

1 **Impacts of Synoptic-Scale Dynamics on Clouds and Radiation in High Southern Latitudes**

3 Tyler Barone^{1,*}, Minghui Diao^{1,#}, Yang Shi^{2,***}, Xi Zhao^{2,***}, Xiaohong Liu², Israel Silber^{3,****}

4 1 Department of Meteorology and Climate Science, San Jose State University, San Jose CA, 95192.

5 2 Department of Atmospheric Sciences, Texas A&M University, College Station TX, 77843.

6 3Department of Meteorology and Atmospheric Science, Pennsylvania State University, University
7 Park, PA, 16802.

9 *Current affiliation: Department of Atmospheric Sciences, Texas A&M University, College
10 Station TX, 77843.

11 **Current affiliation: Department of Civil and Environmental Engineering, Massachusetts
12 Institute of Technology, Cambridge, MA, 02139.

13 ***Current affiliation: Institute of Surface-Earth System Science, School of Earth System Science,
14 Tianjin University, Tianjin, China.

15 ****Current affiliation: Atmospheric, Climate, and Earth Sciences Division, Pacific Northwest
16 National Laboratory, Richland, WA, USA, 99352

18 #Corresponding author:

19 Minghui Diao, Ph.D., Associate Professor

20 Email: Minghui.diao@sjsu.edu

22 **Key Points**

- 23 • Extratropical cyclone compositing shows more asymmetric cloud properties in eastern and
24 western sectors at McMurdo than Macquarie Island
- 26 • Simulated IWP is too low at both sectors and both sites; LWP is too high (low) at
27 Macquarie (McMurdo)
- 29 • Model radiation biases are affected by both cloud properties and synoptic dynamics (e.g.,
30 extratropical cyclones)

31 **Keywords:** Southern Ocean; Clouds and Radiation; Synoptic dynamics; Extratropical cyclones;
32 DOE MICRE and AWARE campaigns; CAM6 and EAMv1 climate models.

33 **Abstract**

34 High-latitude mixed-phase clouds significantly affect Earth's radiative balance.
35 Observations of cloud and radiative properties from two field campaigns in the Southern Ocean
36 and Antarctica were compared with two global climate model simulations. A cyclone compositing
37 method was used to quantify "dynamics-cloud-radiation" relationships relative to the extratropical
38 cyclone centers. Observations show larger asymmetry in cloud and radiative properties between
39 western and eastern sectors at McMurdo compared with Macquarie Island. Most observed
40 quantities at McMurdo are higher in the western (i.e., post-frontal) than the eastern (frontal) sector,
41 including cloud fraction, liquid water path (LWP), net surface shortwave and longwave radiation
42 (SW and LW), except for ice water path (IWP) being higher in the eastern sector.

43 The two models were found to overestimate cloud fraction and LWP at Macquarie Island but
44 underestimate them at McMurdo Station. IWP is consistently underestimated at both locations,
45 both sectors, and in all seasons. Biases of cloud fraction, LWP, and IWP are negatively correlated
46 with SW biases and positively correlated with LW biases. The persistent negative IWP biases may
47 have become one of the leading causes of radiative biases over the high southern latitudes, after
48 correcting the underestimation of supercooled liquid water in the older model versions. By
49 examining multi-scale factors from cloud microphysics to synoptic dynamics, this work will help
50 increase the fidelity of climate simulations in this remote region.

51 **Plain Language Summary**

52 The efficacy of climate prediction is largely dependent on accurately estimating Earth's
53 energy budget in global climate models. The Southern Ocean region has a distinct history of
54 showing large biases in energy budget within global climate models. This region also shows
55 complex interactions between large-scale dynamical conditions (e.g., low-pressure systems) and
56 microscale processes (e.g., cloud properties). This work used two field deployments at Macquarie
57 Island, Southern Ocean and McMurdo Station, Antarctica to understand these interactions.
58 Observations were obtained from year-long measurements by ground-based instruments, which
59 were further compared with two global climate models. The two models were found to have errors
60 representing cloud properties at Macquarie Island (e.g., too much liquid and too little ice) and
61 McMurdo Station (e.g., too little ice and liquid), as well as errors representing net surface
62 longwave (terrestrial) radiation and shortwave (solar) radiation. The combination of the
63 insufficient amounts of cloud ice and liquid in the models at McMurdo, Antarctica may be the
64 main cause of too much solar radiation absorbed by Earth's surface over that region, which also
65 have implications for polar ice melting and ocean circulation in that remote region.

66 **1. Introduction**

67 Clouds are significant modulators of the Earth's energy balance, since they can affect the
68 absorbed shortwave radiation (ASR) and outgoing longwave radiation (OLR) (Liou, 1992). Clouds
69 over oceans have large influences on the regional radiative budget due to the sharp contrast in
70 albedo between the highly reflective cloud layers and the dark ocean surface (e.g., Klein &
71 Hartmann, 1993; Bender et al., 2011; Raschke et al., 2016). As discussed in Trenberth and Fasullo
72 (2010), model biases of cloud cover and radiation in the ocean-dominated Southern Hemisphere
73 can lead to errors in poleward energy transport and development of baroclinic eddies and storm
74 tracks. The future projection is also particularly sensitive to simulated cloud cover over the
75 Southern Ocean, since a strong relationship between projected cloud cover changes and present-
76 day simulated cloud cover errors were found over this region in that study. The Southern Ocean
77 circulation further affects sea level rise and ice melting in the southern high latitudes (Holland et
78 al., 2010; Bouttes et al., 2012). This is also a region that connects deep ocean water with ocean
79 upwelling and surface air (Marshall and Speer, 2012). The prediction of these interactive processes
80 among atmosphere, ocean, ice, and land in a future climate relies on accurate representations of
81 the surface radiation budget (e.g., Essery et al., 2003; Gleckler, 2005).

82 Global climate models (GCMs) have shown large sensitivities in their prediction of the
83 radiation budget of Earth's climate system due to the variations in the representations of Southern
84 Ocean clouds (e.g., Klein et al., 2017; McCoy et al., 2014a, 2014b, 2015, 2016, 2019; Tan et al.,
85 2016; Terai et al., 2016; Zelinka et al., 2020). A metric used by climate models to quantify
86 sensitivities of Earth's climate to the emissions of anthropogenic greenhouse gases is the
87 equilibrium climate sensitivity (ECS). The ECS value represents the magnitude of air temperature
88 rise at the Earth's surface after the climate system reaches a new equilibrium due to an
89 instantaneous doubling of carbon dioxide concentrations in the atmosphere. Several studies have
90 shown extratropical low-level clouds play a significant role in contributing to the large variations
91 of ECS among numerous climate models (Collins et al., 2013; Flynn & Mauritsen, 2020; Zelinka
92 et al., 2020). In fact, the Intergovernmental Panel on Climate Change (IPCC) reported a large
93 variation of ECS by various GCMs, which is likely in the range of 1.5°C to 4.5°C in the IPCC 5th
94 assessment report (AR5) (IPCC AR5, 2013) and likely in the range of 2.5°C to 4.0°C in IPCC 6th
95 assessment report (AR6) (IPCC AR6, 2023). Thus, in order to reduce uncertainties of future
96 climate predictions, improved understanding of Southern Ocean cloud properties based on
97 observational analysis is crucial for model development.

98 Two specific properties of Southern Ocean clouds are the main foci of this study – the spatial
99 extent of clouds (i.e., represented by cloud fraction) and the cloud thermodynamic phase (reflected
100 by the amount of liquid and ice hydrometeors). Several previous studies have shown large
101 sensitivities of ECS values to the representations of mixed-phase clouds in the mid- to high
102 latitudes, especially to the treatment of cloud thermodynamic phases in the GCMs (e.g., Tsushima
103 et al. 2006; Tan et al. 2016; Bjordal et al. 2020). Cloud thermodynamic phases are highly sensitive
104 to temperature perturbations. A negative cloud feedback would occur when the ice phase
105 transitions into liquid phase (e.g., Mitchell et al., 1989; Ceppi et al., 2016). That is because liquid
106 phase contains high concentrations of liquid droplets, which produce higher albedo and can reflect
107 more solar radiation compared with ice phase, and therefore the reflected solar radiation increases
108 when ice transitions to liquid phase. In addition, a transition from ice to liquid has a large impact
109 on cloud top cooling rates in the LW and can also increase surface temperature by increasing

surface LW radiation. Such surface warming effect via intensified LW radiation is typically a smaller effect than the enhanced SW cooling effect for low clouds. If the total water content of clouds remains the same, a higher amount of ice hydrometeors initially existing in clouds would allow a larger magnitude of phase change from ice to liquid, which can partly buffer the global warming effect induced by greenhouse gases. Therefore, the partitioning between liquid and ice phases, which can be partly represented by LWP and IWP, can directly affect the potential change from ice to liquid phase in clouds as temperature increases, which further leads to significant impacts on climate sensitivities due to warming as discussed in previous studies (e.g., Tsushima et al. 2006; Tan et al. 2016; Bjordal et al. 2020). The extensive cloud coverage over the high southern latitudes and the large variability in their microphysical and macrophysical properties have been previously reported in observational studies (e.g., D'Alessandro et al., 2019; Yang et al., 2021; Yip et al., 2021; Maciel et al., 2024; D'Alessandro et al., 2023; Desai et al., 2023), which illustrate the inherent complexity of representing these properties in GCMs. These former studies have examined multiple factors controlling mixed-phase cloud properties, including thermodynamic conditions (i.e., temperature and relative humidity), dynamic conditions (e.g., vertical velocity), and aerosol indirect effects. One particular factor that requires more detailed investigation is the influence of synoptic dynamical conditions on cloud macrophysical and microphysical properties.

Extratropical cyclone activity over the Southern Ocean region has been previously documented to affect concurrent cloud and radiation properties, such as cloud type, cover, thickness, cloud-top height, LWP, and the radiation budget at the top of the atmosphere (e.g., Bodas-Salcedo et al., 2012, 2014, 2016, 2019; Williams et al. 2013; Kelleher & Grise, 2019; Montoya Duque et. al., 2022). Previous studies developed various methods to define dynamical regimes surrounding extratropical cyclones, known as the cyclone compositing methods, in order to assess the cloud properties in different quadrants relative to extratropical cyclone or anticyclone centers (Lau & Crane 1995, 1997; Naud et al., 2006, 2010; Field & Wood, 2007; Posselt et al., 2008; Field et al., 2011). Distinctive dynamical conditions were found in two sectors – the warm sector that is dynamically active in the frontal region, and the cold sector that is dynamically suppressed in the post-frontal region. Thus, evaluation studies of GCMs frequently targeted the “dynamics-cloud” relationship, which originates from the parameterizations of microscale cloud properties in response to different thermodynamic and dynamic conditions. Using the cyclone compositing methods, previous work showed that cloud and radiation biases in model simulations and reanalysis data are larger in the cold sectors of the extratropical cyclones over the Southern Ocean (Bodas-Salcedo et al. 2012, 2014; Williams et al. 2013; Naud et al. 2014).

