possible embedded pure points in the case where ¢ is of finite Wigner-von
Neumann type. For convenience, we define Z(;:l C; := 0 for any sequence {C}}.
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Theorem 1.2. Let A, be given by (1.1) with operator data ¢ of finite Wigner-von Neumann type
satisfying the uniform LP condition (1.6) for some p=2n+1, n > 1. Then for

m m—1
Gp{;’|ﬂzl¢kjZléf)lj;%j,éﬁzje@;lﬁmﬁ”} (1.8)
j= i=

which depends only on p and the set @ of frequencies of ¢, on R\ &, the spectral measure p of Ay,
is mutually absolutely continuous with Lebesque measure. Consequently,

(i) UaC(Aw) =R
(it) 05c(Ay) =0
(ii1) opp(Ay) C 6, is a finite set.

In addition to technical adjustments to the methods in [24}26], the exceptional set &, we obtain
differs from the analagous exceptional sets in the settings of Schréodinger operators or orthogonal
polynomials on the real line. Namely, not all sums and differences of frequencies from the operator
data give rise to possible pure points, but rather only those of the form

m m—1
> ok =D (1.9)
j=1 j=1

This is a property shared by the exceptional set in the setting of orthogonal polynomials on the
unit circle [24], and the reasons for this phenomenon are similar in both settings. On the unit circle,
rotating the measure by an angle v shifts each of the frequencies ¢; by 1. Thus, from the set of a
priori possible critical points, only those of the form are preserved.

Similarly, to shift the spectral paramater E = /2 by ¢ in , we multiply our operator data
¢ by €'?¥® which shifts each frequency ¢; by 2t; again we see that only critical points n of the
form are preserved. The fact that new elements of the form become available only when
p increases to an odd integer accounts for the odd p in the LP condition of the theorem and in
Definition [L.1]

Since the set &, grows as p = 2n + 1 grows, it is natural to ask both whether there exists ¢
for which &,, indeed contains an embedded eigenvalue and whether the growth in the sets &, is
necessary or an artifact of our method. To answer these questions, we construct operator data
that yields an eigenvalue in &5 \ &3. A similar argument is available to produce ¢ with eigenvalue
E € 6,\ 6,5 for larger p. Our construction will use operator data of the form

M
o(z) = chxf5e*i(¢jx+§j(m))’ (1.10)
j=1
where § € (p7!,(p — 2)7Y, & are real-valued, and M < oco. We can realize v;(x) in (L.4) as
c;r %% (@) Thus defined, ¢ satisfies the conditions of Definition

Theorem 1.3. Fiz M >3 and § € (%, %] Let ¢ be given by (1.10) with rationally independent ¢;.
Then there exists n/2 € G5 \ &3. Moreover, for such n and any c;, ¢; satisfying both

|c;?
ZT‘ =0 (1.11)
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and
M
d)jl + ¢j2 — 27]
lej ¢ 7 -0, (1.12)
j1,]zz::1 e (¢j1 - 77>2(¢j2 —n)?

there exist functions & € C such that ¢ satisfies (L.5) and (L.3)) has a solution with asymptotics
(4.2) and (4.3). In particular, n/2 € 04.(Ay) Nopp(Ay).

We will also show that both conditions and may be simultaneously satisfied.

If ¢ is of Wigner-von Neumann type with infinitely many nonzero ¢; and p > 3, each of the
frequencies ¢; is of the form with m = 1, so that the set &, is in general infinite. In this
case we instead bound the Hausdorff dimension of &,,. Similar to Theorem [1.2} we will have that
any maximal spectral measure for A, is mutually absolutely continuous with Lebesgue measure
on R\ &,. Recall the decomposition of a maximal spectral measure for A, p, into its absolutely
continuous and singular parts:

dpt = dpae + dps. (1.13)

Theorem 1.4. Let operator data ¢ be of Wigner-von Neumann type satisfying the LP condition
(1.6) for some odd p > 3 and the condition (L.7)) for some o € (0, p%Z) Then the set of energies E
for which there exists an unbounded solution to (1.3 has Hausdorff dimension at most (p—2)c. In
particular, pg. ts mutually absolutely continuous with Lebesque measure on R and us is supported
on a set of Hausdorff dimension at most (p — 2)a.

Results of Remling [39], Christ-Kiselev [§], and, more recently, Liu [23], bound the Hausdorff
dimension of embedded singular spectrum for Schrédinger operators with slowly decaying potentials.
Those results cannot be directly compared to ours, since theirs concerned general potentials with
LP decay for 1 < p < 2, whereas Theorem [1.4] considers Wigner-von Neumann potentials with decay
slower than L2 and is sensitive to the value a in Definition [L1]

In Section [2| we define the Priifer variables to be used throughout. In Section [3| we prove the
form of critical points. In Section [4| we prove Theorems and In Section [5| we prove
Theorem [I.4]

2. SUBORDINACY AND PRUFER VARIABLES

We call a solution U(z,n) to (1.3) at F = /2 a subordinate solution if

i SNV )P _
=00 [F |V (t,m)||2dt

holds for any linearly independent solution V' (x, n) at E. Subordinate solutions are defined similarly
for solutions to the Schrodinger eigenequation. For more on subordinacy theory, see [13].

In [3] it is shown that, for both Schrodinger and Dirac operators, the absence of subordinate
solutions on a set A implies purely absolutely continuous spectrum there. We will find an explicit set
A of energies E at each of which all solutions are bounded. In [47] it is shown that, in the context
of Schrodinger operators, boundedness of all solutions implies absence of subordinate solutions.
In the same way, the following lemma, following ideas from [47], completes the desired chain of
implications in the Dirac operator setting.

Lemma 2.1. If all solutions of (1.3) at E are bounded, then there is no subordinate solution at E.
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Proof. Let U and V be linearly independent solutions at . Boundedness gives My, My < oo for
My :=sup |U(z,n)|l, My :=sup [V (z,n)]|.
x>0 x>0

Clearly, for x > 0 we have

/ [V (@®)]Pdt < M.

