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ABSTRACT

Context. Gravitational waves from black-hole (BH) merging events have revealed a population of extra-galactic BHs residing in short-period
binaries with masses that are higher than expected based on most stellar evolution models — and also higher than known stellar-origin black holes
in our Galaxy. It has been proposed that those high-mass BHs are the remnants of massive metal-poor stars.

Aims. Gaia astrometry is expected to uncover many Galactic wide-binary systems containing dormant BHs, which may not have been detected
before. The study of this population will provide new information on the BH-mass distribution in binaries and shed light on their formation
mechanisms and progenitors.

Methods. As part of the validation efforts in preparation for the fourth Gaia data release (DR4), we analysed the preliminary astrometric binary
solutions, obtained by the Gaia Non-Single Star pipeline, to verify their significance and to minimise false-detection rates in high-mass-function
orbital solutions.

Results. The astrometric binary solution of one source, Gaia BH3, implies the presence of a 32.70 + 0.82 M, BH in a binary system with a period
of 11.6 yr. Gaia radial velocities independently validate the astrometric orbit. Broad-band photometric and spectroscopic data show that the visible
component is an old, very metal-poor giant of the Galactic halo, at a distance of 590 pc.

Conclusions. The BH in the Gaia BH3 system is more massive than any other Galactic stellar-origin BH known thus far. The low metallicity
of the star companion supports the scenario that metal-poor massive stars are progenitors of the high-mass BHs detected by gravitational-wave
telescopes. The Galactic orbit of the system and its metallicity indicate that it might belong to the Sequoia halo substructure. Alternatively, and
more plausibly, it could belong to the ED-2 stream, which likely originated from a globular cluster that had been disrupted by the Milky Way.

Key words. astrometry — binaries: spectroscopic — stars: black holes — stars: evolution — stars: massive — stars: Population II

1. Introduction
Since the first event detected in 2015 (Abbott et al. 2016) by

Stellar evolution models have difficulties in explaining such
large masses for BHs of stellar origin: stars with an initial mass

the LIGO/Virgo collaboration, the detection of black-hole (BH)
mergers via gravitational waves has uncovered the existence of a
population of BHs residing in short-period binaries with masses
gb%hle)r than 30 M., ranging up to 85 My (Abbott et al. 2020b,

* Full Table B.1 and Table B.2 with Gaia epoch data are available at
the CDS via anonymous ftp to cdsarc.cds.unistra.fr (130.79.
128.5) or via https://cdsarc.cds.unistra.fr/viz-bin/cat/
J/A+A/686/L2

** NASA Hubble Fellow.

T Deceased.
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larger than 30 M, are predicted to lose most of their mass during
their evolution, due to the onset of strong winds, producing BHs
with masses below 20 M, (Vink 2008; Belczynski et al. 2007;
Sukhbold et al. 2016).

The masses of the merging BHs detected via gravitational
waves are also larger than any known stellar-origin BHs in our
Galaxy: all confirmed or candidate BHs of stellar origin in the
Milky Way have typical masses around or below 10 M, with
Cyg X-1 (~20 M, Miller-Jones et al. 2021) being the most mas-
sive one known thus far. However, the known stellar-origin BHs,
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Table 1. Basic properties of Gaia BH3 from the Gaia DR3 catalogue.

Parameter Value

a [deg] 294.8278625082 @
0o [mas] 0.051

o0 [deg] 14.9309796086
s [mas] 0.052

@ [mas] 1.679 + 0.069 @
W, [mas yr'] -22.235 + 0.062
s [mas yr~'] —155.276 = 0.059
G [mag] 11.2311 +0.0028
Ggp — Ggrp [mag] 1.2156 + 0.0048
Grys [mag] 10.2289 = 0.0122
Ter [K] 53401“%12
logg 3.08”_’855
[M/H] —2.76f0:03
[a/Fe] 0.54 = 0.06
RV [kms™!] -333.2+34

Notes. Astrophysical parameters are from GSP-Spec ANN. @The ref-
erence epoch of DR3 coordinates is J2016.0 (JD 2457389.0). ® A zero-
point correction (Lindegren et al. 2021a) of 35.4 pas has been applied
to the parallax value given in the catalogue.

mainly limited to short-period X-ray binaries, are only a very
tiny fraction of the expected number of BHs in our Galaxy (~108
e.g. Olejak et al. 2020). In fact, stellar-origin BHs are hard to
detect because most of them do not interact with a compan-
ion. So, the lack of data on BHs with masses larger than 20 M,
could be due to an observational bias. Indirect methods such
as gravitational microlensing have also yielded only one robust
discovery of a single BH with mass, of about 7 M (Lam et al.
2022; Sahu et al. 2022).

The detection of mergers of BHs with masses larger than
30 My can be reconciled with stellar evolution models if the
progenitors of the high-mass BHs are low-metallicity stars
(Mapelli et al. 2009; Belczynski et al. 2010a, 2016; Ziosi et al.
2014; Fryeretal. 2012). The lack of metals substantially
decreases the mass loss during the stellar lifetime (Vink 2008)
and reduces the radius of the evolving progenitors (Hurley et al.
2000; Belczynski et al. 2010a), the latter effect decreasing the
probability of merging during the common-envelope phase
(Belczynski et al. 2007) in binary systems. Finally, the higher
mass of the BHs produced by low-metallicity progenitors is
expected to decrease substantially or eliminate the natal kick
strength at the birth of the BHs, preserving the binary as a bound
system (Belczynski et al. 2010b). The maximum metallicity for
the formation of the high-mass BHs is a matter of active debate,
with some models predicting the formation of 30 M, BHs even
at solar metallicities (Bavera et al. 2023).

Since its Data Release 3 (DR3, Gaia Collaboration 2023b),
the Gaia mission (Gaia Collaboration 2016) has increased the
number of detected stellar binary systems by two orders of
magnitude (Gaia Collaboration 2023a; Halbwachs et al. 2023;
Gosset et al. 2024) This has opened up the possibility of detect-
ing BHs in binary systems that do not interact with their com-
panion (see also Giesers et al. 2018; Saracino et al. 2022). More-
over, the ability of Gaia to measure the astrometric orbit of such
systems allows the measurement of the inclination of the orbit,
providing a robust estimate of the mass of the dark companion.
Two dormant BHs, Gaia BH1 and BH2 (El-Badry et al. 2023a,b;
Tanikawa et al. 2023; Chakrabarti et al. 2023) were discovered
in Gaia binaries of DR3. Gaia Data Release 4 (DR4) is expected

to contain a larger number of binary systems than Gaia DR3;
consequently, this will provide a greater number of BH-hosting
systems, which will help to shed light on the BH population and
the mechanisms in action in the BHs’ formation.

In this Letter, we report the serendipitous discovery of a
nearby (~590 pc) binary system composed of an old, very metal-
poor!, giant star orbiting a BH in 11.6 yr. The estimated BH
mass, 33 My, is substantially higher than all known Galactic BHs
and is in the mass range of the extra-galactic BHs detected by
gravitational waves.

The system was identified while validating the preliminary
Gaia astrometric binary solutions produced in preparation for
DR4 and subsequently confirmed by Gaia RVS radial-velocity
data. We took the exceptional step of the publication of this paper
based on preliminary data ahead of the official DR4 due to the
unique nature of the discovery, which we believe should not be
kept from the scientific community until the next release. An
early disclosure will also enable an early and extensive follow-
up by the community.

2. Observations and analysis
2.1. Properties of the source

Gaia DR3 4318465066420528000 (also known as LS IT +14 13
and 2MASS J19391872+1455542), hereafter denoted as Gaia
BH3, is a bright source in the constellation Aquila, known
to be a high proper-motion star (Lépine & Shara 2005). Its
basic properties from the Gaia DR3 archive are reported in
Table 1. Its absolute magnitude and color (Riello et al. 2021;
Sartoretti et al. 2023) identify it as a star climbing the giant
branch (see Fig. 1). The source was analysed by the Astrophys-
ical Parameters Inference System (Apsis, Creevey et al. 2023;
Fouesneau et al. 2023). It has been identified as a G spectral-
type star by the ESP-ELS algorithm (Sect. 11.3.7 of the online
documentation, Ulla et al. 2022) and the GSP-Spec ANN param-
eters (Recio-Blanco et al. 2023) indicate it as a metal-poor
giant. No GSP-Phot result (Andrae et al. 2023) is published
in the Gaia archive, while the parameters provided by GSP-
Spec MatisseGauguin (Recio-Blanco et al. 2023) carry large
uncertainties.

The source is not known as a variable star in the litera-
ture, neither in the AAVSO International Database, nor in the
ASAS-SN database. We inspected ASAS-SN, ZTF, and TESS
photometry, finding that the source does not present any sig-
nificant periodic variability. The source was not observed with
XMM-Newton, Chandra nor GALEX, nor it is present in the
RAVE, APOGEE, LAMOST, or GALAH spectroscopic surveys.
No eROSITA data have been made available yet for Gaia BH3,
which belongs to the eastern Galactic hemisphere.

2.2. Astrometry and orbital solution

The system was identified while validating astrometric bina-
ries orbital solutions produced by the Non-Single Star (NSS)
pipeline in a preliminary run (identified as NSS 4.1), done in
preparation of Gaia DR4. The NSS pipeline used in the NSS 4.1
run is similar to the one used in the Gaia DR3, which is described
in Halbwachs et al. (2023) and in Sect. 7.2.2 of the DR3 NSS
documentation (Pourbaix et al. 2022), with improvements in the
filtering of spurious solutions. The NSS pipeline processed astro-
metric data produced by preliminary runs of the Intermediate

! We use the nomenclature from Beers & Christlieb (2005) where very
metal-poor are those stars having [Fe/H] < —2.
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Fig. 1. Gaia BH3 position in the Gaia color-magnitude diagram, com-
pared with the position of Gaia BH1, BH2 and the low extinction
(Ag < 0.05mag) Gaia DR3 color-magnitude diagram. All extinctions
are estimated through the Lallement et al. (2022) extinction map.

Data Update (IDU; see Fabricius et al. 2016) and the Astromet-
ric Global Iterative Solution (AGIS; see Lindegren et al. 2021b)
pipelines, covering the time range from JD 2456941.6218 to JD
2458869.4177 (TCB?), for a total of about 64 months. The NSS
4.1 run was executed on an input list of 10.4 million sources,
chosen to be brighter than Grys = 14 mag, and produced almost
1.5 million orbital solutions. We note that the final NSS run for
DR4 will extend to fainter magnitudes, and it is expected to pro-
duce a much larger number of binary solutions. Further details
on the NSS 4.1 run can be found in Appendix A.

For each orbital solution, we computed the astrometric mass
function from the angular semi-major axis of the photocentre
orbit (ap), period (P), and parallax (w) as:

fu = (ao/@)* (1 yr/P)* Mo, . (1

For an astrometric binary, the mass function depends on
the masses of the components (M;, M;) and on their flux
ratio, > /% (Halbwachs et al. 2023). For an invisible compan-
ion (%> /%1 = 0) the mass function simplifies to:
M, )2

—_— 2
M1+M2 ()

fM=M2(

from which it follows that M, > fi1. Given fiy and an estimate
of the mass of the visible component (M), Eq. (2) can be used
to solve for the mass of the dark companion (M5).

Among the 1.5 million orbital solutions, Gaia BH3 yielded
the largest mass function, 32.03 + 0.64 M, with a significance
(ap/04,) of 48.1; no other solution has a mass function larger
than 20 Mo, In Fig. 2, we show the orbital solution and the resid-
uals, from which the strength of the astrometric signal of the
orbit, along with the robustness and quality of the solution can

2 TCB: Barycentric Coordinate Time, the time scale used here for all
Gaia dates.
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be appreciated. The Campbell orbital elements of the source are
reported in the central column of Table 2. We note that the NSS
pipeline used in this preliminary run produces Thiele-Innes ele-
ments; the Campbell elements and their uncertainties were com-
puted using the equations in Appendix A of Halbwachs et al.
(2023). The astrometric mass function value and its uncertainty
were computed using Monte Carlo resampling of the Thiele-
Innes elements, the parallax and the period, in order to take
into account the correlations between parameters; in particular,
between ay and the period. To make sure this procedure would
yield reliable results, we first checked that the correlations are
sufficiently well behaved to allow for Monte Carlo resampling,
following Sect. 6.1 of Babusiaux et al. (2023).