For the evaluation of GCMs against observations, many previous studies on Southern Ocean clouds and dynamics utilized spaceborne remote sensing observations to compare with GCM simulations, such as using the Cloud-Aerosol Lidar and Infrared Pathfinder Satellite Observations (CALIPSO) data to assess simulated cloud properties including cloud fraction (e.g., Bodas-Salcedo et al., 2012, 2014; Zhang et al., 2021), optical depth (Terai et al., 2016), and thermodynamic phase (Kay et al., 2016). Other studies used the Clouds and the Earth's Radiant Energy System (CERES) satellite-based observations of radiative forcings to assess shortwave cloud forcing at the top of the atmosphere (Ceppi et al., 2012; Hwang et al., 2013), and SW and LW radiation at the top of the atmosphere (Trenberth & Fasullo, 2010). More recent studies also evaluated GCMs from the Coupled Model Intercomparison Project 6 (CMIP6) against satellite-based observations such as CALIPSO, CERES, Moderate Resolution Imaging Spectroradiometer

155 (MODIS), and International Satellite Cloud Climatology Project (ISCCP) (e.g., Schuddeboom &
156 McDonald, 2021; Cesana et al., 2022; Zhao et al., 2022). On the other hand, with increasing
157 availability of flight campaigns over the high southern latitudes, other studies also used airborne
158 in-situ, ship-based, and ground-based remote sensing observations to evaluate simulated cloud
159 microphysical properties in various GCMs (e.g., D'Alessandro et al., 2019; Gettelman et al., 2020;
160 Yang et al., 2021; Yip et al., 2021; Desai et al., 2023). When validating three satellite-based cloud
161 phase products against in-situ airborne observations, CALIPSO, CloudSat, and DARDAR
162 (raDAR/liDAR) data do not agree with each other and show different biases of cloud phase
163 partitioning at various latitudes compared with in-situ observations (Wang et al., 2024). Because
164 of this, more studies using ground-based or airborne observations are needed to examine the
165 “dynamics-cloud” relationship as an independent evaluation that can complement the satellite-
166 based model evaluation.

167 In this work, unique observational datasets are obtained from ground-based remote sensing
168 measurements at two locations – Macquarie Island and McMurdo Station, Antarctica. These two
169 stations are located at the north and south side of the Southern Hemisphere storm track,
170 respectively (Taljaard, 1972; Hoskins & Hodges, 2005; Chapman et al., 2015). Two field
171 campaigns from these locations provide year-long measurements on cloud fraction, LWP, and
172 surface SW and LW radiation. These ground-based measurements have unique advantages
173 compared with spaceborne observations that retrieve radiation at the top of the atmosphere.
174 Satellite observations commonly have lidar signal attenuation issues when encountering opaque
175 liquid-containing clouds and radar blind zone at heights below 1 km above the surface, where low-
176 level clouds are ubiquitously seen over this region (Cesana & Chepfer, 2013; Silber et al., 2018;
177 Liu, 2022). In addition, the ground-based measurements of cloud fraction, LWP, and net surface
178 radiation are analyzed at hourly basis in this work, which is a higher frequency than the daily or
179 monthly averages previously used in analysis of dynamics-cloud relationships in this region (e.g.,
180 Govekar et al., 2011, 2014; Bodas-Salcedo et al., 2012, 2014, 2016; Williams et al., 2013; Kelleher
181 & Grise, 2019). These ground-based observations are uniquely poised to answer a range of science
182 questions: (i) What are the synoptic-scale dynamical influences on cloud and radiative properties
183 at Macquarie Island and McMurdo Station based on observations and what are the differences
184 between the two locations? (ii) What are the model biases in dynamics-cloud-radiation
185 relationships as well as their individual characteristics? And (iii) How do various controlling
186 factors contribute to model biases of net surface radiation? In Section 2, observation datasets and
187 experimental setup of simulations from two GCMs in the CMIP6 are described. Section 3
188 examines cloud and radiative properties as well as their relationships with extratropical cyclones
189 over the Southern Ocean using a cyclone compositing method. Lastly, discussions of the main
190 conclusions and implications for future model development are given in Section 4.

191 **2. Observations, reanalysis data, and climate model simulations**

192 **2.1 Ground-based observations and reanalysis data over the Southern Ocean and Antarctica**

193 The Department of Energy (DOE) Atmospheric Radiation Measurement (ARM) Macquarie
194 Island Cloud and Radiation Experiment (MICRE) campaign provided an extensive ground-based
195 observational dataset during the time period of March 1, 2016, to March 31, 2018 (Marchand et
196 al., 2020; McFarquhar et al., 2021). The MICRE campaign was supported by the DOE ARM
197 program, the Australian Antarctic Division (AAD), and the Australian Bureau of Meteorology

198 (BoM), and was located on Macquarie Island at 54.5°S, 158.9°E. Climatologies of weather
199 conditions at MICRE have been previously investigated (Hande et al., 2012; Wang et al., 2015).
200 Surface observations from the MICRE campaign have been used in previous studies with a special
201 focus on seasonal variations of aerosols (Humphries et al., 2023), cloud and precipitation (Tansey
202 et al., 2022, 2023; Stanford et al., 2023) and radiation (Hinkelman & Marchand, 2020). A suite of
203 instruments was deployed in the MICRE campaign, which was listed in the overview article of
204 McFarquhar et al. (2021) in their Table S1. The main instruments included the DOE sky radiation
205 radiometers (SKYRAD), ground radiation radiometers (GNDRAD), ceilometer, microwave
206 radiometer, sun photometer, and a multi-filter rotating shadowband radiometer (MFRSR). A
207 value-added product (VAP) named as Cloud Optical Properties from the Multi-filter Shadowband
208 Radiometer (MFRSRCLDOD; Turner et al., 2021) provides observed cloud properties (e.g., LWP
209 and cloud fraction) derived from a combination of instruments, such as MFRSR, microwave
210 radiometer, GNDRAD, SKYRAD, and ceilometer. The cloud fraction provided in this product
211 represents cloud fractional sky cover over a hemispheric dome. IWP was derived from the 94 GHz
212 cloud radar (named as BASTA) observations (Delanoë et al., 2016; Mace and Protat, 2018) by
213 estimating and vertically integrating ice water content (IWC) (Hogan et al. 2006). Another VAP
214 product named as Radiative Flux Analysis (RADFLUX1LONG; Riihimaki et al., 2019) compiled
215 radiative measurements from GNDRAD, SKYRAD, and the MFRSR. This VAP provides
216 estimates of surface radiation flux, including longwave broadband total downwelling and
217 upwelling irradiances, shortwave broadband diffuse downwelling irradiances, shortwave
218 broadband direct normal irradiances, and shortwave broadband total downwelling irradiances. The
219 quality control test and procedure of radiation measurements were described in Long and Shi (2006,
220 2008).

221 The ARM West Antarctic Radiation Experiment (AWARE) was co-funded by the US DOE
222 and US National Science Foundation (NSF) (Lubin et al., 2020). The second ARM mobile facility
223 (AMF2) was deployed from December 2015 to January 2017 at the US McMurdo Research Station
224 located in Ross Island, Antarctica, at 77.85°S, 166.66°E. An ARM best estimate (ARMBE) data
225 product (awrarmbeclradM1.c1) provides the total cloud fraction measurements. This cloud
226 fraction product was derived using measurements from cloud radar and micropulse lidar (Xie et
227 al., 2010). Solar and infrared radiation observations were used to estimate hourly mean surface
228 longwave and shortwave irradiances (Silber et al., 2019a). Downwelling and upwelling radiation
229 measurement uncertainty follows the Solar Infrared Radiation Station (SIRS) handbook,
230 documented in Andreas et al. (2018). We used LWP from the MWR and G-band (183 GHz) Vapor
231 Radiometer profiler (GVRP) when available. Note that the LWP data were missing for the entire
232 month of January in 2017 in AWARE since during that period, the MWR used to retrieve the LWP
233 was deployed in the secondary AWARE site over the West Antarctic Ice Sheet (WAIS). The Ka-
234 band ARM Zenith Radar (KAZR) reflectivity and (linearly interpolated) sounding temperature
235 measurements were used to derive IWC based on the equations for IWC retrieval (Hogan et al.,
236 2006). Values of IWC were then vertically integrated to derive IWP. Cloud phase observations
237 were derived from observations of KAZR (Widener et al., 2012) and High Spectral Resolution
238 Lidar (HSRL; Eloranta, 2006) based on the method from Silber et al. (2018). Radiosondes were
239 released twice daily at AWARE, providing temperature and water vapor partial pressure profiles.
240 These data can be used to derive relative humidity with respect to ice (RHice) and relative humidity
241 with respect to liquid (RHliq) based on the equations of saturation vapor pressure with respect to
242 ice and liquid in Murphy and Koop (2005), respectively.

243 The National Centers for Environmental Prediction (NCEP) – National Center for
244 Atmospheric Research (NCAR) reanalysis data document the 6-hourly sea level pressure variable,
245 with a spatial resolution of $2.5^\circ \times 2.5^\circ$ globally (Kalnay et al., 1996). The sea level pressure
246 distributions and synoptic conditions were analyzed using the NCEP reanalysis data in 2016 and
247 2017, specifically targeting the ground station locations of McMurdo Station and Macquarie Island,
248 respectively.

249 2.2 Climate model simulations

250 Simulations of two GCMs were conducted, and the model output was used for comparisons
251 with observations from the MICRE and AWARE campaigns. The first global climate model is the
252 Community Earth System Model version 2 (CESM2) (Danabasoglu et al., 2020). Its atmosphere
253 component is called Community Atmosphere Model version 6 (CAM6). The CESM2/CAM6
254 model is primarily developed by NCAR, and its main configuration is described as follows. The
255 Cloud Layers Unified by Binormals (CLUBB) scheme (Larson et al., 2002; Golaz et al., 2002a,
256 2002b; Bogenschutz et al., 2013) is coupled with the Morrison-Gettelman double-moment
257 microphysics scheme (MG2) (Gettelman & Morrison, 2015; Gettelman et al., 2015), which
258 contains four classes of hydrometeors: liquid droplets, ice particles, snow, and rain. A four-mode
259 aerosol model (MAM4) based on Liu et al. (2016) is also coupled with MG2. Radiation is
260 calculated in the CAM6 simulation by the Rapid Radiative Transfer Model for General Circulation
261 Models (RRTMG) (Iacono et al., 2000).

262 This work also evaluates simulations from the DOE Energy Exascale Earth System Model
263 version 1 (E3SM1) (Golaz et al., 2019), specifically its atmosphere component – E3SM
264 Atmosphere Model version 1 (EAMv1) (Rasch et al., 2019). Similar to CAM6, EAMv1
265 incorporates the coupled MG2 and CLUBB for cloud parameterizations, and its radiation scheme
266 uses RRTMG. The CAM6 simulations use the default 32 sigma hybrid pressure layers and a
267 horizontal grid size of 0.5° latitude by 0.63° longitude. The vertical resolution of EAMv1 is the
268 default 72 sigma hybrid pressure layers, and its horizontal resolution is approximately 1° latitude
269 by 1° longitude. As for the similarities and differences between the two climate models, the
270 horizontal resolution for CAM6 and EAMv1 are both around 1 degree but CAM6 uses a finite
271 volume dynamical core, while EAMv1 uses a spectral element core. In addition, the vertical
272 resolution of EAMv1 (i.e., 72 vertical layers) is finer compared with CAM6 with 32 layers. The
273 two models share the same physical parameterizations for deep convection, shallow convection,
274 cloud macrophysics, and cloud microphysics, but different tuning parameters are applied. A major
275 difference is that the Wegener-Bergeron-Findeisen (WBF) process is scaled down by a factor of
276 10 in EAMv1 compared to CAM6.

277 For both CAM6 and EAMv1 simulations, their temperature and horizontal wind fields were
278 nudged towards the MERRA-2 reanalysis data, in order to focus our analyses on clouds and
279 radiation. The nudged simulations were run over the entire period of MICRE and AWARE
280 campaigns separately, with a 6-month spin-up time in each simulation. The nudging methodology
281 is consistent with previous studies that compare GCM output with shipborne (Desai et al., 2023),
282 ground-based (Yip et al., 2021) and airborne (Yang et al., 2021; Zhao et al., 2023) observations.
283 For the evaluation of cloud and radiative properties, the model output was saved as a single-column
284 output, collocated with either McMurdo Station or Macquarie Island. That is, the closest grid box
285 with respect to each station location was selected. Since both sites are close to the ocean, the model

286 grids are over a mixture of land and ocean for both EAMv1 and CAM6. Another type of model
287 output was saved over the entire region of Southern Ocean for the purpose of evaluating simulated
288 synoptic conditions against the reanalysis data, specifically for sea level pressure distributions and
289 low-pressure system locations. The model output of cloud properties – cloud fraction, LWP and
290 IWP – were at 30-minute frequency, while the model output of radiative properties in SW and LW
291 were saved at 1-hour frequency.

