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Abstract. We consider half-line Dirac operators with operator data of Wigner-von Neumann
type. If the data is a finite linear combination of Wigner-von Neumann functions, we show absence
of singular continuous spectrum and provide an explicit set containing all embedded pure points
that depends only on the Lp decay and frequencies of the operator data. For infinite sums of
Wigner-von Neumann-like terms, we bound the Hausdor� dimension of the singular part of the
spectrum.

1. Introduction

In the spectral theory of Schrödinger operators with slowly decaying potentials, i.e., potentials
that are not L1, an alternative to the classical WKB methods is needed. One approach to studying
these so-called ‘long-range’ operators uses the sum rules of the well-known work by Deift-Killip [9].
Another approach, which we will take in this article, is to study boundedness of eigensolutions.
The historical development of spectral analysis via boundedness of eigensolutions involves many
authors studying many di�erent species of potentials (see [10] for a more thorough review than
we provide here). For instance, for Schrödinger operators with sparse potentials, Pearson [36] and
then Kiselev-Last-Simon [21] identified a transition with respect to spectral type at p = 2 for
Lp potentials. For power-decaying potentials, work of Christ, Kiselev, Molchanov, and Remling
[7, 18, 19, 32, 38] established conditions for the preservation of the absolutely continuous spectrum.
Even in cases where the absolutely continuous spectrum is preserved, constructions have been
given which produce singular, and even singular continuous spectrum embedded in the absolutely
continuous spectrum [28,33,43].

The first and perhaps most famous construction producing embedded singular spectrum is that of
von Neumann and Wigner [35] (see also [41]), who in 1929 introduced a one-dimensional Schrödinger
operator H with potential V behaving at infinity as

V (x) = ≠8sin(2x)
x

+ O(x≠2),

which Schrödinger operator has E = 1 as an eigenvalue embedded in the absolutely continuous
part of the spectrum. Since 1929 many variants of this model have been used to demonstrate and
study various forms of ‘exotic’ singular spectrum (e.g., [1, 4, 12, 15, 17, 22, 29, 34, 44, 49]). Simon’s
construction in [43] uses the Wigner-von Neumann model as the basic building block in a potential
for which the associated Schrödinger operator exhibits dense embedded point spectrum. Two results
of Simonov even precisely describe the asymptotics of the spectral density near a critical point for
certain Wigner-von Neumann-like perturbations of a periodic potential [45].
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Functions of generalized bounded variation, of which von Neumann and Wigner’s potential is a
special case, combine slower decay with additional Wigner-von Neumann-like terms with di�ering
frequencies, producing a mixture of bounded variation, decay at infinity, and almost periodicity [50].
This combination is an interesting one for at least three reasons: potentials of bounded variation
with decay at infinity preserve the absolutely continuous spectrum [48]; L1 potentials preserve the
purely absolutely continuous spectrum (see, for example, [42]), which underscores the importance of
the decay rate for producing an embedded eigenvalue; and there is a generic set of almost periodic
potentials producing purely singular spectrum [2].

Historically, most exploration of exotic spectra arising from models based on the Wigner-von
Neumann potential restricted to the L2 case, with a result of Janas-Simonov [16] from the discrete
case allowing ¸3 decay. LukiÊ [24–27] used functions of generalized bounded variation to progress
to the Lp setting for any integer 2 Æ p < Œ, showing the absence of singular continuous spectrum
and explicitly providing p-dependent finite sets containing all possible instances of embedded pure
points. In [27], LukiÊ extended this work to include potentials with infinitely many summands of
generalized bounded variation, in which case the set of possible pure points is in general infinite
and singular continuous spectrum is possible, but may be bounded in Hausdor� dimension.

Schrödinger operators and Dirac operators have often been studied in tandem. For example,
Naboko [33] demonstrated dense point spectrum in the absolutely continuous spectrum of Dirac-
type operators and deduced the same for Schrödinger operators as a special case, and we will below
use criteria due to Behncke [3] for the existence of subordinate solutions, which [3] gives in both the
Schrödinger and Dirac settings. While Dirac operators with Wigner-von Neumann type operator
data have been considered (e.g., [5, 31]), the case of decay slower than L2 remained open. Here we
describe this case by adapting for the half-line Dirac operator the work of LukiÊ on spectral type
characterization of models with Wigner-von Neumann type data. The analysis begins in much the
same way as in [26], but an important adaptation is required that alters the analysis throughout
and the results we obtain.

The Dirac operator commonly appears in at least two unitarily equivalent forms:

»Ï =
3

i 0
0 ≠i

4
d

dx
+

3
0 Ï(x)

Ï(x) 0

4
, (1.1)

LÏ =
3

0 ≠1
1 0

4
d

dx
+

3
Re Ï(x) Im Ï(x)
Im Ï(x) ≠ Re Ï(x)

4
. (1.2)

The form (1.2) is more classical, but the form (1.1) is often more convenient for calculations, and
below we opt to work with »Ï. Additionally, the form (1.1) appears in the Zakharov-Shabat Lax
pair representation of the defocusing nonlinear Schrödinger equation [14]. More details regarding
this gauge distinction are available in [6, 11,14]. We will study the eigenequation for »Ï,

»ÏU(x, ÷) = EU(x, ÷), (1.3)

where ÷ = 2E. Our operator data Ï will be of almost the same form as the potentials in [27], which
form generalizes the famous Wigner-von Neumann potential of [35]. We recall that the variation of
a function “ on an interval I is defined as

Var(“, I) = sup
kœN

sup
x0,...,xkœI

x0<···<xk

kÿ

j=1
|“(xj) ≠ “(xj≠1)|.
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Definition 1.1. We say Ï is of Wigner-von Neumann type if it takes the form

Ï(x) =
Nÿ

j=1
cje≠i„jx“j(x), (1.4)

for N œ N fi {Œ}, where cj œ C, „j œ R, and all of the following conditions hold:
(i) (uniformly bounded variation) the functions “j : (0, Œ) æ C obey

sup
j

Var(“j , (0, Œ)) < Œ. (1.5)

(ii) (uniform Lp condition) for some odd p œ Z, p Ø 3,

sup
j

⁄ Œ

0
|“j(t)|pdt < Œ. (1.6)

(iii) (–-type decay of coe�cients) for some – œ (0, 1
p≠2 ),

ÿ

j

|cj |– < Œ. (1.7)

When p is odd in the definition of Wigner-von Neumann type potentials in [27, Theorem 1.1],
that definition coincides with Definition 1.1 (except that the range of allowable – is slightly larger
in our case). For reasons to be explained below, it is without loss of generality that we restrict to
odd integers p here. If N < Œ in (1.4), we say Ï is of finite Wigner-von Neumann type.

In this latter case, of course, the condition (1.7) becomes vacuous and the uniform conditions
(1.5) and (1.6) simplify to requiring that each function “j is of bounded variation and, for some
odd p Ø 3, each “j œ Lp. We call the „j frequencies and denote the set of all frequencies by
Õ = {„j : j œ N}.

The di�erential expression (1.1) with operator data Ï of Wigner-von Neumann type has zero as
a regular endpoint and, since Ï decays at infinity, is in the limit point case at +Œ. Thus, for any
Ê œ ˆD, »Ê

Ï
defines an unbounded self-adjoint operator with domain

D(»Ê

Ï
) = {f œ H1((0, Œ),C2) :

!
Ê Ê

"
f(0) = 0}.

The choice of Ê is unimportant to the analysis–our results hold regardless of the choice of self-adjoint
boundary condition at zero, and we suppress Ê hereafter.

Before stating any theorems, let us recall the precise definition of an embedded eigenvalue. First,
for any Â œ D(»Ï) and for ‰S(»Ï) a spectral projection defined via the functional calculus, the
unique finite positive Borel measure µÂ satisfying ÈÂ, ‰S(»Ï)ÂÍ = µÂ(S) for any S µ R is called the
spectral measure for Â. Then, D(»Ï) admits a decomposition into absolutely continuous, singularly
continuous, and pure point parts as D(»Ï) = DacüDscüDpp, for D• = {Â œ D(»Ï) : dµÂ is purely •}.
Lastly, we have

‡(»Ï) = ‡ac(»Ï) fi ‡sc(»Ï) fi ‡pp(»Ï),
where ‡•(»Ï) denotes the spectrum of the restriction of »Ï to D•. An embedded eigenvalue in the
absolutely continuous spectrum is an element of ‡ac(»Ï) fl ‡pp(»Ï). When embedded eigenvalues
exist, D(»Ï) ”= Dac, even for cases in which ‡(»Ï) = ‡ac(»Ï).