A word of caution is necessary on the parallax value, and
thus on the astrometric mass function: as in previous releases, the
Gaia parallaxes are affected by a small bias (see Lindegren et al.
2021a), but we do not have enough information at this stage to
quantify the bias for the preliminary NSS solutions. As a conse-
quence, the uncertainty on the mass function reported in Table 2
is underestimated.

2.3. Spectroscopy and combined orbital solution

The Gaia RVS (Cropper et al. 2018) data of sources with an
orbital solution from the NSS 4.1 run were processed with the
DR4 operational RVS pipeline. Improvements with respect to the
DR3 version will be described in the Gaia DR4 documentation;
the DR3 RVS pipeline is described in Sartoretti et al. (2018),
Katz et al. (2023), and Sartoretti et al. (2022). It is worth men-
tioning that the DR4 RV pipeline includes the correction for the
effect of the astrometric orbital motion, discussed in Holl et al.
(2023); in particular, Sect. 3.3.1. The DR4 RVS data cover the
time range from JD 2456863.9385 to JD 2458869.4177, namely,
about 67 months. The pipeline produced 17 valid epoch radial
velocities for Gaia BH3, reported in Appendix B, using a tem-
plate spectrum with T.¢ = 6000K, logg = 3.5 and [Fe/H] =
—1.5 (see Blomme et al. 2017). The template parameters were
estimated by the pipeline from the RVS spectrum itself.

We used the DR3 NSS pipeline code to compute an orbital
solution combining astrometric data and Gaia RVS radial
velocities (nss_solution_type = AstroSpectroSB1). The
details of the adopted model are described in Sect. 7.7.3 of
Pourbaix et al. (2022). We recall that in the combined solution
model only the period, eccentricity, and periastron time are in
common between the astrometric and the spectroscopic part of
the solution. There is no constraint to impose that the semi-major
axis of the photocentre orbit in AU (= ay/@) would be equal to
the semi-major axis of the spectroscopic orbit a;, as expected in
the case of a dark companion. The consistency between a( and
a; allows us to check whether the flux ratio is indeed compatible
with a value of zero.

As discussed in Sect. 2.2, the parallax derived by the NSS
pipeline for the combined solution (@ = 1.6808 + 0.0086 mas)
is affected by a bias which we cannot quantify. In order to avoid
its effect on the mass function, we estimate the latter using a,
instead of ap/w, namely:

A )3 L) 3)
1AU/ \ P e

resulting in a value of 31.23 + 0.81 M. Assuming the equality
between the photocentre and the spectroscopic orbit, we can also
provide an alternative estimation of the parallax as

o

w = ag/ay , 4)
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Fig. 2. Astrometric data of Gaia BH3. Top-left panel: Motion on the sky of the photocentre of the source, as seen by Gaia in the different CCD
transits (dots), compared with the best fitting single-star solution from AGIS and the astrometric-binary solution from the NSS pipeline; the arrow
indicates the direction of the proper motion. Bottom-left panel: Derived astrometric orbit of the photocentre, after a subtraction of parallax and
proper motion, compared with the astrometric measurements. We note that only one-dimensional (1D) along-scan (AL) astrometry was used by the
NSS pipeline. The position of the photocentre on the sky corresponding to each measurement is derived combining the measured one-dimensional
AL position and the assumed orbital solution. The + signs show the barycentre and the position of the periastron, the dotted line shows the line of
nodes, and the arrow indicates the direction of the motion along the orbit. In the top-right and bottom-right panels, we can see the residuals of the
along-scan (AL) astrometric measurements for, respectively, the single-star solution and the binary-star solution. The vertical dot-dashed line in

the bottom-right panel marks the time of the periastron passage.

which results in a value of 1.6933 + 0.0164 mas.

The Campbell orbital elements of the combined solution for
Gaia BH3 are reported in Table 2. The combined solution is very
similar to the astrometric solution, with slightly smaller uncer-
tainties, and a better goodness-of-fit (GoF, in the HIPPARCOS
sense, see Pourbaix et al. 2022), as a result of a stronger filter-
ing of outliers. Radial velocities predicted by the combined solu-
tion are compared with the measurements in Fig. 3. In Fig. 4, we
show the combined and normalised RVS spectrum (see Seabroke
et al. in prep.) compared with the template spectrum.

Given the extreme value of the mass function of the sys-
tem and the importance of its detection, a confirmation with
ground-based observations was indispensable to discard the pos-
sibility of a spurious solution. We thus observed Gaia BH3
with the HERMES spectrograph (Raskin et al. 2011) mounted

on the 1.2-m Mercator telescope at the Roque de los Mucha-
chos Observatory (Spain), and with the SOPHIE spectrograph
(Perruchot et al. 2008) mounted on the 1.93-m telescope of the
Observatoire de Haute-Provence (France). A search in the ESO
archive revealed that the source was observed with the UVES
spectrograph (Dekker et al. 2000) mounted on the VLT. Details
on the data reduction of these observations can be found in
Appendix C. The spectra do not show any sign of the presence
of a second component, nor of continuum filling of absorption
lines; furthermore, no emission line was detected. Radial veloc-
ities were derived for each ground-based observation and their
values are reported in Table C.1. Although these values were not
used to derive the orbital solution described above, they are in
agreement with the predicted radial velocity within 0.5kms™!;
this is less than the uncertainty of the orbital solution, as can be
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Table 2. Campbell orbital elements of the Gaia BH3 system and the
astrometric parameters of its barycentre.

Parameter Astrometric Combined
solution solution

a [deg] 294.8278502411 @ 294.8278502301

0, [mas] 0.060 0.054

o [deg] 14.9309190720 @ 14.9309190869

o5 [mas] 0.086 0.074

7 [mas] 1.6747 + 0.0094 1.6933 + 0.0164 @

1, [mas yr 1] -28.372 +0.077 —28.317 + 0.067

s [mas yr~'] —155.150 £ 0.129 —-155.221+0.111

P [days] 41947 +112.3 4253.1 £98.5

e 0.7262 + 0.0056 0.7291 + 0.0048

dp [mas] 27.07 £ 0.56 27.39 +0.49

i [deg] 110.659 + 0.107 110.580 = 0.095

T,[JD, TCB] 2458177.28 +0.98  2458177.39 + 0.88

Q [deg] 136.200 + 0.147 136.236 + 0.128

w [deg] 77.77 £ 0.66 77.34 +£0.76

a; [AU] 16.17 £ 0.27

v [kms™'] .. -357.31 +£0.44

fm [ Ms] 32.03 +0.64 31.23 +0.81

GoF 2.17 -0.53

Notes. @The reference epoch of DR4 coordinates is J2017.5 (JD
2457936.875). ®Derived as ay/a;, see text.
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Fig. 3. Radial-velocity evolution of Gaia BH3. Top panel: Compari-
son between the radial-velocity evolution predicted from the combined
Gaia astrometric-spectroscopic binary model (blue solid line) and the
epoch radial velocities measured with the Gaia RVS instrument (black
filled circles), and ground-based measurements for Gaia BH3. Bottom
panel: Radial-velocity residuals with respect to the binary solution com-
pared with the 1-0 uncertainty of the predicted radial-velocity evolution
(blue shaded area). The vertical dot-dashed line in both panels marks the
time of the periastron passage.

seen in Fig. 3. This result confirms the reality and accuracy of
the orbital solution derived from Gaia data.

2.4. Stellar parameters, abundances and Galactic orbit

We derived new stellar parameters of the luminous compo-
nent, using the Gaia DR3 photometry (G magnitude and
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Fig. 4. Gaia RVS combined spectrum of Gaia BH3, in restframe, com-
pared with the template spectrum.

Table 3. Stellar parameters of Gaia BH3 derived in this work.

Parameter Value

Ter [K] 5212 + 80
logg 2.929 + 0.003
[Fe/H] -2.56+0.11
[a/Fe] 0.43 +0.12
[M/H] -2.21+0.15
log(Ly/Lo) 1.208 + 0.030
M, [Ms] 0.76 + 0.05
Ry [Ro] 4936 +0.016
Mg [mag] 1.778 + 0.082
(GBP - GRP)O [mag] 0.921 + 0.031

Ggp — Grp colour), the parallax from the combined astrometric-
spectroscopic solution, and the extinction (Ag) derived from
the dust extinction maps of Vergely et al. (2022), with an iter-
ative procedure described in Appendix D. The UVES spec-
trum was used to determine the metallicity and abundances (see
Appendix E). We then compared the extinction-corrected abso-
lute G magnitude (Mgyp) and the dereddened colour (Gpp —
Grp)o with the ones given by the isochrones libraries PARSEC
(Bressan et al. 2012) and BaSTI (Pietrinferni et al. 2021). Thus,
we derived the mass (M, ) of the visible component. The param-
eters are reported in Table 3.

In Fig. 5, we compare the expected spectral energy distri-
bution (SED) with the Gaia XP spectrum (Carrasco et al. 2021;
De Angeli et al. 2023; Montegriffo et al. 2023) and 2MASS pho-
tometry. The agreement between the predicted SED and the Gaia
XP spectrum is very good, with the only exception of the blue
edge, where the XP spectrum is noisier.

The abundances of Gaia BH3 (reported in Appendix E) show
that the star is @-enhanced, as expected for a very metal-poor
star. There is no trace of 1*C in the spectrum and the [Ba/Fe]
is nearly solar, indicating the star has not been enriched by
material processed in the CNO cycle, as expected if it had, for
instance, accreted material from a companion star in the AGB
phase. The star has no chemical peculiarity, except an enhance-
ment of Eu ([Eu/Fe] = 0.52). Thus, it can be classified as
an r-I neutron-capture-rich star, following the classification of
Beers & Christlieb (2005).
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Fig. 5. Gaia BH3 modelled SED, compared with the Gaia XP spec-
trum and 2MASS photometry. The thin black line shows the unreddened
model, while the thick line shows the SED assuming Ay = 0.71 mag.

Using the systemic radial velocity, proper motion, position,
and distance, and assuming the Milky Way gravitational poten-
tial from McMillan (2017), we may find that the source has
a high-energy retrograde orbit> (E = -1.29 x 10° km? s72,
L, = -23x 10 kpc kms™!, L, = 1.05 x 10* kpc km s7')
in the Galaxy. Its kinematic characteristics are consistent with
those of the halo substructure known as Sequoia (Myeong et al.
2019), but are also in agreement to those of the recently dis-
covered ED-2 stream (Dodd et al. 2023; Balbinot et al. 2023),
a likely remnant of a globular cluster that was disrupted by the
Milky Way. The metallicity of Gaia BH3 is more consistent with
ED-2 ([Fe/H] = —2.6 = 0.2) than with the median metallicity of
Sequoia ([Fe/H] ~ —1.7).

3. Discussion

With an estimated mass of 0.76 +0.05 M, for the luminous com-
panion, we derived a mass of:

Mpy =32.70£0.82 M, , 4)

for the dark companion. The observed luminosity of Gaia BH3
is too low by several orders of magnitude to be compatible with
the hypothesis that the companion is a main sequence star or
even two main sequence stars in a close orbit. The estimated
mass is also too large for one neutron star or two neutron stars
in a close orbit, so we are left with the possibility of: (1) a single
BH; (2) an inner binary containing two BHs; or (3) a BH and
another compact object. Although the single BH is the simplest
explanation, the hypothesis of an inner binary of two BHs can-
not be excluded. Hayashi et al. (2023) proposed a method to test
this hypothesis by detecting radial-velocity perturbations at the
periastron. Using the Hayashi et al. (2023) formulation, we esti-
mated radial-velocity perturbations* with a maximum amplitude
of the order of 0.2 kms~!. Such perturbations are too small to be
detected in the Gaia RVS data, but can be verified with ground-
based instruments (see Nagarajan et al. 2024, for an application

3 Here we use the same conventions as in Myeong et al. (2019).

4 We use Kgorn(1 — €)77/? as perturbations level estimation, (see Sect.
2.1 in Hayashi et al. 2023), assuming an inner equal-mass binary with
a circular coplanar orbit, and a period corresponding to the maxi-
mum allowed by dynamic stability (126 days, according to Eq. (6) in
Hayashi et al. 2023).

to Gaia BH1). For the purposes of the subsequent discussion, we
have adopted the single BH hypothesis as the most likely expla-
nation.

