
March 25, 2024 11:49 WSPC/S0219-4988 171-JAA 2550127

Journal of Algebra and Its Applications
Vol. 23, No. 7 (2024) 2550127 (25 pages)
© World Scientific Publishing Company
DOI: 10.1142/S0219498825501270

Window code parameters of spatially-coupled LDPC codes

Emily McMillon

Department of Mathematics, Rice University
6100 Main Street, Houston, Texas 77005, USA

emily.mcmillon@rice.edu

Christine A. Kelley∗

Department of Mathematics, University of Nebraska–Lincoln
1400 R Street, Lincoln, Nebraska 68588, USA

ckelley2@unl.edu

Received 14 December 2022
Accepted 11 June 2023

Published 11 January 2024

Communicated by R. Smarandache

In this paper, we define a window code to be the portion of a Spatially-coupled low-
density parity check (SC-LDPC) code seen by a single iteration of a windowed decoder.
We consider the design of SC-LDPC codes for windowed decoding via optimization of
the window code. In particular, because iterative decoding is optimal on codes with
cycle-free graph representations, we ask fundamental questions about the construction
and parameters of cycle-free window codes. We show that it is possible to have an SC-
LDPC code with cycles and with cycle-free window codes. We consider the relationship
between the distance of the window code and the distance of the SC-LDPC code. Further,
we show that SC-LDPC codes with MDS window codes exist, and all such codes are
asymptotically bad. This work gives insight into the tradeoffs between window code
parameters and performance of the SC-LDPC code.
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1. Introduction

Spatially-coupled low-density parity check (SC-LDPC) codes are a special class of
LDPC codes originally introduced by Felström and Zigangirov in [5]. These codes
exhibit a phenomenon called threshold saturation [8], meaning that SC-LDPC codes
converge quickly under iterative decoding to relatively error-free solutions.
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Due in large part to their highly repetitive structures, SC-LDPC codes are
amenable to windowed decoding, which is a process by which small portions of a
code are decoded sequentially. This sequential decoding is particularly conducive
to applications such as wireless communication and audio and video streaming
[7, 11]. While there are exceptions, such as [14] that examines decoding thresholds
for different window parameters, most existing work has focused on optimizing the
parameters of the entire SC-LDPC code. Since at any given time step, only a small
window of the code is active, in this paper, we instead optimize the portion of the
code seen by the windowed decoder at a given time step, which we call the window
code.

There are many different aspects one could “optimize” with respect to the win-
dow code of an SC-LDPC code, including distance, rate, degree distribution, and
cycle structure. In this paper, we focus on cycle structure and distance parameters.
In particular, because iterative decoding is optimal on codes with cycle-free graph
representations [15], we ask fundamental questions about the construction and pa-
rameters of cycle-free window codes. Iterative decoding on a cycle-free graph is op-
timal in that it avoids combinatorial structures such as stopping sets and absorbing
sets that are known to cause iterative decoder failure on certain channels [2, 3].
Cycle-free codes do not see much practical use, as they have poor distance prop-
erties [4]. However, because window codes are small pieces of a larger code, they
present an opportunity to mix the best of both worlds: optimal iterative decoding
and good rate/distance parameters. Many of the results on cycle-free window codes
were first presented in [9], though not all with proofs.

Maximum distance separable (MDS) codes are known for their optimal dis-
tance/rate tradeoffs. A natural question is whether there exist SC-LDPC window
codes that have MDS window codes. We establish necessary conditions on the SC-
LDPC code for this property to hold, and show that while such SC-LDPC codes do
exist, they have asymptotically poor rates. We also provide initial bounds on the
relationship between the window code minimum distance and the distance of the
SC-LDPC code given certain conditions.

While this work exclusively considers time-invariant SC-LDPC codes, a po-
tential future avenue of research would be to study window code parameters of
time-varying SC-LDPC codes.

This paper is organized as follows. In Sec. 2, we provide notation and background
on SC-LDPC codes. In Sec. 3, we provide the definition and motivation for window
codes. Section 4 presents results on parameters of cycle-free window codes. Section 5
presents results on distance parameters of window codes, including MDS window
codes. Section 6 concludes the paper.

2. Preliminaries

In this section, we introduce relevant notation and terminology. Let C be a binary
[n, k] linear code with block length n, dimension k, and minimum Hamming distance
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denoted by dmin(C). If C is represented by parity check matrix H , its associated
Tanner graph is defined as the bipartite graph G = (V,W ;E), where the vertices
in part V correspond to the columns of H , and the vertices in W correspond to the
rows of H . These are referred to as variable and check nodes, respectively. There is
an edge between vi ∈ V and wj ∈ W if and only if Hj,i "= 0. When H is sparse, C
is a low-density parity check (LDPC) code.

LDPC codes can be defined over any field. In the case of a binary LDPC code,
the associated Tanner graph has unlabeled edges. In the case of an LDPC code over
Fq where q "= 2, the entry Hj,i corresponds to an edge label on the edge between
vi ∈ V and wj ∈ W . Unless stated otherwise, all results in this paper are valid over
all Fq.

SC-LDPC codes may be constructed by coupling L copies of a base Tanner
graph, where L is called the coupling length [11]. Viewing these copies as being in
positions 0, 1, . . . , L−1, this coupling is done by a process termed “edge spreading,”
whereby edges connected to variable nodes at position i are spread to check nodes
at positions i, i+1, . . . , i+m such that the variable node degrees of the base graph
are maintained and any edge is connected to some copy of the same check node to
which it was incident in the base graph. Here, m is called the coupling width. This
edge spreading is done so that the way in which edges are spread at position 0 is
replicated at positions 1, 2, . . . , L − 1. If additional check nodes are introduced at
the end of the coupled graph to complete the connections, the code is said to be
terminated. Alternatively, allowing the edges at the end of the coupled graph to
wrap around and connect to the beginning of the graph results in a tailbiting code.
The coupled graph is often taken as the protograph of an SC-LDPC code.

We introduce new terminology, that of a forward edge, to aid in forthcoming
arguments regarding the edge spreading process.

Definition 2.1. Let C be an SC-LDPC code with memory m. We define a forward
edge to be any edge connected to a variable node in position i of an SC-LDPC code
that is spread to a check node at position i+ k, where 1 ≤ k ≤ m.

Remark 2.1. Alternatively, SC-LDPC codes may be constructed from array-based
codes and making use of a cutting vector [10]. It has been shown that many common
SC-LDPC code constructions can be obtained from an algebraic graph lift with
appropriate constraints on the base graph [1].

Example 2.1. Figure 1 shows a Tanner graph and one possible coupled version
of that Tanner graph. Variable nodes are represented by circles, and check nodes
by squares. The coupling length is three and coupling width is one. Note that the
resulting code is terminated, as the check nodes at position 3 have not been wrapped
around to coincide with those in position 0.