The first of our main results shows absence of singular continuous spectrum and provides an
explicit set containing all possible embedded pure points in the case where Ï is of finite Wigner-von
Neumann type. For convenience, we define

q0
j=1 Cj := 0 for any sequence {Cj}.
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Theorem 1.2. Let »Ï be given by (1.1) with operator data Ï of finite Wigner-von Neumann type

satisfying the uniform Lp
condition (1.6) for some p = 2n + 1, n Ø 1. Then for

Sp =
Ó÷

2
--÷ =

mÿ

j=1
„kj ≠

m≠1ÿ

j=1
„lj ; „kj , „lj œ Õ; 1 Æ m Æ n

Ô
, (1.8)

which depends only on p and the set Õ of frequencies of Ï, on R \ Sp the spectral measure µ of »Ï

is mutually absolutely continuous with Lebesgue measure. Consequently,

(i) ‡ac(»Ï) = R
(ii) ‡sc(»Ï) = ÿ

(iii) ‡pp(»Ï) µ Sp is a finite set.

In addition to technical adjustments to the methods in [24,26], the exceptional set Sp we obtain
di�ers from the analagous exceptional sets in the settings of Schrödinger operators or orthogonal
polynomials on the real line. Namely, not all sums and di�erences of frequencies from the operator
data give rise to possible pure points, but rather only those of the form

mÿ

j=1
„kj ≠

m≠1ÿ

j=1
„lj . (1.9)

This is a property shared by the exceptional set in the setting of orthogonal polynomials on the
unit circle [24], and the reasons for this phenomenon are similar in both settings. On the unit circle,
rotating the measure by an angle Â shifts each of the frequencies „j by Â. Thus, from the set of a

priori possible critical points, only those of the form (1.9) are preserved.
Similarly, to shift the spectral paramater E = ÷/2 by Â in (1.3), we multiply our operator data

Ï by ei2Âx, which shifts each frequency „j by 2Â; again we see that only critical points ÷ of the
form (1.9) are preserved. The fact that new elements of the form (1.9) become available only when
p increases to an odd integer accounts for the odd p in the Lp condition of the theorem and in
Definition 1.1.

Since the set Sp grows as p = 2n + 1 grows, it is natural to ask both whether there exists Ï
for which Sp indeed contains an embedded eigenvalue and whether the growth in the sets Sp is
necessary or an artifact of our method. To answer these questions, we construct operator data
that yields an eigenvalue in S5 \ S3. A similar argument is available to produce Ï with eigenvalue
E œ Sp \ Sp≠2 for larger p. Our construction will use operator data of the form

Ï(x) =
Mÿ

j=1
cjx≠”e≠i(„jx+›j(x)), (1.10)

where ” œ (p≠1, (p ≠ 2)≠1], ›j are real-valued, and M < Œ. We can realize “j(x) in (1.4) as
cjx≠”e≠i›j(x). Thus defined, Ï satisfies the conditions of Definition 1.1.

Theorem 1.3. Fix M Ø 3 and ” œ ( 1
5 , 1

3 ]. Let Ï be given by (1.10) with rationally independent „j.

Then there exists ÷/2 œ S5 \ S3. Moreover, for such ÷ and any cj, „j satisfying both

Mÿ

j=1

|cj |2

„j ≠ ÷
= 0 (1.11)
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and

Mÿ

j1,j2=1
|cj1cj2 |2 „j1 + „j2 ≠ 2÷

(„j1 ≠ ÷)2(„j2 ≠ ÷)2 = 0, (1.12)

there exist functions ›j œ C1
such that Ï satisfies (1.5) and (1.3) has a solution with asymptotics

(4.2) and (4.3). In particular, ÷/2 œ ‡ac(»Ï) fl ‡pp(»Ï).

We will also show that both conditions (1.11) and (1.12) may be simultaneously satisfied.
If Ï is of Wigner-von Neumann type with infinitely many nonzero cj and p Ø 3, each of the

frequencies „j is of the form (1.9) with m = 1, so that the set Sp is in general infinite. In this
case we instead bound the Hausdor� dimension of Sp. Similar to Theorem 1.2, we will have that
any maximal spectral measure for »Ï is mutually absolutely continuous with Lebesgue measure
on R \ Sp. Recall the decomposition of a maximal spectral measure for »Ï, µ, into its absolutely
continuous and singular parts:

dµ = dµac + dµs. (1.13)

Theorem 1.4. Let operator data Ï be of Wigner-von Neumann type satisfying the Lp
condition

(1.6) for some odd p Ø 3 and the condition (1.7) for some – œ (0, 1
p≠2 ). Then the set of energies E

for which there exists an unbounded solution to (1.3) has Hausdor� dimension at most (p ≠ 2)–. In

particular, µac is mutually absolutely continuous with Lebesgue measure on R and µs is supported

on a set of Hausdor� dimension at most (p ≠ 2)–.

Results of Remling [39], Christ-Kiselev [8], and, more recently, Liu [23], bound the Hausdor�
dimension of embedded singular spectrum for Schrödinger operators with slowly decaying potentials.
Those results cannot be directly compared to ours, since theirs concerned general potentials with
Lp decay for 1 < p < 2, whereas Theorem 1.4 considers Wigner-von Neumann potentials with decay
slower than L2 and is sensitive to the value – in Definition 1.1.

In Section 2, we define the Prüfer variables to be used throughout. In Section 3 we prove the
form (1.9) of critical points. In Section 4 we prove Theorems 1.2 and 1.3. In Section 5 we prove
Theorem 1.4.

2. Subordinacy and Prüfer Variables

We call a solution U(x, ÷) to (1.3) at E = ÷/2 a subordinate solution if

lim
xæŒ

s
x

0 ÎU(t, ÷)Î2dt
s

x

0 ÎV (t, ÷)Î2dt
= 0

holds for any linearly independent solution V (x, ÷) at E. Subordinate solutions are defined similarly
for solutions to the Schrödinger eigenequation. For more on subordinacy theory, see [13].

In [3] it is shown that, for both Schrödinger and Dirac operators, the absence of subordinate
solutions on a set A implies purely absolutely continuous spectrum there. We will find an explicit set
A of energies E at each of which all solutions are bounded. In [47] it is shown that, in the context
of Schrödinger operators, boundedness of all solutions implies absence of subordinate solutions.
In the same way, the following lemma, following ideas from [47], completes the desired chain of
implications in the Dirac operator setting.

Lemma 2.1. If all solutions of (1.3) at E are bounded, then there is no subordinate solution at E.
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Proof. Let U and V be linearly independent solutions at E. Boundedness gives MU , MV < Œ for

MU := sup
xØ0

ÎU(x, ÷)Î, MV := sup
xØ0

ÎV (x, ÷)Î.

Clearly, for x > 0 we have ⁄
x

0
ÎV (t)Î2dt Æ M2

V
x.

The Wronskian of any f, g œ H1((0, Œ);C2), W [f, g](x), is defined as f(x)tJg(x) for J =
3

0 i
≠i 0

4
.

It is straightforward to show that W [f, g](x) is a nonzero constant when f, g are linearly independent
solutions to (1.3). Thus, for any x we have

|W [U, V ]| = |U(x)tJV (x)| Æ ÎU(x)ÎÎJV (x)Î Æ ÎU(x)ÎMV .

Consequently, for any x > 0,
s

x

0 ÎU(t)Î2dt
s

x

0 ÎV (t)Î2dt
Ø |W [U, V ]|2

M4
V

> 0.

Since U, V were chosen arbitrarily, taking x æ Œ shows there is no subordinate solution at E. ⇤

In order to prove boundedness of solutions, we perform a Prüfer transformation to an arbitrary
solution U(x, ÷). Prüfer variables have been used many times in the spectral theory of Schrödinger
and Dirac operators (e.g., [20, 21,24–27,29,30,37,40,46]). We set

E = ÷

2 ,

and for a solution U(x, ÷) of (1.3) at E, we define the Prüfer amplitude r and Prüfer angle ◊ by

U(x, ÷) = r(x, ÷)
3

(1 + i)e≠i( ÷
2 x+◊(x,÷))

(1 ≠ i)ei( ÷
2 x+◊(x,÷))

4
. (2.1)

The ambiguity in ◊ is addressed by fixing ◊(0, ÷) œ [≠fi, fi) and requiring ◊ be continuous in x. So
defined, the variables r and ◊ satisfy the following system of di�erential equations:

≠iˆx◊ = i(Re Ï(x)) sin(÷x + 2◊(x, ÷)) + i(Im Ï(x)) cos(÷x + 2◊(x, ÷)),
ˆx log r = (Re Ï(x)) cos(÷x + 2◊(x, ÷)) ≠ (Im Ï(x)) sin(÷x + 2◊(x, ÷)).