The estimated mass of the BH in Gaia BH3 makes it the most
massive BH of stellar origin discovered in our Galaxy. It is strik-
ing that the only BH with a mass larger than 20 M, found in the
Gaia data so far is in orbit with a very metal-poor star, while such
stars make up only a tiny fraction of the stars analysed in the NSS
pipeline run (0.4% of sources which produced a binary solution
have [M/H] < -2 from DR3 GSP-Phot). Such stars also make
up a small fraction of our Galactic halo (less than 5% accord-
ing to Bonifacio et al. 2021) where this star and the majority of
metal-poor stars are located. Although we can not exclude that
this BH is the result of the merger of two less massive BHs, this
discovery strongly supports the scenario where high-mass BHs
are remnants of low-metallicity stars. The above considerations
also raise the question of the maximum metallicity value for the
formation of high-mass BHs, which in Belczynski et al. (2016)
is identified at [M/H] = —1. The much lower metallicity of Gaia
BH3 may be an indication that high-mass BHs form only at very
low metallicities rather than at moderately low ones.

An in-depth discussion of the possible formation scenarios
for this binary system is beyond the scope of the paper; never-
theless, a few aspects ought to be highlighted. As discussed in
El-Badry et al. (2023b,a), the formation of the Gaia BHI1 and
BH?2 systems as isolated binaries is unlikely. This is also true for
the recently discovered Gaia NS1 system (El-Badry et al. 2024),
composed of a high-mass neutron star and a low-metallicity
star. Given the size of their orbits, these systems should have
experienced a common-envelope phase and then a mass trans-
fer toward the light companion, which would then have resulted
in much closer orbits than the observed ones. For Gaia BH2, the
common-envelope phase could have been avoided if the BH pro-
genitor was more massive than 65 M., In the case of Gaia BH3,
the present-day minimum separation is of the order of 1000 R,
and the common-envelope phase could not have been avoided
because models predict that the BH progenitor becomes a red
supergiant even at 150 Mg (Chen et al. 2015). Similarly to Gaia
BH1 and BH2, the chemical composition of the luminous com-
ponent does not show any unusual abundance; in particular, the
absence of '*C and the observed [Ba/Fe] point toward a lack of
contamination by the BH progenitor during its evolution. The
observed enhanced Eu abundance could be due to the contam-
ination from the SN at the birth of the BH, but also due to the
medium in which the star formed. An alternative formation sce-
nario, proposed to explain the Gaia BHI and BH2 systems, is
that the BH acquired the low-mass companion via dynamical
exchange in a dense environment (see for example Rastello et al.
2023; Tanikawa et al. 2024; Di Carlo et al. 2024). Such a sce-
nario might be supported by the probable association of Gaia
BH3 with the ED-2 stream, which could be a remnant of a glob-
ular cluster (Dodd et al. 2023; Balbinot et al. 2023).

4. Conclusions

In this Letter, we present the discovery of a wide binary com-
posed of a very metal-poor giant orbiting a dark object of 33 M,
using Gaia preliminary DR4 astrometric data, corroborated by
Gaia spectroscopy. Most probably, the massive dark object is
a single black hole (BH). The 33 M, of the BH mass makes it
the most massive BH of stellar origin discovered in our Galaxy.
All Galactic BHs that reside in short-period X-ray binaries have
masses generally below 10 M, (e.g. Corral-Santana et al. 2016),
except Cyg-X1 (Mg ~ 20 M,,). Even the first two dormant BHs
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discovered by Gaia in wide astrometric orbits have masses of
about 10 M. The mass of Gaia BH3 puts it in the mass range
of the BHs discovered by gravitational waves (e.g. Abbott et al.
2023), and, in fact, it is close to the peak of the observed mass
distribution for the merging BHs (e.g. Farah et al. 2024). The
metallicity of the system supports the scenario (Belczynski et al.
2016) that the high-mass BHs observed by LIGO/Virgo/KAGRA
(Abbott et al. 2020a) are the remnants of metal-poor stars.

The discovered system, with its extremely low-mass ratio,
wide orbit, and specific chemical composition, can also provide
constraints for stellar evolution and binary models. As in the case
of the Gaia BH1 and BH2 systems, the formation scenario as an
isolated binary appears unlikely and alternative scenarios should
be considered. The BHs discovered by Gaia in wide binaries in
our Galaxy and those detected by LIGO/Virgo/KAGRA in exter-
nal galaxies (i.e. BH merger events of extremely short-period
binaries) constitute two ends of the BH population. When stud-
ied together, they can help to formulate a comprehensive view of
BH formation and the evolution of their progenitors.

Finally, the bright magnitude of the system and its relatively
small distance makes it an easy target for further observations
and detailed analyses by the astronomical community. This dis-
covery should be also seen as a preliminary teaser for the con-
tent of Gaia DR4, which will undoubtedly reveal other binary
systems hosting a BH.
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Appendix A: Astrometric processing in the NSS 4.1
run

Here, we provide the details of the Non-Single Star (NSS)
pipeline used in the preliminary run NSS 4.1, underlining this
is not the final version of the NSS pipeline for the generation of
Gaia DR4 data.

The pipeline is similar to the one used in Gaia DR3
(Halbwachs et al. 2023), with a few updates — the main dif-
ferences are in the improvement of the filters to remove spu-
rious solutions. In particular, two new filters were introduced
to remove sources which are partially resolved: the first one
filters out sources with significant scan-angle-dependent sig-
nals (Holl et al. 2023) in the G flux before attempting an astro-
metric solution; the second one removes solutions which have
periods that correspond to combinations of the Gaia spacecraft
precession frequency and the yearly frequency (see Holl et al.
2023, Sect. 4.1). These new filters allow us to relax the fil-
ters based on the significance and on @w/o, described in
Halbwachs et al. (2023), which are replaced by the following
criteria: the goodness-of-fit (GoF) must be smaller than 15, the
eccentricity error smaller than 0.2, semi-major axis significance
ap/o4, > 5, and

w/o4 > max (15,-208.02 - log(P/1 day) + 548.03) . (A.1)

The NSS 4.1 run was executed using astrometric data pro-
duced with preliminary runs (namely IDU 4.1 and AGIS 4.1)
of the Intermediate Data Update (IDU; see Fabricius et al.
2016) and the Astrometric Global Iterative Solution (AGIS; see
Lindegren et al. 2021b) pipelines. The preliminary astrometry
provided by AGIS 4.1 covers the entire range of DR4, i.e. from
JD 2456863.9385 to JD 2458869.4177, for a total of about 67
months, but only data after JD 2456941.6218 were used in the
NSS 4.1 run. The local perspective effect (Halbwachs 2009) was
not included in the model for the run NSS 4.1 and the variability-
induced mover (VIM) solutions were not attempted.

The NSS 4.1 run was executed on a list of 10450 939 sources
chosen with the following criteria: the source must be brighter
than Grys = l4mag and either G < 18 mag, an astromet-
ric renormalised unit weight error (RUWE) larger than 1.05, or
@ > 5Smas and RUWE > 0.9, and a number of visibility peri-
ods used in AGIS solution larger than 11. In order to exclude
partially resolved sources, sources with a percent of successful
Image Parameter Determination (IPD) windows with more than
one peak larger than 10% or with amplitudes of the IPD GoF ver-
sus the scan angle larger than 0.2, were excluded (see Gaia DR3
archive documentation for details on the above quantities). The
run produced a total of 1469 196 orbital solutions.

The selection function of the NSS 4.1 run is not trivial to
characterise, thus, it is not possible to estimate how common or
rare are systems like Gaia BH3. If we push Gaia BH3 to the dis-
tance corresponding to the cut in magnitude (Grys = 14 mag
would correspond to a distance of 3.3 kpc, ignoring the extinc-
tion), the semi-major axis of the orbit would be 4.8 mas, which is
still very large with respect to the precision of Gaia epoch mea-
surements at that magnitude. However, given that the DR4 time
range covers only half of the orbital period, the resulting signif-
icance could be below the acceptance thresholds. We note that
during the Gaia DR3 preparation, Gaia BH3 produced an astro-
metric acceleration solution (Halbwachs et al. 2023) and an SB1
solution (Gosset et al. 2024), which were both discarded from
the release due to a low significance, because the orbital period
was much longer than the Gaia DR3 time span and the periastron
passage was not covered by the DR3 time range.

L2, page 12 of 23

If we consider a Gaia BH3-like system but with an orbital
period similar or shorter of the DR4 time range (i.e. below 2000
days), the significance would be always higher than the accep-
tance threshold solution, with the exception of very short (<20
day) periods. We note that the NSS 4.1 is limited to periods
larger than 10 days. For binaries with shorter periods, the giant
would almost fill its Roche lobe and the source would probably
be detected as a X-ray source.

Although it has not yet been finalised, the input list for
DR4 will be significantly larger than for NSS 4.1, probably
built as the sum of a volume-limited sample and a G < 18
magnitude-limited sample, as indicated above, though without
the Grys < 14 mag criterion. The motivation for the dedicated
NSS 4.1 run and the reason for the latter criterion was the analy-
sis of the effect of a deviation of the astrometry from the assumed
single-star model on the calibration of the spectroscopic instru-
ment.

Appendix B: Gaia epoch data

Here, we describe the Gaia epoch astrometric data and epoch
radial velocities used to produce the binary solution of Gaia
BH3.

The astrometric measurements of Gaia BH3 are provided in
Table B.1. They were produced from preliminary pipelines, pro-
visional instrument models and calibrations; as a consequence
they will not be identical (but still similar) to the correspond-
ing data to be produced and published for this star with DR4.
Furthermore, the final epoch astrometry table in DR4 will con-
tain many additional details and quality diagnostics on the indi-
vidual measurements. A full explanation of the epoch astrome-
try is beyond the scope of the present short appendix. We refer
the reader to the Gaia Technical Document Lindegren & Bastian
(2022) and to Lindegren et al. (2012).

Each Gaia epoch astrometry record in Table B.1 corresponds
to a transit of the source on one of the CCDs of the AF instru-
ment. The Table is arranged as follows. Col. 1: transit_id’, a
unique identifier assigned to each detected celestial light source
as its image transits the Gaia focal plane; Col. 2: AF CCD strip;
Col. 3: Barycentric time, in JD, corresponding to the middle of
the 4.41-second CCD exposure time; Col. 4: Along-scan posi-
tion of the photocentre, with its associated uncertainty, which
corresponds to the longitude of the observed photocentre in a
2D tangential coordinate system having its origin at a reference
equatorial position, and having the axis of its longitude coordi-
nate oriented corresponding to the scanning direction; Col. 5:
Parallax factor, namely, the quantity by which it is necessary
to multiply the parallax in order to obtain the contribution to
the along-scan position due to the orbit of the spacecraft with
respect to the Solar System barycentre; Col. 6: Scan angle, which
is the angle of the scanning direction with respect to local ICRS
North; Col. 7: Outlier flag, indicating whether the measurement
was considered as an outlier (flag = 1) by the NSS pipeline and
filtered out, or not (flag = 0), when solving for the astrometric-
spectroscopic combined solution.

The reference position (@g, dp), in
Lindegren & Bastian (2022), for Gaia BH3 is

the sense of

o = 294°82784900557243 , 69 = 14°930918410309376, (B.1)

while the reference time is J2017.5 (JD 2457936.875).

> A decoder for the transit_id is available on-line at https://
gaia.esac.esa.int/decoder/transitidDecoder. jsp


https://gaia.esac.esa.int/decoder/transitidDecoder.jsp
https://gaia.esac.esa.int/decoder/transitidDecoder.jsp
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Table B.1. Gaia BH3 epoch astrometry.

transit_id AF Time Along-scan position  Parallax factor Scan angle Outlier
strip [BID, TCB] [mas] [deg] flag
20114916805338633 1 2456958.110978 147.066 = 0.370 0.70827985 —59.04672662 0
20114916805338633 2 2456958.111034 146.696 + 0.231 0.70827991 -59.04677105 0
20114916805338633 3 2456958.111091 146.685 = 0.183 0.70828003 —59.04681553 0
20114916805338633 4 2456958.111156 146.557 = 0.151 0.70828015 -59.04686711 0
20114916805338633 5 2456958.111203 146.396 + 0.097 0.70828021 —59.04690435 0
20114916805338633 6 2456958.111259 146.374 + 0.088 0.70828027 —59.04694869 0
20114916805338633 7 2456958.111325 146.436 = 0.100 0.70828038 —-59.04700014 0
20114916805338633 8 2456958.111372 146.060 + 0.100 0.70828044 —59.04703723 1
20114916805338633 9 2456958.111437 146.256 +0.130 0.70828056 —59.04708855 0
20119009095238725 1 2456958.184993 146.244 + 0.364 0.70847327 -59.11055165 0
20119009095238725 2 2456958.185043 146.148 + 0.296 0.70847344 —59.11059886 0
20119009095238725 3 2456958.185105 146.192 + 0.267 0.70847368 -59.11065699 0
20119009095238725 4 2456958.185162 146.271 £ 0.225 0.70847386 -59.11070963 0
20119009095238725 5 2456958.185218 146.047 = 0.273 0.70847410 -59.11076223 0
20119009095238725 6 2456958.185274 146.068 +0.158 0.70847428 -59.11081482 0
20119009095238725 7 2456958.185330 146.023 = 0.177 0.70847452 -59.11086742 0
20119009095238725 8 2456958.185386 146.095 + 0.191 0.70847470 -59.11092003 0

Notes. The full table is available at the CDS.