The edge-spreading process can also be viewed as splitting a base parity check
matrix H into m+1 matrices of the same dimension such that H = H0+H1+ · · · +
Hm, and then arranging them in a matrix with L block columns. When viewing
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position 0 position 1 position 2 position 3

Fig. 1. A terminated SC-LDPC Tanner graph (bottom) is made using the base Tanner graph
(above) with L = 3 and m = 1.

the process as the splitting of a parity check matrix, it is possible for H to have
multi-edges. Edges corresponding to ones in H1, . . . , Hm are forward edges. If C is
terminated, then its parity check matrix H has dimensions (L +m)nc × Lnv and
the form:

H =





H0

H1 H0

...
. . .

Hm Hm−1 . . . H0

Hm . . . H1 H0

. . .
. . .

Hm . . . H1 H0

. . .
...

Hm Hm−1

Hm





.

If C is a tailbiting SC-LDPC code, then its parity check matrixH has dimensions
Lnc × Lnv and the form:

H =





H0 Hm . . . H1

H1 H0
. . .

...

...
. . . H0

Hm Hm−1 . . . H0

Hm . . . H1 H0

. . .
. . .

Hm . . . H1 H0





.
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Unless otherwise noted, we will assume that the dimensions of the base matrix
of the resulting SC-LDPC code are nc × nv. Consequently, the dimensions of each
submatrix Hi in an SC-LDPC code are nc × nv.

A terminated SC-LDPC code has design rate

RL = 1− (L+m)nc

Lnv
= 1−

(
L+m

L

)
(1−R),

where R = 1 − nc
nv

is the design rate of the base matrix. Note that RL < R and
limL→∞ RL = R. In practice, L is chosen to be large, so the design rate of the base
matrix is a good approximation of the design rate of the overall code.

3. Window Codes

In this section we review windowed decoding and introduce the notion of window
code.

Definition 3.1. A windowed decoder runs on a small window of nodes and slides
left to right along the received bits as it decodes. The window length, denoted W , is
defined to be W consecutive positions of constraint nodes and all of their adjacent
variable nodes [6]. For i between 0 and L−1, the window at position i, denoted Wi,
consists of the check nodes in positions i through i+W − 1, their adjacent variable
nodes, and the edges between them. The set of edges in a given window is called a
window configuration of the windowed decoder.

In the case of a terminated SC-LDPC code, the end window configurations will
differ from the typical window configuration. Recall that the variable nodes in a
single position may be adjacent to check nodes in at most m + 1 positions. Thus,
requiring a minimum window length of m+ 1 ensures that at least one position of
variable nodes has all its adjacent check nodes within a window. Hence, we assume
that the window length satisfies m+ 1 ≤ W ≤ m+ L, as in [6, 13].

Definition 3.2. For a window configuration starting at position i, the variable
nodes in the ith position are called the targeted symbols.

Decoding in a window stops once the window’s targeted symbols reach a target
error probability or after a fixed number of iterations have been completed [6]. The
window then moves one position to the right and the process repeats.

Because the decoder operates on each window, it is natural to consider the code
defined by the graph seen on that window and ask what the optimal parameters
are for such a code. To that end, we introduce the following definition.

Definition 3.3. Let C be a SC-LDPC code of length L. We define the window code
at position i, denoted CWi , to be the code consisting of the check nodes in positions
i through i+W −1 and all their adjacent variable nodes. In other words, CWi is the
code with Tanner graph Wi. Note that, necessarily, i ∈ {0, 1, . . . , L − 1}. Further,

2550127-5



March 25, 2024 11:49 WSPC/S0219-4988 171-JAA 2550127

E. McMillon & C. A. Kelley

Fig. 2. A terminated SC-LDPC Tanner graph using the base graph in Fig. 1 with L = 5, m = 1,
and W = 3. The windows at position i for i ∈ {0, 1, 2, 3} are highlighted by dark vertices and
solid edges.

if d = dmin(C), then we define dWi = dmin(CWi) to be the minimum distance of the
window code CWi .

Example 3.1. Recall that in Fig. 1, a smaller base Tanner graph was used to form
an SC-LDPC code. In Fig. 2, we use the same edge spreading choices as in Fig. 1
but with a coupling length L = 5 to highlight the windowed decoding process when
the window length is W = 3. As an example, the third configuration in the figure
corresponds to the second decoding window, W2, and the targeted symbols are the
variable nodes at position 2. Notice that W1 and W2 are identical, but W0 and
W3 are each unique. This implies that CW1 = CW2 . For L larger than 5, additional
window configurations identical to W1 and W2 appear. In general, as L gets larger,
the number of identical window configurations will increase.

Due to the repetitive structure of SC-LDPC codes, in practice, almost all window
codes of an SC-LDPC code will be identical. Hence, in optimizing the window code
structure of an SC-LDPC code, the majority of our attention can be focused on a
single window code, which we call the typical window code, defined next.

Definition 3.4. Let C be a terminated SC-LDPC code of length L, window length
W , and memory m. Then the window codes at positions m through L − W are
identical. We call this window code the typical window code of C and denote it
W(C), or, when C is understood, we simply denote it W . Further, we define the
window code distance to be the minimum distance of the typical window code, and
denote it by dW , i.e. dW = dmin(W(C)), and we define the typical window code
parity check matrix to be the parity check matrix of W(C) and denote it by HW .
In general, if a window code is not a typical window code, we will refer to it as an
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atypical window code. In the case of a tailbiting SC-LDPC code, all window codes
are typical window codes.

Example 3.2. In Example 3.1, the codes corresponding to W1 and W2 are typical
window codes of C, i.e. CW1 = CW2 = W(C). On the other hand, CW0 and CW3 are
atypical window codes of C.

It is also helpful to keep in mind the form of a parity check matrix of a typical
window code. Such a parity check matrix has dimensions Wnc × (W +m)nv, and
has form given below.

HW =





Hm Hm−1 . . . H0

Hm . . . H1 H0

. . .
. . .

Hm . . . H1 H0




. (3.1)

Unless otherwise noted, we will assume that the dimensions of the base matrix
H of the resulting SC-LDPC code are nc × nv. Consequently, the dimensions of
each submatrix Hi in an SC-LDPC code are nc × nv.

4. Cycle-Free Window Codes

Iterative decoding has been shown to be optimal on codes with cycle-free graph rep-
resentations [15]. However, codes with cycle-free graph representations were shown
by Etzion et al. [4] to have poor distance properties, as given in the bound restated
next.

Theorem 4.1 ([4]). Let C be an [n, k, d] cycle-free linear code. Then

d ≤
⌊

n

k + 1

⌋
+

⌊
n+ 1

k + 1

⌋
.

In particular, notice that when k
n ≥ 1

2 , Theorem 4.1 reduces to d ≤ 2.
Because spatially-coupled codes are amenable to windowed decoding, it is pos-

sible for the code to have cycles while having cycle-free window codes, and hence,
are optimal with respect to decoding. This means spatially-coupled codes are not
limited by the distance bounds of cycle-free codes.

As in [4], we begin by recalling the following well-known result.

