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Key Points

e Extratropical cyclone compositing shows more asymmetric cloud properties in eastern and
western sectors at McMurdo than Macquarie Island

e Simulated IWP is too low at both sectors and both sites; LWP is too high (low) at
Macquarie (McMurdo)

¢ Model radiation biases are affected by both cloud properties and synoptic dynamics (e.g.,
extratropical cyclones)

Keywords: Southern Ocean; Clouds and Radiation; Synoptic dynamics; Extratropical cyclones;
DOE MICRE and AWARE campaigns; CAM6 and EAMv1 climate models.


mailto:Minghui.diao@sjsu.edu

33

34
35
36
37
38
39
40
41
42

43
44
45
46
47
48
49
50

51

52
53
54
55
56
57
58
59
60
61
62
63
64
65

Abstract

High-latitudinal mixed-phase clouds significantly affect Earth’s radiative balance.
Observations of cloud and radiative properties from two field campaigns in the Southern Ocean
and Antarctica were compared with two global climate model simulations. A cyclone compositing
method was used to quantify “dynamics-cloud-radiation” relationships relative to the extratropical
cyclone centers. Observations show larger asymmetry in cloud and radiative properties between
western and eastern sectors at McMurdo compared with Macquarie Island. Most observed
quantities at McMurdo are higher in the western (i.e., post-frontal) than the eastern (frontal) sector,
including cloud fraction, liquid water path (LWP), net surface shortwave and longwave radiation
(SW and LW), except for ice water path (IWP) being higher in the eastern sector.

The two models were found to overestimate cloud fraction and LWP at Macquarie Island but
underestimate them at McMurdo Station. IWP is consistently underestimated at both locations,
both sectors, and in all seasons. Biases of cloud fraction, LWP, and IWP are negatively correlated
with SW biases and positively correlated with LW biases. The persistent negative IWP biases may
have become one of the leading causes of radiative biases over the high southern latitudes, after
correcting the underestimation of supercooled liquid water in the older model versions. By
examining multi-scale factors from cloud microphysics to synoptic dynamics, this work will help
increase the fidelity of climate simulations in this remote region.

Plain Language Summary

The efficacy of climate prediction is largely dependent on accurately estimating Earth’s
energy budget in global climate models. The Southern Ocean region has a distinct history of
showing large biases in energy budget within global climate models. This region also shows
complex interactions between large-scale dynamical conditions (e.g., low-pressure systems) and
microscale processes (e.g., cloud properties). This work used two field deployments at Macquarie
Island, Southern Ocean and McMurdo Station, Antarctica to understand these interactions.
Observations were obtained from year-long measurements by ground-based instruments, which
were further compared with two global climate models. The two models were found to have errors
representing cloud properties at Macquarie Island (e.g., too much liquid and too little ice) and
McMurdo Station (e.g., too little ice and liquid), as well as errors representing net surface
longwave (terrestrial) radiation and shortwave (solar) radiation. The combination of the
insufficient amounts of cloud ice and liquid in the models at McMurdo, Antarctica may be the
main cause of too much solar radiation absorbed by Earth’s surface over that region, which also
have implications for polar ice melting and ocean circulation in that remote region.
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1. Introduction

Clouds are significant modulators of the Earth’s energy balance, since they can affect the
absorbed shortwave radiation (ASR) and outgoing longwave radiation (OLR) (Liou, 1992). Clouds
over oceans have large influences on the regional radiative budget due to the sharp contrast in
albedo between the highly reflective cloud layers and the dark ocean surface (e.g., Klein &
Hartmann, 1993; Bender et al., 2011; Raschke et al., 2016). As discussed in Trenberth and Fasullo
(2010), model biases of cloud cover and radiation in the ocean-dominated Southern Hemisphere
can lead to errors in poleward energy transport and development of baroclinic eddies and storm
tracks. The future projection is also particularly sensitive to simulated cloud cover over the
Southern Ocean, since a strong relationship between projected cloud cover changes and present-
day simulated cloud cover errors were found over this region in that study. The Southern Ocean
circulation further affects sea level rise and ice melting in the southern high latitudes (Holland et
al., 2010; Bouttes et al., 2012). This is also a region that connects deep ocean water with ocean
upwelling and surface air (Marshall and Speer, 2012). The prediction of these interactive processes
among atmosphere, ocean, ice, and land in a future climate relies on accurate representations of
the surface radiation budget (e.g., Essery et al., 2003; Gleckler, 2005).

Global climate models (GCMs) have shown large sensitivities in their prediction of the
radiation budget of Earth’s climate system due to the variations in the representations of Southern
Ocean clouds (e.g., Klein et al., 2017; McCoy et al., 2014a, 2014b, 2015, 2016, 2019; Tan et al.,
2016; Terai et al., 2016; Zelinka et al., 2020). A metric used by climate models to quantify
sensitivities of Earth’s climate to the emissions of anthropogenic greenhouse gases is the
equilibrium climate sensitivity (ECS). The ECS value represents the magnitude of air temperature
rise at the Earth’s surface after the climate system reaches a new equilibrium due to an
instantaneous doubling of carbon dioxide concentrations in the atmosphere. Several studies have
shown extratropical low-level clouds play a significant role in contributing to the large variations
of ECS among numerous climate models (Collins et al., 2013; Flynn & Mauritsen, 2020; Zelinka
et al., 2020). In fact, the Intergovernmental Panel on Climate Change (IPCC) reported a large
variation of ECS by various GCMs, which is likely in the range of 1.5°C to 4.5°C in the IPCC 5th
assessment report (ARS) (IPCC ARS, 2013) and likely in the range of 2.5°C to 4.0°C in IPCC 6th
assessment report (AR6) (IPCC ARG, 2023). Thus, in order to reduce uncertainties of future
climate predictions, improved understanding of Southern Ocean cloud properties based on
observational analysis is crucial for model development.

Two specific properties of Southern Ocean clouds are the main foci of this study — the spatial
extent of clouds (i.e., represented by cloud fraction) and the cloud thermodynamic phase (reflected
by the amount of liquid and ice hydrometeors). Several previous studies have shown large
sensitivities of ECS values to the representations of mixed-phase clouds in the mid- to high
latitudes, especially to the treatment of cloud thermodynamic phases in the GCMs (e.g., Tsushima
et al. 2006; Tan et al. 2016; Bjordal et al. 2020). Cloud thermodynamic phases are highly sensitive
to temperature perturbations. A negative cloud feedback would occur when the ice phase
transitions into liquid phase (e.g., Mitchell et al., 1989; Ceppi et al., 2016). That is because liquid
phase contains high concentrations of liquid droplets, which produce higher albedo and can reflect
more solar radiation compared with ice phase, and therefore the reflected solar radiation increases
when ice transitions to liquid phase. In addition, a transition from ice to liquid has a large impact
on cloud top cooling rates in the LW and can also increase surface temperature by increasing
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surface LW radiation. Such surface warming effect via intensified LW radiation is typically a
smaller effect than the enhanced SW cooling effect for low clouds. If the total water content of
clouds remains the same, a higher amount of ice hydrometeors initially existing in clouds would
allow a larger magnitude of phase change from ice to liquid, which can partly buffer the global
warming effect induced by greenhouse gases. Therefore, the partitioning between liquid and ice
phases, which can be partly represented by LWP and IWP, can directly affect the potential change
from ice to liquid phase in clouds as temperature increases, which further leads to significant
impacts on climate sensitivities due to warming as discussed in previous studies (e.g., Tsushima
et al. 2006; Tan et al. 2016; Bjordal et al. 2020). The extensive cloud coverage over the high
southern latitudes and the large variability in their microphysical and macrophysical properties
have been previously reported in observational studies (e.g., D’Alessandro et al., 2019; Yang et
al.,2021; Yip et al., 2021; Maciel et al., 2024; D’ Alessandro et al., 2023; Desai et al., 2023), which
illustrate the inherent complexity of representing these properties in GCMs. These former studies
have examined multiple factors controlling mixed-phase cloud properties, including
thermodynamic conditions (i.e., temperature and relative humidity), dynamic conditions (e.g.,
vertical velocity), and aerosol indirect effects. One particular factor that requires more detailed
investigation is the influence of synoptic dynamical conditions on cloud macrophysical and
microphysical properties.

Extratropical cyclone activity over the Southern Ocean region has been previously
documented to affect concurrent cloud and radiation properties, such as cloud type, cover,
thickness, cloud-top height, LWP, and the radiation budget at the top of the atmosphere (e.g.,
Bodas-Salcedo et al., 2012, 2014, 2016, 2019; Williams et al. 2013; Kelleher & Grise, 2019;
Montoya Duque et. al., 2022). Previous studies developed various methods to define dynamical
regimes surrounding extratropical cyclones, known as the cyclone compositing methods, in order
to assess the cloud properties in different quadrants relative to extratropical cyclone or anticyclone
centers (Lau & Crane 1995, 1997; Naud et al., 2006, 2010; Field & Wood, 2007; Posselt et al.,
2008; Field et al., 2011). Distinctive dynamical conditions were found in two sectors — the warm
sector that is dynamically active in the frontal region, and the cold sector that is dynamically
suppressed in the post-frontal region. Thus, evaluation studies of GCMs frequently targeted the
“dynamics-cloud” relationship, which originates from the parameterizations of microscale cloud
properties in response to different thermodynamic and dynamic conditions. Using the cyclone
compositing methods, previous work showed that cloud and radiation biases in model simulations
and reanalysis data are larger in the cold sectors of the extratropical cyclones over the Southern
Ocean (Bodas-Salcedo et al. 2012, 2014; Williams et al. 2013; Naud et al. 2014).

