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Abstract—The entropy rate of a random process shows how the
entropy of the sequence grows with time. The entropy rate can be
used to estimate the complexity of a random process. In this paper,
the entropy rate of multiple, intermittent frequency hopping (FH),
stationary, and Markov model (MM) random process sources, is
presented in a closed form. Also, an upperbound of the entropy
rate of the multiple hidden Markov model (HMM) sequences
corresponding to the multiple MM sources is presented.

Index Terms—entropy rate, frequency hopping, intermittent,
Markov, hidden Markov.

I. INTRODUCTION

In the current paper, a multiple-access network system model
used in [1] is considered where multiple, intermittent FH,
stationary, and Markov random process sources are accessing.
However, the research in the current paper is different from
the one in [1], which studied sparse recovery of intermittent
frequency hopping signals aided by direction of arrival angle.
In the current paper, the entropy rate defined in [2], is derived
mathematically for the multiple, intermittent FH, and stationary
Markov random process sources used in [1]. The entropy rate is
the time density of the average information in a random process.
The entropy rate can be used to estimate the complexity of a
random process [3].

II. SYSTEM MODEL

The frequency hopping is a repeated switching of frequencies
during radio transmission according to a specified algorithm
(e.g., a uniform FH in this paper), to minimize unauthorized
interception or jamming of telecommunications. In addition,
a radio transmission system including many radio transmitters
using FH carriers intermittently transmits, e.g., indicative very
short messages of status of sensors associated with the trans-
mitters [1]. In operation, a time interval generator included in
a transmitter generates pulses activating the transmitter at time
intervals according to a predetermined algorithm (e.g., a first-
order Markov model (MM) in this paper). When activated, the
transmitter transmits a message at one (in this paper) or several
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different frequencies. The frequencies are changed according
to a predetermined algorithm and preferably differ for each
subsequent transmission [1].

Figure 1 shows a random walk diagram for a single-source
intermittent FH sequence activity [1]. The source hops from
its current frequency to another frequency uniformly every
hop time interval, and then the source transmits its signals
intermittently by following the MM process.

Fig. 1: Intermittent FH random walk with uniform FH prob-
ability 1/Nf, e.g., Ny = 3 and stationary Markov transition
matrix Ala;;], 3,5 =0,1 [1].

Figure 2 shows an example of intermittent FH sequences
X (n) versus hop time interval for source S in red color, and
for source Sy in black color. In Figs. 1 and 2, Ny and N, denote
the number of FH frequencies and the number of sources, re-
spectively. Also, {f1, fa,...fn,} and {S1, S2, ..., SN, } denote,
respectively, the corresponding sets of FH frequencies and the
sources. In the current paper, the FH frequency of source [ hops
to frequency f; with uniform probability 1/Ny, ¢ =1, ..., Ny,
Il = 1,...,Ns at a hop time, and then source [ determines
its intermittent transmission activity at sample time n using
a stationary MM [2]. This is referred to as an intermittent
FH frequency. Multiple samples or one sample per hop can
be considered during a hop interval. Let S(n) represent the
common stationary Markov switching process at sample time
n for all source S;, [ =1,..., Ng:
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where the hopped frequency f; is used and signals are trans-
mitted when the switch is ON, and the not-hopped frequency
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Fig. 2: Intermittent FH sequences X(n) of sources S; and Sy
with independent stationary Markov transition matrix Ala;],
i,7=0,1[1].

fc is used and signals are not transmitted when the switch is
OFF.

Let a;; denote the transition probability Pr[S(n + 1) =
jlS(n) = i] from the current state S(n) = ¢ to the next state
S(n+ 1) = j in the stationary MM process, 4,j = 0, 1 for all
sources [, [ =1, ..., N,.

Then, the MM stationary state probabilities can be written
as [2] [Equation (4.8) on Page 73]

_ amamtllo it S(n) =1
Pr(S(n)) = { a—i_o if S(n)= 0}
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Let X(n) £ (X1(1),..., X1(n), ..., Xn.(1), ..., Xn.(n)) de-
note the multiple-source, joint, intermittent FH frequency sig-
nals at sampling time n when all sources transmit their in-
termittent FH signals independently by following the common
Markov model process in (1).

The Shannon entropy in [2] [Equation (2.3) on Page 14] is
employed, i.e., the entropy of a random variable X is given
by H(X) £ Ex [log(zﬁ(x))}, where px (X) is the probability
mass (or density) function, and Fx[X] is the expectation of
a random variable X with respect to px(X). In the next
section, the Shannon entropy rate of the multiple-source joint
intermittent FH random process X(n) will be derived.