Lemma 4.1. A graph G = (V,E) is cycle-free if and only if #E = #V − ω(G),
where ω(G) denotes the number of connected components in G.

Any graph contains at least one connected component, and so this bound reduces
to #E ≤ #V − 1. If H is an m × n matrix, then the number of vertices in the
Tanner graph corresponding to H is m+n, and the number of edges in this Tanner
graph is wt(H), the number of nonzero entries in H . Hence, if H is cycle-free, then
wt(H) ≤ m+ n− 1.
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Lemma 4.2. Given an SC-LDPC code C with cycle-free window codes, memory
m, and window size W,

wt(HW(C)) ≤ (W +m)nv +Wnc − 1.

Proof. Because W(C) has a Wnc× (W +m)nv cycle-free parity check matrix, this
result follows immediately from the argument in the preceding paragraph.

Remark 4.1. Because the Tanner graphs corresponding to atypical window codes
are subgraphs of the Tanner graph of a typical window code, assuming that the
typical window code of an SC-LDPC code is cycle-free is sufficient to guarantee
that all window codes of an SC-LDPC code are cycle-free. In other words, if W(C)
is cycle-free, then all atypical window codes of C are also cycle-free.

Throughout the remainder of this paper, we will assume that dmin(W(C)) ≥
2. This restriction is sensible, as it guarantees that HW(C) has no zero columns.
Because the bulk of the arguments in this section depend upon Lemma 4.2, it is
important to have a lower bound on wt(HW(C)), and the absence of zero columns
allows us to do so.

4.1. Column weight constraint only

Lemma 4.3. If C is an SC-LDPC code with cycle-free window codes, memory m,
window size W, and dW ≥ 2, then wt(H0) ≥ nv and wt(Hm) ≥ nv.

Proof. Since dW ≥ 2, HW has no zero columns. Recall that HW has W block
rows and W + m block columns. The first block column’s only nonzero block is
Hm, which implies that Hm has no zero columns. Similarly, the last block column’s
only nonzero block is H0, which implies that H0 has no zero columns. Hence,
wt(H0) ≥ nv and wt(Hm) ≥ nv.

Lemma 4.4. Given an SC-LDPC code C with cycle-free window codes, memory
m, window size W, and dW ≥ 2,

nv ≤ Wnc − 1

W −m
.

In addition, assuming that W ≥ m+ 1,

m ≥ nv − nc + 1

nc
.

Proof. By Lemma 4.2, wt(HW) ≤ (W+m)nv+Wnc−1. By Lemma 4.3, wt(H0) ≥
nv and wt(Hm) ≥ nv. Because each block row of HW has exactly one copy each
of H0 and Hm, and HW has W block rows, this implies that 2Wnv ≤ wt(HW).
Putting these arguments together yields the bound

2Wnv ≤ (W +m)nv +Wnc − 1
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which simplifies to nv ≤ Wnc−1
W−m . Solving instead for W and assuming W ≥ m+ 1,

we obtain mnv−1
nv−nc

≥ W ≥ m+ 1. Solving for m yields m ≥ nv−nv+1
nc

.

Corollary 4.1. Given an SC-LDPC code C with cycle-free window codes, memory
m, window size W ≥ m + 1, and dW ≥ 2, the maximum design rate, Rmax, of the
base matrix is

Rmax = 1− (W −m)nv + 1

Wnv
.

In particular, when m = 1, R ≤ 1− nv+1
2nv

< 1
2 .

Proof. By Lemma 4.4, nc ≥ (W−m)nv+1
W . The design rate, R, is R = 1 − nc

nv
≤

1 − (W−m)nv+1
Wnv

. Notice we can rewrite this upper bound as R ≤ mnv−1
Wnv

. Because
W ≥ m+1, it is clear that the rate is maximized when W = m+1. In other words,
R ≤ mnv−1

(m+1)nv
. Equivalently,

R ≤ (W − 1)nv − 1

Wnv
.

In particular, when m = 1, R ≤ nv−1
2nv

< 1
2 .

We now strengthen this result to show that R = 1− nv+1
2nv

is the maximum rate
of any SC-LDPC code that has cycle-free window codes with dW ≥ 2 and base
matrix of size nc×nv. In particular, this bound is independent of both the memory
and the window length of the code.

Theorem 4.2. Let C be an SC-LDPC code with cycle-free window codes, dW ≥ 2,
memory m, and window length W ≥ m+ 1. Then

(1) nv ≤ 2nc − 1 and
(2) the maximum design rate R of the base matrix is at most R ≤ 1− nv+1

2nv
< 1

2 .

Proof. In order for a matrix to correspond to a cycle-free Tanner graph, any sub-
matrix (subgraph) must also be cycle-free. Because we W ≥ m + 1, HW has at
least one block column with both H0 and Hm as sub-blocks. Hence, the matrix
M =

[H0

Hm

]
is a submatrix of HW , and so must be cycle-free. The submatrix M

has nv columns and 2nc rows. Because it is cycle-free, wt(M) ≤ nv + 2nc − 1. By
Lemma 4.3, wt(H0) ≥ nv and wt(Hm) ≥ nv. Putting these together this yields
the bound 2nv ≤ nv + 2nc − 1, which simplifies to nv ≤ 2nc − 1 and proves (1).
Alternatively, we see that nc ≥ nv+1

2 . Using this, we conclude that the design rate
of the base matrix can be at most

R = 1− nc

nv
≤ 1− nv + 1

2nv
=

nv − 1

2nv
<

1

2
,

proving (2).
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The next Lemma defines cycle-free matrices that can be used to construct a
class of window codes that meet the general bound given in Theorem 4.2. We note
that the purpose of this construction is purely to prove existence, and the resulting
codes are not intended to be examples of good codes (for some values of nc and nv,
these codes are not even connected).

Lemma 4.5. For nc ≥ 2, let nc + 1 ≤ nv ≤ 2nc − 1. Define Hm and H0 to be
nc × nv matrices such that:

(H0)i,j =

{
1, when j = 2i or j = 2i− 1,

0, otherwise.

(Hm)i,j =

{
1, when j = 2i− 1 or j = 2i− 2,

0, otherwise.

Then the matrix M =
[Hm H0

Hm H0

]
is cycle-free.

Proof. Note that if we assume nc is fixed, then it suffices to show the statement for
nv = 2nc−1 with matrices H0 and Hm, as for all smaller nv with matrices H ′

m and

H ′
0, H

′
m is a submatrix of Hm, and H ′

0 is a submatrix of H0, and hence
[H′

m H′
0

H′
m H′

0

]

is a submatrix of M =
[Hm H0

Hm H0

]
. Hence, we assume that nv = 2nc − 1.