For the evaluation of GCMs against observations, many previous studies on Southern Ocean
clouds and dynamics utilized spaceborne remote sensing observations to compare with GCM
simulations, such as using the Cloud-Aerosol Lidar and Infrared Pathfinder Satellite Observations
(CALIPSO) data to assess simulated cloud properties including cloud fraction (e.g., Bodas-
Salcedo et al., 2012, 2014; Zhang et al., 2021), optical depth (Terai et al., 2016), and
thermodynamic phase (Kay et al., 2016). Other studies used the Clouds and the Earth's Radiant
Energy System (CERES) satellite-based observations of radiative forcings to assess shortwave
cloud forcing at the top of the atmosphere (Ceppi et al., 2012; Hwang et al., 2013), and SW and
LW radiation at the top of the atmosphere (Trenberth & Fasullo, 2010). More recent studies also
evaluated GCMs from the Coupled Model Intercomparison Project 6 (CMIP6) against satellite-
based observations such as CALIPSO, CERES, Moderate Resolution Imaging Spectroradiometer
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(MODIS), and International Satellite Cloud Climatology Project (ISCCP) (e.g., Schuddeboom &
McDonald, 2021; Cesana et al., 2022; Zhao et al., 2022). On the other hand, with increasing
availability of flight campaigns over the high southern latitudes, other studies also used airborne
in-situ, ship-based, and ground-based remote sensing observations to evaluate simulated cloud
microphysical properties in various GCMs (e.g., D’ Alessandro et al., 2019; Gettelman et al., 2020;
Yang et al., 2021; Yip et al., 2021; Desai et al., 2023). When validating three satellite-based cloud
phase products against in-situ airborne observations, CALIPSO, CloudSat, and DARDAR
(raDAR/IIDAR) data do not agree with each other and show different biases of cloud phase
partitioning at various latitudes compared with in-situ observations (Wang et al., 2024). Because
of this, more studies using ground-based or airborne observations are needed to examine the
“dynamics-cloud” relationship as an independent evaluation that can complement the satellite-
based model evaluation.

In this work, unique observational datasets are obtained from ground-based remote sensing
measurements at two locations — Macquarie Island and McMurdo Station, Antarctica. These two
stations are located at the north and south side of the Southern Hemisphere storm track,
respectively (Taljaard, 1972; Hoskins & Hodges, 2005; Chapman et al., 2015). Two field
campaigns from these locations provide year-long measurements on cloud fraction, LWP, and
surface SW and LW radiation. These ground-based measurements have unique advantages
compared with spaceborne observations that retrieve radiation at the top of the atmosphere.
Satellite observations commonly have lidar signal attenuation issues when encountering opaque
liquid-containing clouds and radar blind zone at heights below 1 km above the surface, where low-
level clouds are ubiquitously seen over this region (Cesana & Chepfer, 2013; Silber et al., 2018;
Liu, 2022). In addition, the ground-based measurements of cloud fraction, LWP, and net surface
radiation are analyzed at hourly basis in this work, which is a higher frequency than the daily or
monthly averages previously used in analysis of dynamics-cloud relationships in this region (e.g.,
Govekar etal., 2011, 2014; Bodas-Salcedo et al., 2012, 2014, 2016; Williams et al., 2013; Kelleher
& Grise, 2019). These ground-based observations are uniquely poised to answer a range of science
questions: (i) What are the synoptic-scale dynamical influences on cloud and radiative properties
at Macquarie Island and McMurdo Station based on observations and what are the differences
between the two locations? (ii)) What are the model biases in dynamics-cloud-radiation
relationships as well as their individual characteristics? And (iii)) How do various controlling
factors contribute to model biases of net surface radiation? In Section 2, observation datasets and
experimental setup of simulations from two GCMs in the CMIP6 are described. Section 3
examines cloud and radiative properties as well as their relationships with extratropical cyclones
over the Southern Ocean using a cyclone compositing method. Lastly, discussions of the main
conclusions and implications for future model development are given in Section 4.

2. Observations, reanalysis data, and climate model simulations

2.1 Ground-based observations and reanalysis data over the Southern Ocean and Antarctica

The Department of Energy (DOE) Atmospheric Radiation Measurement (ARM) Macquarie
Island Cloud and Radiation Experiment (MICRE) campaign provided an extensive ground-based
observational dataset during the time period of March 1, 2016, to March 31, 2018 (Marchand et
al., 2020; McFarquhar et al., 2021). The MICRE campaign was supported by the DOE ARM
program, the Australian Antarctic Division (AAD), and the Australian Bureau of Meteorology
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(BoM), and was located on Macquarie Island at 54.5°S, 158.9°E. Climatologies of weather
conditions at MICRE have been previously investigated (Hande et al., 2012; Wang et al., 2015).
Surface observations from the MICRE campaign have been used in previous studies with a special
focus on seasonal variations of aerosols (Humpbhries et al., 2023), cloud and precipitation (Tansey
et al., 2022, 2023; Stanford et al., 2023) and radiation (Hinkelman & Marchand, 2020). A suite of
instruments was deployed in the MICRE campaign, which was listed in the overview article of
McFarquhar et al. (2021) in their Table S1. The main instruments included the DOE sky radiation
radiometers (SKYRAD), ground radiation radiometers (GNDRAD), ceilometer, microwave
radiometer, sun photometer, and a multi-filter rotating shadowband radiometer (MFRSR). A
value-added product (VAP) named as Cloud Optical Properties from the Multi-filter Shadowband
Radiometer (MFRSRCLDOD; Turner et al., 2021) provides observed cloud properties (e.g., LWP
and cloud fraction) derived from a combination of instruments, such as MFRSR, microwave
radiometer, GNDRAD, SKYRAD, and ceilometer. The cloud fraction provided in this product
represents cloud fractional sky cover over a hemispheric dome. IWP was derived from the 94 GHz
cloud radar (named as BASTA) observations (Delanoé et al., 2016; Mace and Protat, 2018) by
estimating and vertically integrating ice water content (IWC) (Hogan et al. 2006). Another VAP
product named as Radiative Flux Analysis (RADFLUXI1LONG; Riithimaki et al., 2019) compiled
radiative measurements from GNDRAD, SKYRAD, and the MFRSR. This VAP provides
estimates of surface radiation flux, including longwave broadband total downwelling and
upwelling irradiances, shortwave broadband diffuse downwelling irradiances, shortwave
broadband direct normal irradiances, and shortwave broadband total downwelling irradiances. The
quality control test and procedure of radiation measurements were described in Long and Shi (2006,
2008).

The ARM West Antarctic Radiation Experiment (AWARE) was co-funded by the US DOE
and US National Science Foundation (NSF) (Lubin et al., 2020). The second ARM mobile facility
(AMF2) was deployed from December 2015 to January 2017 at the US McMurdo Research Station
located in Ross Island, Antarctica, at 77.85°S, 166.66°E. An ARM best estimate (ARMBE) data
product (awrarmbecldradM1.cl) provides the total cloud fraction measurements. This cloud
fraction product was derived using measurements from cloud radar and micropulse lidar (Xie et
al., 2010). Solar and infrared radiation observations were used to estimate hourly mean surface
longwave and shortwave irradiances (Silber et al., 2019a). Downwelling and upwelling radiation
measurement uncertainty follows the Solar Infrared Radiation Station (SIRS) handbook,
documented in Andreas et al. (2018). We used LWP from the MWR and G-band (183 GHz) Vapor
Radiometer profiler (GVRP) when available. Note that the LWP data were missing for the entire
month of January in 2017 in AWARE since during that period, the MWR used to retrieve the LWP
was deployed in the secondary AWARE site over the West Antarctic Ice Sheet (WAIS). The Ka-
band ARM Zenith Radar (KAZR) reflectivity and (linearly interpolated) sounding temperature
measurements were used to derive IWC based on the equations for IWC retrieval (Hogan et al.,
2006). Values of IWC were then vertically integrated to derive IWP. Cloud phase observations
were derived from observations of KAZR (Widener et al., 2012) and High Spectral Resolution
Lidar (HSRL; Eloranta, 2006) based on the method from Silber et al. (2018). Radiosondes were
released twice daily at AWARE, providing temperature and water vapor partial pressure profiles.
These data can be used to derive relative humidity with respect to ice (RHice) and relative humidity
with respect to liquid (RHIliq) based on the equations of saturation vapor pressure with respect to
ice and liquid in Murphy and Koop (2005), respectively.
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The National Centers for Environmental Prediction (NCEP) — National Center for
Atmospheric Research (NCAR) reanalysis data document the 6-hourly sea level pressure variable,
with a spatial resolution of 2.5° x 2.5° globally (Kalnay et al., 1996). The sea level pressure
distributions and synoptic conditions were analyzed using the NCEP reanalysis data in 2016 and
2017, specifically targeting the ground station locations of McMurdo Station and Macquarie Island,
respectively.