0

The Wronskian of any f,g € H*((0,00); C?), W[f, g](x), is defined as f(z)!Jg(x) for J = (—Oz é)
It is straightforward to show that W, g](z) is a nonzero constant when f, g are linearly independent
solutions to (1.3). Thus, for any = we have

WUV =U(2)" TV ()| < [U@)TV (@) < U ()] My

Consequently, for any = > 0,

fy lW@lPde _ [wio, v
JTVOIRa =

Since U,V were chosen arbitrarily, taking © — oo shows there is no subordinate solution at £. [

> 0.

In order to prove boundedness of solutions, we perform a Priifer transformation to an arbitrary
solution U(x,n). Priifer variables have been used many times in the spectral theory of Schrodinger
and Dirac operators (e.g., [20},/21}24H27},29,/30L[37}/40,46]). We set

E=2,
2

and for a solution U(x,n) of (1.3) at E, we define the Priifer amplitude r and Priifer angle 6 by

(1+ i)ei@z”(m)))

vt =rtean (0 ) 21)

The ambiguity in 0 is addressed by fixing 6(0,7) € [—m, 7) and requiring 6 be continuous in z. So
defined, the variables r and 6 satisfy the following system of differential equations:

—10.0 = i(Re p(x)) sin(nz + 26(z,n)) + i(Im ¢(z)) cos(nx + 20(x,n)),
0z logr = (Re p(x)) cos(nz + 20(x,n)) — (Im ¢(z)) sin(nz + 20(x,n)).
Defining the complex Priifer variable Z(z,7) := r(z,n)e~ @ we have
OuZ (2, m)
Z(,m)
Thus, 9, logr(x,n) = Re(e!*+20(@m) 5(z)), and
og ;Eg: Z; =Re /OI ! mt20(Em) (1) dt. (2.2)
To prove boundedness of solutions at 7, it suffices to bound . Moreover, we have

0:0(x, 1) = —Im e 2D (), (2.3)

= 9, logr(z,n) — i0,0(x,n) = e MH0@M) (7).

which identity will prove useful in many of our calculations below due to Lemma In later
sections, we will often suppress the 7- and/or z-dependence of r and € for conciseness.
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3. NONREMOVABLE SINGULARITIES
Consider the following reindexing of [27, Lemma 2.1]:

Lemma 3.1. Letn € R be fixed. Let PN € Z with P>1, I =P+ N, and K =P—N > 0. Then
f0r0§a<b<oo, F(z):’Ykl(I)’Ykp(I)Tllmy and¢:¢k1+"'+¢kpi(¢l1+"'+¢lzv)7

<orl)

b
/ (((15 _ o) Kint+20(0) g=iot 1) 2K6Ki(nt+26(t))e—iq&tp(t)%)dt
a

where T = sup,, Var(vx, (0,00)).

By , T < 00, and thus by 7 each application of Lemma appends a new LP factor to
the integrand in at a finite cost, 277. Applying Lemma repeatedly to yields terms of
the form

© P N
f(ﬂ; [(bkj}f:l; [(bljuvzl)/ eKi(nt+29(t)) H e—i¢'kit,yki (t) H ei@jtmdt’ (31)

0 i=1 j=1
where K = P — N > 0 and we’ve used [¢;]7_; to denote the ordered n-tuple (¢1,...,¢,). Once
I = P+ N grows to p, the LP condition gives a finite z—independent upper bound on that
term. Going forward, the reader should think of the P ¢y, as the positive frequencies and the N
¢1; as the negative frequencies. Thus, I is the total number of frequencies and K is the number of
et n1t+20(1) factors seen in . Note that P and N depend on I and K via the identities P = #

and N = % Below we will usually suppress this dependence for conciseness.
We will track the terms as I increases to p. Note that such terms appear for any permutation

of [Qk,,---,drp] and for any permutation of [¢y,,...,d;], SO we can agree to average f over all
such terms, by which we mean replacing f(; [gbk].]f:l; [(;Slj]j»v:l) by
) P . Noy_ L ) P . N 3.9
fI,K(na [¢k5j]j:1’ [d)lj]j:l) ~ PN Z f(77, [¢kg(j)]j:1, [QSIT(j)]j:l)a ( : )
ogESp
TESN

where S; denotes the symmetric group on j elements. This averaging is useful both for avoiding
counting the distinct permutations of the frequencies ¢; and, importantly, for showing that many
apparent singularities in n arising in f are, in fact, removable, as we shall see in Section

The symmetrized is invariant under permutations of [¢g,, ..., ¢x,] and under permuta-
tions of [¢y,, ..., di1y], but not under permutations of (@, ..., Pkp, D1y, .-, P1y] Here we see an
important difference between the Schrédinger and Dirac settings. The potential of a self-adjoint
Schrodinger operator is real-valued. Consequently, applications of Lemma yield the terms ((3.1)
in complex-conjugate pairs—in other words, the P positive and N negative frequencies in ap-
pear in reversed roles in the conjugate term, with P ‘negative’ and N ‘positive’ frequencies. For
this reason, the ordering of the appearance of new frequencies via iterated applications of Lemma
matters not at all, and in [26, Equation 4.7] the associated leading terms f are symmetrically
averaged accordingly. In the Dirac setting, since ¢ is in general complex-valued, we inherit a lesser
symmetry and we must distinguish between positive and negative frequencies.

We also see in a difference from the setting of orthogonal polynomials on the unit circle.
In the Dirac setting, the appearance of 9,0(z,n) = £(e!*+20) ¢y — ¢i(nz+26)) leads to a change
in K, the number of ¢/ 129 factors, by +1 in each new term produced by applying Lemma
In the setting of orthogonal polynomials on the unit circle, on the other hand, the appearance of
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O(n+1,n)—06(n,n) leads instead to a much more varied effect on K in each of the newly produced
terms. In [24], this is dealt with by passing to Taylor expansions of ¢?**(?»+1=0) hut here we will
be able to work directly with 0,0(x,n).