We will begin by showing that
[H0

Hm

]
is cycle-free. Consider the 2nc×2nc matrix

with 1’s along both the diagonal and subdiagonal and zeroes elsewhere. This matrix
corresponds to a graph that is a path on 2nc vertices, hence is cycle-free. Remove
column 2nc to give a 2nc × (2nc − 1) matrix (that is also necessarily cycle-free),
which we will call A. More succinctly, we define A to be the 2nc× (2nc − 1) matrix
such that

(A)ij =

{
1, when j = i or j = i− 1,

0, otherwise.

We will show that H0 is exactly the even index rows of A and Hm is exactly
the odd index rows of A. If 2" is an even index row of A, then this row is zeroes
everywhere except columns 2" and 2"−1. Referring to how H0 is defined, it is clear
that row 2" of A is the same as row " of H0. If 2k − 1 is an odd index row of A,
then this row is zeroes everywhere except columns 2k− 1 and 2k− 1− 1 = 2k− 2.
Referring to how Hm is defined, it is clear that row 2k− 1 of A is the same as row
k of H0. This shows that, up to row ordering, A is equivalent to

[H0

Hm

]
. Hence,

[H0

Hm

]

is cycle-free.
Because both Hm and H0 have column weights of 1, adding the two block

matrices to form the matrix M only adds degree one variable nodes to the graph
corresponding to

[H0

Hm

]
. Hence, M is cycle-free.

Example 4.1. For illustrative purposes, we will give examples of matrices con-
structed as indicated by Lemma 4.5. Let nc = 5 and nv = 9. Then the matrices are
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as follows.

H0 =





1 1 0 0 0 0 0 0 0

0 0 1 1 0 0 0 0 0

0 0 0 0 1 1 0 0 0

0 0 0 0 0 0 1 1 0

0 0 0 0 0 0 0 0 1





, Hm =





1 0 0 0 0 0 0 0 0

0 1 1 0 0 0 0 0 0

0 0 0 1 1 0 0 0 0

0 0 0 0 0 1 1 0 0

0 0 0 0 0 0 0 1 1





.

To construct matrices with nc = 5 and 6 ≤ nv ≤ 8 instead, we remove the appro-
priate number of columns from the right side of the matrices.

Lemma 4.6. Let C be an SC-LDPC code with cycle-free window codes, dW ≥ 2
and memory m. Then the maximum design rate R = 1− nv+1

2nv
of H, where R "= 0,

is theoretically achievable only for window lengths W such that m+ 1 ≤ W ≤ 2m.

Proof. SupposeH has design rate R = 1− nv+1
2nv

> 0. Then, necessarily, nc =
nv+1

2 ,
or, equivalently, nv = 2nc − 1. By Lemma 4.3, wt(H0) ≥ nv and wt(Hm) ≥ nv. We
will show that the induced subgraph corresponding to the submatrix

M =





Hm H0

Hm H0

Hm H0





necessarily has cycles. Because wt(M) ≥ 6nv by the argument above, using Lemma
4.2 with W = 3 and m = 1, we can conclude that 6nv ≤ 4nv+3nc−1. Rearranging,
this requires that nv ≤ 3nc−1

2 , which is strictly less than 2nc−1 for values nc greater
than 1. (Note that when nc = 1, nv = 1, and R = 0, so we need not consider this
case.) Hence, M is not cycle-free, and so it cannot appear as a submatrix of HW .

In order for M to not appear as a submatrix of HW , W must be bounded above.
The first column in HW in which H0 shares a column with Hm is column m + 1.
This column is in HW as long as W ≥ m+ 1 (the trivial lower bound on W ). This
copy of Hm shares a row with a second copy of H0, which is in column 2m + 1.
Column 2m+ 1 has a copy of Hm provided that W ≥ 2m+ 1. Such a copy of H0

would guarantee that the matrix M was a submatrix of HW . Hence, this yields the
upper bound W ≤ 2m.

Corollary 4.2. Let C be an SC-LDPC code with cycle-free window codes, dW ≥ 2,
memory m, and window length W such that m+ 1 ≤ W ≤ 2m. Then if nv is odd,
the maximum design rate of the base matrix, R = 1− nv+1

2nv
, is achievable.

Proof. Let nc ≥ 2 and nv = 2nc − 1. Define H0 and Hm as in Lemma 4.5. Define
H1, . . . , Hm−1 to be all zero matrices. The resulting SC-LDPC code has base matrix
with design rate R = 1− nc

nv
= 1− nv+1

2nv
and has window code parity check matrix as

in Eq. (3.1), except where only H0 and Hm are nonzero. By inspection, we see that
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each H0 shares a row/column with at most one copy of Hm, and each Hm shares a
row/column with at most one copy of H0. Further, because m+ 1 ≤ W ≤ 2m, the
number of rows of HW is upper bounded by 2m. The first column in HW in which
Hm shares a column with H0 is column m+ 1. This copy of H0 shares a row with
a second copy of Hm, which is in column 2m + 1. Because W ≤ 2m, the second
copy of Hm does not share a column with a second copy of H0; in other words, the
matrix 



Hm H0

Hm H0

Hm H0





is not a submatrix of HW , and so the largest induced subgraph of HW that could
possibly have cycles is

[Hm H0

Hm H0

]
, which is cycle-free by Lemma 4.5. So HW has

no cycles, and we have constructed an SC-LDPC code with cycle-free window codes
with maximum base matrix design rate.

For sufficiently large window length, any SC-LDPC code with dW ≥ 2 has
window codes with cycles. The following theorem gives an upper bound on the
necessary window length to give cycles in a typical window code.

Theorem 4.3. Let C be an SC-LDPC code with memory m, base matrix size nc×nv

with nc + 1 ≤ nv, window length W, cycle-free window codes, and dW ≥ 2. Then,
if we consider a new SC-LDPC code C′, identical to C except with window length
W ′ > W, for sufficiently large W ′, W(C′) has a cycle. In particular, for any nc, nv,
and m, for W ′ > m(nc + 1)− 1, W(C′) has cycles.

Proof. By Lemma 4.2, wt(HW) ≤ (W+m)nv+Wnc−1. By Lemma 4.3, wt(H0) ≥
nv and wt(Hm) ≥ nv. Because there are at least W copies of these matrices in HW ,
wt(HW) ≥ 2Wnv. Putting these together yields the inequality 2Wnv ≤ Wnc +
(W +m)nv − 1. Rearranging, we see that nv ≤ Wnc−1

W−m . The expression Wnc−1
W−m has

a decreasing horizontal asymptote at nc as W → ∞. Hence, there exists a W ′ such
that W ′nc−1

W ′−m < nc+1. Rewriting this inequality, we obtain W ′ > m(nc+1)−1. For
this W ′, nv < nc + 1, a contradiction. So, for sufficiently large W ′, the standard
window code cannot be cycle-free (and hence must have a cycle).

An immediate corollary of Theorem 4.3 is that, for sufficiently large coupling
length, any SC-LDPC code with cycle-free window codes has cycles.

Corollary 4.3. Let C be an SC-LDPC code with memory m, base matrix size
nc×nv with nc+1 ≤ nv, cycle-free window codes, and dW ≥ 2. Then for sufficiently
large coupling length, the SC-LDPC code has a cycle.