2.2 Climate model simulations

Simulations of two GCMs were conducted, and the model output was used for comparisons
with observations from the MICRE and AWARE campaigns. The first global climate model is the
Community Earth System Model version 2 (CESM2) (Danabasoglu et al., 2020). Its atmosphere
component is called Community Atmosphere Model version 6 (CAM6). The CESM2/CAM®6
model is primarily developed by NCAR, and its main configuration is described as follows. The
Cloud Layers Unified by Binormals (CLUBB) scheme (Larson et al., 2002; Golaz et al., 2002a,
2002b; Bogenschutz et al., 2013) is coupled with the Morrison-Gettelman double-moment
microphysics scheme (MG2) (Gettelman & Morrison, 2015; Gettelman et al., 2015), which
contains four classes of hydrometeors: liquid droplets, ice particles, snow, and rain. A four-mode
aerosol model (MAM4) based on Liu et al. (2016) is also coupled with MG2. Radiation is
calculated in the CAMG6 simulation by the Rapid Radiative Transfer Model for General Circulation
Models (RRTMG) (Iacono et al., 2000).

This work also evaluates simulations from the DOE Energy Exascale Earth System Model
version 1 (E3SM1) (Golaz et al.,, 2019), specifically its atmosphere component — E3SM
Atmosphere Model version 1 (EAMvl) (Rasch et al., 2019). Similar to CAM6, EAMvI
incorporates the coupled MG2 and CLUBB for cloud parameterizations, and its radiation scheme
uses RRTMG. The CAM6 simulations use the default 32 sigma hybrid pressure layers and a
horizontal grid size of 0.5° latitude by 0.63° longitude. The vertical resolution of EAMv1 is the
default 72 sigma hybrid pressure layers, and its horizontal resolution is approximately 1° latitude
by 1° longitude. As for the similarities and differences between the two climate models, the
horizontal resolution for CAM6 and EAMv1 are both around 1 degree but CAM6 uses a finite
volume dynamical core, while EAMv1 uses a spectral element core. In addition, the vertical
resolution of EAMv1 (i.e., 72 vertical layers) is finer compared with CAM6 with 32 layers. The
two models share the same physical parameterizations for deep convection, shallow convection,
cloud macrophysics, and cloud microphysics, but different tuning parameters are applied. A major
difference is that the Wegener-Bergeron-Findeisen (WBF) process is scaled down by a factor of
10 in EAMv1 compared to CAM6.

For both CAM6 and EAMv1 simulations, their temperature and horizontal wind fields were
nudged towards the MERRA-2 reanalysis data, in order to focus our analyses on clouds and
radiation. The nudged simulations were run over the entire period of MICRE and AWARE
campaigns separately, with a 6-month spin-up time in each simulation. The nudging methodology
is consistent with previous studies that compare GCM output with shipborne (Desai et al., 2023),
ground-based (Yip et al., 2021) and airborne (Yang et al., 2021; Zhao et al., 2023) observations.
For the evaluation of cloud and radiative properties, the model output was saved as a single-column
output, collocated with either McMurdo Station or Macquarie Island. That is, the closest grid box
with respect to each station location was selected. Since both sites are close to the ocean, the model

7
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grids are over a mixture of land and ocean for both EAMv1 and CAM6. Another type of model
output was saved over the entire region of Southern Ocean for the purpose of evaluating simulated
synoptic conditions against the reanalysis data, specifically for sea level pressure distributions and
low-pressure system locations. The model output of cloud properties — cloud fraction, LWP and
IWP — were at 30-minute frequency, while the model output of radiative properties in SW and LW
were saved at 1-hour frequency.

Several variables were further derived to facilitate comparisons between model simulations
and observations. For the analysis of radiative properties in observations and simulations, net
surface radiation is defined as the downwelling component minus the upwelling component for
both SW and LW radiation (i.e., positive net values indicate net gain of energy). To reduce the
radiative biases in models caused by discrepancies of surface albedo, we replaced the simulated
albedo with the observed albedo for SW radiation, and re-calculated the upwelling SW radiation
component in CAM6 and EAMv1 as shown in Equation (1), where SWuyp,obs/S Wdown,obs €quals the
observed surface albedo:

_ SWup,obs
SWup,model - SWdown,model X SWy b (1)
own,oos

For comparisons of cloud properties, a threshold of cloud fraction > 10* was applied to
model output to denote in-cloud conditions, following the threshold used in previous studies
(D’Alessandro et al., 2019; Yip et al., 2021; Desai et al., 2023). Furthermore, a minimum threshold
of cloud water content (i.e., the sum of ice and liquid water content) of 10”7 g m™ was used as an
additional necessary criterion to define the in-cloud condition. A similar threshold was also used
in previous evaluation of GCM simulations (Patnaude et al., 2021; Yip et al., 2021; Maciel et al.,
2023). Lastly, observation and simulation data for cloud fraction, LWP, IWP, and radiation are all
averaged to hourly samples for direct comparisons.

3. Results

3.1 Cloud and radiative properties in MICRE and AWARE based on case studies and year-long
observations

Case studies of cloud and radiative properties are conducted for selected days during the
MICRE and AWARE campaigns (Figures 1 and 2). Both case studies feature an extratropical
cyclone track in close proximity to the respective station locations. A convective cloud system was
selected for the MICRE case study, while a low-level stratiform cloud system was selected for
AWARE case study. The case studies allow for examinations of the responses of cloud and
radiation properties to the nearby cyclones in two different types of cloud systems. A series of
variables are examined, including cloud fraction, cloud phase, LWP, IWP, and net surface
radiation. The synoptic conditions are also examined using the Worldview satellite images based
on Terra/MODIS base layer taken at 00:00 UTC on each day of the respective case study. Sea
level pressure maps at 6-hourly frequency are also shown. Both CAM6 and EAMv1 simulations
can capture the temporal variability in cloud fraction for both cases.

The case study of the MICRE campaign spans from January 12,2017, 12:00 UTC to January
15, 2017, 12:00 UTC. When examining the Worldview images and sea level pressure maps
(Figures 1a—1f), frontal cloud bands passed through the Macquarie Island shortly after 00:00 UTC

8



326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343

344
345
346
347
348
349
350
351
352
353
354
355
356
357

358
359
360
361
362
363
364
365
366
367
368
369
370

on January 13, leading to an increasing trend of cloud fraction and LWP as shown in the
observations (Figure 1g and 1j). The center of an extratropical cyclone passed by Macquarie Island
around 22:00 UTC on January 14. Both CAM6 and EAMv1 show similar increasing trends of
cloud fraction, LWP, and IWP as seen in the observations starting from 08:00 UTC January 13
(Figure 1g—1j), as part of a convective system. Based on the vertical profiles of simulated cloud
phases (Figure 1h and 11), this convective cloud has an ice layer up to 10 km, a mixed-phase layer
from surface to 6 km and a liquid layer below 2 km. However, both simulations underestimate
IWP and overestimate LWP from 18:00 UTC January 13 to 03:00 UTC January 14 (Figure 1j).
The overestimated LWP likely leads to the higher reflected SW radiation in the simulations around
that time, which results in lower net surface SW radiation in the simulations (Figure 1k). The
observations show a net gain of surface LW radiation from 08:00 to 20:00 UTC on January 13
(i.e., local nighttime 18:00 pm on January 13 to 6:00 am on January 14 in Australian Eastern
Standard Time), which is opposite to the net loss of surface LW radiation in the simulations (Figure
11). This is likely caused by the underestimation of IWP by simulations, which leads to
underestimation of the warming effect of clouds on Earth’s surface especially during local
nighttime in this case study. Comparing the sea level pressure maps between NCEP reanalysis data
and simulations, only small differences are seen in the trajectory of the low-pressure center of the
extratropical cyclone and the overall sea level pressure distributions.

The AWARE campaign case study spans from March 11, 2016, 12:00 UTC to March 14,
2016, 12:00 UTC (Figure 2). An extratropical cyclone was seen moving eastward around 60°S,
which is ~15° north of the latitudinal location of McMurdo Station (Figure 2a—2f). Similar to the
MICRE case study, the simulated sea level pressure maps show very similar synoptic conditions
to NCEP data during this three-day period. Both simulations show a low-level stratiform cloud,
similar to the thickness of a low cloud observed by the combined lidar and radar measurements
(Figure 2g—21). The vertical profiles of cloud layers show a thick liquid layer in CAM6 between
surface and 4 km and a thick mixed-phase layer in EAMv1 between 1 — 3 km that are not seen in
the observed profiles (Figure 2h and 21). CAM6 and EAMv1 both overestimate LWP from 18:00
UTC March 11 to 12:00 UTC March 12 (Figure 2j), while the simulated IWP are much lower than
the observed values. The competition of these two biases leads to simulated surface net SW being
not significantly different from the observed values (Figure 2f). Around 00:00 UTC March 13,
both simulations significantly underestimate LWP and IWP, which leads to a positive bias in net
SW and a negative bias in net LW radiation at surface.