292 Several variables were further derived to facilitate comparisons between model simulations
293 and observations. For the analysis of radiative properties in observations and simulations, net
294 surface radiation is defined as the downwelling component minus the upwelling component for
295 both SW and LW radiation (i.e., positive net values indicate net gain of energy). To reduce the
296 radiative biases in models caused by discrepancies of surface albedo, we replaced the simulated
297 albedo with the observed albedo for SW radiation, and re-calculated the upwelling SW radiation
298 component in CAM6 and EAMv1 as shown in Equation (1), where $SW_{up,obs}/SW_{down,obs}$ equals the
299 observed surface albedo:

300
$$SW_{up,model} = SW_{down,model} \times \frac{SW_{up,obs}}{SW_{down,obs}} \quad (1)$$

301 For comparisons of cloud properties, a threshold of cloud fraction $> 10^{-4}$ was applied to
302 model output to denote in-cloud conditions, following the threshold used in previous studies
303 (D'Alessandro et al., 2019; Yip et al., 2021; Desai et al., 2023). Furthermore, a minimum threshold
304 of cloud water content (i.e., the sum of ice and liquid water content) of 10^{-7} g m^{-3} was used as an
305 additional necessary criterion to define the in-cloud condition. A similar threshold was also used
306 in previous evaluation of GCM simulations (Patnaude et al., 2021; Yip et al., 2021; Maciel et al.,
307 2023). Lastly, observation and simulation data for cloud fraction, LWP, IWP, and radiation are all
308 averaged to hourly samples for direct comparisons.

309 **3. Results**

310 3.1 Cloud and radiative properties in MICRE and AWARE based on case studies and year-long
311 observations

312 Case studies of cloud and radiative properties are conducted for selected days during the
313 MICRE and AWARE campaigns (Figures 1 and 2). Both case studies feature an extratropical
314 cyclone track in close proximity to the respective station locations. A convective cloud system was
315 selected for the MICRE case study, while a low-level stratiform cloud system was selected for
316 AWARE case study. The case studies allow for examinations of the responses of cloud and
317 radiation properties to the nearby cyclones in two different types of cloud systems. A series of
318 variables are examined, including cloud fraction, cloud phase, LWP, IWP, and net surface
319 radiation. The synoptic conditions are also examined using the Worldview satellite images based
320 on Terra/MODIS base layer taken at 00:00 UTC on each day of the respective case study. Sea
321 level pressure maps at 6-hourly frequency are also shown. Both CAM6 and EAMv1 simulations
322 can capture the temporal variability in cloud fraction for both cases.

323 The case study of the MICRE campaign spans from January 12, 2017, 12:00 UTC to January
324 15, 2017, 12:00 UTC. When examining the Worldview images and sea level pressure maps
325 (Figures 1a–1f), frontal cloud bands passed through the Macquarie Island shortly after 00:00 UTC

326 on January 13, leading to an increasing trend of cloud fraction and LWP as shown in the
327 observations (Figure 1g and 1j). The center of an extratropical cyclone passed by Macquarie Island
328 around 22:00 UTC on January 14. Both CAM6 and EAMv1 show similar increasing trends of
329 cloud fraction, LWP, and IWP as seen in the observations starting from 08:00 UTC January 13
330 (Figure 1g–1j), as part of a convective system. Based on the vertical profiles of simulated cloud
331 phases (Figure 1h and 1i), this convective cloud has an ice layer up to 10 km, a mixed-phase layer
332 from surface to 6 km and a liquid layer below 2 km. However, both simulations underestimate
333 IWP and overestimate LWP from 18:00 UTC January 13 to 03:00 UTC January 14 (Figure 1j).
334 The overestimated LWP likely leads to the higher reflected SW radiation in the simulations around
335 that time, which results in lower net surface SW radiation in the simulations (Figure 1k). The
336 observations show a net gain of surface LW radiation from 08:00 to 20:00 UTC on January 13
337 (i.e., local nighttime 18:00 pm on January 13 to 6:00 am on January 14 in Australian Eastern
338 Standard Time), which is opposite to the net loss of surface LW radiation in the simulations (Figure
339 1l). This is likely caused by the underestimation of IWP by simulations, which leads to
340 underestimation of the warming effect of clouds on Earth's surface especially during local
341 nighttime in this case study. Comparing the sea level pressure maps between NCEP reanalysis data
342 and simulations, only small differences are seen in the trajectory of the low-pressure center of the
343 extratropical cyclone and the overall sea level pressure distributions.

344 The AWARE campaign case study spans from March 11, 2016, 12:00 UTC to March 14,
345 2016, 12:00 UTC (Figure 2). An extratropical cyclone was seen moving eastward around 60°S,
346 which is \sim 15° north of the latitudinal location of McMurdo Station (Figure 2a–2f). Similar to the
347 MICRE case study, the simulated sea level pressure maps show very similar synoptic conditions
348 to NCEP data during this three-day period. Both simulations show a low-level stratiform cloud,
349 similar to the thickness of a low cloud observed by the combined lidar and radar measurements
350 (Figure 2g–2i). The vertical profiles of cloud layers show a thick liquid layer in CAM6 between
351 surface and 4 km and a thick mixed-phase layer in EAMv1 between 1 – 3 km that are not seen in
352 the observed profiles (Figure 2h and 2i). CAM6 and EAMv1 both overestimate LWP from 18:00
353 UTC March 11 to 12:00 UTC March 12 (Figure 2j), while the simulated IWP are much lower than
354 the observed values. The competition of these two biases leads to simulated surface net SW being
355 not significantly different from the observed values (Figure 2f). Around 00:00 UTC March 13,
356 both simulations significantly underestimate LWP and IWP, which leads to a positive bias in net
357 SW and a negative bias in net LW radiation at surface.

358 Using monthly-averaged datasets spanning the entire campaigns, the seasonal variability of
359 cloud and radiative properties are contrasted among observations, reanalysis, and model
360 simulations (Figure 3). The differences between various datasets for monthly averaged variables
361 are shown in Figure S1 in the supplemental material. Figure 3 is the only analysis using monthly
362 averages while the rest of the tables and figures shown in the main text are based on 1-hour
363 resolution data. The standard deviations of variables within each month are also illustrated for each
364 bin. Sea level pressure values are similar between NCEP data and GCM simulations for both
365 MICRE and AWARE, with small differences of a few hPa to up to 5 hPa (Figure 3a and 3b). The
366 seasonal variability of sea level pressures is similar between MICRE and AWARE data, which
367 both show lower values in January and September as well as higher values in April and November.
368 Cloud fraction in MICRE is close to 1, while the monthly average cloud fraction in AWARE
369 ranges from 0.5 to 0.9 (Figure 3c and 3d). The simulated cloud fractions by CAM6 and EAMv1
370 are slightly higher than the observed values for the MICRE campaign (by 0.05), while the

371 simulated cloud fractions by two models are lower than the observed values for AWARE (by 0.1
372 – 0.4). The simulated LWP by both models shows large positive biases in MICRE and small
373 negative biases in AWARE, except for December and January in AWARE showing positive LWP
374 biases (Figure 3e and 3f). For IWP biases, both models show negative IWP biases at both locations,
375 underestimating IWP by 0.5 – 1 order of magnitude. Based on the vertical profiles of RHice and
376 RHliq from radiosonde observations and model simulations (Figure 4), CAM6 and EAMv1 show
377 higher RHice and RHliq than observations for AWARE, which indicates that the lack of water
378 vapor supply may not explain the underestimated cloud fraction, LWP, and IWP in AWARE by
379 the two models. This type of comparison is limited to AWARE since radiosonde data were not
380 available for MICRE.

381 Regarding radiative biases, the seasonal variability of net surface SW radiation is clearly
382 seen in both observations and simulations (Figure 3i and 3j). Both simulations overestimate the
383 net surface SW radiation by 10 – 30 W m⁻² in austral spring and summer (i.e., September –
384 February), and show smaller biases (less than 10 W m⁻²) for austral fall and winter (Figure S1 i
385 and j). For net surface LW radiation in MICRE (Figure 3k), the observations show slightly positive
386 net surface LW from January to April, followed by more negative LW values for the rest of the
387 year. Both simulations show net surface LW consistently being negative and closer to zero, with
388 smaller seasonal variability than the observed trend. For the AWARE campaign (Figure 3l), the
389 simulated net surface LW values are more comparable to the observed values for most time of the
390 year (i.e., February to October) with relatively small negative model biases within ± 10 W m⁻². For
391 the austral summer in AWARE, the LW biases become positive and larger, which are up to +50
392 W m⁻² (Figure S1 k and l). Comparing the two models, similar directions and magnitudes of biases
393 are seen in each variable for both sites, except for CAM6 showing slightly smaller biases in cloud
394 fraction and LWP for AWARE compared with EAMv1.

395 Overall, the main cloud biases in simulations are the positive cloud fraction and LWP biases
396 in MICRE, negative cloud fraction and LWP biases in AWARE, and negative IWP in both
397 campaigns. The dry biases of the simulations in AWARE are consistent with previous studies such
398 as Silber et al. (2019a), Hines et al. (2019), and Yip et al. (2021) in the McMurdo region. In the
399 above analyses of case studies and monthly averages during MICRE and AWARE campaigns,
400 correlations between model biases in cloud properties and surface radiation are seen, the
401 correlations of these biases with dynamical conditions will be further examined in the following
402 sections. Previous studies have reported that the climatology of clouds at McMurdo is strongly
403 influenced by mesoscale dynamics and forcing (e.g., Carrasco & Bromwich, 1993; Carrasco et al.,
404 2003; Jolly et al., 2018; Silber et al., 2019b). But since mesoscales are often too fine for GCMs
405 simulations to represent, we focus on the analysis of the role of synoptic conditions in this study.

406 3.2 Identifications of extratropical cyclone centers using a cyclone compositing method

407 The positions of extratropical cyclones (low-pressure systems) are identified using the NCEP
408 reanalysis data for every 6 hours in 2016 and 2017 (Figure 5). An algorithm was developed to
409 locate the centers of extratropical cyclones. The algorithm detects the sea level pressure minimum
410 at each time stamp within a $\pm 30^\circ \times 30^\circ$ latitudinal and longitudinal box surrounding respective
411 station locations. The size of the box was selected to ensure that the locations of extratropical
412 cyclones are not too far away from the station location and a sufficient number of samples can be
413 provided. In fact, we tested several different sizes of the boxes, such as $\pm 15^\circ \times 15^\circ$, $\pm 30^\circ \times 30^\circ$, and

414 $\pm 60^\circ \times 60^\circ$, and finally chose $\pm 30^\circ \times 30^\circ$ surrounding each station. The sea level pressure minimum
415 identified represents the extratropical cyclone center. A manual inspection of the cyclone centers
416 was applied to verify that this algorithm can capture the eastward trajectories of cyclones. The
417 spatial distributions of cloud and radiation properties at each station are then analyzed relative to
418 the extratropical cyclone centers.

419 Figure 5a and 5b show the latitude and longitude distributions of extratropical cyclones for
420 MICRE and AWARE, respectively, with the highest number of extratropical cyclones located
421 around two clusters – 63°S , 180°E and 67°S , 180°E , and a secondary peak at 120°E for both sites.
422 The geographical locations of extratropical cyclones are similar between the two campaigns even
423 though they sampled different years. Both campaigns show extratropical cyclones moving
424 eastward and poleward, consistent with the previous study of Hoskins & Hodges (2005) which
425 showed that cyclonic systems spiraled poleward from lower latitudes to Antarctica. The seasonal
426 distributions of extratropical cyclones are displayed on geographic maps (Figures 5c–5f),
427 including December, January, and February (DJF), March, April, and May (MAM), June, July,
428 and August (JJA), and September, October, and November (SON). The locations of extratropical
429 cyclones using pressure output from the two model simulations are also shown in Figures S2 and
430 S3 in the supplemental material.