Proof. By the theorem, there exists a window length W such that a standard
window code of that length would have a cycle. Take the coupling length to be at
least W . Then the SC-LDPC code has a cycle.
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In other words, this result demonstrates one can have cycle-free window codes
within an SC-LDPC code with cycles.

We conclude this section by providing a small but nontrivial example of a cycle-
free window code for illustrative purposes. Before the example, however, we will
discuss a few additional considerations when constructing a cycle-free window code.
The graph-theoretic Lemma 4.1 tells us that a cycle-free graph G = (V,E) is
connected if and only if #V = #E − 1. The result given by Lemma 4.2 is a bound;
if we want the Tanner graph of our window code to be connected, we need equality,
i.e. we need that

wt(HW) = (W +m)nv +Wnc − 1.

Having the smallest possible number of ones in H0 and Hm gives the largest
rate and the most flexibility with construction. Hence, it is reasonable to let
wt(H0) = wt(Hm) = nv. Thus, when designing a connected, cycle-free window
code, we are seeking a set of parameters nc, nv, m, and W and a set of matrix
weights {wt(Hi)}m−1

i=1 that satisfy:

(W +m)nv +Wnc − 1 = wt(HW)

= W (wt(H0) + wt(H1) + · · ·+wt(Hm−1) + wt(Hm))

= W (nv +wt(H1) + · · ·+wt(Hm−1) + nv)

= 2Wnv +W (wt(H1) + · · ·+wt(Hm−1))

in addition to the constraints given by Theorem 4.2. An example follows.

Example 4.2. Let m = 2, W = 3, nv = 8, and nc = 6. Define matrices H0, H1,
and H2 as below.

H0 =





1 1 1 0 0 0 0 0

0 0 0 1 0 0 0 0

0 0 0 0 1 0 0 0

0 0 0 0 0 1 0 0

0 0 0 0 0 0 1 0

0 0 0 0 0 0 0 1





, H1 =





0 0 0 0 1 0 0 0

0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0

0 0 0 1 0 0 0 0

0 0 0 0 0 0 0 0

0 0 1 0 0 0 0 0





,

H2 =





1 0 0 0 0 0 0 0

0 1 0 0 0 0 0 0

0 0 1 0 0 0 0 0

0 0 0 1 0 0 0 0

0 0 0 0 1 0 0 0

0 0 0 0 0 1 1 1





.
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Fig. 3. A representation of the matrix structure of HW from Example 4.2. Dots represent ones
in the parity check matrix; all other entries are zeroes.

The resulting window code has parity check matrix HW of dimensions 18 × 40,
is connected, and is cycle-free. See Fig. 3 for a visual representation of HW . The
maximum weight of a cycle-free matrix of this size is 18 + 40 − 1 = 57, and we
can calculate that wt(HW) = 19 ·3 = 57, hence, this matrix has the maximum
number of nonzero entries for a cycle-free window code and its Tanner graph is
connected. Further, dW = 2. By Theorem 4.1, using n = 40 and k = 40− 18 = 22,
dW ≤ ) 40

22+1* + ) 40+1
22+1* = 2, so this code has maximum minimum distance for a

cycle-free code of its dimensions.

We note that while the examples given in this section correspond to base ma-
trices with double edges, it is possible to find examples of SC-LDPC codes with
cycle-free window codes whose base matrices have no double edges.

4.2. Row weight constraint

For implementation purposes, the degree of all check nodes in an SC-LDPC code
should be at least 2 [12]. In a tailbiting SC-LDPC code, matrices H0 and Hm occur
together in each block row, and so as long as each of H0 and Hm has row weight
at least 1, the corresponding tailbiting SC-LDPC code minimum has check node
degree of at least 2. However, in a terminated SC-LDPC code, the firstm block rows
have no copy ofHm and the last m block rows have no copy ofH0. In particular, the
first block row contains only H0 and the last block row contains only Hm. Hence,
to guarantee that the minimum check node degree of a terminated SC-LDPC code
is at least 2, we must have row weights of at least 2 in both H0 and Hm. In this
section, we will show that this constraint is not realizable for terminated SC-LDPC
codes with cycle-free window codes.

Lemma 4.7. If C is a terminated SC-LDPC code with cycle-free window codes,
memory m, window size W, dW ≥ 2, and min deg(c) ≥ 2, then wt(H0) ≥ 2nc and
wt(Hm) ≥ 2nc.
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Proof. By Lemma 4.3, wt(H0) ≥ nv and wt(Hm) ≥ nv. Because both H0 and Hm

appear in block rows alone, for deg(c) ≥ 2 for all check nodes, each row of H0 and
Hm must have row weight at least 2. Hence, wt(H0) ≥ 2nc and wt(Hm) ≥ 2nc. By
Theorem 4.2, nv ≤ 2nc − 1. It follows that

wt(H0) ≥ 2nc > 2nc − 1 ≥ nv

and similarly for wt(Hm).

Theorem 4.4. Let C be a terminated SC-LDPC code with memory m, window size
W ≥ m + 1, dW ≥ 2, and min deg(c) ≥ 2. Then any typical window code of C has
at least one cycle.

Proof. Let W be a typical window code of C and HW its parity check matrix. By
Lemma 4.7, wt(H0) ≥ 2nc and wt(Hm) ≥ 2nc. In order for HW to be cycle-free,
any submatrix of HW must also be cycle-free. In particular, because W ≥ m + 1,
there is a block column with both H0 and Hm, and so M =

[H0

Hm

]
must be cycle-free.

By Lemma 4.1, this requires wt(M) ≤ nv + 2nc − 1. But

wt(M) = wt(H0) + wt(Hm) ≥ 2nc + 2nc ≥ 2nc + nv + 1 > nv + 2nc − 1.

Hence, any typical window code of C is not cycle-free.

This result means that terminated SC-LDPC codes with cycle-free (typical)
window codes are likely not usable in practice.

5. Window Code Distance Parameters

In this section, we consider the fundamental question of the possible minimum
distances of the window code of a spatially coupled code. Without making addi-
tional assumptions about the structure of an SC-LDPC code, we can make some
observations about the parameters of the window code.

Lemma 5.1. Let C be an [n, k, d] SC-LDPC code and let W(C) be a [nW , kW , dW ]
typical window code of C. Then d ≥ dW .

Proof. Let C and W(C) be as given and let H be the parity-check matrix of C and
HW the parity-check matrix of W(C). Let A be a set of linearly dependent columns
in H. Necessarily, #A ≥ d. Because HW is a submatrix of H, any set of linearly
dependent columns in H is also linearly dependent in HW . So #A ≥ d ≥ dW .