Defining the complex Prüfer variable Z(x, ÷) := r(x, ÷)e≠i◊(x,÷), we have
ˆxZ(x, ÷)
Z(x, ÷) = ˆx log r(x, ÷) ≠ iˆx◊(x, ÷) = ei(÷x+2◊(x,÷))Ï(x).

Thus, ˆx log r(x, ÷) = Re(ei(÷x+2◊(x,÷))Ï(x)), and

log r(x, ÷)
r(0, ÷) = Re

⁄
x

0
ei(÷t+2◊(t,÷))Ï(t)dt. (2.2)

To prove boundedness of solutions at ÷, it su�ces to bound (2.2). Moreover, we have

ˆx◊(x, ÷) = ≠ Im ei(÷x+2◊(x,÷))Ï(x), (2.3)

which identity will prove useful in many of our calculations below due to Lemma 3.1. In later
sections, we will often suppress the ÷- and/or x-dependence of r and ◊ for conciseness.
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3. Nonremovable singularities

Consider the following reindexing of [27, Lemma 2.1]:

Lemma 3.1. Let ÷ œ R be fixed. Let P, N œ Z with P Ø 1, I = P + N , and K = P ≠ N Ø 0. Then

for 0 Æ a < b < Œ, ≈ (x) = “k1(x) · · · “kP (x)“l1 · · · “lN , and „ = „k1 + · · · + „kP ≠ („l1 + · · · + „lN ),
-----

⁄
b

a

1
(„ ≠ K÷)eKi(÷t+2◊(t))e≠i„t≈ (t) ≠ 2KeKi(÷t+2◊(t))e≠i„t≈ (t)ˆ◊

ˆt

2
dt

----- Æ 2· I ,

where · = sup
k

Var(“k, (0, Œ)).

By (1.5), · < Œ, and thus by (2.3), each application of Lemma 3.1 appends a new Lp factor to
the integrand in (2.2) at a finite cost, 2· I . Applying Lemma 3.1 repeatedly to (2.2) yields terms of
the form

f(÷; [„kj ]P
j=1; [„lj ]N

j=1)
⁄

x

0
eKi(÷t+2◊(t))

PŸ

i=1
e≠i„ki

t“ki(t)
NŸ

j=1
ei„lj

t“lj (t)dt, (3.1)

where K = P ≠ N Ø 0 and we’ve used [„j ]n
j=1 to denote the ordered n-tuple („1, . . . , „n). Once

I = P + N grows to p, the Lp condition (1.6) gives a finite x≠independent upper bound on that
term. Going forward, the reader should think of the P „kj as the positive frequencies and the N
„lj as the negative frequencies. Thus, I is the total number of frequencies and K is the number of
ei(÷t+2◊(t)) factors seen in (3.1). Note that P and N depend on I and K via the identities P = I+K

2
and N = I≠K

2 . Below we will usually suppress this dependence for conciseness.
We will track the terms (3.1) as I increases to p. Note that such terms appear for any permutation

of [„k1 , . . . , „kP ] and for any permutation of [„l1 , . . . , „lN ], so we can agree to average f over all
such terms, by which we mean replacing f(÷; [„kj ]P

j=1; [„lj ]N
j=1) by

fI,K(÷; [„kj ]P
j=1; [„lj ]N

j=1) = 1
P !N !

ÿ

‡œSP
·œSN

f(÷; [„k‡(j) ]
P

j=1; [„l·(j) ]
N

j=1), (3.2)

where Sj denotes the symmetric group on j elements. This averaging is useful both for avoiding
counting the distinct permutations of the frequencies „j and, importantly, for showing that many
apparent singularities in ÷ arising in f are, in fact, removable, as we shall see in Section 3.

The symmetrized (3.2) is invariant under permutations of [„k1 , . . . , „kP ] and under permuta-
tions of [„l1 , . . . , „lN ], but not under permutations of [„k1 , . . . , „kP , „l1 , . . . , „lN ]. Here we see an
important di�erence between the Schrödinger and Dirac settings. The potential of a self-adjoint
Schrödinger operator is real-valued. Consequently, applications of Lemma 3.1 yield the terms (3.1)
in complex-conjugate pairs–in other words, the P positive and N negative frequencies in (3.1) ap-
pear in reversed roles in the conjugate term, with P ‘negative’ and N ‘positive’ frequencies. For
this reason, the ordering of the appearance of new frequencies via iterated applications of Lemma
3.1 matters not at all, and in [26, Equation 4.7] the associated leading terms f are symmetrically
averaged accordingly. In the Dirac setting, since Ï is in general complex-valued, we inherit a lesser
symmetry and we must distinguish between positive and negative frequencies.

We also see in (3.1) a di�erence from the setting of orthogonal polynomials on the unit circle.
In the Dirac setting, the appearance of ˆx◊(x, ÷) = i

2 (ei(÷x+2◊)Ï ≠ ei(÷x+2◊)Ï) leads to a change
in K, the number of ei(÷x+2◊) factors, by ±1 in each new term produced by applying Lemma 3.1.
In the setting of orthogonal polynomials on the unit circle, on the other hand, the appearance of
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◊(n + 1, ÷) ≠ ◊(n, ÷) leads instead to a much more varied e�ect on K in each of the newly produced
terms. In [24], this is dealt with by passing to Taylor expansions of e2ki(◊n+1≠◊n), but here we will
be able to work directly with ˆx◊(x, ÷).

Now, due to the iterative nature of our strategy in implementing Lemma 3.1, the resulting (3.2)
admits a recursive relation. For any I Ø 1, 0 Æ K Æ I, and permutations ‡ œ SP and · œ SN ,
fI,K depends only on fI≠1,K≠1 and fI≠1,K+1 due to Lemma 3.1 and the introduction via ˆt◊ of
both e±i(÷t+2◊). However, the term (3.1) is not produced in our iterative procedure if either K < 0
or K > I, and we will define fI,K for such K to be zero. The recursion resulting from repeated
application of Lemma 3.1 is as follows: if 0 Æ K Æ I and, as before, P = I+K

2 , N = I≠K

2 œ Z,

f1,1(÷; [„k1 ]) = 1;

gI,K(÷; [„kj ]P
j=1; [„lj ]N

j=1) = iK
q

P

j=1 „kj ≠
q

N

j=1 „lj ≠ K÷
fI,K(÷; [„kj ]P

j=1; [„lj ]N
j=1); (3.3)

fI,K(÷; [„kj ]P
j=1; [„lj ]N

j=1) = 1
P !N !

1ÿ

a=≠1

ÿ

‡œSP
·œSN

ÊagI≠1,K+a(÷; [„k‡(j) ]
min[P,P +a]
j=1 ; [„l·(j) ]

min[N,N≠a]
j=1 ),

(3.4)

where we shall think of Êa as a function of 1 + 1 + 0 variables if a = ≠1 or of 1 + 0 + 1 variables if
a = 1, in either case defined as

Êa = Êa(÷; [„kj ]max[0,≠a]
j=1 ; [„lj ]max[0,a]

j=1 ) = ”a+1 ≠ ”a≠1,

where ”j is one if j = 0 and zero otherwise. By convention, we define fI,K and gI,K to be zero
whenever K > I, I ≠ K /œ 2Z, or either I < 1 or K < 0, regardless of the number of frequencies
on which they are made to depend. Of course, Êa never depends on the frequencies–we only define
Êa in this way to better make sense of the following symmetric product. Let us also note that we
suppress the ÷-dependence of fI,K and gI,K in any argument in which ÷ is fixed.

We define the symmetric product § in order to simplify notation: given f, a function of 1 + P1 + N1
variables, and g, a function of 1 + P2 + N2 variables, we call P = P1 + P2 and N = N1 + N2 and
define their symmetric product, f § g, as

(f § g)(÷; [„kj ]P
j=1; [„lj ]N

j=1)

= 1
P !N !

ÿ

‡œSP
·œSN

f(÷; [„k‡(j) ]
P1
j=1; [„l·(j) ]

N1
j=1)g(÷; [„k‡(j) ]

P

j=P1+1; [„l·(j) ]
N

j=N1+1).

It is straightforward to check that § is commutative and associative. We also define for 0 Æ K Æ I

…I,K(÷; [„kj ]P
j=1; [„lj ]N

j=1) := ”I≠1”K≠1.