Using monthly-averaged datasets spanning the entire campaigns, the seasonal variability of
cloud and radiative properties are contrasted among observations, reanalysis, and model
simulations (Figure 3). The differences between various datasets for monthly averaged variables
are shown in Figure S1 in the supplemental material. Figure 3 is the only analysis using monthly
averages while the rest of the tables and figures shown in the main text are based on 1-hour
resolution data. The standard deviations of variables within each month are also illustrated for each
bin. Sea level pressure values are similar between NCEP data and GCM simulations for both
MICRE and AWARE, with small differences of a few hPa to up to 5 hPa (Figure 3a and 3b). The
seasonal variability of sea level pressures is similar between MICRE and AWARE data, which
both show lower values in January and September as well as higher values in April and November.
Cloud fraction in MICRE is close to 1, while the monthly average cloud fraction in AWARE
ranges from 0.5 to 0.9 (Figure 3c and 3d). The simulated cloud fractions by CAM6 and EAMv1
are slightly higher than the observed values for the MICRE campaign (by 0.05), while the
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simulated cloud fractions by two models are lower than the observed values for AWARE (by 0.1
— 0.4). The simulated LWP by both models shows large positive biases in MICRE and small
negative biases in AWARE, except for December and January in AWARE showing positive LWP
biases (Figure 3e and 3f). For IWP biases, both models show negative IWP biases at both locations,
underestimating IWP by 0.5 — 1 order of magnitude. Based on the vertical profiles of RHice and
RHIliq from radiosonde observations and model simulations (Figure 4), CAM6 and EAMv1 show
higher RHice and RHIliq than observations for AWARE, which indicates that the lack of water
vapor supply may not explain the underestimated cloud fraction, LWP, and IWP in AWARE by
the two models. This type of comparison is limited to AWARE since radiosonde data were not
available for MICRE.

Regarding radiative biases, the seasonal variability of net surface SW radiation is clearly
seen in both observations and simulations (Figure 3i and 3j). Both simulations overestimate the
net surface SW radiation by 10 — 30 W m™ in austral spring and summer (i.e., September —
February), and show smaller biases (less than 10 W m2) for austral fall and winter (Figure S1 i
and j). For net surface LW radiation in MICRE (Figure 3k), the observations show slightly positive
net surface LW from January to April, followed by more negative LW values for the rest of the
year. Both simulations show net surface LW consistently being negative and closer to zero, with
smaller seasonal variability than the observed trend. For the AWARE campaign (Figure 31), the
simulated net surface LW values are more comparable to the observed values for most time of the
year (i.e., February to October) with relatively small negative model biases within +£10 W m. For
the austral summer in AWARE, the LW biases become positive and larger, which are up to +50
W m™ (Figure S1 k and 1). Comparing the two models, similar directions and magnitudes of biases
are seen in each variable for both sites, except for CAM6 showing slightly smaller biases in cloud
fraction and LWP for AWARE compared with EAMv1.

Overall, the main cloud biases in simulations are the positive cloud fraction and LWP biases
in MICRE, negative cloud fraction and LWP biases in AWARE, and negative IWP in both
campaigns. The dry biases of the simulations in AWARE are consistent with previous studies such
as Silber et al. (2019a), Hines et al. (2019), and Yip et al. (2021) in the McMurdo region. In the
above analyses of case studies and monthly averages during MICRE and AWARE campaigns,
correlations between model biases in cloud properties and surface radiation are seen, the
correlations of these biases with dynamical conditions will be further examined in the following
sections. Previous studies have reported that the climatology of clouds at McMurdo is strongly
influenced by mesoscale dynamics and forcing (e.g., Carrasco & Bromwich, 1993; Carrasco et al.,
2003; Jolly et al., 2018; Silber et al., 2019b). But since mesoscales are often too fine for GCMs
simulations to represent, we focus on the analysis of the role of synoptic conditions in this study.

3.2 Identifications of extratropical cyclone centers using a cyclone compositing method

The positions of extratropical cyclones (low-pressure systems) are identified using the NCEP
reanalysis data for every 6 hours in 2016 and 2017 (Figure 5). An algorithm was developed to
locate the centers of extratropical cyclones. The algorithm detects the sea level pressure minimum
at each time stamp within a £30° x 30° latitudinal and longitudinal box surrounding respective
station locations. The size of the box was selected to ensure that the locations of extratropical
cyclones are not too far away from the station location and a sufficient number of samples can be
provided. In fact, we tested several different sizes of the boxes, such as +15°x15°, £30°%30°, and
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+60°%60°, and finally chose £30°x30° surrounding each station. The sea level pressure minimum
identified represents the extratropical cyclone center. A manual inspection of the cyclone centers
was applied to verify that this algorithm can capture the eastward trajectories of cyclones. The
spatial distributions of cloud and radiation properties at each station are then analyzed relative to
the extratropical cyclone centers.

Figure 5a and 5b show the latitude and longitude distributions of extratropical cyclones for
MICRE and AWARE, respectively, with the highest number of extratropical cyclones located
around two clusters — 63°S, 180°E and 67°S, 180°E, and a secondary peak at 120°E for both sites.
The geographical locations of extratropical cyclones are similar between the two campaigns even
though they sampled different years. Both campaigns show extratropical cyclones moving
eastward and poleward, consistent with the previous study of Hoskins & Hodges (2005) which
showed that cyclonic systems spiraled poleward from lower latitudes to Antarctica. The seasonal
distributions of extratropical cyclones are displayed on geographic maps (Figures 5c—5f),
including December, January, and February (DJF), March, April, and May (MAM), June, July,
and August (JJA), and September, October, and November (SON). The locations of extratropical
cyclones using pressure output from the two model simulations are also shown in Figures S2 and
S3 in the supplemental material.

A relative coordinate system is developed to identify each station’s position relative to the
nearby extratropical cyclone centers. The “L” at (0, 0) position of this coordinate system (as shown
in Figures 6 and 7) marks the center of each extratropical cyclone. Latitudinal and longitudinal
differences between each ground station and the nearest extratropical cyclone within 6 hours are
shown as the ordinate and abscissa, respectively. Four quadrants of the relative positions of a
ground station with respect to the low-pressure system centers are defined as quadrants 1, 2, 3 and
4 (Q1 — Q4). These quadrants represent cases when a ground station is at the northeast, northwest,
southwest, and southeast side of an extratropical cyclone, respectively. The definition of four
quadrants follows the conventional definition used by previous studies of cyclone compositing,
such as a schematic map illustrated in Bodas-Salcedo et al. (2014) in their Figure 3al, and in
Tansey et al. (2022) in their Figure 1. Among the four quadrants, Q1 (northeast) is considered the
frontal region also known as the warm-air sector, as illustrated in Bodas-Salcedo et al. (2012) in
their Figure 6, and in Montoya Duque et al. (2022) in their Figure 1. Different methods have been
used to contrast different regions surrounding the extratropical cyclones. Lang et al. (2018) and
Montoya Duque et al. (2022) used the k-mean clustering techniques to separate the four quadrants
and their surrounding regions into 7 detailed categories. Bodas-Salcedo et al. (2012, 2014)
contrasted the warm (Q1) and cold sectors (Q2-4). Another study by Kelleher and Grise (2019)
developed dynamical regimes using mid-tropospheric vertical velocity (o) and estimated inversion
strength (EIS) and showed distinct differences in these variables in four quadrants surrounding
extratropical cyclones, especially between the eastern sector (Q1 and Q4) and western sector (Q2
and Q3). Their study showed that the eastern sector of the cyclone (particularly Q1 in frontal region)
is mainly associated with negative anomalies of pressure vertical velocity (i.e., ®’<0) relative to
multi-year daily mean values, indicating rising air motion on the large scale, while the western
sector of the cyclone is mainly associated with positive anomalies of vertical velocity (i.e., ®> 0),
indicating subsiding motion on the large scale. Thus, in the rest of the analysis we contrast the two
sectors of the cyclones based on their distinct differences in large-scale vertical motion.
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Vertical profiles of temperature, RHice, and RHIiq are contrasted between the western and
eastern sectors in Figure 4. In addition, distributions of the mid-tropospheric vertical velocity at
500 hPa (ws00°, defined as dPressure/dtime) are analyzed in supplemental Figure S4. Here mso0’ 1s
calculated as the daily mean anomaly by subtracting the 10-day average msoo values surrounding
each daily wsoo value. In MICRE, the eastern sector is seen to be warmer and moister and associated
with ascent motion, while the western sector is colder and drier and associated with descent motion.
The warmer and moister air in the eastern sector in MICRE is consistent with the rising air motion
seen in Kelleher and Grise (2019), and is also consistent with the advection of moist, warm air into
this sector as discussed in Field and Wood (2007) and Tansey et al. (2022). On the other hand,
AWARE shows smaller differences in mso0’ between two sectors, and its eastern sector is seen to
be warmer and drier. Comparing the distance to the low-pressure centers, MICRE is closer to the
low-pressure centers with distance less than 15° in latitude, while AWARE is farther from the low-
pressure centers with distance larger than 15° in latitude. This may explain why AWARE shows
warmer but drier air in the eastern sector, with reduced influences from cyclones. The diminishing
influences of extratropical cyclones with increasing distances are also shown in Tansey et al.
(2022).