Recall that a code is MDS if it meets the Singleton Bound. In other words, an
[n, k, d] code is MDS if d = n−k+1. We will both consider the question of creating
MDS window codes and more general distance questions. We begin by considering
a general distance bound on the minimum distance dW of a window code of an SC-
LDPC code, then consider the existence and properties of SC-LDPC codes with
MDS window codes.
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Theorem 5.1. Suppose C is an SC-LDPC code and let W be a typical window code
of C. If rankHi < nv for either i ∈ {0,m}, then

dW ≤ min
i∈{0,m}

rankHi + 1 ≤ nc + 1.

Proof. Recall that the minimum distance of a code is the size of the smallest set
of linearly dependent columns in its parity check matrix. Because Hm (respectively,
H0) is the only nonzero block matrix in the first (respectively, last) block column
of HW , any set of linearly dependent columns of Hm (respectively, H0) is also a set
of linearly dependent columns in HW .

If rankHm < nv, the nullspace of Hm has positive dimension, so Hm has
some set of linearly dependent columns. Hence, dW ≤ dmin(C(Hm)). Similarly,
if rankH0 < nv, the nullspace of H0 has positive dimension, so H0 has some set of
linearly dependent columns. Hence, dW ≤ dmin(C(H0)).

By the Singleton Bound, for i ∈ {0,m},

dmin(C(Hi)) ≤ nv − (nv − rankHi) + 1 = rankHi + 1 ≤ nc + 1.

If rankHi < nv for both i ∈ {0,m}, the result is clear, as both dmin(C(Hi)) are
upper bounds for dW . Assume without loss of generality that only rankHm < nv.
Then necessarily rankH0 = nv, so rankHm+1 < rankH0+1, and hence the result
holds.

Remark 5.1. Note that when Hi has no redundancy, it has full row rank, so
rankHi = nc. In this case, the statement in Theorem 5.1 reduces to if nc < nv,
dW ≤ nc + 1. It is worth noting that if nc < nv, rankHi ≤ nc < nv, which also
satisfies the assumptions.

We can bound the minimum distance of atypical window codes similarly as in
Theorem 5.1.

Theorem 5.2. Suppose C is an SC-LDPC code made up of nc ×nv base matrices.

(1) If rankH0 < nv, for atypical window codes at positions i ∈ {1, . . . ,m − 1},
dmin(CWi) ≤ rankH0 + 1 ≤ nc + 1.

(2) If rankHm < nv, for atypical window codes at positions i ∈ {L−W+1, . . . , L−
1}, dmin(CWi) ≤ rankHm + 1 ≤ nc + 1.

Corollary 5.1. Suppose C is an SC-LDPC code with design rate 1− nc
nv

> 0. Then
for any window code W of C, dmin(W) ≤ nc + 1.

Proof. By definition, a code with design rate 1 − nc
nv

is made from nc × nv base
matrices. If 1− nc

nv
> 0, then nc < nv. The conclusion follows from Theorem 5.1.

The preceding results give bounds on dW when we assume that rankHi < nv for
either i = 0 or i = m. We now consider the case that rankHi = nv for i ∈ {0,m}.
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We will see that this condition is necessary for the existence of MDS window codes.
Note that if an nc × nv matrix Hi has rankHi = nv, necessarily nc ≥ nv.

Lemma 5.2. Let C be an SC-LDPC code with memory m, coupling length L, and
window width W . If C has MDS typical window codes, then

rankH0 = rankHm = nv.

Proof. The parity check matrix HW of a typical window code of C has dimensions
Wnc× (W +m)nv, so the dimension of this code is at least k ≥ (W +m)nv −Wnc.
If this code is MDS, then, by the Singleton Bound,

dW = Wnc − k ≤ (W +m)nv − ((W +m)nv −Wnc) + 1 = Wnc + 1.

By way of contradiction, suppose rankHi < nv for either i ∈ {0,m}. Then
rankHi ≤ nc < nv, and so by Theorem 5.1, dW ≤ nc + 1. Then, if W(C) is MDS,
this bound must be met, i.e. dW = nc + 1. But we also know that dW ≤ Wnc + 1,
which implies that W = 1. Because SC codes require W ≥ m+ 1 and m ≥ 1, this
is not possible.

We now use Lemma 5.2 to give an upper bound on the rate of an SC-LDPC
code with MDS window codes.

Theorem 5.3. Let C be an [n, k] SC-LDPC code with memory m, coupling length
L, window width W, and sub-block matrices of size nc × nv that has MDS window
codes. Then C is an [Lnv, k] code, and

(1) if C is terminated, k = 0, and
(2) if C is tailbiting, k ≤ mnc.

Proof. By Lemma 5.2, rankH0 = rankHm = nv ≤ nc. Importantly, this implies
that H0x = 0 and Hmx = 0 both imply x = 0.

If C is terminated, its parity check matrix H has the form:

H =





H0

H1 H0

...
. . .

Hm Hm−1 . . . H0

Hm . . . H1 H0

. . .
. . .

Hm . . . H1 H0

. . .
...

Hm Hm−1

Hm





.
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We compute the dimension of C by finding the dimension of the nullspace of
H. Let xi for i ∈ [L] be a length nc vector and let x = x1x2, . . . ,xL be the
concatenation of these vectors. Then the solutions to the equation HxT = 0 are
the solutions to the following system of equations.

H0xT
1 = 0

H1xT
1 +H0xT

2 = 0

...
. . .

...
...

HmxT
1 +Hm−1xT

2 . . . +H0xT
m = 0

HmxT
2 . . . +H1xT

m +H0xT
m+1 = 0

. . .
. . .

...
...

HmxT
L−m . . . +H1xT

L−1 +H0xT
L = 0

. . .
...

...
...

HmxT
L−1 +Hm−1xT

L = 0

HmxT
L = 0.

From the first equation, H0xT
1 = 0 implies x1 = 0. From the second equation,

H1xT
1 + H0xT

2 = 0 reduces to H0xT
2 = 0, implying that x2 = 0. This argument

repeats for the first L equations, implying that x = 0. Hence, the dimension of C
when it is terminated is 0. This proves (1).

If C is tailbiting, its parity check matrix H has dimensions Lnc × Lnv and the
form:

H =





H0 Hm . . . H1

H1 H0
. . .

...

...
. . . Hm

Hm Hm−1 . . . H0

Hm . . . H1 H0

. . .
. . .

Hm . . . H1 H0





.

Removing the first mnc rows of H results in the (L−m)nc × Lnv matrix

H =





Hm Hm−1 . . . H0

Hm . . . H1 H0

. . .
. . .

Hm . . . H1 H0




.
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Each block row has submatrix [Hm Hm−1 . . .H0 ] of dimensions nc× (m+1)nv.
Because Hm has rank nv, this submatrix has rank r where nv ≤ r ≤ min{nc, (m+
1)nv}. So there exists a series of row operations such that [Hm Hm−1 . . .H0] is
equivalent to

[
Ir A

0(nc−r)×r 0(nc−r)×[(m+1)nv−r]

]
,

where 0j×! is the j× " all zeroes matrix. Perform the same set of row operations to
all (L−m) block rows in H . The result is (L−m) pivot rows and (L−m)(nc − r)
zero rows. Because the only difference between H and H is additional rows, the
rank of this matrix is a lower bound for the rank of H, i.e. (L−m)r ≤ rankH. By
rank-nullity,

k = nullityH = Lnv − rankH

≤ Lnv − (L−m)r = Lnv − Lr +mr

≤ Lnv − Lnv +mr = mr

≤ mnc.