With this notation, we can abbreviate the definition (3.4) as

fI,K(÷; [„kj ]P
j=1; [„lj ]N

j=1) = …I,K +
1ÿ

a=≠1
Êa § gI≠1,K+a. (3.5)

As noted above, the number K of ei(÷x+2◊) factors changes by ±1 with each application of Lemma
3.1. In particular, with enough consecutive decreases, K may shrink to zero. Lemma 3.1 may still
be applied so long as the sum

q
P

j=1 „kj ≠„lj is nonzero. When both K = 0 and
q

P

j=1 „kj ≠„lj = 0,
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however, Lemma 3.1 cannot be (usefully) applied, and we depend instead on a cancellation allowed
by the following lemma:

Lemma 3.2. For any I, p œ Z, Re fI,2p = 0. Moreover, if I = 2P and
q

P

j=1 „kj ≠
q

P

j=1 „lj = 0,

then

fI,0(÷; [„kj ]P
j=1; [„lj ]P

j=1) = fI,0(÷; [„lj ]P
j=1; [„kj ]P

j=1).

Proof. We have Re fI,2p = 0 simply by convention when I is odd. We now prove that Re fI,2p = 0
for all p œ Z by induction on I = 2P . The case P Æ 0 holds trivially. Suppose Re f2k,2p = 0 for all
p œ Z and for all k < P . By expanding fI,2n using (3.5) and (3.3), we obtain

fI,2n =
1ÿ

a=≠1
Êa § (2n + a)iq

q1
j=1 „kj ≠

q
r1
j=1 „lj ≠ (2n + a)÷

◊
!
…I≠1,2n+a +

1ÿ

b=≠1
Êb § (2n + a + b)iq

q2
j=1 „kj ≠

q
r2
j=1 „lj ≠ (2n + a + b)÷

fI≠2,2n+a+b

"
.

In taking the real part, the term with the … factor vanishes due to the i in the first quotient, and
the other term vanishes due to the i2 together with the induction hypothesis.

For the second part, we first prove by induction on n that for I = 2n, n Ø 1,

fI,0 = 1
n!n!

ÿ

‡,·œSn

ÿ

sœA(I)

HI,s,‡,· , (3.6)

where A(I) is the set of I+1-tuples (s0, s1, . . . , sI) with integer components such that |si+1≠si| = 1,
si Ø 1 for 1 Æ i Æ I ≠ 1, and s0 = sI = 0, and

HI,s,‡,· (÷; [„kj ]I/2
j=1; [„lj ]I/2

j=1) =
I≠1Ÿ

m=1

i(sm ≠ sm≠1)sm

q m+sm
2

j=1 „k‡(j) ≠
q m≠sm

2
j=1 „l·(j) ≠ sm÷

.

We obtained fI,0 by averaging over permutations before each application of Lemma 3.1. The terms
HI,s,‡,· are obtained by applying Lemma 3.1 I ≠ 1 times without averaging first. We then return
to fI,0 by averaging over permutations. We also have that

HI,s,‡,· (÷; [„kj ]I/2
j=1; [„lj ]I/2

j=1) = HI,s̃,·,‡(÷; [„lj ]I/2
j=1; [„kj ]I/2

j=1),
where s̃i = sI≠i. Clearly, s œ A(I) if and only if s̃ œ A(I), so summing over A(I) and averaging in
permutations ‡, · œ Sn completes the proof. ⇤

With Lemma 3.2, we see that we may apply Lemma 3.1 until all terms remaining either have p
factors “j , are bounded by 2·K for some finite K, or else are purely imaginary and do not contribute
to the Prüfer amplitude. In so doing, we introduce many gI,K , each of which appears to introduce
a singularity in ÷ at 1

K
(
q

P

j=1 „kj ≠
q

N

j=1 „lj ). In fact, such singularities for K > 1 are removable,
due to the following lemma:

Lemma 3.3. If 0 < K Æ I and 0 < k < K, then

fI,K =
Iÿ

i=0
fi,k § gI≠i,K≠k, (3.7)

gI,K =
Iÿ

i=0
gi,k § gI≠i,K≠k. (3.8)
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Proof. The proof is similar to that of [26, Lemma 5.1 (i)]. We prove (3.7) and (3.8) simultaneously
by induction on I. Both statements hold vacuously when I < 2 or K < 2, so we assume 2 Æ K Æ I.
Suppose both statements hold for all Ĩ < I. Then using (3.5) and associativity of § yields

Iÿ

i=0
fi,k § gI≠i,K≠k =

Iÿ

i=0
(…i,k +

1ÿ

a=≠1
Êa § gi≠1,k+a) § gI≠i,K≠k

=
Iÿ

i=0
…i,k § gI≠i,K≠k +

1ÿ

a=≠1
Êa § (

Iÿ

i=0
gi≠1,k+a § gI≠i,K≠k).

Since by our convention g≠1,k+a = 0 for any k, a, we may reindex in i with no cost as

”k≠1…1,1 § gI≠1,K≠1 +
1ÿ

a=≠1
Êa § (

I≠1ÿ

i=0
gi,k+a § gI≠1≠i,K≠k).

At this point, we may apply the induction hypothesis on the inner sum both when a = ≠1 and
a = 1 so long as 0 < k + a < K + a and 0 < K + a Æ I. If K + a > I, then for each i, either
gi,k+1 or gI≠1≠i,K≠k is zero. Since gI≠1,K+a is also zero, we may include this term at no cost. That
0 < k < K implies k + 1 < K + a, but we do have k + a Æ 0 exactly when k = 1 and a = ≠1. This
is the only exception we must make to the induction hypothesis, and we’re left with

Iÿ

i=0
fi,k § gI≠i,K≠k = ”k≠1…1,1 § gI≠1,K≠1 +

1ÿ

a=≠1
Êa § (gI≠1,K+a ≠ ”k≠1”a+1gI≠1,K≠1)

= fI,K ≠ …I,K + ”k≠1(…1,1 § gI≠1,K≠1 ≠ Ê≠1 § gI≠1,K≠1) = fI,K ,

where we’ve used …I,K = 0 (since I > 1) and Ê≠1 = …1,1.
It remains to show (3.8) at I. As before, let I = P + N and K = P ≠ N . Now also set

i = Pi,k + Ni,k and k = Pi,k ≠ Ni,k for any 1 Æ i Æ I and 0 < k < K. By (3.3), for any
permutations ‡ œ SP and · œ SN and for any 1 Æ i Æ I and 0 < k < K, we have

KfI,K([„k‡(j) ]Pj=1; [„l·(j) ]Nj=1)
gI,K([„k‡(j) ]Pj=1; [„l·(j) ]Nj=1)

=
kfi,k([„k‡(j) ]

Pi,k

j=1 ; [„l·(j) ]
Ni,k

j=1 )
gi,k([„k‡(j) ]

Pi,k

j=1 ; [„l·(j) ]
Ni,k

j=1 )

+
(K ≠ k)fI≠i,K≠k([„k‡(j) ]Pj=Pi,k+1; [„l·(j) ]Nj=Ni,k+1)

gI≠i,K≠k([„k‡(j) ]Pj=Pi,k+1; [„l·(j) ]Nj=Ni,k+1)
.

Clearing denominators here and averaging in permutations (‡, ·) œ SP ◊ SN , notice that both fI,K

and gI,K are each symmetric with respect to (‡, ·), so that we’re left with

KfI,K

gI,K

gi,k § gI≠i,K≠k = 1
P !N !

ÿ

‡œSP
·œSN

!
kfi,k([„k‡(j) ]

Pi,k

j=1 ; [„l·(j) ]
Ni,k

j=1 )gI≠i,K≠k([„k‡(j) ]
P

j=Pi,k+1; [„l·(j) ]
N

j=Ni,k+1)

+ (K ≠ k)fI≠i,K≠k([„k‡(j) ]
P

j=Pi,k+1; [„l·(j) ]
N

j=Ni,k+1)gi,k([„k‡(j) ]
Pi,k

j=1 ; [„l·(j) ]
Ni,k

j=1 )
"

= kfi,k § gI≠i,K≠k + (K ≠ k)fI≠i,K≠k § gi,k.
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Summing both sides in 0 Æ i Æ I we have

KfI,K

gI,K

Iÿ

i=0
gi,k § gI≠i,K≠k = k

Iÿ

i=0
fi,k § gI≠i,K≠k + (K ≠ k)

Iÿ

i=0
fI≠i,K≠k § gi,k

= kfI,K + (K ≠ k)
Iÿ

i=0
fi,l § gI≠i,K≠l = KfI,K ,

where l := K ≠ k and we’ve used (3.7), since 0 < l < K also. Dividing both sides by KfI,K

gI,K

completes the proof. ⇤
Lemma 3.3 allows us to reduce fI,K and gI,K to sums of products of only the fi,1 and gi,1. We

may use this reduction and a study of singularities of gi,1 to define the correct exceptional set Sp.
Note that I ≠ K /œ 2Z implies gI,K = 0 by our convention and so contributes no singularities.
Lemma 3.4.