431 A relative coordinate system is developed to identify each station's position relative to the
432 nearby extratropical cyclone centers. The “L” at $(0, 0)$ position of this coordinate system (as shown
433 in Figures 6 and 7) marks the center of each extratropical cyclone. Latitudinal and longitudinal
434 differences between each ground station and the nearest extratropical cyclone within 6 hours are
435 shown as the ordinate and abscissa, respectively. Four quadrants of the relative positions of a
436 ground station with respect to the low-pressure system centers are defined as quadrants 1, 2, 3 and
437 4 (Q1 – Q4). These quadrants represent cases when a ground station is at the northeast, northwest,
438 southwest, and southeast side of an extratropical cyclone, respectively. The definition of four
439 quadrants follows the conventional definition used by previous studies of cyclone compositing,
440 such as a schematic map illustrated in Bodas-Salcedo et al. (2014) in their Figure 3a1, and in
441 Tansey et al. (2022) in their Figure 1. Among the four quadrants, Q1 (northeast) is considered the
442 frontal region also known as the warm-air sector, as illustrated in Bodas-Salcedo et al. (2012) in
443 their Figure 6, and in Montoya Duque et al. (2022) in their Figure 1. Different methods have been
444 used to contrast different regions surrounding the extratropical cyclones. Lang et al. (2018) and
445 Montoya Duque et al. (2022) used the k-mean clustering techniques to separate the four quadrants
446 and their surrounding regions into 7 detailed categories. Bodas-Salcedo et al. (2012, 2014)
447 contrasted the warm (Q1) and cold sectors (Q2–4). Another study by Kelleher and Grise (2019)
448 developed dynamical regimes using mid-tropospheric vertical velocity (ω) and estimated inversion
449 strength (EIS) and showed distinct differences in these variables in four quadrants surrounding
450 extratropical cyclones, especially between the eastern sector (Q1 and Q4) and western sector (Q2
451 and Q3). Their study showed that the eastern sector of the cyclone (particularly Q1 in frontal region)
452 is mainly associated with negative anomalies of pressure vertical velocity (i.e., $\omega' < 0$) relative to
453 multi-year daily mean values, indicating rising air motion on the large scale, while the western
454 sector of the cyclone is mainly associated with positive anomalies of vertical velocity (i.e., $\omega' > 0$),
455 indicating subsiding motion on the large scale. Thus, in the rest of the analysis we contrast the two
456 sectors of the cyclones based on their distinct differences in large-scale vertical motion.

457 Vertical profiles of temperature, RHice, and RHliq are contrasted between the western and
458 eastern sectors in Figure 4. In addition, distributions of the mid-tropospheric vertical velocity at
459 500 hPa (ω_{500}' , defined as $d\text{Pressure}/d\text{time}$) are analyzed in supplemental Figure S4. Here ω_{500}' is
460 calculated as the daily mean anomaly by subtracting the 10-day average ω_{500} values surrounding
461 each daily ω_{500} value. In MICRE, the eastern sector is seen to be warmer and moister and associated
462 with ascent motion, while the western sector is colder and drier and associated with descent motion.
463 The warmer and moister air in the eastern sector in MICRE is consistent with the rising air motion
464 seen in Kelleher and Grise (2019), and is also consistent with the advection of moist, warm air into
465 this sector as discussed in Field and Wood (2007) and Tansey et al. (2022). On the other hand,
466 AWARE shows smaller differences in ω_{500}' between two sectors, and its eastern sector is seen to
467 be warmer and drier. Comparing the distance to the low-pressure centers, MICRE is closer to the
468 low-pressure centers with distance less than 15° in latitude, while AWARE is farther from the low-
469 pressure centers with distance larger than 15° in latitude. This may explain why AWARE shows
470 warmer but drier air in the eastern sector, with reduced influences from cyclones. The diminishing
471 influences of extratropical cyclones with increasing distances are also shown in Tansey et al.
472 (2022).

473 3.3 Spatial distributions of cloud and radiation properties in a dynamic coordinate relative to the
474 cyclone centers

475 Cloud properties (i.e., cloud fraction, LWP, and IWP) and surface net radiation in SW and
476 LW are examined in this relative coordinate system for the entire dataset of MICRE (Figure 6) and
477 AWARE (Figure 7). For the MICRE campaign in Figure 6, both observations and simulations
478 show that the majority of cloud fraction data have values close to 1 in all four quadrants (Figure 6
479 column 1), consistent with the monthly average values being close to 1 shown in Figure 3c. For
480 the observations in AWARE, larger asymmetries between the western (i.e., Q3) and eastern (i.e.,
481 Q4) sector of the extratropical cyclones are seen in cloud fraction and LWP (Figure 7 bottom row)
482 compared with MICRE (Figure 6 bottom row), while IWP is more symmetric at both sites. Higher
483 LWP in the western sector (post-frontal) of the cyclones are seen in both MICRE and AWARE
484 observations, which is consistent with previous studies (e.g., Bauer and Del Genio, 2006; Naud et
485 al., 2006), since this is a cold-air region with descending air motion, often producing extensive
486 coverage of closed-cell cumulus with high amount of supercooled liquid water that can eventually
487 develop into congestus clouds.

488 Both CAM6 and EAMv1 simulations capture similar asymmetrical distributions of cloud
489 fraction, LWP, and net SW and LW between two sectors of the cyclones in AWARE and MICRE,
490 indicating that the relationships between these properties and extratropical cyclones are well
491 represented in the models at both locations. In addition, both simulations are able to represent the
492 relatively smaller cloud fraction, LWP, and IWP at AWARE compared with MICRE. The main
493 cloud biases for both models are the consistent underestimation of IWP at both sites. In MICRE,
494 both CAM6 and EAMv1 simulations show higher LWP than the observations in two sectors
495 (Figure 6q). In AWARE, both models underestimate cloud fraction in the eastern sector and
496 underestimate LWP in two sectors. For the radiation biases, the two models show different biases
497 for net SW and net LW between MICRE and AWARE. That is, two models show negative biases
498 of both net SW and LW in MICRE and positive biases of them in AWARE. The differences in
499 radiation biases may be related to the variations in cloud biases between two sites, such as the
500 variations in cloud fraction biases and LWP biases.

501 3.4 Comparisons of cloud and radiation properties in western and eastern sectors of extratropical
502 cyclones

503 To assess whether the asymmetrical or symmetrical distributions of the cloud and radiation
504 properties between two sectors of the cyclones are statistically significant, distributions of a series
505 of quantities are compared between the two regimes (i.e., the eastern sector with more frontal
506 influences versus the western sector with more post-frontal influences), including cloud fraction,
507 LWP, IWP, and net SW and LW radiation at surface. In addition, the model biases for each of
508 these properties are also contrasted (Table 1). Standard deviations of samples within each sector
509 in Tables 1 and 2 are quantified in supplemental Tables S1 and S2. The two-tail t-tests with 95%
510 confidence intervals are used to assess the statistical significance of their differences. The $|T|$
511 values calculated for the t-test are listed, and those indicating statistically significant differences
512 between two regimes are marked in italics. Quantities with higher values in the eastern sector of
513 the cyclones are marked with an underscore. Overall, AWARE campaign shows that 18 out of 25
514 quantities have statistically significant differences between the two sides (marked with italics in
515 Table 1 last column). In addition, 5 out of 25 quantities in AWARE show higher values in the
516 eastern sector of the cyclones (marked with underscores in Table 1 last column). The observed
517 IWP is the only observed quantity showing no statistically significant difference between the two
518 sectors and also is the only observed quantity showing a higher average value in the eastern sector.

519 Compared with the AWARE campaign which shows significantly different cloud fraction
520 and LWP in two dynamic regimes based on the observations, the observed quantities in the MICRE
521 campaign show no statistically significant differences in them. CAM6 also shows no statistically
522 significant differences in these two quantities, while EAMv1 shows a higher cloud fraction in the
523 western side and higher LWP in the eastern sector. Comparisons of IWP show more
524 inconsistencies between models and observations, with either one or both models showing the
525 opposite asymmetry of IWP at two sites.

526 The asymmetrical distributions in net SW and LW are mostly consistent between
527 observations and simulations for AWARE, except for CAM6 showing the opposite asymmetry for
528 net LW compared with observations. For MICRE, both models show the same asymmetry in net
529 LW as that observed, but show opposite asymmetry in net SW, i.e., the observations show higher
530 SW (statistically significant) in the western sector and two models show higher SW (not
531 statistically significant) in the eastern sector. As for model biases in SW and LW, the domain
532 average dSW of two models are -4.15 – 4.07 W m^{-2} for MICRE and 11.65 – 13.16 W m^{-2} for
533 AWARE. The domain averages of dLW in MICRE and AWARE are -11.63 – 0.37 W m^{-2} and 1.72 –
534 8.94 W m^{-2} , respectively. In previous model evaluation studies, the asymmetrical distributions of
535 model biases have been a major issue related to the severe underestimation of supercooled liquid
536 water in the climate models (Bodas-Salcedo et al. 2012, 2014; Williams et al. 2013; Naud et al.
537 2014). This is because the cold-air, post-frontal region that is dynamically suppressed provides a
538 favorable condition for persistent low-level clouds containing supercooled-cooled liquid water.
539 The fact that this model evaluation study finds more similar asymmetrical distributions in SW and
540 LW between models and observations in the two sectors is consistent with the model
541 improvements in cloud microphysics parameterizations as discussed in D'Alessandro et al. (2019),
542 Yang et al. (2021) and Desai et al. (2023), i.e., the CAM6 and EAMv1 models now allow more
543 supercooled liquid water to occur compared with older model versions, and therefore reduce the
544 positive biases of net absorbed SW in the cold post-frontal sector.

545 Table 2 shows another type of comparison of observed and simulated quantities in different
546 dynamical regimes using ω_{500}' . The samples are separated into two regimes, i.e., $\omega_{500}' > 0$ and
547 $\omega_{500}' \leq 0$. As mentioned previously, the warm frontal eastern sector is more associated with ascent
548 motion, i.e., $\omega_{500}' \leq 0$, while the cold post-frontal western sector is more associated with descent
549 motion, i.e., $\omega_{500}' > 0$ as shown in Kelleher & Grise (2019) in their Figure 3. As a result, the main
550 asymmetrical distributions between descending and ascending regions in Table 2 are comparable
551 to those seen between the western and eastern sectors in Table 1, respectively. For example, the
552 observations in AWARE campaign show statistically significant differences in all the quantities
553 between the two dynamic regimes, including cloud fraction, LWP, IWP, and net SW and LW
554 radiation. The observations in MICRE only show statistically significant differences in net LW
555 but not in other quantities. Note that the dynamical regimes of $\omega_{500}' > 0$ and $\omega_{500}' \leq 0$ do not fully
556 align with the separation between western and eastern sectors, since part of the western (eastern)
557 sector still shows $\omega_{500}' \leq 0$ ($\omega_{500}' > 0$). This likely causes the results in Tables 1 and 2 to be not
558 identical.

559 Weighted root mean square error (RMSE) is calculated for each model variable to examine
560 the model performance for simulating different variables (Figure 8). The weighted RMSE is
561 calculated as the square root of the mean differences between simulated and observed quantities,
562 normalized by the standard deviation of the observed quantity. Quantities with statistically
563 significant differences between the two sectors of the cyclones (i.e., *italics* in Table 1) are
564 illustrated with filled markers. A total of 11 out of 20 variables show statistically significant
565 differences between the two sectors. The markers located above and below the 1:1 line indicate
566 higher RMSE values in the western and eastern sector, respectively. About half of the variables
567 are very close to the 1:1 line, and the rest of the quantities show a similar number of points being
568 higher in one sector than the other. The curved thin black lines illustrate the multiplication of the
569 two weighted RMSE values on the two sectors of the cyclones. Markers located at the top-right
570 (bottom-left) corners indicate those values in simulations with larger (smaller) discrepancies
571 compared with the observations. Comparing the two simulations, the LWP biases of CAM6 and
572 EAMv1 in MICRE have the largest RMSE, followed by cloud fraction biases of AWARE and
573 IWP biases at both locations. In addition, CAM6 shows higher RMSE than EAMv1 for both SW
574 and LW AWARE, as well as higher LW and LWP biases in MICRE. The smallest model RMSE
575 values are seen in net SW radiation in AWARE, possibly due to the smaller solar radiation at
576 higher latitudes as well as relatively smaller biases of LWP in AWARE compared with MICRE.