So the dimension of C when it is tailbiting is at most mnc. This proves (2).

The result of Theorem 5.3 is that the maximum dimension of an SC-LDPC
code C with MDS window codes is mnc. In particular, this dimension does not
depend on L. Because the benefit of SC codes is their repetitive structure, one
usually chooses a large L. Hence, the increasing length of the code depends on
L, but the dimension does not. This means that SC-LDPC codes with MDS
window codes have asymptotically bad rates. This is captured in the following
corollary.

Corollary 5.2. If C is an [Lnv, k] SC-LDPC code with MDS window codes, then
limL→∞

k
Lnv

= 0.

We conclude this section by presenting a construction of an infinite family
of MDS window codes, to show that such a family exists. Note that the family
constructed here is not usable in coding theory, as it will result in rate 0 codes.
From computer search results, we strongly suspect that such families are relatively
common.

Theorem 5.4. Let α ∈ Fq be an element of multiplicative order q − 1. Define

A =
[1 1
1 α

]
and B =

[ 1 1
α2 α3

]
. Let H be the (n− 2)×n block parity check matrix over

2550127-19



March 25, 2024 11:49 WSPC/S0219-4988 171-JAA 2550127

E. McMillon & C. A. Kelley

Fq as defined below.

H =





A B 0 . . . 0 0

0 A B . . . 0 0

...
...

...
. . .

...
...

0 0 0 . . . A B





(n−2)×n

.

Then H is MDS if and only if q > n.

Proof. The proof proceeds by induction on n, using the fact that H is MDS if and
only if it has full rank, which is true if and only if all n× n submatrices of H have
nonzero determinant. For details, see Appendix A.

6. Conclusion

In this paper, we introduced the notion of a window code of an SC-LDPC code
under windowed decoding and provided bounds on the rates and dimensions of SC-
LDPC codes with cycle-free window codes. We also showed that, given sufficiently
large coupling length, SC-LDPC codes with cycle-free window codes have cycles.
Moreover, we showed that while SC-LDPC codes with MDS window codes exist,
such SC-LDPC codes have provably bad rates.

We gave an initial lower bound on the minimum distance of the SC-LDPC code
in terms of the minimum distance of the typical window code. We believe we can
strengthen this result and hope to include that in the final version of this paper.
It remains open to determine the optimal rate/distance tradeoff for a window code
that yields good SC-LDPC codes.

Appendix A. Proof of Theorem 5.4

Proof. Let α ∈ Fq be an element of multiplicative order q − 1. Define A =
[1 1
1 α

]

and B =
[ 1 1
α2 α3

]
. Throughout, let Hk be the matrix

Hk =





A B 0 . . . 0 0

0 A B . . . 0 0

...
...

...
. . .

...
...

0 0 0 . . . A B





with k copies of [A B]. Note that Hk is necessarily a (2k+2)× 2k matrix. Further,
for a matrix M , define MI×J to be the submatrix of M with rows in index set I
and columns in index set J .
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For k = 1, we compute the determinants of all 2× 2 submatrices of H1.

(1)

∣∣∣∣
1 1
1 α

∣∣∣∣ = α− 1, (4)

∣∣∣∣
1 1
α α2

∣∣∣∣ = α(α − 1),

(2)

∣∣∣∣
1 1
1 α2

∣∣∣∣ = α2 − 1, (5)

∣∣∣∣
1 1
α α3

∣∣∣∣ = α(α2 − 1),

(3)

∣∣∣∣
1 1
1 α3

∣∣∣∣ = α3 − 1, (6)

∣∣∣∣
1 1
α2 α3

∣∣∣∣ = α2(α− 1).

The matrix H1 has 4 columns, so we assume q > 4. Thus, α ∈ Fq has multiplicative
order at least 4. Hence, all of the above determinants are nonzero. Because all 2×2
submatrices of H1 are nonzero, H1 has full rank, and its associated code is MDS.
Note that if q ≤ n, αq−1 − 1 = 0, so at least one of the above determinants is zero.

We now use an inductive argument to compute the determinants of all 2k× 2k
submatrices ofHk when k > 1. Let S be a 2k×2k submatrix ofHk, C ⊂ [2k+2] the
set of column indices of S, and R = [2k] the set of row indices of S. Each possible
submatrix S has all rows of Hk but two columns removed. We consider cases based
upon which columns are in C.

If {1, 2} ⊂ C, then

det(S) = (α− 1) det(SR\{1,2}×C\{1,2}).

Note that SR\{1,2}×C\{1,2} is a submatrix ofHk−1, and so, by induction, has nonzero
determinant for all q > 2k. So this also holds for q > 2k + 2. Hence, det(S) "= 0.

If {n− 1, n} ⊂ C, then

det(S) = (α3 − 1) det(SR\{n−3,n−2}×C\{n−1,n}).

Note that SR\{n−3,n−2}×C\{n−1,n} is a submatrix of Hk−1, and so, by induction,
has nonzero determinant for all q > 2k. So this also holds for q > 2k + 2. Hence,
det(S) "= 0.

If neither of the two above apply, then the two columns missing from C are one
of {1, 2} and one of {2k+1, 2k+2}. We will show that the following hold. Note that
here and for the rest of the argument, we use the fact that (αm−1 + αm−2 + . . .+
α+1) = αm−1

α−1 , as α "= 1. Further, for each of the below, we present two equivalent
expressions to make later calculations more clear.

• If C = [2k + 2]\{2, 2k+ 2},

det(S) = (−1)k−1(α− 1)k−1(α2k − 1)

= (−1)k−1(α− 1)k(α2k−1 + α2k−2 + · · ·+ α+ 1).

• If C = [2k + 2]\{2, 2k+ 1},

det(S) = (−1)k−1(α− 1)k−1(α2k+1 − 1)

= (−1)k−1(α− 1)k(α2k + α2k−1 + · · ·+ α+ 1).
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• If C = [2k + 2]\{1, 2k + 2},

det(S) = (−1)k−1α(α− 1)k−1(α2k−1 − 1)

= (−1)k−1α(α− 1)k(α2k−2 + α2k−3 + · · ·+ α+ 1).

• If C = [2k + 2]\{1, 2k + 1},

det(S) = (−1)k−1α(α− 1)k−1(α2k − 1)

= (−1)k−1α(α− 1)k(α2k−1 + α2k−2 + · · ·+ α+ 1).