Now, due to the iterative nature of our strategy in implementing Lemma the resulting
admits a recursive relation. For any I > 1, 0 < K < I, and permutations ¢ € Sp and 7 € Sy,
f1,x depends only on fr_1 k-1 and fr_i k41 due to Lemma and the introduction via 9;0 of
both eF(1t+20)  However, the term is not produced in our iterative procedure if either K < 0
or K > I, and we will define fr x for such K to be zero. The recursion resulting from repeated
application of Lemma is as follows: if 0 < K < [ and, as before, P = %, N = % e,

fii(ns o)) =1

K
g[,K(U; [d)kj]f:l; [qﬁlj]_;y:l) = 25:1 ¢kj _ szjvl ¢lj — K fI,K(U; [¢kj]f:1; [¢lj]§\[:1); (33)
1 ! min a min —a
Fracmom ) 7as (00100 = 5 D0 D7 wagr-vsera(m (e, [Tn o, [P,
TET
(3.4)

where we shall think of w, as a function of 1+ 1 4+ 0 variables if a = —1 or of 1+ 0 4+ 1 variables if
a =1, in either case defined as

wa = wa(m; 61,1750 [0, 120 = 61 — B,

where §; is one if j = 0 and zero otherwise. By convention, we define f; x and g x to be zero
whenever K > I, I — K ¢ 27, or either I < 1 or K < 0, regardless of the number of frequencies
on which they are made to depend. Of course, w, never depends on the frequencies—we only define
w, in this way to better make sense of the following symmetric product. Let us also note that we
suppress the n-dependence of fr x and gr x in any argument in which 7 is fixed.

We define the symmetric product ® in order to simplify notation: given f, a function of 1 + P, + Ny
variables, and g, a function of 1 + P, + N, variables, we call P = P, + P, and N = N; + N, and
define their symmetric product, f ® g, as

(F © @) (0 [dr, 1713 [0, 1721)

1
= PINT Z f(n; [(bko-(j)]f;l; [¢lr(j):|;v—il)g(n; [¢k0(j)]fzpl+l; [(ZSITU)EV:NNH)'
’ : oc€Sp
TESN

It is straightforward to check that ® is commutative and associative. We also define for 0 < K <[
1k (0 [0, 115 [0, 1021) o= 0r—16K 1.

With this notation, we can abbreviate the definition (3.4) as

1
Frae (3 (0,15 =15 [01,1750) = Sk + Z Wa © g1-1,K+a- (3.5)

a=-—1

As noted above, the number K of e/("*12%) factors changes by +1 with each application of Lemma
In particular, with enough consecutive decreases, K may shrink to zero. Lemma may still
be applied so long as the sum Zle ¢r; — P1; is nonzero. When both K = 0 and Z;D:l Or; — P, =0,
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however, Lemma cannot be (usefully) applied, and we depend instead on a cancellation allowed
by the following lemma:

Lemma 3.2. For any I,p € Z, Re fr2, = 0. Moreover, if I = 2P and Zle br; — Zle ¢, =0,
then

Fro0; [0, 151 (00, 1520) = Fro(m; (o) iy 6k, 1221)-
Proof. We have Re fr 2, = 0 simply by convention when I is odd. We now prove that Re f; 2, =0
for all p € Z by induction on I = 2P. The case P < 0 holds trivially. Suppose Re far 2, = 0 for all
p € Z and for all k < P. By expanding fr 2, using and , we obtain

1 .
(2n+a)i
fl,2n = Wq © T
Z 3;1 ¢kj - 2]1:1 ¢lj - (2n + a’)n

a=-—1

(2n +a+ b)i ! )
T on, — g by, — @ntact byt TR

1
X (517172n+a + Z wp ©
b=—1
In taking the real part, the term with the = factor vanishes due to the 7 in the first quotient, and
the other term vanishes due to the i? together with the induction hypothesis.
For the second part, we first prove by induction on n that for I = 2n, n > 1,

fI,O = # Z Z HI,s,U,Ta (36)

0, 7TESy s€ A(I)

where A(I) is the set of I+1-tuples (s, s1,- . ., $7) with integer components such that |s;41—s;| = 1,
s;>1for1<i<I-—1,and sg =s;y =0, and

= i(s Sm—1)8

1/2 1/2 — Sm—1
Hyoor(ns o0, ;55 0050 = [ —m—— " :

m=13 51 Ohoy — 2j=t Dl — Sml
We obtained fr o by averaging over permutations before each application of Lemma [3.1] The terms
Hy ;- are obtained by applying Lemma I — 1 times without averaging first. We then return
to fro by averaging over permutations. We also have that

I I I I
Hi g (3 (00,1520 [00,122) = Hissoro (13 10,152 [0, 153),

where 3; = s;_;. Clearly, s € A([) if and only if § € A(I), so summing over A(I) and averaging in
permutations o, T € S,, completes the proof. O

With Lemma we see that we may apply Lemma until all terms remaining either have p
factors ;, are bounded by 27K for some finite K, or else are purely imaginary and do not contribute
to the Priifer amplitude. In so doing, we introduce many g x, each of which appears to introduce
a singularity in n at %(Zle bk, — Z;vzl ¢1;). In fact, such singularities for K > 1 are removable,
due to the following lemma:

Lemma 3.3. If0< K <1 and 0 < k < K, then

I
frx = Zfi,k O Gr—i,K—k» (3.7)
i=0
I
91K = Zgi,k O gr—i,K—k- (3.8)