(i) For I = 2n ≠ 1, n Ø 1, if ÷ = ’ is a nonremovable singularity of gI,1(÷; [„kj ]n
j=1; [„lj ]n≠1

j=1 ),
then ’ may be written in the form (1.9) for 1 Æ m Æ n.

(ii) For 1 < K Æ I, I ≠ K œ 2Z, if ÷ = ’ is a nonremovable singularity of gI,K , then ’ may

be written in the form (1.9) for 1 Æ m Æ n, where n = ÂI/2Ê.

Proof.

(i) The case n = 1 follows immediately from (3.3). Suppose the statement holds for n < N

and let I = 2N ≠1. By (3.3), gI,1 has
q

N

j=1 „kj ≠
q

N≠1
j=1 „lj as a nonremovable singularity

and all other nonremovable singularities are those arising from fI,1. By (3.5), singularities
of fI,1 arise from gI≠1,2, and by (3.8), these are just the singularities arising from gi,1 for
0 Æ i Æ I ≠ 1. The induction hypothesis completes the proof.

(ii) Fix 2 Æ K Æ I. By iteratively applying (3.8) with k = 1 to gI,K K ≠ 1 times, we see
that nonremovable singularities of gI,K arise as those of gi,1 for 1 Æ i Æ I ≠ 1, since for
i = 0, I, either gi,· or gI≠i,· is zero. By part (i), if I = 2n, the nonremovable singularities
of gi,1 for 1 Æ i Æ I ≠ 1 are of the form (1.9) for 1 Æ m Æ n. If I = 2n + 1, then gI≠1,1 is
zero, so nonremovable singularities of gi,1 for 1 Æ i Æ I ≠ 1 are still of the form (1.9) for
1 Æ m Æ n. In either case, n = ÂI/2Ê.

⇤
Corollary 3.5. For 0 Æ K Æ I, I ≠ K œ 2Z, if ÷ = ’ is a nonremovable singularity of fI,K , then

’ may be written in the form (1.9) for 1 Æ m Æ n, where n = Â(I ≠ 1)/2Ê.

Proof. If I = 2n + 1 and K = 0 or K = 1, we have from (3.5)
fI,K = …I,1 + Ê1 § gI≠1,K+1,

since gI≠1,K≠1 = 0. Thus, nonremovable singularities of fI,K are the same as those of gI≠1,K+1.
By Lemma 3.4 (ii), each of these has singularities of the form (1.9) for 1 Æ m Æ Â(I ≠ 1)/2Ê = n.

On the other hand, if 1 < K Æ I, I ≠ K œ 2Z, we can use (3.7) to write fI,K as

fI,K =
Iÿ

i=0
fi,1 § gI≠i,K≠1,

from which we see that the nonremovable singularities of fI,K arise from those of fi,1 and gi,K≠1
for 1 Æ i Æ I. Singularities of fi,1 are of the form (1.9) for 1 Æ m Æ Â(I ≠ 1)/2Ê by the first
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part of the proof (since for I even, fI,1 = 0). Singularities of gi,K≠1 are of the form (1.9) for
1 Æ m Æ Â(I ≠ 1)/2Ê by Lemma 3.4 (ii) (since gI,K≠1 = 0 by the assumption I ≠ K œ 2Z). ⇤

4. Finitely many summands

If Ï is of finite Wigner-von Neumann type, there are finitely many nonremovable singularities
arising from applications of Lemma 3.1, all of the form (1.9). We obtain the first of our main
results:

Proof of Theorem 1.2. By Lemma 2.1 and subordinacy theory for Dirac operators due to Behncke,
it is enough to show that given ÷/2 /œ Sp, all solutions U(x, ÷) are bounded, regardless of their
boundary value at zero. Given such a solution U , we pass to its Prüfer amplitude r(x, ÷) and begin
from (2.2). Repeatedly applying Lemma 3.1 to

⁄
x

0
ei(÷t+2◊(t,÷))Ï(t)dt,

where Ï is of the form (1.4), we obtain a finite sum of terms of the form (3.1) with either I = p or
K = 0 and a finite sum of errors, with each error bounded by 2·K for some finite K. The leading
functions fI,K(÷; [„kj ]P

j=1; [„lj ]N
j=1) are meromorphic functions in ÷ where all poles have the form

(1.9) with 1 Æ m Æ n by Lemma 3.5. The terms with I = p are uniformly bounded in x by the Lp

condition on the —j . For one of the (finitely many) terms with K = 0,

f2P,0(÷; [„kj ]P
j=1; [„lj ]P

j=1)
⁄

x

0

PŸ

j=1
e≠i„kj

tei„lj
t“kj (t)“lj (t)dt,

if
q

P

j=1 „kj ≠ „lj ”= 0, we may apply Lemma 3.1 once more to give a finite x-independent upper
bound. If

q
P

j=1 „kj ≠ „lj = 0, then there is a corresponding term,

f2P,0(÷; [„lj ]P
j=1; [„kj ]P

j=1)
⁄

x

0

PŸ

j=1
“kj (t)“lj (t)dt,

where the two constants fI,0(÷) of these two corresponding terms are equal and purely imaginary by
Lemma 3.2. The sum of these corresponding terms, then, is purely imaginary, and taking the real
part in (2.2) annihilates them both. This shows that log r(x, ÷) is bounded uniformly in x œ [0, Œ)
and completes the proof. ⇤

We now turn to the proof of Theorem 1.3 and show that elements of Sp may indeed appear as
embedded eigenvalues. We begin with a solution U(x, ÷) to (1.3) for Ï of the form (1.10). Consider
r(x, ÷) at ÷0 =

q
n

j=1 „kj ≠
q

n≠1
j=1 „lj , where p = 2n + 1 and assume that ÷0 cannot be rewritten in

the form (1.9) using fewer frequencies. We will use the following analog of [26, Lemma 6.1]:

Lemma 4.1. Let E œ R and let r(x, ÷), ◊(x, ÷) be the Prüfer variables for a solution U(x, ÷) of

(1.3) at E = ÷/2. If

ˆx log r(x, ÷) = ≠ B

x(p≠2)“
+ b(x, ÷) (4.1)

for some b(x, ÷) integrable in x and if ◊Œ = lim
xæŒ

◊(x) exists, then for some A > 0, we have

U(x) = Af(x)
3

(1 + i)e≠i(÷/2x+◊Œ)

(1 ≠ i)ei(÷/2x+◊Œ)

4
(1 + o(1)), x æ Œ, (4.2)
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where

f(x) =
I

x≠B
if “ = 1

p≠2
exp(≠ B

1≠(p≠2)“
x1≠(p≠2)“) if “ œ ( 1

p
, 1

p≠2 ).
(4.3)

Proof. Follows from the proof of [26, Lemma 6.1] and (2.1). ⇤

Beginning from (2.2), we may apply our iterative procedure from the proof of Theorem 1.2 to
produce terms with x-independent upper bounds and other terms of the form

f2n≠1,1(÷0; [„kj ]n
j=1; [„lj ]n≠1

j=1 )x≠”(p≠2)e
i(

qn

j=1
›kj

(x)≠
qn≠1

j=1
›lj

(x)+2◊)
nŸ

j=1
ckj

n≠1Ÿ

j=1
clj .

We cannot apply Lemma 3.1 to these latter terms due to the nonremovable singularity in g2n≠1,1(÷)
at ÷0. These terms appear once with each distinct permutation pair (‡, ·) of (k1, . . . , kn) ◊
(l1, . . . , ln≠1), and since there may be repeated indices kj = ki or lj = li, we simply denote the
number of such distinct permutations by C. Thus we arrive at

ˆx log r(x, ÷) = Re
! »

x”(p≠2) ei(›(x)+2◊) + b(x)
"
, (4.4)

where ›(x) =
q

n

j=1 ›kj (x) ≠
q

n≠1
j=1 ›lj (x), b œ L1((0, Œ)), and

» = Cf2n≠1,1

nŸ

j=1
ckj

n≠1Ÿ

j=1
clj .