Table B.2. Gaia BH3 epoch radial velocities from Gaia RVS.

transit_id Time Radial velocity
[BJD, TCB] [kms™!]

22989619581449144  2457010.096166 —338.62 + 1.42
22993711812243969  2457010.170169 —341.08 + 1.70
27565894819405940  2457092.856649 —338.73 £ 1.41
27569987068420645  2457092.930660 —340.63 +1.43
29624665178404300  2457130.091203 —335.28 +2.20
37997278005744779  2457281.508798 —330.88 +1.24
52687653750370648  2457547.177378 —-320.11 + 1.61
60072325242450363  2457680.722202 —-319.09 + 1.87
61702852954182073  2457710.207118 -315.11 £ 1.12
68202800816349412  2457827.754668 —305.82 +1.53
81052816639971536  2458060.142534  —290.29 + 1.42
82486181452083612  2458086.062277 —294.93 +1.53
82490273693622584  2458086.136278 —294.67 +1.75
100312802889225719  2458408.450948 —404.70 + 1.14
111669627072959442  2458613.834346  —399.65 + 1.21
112765863248582085 2458633.660613 —398.97 +1.10
121996985218154856  2458800.596176  —393.59 + 2.00

Notes. The table is also available at the CDS.

Epoch RVS radial velocities, reported in Table B.2, were
produced with the final pipeline, but not finalised with the post-
processing; their values or uncertainties may slightly differ from
the final DR4 values. As for the astrometry, the final epoch radial
velocity table in DR4 will contain additional details and quality
diagnostics on the individual measurements. Each epoch radial
velocity record in Table B.2 corresponds to a transit of the source
on the RVS CCDs. The provided observation time of the radial
velocity corresponds to the mean of the observation times of the
three CCDs used to collect spectra in the RVS during the transit.

A public code, illustrating the use of epoch astrometric and
radial velocity data to produce an orbital solution for Gaia BH3
is available online®.

Appendix C: Ground-based spectroscopy

Table C.1. Gaia BH3 epoch radial velocities from ground-based obser-
vations.

Instrument Time Radial velocity
[BID, UTC] [kms™']
UVES 2459158.5333  —383.20 + 0.30
HERMES  2460143.4948 —364.05 +0.20
SOPHIE 2460192.4359 -363.15 +0.02
HERMES  2460193.4833 —363.24 +0.20

We observed Gaia BH3 with the HERMES spectrograph
(Raskin et al. 2011) mounted on the 1.2-meter Mercator tele-
scope at the Roque de los Muchachos Observatory (Spain), at
two dates (17 July 2023 and 7 September 2023), taking two con-
secutive exposures of 2700 s each night. The spectra have a spec-
tral coverage from 377 to 900 nm, a resolving power of 85 000,
and a S/N ~ 43 at 520 nm.

We observed Gaia BH3 also with the SOPHIE spectrograph
(Perruchot et al. 2008) mounted on the 1.93-meter telescope of
the Observatoire de Haute-Provence (France) on 4 September
2023. The source was observed with a single exposure of 6000 s;
the spectra cover the range 387 to 694nm with a resolving
power of 40000, and have a S/N ~ 66 at 520 nm. HERMES
and SOPHIE spectra of Gaia BH3 are available on request from
the corresponding author.

A search in the ESO archive revealed that the source was
observed with the UVES spectrograph (Dekker et al. 2000)

® https://www.cosmos.esa.int/web/gaia/gaia-bhthree
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Fig. C.1. Residual intensity of the Gaia BH3 UVES spectrum in the magnesium triplet region (top panel), in the Ca1l H+K region (middle panel),

Hp (bottom-left) and Ha (bottom-right).

mounted on the VLT, on 5 November 2020, in the program
106.211J.001 proposed by T. Matsuno and collaborators. The
aim of the program was to derive a complete chemical inven-
tory of stars belonging to Galactic accretion events. The expo-
sure time of the UVES spectrum was 900 s in the 390+580 set-
ting (spectral coverage 326 to 454 nm and 476 to 684 nm) with
a slit of 0.7”, producing a resolving power of 58 000 in the blue
and 62 000 in the red and a S/N ~ 100 at 520 nm.

For HERMES and SOPHIE observations, radial velocities
were derived by computing the cross-correlation functions with
a G2 mask, while for the UVES spectrum the radial veloc-
ity was derived via template matching. The barycentric radial-
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velocity values are reported in Table C.1, and they are in good
agreement with the orbit derived from Gaia data. The spec-
tra do not show any sign of the presence of a second compo-
nent, nor any emission line. The UVES normalised spectrum
of the Gaia BH3 in selected spectral regions is shown in
Fig. C.1.

Appendix D: Derivation of stellar parameters

Here we describe the iterative procedure used to derive the stellar
parameters of the luminous component in Gaia BH3. The pro-
cedure is similar to the one adopted in Lombardo et al. (2021).
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Fig. D.1. Extinction in the direction of Gaia BH3, as function of the
distance. The extinction was derived with the maps with correlation
length of 10 pc (black solid line) and 25 pc (red dot-dashed line) from
Vergely et al. (2022); the vertical shaded region shows the distance
range of Gaia BH3.

We computed the emerging flux for a grid in Teg, logg
and [Fe/H], of 1D plane-parallel model atmospheres, using
ATLAS 9 (Castelli et al. 2003; Kurucz 2005). The fluxes were
then converted to spectral energy distributions by multiply-
ing them by a factor 4n(Ro/10pc)?, where Ry is the solar
radius, as done in Casagrande & VandenBerg (2014). All mod-
els were computed assuming [a/Fe] = 0.4. For each model, we
computed theoretical values of the color Ggp — Ggrp, the bolomet-
ric correction (BCg), and the extinction coeflicients Ag/A( and
E(Ggp — Grp)/Ay, using the average Milky Way reddening law
from Fitzpatrick et al. (2019).

The iterative procedure starts with first-guess metallicity,
temperature and gravity from Gaia DR3 values reported in
Table 1, a first-guess mass (M,) of 0.8 M, and a given redden-
ing of Ay. We use the above parameters to obtain E(Ggp — Grp)
from the grid, which is then used to obtain a dereddened Ggp —
Grp colour, (Ggp — Ggrp)o , the extinction Ag, and the bolomet-
ric correction BCg. We then compare the (Ggp — Grp)o value to
theoretical colours in the grid to derive a new effective tempera-
ture, and we use the Stefan-Boltzmann equation to derive a new
surface gravity:

(D.1)

M, Ten
1 = log—= +4log = +loggs +
ogyg og = +4log = +loggo

@
+ 0.4(G - Ag + BCg — mpo10) +2log 1000 mas

The procedure is repeated to convergence in Teg and log g which
is achieved after a few iterations. The parameters Tt and logg
are then used to derive the metallicity [Fe/H] as described in
Sect. E and the process repeated.

The T.g, logg, and [Fe/H] derived with the above proce-
dure depend mainly on the choice of Ay. Gaia BH3 has a low
Galactic latitude (b = -3.49°), located in a zone with a rel-
atively high gradient of Ay, according to extinction maps of
Vergely et al. (2022), as can be seen in Fig. D.1. Adopting a dis-
tance of 590.6 + 5.8 pc, we obtain Ay = 0.710f8:8‘3‘}t mag for a
correlation length of 10 pc and Ag = 0.666 +0.017 mag for a cor-
relation length of 25 pc. We thus adopted Ay = 0.71 + 0.07 mag.

An updated value for M, can be then estimated by compar-
ing the absolute G magnitude, Mg and the colour (Ggp — Grp)o
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Fig. D.2. Comparison between the position of Gaia BH3 and isochrones
in the colour-magnitude diagram. The colours of the symbols (filled
circles for BaSTI and filled squares for PARSEC), on the two isochrones
sets (12 and 14 Gyr), correspond to the stellar masses.

with the ones given by theoretical isochrones. The procedure for
the determination of stellar parameters is finally repeated with
the updated value of M,.

The value of M, depends mainly on the assumed age
and isochrone set, while it has a very small dependency
on the assumed A,. We used isochrones from both PAR-
SEC7 (Bressan et al. 2012) and BaSTI® (Pietrinferni et al. 2021)
libraries. For BaSTI, we adopt [Fe/H] = -2.5, [a/Fe] = 0.4
and [M/H] = -2.18, while for PARSEC isochrones, which
are only available with no a-enhancement, we use metallicity
[Fe/H] = —-2.18, i.e. we scale the [Fe/H] to match the [M/H]
of BaSTTI isochrones and take into account the contribution of
a-elements to the total metallicity (e.g. Salaris et al. 1993). The
comparison between isochrones and Gaia BH3 in the Mg ver-
sus (Ggp — Grp)o diagram is shown in Fig. D.2.

The value of M, goes from 0.758 to 0.793 M, for PARSEC
and 0.723 to 0.755 M, for BaSTI, for isochrone of ages 12
and 14 Gyr, respectively. Younger ages would result in higher
masses, but also bluer colours. We then estimate a mass M, =
0.76 £ 0.05 M, as the mass for the visible companion.

With the procedure described above, we obtain the follow-
ing parameters: T = 5211 + 80K, logg = 2.929 + 0.003,
[Fe/H] = —-2.56 + 0.12. From the MgI and CaTl abundances,
we derived an a-enhancement of [a/Fe] = 0.43 + 0.12. Using
the relation between iron content, enhancement and metallicity
from Tantalo et al. (1998), we obtain [M/H] = -2.21 + 0.15.

It can be seen that the source is slightly redder and cooler
than what is predicted by the models, albeit not significantly.
In order to check that the T4 that we determined above is not
underestimated, we derived an alternative temperature estima-
tion from the excitation equilibrium of the FeT lines, including
the NLTE corrections by Frebel et al. (2013). With this method,
we obtained T ~ 5100 K, which is even cooler, confirming that
our estimation is not underestimated. A more detailed analysis of
the stellar parameters is outside the scope of this work.

7 http://stev.oapd.inaf.it/cgi-bin/cmd
8 http://basti-iac.oa-abruzzo.inaf.it/isocs.html
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Table E.1. Abundances of Gaia BH3 from UVES spectrum.

Ton N, lines A(X) [X/H] T AX) NLTE
(D) 2) COIT.

C1 6.11 -239 0.10 0.17
Mgi1 5 546 -2.08 0.05 0.04 0.06%
Cal 20 413 -220 0.10 0.05 0.14°
Sclt 6 0.76  -2.34 0.11 0.03

Ti1 17 2.67 223 0.06 0.11

Tin 26 2.80 -2.10 0.08 0.04

Vi 3 1.34 -2.66 0.13 0.10

\Al 6 1.61 -2.39 0.07 0.03

Cr1 5 286 -2.78 0.01 0.08

Crin 3 323 -241 0.06 0.03

Mn1 7 245 292 0.04 0.04

Mn11 1 279  -2.58 0.08
Fe1 223 496 -256 0.12 0.08 0.10°
Fen 15 5.03 -249 0.13 0.01

Co1l 7 2.62 -230 0.09 0.11

Nil 18 3.68 -255 0.12 0.06
Zn1 1 222 240 .. 0.02 0.12¢
Srix 2 050 -242 0.05 0.08

Y 10 -044 -265 0.16 0.05

Zrna 6 034 228 0.12 0.05
Banr 4 -0.28 -245 0.13 0.06 -0.10°
Lan 4 -1.22 236 0.07 0.05

Eun 1 -145 -1.97 0.05

Notes. The values A(X) are expressed in the form A(X) = log(X/H) +
12, while [X/H] = log (A(X)/A(X),). The uncertainties on the abun-
dances (0a(x)) are reported as (1) line-to-line dispersion or (2) effect of
T uncertainty. NLTE corrections are from “Bergemann et al. (2017)
bMashonkina et al. (2007) ‘Bergemann et al. (2012) “Sitnova et al.
(2022) *Korotin et al. (2015)

Appendix E: Abundances

We estimated the metallicity and abundances of the luminous
component of Gaia BH3 from the UVES spectrum, which is of
higher quality than our HERMES and SOPHIE spectra.