=0
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Proof. The proof is similar to that of |26, Lemma 5.1 (i)]. We prove (3.7) and (3.8) simultaneously
by induction on I. Both statements hold vacuously when I <2 or K < 2, so we assume 2 < K < [.
Suppose both statements hold for all I < I. Then using (3.5) and associativity of ® yields

I 1 1
> fikOgrik-r= (Zik+ Y Wa®gi-thta)® gr-ik—k
i=0 i=0 a——1
I 1 I
= EikOgiiknt Y, wa® ) gi-1hta®groikk)-
i=0 a=—1 =0

Since by our convention g_; 1, = 0 for any &, a, we may reindex in ¢ with no cost as

1 -1
0k—1511 O gr—1,k—1 + Z We © (Z Gikta © 9I—1—i, K—k)-

a=-—1 =0

At this point, we may apply the induction hypothesis on the inner sum both when ¢ = —1 and
a=1solongas0<k+a< K+aand 0 < K+a<1I. If K+ a> I, then for each i, either
Gi k+1 OF gr—1—i, K—k is zero. Since gr_1 k+q is also zero, we may include this term at no cost. That
0 < k < K implies &k +1 < K + a, but we do have k + a < 0 exactly when k =1 and a = —1. This
is the only exception we must make to the induction hypothesis, and we’re left with

I 1
Z fik ©gr—ik—r =0k—1511 O gr-1,k-1 + Z Wa © (91-1,K+a — Ok—10a+191-1,KK—1)

=0 a=-—1

=fixk —Erk+0-1(E1109r-1,k-1 —w-1 O gr—1,x-1) = f1.x,

where we've used =7 g = 0 (since I > 1) and w_1 = = 5.

It remains to show at I. As before, let I = P+ N and K = P — N. Now also set
i =Pr+Npand k=P, —N;pforany 1 <i<JTand0 < k < K. By , for any
permutations ¢ € Sp and 7 € Sy and for any 1 <i < T and 0 < k < K, we have

KfI,K([(bkg(j)]f:l; [¢lr(j)]§vzl) _ kfi,k([qskg(j)];);,f; [‘ﬁlr(j)];v:iwlk)
91, [0k, ) 7215 101, [720) gi,k([fi)kg(j)]f;]f; [¢17(j>];y=i’f)

(K~ k)fI*ZEK*k([‘bkou)]f:&,wl? [¢lT(j)];y:Ni,k+1)

gl—ivK_k([¢kd(j>Elpi,k-i-l; [d)lf(j)];v:]\’i,k-&-l)

Clearing denominators here and averaging in permutations (o, 7) € Sp x Sy, notice that both f; x
and gr x are each symmetric with respect to (o, 7), so that we’re left with

Kfr
91K

1 P i N;
9ik © 9I-i.K—k = B Z (ki ([Dry ) )55 100, ) )t ) g1 —i ik (B ) Ve 13 101, ) [N, 1)

oc€Sp
TESN

P N; &
+ (K - k)fI—i7K_k([¢ka(j)]f:13i,k+l; [@7(]-)]j‘v:Ni,k-H)gi,k([(bka(j)]j:’f? [Qslf(j)]j:f))
=kfirOgr—ik—r+ (K —k)fr—ix— ® gi
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Summing both sides in 0 < ¢ < I we have

1 I I
K
J1K Zgi,k Ogr—i,k—k = kai,k Ogr-ix—k+ (K —k) Z Jr—ik—k © 9ik
9K =) et pard
I
=kfrx+ (K —k) Zfi,l Ogr-ik—1 = Kf1 k,
i=0
where [ := K — k and we’ve used (3.7), since 0 < | < K also. Dividing both sides by %

completes the proof.

Lemma allows us to reduce fr x and g x to sums of products of only the f;; and g; ;. We
may use this reduction and a study of singularities of g; 1 to define the correct exceptional set &,,.
Note that I — K ¢ 2Z implies g7, x = 0 by our convention and so contributes no singularities.

Lemma 3.4.
(i) For I =2n—1,n > 1, ifn = is a nonremovable singularity of gr1(n; [#x;]}—1; [qblj]?;ll),
then ¢ may be written in the form for1<m <n.
(i) For1 < K <I,I—K €2Z, if n = is a nonremovable singularity of gr k, then ¢ may
be written in the form for 1 <m <mn, wheren=[I1/2].

Proof.
(i) The case n = 1 follows immediately from (3.3). Suppose the statement holds for n < N
and let I = 2N —1. By , gr,1 has Z;\Ll Oy — Z;v:_ll ¢, as a nonremovable singularity
and all other nonremovable singularities are those arising from f7 ;. By , singularities
of fr1 arise from gr_; 2, and by , these are just the singularities arising from g; ; for
0 < ¢ < I —1. The induction hypothesis completes the proof.
(ii) Fix 2 < K < I. By iteratively applying with & = 1 to g5 x K — 1 times, we see
that nonremovable singularities of g; i arise as those of g;; for 1 <4 < I — 1, since for
i = 0,1, either g;. or gy_;,. is zero. By part (i), if I = 2n, the nonremovable singularities
of g;1 for 1 <i < I —1 are of the form for 1 <m <n. If ] =2n+1, then g;_1,; is
zero, so nonremovable singularities of g; ; for 1 < ¢ < I — 1 are still of the form for
1 <m < n. In either case, n = [I/2].
O

Corollary 3.5. For 0 < K < I, I — K € 2Z, if n = ¢ is a nonremovable singularity of fr i, then
¢ may be written in the form (L.9) for 1 <m <n, where n = [(I —1)/2].