577 3.5 Diagnosis of factors contributing to radiation biases in simulations

578 The impacts of multiple factors on the model simulations of net surface SW and LW radiation
579 are investigated, including cloud properties and seasonal variability. The seasonal variability of
580 net radiation is shown in Figures 9 and 10. Linear regressions are applied to the simulated versus
581 observed values, with slope values (b) and coefficient of determination (r^2) values shown in figure
582 legends. Comparing the two campaigns, the slope values of net surface SW radiation for MICRE
583 for all seasons are 0.894 and 0.907 for CAM6 and EAMv1, respectively (Figure 9a and 9b), which
584 have larger deviation from the 1:1 line than the slope values for AWARE (0.949 and 1.007 in
585 Figure 9c and 9d). The r^2 values of net surface SW radiation are also lower in MICRE (0.710 and
586 0.764 for CAM6 and EAMv1, respectively) than those in AWARE (0.780 and 0.901).

587 For net surface LW radiation (Figure 10), the b values are in the range of 0.2 – 0.5 and r^2
588 values are in the range of 0.1 – 0.5. For CAM6 and EAMv1, b values are 0.354 and 0.374 in
589 MICRE and 0.271 and 0.340 in AWARE; r^2 values are 0.199 and 0.280 in MICRE and 0.182 and
590 0.313 in AWARE, respectively. The two modes seen in Figure 10c and d become one mode when
591 analyzing columns without cloud layers, but the two modes are still seen for cloudy-sky conditions,
592 suggesting that these two modes may be caused by different types of clouds. Comparing the two
593 models, EAMv1 shows slightly better results than CAM6 when analyzing net SW and LW
594 radiation in almost all seasons, with the exception of LW radiation in MICRE, where two models
595 show similar results. Overall, net surface LW shows larger deviation from the 1:1 line and larger
596 seasonality in the biases compared with net SW, consistent with monthly averages in Figure 2.

597 To further diagnose the effects of cloud properties on simulated radiative properties, slope b
598 and r^2 values from linear regressions of net surface SW and LW are further shown for various
599 ranges of observed cloud properties (i.e., observed cloud fraction, LWP, and IWP) and model
600 biases in cloud properties (i.e., dCF, dLWP, and dIWP) in Table 3. For various cloud fractions,
601 the conditions closer to clear sky (cloud fraction < 0.1) show the highest slope and r^2 values for
602 almost all SW and LW linear regressions at both sites, which means that both CAM6 and EAMv1
603 have better simulations of net surface radiation when observations are closer to clear-sky
604 conditions. When examining the correlations with observed LWP, better model performance (i.e.,
605 slope closer to 1) for both SW and LW linear regressions are seen when observed LWP are lower
606 than 0.05 kg m⁻², indicating that clouds containing smaller mass concentrations of liquid
607 hydrometeors tend to be represented better for their radiative effects in the two models. Similarly,
608 when examining the correlations with simulated biases of cloud properties, the smaller values of
609 dCF (within ± 0.5) and dLWP (within ± 0.1 kg m⁻²) are associated with linear regression slopes
610 closer to one. On the other hand, for various ranges of observed IWP, the linear regressions of
611 model simulations do not necessarily show better results when IWP values are at a specific range.
612 This result may be caused by the fact that the model simulations often show negative biases in
613 IWP on 0.5 – 1 orders of magnitudes, which is a persistent bias regardless of the observed value.
614 This is corroborated by the fact that the model simulations show linear regression slopes closer to
615 one in the dIWP range of -0.1 to 0 kg m⁻² compared with those in the dIWP range of -0.1 to -0.5
616 kg m⁻².

617 The correlations between radiative biases (dSW and dLW) and cloud property biases are
618 examined for two sectors, including correlations with dCF, dLWP and dIWP in Figures 11 – 13,
619 respectively. The signs of the linear correlation slopes (positive or negative) between radiative
620 biases and three cloud property biases are consistent between two simulations, as well as being
621 consistent between two campaigns. That is, dSW is negatively correlated with dCF, dLWP, and
622 dIWP (Figures 11 – 13 rows 1 and 3), and dLW is positively correlated with dCF, dLWP and dIWP
623 (rows 2 and 4). However, one should note that the r^2 values are very small for most linear
624 regressions, possibly due to other factors besides cloud biases that also contribute to the net
625 radiation biases. Even though the misrepresentation of cloud properties is not necessarily the same
626 between two sites or between the two simulations, the correlations between model biases in cloud
627 properties and biases in radiation are more consistent. This feature indicates that the fundamental
628 physical mechanisms controlling cloud-radiation relationships are similar between the two models.

629 Contrasting the two sectors, the stronger correlations between radiative and cloud biases (i.e.,
630 r^2 values closer 1) do not always occur in one sector compared with the other sector. In addition,

631 the correlations of radiative biases with dIWP all show much lower r^2 values, because the radiative
632 biases can be either negative or positive while dIWP show more negative values. These lower r^2
633 values do not suggest that dIWP is not an important factor for radiative biases, but rather suggest
634 that simulated IWP are consistently too low than the observed values regardless of the radiative
635 biases, which is consistent with the findings in Table 3. The consistent low biases of IWP are also
636 shown in supplemental Figure S5 for the correlations between dIWP and dLWP. The figure shows
637 that dIWP are almost exclusively negative, while dLWP can be both positive and negative. In
638 addition, weak positive correlations between dIWP and dLWP are seen in both MICRE and
639 AWARE for both model simulations, suggesting that negative biases of dIWP do not necessarily
640 correlate with positive biases of dLWP. This result indicates that the lack of ice phase clouds may
641 partly originate from the lack of ice nucleation and/or ice growth and is not limited to errors in
642 phase partitioning.

643 An additional analysis focusing on the downwelling component of the LW radiation is shown
644 in Figure S6. The linear regressions between observed and simulated values for downwelling LW
645 radiation shows r^2 values closer to 1 for both MICRE and AWARE, and also show b values closer
646 to 1 for AWARE, compared with the net LW radiation linear regressions in Figure 8. The closer
647 match between simulated and observed downwelling LW radiation is likely caused by other factors
648 influencing the net LW radiation, such as surface temperatures and land-energy partitioning
649 affecting LW cooling, latent heat fluxes, and sensible heat fluxes. In addition, the supplemental
650 Figure S7 shows the relationships between model biases in downwelling LW radiation and model
651 biases in cloud properties. Similar to the directions of the relationships between net LW biases and
652 cloud biases seen in Figures 11 – 13, positive correlations are seen for downwelling LW biases
653 with respect to dCF, dLWP, and dIWP. For the r^2 values in the linear regressions against dCF,
654 analysis of downwelling LW biases shows r^2 values slightly closer to 1 compared with the analysis
655 of net LW biases, but the r^2 values are not always closer to 1 when analyzing downwelling LW
656 biases against dLWP and dIWP.

657 4. Summary, Conclusions, and Implications

658 The polar regions are experiencing disproportionate warming compared with the rest of the
659 globe. Thus, accurately representing radiative forcing for the polar regions in climate models has
660 become an urgent task. In this work, we compared the ground-based measurements of clouds and
661 radiation with the simulations of two GCMs – the NCAR CESM2/CAM6 and DOE E3SM/EAMv1.
662 Synoptic conditions at two ground sites – McMurdo Station and Macquarie Island were also
663 contrasted, especially focusing on the variations of cloud and radiative properties in different
664 quadrants relative to the center of extratropical cyclones. The analysis helps to shed light on the
665 influence of synoptic conditions on cloud and radiative properties from lower to higher southern
666 latitudes. Various factors that may contribute to model biases in net surface SW and LW radiation
667 were also diagnosed.

668 The influences of synoptic conditions on clouds and radiation were examined at each site. A
669 cyclone compositing method was used to track the low-pressure centers of extratropical cyclones
670 as they propagated across the two sites (Figures 5–7). When evaluating the relationships of
671 dynamics-cloud-radiation in AWARE, both models capture the asymmetrical distributions of most
672 cloud and radiative properties between two sectors of the cyclones (Table 1). That is, observations
673 and two simulations in AWARE show statistically significant differences between the two sectors

674 of the cyclones for cloud fraction, LWP, and net surface SW and LW radiation (Table 1). One
675 exception is that CAM6 shows the opposite asymmetry for LW radiation in AWARE. In addition,
676 most of these quantities have higher values in the western sector of the cyclones in the AWARE
677 campaign, i.e., the post-frontal region with subsiding air. Some exceptions include the observed
678 IWP and CAM6 simulated LW being higher in the eastern sector.

679 The MICRE observations on the other hand show symmetric cloud fraction and LWP
680 between the two sectors, while IWP and net SW and LW radiation are more asymmetric between
681 two sectors. The two simulations captured the asymmetry in LW radiation in MICRE but at least
682 one or both models misrepresent the asymmetry of other cloud variables. The main model biases
683 in MICRE include the overestimations of cloud fraction and LWP and the underestimations of LW
684 radiation in both sectors, as well as the underestimation of net SW in the western sector (Figure 6).
685 The main model biases in AWARE include the underestimations of cloud fraction and LWP, as
686 well as the overestimations of net SW and LW radiation (Figure 7). For both sites, IWP values are
687 consistently underestimated. The large cloud fraction biases in AWARE seen in Figure 8 may be
688 caused by the strong mesoscale dynamical influences at the McMurdo Station including the
689 katabatic winds as previously mentioned (e.g., Carrasco & Bromwich, 1993; Carrasco et al., 2003;
690 Jolly et al., 2018; Silber et al., 2019b).

691 One of the main objectives of this work is to quantify the relationships between model biases
692 of liquid and ice phase hydrometeors and synoptic-scale dynamics in both CAM6 and EAMv1,
693 which are part of the CMIP6 project. Previously, analyses of older versions of models (e.g., models
694 from CMIP3) have shown a significant overestimation of net absorbed SW at the top of the
695 atmosphere in model simulations of cloudy conditions over the Southern Ocean (e.g., Trenberth
696 and Fasullo, 2010), especially in the cold-air post-frontal regions of the extratropical cyclone (e.g.,
697 Bodas-Salcedo et al., 2012, 2014). Other studies have shown using satellite observations that the
698 insufficient amount of supercooled liquid water in the models may be the main cause for such
699 previously reported SW radiative biases in the older model versions (e.g., Kay et al., 2016; Frey
700 and Kay, 2018; Tan et al., 2016; Tan & Storelvmo, 2016; Zhang et al., 2019, 2020). In this work,
701 we found that the underestimation of supercooled liquid water in CAM6 and EAMv1 has been
702 significantly improved, if not overcompensated. This result is consistent with the findings in
703 McIlhattan et al. (2020), which evaluated CESM2 model simulations of Arctic clouds and
704 precipitation and showed slight decrease of Arctic cloud ice and dramatic increase of liquid cloud
705 water. In this study, a positive LWP bias around 0.1 kg m^{-2} (Figure S1 e) is shown at Macquarie
706 Island, while a small negative LWP bias around 0.01 kg m^{-2} (Figure S1 f) is shown at McMurdo
707 Station. A better representation of supercooled liquid water in the newer models was also
708 previously shown in the observation-based evaluation by D'Alessandro et al. (2019) and Yang et
709 al. (2021). Those two studies contrasted the CAM version 5 with CAM version 6 and showed
710 significant improvements of allowing supercooled liquid water to occur below -10°C .