The abundances were derived with the code MYGISFOS
(Sbordone et al. 2014), with the exception of those for C, Ba
and Eu; the carbon abundance was derived by fitting the Fraun-
hofer G-band of the CH molecule, while line-profile fitting was
used to determine Ba and Eu abundances. The resulting values
are listed in Table E.1. In the table, we provide the line-to-line
scatter and the variation of the abundance corresponding to the
uncertainty on the effective temperature. We adopted the solar
abundances for C, Fe and Eu from Caffau et al. (2011), and those
from Lodders et al. (2009) for the other elements. We derived
a value of 1.19kms™! for the micro-turbulence, by forcing the
same Fe abundance from FeT lines of different equivalent width.

We sought the non-local thermal equilibrium (NLTE) correc-
tion for MgT and CaT in Kovalev et al. (2018). For the four Mg1
lines available, we derived a NLTE correction of 0.06. Eleven
lines of Cal provided a NLTE correction of 0.15. The five Cr1
lines available in the database provide a large NLTE correction:
0.46. For the Mn 1 features, the NLTE correction is 0.54. The 67
FeTl lines available provide a mean NLTE correction of 0.1. The
NLTE effect on the ZnT line at 481 nm in Sitnova et al. (2022)
and the Ba in Korotin et al. (2015) are small (see Table E.1).

The [Fe/H] ratio we derived from the UVES spectrum
([Fe/H] = —2.56 + 0.12 from 223 FeT lines) is in perfect agree-
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Fig. E.1. Residual intensity of the Gaia BH3 UVES spectrum (black
line) compared with the modelled spectrum (thin red line) in the Eu
region.

ment with the value derived from the SOPHIE spectrum ([Fe/H]
= —2.57+0.12 from 121 Fe1lines) and from the HERMES spec-
trum ([Fe/H] = —2.54 +£ 0.14 from 156 Fe1 lines). A good agree-
ment was also obtained for the other elements, whose abundance
is based on several lines. The star, as expected for the metal-poor
regime, is enhanced in @ elements.

There is no trace of 13C in the spectrum, so the star has not
been enriched by material processed in the CNO cycle, as it
would if it had, for instance, accreted material from a companion
star in the AGB phase.

The star has no chemical peculiarity, except a slight enhance-
ment in Eu: [Eu/Fe] = 0.52. When coupled with [Ba/Fe] =
0.11, this classifies this star as an r-I neutron-capture-rich star,
following the classification of Beers & Christlieb (2005). The
UVES spectrum in the region of the Eu is shown in Fig. E.1.

According to the stellar parameters, the star is expected
to have a Li abundance on the Mucciarelli plateau (see
Mucciarelli et al. 2012). At the wavelength of the Li feature at
607 nm, we see an absorption line compatible with an abundance
of A(Li) = 1.2, but the shape is not comparable with the synthetic
spectrum, showing an absorption on the blue side of the feature.
The Li feature is also visible in the SOPHIE spectrum, but with
a lower S/N than in the UVES spectrum, while the S/N of the
HERMES spectrum at 760 nm is too low.

Appendix F: Acknowledgements

This work presents results from the European Space Agency
(ESA) space mission Gaia. Gaia data are being processed by
the Gaia Data Processing and Analysis Consortium (DPAC).
Funding for the DPAC is provided by national institutions, in
particular the institutions participating in the Gaia MultiLat-
eral Agreement (MLA). The Gaia mission website is https:
//www.cosmos.esa.int/gaia. The Gaia archive website is
https://archives.esac.esa.int/gaia.
The Gaia mission and data processing have financially been
supported by, in alphabetical order by country:
— the Algerian Centre de Recherche en Astronomie, Astro-
physique et Géophysique of Bouzareah Observatory;
— the Australian Research Council (ARC) through an Aus-
tralian Laureate Fellowship (awarded to Prof. Joss Bland-
Hawthorn);


https://www.cosmos.esa.int/gaia
https://www.cosmos.esa.int/gaia
https://archives.esac.esa.int/gaia

Gaia Collaboration: A&A, 686, L2 (2024)

— the Austrian Fonds zur Forderung der wissenschaftlichen

Forschung (FWF) Hertha Firnberg Programme through
grants T359, P20046, and P23737;

the BELgian federal Science Policy Office (BELSPO) for
the provision of financial support in the framework of
the PRODEX Programme of the European Space Agency
(ESA), the Research Foundation Flanders (Fonds Weten-
schappelijk Onderzoek) through grant VS.091.16N, the
Fonds de la Recherche Scientifique (FNRS), and the
Research Council of Katholiecke Universiteit (KU) Leuven
through grant C16/18/005 (Pushing AsteRoseismology to
the next level with TESS, GaiA, and the Sloan DIgital Sky
SurvEy — PARADISE);

the Brazil-France exchange programmes Fundacdo de
Amparo a Pesquisa do Estado de Sdo Paulo (FAPESP) and
Coordenacgdo de Aperfeicoamento de Pessoal de Nivel Supe-
rior (CAPES) - Comité Francgais d’Evaluation de la Coopéra-
tion Universitaire et Scientifique avec le Brésil (COFECUB);
the Chilean Agencia Nacional de Investigacién y Desar-
rollo (ANID) through Fondo Nacional de Desarrollo Cienti-
fico y Tecnolégico (FONDECYT) Regular Project 1210992
(L. Chemin);

the National Natural Science Foundation of China (NSFC)
through grants 11573054, 11703065, and 12173069, the
China Scholarship Council through grant 201806040200,
and the Natural Science Foundation of Shanghai through
grant 21ZR1474100;

the Tenure Track Pilot Programme of the Croatian Science
Foundation and the Ecole Polytechnique Fédérale de Lau-
sanne and the project TTP-2018-07-1171 ‘Mining the Vari-
able Sky’, with the funds of the Croatian-Swiss Research
Programme;

the Czech-Republic Ministry of Education, Youth, and
Sports through grant LG 15010 and INTER-EXCELLENCE
grant LTAUSA18093, and the Czech Space Office through
ESA PECS contract 98058;

the Danish Ministry of Science;

the Estonian Ministry of Education and Research through
grant IUT40-1;

the European Commission’s Sixth Framework Programme
through the European Leadership in Space Astrometry
(ELSA) Marie Curie Research Training Network (MRTN-
CT-2006-033481), through Marie Curie project PIOF-
GA-2009-255267 (Space AsteroSeismology & RR Lyrae
stars, SAS-RRL), and through a Marie Curie Transfer-
of-Knowledge (ToK) fellowship (MTKD-CT-2004-014188);
the European Commission’s Seventh Framework Pro-
gramme through grant FP7-606740 (FP7-SPACE-2013-1)
for the Gaia European Network for Improved data User Ser-
vices (GENIUS) and through grant 264895 for the Gaia
Research for European Astronomy Training (GREAT-ITN)
network;

the European Cooperation in Science and Technology
(COST) through COST Action CA18104 ‘Revealing the
Milky Way with Gaia (MW-Gaia)’;

the European Research Council (ERC) through grants
320360 (The Gaia-ESO Milky Way Survey), 647208 (Do
intermediate-mass black holes exist?), 687378 (Small Bod-
ies: Near and Far), 682115 (Using the Magellanic Clouds
to Understand the Interaction of Galaxies), 695099 (A sub-
percent distance scale from binaries and Cepheids — Cep-
Bin), 745617 (Our Galaxy at full HD — Gal-HD), 834148
(Accelerating Galactic Archeology), 895174 (The build-up
and fate of self-gravitating systems in the Universe), 947660

(Measuring Hubble’s Constant to 1% with Pulsating Stars
— HI1PStars), 951549 (Sub-percent calibration of the extra-
galactic distance scale in the era of big surveys — Uni-
verScale), 101004214 (Innovative Scientific Data Explo-
ration and Exploitation Applications for Space Sciences
— EXPLORE), 101004719 (OPTICON-RadioNET Pilot),
101055318 (The 3D motion of the Interstellar Medium with
ESO and ESA telescopes — ISM-FLOW), 101063193 (Evo-
lutionary Mechanisms in the Milky waY: the Gaia Data
Release 3 revolution — EMMY), 101093572 (StarDance: the
non-canonical evolution of stars in clusters) and 101135205
(HORIZON-CLA4-2023-SPACE-01-71 SPACIOUS project);
the European Science Foundation (ESF), in the framework
of the Gaia Research for European Astronomy Training
Research Network Programme (GREAT-ESF);

the European Space Agency (ESA) in the framework of
the Gaia project, through the Plan for European Cooper-
ating States (PECS) programme through contracts C98090
and 4000106398/12/NL/KML for Hungary, through contract
4000115263/15/NL/IB for Germany, through PROgramme
de Développement d’Expériences scientifiques (PRODEX)
Experiment Arrangement grants 4000132054 for Hungary,
4000142234 (Inference of radial velocities from astrometric
stellar data - ASTRO2RV) and 4000138941 (Gaia Astromet-
ric Microlensing Events - GAME) for Slovenia and through
contract 4000132226/20/ES/CM;

the Research Council of Finland through grants 336546 and
345115 and Waldemar von Frenckells stiftelse;

the French Centre National d’Etudes Spatiales (CNES), the
Agence Nationale de la Recherche (ANR) through grant
ANR-10-IDEX-0001-02 for the ‘Investissements d’avenir’
programme, through grant ANR-15-CE31-0007 for project
‘Modelling the Milky Way in the Gaia era’ (MOD4Gaia),
through grant ANR-14-CE33-0014-01 for project ‘The
Milky Way disc formation in the Gaia era’ (ARCHEOGAL),
through grant ANR-15-CE31-0012-01 for project ‘Unlock-
ing the potential of Cepheids as primary distance cali-
brators” (UnlockCepheids), through grant ANR-19-CE31-
0017 for project ‘Secular evolution of galaxies’ (SEGAL),
and through grant ANR-18-CE31-0006 for project ‘Galac-
tic Dark Matter’ (GaDaMa), the Centre National de la
Recherche Scientifique (CNRS) and its SNO Gaia of the
Institut des Sciences de 1’Univers (INSU), its Programmes
Nationaux: Cosmologie et Galaxies (PNCG), Gravitation
Références Astronomie Métrologie (PNGRAM), Planétolo-
gie (PNP), Physique et Chimie du Milieu Interstellaire
(PCMI), and Physique Stellaire (PNPS), supported by INSU
along with the Institut National de Physique (INP) and the
Institut National de Physique nucléaire et de Physique des
Particules (IN2P3), and co-funded by CNES; the ‘Action
Fédératrice Gaia’ of the Observatoire de Paris, and the
Région de Franche-Comté;

the German Aerospace Agency (Deutsches Zentrum fiir
Luft- und Raumfahrt e.V., DLR) through grants 50QG0501,

50QG0601,  50QG0602,  50QG0701,  50QG0901,
50QG1001,  50QG1101,  50QG1401,  50QG1402,
50QG1403,  50QG1404,  50QG1904,  50QG2101,

50QG2102, and 50QG2202, and the Centre for Infor-
mation Services and High Performance Computing (ZIH) at
the Technische Universitdt Dresden for generous allocations
of computer time;

the Hungarian Academy of Sciences through the
Janos Bolyai Research Scholarship (G. Marton and Z.
Nagy) and the Hungarian National Research, Develop-

L2, page 17 of 23


https://www.cosmos.esa.int/web/gaia/elsa-rtn-programme
https://gaia.ub.edu/twiki/do/view/GENIUS/
https://www.cosmos.esa.int/web/gaia/great-programme
https://www.cosmos.esa.int/web/gaia/great-programme