Proof. f I =2n+1and K =0 or K = 1, we have from (3.5

frk =511 +wi ©gr-1,x+1,

since gr—1, k-1 = 0. Thus, nonremovable singularities of f; i are the same as those of gr_1 x1.
By Lemma (ii), each of these has singularities of the form (1.9) for 1 <m < |(I —1)/2] = n.
On the other hand, if 1 < K < I, I — K € 27, we can use (3.7) to write f; x as

I
frx = Z fin1 © gr—i k-1,
i=0
from which we see that the nonremovable singularities of f; i arise from those of f; 1 and g; k1
for 1 < i < I. Singularities of f;; are of the form (1.9) for 1 < m < |[(I — 1)/2] by the first



DIRAC OPERATORS WITH OPERATOR DATA OF WIGNER-VON NEUMANN TYPE 12

part of the proof (since for I even, fr1 = 0). Singularities of g; x_1 are of the form (1.9) for
1<m< |(I-1)/2] by Lemma (ii) (since g7, xk—1 = 0 by the assumption I — K € 2Z). O

4. FINITELY MANY SUMMANDS

If ¢ is of finite Wigner-von Neumann type, there are finitely many nonremovable singularities
arising from applications of Lemma all of the form (1.9). We obtain the first of our main
results:

Proof of Theorem[1.2. By Lemma [2.1]and subordinacy theory for Dirac operators due to Behncke,
it is enough to show that given 7/2 ¢ &,, all solutions U(x,n) are bounded, regardless of their
boundary value at zero. Given such a solution U, we pass to its Priifer amplitude r(x,n) and begin
from . Repeatedly applying Lemma to

xT
/ei(nt+29(tm))(p(t)dt’
0

where ¢ is of the form , we obtain a finite sum of terms of the form with either I = p or
K = 0 and a finite sum of errors, with each error bounded by 275 for some finite K. The leading
functions fr g (n; [¢kj]§3=1§ [éblj]é-vzl) are meromorphic functions in 7 where all poles have the form
with 1 <m < n by Lemma The terms with I = p are uniformly bounded in = by the LP
condition on the 3;. For one of the (finitely many) terms with K = 0,

z P
Sapo(n: (o, 1521 [01,151) / T et e b, (0, (D)t
0 i

if Zle b1, — ¢, # 0, we may apply Lemma once more to give a finite z-independent upper
bound. If 25:1 ¢r; — ¢1; = 0, then there is a corresponding term,

z P
Faral 00 )fosi 00 )720) [ 1@ (e
i=1

where the two constants fr () of these two corresponding terms are equal and purely imaginary by
Lemma [3.2] The sum of these corresponding terms, then, is purely imaginary, and taking the real
part in annihilates them both. This shows that log r(z, n) is bounded uniformly in z € [0, c0)
and completes the proof. O

We now turn to the proof of Theorem and show that elements of &, may indeed appear as
embedded eigenvalues. We begin with a solution U (z,7) to for ¢ of the form (1.10). Consider
r(z,n) at gy = Z?:1 br; — Z?:_ll ¢1,;, where p = 2n 4 1 and assume that 79 cannot be rewritten in
the form using fewer frequencies. We will use the following analog of [26, Lemma 6.1]:

Lemma 4.1. Let E € R and let r(xz,n),0(x,n) be the Prifer variables for a solution U(x,n) of

[3) at E=n/2. If
B
0y logr(z,n) = R i b(z,n) (4.1)
for some b(x,n) integrable in x and if 0 = lim 6(z) exists, then for some A > 0, we have
Tr—r 00

e~ (n/2x4+0)
U(z) = Af(2) (((11+_ g)ei(n/mem) )(1 To(1), @ oc, (42)
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where
B ifﬁ/::‘l*
fz) = o ) . (4.3)
exp(— g ) iy € (5 pia)-
Proof. Follows from the proof of |26, Lemma 6.1] and (2.1)). O

Beginning from (2.2), we may apply our iterative procedure from the proof of Theorem to
produce terms with z-independent upper bounds and other terms of the form

n n—1
=1y, ~6(p—2) (37—, €x; (@)= L&, (0)+20) _
1
Fan—1,1(n05 [O, 1715 [P1;]7=1 ) i= [Tew [Te
=1 =1

We cannot apply Lemma to these latter terms due to the nonremovable singularity in go,—1,1(7)
at 19. These terms appear once with each distinct permutation pair (o,7) of (k1,...,k,) X
(I4,...,1,—1), and since there may be repeated indices k; = k; or I; = [;, we simply denote the
number of such distinct permutations by C. Thus we arrive at

9z logr(z,n) = Re ( eHE@)+20) | b(z)), (4.4)

;];5(?*2)

where &(x) = 321 &, (z) — Y021 &, (), b € L1((0,00)), and

n n—1
A=Cfoap-1, H Ck; H Clj.
Jj=1 Jj=1

Without the exponential term in , the right hand side is clearly not integrable. Our goal is to
choose ¢ such that the exponential term above does not oscillate enough to make the right hand side
integrable. To that end, we wish to control the behavior of 0,6. Our iterative procedure starting
with leaves the same terms from before with the addition of terms of the form

z P
Fap 0 (0,1 [0, P) / T1 ., (), @,
j=1

where Z =1 Pk, — b1, =0, for all 1 < P < n. These terms were eliminated in the proof of Theorem
- 1.2| by taking the real part since we were after 0, logr(xz,n), but in controlling 0,0, we take the
imaginary part, and these terms must be included. Thus we write

A

9:0(z,n) = —Im (2(z) + g ei(E(@)+20) | c(z)),

where again ¢(x) € L' and now

n P

D=3 X fremlon o) [Tn,

PRSP =0 P

For the moment, let us consider only the case p = 3 for convenience. Then (2 simplifies, after
appealing to (3.4) to compute fs g, to

Qz)=—iy @ix*%. (4.5)
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Supposing min{¢; : 1 < j < M} <n <max{¢; : 1 <j < M}, we may choose the ¢; such that the
summands in (2 cancel and 2(x) = 0. Then, using the proof of |26, Lemma 6.3] to instead arrive

at a choice of £(z) yielding
li_>m &(x) +20(x) = —arg A,

rather than —% —arg A (which requires no change to the proof), appealing to (4.4) and Lemma

shows 79 is an embedded eigenvalue in the case p = 3. This shows that the sets &, indeed contain
possible embedded eigenvalues, but does not show that the growth in the sets &, is necessary. For
p=>5,1nm € 65\ &3, and to prove Theorem we show that 7 in this case can be an embedded
eigenvalue.