III. ENTROPY RATE OF JOINT INTERMITTENT FH
SEQUENCE

About the entropy rate of multiple-source, joint, intermittent
FH sequence, the following theorem is stated:

Theorem 1. The joint entropy rate of multiple-source and
intermittent FH sequences with each source of a Markov model

activity Ala;;] 4,5 = 0,1, can be written as
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where N, and N; are, respectively, the number of sources
and the number of FH frequencies, and a;; is the MM state
transition probability: a;; = Pr(S(n+1) = j|S(n) = 1) with
S(n) in (1).

Proof. The proof is completed through subsections A and B. In
subsection A, the entropy rate of a single-source intermittent FH
source is derived. In subsection B, the entropy rate of multiple-
source, joint, and intermittent FH sequences is derived. ||

with transition probability bj; =
|S(n) = j) where S(n) is an MM of Ala; ;]

An operator at each sample time n in Fig. 3 observes whether
a hopped frequency f; is active or inactive. Let S(n) (not X (n))
and Z(n) represent, respectively, the input and output random
process of this observation operator with transition probability
bjr = Pr(Z(n) = k|S(n) = j), j,k = 0,1. The S(n)
is the true intermittent FH activity, and Z(n) is an observed
intermittent FH activity. The Z(n) is a hidden Markov model
(HMM) process. In subsection C, after the proof of Theorem
1, an upper bound of the entropy rate for the HMM process
Z(n) will be derived.

A. Single Source Intermittent FH Entropy Rate

Theorem 2. The entropy rate H(X) of a single-source inter-
mittent FH frequency sequence X (n) is equal to
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Proof. The entropy rate H(X) is equal to the conditional
entropy rate H'(X) £ lim H(X(n)|X(n—1),...,X(1)) from
Theorem 4.2.1 in [2] because X (n) is a stationary and MM pro-
cess. Furthermore, H'(X) = ILm H(X(n)|X(n—1)) because
X (n) is a first-order Markozl f))?ocess. In the current paper,
only the first-order MM is considered. Moreover, the entropy
rate H(X) is equal to the conditional entropy H (X (2)|X (1))
because X (n) is stationary. Hence, H(X(2)|X (1)) can be
written as
H(X =fi)Pr(X(1)=f:) ()

ZH

Let p1; denote the probability that X (n) = f; at sample time
n. Then, u; = Pr(X (1) = f;) because X (n) is stationary. The
conditional entropy in (5) can be rewritten as

imZﬂ

X 1og(Pr( (2) =

H(X(2) = fi1X(1) = fi)

fi1X (1) = fi)-
(6)

From the total probability,

pi = Pr(X(n) = filS(n) = 1)Pr(S(n) =1)
+ Pr(X(n) = filS(n) = 0)Pr(S(n) = 0)
_ Pr(X(n) = £iIS(n) = 1)Pr(S(n) = 1)
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where Pr(Xp(n) = f;) is the probability of FH activity
hopped to f; at sample time n, and Pr(X(n) = f;) is the
probability of both FH activity hopped to f; and the MM
switching activity to ON. The third equality in (7) is from
Pr(X(n) = f;|Sn) = 0)Pr(S(n) = 0) = 0, ie., the
event {X(n) = f;} given the MM OFF state {S(n) = 0}
cannot happen because X (n) should be the non-hopped carrier
frequency f. instead of an FH frequency f; if the MM switch
is OFF. The fourth equality in (7) is because of the following:
(a) the three events {X(n) = f;,S(n) = 1}, {X(n) = fi},
and {{Xn(n) = fi} N {S(n) = 1}} are equivalent, and (b)
events {X(n) = f;} and {S(n) = 1} are independent, i.e.,
the FH activity and MM switching activity are independent.
Here, {X (n) = f;} is the event {X,(n) = fi} N {S(n) = 1}.
Hence, {X(n) = fi} # {Xn(n) = f;}. Then, pup,; =
Pr{X(n) = f;} = 5 because of the uniform FH activity.
This will be proven in (13). Thus, the conditional probability

H(X(2)[X(1))=

Pr(X(2) = f;|X(1) = f;) in (6) can be rewritten as
Pr(X(2) = f;1X(1) = fi)
= Pr(X(2) = f;|X(1) = fi, [; # fi)Pr(f; # [:)
+Pr(X(2) = f;|X(1) = fi, fi = fo Pr(fi = fi)
= Pr(X(2) = f;)Pr(f; # fi)
+ Pr(X(2) = f;1X(1) = fi, f; = f) Pr(f; = fi)

= Pr((Xn(2) = £;) N (S(2) = D)) Pr(f; # fi)
+ Pr((Xn(2) = fy) (()=1)I( n(1) = fi)