Gaia Collaboration: A&A, 686, L2 (2024)

ment, and Innovation Office (NKFIH) through grants
KKP-137523 (‘SeismoLab’), OTKA FK 146023 and
TKP2021-NKTA-64;

the Science Foundation Ireland (SFI) through a Royal Soci-
ety - SFI University Research Fellowship (M. Fraser);

the Israel Ministry of Science and Technology through grant
3-18143 and the Israel Science Foundation (ISF) through
grant 1404/22;

the Agenzia Spaziale Italiana (ASI) through contracts
1/037/08/0, 1/058/10/0, 2014-025-R.0, 2014-025-R.1.2015,
and 2018-24-HH.O and its addendum 2018-24-HH.1-2022
to the Italian Istituto Nazionale di Astrofisica (INAF), con-
tract 2014-049-R.0/1/2, 2022-14-HH.0 to INAF for the
Space Science Data Centre (SSDC, formerly known as the
ASI Science Data Center, ASDC), contracts 1/008/10/0,
2013/030/1.0, 2013-030-1.0.1-2015, and 2016-17-1.0 to the
Aerospace Logistics Technology Engineering Company
(ALTEC S.p.A.), INAF, and the Italian Ministry of Edu-
cation, University, and Research (Ministero dell’Istruzione,
dell’Universita e della Ricerca) through the Premiale project
‘MlIning The Cosmos Big Data and Innovative Italian Tech-
nology for Frontier Astrophysics and Cosmology’ (MITiC);
the Netherlands Organisation for Scientific Research (NWO)
through grant NWO-M-614.061.414, through a VICI grant
(A. Helmi), and through a Spinoza prize (A. Helmi), and the
Netherlands Research School for Astronomy (NOVA);

the Polish National Science Centre through HARMO-
NIA grant 2018/30/M/ST9/00311 and DAINA grant
2017/27/L/ST9/03221; the Ministry of Science and Higher
Education (MNiSW) through grant DIR/WK/2018/12; the
Polish National Agency for Academic Exchange through
BEKKER fellowship BPN/BEK/2022/1/00106;

the Portuguese Fundagdo para a Ciéncia e a Tecnologia
(FCT) through national funds, grants 2022.06962.PTDC
and 2022.03993.PTDC, and work contract DL
57/2016/CP1364/CT0006, grants  UIDB/04434/2020
and UIDP/04434/2020 for the Instituto de Astrofisica
e Ciéncias do Espago (IA), grants UIDB/00408/2020
and UIDP/00408/2020 for LASIGE, and grants
UIDB/00099/2020 and UIDP/00099/2020 for the Cen-
tro de Astrofisica e Gravitagdo (CENTRA);

the Slovenian Research Agency through grants P1-0188, P1-
0031, 10-0033, J1-8136, J1-2460 and N1-0344;

the Spanish Ministry of Economy (MINECO/FEDER,
UE), the Spanish Ministry of Science and Innovation
(MCIN), the Spanish Ministry of Education, Culture,
and Sports, and the Spanish Government through grants
BES-2016-078499, BES-2017-083126, BES-C-2017-0085,
ESP2016-80079-C2-1-R, FPU16/03827, RTI12018-095076-
B-C22, PID2021-1228420B-C22, PDC2021-121059-C22,
and TIN2015-65316-P (‘Computacién de Altas Prestaciones
VII’), the Juan de la Cierva Incorporacién Programme
(FICI-2015-2671 and 1JC2019-04862-1 for F. Anders),
the Severo Ochoa Centre of Excellence Programme
(SEV2015-0493) and MCIN/AEI/10.13039/501100011033/
EU FEDER and Next Generation EU/PRTR (PRTR-
C17.11 and CNS2022-135232); the European Union through
European Regional Development Fund ‘A way of mak-
ing Europe’ through grants PID2021-1228420B-C21 and
PID2021-125451NA-I00, the Institute of Cosmos Sciences
University of Barcelona (ICCUB, Unidad de Excelen-
cia ‘Marfa de Maeztu’) through grant CEX2019-000918-
M, the University of Barcelona’s official doctoral pro-
gramme for the development of an R+D+i project

L2, page 18 of 23

through an Ajuts de Personal Investigador en Forma-
ci6 (APIF) grant, the Spanish Virtual Observatory project
funded by MCIN/AEI/10.13039/501100011033/ through
grant PID2020-112949GB-100; the Centro de Investi-
gacién en Tecnologias de la Informacién y las Comunica-
ciones (CITIC), funded by the Xunta de Galicia through
the collaboration agreement to reinforce CIGUS research
centers, research consolidation grant ED431B 2021/36
and scholarships from Xunta de Galicia and the EU -
ESF ED481A-2019/155 and ED481A 2021/296; the Red
Espafola de Supercomputacién (RES) computer resources
at MareNostrum, the Barcelona Supercomputing Cen-
tre - Centro Nacional de Supercomputacién (BSC-CNS)
through activities AECT-2017-2-0002, AECT-2017-3-0006,
AECT-2018-1-0017, AECT-2018-2-0013, AECT-2018-3-
0011, AECT-2019-1-0010, AECT-2019-2-0014, AECT-
2019-3-0003, AECT-2020-1-0004, and DATA-2020-1-0010,
the Departament d’Innovacié, Universitats i Empresa de
la Generalitat de Catalunya through grant 2014-SGR-1051
for project ‘Models de Programacié i Entorns d’Execuci6
Parallels’ (MPEXPAR), and Ramon y Cajal Fellowships
RYC2018-025968-1, RYC2021-031683-1 and RYC2021-
033762-1, funded by MICIN/AEI/10.13039/501100011033
and by the European Union NextGenerationEU/PRTR
and the European Science Foundation (‘Investing in your
future’); the Port d’Informacié Cientifica (PIC), through
a collaboration between the Centro de Investigaciones
Energéticas, Medioambientales y Tecnolégicas (CIEMAT)
and the Institut de Fisica d’Altes Energies (IFAE),
supported by the grant EQC2021-007479-P funded by
MCIN/AEI/ 10.13039/501100011033 and by the "European
Union NextGenerationEU/PRTR), and also by MICIIN with
funding from European Union NextGenerationEU(PRTR-
C17.11) and by Generalitat de Catalunya;

the Swedish National Space  Agency
Rymdstyrelsen);

the Swiss State Secretariat for Education, Research, and
Innovation through the Swiss Activités Nationales Com-
plémentaires and the Swiss National Science Founda-
tion through an Eccellenza Professorial Fellowship (award
PCEFP2_194638 for R.I. Anderson) and in the framework
of the National Centre of Competence in Research PlanetS
under grants SINF40_182901 and 51NF40_205606;

the United Kingdom Particle Physics and Astronomy
Research Council (PPARC), the United Kingdom Science
and Technology Facilities Council (STFC), and the United
Kingdom Space Agency (UKSA) through the following
grants to the University of Bristol, Brunel University
London, the Open University, the University of Cam-
bridge, the University of Edinburgh, the University of
Hertfordshire, the University of Leicester, the Mullard
Space Sciences Laboratory of University College London,
and the United Kingdom Rutherford Appleton Laboratory
(RAL): PP/D006503/1, PP/D006511/1, PP/D006546/1,

(SNSA/

PP/D006570/1, PP/D006791/1, ST/1000852/1,
ST/J005045/1, ST/K00056X/1, ST/K000209/1,
ST/K000756/1, ST/K000578/1, ST/L002388/1,
ST/L006553/1, ST/L006561/1, ST/N000595/1,
ST/N000641/1, ST/N000978/1, ST/N001117/1,
ST/S000089/1, ST/S000976/1, ST/S000984/1,
ST/S001123/1, ST/S001948/1, ST/S001980/1,
ST/S002103/1, ST/V000624/1, ST/V000969/1,
EP/V520342/1, ST/W002469/1, ST/W002493/1,
ST/W002671/1, ST/W002809/1, ST/W507490/1,


https://svo.cab.inta-csic.es/

of:

Gaia Collaboration: A&A, 686, L2 (2024)

ST/X00158X/1, ST/X001601/1, ST/X001636/1,
ST/X001687/1,  ST/X002667/1, ST/X002683/1  and
ST/X002969/1.

The Gaia project and data processing have made use

the Set of Identifications, Measurements, and Bibliog-
raphy for Astronomical Data (SIMBAD, Wenger et al.
2000), the ‘Aladin sky atlas’ (Bonnareletal. 2000;
Boch & Fernique 2014), and the VizieR catalogue access
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TDAC) responsible for the Tycho Catalogue; and Cather-
ine Turon (Meudon, France: INCA) responsible for the
HIPPARCOS Input Catalogue (HIC);

the Tycho-2 catalogue (Hgg et al. 2000), the construction of
which was supported by the Velux Foundation of 1981 and
the Danish Space Board;

the Tycho double star catalogue (TDSC, Fabricius et al.
2002), based on observations made with the ESA
HIPPARCOS astrometry satellite, as supported by the Dan-
ish Space Board and the United States Naval Observatory
through their double-star programme;

data products from the Two Micron All Sky Survey (2MASS,
Skrutskie et al. 2006), which is a joint project of the Uni-
versity of Massachusetts and the Infrared Processing and
Analysis Center (IPAC) / California Institute of Technology,
funded by the National Aeronautics and Space Administra-
tion (NASA) and the National Science Foundation (NSF) of
the USA;

the ninth data release of the AAVSO Photometric All-Sky
Survey (APASS, Henden et al. 2016), funded by the Robert
Martin Ayers Sciences Fund;

the first data release of the Pan-STARRS survey
(Chambers et al. 2016; Magnier et al. 2020a; Waters et al.
2020; Magnier et al. 2020c,b; Flewelling et al. 2020). The
Pan-STARRS1 Surveys (PS1) and the PS1 public science
archive have been made possible through contributions by
the Institute for Astronomy, the University of Hawaii, the

2005, http://

Pan-STARRS Project Office, the Max-Planck Society and
its participating institutes, the Max Planck Institute for
Astronomy, Heidelberg and the Max Planck Institute for
Extraterrestrial Physics, Garching, The Johns Hopkins Uni-
versity, Durham University, the University of Edinburgh, the
Queen’s University Belfast, the Harvard-Smithsonian Center
for Astrophysics, the Las Cumbres Observatory Global
Telescope Network Incorporated, the National Central
University of Taiwan, the Space Telescope Science Insti-
tute, the National Aeronautics and Space Administration
(NASA) through grant NNX08AR22G issued through the
Planetary Science Division of the NASA Science Mission
Directorate, the National Science Foundation through grant
AST-1238877, the University of Maryland, Eotvos Lorand
University (ELTE), the Los Alamos National Laboratory,
and the Gordon and Betty Moore Foundation;

the second release of the Guide Star Catalogue (GSC2.3,
Lasker et al. 2008). The Guide Star Catalogue II is a joint
project of the Space Telescope Science Institute (STScI)
and the Osservatorio Astrofisico di Torino (OATo). STScl
is operated by the Association of Universities for Research
in Astronomy (AURA), for the National Aeronautics and
Space Administration (NASA) under contract NAS5-26555.
OATo is operated by the Italian National Institute for Astro-
physics (INAF). Additional support was provided by the
European Southern Observatory (ESO), the Space Telescope
European Coordinating Facility (STECF), the International
GEMINI project, and the European Space Agency (ESA)
Astrophysics Division (nowadays SCI-S);

the eXtended, Large (XL) version of the catalogue of Posi-
tions and Proper Motions (PPM-XL, Roeser et al. 2010);
data products from the Wide-field Infrared Survey Explorer
(WISE), which is a joint project of the University of
California, Los Angeles, and the Jet Propulsion Lab-
oratory/California Institute of Technology, and NEO-
WISE, which is a project of the Jet Propulsion Lab-
oratory/California Institute of Technology. WISE and
NEOWISE are funded by the National Aeronautics and
Space Administration (NASA);

the first data release of the United States Naval Obser-
vatory (USNO) Robotic Astrometric Telescope (URAT-1,
Zacharias et al. 2015);

the fourth data release of the United States Naval Obser-
vatory (USNO) CCD Astrograph Catalogue (UCAC-4,
Zacharias et al. 2013);

the sixth and final data release of the Radial Velocity Exper-
iment (RAVE DR6, Steinmetz et al. 2020a,b). Funding for
RAVE has been provided by the Leibniz Institute for Astro-
physics Potsdam (AIP), the Australian Astronomical Obser-
vatory, the Australian National University, the Australian
Research Council, the French National Research Agency,
the German Research Foundation (SPP 1177 and SFB 881),
the European Research Council (ERC-StG 240271 Galac-
tica), the Istituto Nazionale di Astrofisica at Padova, the
Johns Hopkins University, the National Science Founda-
tion of the USA (AST-0908326), the W.M. Keck founda-
tion, the Macquarie University, the Netherlands Research
School for Astronomy, the Natural Sciences and Engineer-
ing Research Council of Canada, the Slovenian Research
Agency, the Swiss National Science Foundation, the Science
& Technology Facilities Council of the UK, Opticon, Stras-
bourg Observatory, and the Universities of Basel, Groningen,
Heidelberg, and Sydney. The RAVE website is at https:
//wWww.rave-survey.org/;
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— the first data release of the Large sky Area Multi-Object
Fibre Spectroscopic Telescope (LAMOST DRI, Luo et al.
2015);