Without the exponential term in (4.4), the right hand side is clearly not integrable. Our goal is to
choose › such that the exponential term above does not oscillate enough to make the right hand side
integrable. To that end, we wish to control the behavior of ˆx◊. Our iterative procedure starting
with (2.3) leaves the same terms from before with the addition of terms of the form

f2P,0(÷; [„kj ]P
j=1; [„lj ]P

j=1)
⁄

x

0

PŸ

j=1
“kj (t)“lj (t)dt,

where
q

P

j=1 „kj ≠ „lj = 0, for all 1 Æ P Æ n. These terms were eliminated in the proof of Theorem
1.2 by taking the real part since we were after ˆx log r(x, ÷), but in controlling ˆx◊, we take the
imaginary part, and these terms must be included. Thus we write

ˆx◊(x, ÷) = ≠ Im
!
œ(x) + »

x”(p≠2) ei(›(x)+2◊) + c(x)
"
,

where again c(x) œ L1 and now

œ(x) =
nÿ

P =1

ÿ

qP

j=1
„kj

≠„lj
=0

f2P,0(÷; [„kj ]P
j=1; [„lj ]P

j=1)
PŸ

j=1
“kj (x)“lj (x).

For the moment, let us consider only the case p = 3 for convenience. Then œ simplifies, after
appealing to (3.4) to compute f2,0, to

œ(x) = ≠i
Mÿ

j=1

|cj |2

„j ≠ ÷
x≠2”. (4.5)



DIRAC OPERATORS WITH OPERATOR DATA OF WIGNER-VON NEUMANN TYPE 14

Supposing min{„j : 1 Æ j Æ M} < ÷ < max{„j : 1 Æ j Æ M}, we may choose the cj such that the
summands in œ cancel and œ(x) © 0. Then, using the proof of [26, Lemma 6.3] to instead arrive
at a choice of ›(x) yielding

lim
xæŒ

›(x) + 2◊(x) = ≠ arg »,

rather than ≠ fi

2 ≠ arg » (which requires no change to the proof), appealing to (4.4) and Lemma 4.1
shows ÷0 is an embedded eigenvalue in the case p = 3. This shows that the sets Sp indeed contain
possible embedded eigenvalues, but does not show that the growth in the sets Sp is necessary. For
p = 5, ÷0 œ S5 \ S3, and to prove Theorem 1.3 we show that ÷0 in this case can be an embedded
eigenvalue.

Proof of Theorem 1.3. When p = 5, œ includes the terms in (4.5) along with the terms
ÿ

q2
j=1

„kj
≠„lj

=0

f4,0(÷; [„kj ]2
j=1; [„lj ]2

j=1)
2Ÿ

j=1
“kj (x)“lj (x) =

Mÿ

j1,j2=1
f4,0(÷; [„j1 , „j2 ]; [„j1 , „j2 ])|cj1cj2 |2x≠4”.

Then from (3.4) we compute

f4,0(÷; [„j1 , „j2 ]; [„j1 , „j2 ]) = ≠ i

2
„j1 + „j2 ≠ 2÷

(„j1 ≠ ÷)2(„j2 ≠ ÷)2 .

Thus, if conditions (1.11) and (1.12) both hold, œ(x) is identically zero, and the rest of the proof
follows exactly as in the p = 3 case. ⇤

Lastly, we show that conditions (1.11) and (1.12) can hold simultaneously, so that Theorem 1.3
can hold non-vacuously. We take M = 3 in (1.10), so that

Ï(x) = aei„x“1(x) + beiÂx“2(x) + ceiflx“3(x),
where “j(x) = ei›j(x)x≠” and a, b, c œ C. The conditions (1.11) and (1.12) become

|a|2

„ ≠ ÷
+ |b|2

Â ≠ ÷
+ |c|2

fl ≠ ÷
= 0, (4.6)

|a|4

(„ ≠ ÷)3 + |b|4

(Â ≠ ÷)3 + |c|4

(fl ≠ ÷)3 + |ab|2

(„ ≠ ÷)2(Â ≠ ÷)2 („ + Â ≠ 2÷)

+ |ac|2

(„ ≠ ÷)2(fl ≠ ÷)2 („ + fl ≠ 2÷) + |bc|2

(Â ≠ ÷)2(· ≠ ÷)2 (Â + fl ≠ 2÷) = 0. (4.7)

Let E = ÷/2 for ÷ = „ + Â ≠ fl. Then „, Â, fl rationally independent implies E œ S5 \ S3. We wish
to choose „, Â, and · rationally independent such that the above conditions hold. Condition (4.6)
is equivalent to |c|2 = |a|2

Â≠fl
+ |b|2

„≠fl
, and we assume Â < fl < „ so that this condition may be satisfied

for many choices of a and b. Suppose 2fl ≠ „ ≠ Â = 1. This implies the following simple identities:
„ ≠ ÷ = fl ≠ Â, „ + Â ≠ 2÷ = 1,
Â ≠ ÷ = fl ≠ „, „ + fl ≠ 2÷ = fl ≠ Â + 1,
fl ≠ ÷ = 1, Â + fl ≠ 2÷ = fl ≠ „ + 1,

which allow us to rewrite (4.7) as
|a|4

(fl ≠ Â)3 + |b|4

(fl ≠ „)3 + ( |a|2

Â ≠ fl
+ |b|2

„ ≠ fl
)2 + |ab|2

(fl ≠ Â)2(fl ≠ „)2

+ |a|2

(fl ≠ Â)2 (fl ≠ Â + 1)( |a|2

Â ≠ fl
+ |b|2

„ ≠ fl
) + |b|2

(fl ≠ „)2 (fl ≠ „ + 1)( |a|2

Â ≠ fl
+ |b|2

„ ≠ fl
) = 0,
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which equality holds identically, independently of the choice of a and b, just by expanding and
cancelling. There are many choices of „, Â, and fl so that Â < fl < „, 2fl ≠ „ ≠ Â = 1, and they are
rationally independent. We may take, for example, „ =

Ô
5, fl =

Ô
3, and Â = 2

Ô
3 ≠

Ô
5 ≠ 1. For

any such choice, both conditions (4.6) and (4.7) hold, and Theorem 1.3 implies that „ + Â ≠ fl is
an embedded eigenvalue in S5 \ S3.

5. Infinitely many summands

If Ï is not of finite type, our goal is instead to bound the Hausdor� measure of Sp. Bounding
dimH(Sp) will require careful bookkeeping of the now infinitely many critical points in ÷. We will
summarize the critical point information via the following recursively defined rational functions:
let hI(÷; [„kj ]P

j=1; [„lj ]P ≠1
j=1 ) be defined for I = 2P ≠ 1 by h1(÷; [„k1 ]) = („k1 ≠ ÷)≠1 and

hI(÷; [„kj ]P
j=1; [„lj ]P ≠1

j=1 ) =

1
q

P

j=1 „kj ≠
q

P ≠1
j=1 „lj ≠ ÷

I≠1ÿ

m=0
hm(÷; [„kj ]

m+1
2

j=1 ; [„lj ]
m≠1

2
j=1 )hI≠1≠m(÷; [„kj ]P

j= m+3
2

; [„lj ]P ≠2
j= m+1

2
),

(5.1)

where we again denote by [„j ]n
j=1 an ordered n-tuple of frequencies of Ï. For even I, we define

hI © 0. The functions hI are analogous to the hJ of [27], with additional structure added in order
to omit sums of frequencies not of the form (1.9). Our first step is to relate the functions hI to gI,1
in order to identify the singularities of hI :

Lemma 5.1. The functions gI,1 for I = 2P ≠ 1 are just rescaled, symmetrized hI , namely,

gI,1([„kj ]P
j=1; [„lj ]P ≠1

j=1 ) = i

P !(P ≠ 1)!
ÿ

‡œSP
·œSP ≠1

hI([„k‡(j) ]
P

j=1; [„l·(j) ]
P ≠1
j=1 ).

Proof. We prove the lemma by induction on P . The case P = 1 holds by definition. Suppose the
statement holds up to P ≠ 1. Let us call „ =

q
P

j=1 „kj ≠
q

P ≠1
j=1 „lj . Combining (3.3), (3.4), and

(3.8), we have

gI,1([„kj ]P
j=1; [„lj ]P ≠1

j=1 ) = ≠i

„ ≠ ÷

I≠1ÿ

m=0

1
P !(P ≠ 1)!

ÿ

‡œSP
·œSP ≠1

gm,1([„k‡(j) ]
m+1

2
j=1 ; [„l·(j) ]

m≠1
2

j=1 )

§ gI≠1≠m,1([„k‡(j) ]
P

j= m+3
2

; [„l·(j) ]
P ≠1
j= m+1

2
)
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Then we use the induction hypothesis to rewrite as

≠i

„ ≠ ÷

I≠1ÿ

m=0

1
P !(P ≠ 1)!

ÿ

‡œSP
·œSP ≠1

i

( m+1
2 )!( m≠1

2 )!
ÿ

µœS m+1
2

‹œS m≠1
2

hm([„kµ(‡(j)) ]
m+1

2
j=1 ; [„l‹(·(j)) ]

m≠1
2

j=1 )

§ i

( I≠m

2 )!( I≠m≠2
2 )!