3.3 Spatial distributions of cloud and radiation properties in a dynamic coordinate relative to the
cyclone centers

Cloud properties (i.e., cloud fraction, LWP, and IWP) and surface net radiation in SW and
LW are examined in this relative coordinate system for the entire dataset of MICRE (Figure 6) and
AWARE (Figure 7). For the MICRE campaign in Figure 6, both observations and simulations
show that the majority of cloud fraction data have values close to 1 in all four quadrants (Figure 6
column 1), consistent with the monthly average values being close to 1 shown in Figure 3c. For
the observations in AWARE, larger asymmetries between the western (i.e., Q3) and eastern (i.e.,
Q4) sector of the extratropical cyclones are seen in cloud fraction and LWP (Figure 7 bottom row)
compared with MICRE (Figure 6 bottom row), while IWP is more symmetric at both sites. Higher
LWP in the western sector (post-frontal) of the cyclones are seen in both MICRE and AWARE
observations, which is consistent with previous studies (e.g., Bauer and Del Genio, 2006; Naud et
al., 2006), since this is a cold-air region with descending air motion, often producing extensive
coverage of closed-cell cumulus with high amount of supercooled liquid water that can eventually
develop into congestus clouds.

Both CAM6 and EAMvI simulations capture similar asymmetrical distributions of cloud
fraction, LWP, and net SW and LW between two sectors of the cyclones in AWARE and MICRE,
indicating that the relationships between these properties and extratropical cyclones are well
represented in the models at both locations. In addition, both simulations are able to represent the
relatively smaller cloud fraction, LWP, and IWP at AWARE compared with MICRE. The main
cloud biases for both models are the consistent underestimation of IWP at both sites. In MICRE,
both CAM6 and EAMv1 simulations show higher LWP than the observations in two sectors
(Figure 6q). In AWARE, both models underestimate cloud fraction in the eastern sector and
underestimate LWP in two sectors. For the radiation biases, the two models show different biases
for net SW and net LW between MICRE and AWARE. That is, two models show negative biases
of both net SW and LW in MICRE and positive biases of them in AWARE. The differences in
radiation biases may be related to the variations in cloud biases between two sites, such as the
variations in cloud fraction biases and LWP biases.
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3.4 Comparisons of cloud and radiation properties in western and eastern sectors of extratropical
cyclones

To assess whether the asymmetrical or symmetrical distributions of the cloud and radiation
properties between two sectors of the cyclones are statistically significant, distributions of a series
of quantities are compared between the two regimes (i.e., the eastern sector with more frontal
influences versus the western sector with more post-frontal influences), including cloud fraction,
LWP, IWP, and net SW and LW radiation at surface. In addition, the model biases for each of
these properties are also contrasted (Table 1). Standard deviations of samples within each sector
in Tables 1 and 2 are quantified in supplemental Tables S1 and S2. The two-tail t-tests with 95%
confidence intervals are used to assess the statistical significance of their differences. The |T]|
values calculated for the t-test are listed, and those indicating statistically significant differences
between two regimes are marked in italics. Quantities with higher values in the eastern sector of
the cyclones are marked with an underscore. Overall, AWARE campaign shows that 18 out of 25
quantities have statistically significant differences between the two sides (marked with italics in
Table 1 last column). In addition, 5 out of 25 quantities in AWARE show higher values in the
eastern sector of the cyclones (marked with underscores in Table 1 last column). The observed
IWP is the only observed quantity showing no statistically significant difference between the two
sectors and also is the only observed quantity showing a higher average value in the eastern sector.

Compared with the AWARE campaign which shows significantly different cloud fraction
and LWP in two dynamic regimes based on the observations, the observed quantities in the MICRE
campaign show no statistically significant differences in them. CAMS6 also shows no statistically
significant differences in these two quantities, while EAMv1 shows a higher cloud fraction in the
western side and higher LWP in the eastern sector. Comparisons of IWP show more
inconsistencies between models and observations, with either one or both models showing the
opposite asymmetry of IWP at two sites.

The asymmetrical distributions in net SW and LW are mostly consistent between
observations and simulations for AWARE, except for CAM6 showing the opposite asymmetry for
net LW compared with observations. For MICRE, both models show the same asymmetry in net
LW as that observed, but show opposite asymmetry in net SW, i.e., the observations show higher
SW (statistically significant) in the western sector and two models show higher SW (not
statistically significant) in the eastern sector. As for model biases in SW and LW, the domain
average dSW of two models are -4.15-4.07 W m™ for MICRE and 11.65-13.16 W m™ for
AWARE. The domain averages of dLW in MICRE and AWARE are -11.63-0.37 Wm?and 1.72—
8.94 W m™, respectively. In previous model evaluation studies, the asymmetrical distributions of
model biases have been a major issue related to the severe underestimation of supercooled liquid
water in the climate models (Bodas-Salcedo et al. 2012, 2014; Williams et al. 2013; Naud et al.
2014). This is because the cold-air, post-frontal region that is dynamically suppressed provides a
favorable condition for persistent low-level clouds containing supercooled-cooled liquid water.
The fact that this model evaluation study finds more similar asymmetrical distributions in SW and
LW between models and observations in the two sectors is consistent with the model
improvements in cloud microphysics parameterizations as discussed in D’ Alessandro et al. (2019),
Yang et al. (2021) and Desai et al. (2023), i.e., the CAM6 and EAMv1 models now allow more
supercooled liquid water to occur compared with older model versions, and therefore reduce the
positive biases of net absorbed SW in the cold post-frontal sector.
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Table 2 shows another type of comparison of observed and simulated quantities in different
dynamical regimes using wsoo’. The samples are separated into two regimes, i.e., wsoo’ > 0 and
500’ < 0. As mentioned previously, the warm frontal eastern sector is more associated with ascent
motion, i.e., ®s00’ < 0, while the cold post-frontal western sector is more associated with descent
motion, i.e., ®s500” > 0 as shown in Kelleher & Grise (2019) in their Figure 3. As a result, the main
asymmetrical distributions between descending and ascending regions in Table 2 are comparable
to those seen between the western and eastern sectors in Table 1, respectively. For example, the
observations in AWARE campaign show statistically significant differences in all the quantities
between the two dynamic regimes, including cloud fraction, LWP, IWP, and net SW and LW
radiation. The observations in MICRE only show statistically significant differences in net LW
but not in other quantities. Note that the dynamical regimes of ms00” > 0 and ms00” < 0 do not fully
align with the separation between western and eastern sectors, since part of the western (eastern)
sector still shows ms00” < 0 (ws00” > 0). This likely causes the results in Tables 1 and 2 to be not
identical.

Weighted root mean square error (RMSE) is calculated for each model variable to examine
the model performance for simulating different variables (Figure 8). The weighted RMSE is
calculated as the square root of the mean differences between simulated and observed quantities,
normalized by the standard deviation of the observed quantity. Quantities with statistically
significant differences between the two sectors of the cyclones (i.e., italics in Table 1) are
illustrated with filled markers. A total of 11 out of 20 variables show statistically significant
differences between the two sectors. The markers located above and below the 1:1 line indicate
higher RMSE values in the western and eastern sector, respectively. About half of the variables
are very close to the 1:1 line, and the rest of the quantities show a similar number of points being
higher in one sector than the other. The curved thin black lines illustrate the multiplication of the
two weighted RMSE values on the two sectors of the cyclones. Markers located at the top-right
(bottom-left) corners indicate those values in simulations with larger (smaller) discrepancies
compared with the observations. Comparing the two simulations, the LWP biases of CAM6 and
EAMv1 in MICRE have the largest RMSE, followed by cloud fraction biases of AWARE and
IWP biases at both locations. In addition, CAM6 shows higher RMSE than EAMv1 for both SW
and LW AWARE, as well as higher LW and LWP biases in MICRE. The smallest model RMSE
values are seen in net SW radiation in AWARE, possibly due to the smaller solar radiation at
higher latitudes as well as relatively smaller biases of LWP in AWARE compared with MICRE.

3.5 Diagnosis of factors contributing to radiation biases in simulations

The impacts of multiple factors on the model simulations of net surface SW and LW radiation
are investigated, including cloud properties and seasonal variability. The seasonal variability of
net radiation is shown in Figures 9 and 10. Linear regressions are applied to the simulated versus
observed values, with slope values (b) and coefficient of determination (?) values shown in figure
legends. Comparing the two campaigns, the slope values of net surface SW radiation for MICRE
for all seasons are 0.894 and 0.907 for CAM6 and EAMvV1, respectively (Figure 9a and 9b), which
have larger deviation from the 1:1 line than the slope values for AWARE (0.949 and 1.007 in
Figure 9c and 9d). The 1? values of net surface SW radiation are also lower in MICRE (0.710 and
0.764 for CAM6 and EAMVI, respectively) than those in AWARE (0.780 and 0.901).
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For net surface LW radiation (Figure 10), the b values are in the range of 0.2 — 0.5 and r?
values are in the range of 0.1 — 0.5. For CAM6 and EAMvI, b values are 0.354 and 0.374 in
MICRE and 0.271 and 0.340 in AWARE; 1 values are 0.199 and 0.280 in MICRE and 0.182 and
0.313 in AWARE, respectively. The two modes seen in Figure 10c and d become one mode when
analyzing columns without cloud layers, but the two modes are still seen for cloudy-sky conditions,
suggesting that these two modes may be caused by different types of clouds. Comparing the two
models, EAMv1 shows slightly better results than CAM6 when analyzing net SW and LW
radiation in almost all seasons, with the exception of LW radiation in MICRE, where two models
show similar results. Overall, net surface LW shows larger deviation from the 1:1 line and larger
seasonality in the biases compared with net SW, consistent with monthly averages in Figure 2.