711 Compared with an improved representation of liquid phase, negative biases in IWP are
712 consistently seen at both Macquarie Island (dIWP around -0.1 kg m^{-2}) and McMurdo Station
713 (dIWP between -0.01 to -0.1 kg m^{-2}) (Figure S1). Both models consistently underestimate IWP by
714 a factor of 3 – 10 in both dynamical sectors (Figures 6 and 7) as well as in four seasons (Figure 3).
715 This finding is consistent with other evaluation studies of CAM6 and EAMv1 models, which also
716 pointed out the underestimation of the ice phase in CAM6 and EAMv1 simulations over Southern
717 Ocean and Antarctica (e.g., D'Alessandro et al., 2019; Yang et al., 2021; Yip et al., 2021; Desai et

718 al., 2023; Zhao et al., 2023). This result indicates that these negative biases of IWP in CAM6 and
719 EAMv1 have a weaker dependence on the dynamical forcings related to extratropical cyclones
720 compared with the stronger dynamical dependence of insufficient supercooled liquid water
721 previously reported for the older model versions. In addition, the analyses between radiative biases
722 and cloud property biases (Figures 11 – 13) have two implications – first, improving the
723 parameterizations of liquid hydrometeors from the older model versions are not sufficient to reduce
724 all cloud-induced radiation biases; second, underlying issues still exist with parameterizations of
725 ice hydrometeors (e.g., ice and snow), which may become one of the main causes of the simulated
726 radiative biases in this region in the newer versions of models, as also suggested by previous
727 studies (e.g., Cesana et al., 2021; Zhang et al., 2023).

728 Comparing the two models, CAM6 shows better agreement with the observations in terms
729 of representing the symmetry in cloud fraction and LWP between two sectors at Macquarie Island
730 (Table 1), while EAMv1 overestimates the asymmetry of these cloud properties by showing higher
731 cloud fraction in the western sector and higher LWP in the eastern sector of the cyclones. On the
732 other hand, when evaluating the RMSE in the models (Figure 8), CAM6 shows larger RMSE
733 values for net SW and LW at both locations than EAMv1. Linear regressions of simulated radiative
734 properties show slightly better comparison results (i.e., slope values closer to 1) by EAMv1
735 compared with CAM6 (Figures 9 and 10). One factor that has not been investigated in this study
736 is the nudging time scale. Gettelman et al. (2020) showed that using two nudging time scales – 24
737 hrs versus 1 hr to nudge the horizontal winds and temperature in CAM6, the 1-hr nudging method
738 increases the simulated LWP by 50% and therefore increases cloud optical depth by 50%. However,
739 the changes in IWP between the two nudging methods are minimal (6%) in that study. This
740 indicates that the nudging time scale plays a significant role in controlling the cloud liquid
741 microphysical properties in simulations but may not be able to compensate for the insufficient
742 amount of simulated IWP.

743 One caveat of this study is the data availability and representativeness from two limited
744 geographical locations due to the scarcity of ground-based observations in the high southern
745 latitudes. At Macquarie Island, climatological studies of precipitation records have shown marked
746 increases of precipitation and mean wind speed since 1970, which are consistent with the predicted
747 regional trend of the sub-Antarctic regions in response to a changing global climate (Adams, 2009).
748 Another observational study by Lang et al. (2018) also showed that cloud structure at Macquarie
749 Island frequently resides within a shallow marine atmospheric boundary layer, which is a
750 representative feature of Southern Ocean low-level clouds. Compared with Macquarie Island, the
751 McMurdo station in Antarctica is associated with more extreme conditions such as very low
752 temperature and humidity (Bromwich et al., 2012). McMurdo Station is also under stronger
753 orographic influences by the nearby mountains and islands which produce higher katabatic winds
754 than Macquarie Island with modest orography. Previous study by Silber, Verlinde, Cadeddu et al.
755 (2019b) showed that the cloud properties at McMurdo may not fully represent statistical cloud
756 properties of the entire Antarctic continent, but measurements from the McMurdo station still
757 provides a highly valuable observational dataset over this remote region.

758 Overall, using ground-based observations from two DOE field campaigns in the southern
759 hemisphere, this work investigates synoptic influences spanning over four seasons for each site.
760 The results provide a different perspective compared with the frequently used spaceborne remote
761 sensing measurements in this remote region. The insufficient amount of ice phase hydrometeors

762 has been identified as a persistent bias in Southern Ocean and Antarctica. The combination of
763 underestimated LWP and IWP at McMurdo, Antarctica may be the main cause of the more severe
764 overestimations of absorption of solar radiation at the surface in this high-latitudinal region
765 compared with the low-latitudinal regions. Further investigation on ice processes in the model
766 parameterization is needed to diagnose the specific reasons for biases of ice phase in order to
767 improve the accuracy of representations of cloud and radiative properties in the high southern
768 latitudinal regions.

769 **Acknowledgement**

770 T. Barone, M. Diao, Y. Shi, and X. Liu would like to acknowledge the funding support
771 from the DOE Atmospheric System Research (ASR) grant DE-SC0021211. T. Barone and M.
772 Diao would also like to acknowledge the funding support by the U.S. National Science Foundation
773 (NSF) Office of Polar Programs (grant #1744965), DOE RDPP grant DE-SC0023155, and DOE
774 Climate Resilience Grant DE-SC0024439. T. Barone received the Walker Fellowship from San
775 Jose State University. This research used resources of the National Energy Research Scientific
776 Computing Center, which is a DOE Office of Science User Facility supported by the Office of
777 Science of the U.S. Department of Energy under Contract No. DE-AC02-05CH11231 using
778 NERSC award BER-ERCAP0019880 and ERCAP0025013. We show our utmost appreciation for
779 the hard work of the individuals who contributed to the MICRE and AWARE field campaigns.

780 **Open Research**

781 Observation data are available from ARM Data Discovery (<https://adc.arm.gov/discovery/>).
782 The observational datasets of DOE ARM MICRE and AWARE field campaigns can be accessed
783 from the ARM data repository at: <https://www.arm.gov/research/campaigns/osc2016micre> (DOE
784 ARM MICRE, 2024) and <https://www.arm.gov/research/campaigns/amf2015aware> (DOE ARM
785 AWARE, 2024). The CAM6 and EAMv1 nudged simulation output for the MICRE and AWARE
786 campaigns are stored in open archive at Mendeley Data (<https://data.mendeley.com/>) using
787 <https://doi.org/10.17632/vd6gdmnxvp.1> (Barone et al., 2023).

788 **References**

789 Adams, N. (2009). Climate trends at Macquarie Island and expectations of future climate change
790 in the sub-Antarctic. *Papers and Proceedings of the Royal Society of Tasmania*, 143, 1–8.
791 <https://doi.org/10.26749/rstpp.143.1.1>

792 Andreas, A., Dooraghi, M., Habte, A., Kuchenreiter, M., Reda, I., & Sengupta, M. (2018). Solar
793 Infrared Radiation Station (SIRS), Sky Radiation (SKYRAD), Ground Radiation
794 (GNDRAD), and Broadband Radiometer Station (BRS) Instrument Handbook. U.S.
795 Department of Energy. DOE/SC-ARM-TR-025,
796 https://www.arm.gov/publications/tech_reports/handbooks/sirs_handbook.pdf

797 Barone, T., Shi, Y., Zhao, X., Liu, X., Diao, M. Barone, T., & Silber I. Diao, M. (2023). MICRE
798 and AWARE Campaign Model Simulations by EAMv1 and CAM6CAM6 and EAMv1 model
799 simulations for DOE MICRE and AWARE campaigns. (Vol. V1). Mendeley Data, V1.
800 <https://doi.org/10.17632/vd6gdmnxvp.1>.

801 Bauer, M., & DelGenio, A. D. (2006). Composite analysis of winter cyclones in a GCM:
802 Influence on climatological humidity, *J. Clim.*, 19, 1652–1672.
803 <https://doi.org/10.1175/JCLI3690.1>

804 Bender, F. A., Charlson, R. J., Ekman, A. M. L., & Leahy, L. V. (2011). Quantification of
805 Monthly Mean Regional-Scale Albedo of Marine Stratiform Clouds in Satellite Observations
806 and GCMs. *J. Appl. Meteor. Climatol.*, 50, 2139–2148, <https://doi.org/10.1175/JAMC-D-11-049.1>.

808 Bjordal, J., Storelvmo, T., Alterskjær, K., & Carlsen, T. (2020). Equilibrium climate sensitivity
809 above 5 °C plausible due to state-dependent cloud feedback. *Nat. Geosci.* 13, 718–721 (2020).
810 <https://doi.org/10.1038/s41561-020-00649-1>

811 Bodas-Salcedo, A., Williams, K. D., Field, P. R., & Lock, A. P. (2012). The surface
812 downwelling solar radiation surplus over the Southern Ocean in the met office model: The
813 role of midlatitude cyclone clouds. *Journal of Climate*, 25(21), 7467–7486.
814 <https://doi.org/10.1175/JCLI-D-11-00702.1>

815 Bodas-Salcedo, A., Williams, K. D., Ringer, M. A., Beau, I., Cole, J. N. S., Dufresne, J. L., et al.
816 (2014). Origins of the solar radiation biases over the Southern Ocean in CMIP2 models.
817 *Journal of Climate*, 27(1), 41–56. <https://doi.org/10.1175/JCLI-D-13-00169.1>

818 Bodas-Salcedo, A., Andrews, T., Karmalkar, A. V., & Ringer, M. A. (2016). Cloud liquid water
819 path and radiative feedbacks over the Southern Ocean. *Geophysical Research Letters*, 43(20),
820 10938–10946. <https://doi.org/10.1002/2016GL070770>

821 Bodas-Salcedo, A., Mulcahy, J. P., Andrews, T., Williams, K. D., Ringer, M. A., Field, P. R., &
822 Elsaesser, G. S. (2019). Strong dependence of atmospheric feedbacks on mixed-phase
823 microphysics and aerosol-cloud interactions in HadGEM3. *Journal of Advances in Modeling
824 Earth Systems*, 11, 1735–1758. <https://doi.org/10.1029/2019MS001688>

825 Bogenschutz, P. A., Gettelman, A., Morrison, H., Larson, V. E., Craig, C., & Schanen, D. P.
826 (2013). Higher-order turbulence closure and its impact on climate simulations in the
827 community atmosphere model. *Journal of Climate*, 26(23), 9655–9676.
828 <https://doi.org/10.1175/JCLI-D-13-00075.1>

829 Bouttes, N., Gregory, J. M., Kuhlbrodt, T. & Suzuki, T. (2012). The effect of windstress change
830 on future sea level change in the Southern Ocean. *Geophys. Res. Lett.*, 39, L23602,
831 doi:10.1029/2012GL054207.

832 Bromwich, D. H., Nicolas, J. P., Hines, K. M., Kay, J. E., Key, E. L., Lazzara, M. A., et al.
833 (2012). Tropospheric clouds in Antarctica. *Reviews of Geophysics*, 50(1), RG1004.
834 <https://doi.org/10.1029/2011RG000363>

835 Carrasco, J. F., & Bromwich, D. H. (1993). Mesoscale cyclogenesis dynamics over the
836 southwestern Ross Sea, Antarctica. *Journal of Geophysical Research*, 98(D7).
837 <https://doi.org/10.1029/92jd02821>

838 Carrasco, J. F., Bromwich, D. H., & Monaghan, A. J. (2003). Distribution and characteristics of
839 mesoscale cyclones in the Antarctic: Ross Sea eastward to the Weddell Sea. *Monthly Weather
840 Review*, 131(2). [https://doi.org/10.1175/1520-0493\(2003\)131<0289:DACOMC>2.0.CO;2](https://doi.org/10.1175/1520-0493(2003)131<0289:DACOMC>2.0.CO;2)

841 Ceppi, P., Hwang, Y.-T., Frierson, D. M. W., & Hartmann, D. L. (2012). Southern Hemisphere
842 jet latitude biases in CMIP5 models linked to shortwave cloud forcing. *Geophysical Research
843 Letters*, 39(19), L19708. <https://doi.org/10.1029/2012GL053115>

844 Ceppi, P., Hartmann, D. L., & Webb, M. J. (2016). Mechanisms of the Negative Shortwave
845 Cloud Feedback in Middle to High Latitudes. *J. Climate*, 29, 139–157,
846 <https://doi.org/10.1175/JCLI-D-15-0327.1>.