Proof of Theorem[I.3. When p =5, £2 includes the terms in (4.5) along with the terms

2 M
> Fao(ms 16w, 3=rs [0, 13=0) [T w, @), @) = Y fao(mi (650, 63n): (05, 8a)) ey i P20
Ej=1 br;—d1;=0 j=1 j1,a=1

Then from we compute
i . 9
f4 0(777 [¢]17¢]2} [d)]l ) ¢j2]) = 7% (¢j¢ji ;)fzjb] —777])2'

Thus, if conditions (L.11) and (1.12)) both hold, £2(x) is identically zero, and the rest of the proof
follows exactly as in the p = 3 case. O

Lastly, we show that conditions anw can hold simultaneously, so that Theorem
(1.10),

can hold non-vacuously. We take M =3in so that
p(x) = ae" (@) + be'ya(x )+ ce'* s (x),
where v;(z) = €279 and a,b,c € C. The conditions ([.1I) and (I.12)) become

2 b2 2
¢a—|7l+w|—|n+p|c—|n:0’ (4.6)
Jal* bl ef |ab? _
R R T A e E e (I EA
|ac? |be|?
(@ +p=2m)+ (G+p—20)=0. (47

IRCEErEE =027 =)
Let E =n/2 for n = ¢ + ¢ — p. Then ¢, 1), p rationally independent implies E € G5 \ &3. We wish
to choose ¢, v, and T ratlonally independent such that the above conditions hold. Condition
is equivalent to |c|? = | I >+ qu‘ T and we assume 1) < p < ¢ so that this condition may be satisfied
for many choices of a and b. Suppose 2p — ¢ — ¢ = 1. This implies the following simple identities:
p—n=p—9, o+¢-2n=1,
Y—n=p—¢, ¢+p—2n=p—-v+1,

p—n=1, v+p—2n=p—9+1,
which allow us to rewrite as
S 1 U B P
(p=v) (p=0)2 “Y—p é—p (p =) (p—¢)?
|a|? |af? |b|? ]2 |af? b
L _(p— 1 — 1 =0,
+(p—w)2(p L )(w—p+¢—p) (p—¢)2(p - )(w—p+¢—p)
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which equality holds identically, independently of the choice of a and b, just by expanding and
cancelling. There are many choices of ¢, %, and p so that ¥ < p < ¢, 2p — ¢ — 1 = 1, and they are
rationally independent. We may take, for example, ¢ = /5, p = /3, and ¢ = 2v/3 — /5 — 1. For
any such choice, both conditions and hold, and Theorem implies that ¢ + ¢ — p is
an embedded eigenvalue in &5 \ G3.

5. INFINITELY MANY SUMMANDS

If ¢ is not of finite type, our goal is instead to bound the Hausdorff measure of &,. Bounding
dimy (6,) will require careful bookkeeping of the now infinitely many critical points in 7. We will
summarize the critical point information via the following recursively defined rational functions:
let hy(n; [or, 1515 [¢1, ] 1) be defined for T = 2P — 1 by hy(n; [¢r,]) = (%, —n)~" and

hi(n; [on, )i (01,1 51) =

I—

s Z 0 100,25 1905 Vo 6,1 s 60,07 ),

Zf:l Pr; — Zfz_ll Pty =1 s
(5.1)

where we again denote by [cbj] _, an ordered n-tuple of frequencies of . For even I, we define
hr = 0. The functions h; are analogous to the hy of |27], with additional structure added in order
to omit sums of frequencies not of the form . Our first step is to relate the functions hy to g7 1
in order to identify the singularities of h;:

Lemma 5.1. The functions gr for I = 2P — 1 are just rescaled, symmetrized hy, namely,

gI,l([¢kj]f:l; [(z)lj]jpz_ll) = ﬁ Z hl([¢ka(J)]j 15 [¢lT(J)]P 1)
’ ' o€eSp
TESP_1

Proof. We prove the lemma by induction on P. The case P = 1 holds by definition. Suppose the

statement holds up to P — 1. Let us call ¢ = Z;;l br; — Zf;ll ¢1,. Combining (3.3, (3.4), and
(13.8), we have

I-1

Ly i ! i ma
gI,]-([¢kj]]E.:1; [(blj}f:ll) = (rb* Z P'(P — 1)' Z gm,l([¢ka(]~)}j:1 ;[¢lr(j)]j:1 )
n m=0 " " : J%SP

TESP -1

Ogr-1- ml([¢ka(J)] "‘*3’[@7(1)]

pP-1
7n+1

)
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Then we use the induction hypothesis to rewrite as

. I-1 .
i 1 i i et
Z _— P ([Dk, 0o L2105 (Pl )21 )
_ (P —1) Z 1y (m=1) Z mn (@)=l 7 v ap =1
¢ 77m=OP(P 1) ceSp ( 2 )( 2 )'Nesm+1 Y :
TESP_1 ves 1
T
) P P—
® m Z h[—l—m([¢ka(a(j))]j: [¢kﬁ(7(1>)]
( 2 )( 2 ) Q€S _m
ﬁes[—’ri—Q
2
i 1
= PP X 7 o
P(P 1) cESP ijl ¢k0(j) - ijl ¢lf(j) -
TESP_1
3 bl 15 o) r p
m k«r(])] 19 Plrgylj=1 )T-1— m([(bko(y)] ’"*3’[@1(7)} '"“>’
m=0

where we’ve noticed that the permutations u, v, @, and [ as well as the remaining ® are redundant
since the h,, and h;_1_,, have already been symmetrized. The definition of h; completes the
proof. O

Since the first three conditions of the following lemma are satisfied by our operator data of
Wigner-von Neumann type by definition, the following lemma gives a sufficient condition in terms
of the functions h; for boundedness of all solutions at E'":

Lemma 5.2. Let operator data ¢ be given by (1.4), with ¢; € C, ¢; € R, and let n € R such that
(i) sup; Var(v;, (0,00)) := 7 < 00;

(i) for some p=2n+1, sup; [~ |v;(t)|Pdt := o < oo;
(iii) 32724 lej| < 00;

. _ I+
(iv) for odd I =1,...,p—2 and P := ==,
[e's) P N
ST (o) lou) 25N T er, [[ @] < oo
K1,...kp=1 j=1  j=1
l1,..lp—1=1

Then, for E = 3, all solutions of (L.3) are bounded.