To further diagnose the effects of cloud properties on simulated radiative properties, slope b
and 1* values from linear regressions of net surface SW and LW are further shown for various
ranges of observed cloud properties (i.e., observed cloud fraction, LWP, and IWP) and model
biases in cloud properties (i.e., dCF, dLWP, and dIWP) in Table 3. For various cloud fractions,
the conditions closer to clear sky (cloud fraction < 0.1) show the highest slope and 1? values for
almost all SW and LW linear regressions at both sites, which means that both CAM6 and EAMv1
have better simulations of net surface radiation when observations are closer to clear-sky
conditions. When examining the correlations with observed LWP, better model performance (i.e.,
slope closer to 1) for both SW and LW linear regressions are seen when observed LWP are lower
than 0.05 kg m™, indicating that clouds containing smaller mass concentrations of liquid
hydrometeors tend to be represented better for their radiative effects in the two models. Similarly,
when examining the correlations with simulated biases of cloud properties, the smaller values of
dCF (within + 0.5) and dLWP (within + 0.1 kg m™) are associated with linear regression slopes
closer to one. On the other hand, for various ranges of observed IWP, the linear regressions of
model simulations do not necessarily show better results when IWP values are at a specific range.
This result may be caused by the fact that the model simulations often show negative biases in
IWP on 0.5 — 1 orders of magnitudes, which is a persistent bias regardless of the observed value.
This is corroborated by the fact that the model simulations show linear regression slopes closer to
one in the dIWP range of -0.1 to 0 kg m compared with those in the dIWP range of -0.1 to -0.5
kg m™.

The correlations between radiative biases (ASW and dLW) and cloud property biases are
examined for two sectors, including correlations with dCF, dLWP and dIWP in Figures 11 — 13,
respectively. The signs of the linear correlation slopes (positive or negative) between radiative
biases and three cloud property biases are consistent between two simulations, as well as being
consistent between two campaigns. That is, dSW is negatively correlated with dCF, dLWP, and
dIWP (Figures 11 —13 rows 1 and 3), and dLW is positively correlated with dCF, dLWP and dIWP
(rows 2 and 4). However, one should note that the r* values are very small for most linear
regressions, possibly due to other factors besides cloud biases that also contribute to the net
radiation biases. Even though the misrepresentation of cloud properties is not necessarily the same
between two sites or between the two simulations, the correlations between model biases in cloud
properties and biases in radiation are more consistent. This feature indicates that the fundamental
physical mechanisms controlling cloud-radiation relationships are similar between the two models.

Contrasting the two sectors, the stronger correlations between radiative and cloud biases (i.e.,
r? values closer 1) do not always occur in one sector compared with the other sector. In addition,
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the correlations of radiative biases with dIWP all show much lower 1 values, because the radiative
biases can be either negative or positive while dIWP show more negative values. These lower 12
values do not suggest that dIWP is not an important factor for radiative biases, but rather suggest
that simulated IWP are consistently too low than the observed values regardless of the radiative
biases, which is consistent with the findings in Table 3. The consistent low biases of IWP are also
shown in supplemental Figure S5 for the correlations between dIWP and dLWP. The figure shows
that AIWP are almost exclusively negative, while dLWP can be both positive and negative. In
addition, weak positive correlations between dIWP and dLWP are seen in both MICRE and
AWARE for both model simulations, suggesting that negative biases of dIWP do not necessarily
correlate with positive biases of dLWP. This result indicates that the lack of ice phase clouds may
partly originate from the lack of ice nucleation and/or ice growth and is not limited to errors in
phase partitioning.

An additional analysis focusing on the downwelling component of the LW radiation is shown
in Figure S6. The linear regressions between observed and simulated values for downwelling LW
radiation shows r? values closer to 1 for both MICRE and AWARE, and also show b values closer
to 1 for AWARE, compared with the net LW radiation linear regressions in Figure 8. The closer
match between simulated and observed downwelling LW radiation is likely caused by other factors
influencing the net LW radiation, such as surface temperatures and land-energy partitioning
affecting LW cooling, latent heat fluxes, and sensible heat fluxes. In addition, the supplemental
Figure S7 shows the relationships between model biases in downwelling LW radiation and model
biases in cloud properties. Similar to the directions of the relationships between net LW biases and
cloud biases seen in Figures 11 — 13, positive correlations are seen for downwelling LW biases
with respect to dCF, dLWP, and dIWP. For the 1? values in the linear regressions against dCF,
analysis of downwelling LW biases shows r? values slightly closer to 1 compared with the analysis
of net LW biases, but the r* values are not always closer to 1 when analyzing downwelling LW
biases against dALWP and dIWP.

4. Summary, Conclusions, and Implications

The polar regions are experiencing disproportionate warming compared with the rest of the
globe. Thus, accurately representing radiative forcing for the polar regions in climate models has
become an urgent task. In this work, we compared the ground-based measurements of clouds and
radiation with the simulations of two GCMs —the NCAR CESM2/CAM6 and DOE E3SM/EAMVI.
Synoptic conditions at two ground sites — McMurdo Station and Macquarie Island were also
contrasted, especially focusing on the variations of cloud and radiative properties in different
quadrants relative to the center of extratropical cyclones. The analysis helps to shed light on the
influence of synoptic conditions on cloud and radiative properties from lower to higher southern
latitudes. Various factors that may contribute to model biases in net surface SW and LW radiation
were also diagnosed.

The influences of synoptic conditions on clouds and radiation were examined at each site. A
cyclone compositing method was used to track the low-pressure centers of extratropical cyclones
as they propagated across the two sites (Figures 5—7). When evaluating the relationships of
dynamics-cloud-radiation in AWARE, both models capture the asymmetrical distributions of most
cloud and radiative properties between two sectors of the cyclones (Table 1). That is, observations
and two simulations in AWARE show statistically significant differences between the two sectors
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of the cyclones for cloud fraction, LWP, and net surface SW and LW radiation (Table 1). One
exception is that CAM6 shows the opposite asymmetry for LW radiation in AWARE. In addition,
most of these quantities have higher values in the western sector of the cyclones in the AWARE
campaign, i.e., the post-frontal region with subsiding air. Some exceptions include the observed
IWP and CAM6 simulated LW being higher in the eastern sector.

The MICRE observations on the other hand show symmetric cloud fraction and LWP
between the two sectors, while IWP and net SW and LW radiation are more asymmetric between
two sectors. The two simulations captured the asymmetry in LW radiation in MICRE but at least
one or both models misrepresent the asymmetry of other cloud variables. The main model biases
in MICRE include the overestimations of cloud fraction and LWP and the underestimations of LW
radiation in both sectors, as well as the underestimation of net SW in the western sector (Figure 6).
The main model biases in AWARE include the underestimations of cloud fraction and LWP, as
well as the overestimations of net SW and LW radiation (Figure 7). For both sites, IWP values are
consistently underestimated. The large cloud fraction biases in AWARE seen in Figure 8 may be
caused by the strong mesoscale dynamical influences at the McMurdo Station including the
katabatic winds as previously mentioned (e.g., Carrasco & Bromwich, 1993; Carrasco et al., 2003;
Jolly et al., 2018; Silber et al., 2019b).

One of the main objectives of this work is to quantify the relationships between model biases
of liquid and ice phase hydrometeors and synoptic-scale dynamics in both CAM6 and EAMvI,
which are part of the CMIP6 project. Previously, analyses of older versions of models (e.g., models
from CMIP3) have shown a significant overestimation of net absorbed SW at the top of the
atmosphere in model simulations of cloudy conditions over the Southern Ocean (e.g., Trenberth
and Fasullo, 2010), especially in the cold-air post-frontal regions of the extratropical cyclone (e.g.,
Bodas-Salcedo et al., 2012, 2014). Other studies have shown using satellite observations that the
insufficient amount of supercooled liquid water in the models may be the main cause for such
previously reported SW radiative biases in the older model versions (e.g., Kay et al., 2016; Frey
and Kay, 2018; Tan et al., 2016; Tan & Storelvmo, 2016; Zhang et al., 2019, 2020). In this work,
we found that the underestimation of supercooled liquid water in CAM6 and EAMv1 has been
significantly improved, if not overcompensated. This result is consistent with the findings in
Mcllhattan et al. (2020), which evaluated CESM2 model simulations of Arctic clouds and
precipitation and showed slight decrease of Arctic cloud ice and dramatic increase of liquid cloud
water. In this study, a positive LWP bias around 0.1 kg m (Figure S1 e) is shown at Macquarie
Island, while a small negative LWP bias around 0.01 kg m (Figure S1 f) is shown at McMurdo
Station. A better representation of supercooled liquid water in the newer models was also
previously shown in the observation-based evaluation by D’Alessandro et al. (2019) and Yang et
al. (2021). Those two studies contrasted the CAM version 5 with CAM version 6 and showed
significant improvements of allowing supercooled liquid water to occur below -10°C.