847 Cesana, G., & Chepfer, H. (2013). Evaluation of the cloud thermodynamic phase in a climate
848 model using CALIPSO-GOCCP. *Journal of Geophysical Research: Atmospheres*, 118(14),
849 7922–7937. <https://doi.org/10.1002/jgrd.50376>

850 Cesana, G. V., Ackerman, A. S., Fridlind, A. M., Silber, I., & Kelley, M. (2021). Snow
851 Reconciles Observed and Simulated Phase Partitioning and Increases Cloud Feedback.
852 *Geophysical Research Letters*, 48(20). <https://doi.org/10.1029/2021GL094876>

853 Cesana, G. V., Khadir, T., Chepfer, H., & Chiriaco, M. (2022). Southern Ocean Solar Reflection
854 Biases in CMIP6 Models Linked to Cloud Phase and Vertical Structure Representations.
855 *Geophysical Research Letters*, 49(22). <https://doi.org/10.1029/2022GL099777>

856 Chapman, C. C., Hogg, A. M. C., Kiss, A. E., & Rintoul, S. R. (2015). The dynamics of
857 Southern Ocean storm tracks. *Journal of Physical Oceanography*, 45, 884–903.
858 <https://doi.org/10.1175/JPO-D-14-0075.1>

859 Collins, W. J., et al. (2011). Development and evaluation of an earth-system model—HadGEM2.
860 *Geosci. Model Dev.*, 4, 1051–1075, doi:10.5194/gmd-4-1051-2011.

861 D'Alessandro, J. J., Diao, M., Wu, C., Liu, X., Jensen, J. B., & Stephens, B. B. (2019). Cloud
862 phase and relative humidity distributions over the Southern Ocean in austral summer based on
863 in situ observations and CAM5 simulations. *Journal of Climate*, 32(10).
864 <https://doi.org/10.1175/JCLI-D-18-0232.1>

865 D'Alessandro, J. J., McFarquhar, G. M., Stith, J. L., Diao, M., DeMott, P. J., McCluskey, C. S.,
866 et al. (2023). An Evaluation of Phase, Aerosol-Cloud Interactions and Microphysical
867 Properties of Single- and Multi-Layer Clouds Over the Southern Ocean Using in Situ
868 Observations From SOCRATES. *Journal of Geophysical Research: Atmospheres*, 128(15),
869 e2023JD038610. <https://doi.org/10.1029/2023JD038610>

870 Danabasoglu, G., Lamarque, J.-F., Bacmeister, J., Bailey, D. A., DuVivier, A. K., Edwards, J., et
871 al. (2020). The Community Earth System Model Version 2 (CESM2). *Journal of Advances in
872 Modeling Earth Systems*, 12, e2019MS001916. <https://doi.org/10.1029/2019MS001916>

873 Delanoë, J., Protat, A., Vinson, J. P., Brett, W., Caudoux, C., Bertrand, F., du Chatelet, J. P.,
874 Hallali, R., Barthes, L., Haeffelin, M., & Dupont, J. C. (2016). BASTA: A 95-GHz FMCW

875 Doppler radar for cloud and fog studies. *Journal of Atmospheric and Oceanic Technology*,
876 33(5). <https://doi.org/10.1175/JTECH-D-15-0104.1>

877 Desai, N., Diao, M., Shi, Y., Liu, X., & Silber, I. (2023). Ship-based observations and climate
878 model simulations of cloud phase over the Southern Ocean. *Journal of Geophysical Research: Atmospheres*, 128, e2023JD038581. <https://doi.org/10.1029/2023JD038581>

880 DOE ARM AWARE campaign. (2024). [Dataset],
881 <https://www.arm.gov/research/campaigns/amf2015aware>

882 DOE ARM MICRE campaign. (2024). [Dataset],
883 <https://www.arm.gov/research/campaigns/osc2016micre>

884 Eloranta, E. E. (2006). High spectral resolution Lidar. In *Lidar* (pp. 143–163). Springer-
885 Verlag. https://doi.org/10.1007/0-387-25101-4_5

886 Essery, R. L. H., Best, M. J., Betts, R. A., Cox, P. M., & Taylor, C. M. (2003). Explicit
887 representation of subgrid heterogeneity in a GCM land-surface scheme. *J. Hydrometeorol.*, 4,
888 530–543. [https://doi.org/10.1175/1525-7541\(2003\)004<0530:EROSHI>2.0.CO;2](https://doi.org/10.1175/1525-7541(2003)004<0530:EROSHI>2.0.CO;2)

889 Field, P. R., & Wood, R. (2007). Precipitation and cloud structure in midlatitude cyclones. *J.*
890 *Climate*, 20, 233–254. <https://doi.org/10.1175/JCLI4396.1>

891 Field, P. R., Bodas-Salcedo, A., & Brooks, M. E. (2011). Using model analysis and satellite data
892 to assess cloud and precipitation in midlatitude cyclones. *Quarterly Journal of the Royal*
893 *Meteorological Society*, 137(659), 1501–1515. <https://doi.org/10.1002/qj.858>

894 Flynn, C. M., & Mauritsen, T. (2020). On the climate sensitivity and historical warming
895 evolution in recent coupled model ensembles. *Atmospheric Chemistry and Physics*, 20(13).
896 <https://doi.org/10.5194/acp-20-7829-2020>

897 Frey, W. R., & Kay, J. E. (2018). The influence of extratropical cloud phase and amount
898 feedbacks on climate sensitivity. *Climate Dynamics*, 50(7–8), 3097–3116.
899 <https://doi.org/10.1007/s00382-017-3796-5>

900 Gettelman, A., & Morrison, H. (2015). Advanced Two-Moment Bulk Microphysics for Global
901 Models. Part I: Off-Line Tests and Comparison with Other Schemes. *Journal of Climate*,
902 28(3), 1268–1287. <https://doi.org/10.1175/JCLI-D-14-00102.1>

903 Gettelman, A., Morrison, H., Santos, S., Bogenschutz, P., & Caldwell, P. M. (2015). Advanced
904 Two-Moment Bulk Microphysics for Global Models. Part II: Global Model Solutions and
905 Aerosol–Cloud Interactions. *Journal of Climate*, 28(3), 1288–1307.
906 <https://doi.org/10.1175/JCLI-D-14-00103.1>

907 Gettelman, A., Bardeen, C. G., McCluskey, C. S., Järvinen, E., Stith, J., Bretherton, C., et al.
908 (2020). Simulating Observations of Southern Ocean Clouds and Implications for Climate.
909 *Journal of Geophysical Research: Atmospheres*, 125(21).
910 <https://doi.org/10.1029/2020JD032619>

911 Gleckler, P. J. (2005). Surface energy balance errors in AGCMs: Implications for ocean-
912 atmosphere model coupling. *Geophys. Res. Lett.*, 32, L15708, doi:10.1029/2005GL023061.

913 Golaz, J. C., Caldwell, P. M., Van Roekel, L. P., Petersen, M. R., Tang, Q., Wolfe, J. D.,
914 Abeshu, G., Anantharaj, V., Asay-Davis, X. S., Bader, D. C., Baldwin, S. A., Bisht, G.,
915 Bogenschutz, P. A., Branstetter, M., Brunke, M. A., Brus, S. R., Burrows, S. M., Cameron-
916 Smith, P. J., Donahue, A. S., Deakin, M., Easter, R. C., Evans, K. J., Feng, Y., Flanner, M.,
917 Foucar, J. G., Fyke, J. G., Griffin, B. M., Hannay, C., Harrop, B. E., Hoffman, M. J., Hunke,
918 E. C., Jacob, R. L., Jacobsen, D. W., Jeffery, N., Jones, P. W., Keen, N. D., Klein, S. A.,
919 Larson, V. E., Leung, L. R., Li, H. Y., Lin, W. Y., Lipscomb, W. H., Ma, P. L., Mahajan, S.,
920 Maltrud, M. E., Mametjanov, A., McClean, J. L., McCoy, R. B., Neale, R. B., Price, S. F.,
921 Qian, Y., Rasch, P. J., Eyre, J. E. J. R., Riley, W. J., Ringler, T. D., Roberts, A. F., Roesler, E.
922 L., Salinger, A. G., Shaheen, Z., Shi, X. Y., Singh, B., Tang, J. Y., Taylor, M. A., Thornton,
923 P. E., Turner, A. K., Veneziani, M., Wan, H., Wang, H. L., Wang, S. L., Williams, D. N.,
924 Wolfram, P. J., Worley, P. H., Xie, S. C., Yang, Y., Yoon, J. H., Zelinka, M. D., Zender, C.
925 S., Zeng, X. B., Zhang, C. Z., Zhang, K., Zhang, Y., Zheng, X., Zhou, T., & Zhu, Q. (2019).
926 The DOE E3SM coupled model version 1: Overview and evaluation at standard resolution, *J.*
927 *Adv. Model. Earth Sy.*, 11, 2089–2129, <https://doi.org/10.1029/2018MS001603>.

928 Golaz, J.-C., Larson, V. E., & Cotton, W. R. (2002a). A PDF-Based Model for Boundary Layer
929 Clouds. Part I: Method and Model Description. *Journal of the Atmospheric Sciences*, 59(24),
930 3540–3551. [https://doi.org/10.1175/1520-0469\(2002\)059%3C3540:APBMFB%3E2.0.CO;2](https://doi.org/10.1175/1520-0469(2002)059%3C3540:APBMFB%3E2.0.CO;2)

931 Golaz, J.-C., Larson, V. E., & Cotton, W. R. (2002b). A PDF-Based Model for Boundary Layer
932 Clouds. Part II: Model Results. *Journal of the Atmospheric Sciences*, 59(24), 3552–3571.
933 [https://doi.org/10.1175/1520-0469\(2002\)059%3C3552:APBMFB%3E2.0.CO;2](https://doi.org/10.1175/1520-0469(2002)059%3C3552:APBMFB%3E2.0.CO;2)

934 Golaz, J.-C., Caldwell, P. M., Van Roekel, L. P., Petersen, M. R., Tang, Q., Wolfe, J. D., et al.
935 (2019). The DOE E3SM coupled model version 1: Overview and evaluation at standard
936 resolution. *Journal of Advances in Modeling Earth Systems*, 11, 2089–2129.
937 <https://doi.org/10.1029/2018MS001603>

938 Govekar, P. D., Jakob, C., Reeder, M. J., & Haynes, J. (2011). The three-dimensional
939 distribution of clouds around Southern Hemisphere extratropical cyclones. *Geophysical
940 Research Letters*, 38(21), 1–6. <https://doi.org/10.1029/2011GL049091>

941 Govekar, P. D., Jakob, C., & Catto, J. (2014). The relationship between clouds and dynamics in
942 Southern Hemisphere extratropical cyclones in the real world and a climate model. *Journal of
943 Geophysical Research: Atmospheres*, 119(11), 6609–6628.
944 <https://doi.org/10.1002/2013JD020699>

945 Hande, L. B., Siems, S. T., Manton, M. J., & Belusic, D. (2012). Observations of wind shear
946 over the Southern Ocean. *Journal of Geophysical Research*, 117, D12206.
947 <https://doi.org/10.1029/2012JD017488>

948 Hines, K. M., & Bromwich, D. H., Wang, S.-H., Silber, I., Verlinde, J., and Lubin, D. (2019).
949 Microphysics of summer clouds in central West Antarctica simulated by the Polar Weather

950 Research and Forecasting Model (WRF) and the Antarctic Mesoscale Prediction System
951 (AMPS), *Atmos. Chem. Phys.*, 19, 12431–12454, <https://doi.org/10.5194/acp-19-12431-2019>.