We prove Lemma in a series of smaller lemmas. Our strategy is to begin with

Z(x,m) 7/‘“”
IOg Z(O,n) - o Sl,l(t)dta

where

P N
Sri(x) = Z fr.(0; [Pk, L 1 ¢l =1 H H ZK(TNH%(I)) (5.2)

2
m+1

)
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with 8;(z) = cje""?%~;(z), and then pass to higher values of I via Lemma Note that Sy x is
trivial if T + K ¢ 2Z or I < K. We will track errors using

o] P N
Erx=2 ) lgrx [T ew, [T en -
Kiyeonskippe =1 j=1  j=1
by =1

Lemma 5.3. If ¢ obeys the conditions of Lemma 5.2, then Ep i is finite for 1 < K <1 <p—2.
Proof. By Lemma, and (5.1]), since condition of Lemma holds for 1 < I <p—2, Ey, is
finite for the same values of I. Then (3.8) gives

I
Err < Z EiwEr—i k—k,
i=0
for any 0 < k < K. The lemma follows. O

Lemma 5.4. If ¢ obeys the conditions of Lemma @, then the sum St i (t) is absolutely convergent
when 0 < K < I <p. If, moreover, I = p, then

/ Z | (03 [, )= (1,50 Hﬁk Hﬁl |dt < Z WalBp—1.4a D leslo”.

Lkp=1 a=—1 j=1
ll, lN 1

Proof. Taking absolute values in (3.5) gives
1
|frxl < |Enk|+ Z |wa| © 191-1,K+al-

a=-—1

Multiplying by

P N P N
|H5kj H51j| < |H0kj Hclj|71
i=1 =1 =1 j=1

and summing in k; and [; proves absolute convergence. If I = p, we instead multiply by

|dt<|1_[c;€ Hcl lo?,

and summing again in k; and [; completes the proof. O

N

/Ooo|j11:)[1/3k H

Lemma 5.5. Fora fizred I € N, let P := (I+K)/2, Nk := (I-K)/2, and denote px = ijl br; — Z;V:Kl P15
I'x = Hl.z(l Vi, H;V:Kl M, and Cg = ;351 Cr; vafl ;. Then,

I+1
_ . '
Z Srirx = Z [ Z C«chPK+1gI7K€z(K+1)(nt+29)e i(Ox+brp, +1) TPt

l1, JNK
o0
i(K—1)(nt+20) —i(¢x—biny +1)tpn ——
_ E CKCZNKQI,KQZ( )(t+26) Ng FK’YZNK+1 .
ki,....kpp =1
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Proof. Beginning from

I+1 I+1 Py Ng
Z Stk =Y Z f1+1,K([¢kj]f§1; 60,125 T B, (@) T B, (@)et o420,
K= Okl ..... j:1 j:1
l1,... ZNK—l
we use to rewrite as
I+1 1
mm[P Pr+al, min[Ng ,Ng—
> Z Pr!Ng! Z > wagracrallde, o Jfm T g TN
K=0ky,...kp,=1 a=—10€Sp,
el =1 TESN
Pk N
% H Bk]‘ ((E) H Blj (x)ezK(na:-i-ZO(w)).
j=1 j=1

Grouping terms with g; z of the same indices (I, K), each such group has two summands, one from
the case where K = K + 1 and @ = —1 and another from the case where K = K — 1 and a = 1.
Each such term has the form

[e%e] Pr+1 Ng—1

1 B _
Z (Px + D)I(Ng — 1)! Z 91,1([%0(].)]5;(1;[qﬁzr(j)];y:’j D) 31;[1 Br; 31;[1 B

k17...,kPK+1:1 : O'ESPK+1
ll,‘..,lNKflil TESNK—l
e 1 Pk Nk
NK 1
o Z Py !Ng! Z g1, 1([¢ka(])]j 1’[¢l7(])] H H
kl,...,k‘pKzl : : UESPK j=1 Jj=1
ll:'--7lNK:1 TGSNK

By choosing to average over permutations of the frequencies in the first summand of the lemma,
and summing in K above, we have equality and complete the proof. O

Lemma 5.6. If ¢ obeys the conditions of Lemmal5.2, then forI =1,...,p—1 and 0 < a < b < o0,

I+1

‘/ Z Sk ( Z Sr41,k( dt‘ Z EI kTl (5.3)

Proof. For K > 1, we start from Lemma and multiply by ZZ<to get

b I
| / fI,KeiK(nt+20) €7i¢tF + 2'L‘g[7K€iK(nt+29)€7i¢tFGI’ S 2%|917K‘

Then we multiply through by H =1 Ch; H j=1C; and sum in all the k; and [; from one to infinity,
which summation is justified by Fubini’s theorem and Lemmas [5 and . Then bummmg in K
from one to I finishes the proof. The term containing the gr x becomes Sri1,x using and
Lemma (.51 O