— the K2 Ecliptic Plane Input Catalogue (EPIC, Huber et al.
2016);

— the ninth data release of the Sloan Digitial Sky Survey (SDSS
DR9, Ahn et al. 2012). Funding for SDSS-III has been pro-
vided by the Alfred P. Sloan Foundation, the Participat-
ing Institutions, the National Science Foundation, and the
United States Department of Energy Office of Science. The
SDSS-III website ishttp: //www.sdss3.org/. SDSS-IIl is
managed by the Astrophysical Research Consortium for the
Participating Institutions of the SDSS-III Collaboration
including the University of Arizona, the Brazilian Participa-
tion Group, Brookhaven National Laboratory, Carnegie Mel-
lon University, University of Florida, the French Participa-
tion Group, the German Participation Group, Harvard Uni-
versity, the Instituto de Astrofisica de Canarias, the Michigan
State/Notre Dame/JINA Participation Group, Johns Hopkins
University, Lawrence Berkeley National Laboratory, Max
Planck Institute for Astrophysics, Max Planck Institute for
Extraterrestrial Physics, New Mexico State University, New
York University, Ohio State University, Pennsylvania State
University, University of Portsmouth, Princeton University,
the Spanish Participation Group, University of Tokyo, Uni-
versity of Utah, Vanderbilt University, University of Vir-
ginia, University of Washington, and Yale University;

— the thirteenth release of the Sloan Digital Sky Survey (SDSS
DR13, Albareti et al. 2017). Funding for SDSS-IV has been
provided by the Alfred P. Sloan Foundation, the United
States Department of Energy Office of Science, and the Par-
ticipating Institutions. SDSS-IV acknowledges support and
resources from the Center for High-Performance Comput-
ing at the University of Utah. The SDSS web site is https:
//www.sdss.org/. SDSS-IV is managed by the Astrophys-
ical Research Consortium for the Participating Institutions of
the SDSS Collaboration including the Brazilian Participation
Group, the Carnegie Institution for Science, Carnegie Mel-
lon University, the Chilean Participation Group, the French
Participation Group, Harvard-Smithsonian Center for Astro-
physics, Instituto de Astrofisica de Canarias, The Johns
Hopkins University, Kavli Institute for the Physics and
Mathematics of the Universe (IPMU) / University of
Tokyo, the Korean Participation Group, Lawrence Berke-
ley National Laboratory, Leibniz Institut fiir Astrophysik
Potsdam (AIP), Max-Planck-Institut fiir Astronomie (MPIA
Heidelberg), Max-Planck-Institut fiir Astrophysik (MPA
Garching), Max-Planck-Institut fiir Extraterrestrische Physik
(MPE), National Astronomical Observatories of China, New
Mexico State University, New York University, University of
Notre Dame, Observatario Nacional / MCTI, The Ohio State
University, Pennsylvania State University, Shanghai Astro-
nomical Observatory, United Kingdom Participation Group,
Universidad Nacional Auténoma de México, University of
Arizona, University of Colorado Boulder, University of
Oxford, University of Portsmouth, University of Utah, Uni-
versity of Virginia, University of Washington, University of
Wisconsin, Vanderbilt University, and Yale University;

— the second release of the SkyMapper catalogue (SkyMap-
per DR2, Onkenetal. 2019, Digital Object Identifier
10.25914/5ce60d31ce759). The national facility capability
for SkyMapper has been funded through grant LE130100104
from the Australian Research Council (ARC) Linkage
Infrastructure, Equipment, and Facilities (LIEF) programme,
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awarded to the University of Sydney, the Australian National

University, Swinburne University of Technology, the Univer-

sity of Queensland, the University of Western Australia, the

University of Melbourne, Curtin University of Technology,

Monash University, and the Australian Astronomical Obser-

vatory. SkyMapper is owned and operated by The Australian

National University’s Research School of Astronomy and

Astrophysics. The survey data were processed and provided

by the SkyMapper Team at the Australian National Univer-

sity. The SkyMapper node of the All-Sky Virtual Obser-
vatory (ASVO) is hosted at the National Computational

Infrastructure (NCI). Development and support the SkyMap-

per node of the ASVO has been funded in part by Astron-

omy Australia Limited (AAL) and the Australian Govern-
ment through the Commonwealth’s Education Investment

Fund (EIF) and National Collaborative Research Infrastruc-

ture Strategy (NCRIS), particularly the National eResearch

Collaboration Tools and Resources (NeCTAR) and the Aus-

tralian National Data Service Projects (ANDS);

— the Gaia-ESO Public Spectroscopic Survey (GES,
Gilmore et al. 2022; Randichetal. 2022). The Gaia-
ESO Survey is based on data products from observations
made with ESO Telescopes at the La Silla Paranal Observa-
tory under programme ID 188.B-3002. Public data releases
are available through the ESO Science Portal. The project
has received funding from the Leverhulme Trust (project
RPG-2012-541), the European Research Council (project
ERC-2012-AdG 320360-Gaia-ESO-MW), and the Istituto
Nazionale di Astrofisica, INAF (2012: CRA 1.05.01.09.16;
2013: CRA 1.05.06.02.07).

The GBOT programme (GBOT) uses observations collected
at (i) the European Organisation for Astronomical Research in
the Southern Hemisphere (ESO) with the VLT Survey Tele-
scope (VST), under ESO programmes 092.B-0165, 093.B-
0236, 094.B-0181, 095.B-0046, 096.B-0162, 097.B-0304,
098.B-0030, 099.B-0034, 0100.B-0131, 0101.B-0156, 0102.B-
0174, 0103.B-0165, 0104.B-0081, 0106.20ZA.001 (Omega-
Cam), 0106.20ZA.002 (FORS2), 0108.21YF; and under INAF
programs 110.256C, 112.266Q); and (ii) the Liverpool Telescope,
which is operated on the island of La Palma by Liverpool John
Moores University in the Spanish Observatorio del Roque de
los Muchachos of the Instituto de Astrofisica de Canarias with
financial support from the United Kingdom Science and Tech-
nology Facilities Council, and (iii) telescopes of the Las Cum-
bres Observatory Global Telescope Network.

In addition to the currently active DPAC (and ESA science)
authors of the peer-reviewed papers accompanying Gaia DR3,
there are large numbers of former DPAC members who made
significant contributions to the (preparations of the) data process-
ing. Among those are, in alphabetical order: Stephanie Accart,
Christopher Agard, Juan José Aguado, Michaél Ajaj, Fernando
Aldea-Montero, Alexandra Alecu, Bruno Alessi, Peter Allan,
Erance Allard, Walter Allasia, Carlos Allende Prieto, Javier
Alvarez Cid-Fuentes, Marco Antonio Alvarez, Jodo Alves,
Antonio Amorim, Kader Amsif, Alexandre Andrei, Antonino
Angi, Guillem Anglada-Escudé, Erika Antiche, Sonia Antén,
Bernardino Arcay, Clément Arnaudeau, Borja Arroyo Gal-
ende, Vladan Arsenijevic, Tri Astraatmadja, Rajesh Kumar
Bachchan, Adrien Bangma, Carlos Barata, Domenico Bar-
bato, Fabio Barblan, Paul Barklem, Mickael Batailler, Duncan
Bates, Alexandre Baudesson-Stella, Mathias Beck, Luigi Bedin,
Dan Beilis, Antonio Bello Garcia, Vasily Belokurov, Philippe
Bendjoya, Angel Berihuete, Hans Bernstein®, Olivier Bien-
aymé, Lionel Bigot, Albert Bijaoui, Louis Bil, Frangoise
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Billebaud, Nadejda Blagorodnova, Thierry Bloch, Klaas de
Boer', Marco Bonfigli, Giuseppe Bono, Simon Borgniet, Raul
Borrachero-Sanchez, Francois Bouchy, Steve Boudreault, Geral-
dine Bourda, Guy Boutonnet, Lorenzo Bramante, Pascal Branet,
Maarten Breddels, Scott Brown, Pierre-Marie Brunet, Thomas
Briisemeister, Peter Bunclark?, Roberto Buonanno, Alexandru
Burlacu, Robert Butorafuchs, Joan Cambras, Heather Campbell,
Sylvain Cannizzo, Christophe Carret, Manuel Carrillo, César
Carrién, Pau Castro Sampol, Francisco Javier Casquero, Lau-
rence Chaoul, Jonathan Charnas, Fabien Chéreau, Vincenzo
Chiaramida Mathurin Chritin, Maria-Rosa Cioni, Uma Cladel-
las Sanjuan, Marcial Clotet, Gabriele Cocozza, Ross Collins,
Gabriele Comoretto, Gabriele Contursi, Leonardo Corcione,
Grainne Costigan, Francoise Crifo, Alessandro Crisafi, Nick
Cross, Jan Cuypers', Jean-Charles Damery, Anastasios Daper-
golas, Eric Darmigny, Pedro David, Jonas Debosscher, Peter
De Cat, Domitilla De Martino, Rafael De Souza, Enrique Del
Pozo, Héctor Delgado, David Delhoume, Céline Delle Luche,
Markus Demleitner, Léo Denglos, Sékou Diakite, Paola Di Mat-
teo, Carla Domingues, Sandra Dos Anjos, Laurent Douchy,
Petros Drazinos, Pierre Dubath, Javier Duran, Yifat Dzigan,
Bengt Edvardsson, Deepak Eappachen, Sebastian Els, Arjen van
Elteren, Kjell Eriksson, Pilar Esquej, Carolina von Essen, Wyn
Evans, Guillaume Eynard Bontemps, Antonio Falcdo, Marti
Farras Casas, Jacopo Federici, Luciana Federici, Fernando de
Felice, Agnes Fienga, Krzysztof Findeisen, Christian Fischer,
Florin Fodor, Yori Fournier, Frédéric Franke, Benoit Frezouls,
Aidan Fries, Jan Fuchs, Flavio Fusi Pecci, Diego Fustes, Dun-
can Fyfe, Eva Gallardo, Silvia Galleti, Fernando Garcia, Alberto
Garcia Gutiérrez, Maria Garcia-Reinaldos, Daniele Gardiol,
Nora Garralda Torres, Emilien Gaudin, Alvin Gavel, Marwan
Gebran, Yoann Gérard, Nathalie Gerbier, Joris Gerssen, Miguel
Gomes, Roy Gomel, Anita Gémez, Ana Gonzalez-Marcos, Juan
Gonzalez-Nuiez, Juan José Gonzalez-Vidal, Eva Grebel, Michel
Grenon, Bjorn Grieger, Eric Grux, Alain Gueguen, Pierre Guill-
out, Julie Guiraud, Andrés Gurpide, Leanne Guy, Jean-Louis
Halbwachs, Marcus Hauser, Aurelien Hees, Kevin Henares,
Julien Heu, Albert Heyrovsky, Thomas Hilger, Nathan Himpens,
Natalia Htadczuk, Wilfried Hofmann, Erik Hgg, David Hogg,
Andrew Holland, Greg Holland, Gordon Hopkinson*, Claude
Huc, Pablo Huijse, Jason Hunt, Brigitte Huynh, Arkadiusz
Hypki, Giacinto Iannicola, Sergio Ibarmia, Vilma Icardi, Laura
Inno, Mike Irwin, Yago Isasi Parache, Javier Izquierdo, Maja
Jabtonska, Thierry Jacq, Asif Jan, Anne-Marie Janotto, Kevin
Jardine, Gérard Jasniewicz, Anne Jean-Antoine Piccolo, Lau-
rent Jean-Rigaud, Isabelle Jégouzo-Giroux, Christian Jezequel,
Francois Jocteur-Monrozier, Paula Jofré, Anthony Jonckheere,
Peter Jonker, Aron Juhdsz, Francesc Julbe, Antonios Karam-
pelas, Lea Karbevska, Ralf Keil, Adam Kewley, Dae-Won Kim,
Peter Klagyivik, Jochen Klar, Jonas Kliiter, Jens Knude, Angela
Kochoska, Oleg Kochukhov, Katrien Kolenberg, Indrek Kolka,
Pavel Koubsky, Janez Kos, Irina Kovalenko, Daniel Krefl, Maria
Kudryashova, Ilya Kull, Alex Kutka, Frédéric Lacoste-Seris,
Sylvain Lafosse, Valéry Lainey, Pascal Laizeau, Yannick Lasne,
Antoni Latorre, Felix Lauwaert, Claudia Lavalley, Jean-Baptiste
Lavigne, David Le Bouquin, Jean-Frangois Le Campion,
Isabelle Lecoeur-Taibi, Yann Le Fustec, Vassili Lemaitre, Hel-
mut Lenhardt, Christophe Le Poncin-Lafitte, Frédéric Leroux,
Thierry Levoir, Hans Lindstrgm, Tim Lister, Chao Liu, Mauro
Lépez Del Fresno, Davide Loreggia, Denise Lorenz, Cristina
Luengo, Ian MacDonald, Marc Madaule, Pau Madrero Pardo,
Tiago Magalhdes Fernandes, Arrate Magdaleno Romeo, Kir-
ill Makan, Valeri Makarov, Jean-Christophe Malapert, Sandrine
Managau, Hervé Manche, Carmelo Manetta, Gregory Mantelet,