N(SQA) =1), f; = fi)Pr(f; = fi)
= Pr(Xn(2) = f;)P (() 1P (fﬁéfz)
+ Pr((Xn(2) = f;) N (S(2) = DI(XK(1) = fi)
N(SQA) =1), f; = fi)Pr(f; = fi)
= Pr(Xn(2) = f;)Pr(S(2) = 1)Pr(f; # fi)
+Pr(Xn(2)=/f;)Pr(5(2)=1)[S1)=1)Pr(f;=fi)
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where the first equality is from the total probability, the second
equality from conditional independence between {X (1) = f;}
and {X(2) = f;} given {f; # f;}, the third equality from
the equivalence between {X (1) = f;} and {{X,(1) = f;} N
{S(1) = 1}} and the equivalence between {X(2) = f;} and
{{Xn(2) = f;}n{S(2) = 1}}, and the fourth equality from the
independence between the FH activity { X} (2) = f;} and MM
switching activity {S(2) = 1}. The fifth equality is from the
following: The event { f; # f;} happens with probability NI{[—;l
In this case, the conditional probability Pr(S(2) = 1|S(1) =
1) becomes Pr(S(2) = 1) = —“¢t—. If the FH frequency
f; at n = 2 and the FH frequency f; at n = 1 are the same,
ie., if {f; = f;}, then the MM switching activities S(1) and
S(2) are dependent due to the Markov chain. This event {f; =
fi} happens with probability +; L. In this case, the conditional
probability Pr(S(2) = 1|S5(1 ) 1) becomes a1;. These and
the independence between {X}(2) = f;} and {X;,(1) = f;}
are used in the fifth equality in (8). The conditional entropy in
(6) can be rewritten using (2) and (8) as
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Note that the conditional entropy in (9) can be approximated
for a sufficiently large IV as

HX@IX (D) ~ [ o] tog [Velomtaun)]

which is increasing in a logarithmic function as Ny increases.
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stationary FH probability
1,...,Ny. This is because

in,i is equal to 1/Ny for all i =

Py . Py,
[h1- - fn N, ] = [t -pnN,]  (11)
PNfl : PN.fo
by [2][Page 73], where
1
Py £ Pr[Xp(n+1) = f;|Xn(n) = fi] = N (12)
for 4,7 =1...Ny. A solution for pp; in (11) is
= = _ ! (13)
Hh1 = ... = Uh,N; = Nf'
Therefore, the proof is completed from (13). ]

B. Multiple-Source Intermittent FH Entropy Rate

When multiple intermittent FH sources are active, the joint
entropy rate can be stated as follows:

Theorem 3. The joint entropy rate of independent and iden-
tically distributed (i.i.d.) multiple-source intermittent FH se-
quences with each MM source, is equal to N times the
individual entropy rate H(X') of a single-source intermittent
FH frequency sequence X (n), i.e

H;(X) = N,H(X) (14)
where N, is the number of sources.
Proof.
Hy(X) 2 Tim H(X1(1), ..., X1(n), ..., Xn.(1), ..., Xn.(n))
n— o0 n
~ lim H(X1(1),...,X1(n))
n—o00 n
(n)|X;—1(1), ..., X;—1(n)

N
- H(Xl(].),...,Xl
+; -

Xi(n)) = NSH(X) (15)

N, 1
=> lim —~H(X(1),...
n—oo N
=1
where the entropy chain rule is used in the first equality, and
then i.i.d. source conditions are used in the second and fourth
equalities, respectively. |

Remark I: Both the entropy rate in (4) for the single-source
intermittent FH sequence X (n) and the joint entropy rate in
(14) for i.i.d. multiple-source intermittent FH sequences X(n)
are functions of MM switching parameters a; ;, 4,7 = 0,1 and
the number of FH frequencies Ny and the number of sources
N.

C. Hidden Markov Intermittent FH Entropy Rate for a Single
Source

In this subsection, single-source intermittent FH activity is
considered. The FH frequency is not estimated, but the FH
activity is observed. The activity of the source is modeled as
a binary state sequence S(n). If the source is active, i.e., one
of FH frequencies is active, then S(n) = 1, and otherwise,
S(n) = 0. Then, Z(n), which denotes ON-OFF FH activity,
becomes an HMM process, where Z(n) = 1 and Z(n) = 0
represent that the observed intermittent FH activity is ON
and OFF, respectively. Figure 3 shows the HMM model. The
conditional observation probability given S(n) is denoted as
bjr = Pr(Z(n) = k|S(n) = j), j,k = 0,1. The entropy rate
of a general HMM is not typically available in a closed form.
An upper bound of the entropy rate of the specific HMM model
Z(n) in Fig. 3 will be derived:

Theorem 4. The entropy rate H (Z) of an observed intermittent
FH activity Z(n) for a single MM source is less than or equal
to H(Z(1)), i.e.,