Proof of Lemma[5.2. By summing over [ =1,...,p— 1 in (5.3), we have

p—1 T

b
’/ 81 1 Z S K ) — 28170(t))dt‘ S %ELKTI.
I=2 =1

~
&
=
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Then, for I = p, we bound the sum in K by

|Z/SPK dt| < Z/

| fp.x6 H Br, H By, ldt
1

@k, p+K_
lh,,‘,l,,, =1
2
p 1 [eS) p—1 [e's)
<Y walBporkra ) lejlo? <2 Bk > leglo”.
K=1a=—1 j=1 K=0 j=1
We conclude that
p—1 I 1 p—1
/ (6t IOgZU t ’r] ZS}O dt < ?E] KT +2 Z Ep 1 KZ|CJ|UP (54)
0 I=1 K=1 K=0 j=1

Since the right hand side of is independent of the Priifer variables, the left hand side converges
uniformly in solution U. What follows is a continuous analog of the proof of |30, Lemma 8]. By
taking the difference of the left hand sides of for two linearly independent solutions U and V,
and noting that > 7_, Sy o is independent of the choice of solution, we have that

/ 0y (log Zy (t.1m) — log Zy (t,n))dt
0

is convergent. Taking real and imaginary parts gives that

ru(z,n) _
log o)’ Ou (2, m) — Ov(z,n)

() 1

both converge as x — oo. Since log :[\i(T”] as a finite limit at infinity, %T"; has a finite, nonzero
b

limit at infinity. By the convergence in (5.4]) uniform in solution U, there exists 0 < zg < oo such

that for all solutions U

<7
8

/(8tlogZUtn ZSIO ))dt

0

Taking the imaginary part then gives that |0y (xz,n) — 0y (z,n) — (v (x0,n) — Oy (x0,7))| is bounded
by 7/4 for x > x( for any pair of solutions U and V. In particular, if we choose the solution U
arbitrarily and then choose V' such that 0y (zo,n) = 0 (zo,n) — /24 2kw for some k € Z, then for
T > xg, we have

m 3w

9U($777) - GV(x7T]) € (7’ 7)

4" 4
In particular, sin(fy(z,n) — Oy (x,n)) € (%, 1]. Since U and V are linearly independent, their
Wronskian is independent of  and is given by some nonzero constant C. We write

W[U7 V](‘T) = 4TU($77])7°V($7’7) Sin(eU(l"ﬂ?) - 9V(CU>77)) =C#0.

Multiplying through by TUE;”’”;, the boundedness of sin(8y (x,n) — Oy (z,n)) away from zero implies

r? (z,n), and therefore ry(x,n), has a finite limit at infinity. Since U was chosen arbitrarily, every
solution of (1.3)) is bounded. O
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Remark. It is quicker to merely show absence of subordinate solutions, rather than to show
boundedness of solutions. If U were a subordinate solution, then for any linearly independent
solution V' we would have, by L’Hdopital’s rule,
xz
Ul(t,n)|?dt 2 2
[ N ) [ 171 G|

0= lim =3 im = )
a=oo [PV (E,n)|2dt  e=oo|[V(z,n)|]2 e=olry (z,n)]?

which contradicts the fact from the first part of the proof that % — L for some nonzero L.
For the following lemma, recall that the Catalan numbers C), are given by C,, = %_H(%?)

Lemma 5.7. Let v be a finite uniformly B-Holder measure on R.
(i) If a € (0, ), then for all Y € R,

1
/Wd'/(n) < D, (5.5)

where Dy, is a finite constant that depends only on a.
(ZZ) FOTI 2 1, I = 2P— 1; and o € (O’ ?)’

[ st o, 15 o)1) < CrDr (5.6)
where Cr are Catalan numbers.

Proof.

(i) This is proved in [27, Lemma 4.1].

(ii) We induct on P. The case P = 1 holds by . Suppose the statement holds up to
P — 1. Integrating one summand in and using Hoélder’s inequality and the induction
hypothesis gives

1
/ ‘ S bk, = i b, —

hunhi1-m| dv(n) < DI (CnDra)™ " (CrosomDra) ==/
< C’mC’I—l—lea7

and since the Catalan sequence obeys the recursion C),, = Z?:_Ol C;Cy—1—;, summing in
0 <m < I —1 recovers the Catalan number Cj.

O

Lemma 5.8. Suppose (1.7)) holds and let I = 2P — 1. Then the set of n for which

o) P N
S o) o5 T e, [T |7 = oo
ki,....kp=1 j=1 j=1

has Hausdorff dimension at most Ia. If I = 2P, the same set is empty.

Proof. Let T be the set of i for which condition of Lemma fails. Suppose the Hausdorff
dimension of T is greater than ic. Then for some 3 > i, h®(T) = oo. This implies the existence of



DIRAC OPERATORS WITH OPERATOR DATA OF WIGNER-VON NEUMANN TYPE 21

a subset 7" C T such that v = x7/h? is a finite uniformly B-Hélder measure with v(7") > 0. Then
Lemma implies

oo

[ X |ntwlen)mie;

k’l,---,kizl
2
l],...,lﬂ:l

d1/

ch ch

“dv(n)

a/‘hz‘(n; (6,1, 203 [00,,2)

which is finite by the a-type decay condition . Since the integral is finite, the integrand is
v-almost everywhere finite. But since a € (0, 1], this implies that condition holds v-almost
everywhere, so that v(T) = 0, a contradiction. The second statement of the lemma follows from
the fact that Ay is zero for even I. O

Proof of Theoremg Conditions (L5), (L.6)), and of Lemma are trivially satisfied for
every 7. Condition (jiv) is satisfied away from a set T of Hausdorff dlmensmn at most (p — 2)a by

Lemma (note that condition (fiv) of Lemma need only be satisfied for odd I =1,...,p— 2).
By Lemma and Lemma there are no subordinate solutions for 2E =n € R\ S, and by
the subordinacy theory of Gilbert-Pearson and Behncke, this implies the theorem. O
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