José Marcos, Miguel Marcos Santos, Federico Marocco, Gabor
Marschalko, Mathieu Marseille, Christophe Martayan, Oscar
Martinez-Rubi, Michele Martino, Paul Marty, Nicolas Mary,
Davide Massari, Benjamin Massart, Gal Matijevi¢, Mohamed
Meharga, Emmanuel Mercier, Maria Messineo, Frédéric Mey-
nadier, Daniel Michalik, Anthony Michon, Shan Mignot, Hadi
Minbashian, Bruno Miranda, Laszl6 Molnar, Marco Moli-
naro, Giacomo Monari, Marc Moniez, Angel Montero, Alain
Montmory, Roger Mor, Thierry Morel, Stephan Morgenthaler,
Angelo Mulone, Ulisse Munari, Daniel Muiioz, Cillian Mur-
phy, Jérome Narbonne, Gijs Nelemans, Anne-Thérese Nguyen,
Luciano Nicastro, Sara Nieto, Thomas Nordlander, Alexandre
Nouvel, Louis Noval, Markus Nullmeier, Derek O’Callaghan,
Francisco Ocana, Pierre Ocvirk, Alex Ogden, Joaquin Ordieres-
Meré, Diego Ordonez, Giuseppe Orru, Patricio Ortiz, José
Osinde, Jose Osorio, Dagmara Oszkiewicz, Alex Ouzounis,
Hugo Palacin, Max Palmer, Aviad Panahi, Chantal Panem, Vin-
cent Papy, Peregrine Park, Ester Pasquato, Xavier Passot, Stefan
Payne-Wardenaar, Louis Pegoraro, Roselyne Pedrosa, Christian
Peltzer, Hanna Pentikdinen, Xavier Pefialosa Esteller, Jordi Per-
alta, Rubén Pérez, Jean-Marc Petit, Fabien Péturaud, Bernard
Pichon, Tuomo Pieniluoma, Anna Marina Piersimoni, Francois-
Xavier Pineau, Enrico Pigozzi, Federic Pireddu, Bertrand Plez,
Joel Poels’, Aurelian Polidoro, Eric Poujoulet, Arnaud Poulain,
Guylaine Prat, Thibaut Prod’homme, Andrej PrSa, Elena Racero,
Adrien Raffy, Silvia Ragaini, Serena Rago, Nicolas Rambaux,
Piero Ranalli, Gregor Rauw, Andrew Read, José Rebordao,
Philippe Redon, Rita Ribeiro, Ariadna Ribes Metidieri, Pas-
cal Richard, Phil Richards, Carlos Rios Diaz, Daniel Risquez,
Adrien Rivard, Clement Robin, Brigitte Rocca-Volmerange,
Maroussia Roelens, Hervé Rogues, Laurent Rohrbasser, Nico-
las de Roll, Julia Roquette, Siv Rosén, Frederic Royer, Ste-
fano Rubele, Laura Ruiz Dern, Idoia Ruiz-Fuertes, Federico
Russo, Jan Rybizki, Albert Sdez Nufez, Jests Salgado, Euge-
nio Salguero, Nik Samaras, Paula Sanchez Gayet, Victor
Sanchez Giménez, Toni Santana, Helder Savietto, Maud Segol,
Juan Carlos Segovia, Damien Segransan, Léa Sellahannadi,
Didier Semeux, [-Chun Shih, Hassan Siddiqui, Lauri Siltala,
André Silva, Helder Silva, Arturo Silvelo, Dimitris Sinachopou-
los, Christos Siopis, Riccardo Smareglia, Kester Smith, Michael
Soffel, Sergio Soria Nieto, Danuta Sosnowska, Alessandro
Spagna, Maxime Spano, Lorenzo Spina, Ulrike Stampa, Craig
Stephenson, Hristo Stoev, Vytautas StraiZys, Frank Suess, Maria
Stiveges, Elza Szegedi-Elek, Francis Tache, Jeff Tambouez,
Guy Tauran, Dirk Terrell, David Terrett, Pierre Teyssandier,
Stephan Theil, William Thuillot, Carola Tiede, Brandon Tin-
gley, KreSimir Tisani¢, Anastasia Titarenko, Jordi Torra®, Scott
Trager, Licia Troisi, Paraskevi Tsalmantza, David Tur, Stefano
Uzzi, Mattia Vaccari, Frédéric Vachier, Emmanouil Vachlas,
Marc Vaillant, Gaetano Valentini, Pau Valles, Veronique Valette,
Emmanuel van Dillen, Walter Van Hamme, Eric Van Hemelryck,
Wouter van Reeven, Mihaly Varadi, Marco Vaschetto, Jovan Vel-
janoski, Lionel Veltz, Sjoert van Velzen, Teresa Via, Yves Viala,
Jenni Virtanen, Antonio Volpicelli, Holger Voss, Viktor Votruba,
Stelios Voutsinas, Jean-Marie Wallut, Gavin Walmsley, Olivier
Wertz, Thomas Wevers, Rainer Wichmann, Mark Wilkinson,
Abdullah Yoldas, Patrick Yvard, Petar ZeCevié, Tim de Zeeuw,
Maruska Zerjal, Houri Ziaeepour, Claude Zurbach, and Sven
Zschocke.

In addition to the DPAC consortium, past and present, there
are numerous people, mostly in ESA and in industry, who have
made or continue to make essential contributions to Gaia, for
instance those employed in science and mission operations or in
the design, manufacturing, integration, and testing of the space-
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craft and its modules, subsystems, and units. Many of those will
remain unnamed yet spent countless hours, occasionally during
nights, weekends, and public holidays, in cold offices and dark
clean rooms. At the risk of being incomplete, we specifically
acknowledge, in alphabetical order, from Airbus DS (Toulouse):
Alexandre Affre, Marie-Thérese Aimé, Audrey Albert, Aurélien
Albert-Aguilar, Jeanine Alloun-Etcheberry, Hania Arsalane,
Arnaud Aurousseau, Denis Bassi, Franck Bayle, Bernard Bayol,
Pierre-Luc Bazin, Emmanuelle Benninger, Philippe Bertrand,
Jean-Bernard Biau, Francois Binter, Cédric Blanc, Eric Blonde,
Patrick Bonzom, Bernard Bories, Jean-Jacques Bouisset, Joél
Boyadjian, Isabelle Brault, Corinne Buge, Bertrand Calvel, Jean-
Michel Camus, France Canton, Lionel Carminati, Michel Car-
rie, Didier Castel, Philippe Charvet, Francois Chassat, Fab-
rice Cherouat, Ludovic Chirouze, Michel Choquet, Claude
Coatantiec, Emmanuel Collados, Philippe Corberand, Christelle
Dauga, Robert Davancens, Catherine Deblock, Eric Decourbey,
Charles Dekhtiar, Michel Delannoy, Michel Delgado, Damien
Delmas, Emilie Demange, Victor Depeyre, Isabelle Desenclos,
Christian Dio, Kevin Downes, Marie-Ange Duro, Eric Ecale,
Omar Emam, Elizabeth Estrada, Coralie Falgayrac, Benjamin
Farcot, Claude Faubert, Frédéric Faye, Sébastien Finana, Gré-
gory Flandin, Loic Floury, Gilles Fongy, Michel Fruit, Flo-
rence Fusero, Christophe Gabilan, Jérémie Gaboriaud, Cyril
Gallard, Damien Galy, Benjamin Gandon, Patrick Gareth, Eric
Gelis, André Gellon, Laurent Georges, Philippe-Marie Gomez,
José Goncalves, Frédéric Guedes, Vincent Guillemier, Thomas
Guilpain, Stéphane Halbout, Marie Hanne, Grégory Hazera,
Daniel Herbin, Tommy Hercher, Claude Hoarau le Papillon,
Matthias Holz, Philippe Humbert, Sophie Jallade, Grégory Jon-
niaux, Frédéric Juillard, Philippe Jung, Charles Koeck, Marc
Labaysse, Réné Laborde, Anouk Laborie, Jérome Lacoste-
Barutel, Baptiste Laynet, Virginie Le Gall, Julien L’Hermitte,
Marc Le Roy, Christian Lebranchu, Didier Lebreton, Patrick
Lelong, Jean-Luc Leon, Stephan Leppke, Franck Levallois,
Philippe Lingot, Laurant Lobo, Didier Loche, Céline Lopez,
Jean-Michel Loupias, Carlos Luque, Sébastien Maes, Bruno
Mamdy, Denis Marchais, Alexandre Marson, Benjamin Massart,
Rémi Mauriac, Philippe Mayo, Caroline Meisse, Hervé Mer-
cereau, Olivier Michel, Florent Minaire, Xavier Moisson, David
Monteiro, Denis Montperrus, Boris Niel, Cédric Papot, Jean-
Francois Pasquier, Gareth Patrick, Pascal Paulet, Martin Pec-
cia, Sylvie Peden, Sonia Penalva, Michel Pendaries, Philippe
Peres, Grégory Personne, Dominique Pierot, Jean-Marc Pillot,
Lydie Pinel, Fabien Piquemal, Vincent Poinsignon, Maxime
Pomelec, André Porras, Pierre Pouny, Severin Provost, Sébastien
Ramos, Fabienne Raux, Audrey Rehby, Florian Reuscher,
Xavier Richard, Nicolas Riguet, Mickael Roche, Gilles Rougier,
Bruno Rouzier, Stephane Roy, Jean-Paul Ruffie, Frédéric Safa,
Heloise Scheer, Claudie Serris, André Sobeczko, Jean-Francois
Soucaille, Romain Suze, Philippe Tatry, Théo Thomas, Pierre
Thoral, Dominique Torcheux, Vincent Tortel, Damien Tourbez,
Stephane Touzeau, Didier Trantoul, Cyril Vétel, Jean-Axel
Vatinel, Jean-Paul Vormus, and Marc Zanoni; from Airbus DS
(Friedrichshafen): Jan Beck, Frank Blender, Volker Hashagen,
Armin Hauser, Bastian Hell, Cosmas Heller, Matthias Holz,
Heinz-Dieter Junginger, Klaus-Peter Koeble, Karin Pietroboni,
Ulrich Rauscher, Rebekka Reichle, Florian Reuscher, Ari-
ane Stephan, Christian Stierle, Riccardo Vascotto, Christian
Hehr, Markus Schelkle, Rudi Kerner, Udo Schuhmacher, Peter
Moeller, Rene Stritter, Jiirgen Frank, Wolfram Beckert, Eve-
lyn Walser, Steffen Roetzer, Fritz Vogel, and Friedbert Zilly;
from Airbus DS (Stevenage): Mohammed Ali, Bill Bental, David
Bibby, Leisha Carratt, Veronica Carroll, Clive Catley, Patrick
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Chapman, Christoper Chetwood, Alison Colegrove, Tom Cole-
grove, Andrew Davies, Denis Di Filippantonio, Andy Dyne,
Alex Elliot, Omar Emam, Colin Farmer, Steve Farrington, Nick
Francis, Albert Gilchrist, Brian Grainger, Yann Le Hiress, Vicky
Hodges, Jonathan Holroyd, Haroon Hussain, Roger Jarvis,
Lewis Jenner, Steve King, Chris Lloyd, Neil Kimbrey, Alessan-
dro Martis, Bal Matharu, Karen May, Florent Minaire, Kather-
ine Mills, James Myatt, Chris Nicholas, Paul Norridge, David
Perkins, Michael Pieri, Matthew Pigg, Angelo Povoleri, Robert
Purvinskis, Phil Robson, Julien Saliege, Satti Sangha, Paramijt
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