H(2) 2 tim CH(Z(1),... Z(n) < H(Z(1))
aio ao1
= b 16
H( Maor +aw | ao +a10) (16)
where H(«) is the entropy function, i.e.,
H(a) :alogé—i—(l—a) log (1_10[) , (17)
aij = Pr(S(n+1) = jIS(n) = i) as)
with S(n) in (1) and
bjx = Pr(Z(n) = k|S(n) = j), (19)
for i,5,k=0,1.
Proof.
Pr(Z(1)=1)=Pr(Z(1) =1|S5(1) = 0)Pr(S(1) =0)
+ Pr(Z(1) =1|S(1) = )Pr(S(1) =1)
= boy Pr(S(1) = 0) + by, Pr(S(1) = 1). (20)
From (2) and (20),
H(Z(1)) = H(Pr(Z(1) = 1))
aio ap1
= b b . 21
H(01a01+010+ 11a01+a10) @D
Then, the joint entropy can be written as
H(Z(1),...,Z(n)= +ZH ()| Z(i—1), ..., Z(1))
<> H(Z(i H(Z(1)). (22)
i=1



The chain rule is used in the first equality in (22). Then, the
fact that the conditional entropy is less than or equal to the
unconditional entropy is used in the second equality. The last
equality is from the identical probability distribution of Z (%)
and Z(j). Therefore, the proof of (16) is completed using (21)
and (22). |

Note that the Hidden Markov process Z(i) is a dependent
random process in general. For example, Z (i) = S(i) when
bjx = 0 for j # k and the input Markov process S(i) is a
dependent process. This is why the upper bound was used in
(22).

D. Joint Hidden Markov Intermittent FH Entropy Rate for
Multiple Sources

In this section, multiple-source intermittent FH activities are
considered. The activity of the lth source is modeled as a
binary state sequence Si(n), I = 1,..., N,. If the [th source
is active, then S;(n) = 1, and otherwise, S;(n) = 0. And
the observed ON-OFF FH activity is denoted by Z;(n). Then,
Z(n) becomes an HMM process where Z;(n) = 1 and
Zi(n) = 0 represent the observed intermittent FH activity
ON and OFF, respectively. Figure 3 shows the HMM model.
The conditional observation probability given S;(n) is denoted
by bk = Pr(Zi(n) = k|Si(n) = j), j,k = 0,1 for
l=1,...,Ns. An upper bound of the joint entropy rate of the
HMM Z(n) £ (Z,(1),..., Z1(n), ..., Zn.(1), ..., Zn.(n)) will
be derived:

Theorem 5. The joint entropy rate H ;(Z) of multiple observed

intermittent FH activities Z(n) for multiple MM sources is less
than or equal to NyH(Z(1)), i.e.,

1
H;(2) 2 lim —H(Z(n)) < Ny H(Z)
n—oomn,
aio ao1
=N, H|D +by—m |, 23
( ol ao1 + aio 11ao1 + a10) (3)

where H(«) is the entropy function, a;; = Pr(S(n+ 1) =
§1S(n) = i) with S(n) in (1), and b;x, = Pr(Z(n) = k|S(n) =
J)s 4,5,k =0,1.

Proof.
H;(2) = lim H(Zl(l)’n L)
+§:H(zl(1),...,zl(n)|fll( )y e Zi—1(n)
=2
1
< lim =% H(Zi(1), ..., Zi(n))
=1
N,

(24)

where the entropy chain rule is used in the first equality,
and then the property that the conditional entropy is less
than or equal to the unconditional entropy is used in the
second inequality, and the last equality is the entropy rate
definition. ]

Remark 2: Both the upper bounds of the single-source HMM
entropy rate H(Z) in (16) and the joint multiple-source HMM
entropy rate H;(Z) in (23) are functions of MM parameters
a;j, HMM parameters b; ;, 7,7 = 0,1, and the number of
sources V. However, both upper bounds are independent of the
number of hopping frequencies /Ny because the HMM model
considered in Fig. 3 depends only on the MM switching activity
S(n) (not X (n)) and observation activity Z(n).

IV. CONCLUSIONS

In this paper, the entropy rates, H(X') and H ;(X'), for single-
and multiple joint-source, intermittent FH sequences with each
source of an MM activity, were derived in closed forms. It
was found that the entropy rates are linearly increasing as
the number of sources Ny increases. In addition, the entropy
rates are increasing in a logarithmic function as the number of
FH frequencies Ny increases. Furthermore, it was found that
both entropy rates, H(X) and H;(X), are functions of the
MM switching activity parameters a; ;. Then, upper-bounds of
single- and joint multiple-source HMM entropy rates H(Z),
H;(Z2), for the observed intermittent activity sequences Z(n)
and Z(n), were derived, and found to be less than or equal
to, respectively, H(Z(1)) and NsH(Z(1)). Moreover, it was
found that both the upper bounds of H(Z) and H;(Z) are
functions of MM switching activity parameters, a; ;, the HMM
observation parameters b; ;, and the number of sources IV, but
not functions of the number of hopping frequencies N.
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