Compared with an improved representation of liquid phase, negative biases in IWP are
consistently seen at both Macquarie Island (dIWP around -0.1 kg m™2) and McMurdo Station
(dIWP between -0.01 to -0.1 kg m™) (Figure S1). Both models consistently underestimate IWP by
a factor of 3 — 10 in both dynamical sectors (Figures 6 and 7) as well as in four seasons (Figure 3).
This finding is consistent with other evaluation studies of CAM6 and EAMv1 models, which also
pointed out the underestimation of the ice phase in CAM6 and EAMv1 simulations over Southern
Ocean and Antarctica (e.g., D’Alessandro et al., 2019; Yang et al., 2021; Yip et al., 2021; Desai et
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al., 2023; Zhao et al., 2023). This result indicates that these negative biases of IWP in CAMG6 and
EAMvI1 have a weaker dependence on the dynamical forcings related to extratropical cyclones
compared with the stronger dynamical dependence of insufficient supercooled liquid water
previously reported for the older model versions. In addition, the analyses between radiative biases
and cloud property biases (Figures 11 — 13) have two implications — first, improving the
parameterizations of liquid hydrometeors from the older model versions are not sufficient to reduce
all cloud-induced radiation biases; second, underlying issues still exist with parameterizations of
ice hydrometeors (e.g., ice and snow), which may become one of the main causes of the simulated
radiative biases in this region in the newer versions of models, as also suggested by previous
studies (e.g., Cesana et al., 2021; Zhang et al., 2023).

Comparing the two models, CAM6 shows better agreement with the observations in terms
of representing the symmetry in cloud fraction and LWP between two sectors at Macquarie Island
(Table 1), while EAMv1 overestimates the asymmetry of these cloud properties by showing higher
cloud fraction in the western sector and higher LWP in the eastern sector of the cyclones. On the
other hand, when evaluating the RMSE in the models (Figure 8), CAM6 shows larger RMSE
values for net SW and LW at both locations than EAMv1. Linear regressions of simulated radiative
properties show slightly better comparison results (i.e., slope values closer to 1) by EAMvl
compared with CAM®6 (Figures 9 and 10). One factor that has not been investigated in this study
is the nudging time scale. Gettelman et al. (2020) showed that using two nudging time scales — 24
hrs versus 1 hr to nudge the horizontal winds and temperature in CAM®6, the 1-hr nudging method
increases the simulated LWP by 50% and therefore increases cloud optical depth by 50%. However,
the changes in IWP between the two nudging methods are minimal (6%) in that study. This
indicates that the nudging time scale plays a significant role in controlling the cloud liquid
microphysical properties in simulations but may not be able to compensate for the insufficient
amount of simulated [WP.

One caveat of this study is the data availability and representativeness from two limited
geographical locations due to the scarcity of ground-based observations in the high southern
latitudes. At Macquarie Island, climatological studies of precipitation records have shown marked
increases of precipitation and mean wind speed since 1970, which are consistent with the predicted
regional trend of the sub-Antarctic regions in response to a changing global climate (Adams, 2009).
Another observational study by Lang et al. (2018) also showed that cloud structure at Macquarie
Island frequently resides within a shallow marine atmospheric boundary layer, which is a
representative feature of Southern Ocean low-level clouds. Compared with Macquarie Island, the
McMurdo station in Antarctica is associated with more extreme conditions such as very low
temperature and humidity (Bromwich et al., 2012). McMurdo Station is also under stronger
orographic influences by the nearby mountains and islands which produce higher katabatic winds
than Macquarie Island with modest orography. Previous study by Silber, Verlinde, Cadeddu et al.
(2019b) showed that the cloud properties at McMurdo may not fully represent statistical cloud
properties of the entire Antarctic continent, but measurements from the McMurdo station still
provides a highly valuable observational dataset over this remote region.

Overall, using ground-based observations from two DOE field campaigns in the southern
hemisphere, this work investigates synoptic influences spanning over four seasons for each site.
The results provide a different perspective compared with the frequently used spaceborne remote
sensing measurements in this remote region. The insufficient amount of ice phase hydrometeors
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has been identified as a persistent bias in Southern Ocean and Antarctica. The combination of
underestimated LWP and IWP at McMurdo, Antarctica may be the main cause of the more severe
overestimations of absorption of solar radiation at the surface in this high-latitudinal region
compared with the low-latitudinal regions. Further investigation on ice processes in the model
parameterization is needed to diagnose the specific reasons for biases of ice phase in order to
improve the accuracy of representations of cloud and radiative properties in the high southern
latitudinal regions.
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1216  Table 1. Comparisons of the average cloud fraction, LWP, and net surface SW and LW radiation
1217  between Q2 & Q3 and Q1 & Q4 for observations and simulations in MICRE and AWARE.
Variables MICRE AWARE
Q2 &3 Q1 &4 IT| Q2 &3 Q1 &4 IT|
CF OBS 0.8931 0.8986 045 * 0.7553 0.6542 7.46
CF CAM6 0.9408 0.9520 161 0.7735 0.6544 8.17
CF EAMvI 0.9646 0.9501 243 0.7053 0.5226 12.07
dCF CAM6 0.0169 0.0383 127 0.0349 -0.0367 4.61
dCF EAMv1 0.1246 0.1057 139 -0.0722 -0.1359 4.68
LWP OBS (kg/m?) 0.0844 0.0772 1.80 0.0214 0.0149 4.00
LWP CAMS6 (kg/m?) 0.1364 0.1521 2.69 0.0252 0.0205 1.60
LWP EAMvI (kg/m?) 0.0998 0.1292 8.02 0.0234 0.0060 11.42
dLWP CAMS6 (kg/m?) 0.0594 0.0705 1.66 0.0032 0.0031 0.02
dLWP EAMVI (kg/m?) 0.0247 0.0507 5.1 -0.0043 -0.0116 4.53
IWP OBS (kg/m?) 0.0687 0.0810 1.99 0.0368 0.0379 029
IWP CAM6 (kg/m?) 0.0096 0.0114 3.06 0.0024 0.0020 2.67
IWP EAMv1 (kg/m?) 0.0124 0.0096 437 0.0026 0.0021 3.74
dIWP CAMS6 (kg/m?) -0.0574 -0.0562 0.20 -0.0271 -0.0364 2.89
dIWP EAMvI (kg/m?) -0.0475 -0.0632 3.03 -0.0378 -0.0311 2.02
SW OBS (W/m?) 100.6071 82.3412 3.31 109.0580 92.6947 3.18
SW CAM6 (W/m?) 85.5737 85.7278 0.03 117.5711 93.7900 227
SW EAMvI (W/m?) 76.1329 86.1451 1.95 116.6847 1043017 | 2.33
dSW CAM6 (W/m2) 40713 -4.1469 2.54 11.6501 13.1566 0.59
dSW EAMv1 (W/m?) 1.8820 1.4762 0.14 12.0925 11.8888 0.12
LW OBS (W/m?) -21.7609 -14.9637 5.59 -56.5636 606723 | 2.90
LW CAMG6 (W/m2) -33.5267 -17.8421 1573 -50.8223 49.6846 | 1.25
LW EAMvI (W/m?) -31.8418 -17.0154 18.12 -51.8221 577519 | 7.05
dLW CAM6 (W/m?) -11.6276 -0.8038 9.08 8.7343 8.9403 0.15
dLW EAMvI (W/m2) -10.9050 0.3734 10.73 3.1776 1.7216 1.40

1218  *Statistically significant differences between the two regimes are highlighted in italics, which is
1219  defined as |T| > to.95. Here to.9s = 1.96, calculated using the two-tail t-test at the 95% confidence
1220  interval. Underlined |T| values indicate higher values in Q1 and Q4 (i.e., the warm frontal region
1221  in eastern sector) and lower values in Q2 and Q3 (i.e., the cold post-frontal western sector).
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1222 Table 2. Similar to Table 1, but for comparisons between two regimes of ®wsoo’ > 0 and wse0” < 0.
1223
Variables MICRE AWARE
o5’ >0 o5’ <0 IT| 050’ >0 | oum'<0 IT|