ÿ

–œS I≠m
2

—œS I≠m≠2
2

hI≠1≠m([„k–(‡(j)) ]
P

j= m+3
2

; [„k—(·(j)) ]
P ≠2
j= m+1

2
)

= i

P !(P ≠ 1)!
ÿ

‡œSP
·œSP ≠1

1
q

P

j=1 „k‡(j) ≠
q

P ≠1
j=1 „l·(j) ≠ ÷

◊
I≠1ÿ

m=0
hm([„k‡(j) ]

m+1
2

j=1 ; [„l·(j) ]
m≠1

2
j=1 )hI≠1≠m([„k‡(j) ]

P

j= m+3
2

; [„l·(j) ]
P ≠2
j= m+1

2
),

where we’ve noticed that the permutations µ, ‹, –, and — as well as the remaining § are redundant
since the hm and hI≠1≠m have already been symmetrized. The definition of hI completes the
proof. ⇤

Since the first three conditions of the following lemma are satisfied by our operator data of
Wigner-von Neumann type by definition, the following lemma gives a su�cient condition in terms
of the functions hI for boundedness of all solutions at E:

Lemma 5.2. Let operator data Ï be given by (1.4), with cj œ C, „j œ R, and let ÷ œ R such that

(i) sup
j

Var(“j , (0, Œ)) := · < Œ;

(ii) for some p = 2n + 1, sup
j

s Œ
0 |“j(t)|pdt := ‡ < Œ;

(iii)
qŒ

j=1 |cj | < Œ;

(iv) for odd I = 1, . . . , p ≠ 2 and P := I+1
2 ,

Œÿ

k1,...,kP =1
l1,...,lP ≠1=1

|hI(÷; [„kj ]P
j=1; [„lj ]P ≠1

j=1 )
PŸ

j=1
ckj

NŸ

j=1
clj | < Œ.

Then, for E = ÷

2 , all solutions of (1.3) are bounded.

We prove Lemma 5.2 in a series of smaller lemmas. Our strategy is to begin with

log Z(x, ÷)
Z(0, ÷) =

⁄
x

0
S1,1(t)dt,

where

SI,K(x) =
Œÿ

k1,...,kP =1
l1,...,lN =1

fI,K(÷; [„kj ]P
j=1; [„lj ]N

j=1)
PŸ

j=1
—kj (x)

NŸ

j=1
—lj (x)eiK(÷x+2◊(x)), (5.2)
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with —j(x) = cje≠i„jx“j(x), and then pass to higher values of I via Lemma 3.1. Note that SI,K is
trivial if I + K /œ 2Z or I < K. We will track errors using

EI,K = 2
Œÿ

k1,...,kPK
=1

l1,...,lNK
=1

|gI,K

PŸ

j=1
ckj

NŸ

j=1
clj |.

Lemma 5.3. If Ï obeys the conditions of Lemma 5.2, then EI,K is finite for 1 Æ K Æ I Æ p ≠ 2.

Proof. By Lemma 5.1 and (5.1), since condition (iv) of Lemma 5.2 holds for 1 Æ I Æ p ≠ 2, EI,1 is
finite for the same values of I. Then (3.8) gives

EI,K Æ
Iÿ

i=0
Ei,kEI≠i,K≠k,

for any 0 < k < K. The lemma follows. ⇤

Lemma 5.4. If Ï obeys the conditions of Lemma 5.2, then the sum SI,K(t) is absolutely convergent

when 0 Æ K Æ I Æ p. If, moreover, I = p, then

⁄ Œ

0

Œÿ

k1,...,kP =1
l1,...,lN =1

|fI,K(÷; [„kj ]P
j=1; [„lj ]N

j=1)
PŸ

j=1
—kj

NŸ

j=1
—lj |dt Æ

1ÿ

a=≠1
|Êa|Ep≠1,K+a

Œÿ

j=1
|cj |‡p.

Proof. Taking absolute values in (3.5) gives

|fI,K | Æ |…I,K | +
1ÿ

a=≠1
|Êa| § |gI≠1,K+a|.

Multiplying by

|
PŸ

j=1
—kj

NŸ

j=1
—lj | Æ |

PŸ

j=1
ckj

NŸ

j=1
clj |· I

and summing in kj and lj proves absolute convergence. If I = p, we instead multiply by
⁄ Œ

0
|

PŸ

j=1
—kj (t)

NŸ

j=1
—lj (t)|dt Æ |

PŸ

j=1
ckj

NŸ

j=1
clj |‡p,

and summing again in kj and lj completes the proof. ⇤

Lemma 5.5. For a fixed I œ N, let PK := (I+K)/2, NK := (I≠K)/2, and denote „K =
q

PK

j=1 „kj ≠
q

NK

j=1 „lj ,

≈K =
r

PK

j=1 “kj

r
NK

j=1 “lj , and CK =
r

PK

j=1 ckj

r
NK

j=1 clj . Then,

I+1ÿ

K=0
SI+1,K =

Iÿ

K=1

Ë Œÿ

k1,...,kPK +1=1
l1,...,lNK

CKckPK +1gI,Kei(K+1)(÷t+2◊)e
≠i(„K+„kPK

+1)t
≈K“PK +1

≠
Œÿ

k1,...,kPK
=1

l1,...,lNK +1=1

CKclNK
gI,Kei(K≠1)(÷t+2◊)e

≠i(„K≠„lNK
+1)t

≈K“lNK +1

È
.
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Proof. Beginning from
I+1ÿ

K=0
SI+1,K =

I+1ÿ

K=0

Œÿ

k1,...,kPK
=1

l1,...,lNK
=1

fI+1,K([„kj ]PK
j=1; [„lj ]NK

j=1)
PKŸ

j=1
—kj (x)

NKŸ

j=1
—lj (x)eiK(÷x+2◊(x)),

we use (3.4) to rewrite as
I+1ÿ

K=0

Œÿ

k1,...,kPK
=1

l1,...,lNK
=1

1
PK !NK !

1ÿ

a=≠1

ÿ

‡œSPK
·œSNK

ÊagI,K+a([„k‡(j) ]
min[PK ,PK +a]
j=1 ; [„l·(j) ]

min[NK ,NK≠a]
j=1 )

◊
PKŸ

j=1
—kj (x)

NKŸ

j=1
—lj (x)eiK(÷x+2◊(x)).

Grouping terms with g
I,K̃

of the same indices (I, K̃), each such group has two summands, one from
the case where K = K̃ + 1 and a = ≠1 and another from the case where K = K̃ ≠ 1 and a = 1.
Each such term has the form

Œÿ

k1,...,kPK +1=1
l1,...,lNK ≠1=1

1
(PK + 1)!(NK ≠ 1)!

ÿ

‡œSPK +1
·œSNK ≠1

gI,1([„k‡(j) ]
PK
j=1; [„l·(j) ]

NK≠1
j=1 )

PK +1Ÿ

j=1
—kj

NK≠1Ÿ

j=1
—lj

≠
Œÿ

k1,...,kPK
=1

l1,...,lNK
=1

1
PK !NK !

ÿ

‡œSPK
·œSNK

gI,1([„k‡(j) ]
PK
j=1; [„l·(j) ]

NK ≠1
j=1 )

PKŸ

j=1
—kj

NKŸ

j=1
—lj .

By choosing to average over permutations of the frequencies in the first summand of the lemma,
and summing in K above, we have equality and complete the proof. ⇤

Lemma 5.6. If Ï obeys the conditions of Lemma 5.2, then for I = 1, . . . , p≠1 and 0 Æ a < b < Œ,

---
⁄

b

a

! Iÿ

K=1
SI,K(t) ≠

I+1ÿ

K=0
SI+1,K(t)

"
dt

--- Æ
Iÿ

K=1

1
K

EI,K· I . (5.3)

Proof. For K Ø 1, we start from Lemma 3.1 and multiply by gI,K

iK
to get

--
⁄

b

a

fI,KeiK(÷t+2◊)e≠i„t≈ + 2igI,KeiK(÷t+2◊)e≠i„t≈◊Õ-- Æ 2· I

K
|gI,K |.