Note that we have already shown the above hold for k = 1. These are (2) through
(5) in the k = 1 determinant calculations, respectively. For k > 1,

• If C = [2k + 2]\{2, 2k + 2},

det(S) = det(SR\{1}×C\{1})− det(SR\{2}×C\{1})

= (α2 det(SR\{1,2}×C\{1,3} − α3 det(SR\{1,3}×C\{1,4}))

− (det(SR\{1,2}×C\{1,3}) + det(SR\{1,2}×C\{1,4}))

= (α2 − 1) det(SR\{1,2}×C\{1,3})− (α3 − 1) det(SR\{1,2}×C\{1,4})

= (α− 1)[(α+ 1) det(SR\{1,2}×C\{1,3})

− (α2 + α+ 1) det(SR\{1,2}×C\{1,4})].

Notice that SR\{1,2}×C\{1,3} is the 2(k−1)×2(k−1) submatrix of Hk−1 without
columns 1 and 2k, and SR\{1,2}×C\{1,4} is the 2(k − 1)× 2(k − 1) submatrix of
Hk−1 without columns 2 and 2k. By inductive hypothesis, we then have

det(S) = (α− 1)[(α+ 1)(−1)k−2α(α − 1)k−1(α2k−4 + α2k−5 + · · ·+ α+ 1)

− (α2 + α+ 1)(−1)k−2(α− 1)k−1(α2k−3 + α2k−4 + · · ·+ α+ 1)]

= (−1)k−1(α − 1)k[(α2 + α+ 1)(α2k−3 + α2k−4 + · · ·+ α+ 1)

− (α2 + α)(α2k−4 + α2k−5 + · · ·+ α+ 1)]

= (−1)k−1(α − 1)k(α2k−1 + α2k−2 + · · ·+ α+ 1)

= (−1)k−1(α − 1)k−1(α2k − 1).

• If C = [2k + 2]\{2, 2k + 1},

det(S) = det(SR\{1}×C\{1})− det(SR\{2}×C\{1})

= (α2 det(SR\{1,2}×C\{1,3})− α3 det(SR\{1,2}×C\{1,4}))
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− (det(SR\{1,2}×C\{1,3})− det(SR\{1,2}×C\{1,4}))

= (α2 − 1) det(SR\{1,2}×C\{1,3})− (α3 − 1) det(SR\{1,2}×C\{1,4})

= (α− 1)[(α+ 1) det(SR\{1,2}×C\{1,3})

− (α2 + α+ 1) det(SR\{1,2}×C\{1,4})].

Notice that SR\{1,2}×C\{1,3} is the 2(k−1)×2(k−1) submatrix of Hk−1 without
columns 1 and 2k − 1 and SR\{1,2}×C\{1,4} is the 2(k − 1)× 2(k − 1) submatrix
of Hk−1 without columns 2 and 2k − 1. By inductive hypothesis, we then have

det(S) = (α − 1)[(α+ 1)(−1)k−2α(α− 1)k−1(α2k−3 + α2k−4 + · · ·+ α+ 1)

− (α2 + α+ 1)(−1)k−2(α − 1)k−1(α2k−2 + α2k−3 + · · ·+ α+ 1)]

= (−1)k−1(α− 1)k
[
(α2 + α+ 1)(α2k−2 + α2k−3 + · · ·+ α+ 1)

− (α2 + α)(α2k−3 + α2k−4 + · · ·+ α+ 1)]

= (−1)k−1(α− 1)k(α2k + α2k−1 + · · ·+ α+ 1)

= (−1)k−1(α− 1)k−1(α2k+1 − 1).

• If C = [2k + 2]\{1, 2k+ 2},

det(S) = det(SR\{1}×C\{1})− α det(SR\{2}×C\{1})

= (α2 det(SR\{1,2}×C\{2,3})− α3 det(SR\{1,2}×C\{2,4}))

−α(det(SR\{1,2}×C\{2,3})− det(SR\{1,2}×C\{2,4}))

= (α2 − α) det(SR\{1,2}×C\{2,3})− (α3 − α) det(SR\{1,2}×C\{2,4})

= α(α − 1)[det(SR\{1,2}×C\{2,3})− (α+ 1) det(SR\{1,2}×C\{2,4})].

Notice that SR\{1,2}×C\{2,3} is the 2(k−1)×2(k−1) submatrix of Hk−1 without
columns 1 and SR\{1,2}×C\{2,4} is the 2(k − 1) × 2(k − 1) submatrix of Hk−1

without columns 2 and 2k. By inductive hypothesis, we then have

det(S) = α(α − 1)
[
(−1)k−2α(α− 1)k−1(α2k−4 + α2k−5 + · · ·+ α+ 1)

× (α+ 1)(−1)k−2(α− 1)k−1(α2k−3 + α2k−4 + · · ·+ α+ 1)]

= (−1)k−1α(α− 1)k[(α+ 1)(α2k−3 + α2k−4 + · · ·+ α+ 1)

−α(α2k−4 + α2k−5 + · · ·+ α+ 1)]

= (−1)k−1α(α− 1)k(α2k−2 + α2k−3 + · · ·+ α+ 1)

= (−1)k−1α(α− 1)k−1(α2k−1 − 1).
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• If C = [2k + 2]\{1, 2k + 1},

det(S) = det(SR\{1}×C\{2})− α det(SR\{2}×C\{2})

= (α2 det(SR\{1,2}×C\{2,3})− α3 det(SR\{1,2}×C\{2,4}))

−α(det(SR\{1,2}×C\{2,3})− det(SR\{1,2}×C\{2,4}))

= (α2 − α) det(SR\{1,2}×C\{2,3})− (α3 − α) det(SR\{1,2}×C\{2,4})

= α(α− 1)
[
det(SR\{1,2}×C\{2,3})− (α+ 1) det(SR\{1,2}×C\{2,4})].

Notice that SR\{1,2}×C\{2,3} is the 2(k−1)×2(k−1) submatrix of Hk−1 without
columns 1 and 2k − 1 and SR\{1,2}×C\{2,4} is the 2(k − 1)× 2(k − 1) submatrix
of Hk−1 without columns 2 and 2k − 1. By inductive hypothesis, we then have

det(S) = α(α − 1)
[
(−1)k−2α(α − 1)k−1(α2k−3 + α2k−4 + · · ·+ α+ 1)

− (α+ 1)(−1)k−2(α− 1)k−1(α2k−2 + α2k−3 + · · ·+ α+ 1)]

= (−1)k−1α(α − 1)k
[
(α+ 1)(α2k−2 + α2k−3 + · · ·+ α+ 1)

−α(α2k−3 + α2k−4 + · · ·+ α+ 1)]

= (−1)k−1α(α − 1)k(α2k−1 + α2k−2 + · · ·+ α+ 1)

= (−1)k−1α(α − 1)k−1(α2k − 1).

If we assume q > 2k + 2, then α has multiplicative order at least 2k + 2. Hence,
none of the determinants have a multiplicative factor equal to zero for such an α.
Because all 2k× 2k submatrices of Hk have full rank, the code associated with Hk

is MDS. However, if q ≤ 2k+2, α has multiplicative order less than 2k+2, and so
at least one factor of these determinants is zero.
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