CF OBS 0.8915 0.904 1.06 * 0.6138 0.8205 14.70
CF CAM6 0.9352 0.954 2.73 0.7343 0.6861 3.21
CF EAMvI 0.9259 0.9834 9.51 0.6023 0.5757 157
dCF CAM6 -0.0022 0.0387 255 0.0313 -0.0429 4.69
dCF EAMv1 0.1198 0.1025 136 -0.1007 -0.1534 3.24
LWP OBS (kg/m?) 0.0966 0.1015 0.77 0.014 0.025 4.00
LWP CAMS6 (kg/m?) 0.1418 0.147 0.93 0.0224 0.0232 027
LWP EAMvI (kg/m?) 0.0836 0.1477 192 0.0092 0.0097 0.40
dLWP CAM6 (kg/m?) 0.0689 0.0595 1.43 0.00007 0.0075 2.07
dLWP EAMVI (kg/m?) 0.011 0.0665 11.43 -0.013 -0.0095 2.00
IWP OBS (kg/m?) 0.088 0.0776 1.64 0.0176 0.0628 11.89
IWP CAMS6 (kg/m?) 0.0088 0.0121 6.43 0.0025 0.0018 439
IWP EAMv1 (kg/m?) 0.0099 0.0114 231 0.0021 0.0017 2.81
dIWP CAMS6 (kg/m?) -0.0491 -0.0698 3.64 -0.0351 -0.027 255
dIWP EAMVI (kg/m?) -0.018 -0.1101 168 -0.033 -0.0253 248
SW OBS (W/m?) 94.4634 97.7646 059 94.4529 74.4002 417
SW CAM6 (W/m?) 92.1424 87.2763 0.85 105.048 106.0821 | 0.08
SW EAMvI (W/m?) 96.3371 78.6174 3.36 106.5067 | 117.6624 | 1.89
dSW CAM6 (W/m2) -1.8353 1.5304 107 10.8144 3.8436 0.64
dSW EAMvI (W/m?) 1.4223 27548 0.46 122731 15.4239 176
LW OBS (W/m?) -22.5687 -13.6375 7.45 -63.1567 | -46.0194 | 11.74
LW CAMG6 (W/m2) -30.6093 -19.5213 11.24 -48.0286 | -53.1619 | 5.57
LW EAMvI (W/m?) -32.5702 -14.8369 22.39 -56.8248 | -60.5154 | 4.32
dLW CAM6 (W/m?) -6.3109 -5.4308 0.74 8.7107 9.2576 041
dLW EAMvI (W/m2) -3.6199 -6.0637 234 -0.0562 2.0066 171

1224

1225  *Similar to Table 1, |T| > to.9s indicates statistically significant differences between two sectors
1226  and are marked in italics. Underline indicates higher values in the region of wse0’ < 0 (i.e., the
1227  warm frontal region with ascent motion) than the regions of wse0’ > 0 (i.e., the cold post-frontal
1228  region with descent motion).
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1229
1230

1231
1232

Table 3. Linear regression slope and 1 values for net surface SW and LW radiation binned by

various ranges of observed CF, LWP, and IWP, and model biases of dCF, dLWP, and dIWP.

MICRE AWARE
Variables Bin ranges
CAM6 EAMv1 CAM6 EAMv1 CAM6 EAMv1 CAM6 EAMv1
SW SwW LW LW SwW SW LW LW
CF (0t00.1) 0.931 0.833 0.469 0.437 0.972 1.007 0.278 0.295
(0.844) (0.842) (0.377) (0.456) (0.846) (0.961) (0.286) (0.521)
(0.1t00.9) 0.890 0.899 0.366 0.393 0.913 0.978 0.246 0.272
(0.694) (0.842) (0.204) (0.276) (0.797) (0.932) (0.154) (0.288)
(09t01) 0.915 0.985 0.346 0.382 0918 1.024 0.146 0.129
(0.814) (0.765) (0.180) (0.245) (0.768) (0.882) (0.033) (0.041)
LWP (0 t0 0.025) 0.875 0.848 0.382 0.401 0.972 1.013 0.333 0.391
(kg m?) (0.746) (0.792) (0.202) (0.291) (0.832) (0.947) (0.290) (0.442)
(0.025 to 0.05) | 0.949 0.984 0.374 0.419 1.009 1.146 0.114 0.271
(0.762) (0.816) (0.197) (0.283) (0.652) (0.796) (0.014) (0.051)
(>0.05) 0.896 0.946 0.321 0.348 1.134 1.279 0.100 0.069
(0.659) (0.732) (0.188) (0.273) (0.603) (0.725) (0.003) (0.005)
Iwp (0t00.1) 0.909 0.844 0.427 0.317 0.941 1.002 0.250 0.289
(kg m?) (0.725) (0.688) (0.292) (0.259) (0.785) (0.905) (0.160) (0.269)
(0.1t00.2) 1.253 1.159 0.527 0.488 1.009 1.051 0.009 0.148
(0.746) (0.685) (0.343) (0.362) (0.716) (0.827) (0.000) (0.022)
>0.2) 1.494 1.338 0.711 0.589 1.464 1.335 0.099 0.385
(0.451) (0.722) (0.198) (0.443) (0.810) (0.873) (0.007) (0.117)
dCF (-0.5t00.5) 0.853 0.893 0.292 0.316 0.957 1.008 0.324 0.400
(0.718) (0.765) (0.162) (0.224) (0.787) (0.904) (0.248) (0.380)
(0.5t00.9) 0.872 0.839 0.396 0.325 0.804 0.929 0.159 0.249
(0.688) (0.779) (0.208) (0.193) (0.816) (0.893) (0.057) (0.199)
(-0.5t0-0.9) 1.135 1.164 0.076 0.031 1.059 1.062 0.182 0.251
(0.950) (0.725) (0.033) (0.009) (0.773) (0.903) (0.307) (0.432)
dLWP (-0.1t0 0.1) 1.074 0.952 0.388 0.399 1.001 1.023 0.322 0.393
(kg m?) (0.862) (0.823) (0.224) (0.324) (0.854) (0.962) (0.455) (0.557)
(0.1t00.5) 0.814 0.797 0.209 0.191 0.769 0.838 0.106 0.207
(0.764) (0.816) (0.140) (0.147) (0.856) (0.903) (0.136) (0.538)
(-0.1t0 -0.5) 1.097 1.106 0.308 0.401 1.253 1.295 0.293 0.294
(0.836) (0.854) (0.165) (0.293) (0.803) (0.894) (0.205) (0.151)
dIWP 0-0.1) 0.909 0.744 0.383 0.281 0.937 0.946 0.222 0.298
(kg m?) (0.787) (0.728) (0.297) (0.251) (0.818) (0.929) (0.139) (0.273)
(-0.1t0 0) 1.212 1.209 0.580 0.510 0.973 1.043 0.296 0.355
(0.626) (0.709) (0.219) (0.403) (0.758) (0.884) (0.178) (0.284)
(-0.5t0-0.1) 1.1682 1.798 0.574 0.549 1.367 1.684 0.013 0.246
(0.929) (0.904) (0.142) (0.242) (0.832) (0.777) (0.000) (0.037)

*The two values in each textbox denote linear regression slope values and coefficients of
determination, i.e., b (). The slope values closest to 1 in each category are highlighted in bold.
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Figure 1. A case study of MICRE campaign from 12 UTC, January 12, 2017 to 12 UTC, January
15, 2017. (a) Observed and simulated cloud fraction. (b, ¢) Cloud phase for CAM6 and EAMVI,
respectively. (d-f) LWP, IWP, net surface SW and LW, respectively. (g-1) GOES-16 satellite
images (clean infrared 10.3 pm, band 13). (j-1) Sea level pressure contour maps in units of
hectopascal based on NCEP reanalysis in black, CAM6 in blue and EAMv1 in green contours.
Cross markers in g-1 illustrate the position of low-pressure centers for NCEP (red), CAM6 (blue)

and EAMv1 (green).
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Figure 2. Similar to Figure 1, but for a case study of AWARE campaign from 12 UTC, March 11,
2016 to 12 UTC, March 14, 2016. Different from Figure 1a, Figure 2a illustrates observed cloud
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1246  Figure 3. Monthly averages of (a, b) sea level pressure, (c, d) cloud fraction, (e, f) LWP, (g, h)
1247  IWP, (i, j) net surface SW and (k, 1) LW radiation from observations and simulations. Black lines
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Figure 6. Distributions of cloud and radiative properties in a relative coordinate with respect to
low-pressure centers of extratropical cyclones for the MICRE campaign. Columns 1 to 5 represent
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observations, CAM6 and EAMv1 simulations, respectively. The last row represents the average
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1271 Figure 7. Similar to Figure 6, except for the AWARE campaign.
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Figure 9. Seasonal variations of net surface SW radiation compared between observations and
simulations. Data are gridded and the color code shows the number of samples in each grid. Row
1 is for all seasons, while rows 2 — 5 are for different seasons (i.e., DJF, MAM, JJA and SON).
Black lines show linear regressions. The slope, coefficient of determination, and number of counts
are denoted by b, ? and n, respectively.
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Figure 10. Same as Figure 9, except for analysis of net surface LW radiation.
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1288  Figure 11. Correlations between model biases of net surface radiation (ASW and dLW) and cloud
1289  fraction biases (dCF) shown in the (a-h) eastern and (i-p) western sectors. Rows 1 and 3 show
1290  dSW, while rows 2 and 4 show dLW.
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Figure 12. Similar to Figure 11, except for correlations between radiation biases and dLWP.
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Figure 13. Similar to Figure 11, except for correlations between radiation biases and dIWP.
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