Then we multiply through by
r

P

j=1 ckj

r
N

j=1 clj and sum in all the kj and lj from one to infinity,
which summation is justified by Fubini’s theorem and Lemmas 5.3 and 5.4. Then summing in K
from one to I finishes the proof. The term containing the gI,K becomes SI+1,K using (2.3) and
Lemma 5.5. ⇤

Proof of Lemma 5.2. By summing over I = 1, . . . , p ≠ 1 in (5.3), we have
---
⁄

b

a

!
S1,1(t) ≠

pÿ

K=1
Sp,K(t) ≠

pÿ

I=2
SI,0(t)

"
dt

--- Æ
p≠1ÿ

I=1

Iÿ

K=1

1
K

EI,K· I .
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Then, for I = p, we bound the sum in K by

--
pÿ

K=1

⁄
b

a

Sp,K(t)dt
-- Æ

pÿ

K=1

⁄
b

a

Œÿ

k1,...,k p+K
2

=1

l1,...,l p≠K
2

=1

|fp,K

p+K
2Ÿ

j=1
—kj

p≠K
2Ÿ

j=1
—lj |dt

Æ
pÿ

K=1

1ÿ

a=≠1
|Êa|Ep≠1,K+a

Œÿ

j=1
|cj |‡p Æ 2

p≠1ÿ

K=0
Ep≠1,K

Œÿ

j=1
|cj |‡p.

We conclude that
-----

⁄
x

0

!
ˆt log ZU (t, ÷) ≠

pÿ

I=2
SI,0(t)

"
dt

----- Æ
p≠1ÿ

I=1

Iÿ

K=1

1
K

EI,K· I + 2
p≠1ÿ

K=0
Ep≠1,K

Œÿ

j=1
|cj |‡p. (5.4)

Since the right hand side of (5.4) is independent of the Prüfer variables, the left hand side converges
uniformly in solution U . What follows is a continuous analog of the proof of [30, Lemma 8]. By
taking the di�erence of the left hand sides of (5.4) for two linearly independent solutions U and V ,
and noting that

q
p

I=2 SI,0 is independent of the choice of solution, we have that
⁄

x

0
ˆt(log ZU (t, ÷) ≠ log ZV (t, ÷))dt

is convergent. Taking real and imaginary parts gives that

log rU (x, ÷)
rV (x, ÷) , ◊U (x, ÷) ≠ ◊V (x, ÷)

both converge as x æ Œ. Since log rU (x,÷)
rV (x,÷) has a finite limit at infinity, rU (x,÷)

rV (x,÷) has a finite, nonzero
limit at infinity. By the convergence in (5.4) uniform in solution U , there exists 0 < x0 < Œ such
that for all solutions U -----

⁄ Œ

x0

!
ˆt log ZU (t, ÷) ≠

pÿ

I=2
SI,0(t)

"
dt

----- <
fi

8 .

Taking the imaginary part then gives that |◊U (x, ÷) ≠ ◊V (x, ÷) ≠ (◊U (x0, ÷) ≠ ◊V (x0, ÷))| is bounded
by fi/4 for x Ø x0 for any pair of solutions U and V . In particular, if we choose the solution U
arbitrarily and then choose V such that ◊V (x0, ÷) = ◊U (x0, ÷) ≠ fi/2 + 2kfi for some k œ Z, then for
x Ø x0, we have

◊U (x, ÷) ≠ ◊V (x, ÷) œ (fi

4 ,
3fi

4 ).

In particular, sin(◊U (x, ÷) ≠ ◊V (x, ÷)) œ (
Ô

2
2 , 1]. Since U and V are linearly independent, their

Wronskian is independent of x and is given by some nonzero constant C. We write

W [U, V ](x) = 4rU (x, ÷)rV (x, ÷) sin(◊U (x, ÷) ≠ ◊V (x, ÷)) = C ”= 0.

Multiplying through by rU (x,÷)
rV (x,÷) , the boundedness of sin(◊U (x, ÷) ≠ ◊V (x, ÷)) away from zero implies

r2
U

(x, ÷), and therefore rU (x, ÷), has a finite limit at infinity. Since U was chosen arbitrarily, every
solution of (1.3) is bounded. ⇤
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Remark. It is quicker to merely show absence of subordinate solutions, rather than to show
boundedness of solutions. If U were a subordinate solution, then for any linearly independent
solution V we would have, by L’Hôpital’s rule,

0 = lim
xæŒ

s
x

0 ÎU(t, ÷)Î2dt
s

x

0 ÎV (t, ÷)Î2dt
= lim

xæŒ

ÎU(x, ÷)Î2

ÎV (x, ÷)Î2 = lim
xæŒ

|rU (x, ÷)|2
|rV (x, ÷)|2 ,

which contradicts the fact from the first part of the proof that rU (x,÷)
rV (x,÷) æ L for some nonzero L.

For the following lemma, recall that the Catalan numbers Cn are given by Cn = 1
n+1

!2n

n

"
.

Lemma 5.7. Let ‹ be a finite uniformly —-Hölder measure on R.

(i) If – œ (0, —), then for all Â œ R,

⁄ 1
|Â ≠ ÷|– d‹(÷) Æ D–, (5.5)

where D– is a finite constant that depends only on –.

(ii) For I Ø 1, I = 2P ≠ 1, and – œ (0, —

I
),

⁄
|hI(÷; [„kj ]P

j=1; [„lj ]P ≠1
j=1 )|–d‹(÷) Æ CIDI–, (5.6)

where CI are Catalan numbers.

Proof.

(i) This is proved in [27, Lemma 4.1].
(ii) We induct on P . The case P = 1 holds by (5.5). Suppose the statement holds up to

P ≠ 1. Integrating one summand in (5.1) and using Hölder’s inequality and the induction
hypothesis gives

⁄ ---
1

q
P

j=1 „kj ≠
q

P ≠1
j=1 „lj ≠ ÷

hmhI≠1≠m

---
–

d‹(÷) Æ D1/I

I–
(CmDI–)m/I(CI≠1≠mDI–)(I≠1≠m)/I

Æ CmCI≠1≠mDI–,

and since the Catalan sequence obeys the recursion Cn =
q

n≠1
j=0 CjCn≠1≠j , summing in

0 Æ m Æ I ≠ 1 recovers the Catalan number CI .
⇤

Lemma 5.8. Suppose (1.7) holds and let I = 2P ≠ 1. Then the set of ÷ for which

Œÿ

k1,...,kP =1
l1,...,lP ≠1=1

---hI(÷; [„kj ]P
j=1; [„lj ]P ≠1

j=1 )
PŸ

j=1
ckj

NŸ

j=1
clj

---· I = Œ,

has Hausdor� dimension at most I–. If I = 2P , the same set is empty.

Proof. Let T be the set of ÷ for which condition (iv) of Lemma 5.2 fails. Suppose the Hausdor�
dimension of T is greater than i–. Then for some — > i–, h—(T ) = Œ. This implies the existence of
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a subset T Õ µ T such that ‹ = ‰T Õh— is a finite uniformly —-Hölder measure with ‹(T ) > 0. Then
Lemma 5.7 implies

⁄ Œÿ

k1,...,k i+1
2

=1

l1,...,l i≠1
2

=1

---hi(÷; [„kj ]
i+1

2
j=1; [„lj ]

i≠1
2

j=1)
i+1

2Ÿ

j=1
ckj

i≠1
2Ÿ

j=1
clj

---
–

d‹(÷)

=
Œÿ

k1,...,k i+1
2

=1

l1,...,l i≠1
2

=1

---

i+1
2Ÿ

j=1
ckj

i≠1
2Ÿ

j=1
clj

---
–

⁄ ---hi(÷; [„kj ]
i+1

2
j=1; [„lj ]

i≠1
2

j=1)
---
–

d‹(÷)

Æ
Œÿ

k1,...,k i+1
2

=1

l1,...,l i≠1
2

=1

---

i+1
2Ÿ

j=1
ckj

i≠1
2Ÿ

j=1
clj

---
–

Di– = Di–

1 Œÿ

j=1
|cj |–

2i

,

which is finite by the –-type decay condition (1.7). Since the integral is finite, the integrand is
‹-almost everywhere finite. But since – œ (0, 1], this implies that condition (iv) holds ‹-almost
everywhere, so that ‹(T ) = 0, a contradiction. The second statement of the lemma follows from
the fact that hI is zero for even I. ⇤

Proof of Theorem 1.4. Conditions (1.5), (1.6), and (1.7) of Lemma 5.2 are trivially satisfied for
every ÷. Condition (iv) is satisfied away from a set T of Hausdor� dimension at most (p ≠ 2)– by
Lemma 5.8 (note that condition (iv) of Lemma 5.2 need only be satisfied for odd I = 1, . . . , p ≠ 2).

By Lemma 5.2 and Lemma 2.1, there are no subordinate solutions for 2E = ÷ œ R \ S, and by
the subordinacy theory of Gilbert-Pearson and Behncke, this implies the theorem. ⇤
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