952 Hinkelmann, L. M., & Marchand, R. (2020). Evaluation of CERES and CloudSat surface radiation
953 fluxes over Macquarie Island, the Southern Ocean. *Earth and Space Science*, 7(9).
954 <https://doi.org/10.1029/2020EA001224>

955 Hogan, R. J., Mittermaier, M. P., & Illingworth, A. J. (2006). The retrieval of ice water content
956 from radar reflectivity factor and temperature and its use in evaluating a mesoscale model.
957 *Journal of Applied Meteorology and Climatology*, 45(2). <https://doi.org/10.1175/JAM2340.1>

958 Holland, P. R., Jenkins, A., & Holland, D. M. (2010). Ice and ocean processes in the
959 Bellingshausen Sea, Antarctica. *J. Geophys. Res.*, 115, C05020, doi:10.1029/2008JC005219.

960 Hoskins, B. J., & Hodges, K. I. (2005). A new perspective on Southern Hemisphere storm tracks.
961 *Journal of Climate*, 18(20), 4108– 4129. <https://doi.org/10.1175/JCLI3570.1>

962 Humphries, R.S., et al. (2023). Measurement report: Understanding the seasonal cycle of
963 Southern Ocean aerosols. *Atmospheric Chemistry and Physics*, 23(6), 10.5194/acp-23-3749-
964 2023. <https://doi.org/10.5194/acp-23-3749-2023>

965 Hwang, Y. T., & Frierson, D. M. W. (2013). Link between the double-intertropical convergence
966 zone problem and cloud biases over the Southern Ocean, *Proc. Natl. Acad. Sci. U.S.A.*, 110,
967 4935–4940, doi:10.1073/pnas.121302110

968 Iacono, M. J., Mlawer, E. J., Clough, S. A., & Morcrette, J. J. (2000). Impact of an improved
969 longwave radiation model, RRTM, on the energy budget and thermodynamic properties of the
970 NCAR Community Climate Model, CCM3. *Journal of Geophysical Research*, 105(D11),
971 14873– 14890. <https://doi.org/10.1029/2000JD900091>

972 IPCC, 2013: Climate Change. (2013). The Physical Science Basis. Contribution of Working
973 Group I to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change
974 [Stocker, T.F., D. Qin, G.-K. Plattner, M. Tignor, S.K. Allen, J. Boschung, A. Nauels, Y. Xia,
975 V. Bex and P.M. Midgley (eds.)]. Cambridge University Press, Cambridge, United Kingdom
976 and New York, NY, USA, 1535 pp.

977 IPCC, 2023: Climate Change. (2023). Synthesis Report. Contribution of Working Groups I, II
978 and III to the Sixth Assessment Report of the Intergovernmental Panel on Climate Change
979 [Core Writing Team, H. Lee and J. Romero (eds.)]. IPCC, Geneva, Switzerland, pp. 35-115,
980 doi: 10.59327/IPCC/AR6-9789291691647.Jolly, B., Kuma, P., McDonald, A., & Parsons, S.
981 (2018). An analysis of the cloud environment over the Ross Sea and Ross Ice Shelf using
982 CloudSat/CALIPSO satellite observations: The importance of synoptic forcing. *Atmospheric
983 Chemistry and Physics*, 18(13). <https://doi.org/10.5194/acp-18-9723-2018>

984 Kalnay, E., et al. (1996). The NCEP/NCAR 40-Year Reanalysis Project. *Bull. Amer. Meteor.
985 Soc.*, 77, 437-471. [https://doi.org/10.1175/1520-0477\(1996\)077%3C0437:TNYRP%3E2.0.CO;2](https://doi.org/10.1175/1520-0477(1996)077%3C0437:TNYRP%3E2.0.CO;2)

987 Kay, J. E., Bourdages, L., Miller, N. B., Morrison, A., Yettella, V., Chepfer, H., & Eaton, B.
988 (2016). Evaluating and improving cloud phase in the Community Atmosphere Model version
989 5 using spaceborne lidar observations. *Journal of Geophysical Research: Atmospheres*,
990 121(8), 4162–4176. <https://doi.org/10.1002/2015JD024699>

991 Kelleher, M. K., & Grise, K. M. (2019). Examining Southern Ocean cloud controlling factors on
992 daily time scales and their connections to midlatitude weather systems. *Journal of Climate*,
993 32(16), 5145–5160. <https://doi.org/10.1175/JCLI-D-18-0840.1>

994 Klein, S. A., & Hartmann, D. L. (1993). The seasonal cycle of low stratiform clouds, *J. Clim.*,
995 6(8), 1587– 1606. [https://doi.org/10.1175/1520-0442\(1993\)006%3C1587:TSCOLS%3E2.0.CO;2](https://doi.org/10.1175/1520-0442(1993)006%3C1587:TSCOLS%3E2.0.CO;2)

997 Klein, S. A., Hall, A., Norris, J. R., & Pincus, R. (2017). Low-Cloud Feedbacks from Cloud-
998 Controlling Factors: A Review. *Surveys in Geophysics*, 38(6).
999 <https://doi.org/10.1007/s10712-017-9433-3>

1000 Lang, F., Huang, Y., Siems, S. T., & Manton, M. J. (2018). Characteristics of the marine
1001 atmospheric boundary layer over the Southern Ocean in response to the synoptic forcing.
1002 *Journal of Geophysical Research: Atmospheres*, 123, 7799–7820.
1003 <https://doi.org/10.1029/2018JD028700>

1004 Larson, V. E., Golaz, J.-C., & Cotton, W. R. (2002). Small-Scale and Mesoscale Variability in
1005 Cloudy Boundary Layers: Joint Probability Density Functions. *Journal of the Atmospheric
1006 Sciences*, 59(24), 3519–3539. [https://doi.org/10.1175/1520-0469\(2002\)059%3C3519:SSAMVI>2.0.CO;2](https://doi.org/10.1175/1520-0469(2002)059%3C3519:SSAMVI>2.0.CO;2)

1008 Lau, N. C., & Crane, M. W. (1995). A satellite view of the synoptic-scale organization of cloud
1009 properties in midlatitude and tropical circulation systems, *Mon. Weather Rev.*, 123, 1984–
1010 2066. [https://doi.org/10.1175/1520-0493\(1995\)123%3C1984:ASVOTS%3E2.0.CO;2](https://doi.org/10.1175/1520-0493(1995)123%3C1984:ASVOTS%3E2.0.CO;2)

1011 Lau, N. C., & Crane, M. W. (1997). Comparing satellite and surface observations of cloud
1012 patterns in synoptic-scale circulation systems, *Mon. Weather Rev.*, 125, 3172– 3189.
1013 [https://doi.org/10.1175/1520-0493\(1997\)125%3C3172:CSASOO%3E2.0.CO;2](https://doi.org/10.1175/1520-0493(1997)125%3C3172:CSASOO%3E2.0.CO;2)

1014 Liou, K. N. (1992). *Radiation and cloud processes in the atmosphere* (pp. 255–339). Oxford
1015 University Press.

1016 Liu, X., Ma, P.-L., Wang, H., Tilmes, S., Singh, B., Easter, R. C., Ghan, S. J., & Rasch, P. J.
1017 (2016). Description and evaluation of a new four-mode version of the Modal Aerosol Module
1018 (MAM4) within version 5.3 of the Community Atmosphere Model, *Geosci. Model Dev.*, 9,
1019 505–522, <https://doi.org/10.5194/gmd-9-505-2016>.

1020 Liu, Y. (2022). Impacts of active satellite sensors' low-level cloud detection limitations on cloud
1021 radiative forcing in the Arctic, *Atmos. Chem. Phys.*, 22, 8151–8173,
1022 <https://doi.org/10.5194/acp-22-8151-2022>.

1023 Long, C. N., & Shi, Y. (2006). The QCRad Value Added Product: Surface Radiation
1024 Measurement Quality Control Testing, Including Climatologically Configurable Limits. U.S.
1025 Department of Energy. DOE/SCARM-TR-074,
1026 https://www.arm.gov/publications/tech_reports/doe-sc-arm-tr-074.pdf

1027 Long, C. N., & Shi, Y. (2008). An Automated Quality Assessment and Control Algorithm for
1028 Surface Radiation Measurements. *The Open Atmosphere Science Journal*, 2, 23–37,
1029 <https://doi.org/10.2174/1874282300802010023>

1030 Lubin, D., Zhang, D., Silber, I., Scott, R. C., Kalogeras, P., Battaglia, A., et al. (2020). AWARE:
1031 The Atmospheric Radiation Measurement (ARM) West Antarctic Radiation Experiment.
1032 *Bulletin of the American Meteorological Society*, 101, E1069–E1091,
1033 <https://doi.org/10.1175/BAMS-D-18-0278.1>.

1034 Mace, G. G. J., & Protat, A. (2018). Clouds over the Southern Ocean as observed from the R/V
1035 investigator during CAPRICORN. Part I: Cloud occurrence and phase partitioning. *Journal of*
1036 *Applied Meteorology and Climatology*, 57(8). <https://doi.org/10.1175/JAMC-D-17-0194.1>

1037 Maciel, F. V., Diao, M., & Patnaude, R. (2023). Examination of aerosol indirect effects during
1038 cirrus cloud evolution. *Atmospheric Chemistry and Physics*, 23(2).
1039 <https://doi.org/10.5194/acp-23-1103-2023>

1040 Maciel, F. V., Diao, M., & Yang, C. A. (2024). The Transition from Supercooled Liquid Water
1041 to Ice Crystals in Mixed-phase Clouds based on Airborne In-situ Observations, *Atmos. Meas.*
1042 *Tech.*, . accepted, <https://doi.org/10.5194/amt-2022-256>.

1043 Marshall, J., & Speer, K. (2012). Closure of the meridional overturning circulation through
1044 Southern Ocean upwelling, *Nat. Geosci.*, 5(3), 171–180. <https://doi.org/10.1038/ngeo1391>

1045 Marchand R. (2020). Macquarie Island Cloud and Radiation Experiment (MICRE) Field
1046 Campaign Report. Ed. by Robert Stafford, ARM user facility. DOE/SC-ARM-20-005.
1047 10.2172/1602536.

1048 McCoy, D. T., Hartmann, D. L., & Grosvenor, D. P. (2014a). Observed Southern Ocean cloud
1049 properties and shortwave reflection. Part I: Calculation of SW flux from observed cloud
1050 properties. *J. Climate*, 27, 8836–8857, <https://doi.org/10.1175/JCLI-D-14-00287.1>

1051 McCoy, D. T., Hartmann, D. L., & Grosvenor, D. P. (2014b). Observed Southern Ocean cloud
1052 properties and shortwave reflection. Part II: Phase changes and low cloud feedback*. *Journal*
1053 *of Climate*, 27(23), 8858– 8868. <https://doi.org/10.1175/jcli-d-14-00288.1>

1054 McCoy, D. T., Burrows, S. M., Wood, R., Grosvenor, D. P., Elliott, S. M., Ma, P.-L., Rasch, P.
1055 J., & Hartmann, D. L. (2015). Natural aerosols explain seasonal and spatial patterns of
1056 Southern Ocean cloud albedo, *Sci. Adv.*, 1(6). <https://doi.org/10.1126/sciadv.1500157>

1057 McCoy, D. T., Tan, I., Hartmann, D. L., Zelinka, M. D., & Storelvmo, T. (2016). On the
1058 relationships among cloud cover, mixed-phase partitioning, and planetary albedo in GCMs.

1059 Journal of Advances in Modeling Earth Systems, 8(2), 650– 668.
1060 <https://doi.org/10.1002/2015MS000589>

1061 McCoy, D. T., Field, P. R., Elsaesser, G. S., Bodas-Salcedo, A., Kahn, B. H., Zelinka, M. D., et
1062 al. (2019). Cloud feedbacks in extratropical cyclones: Insight from long-term satellite data
1063 and high-resolution global simulations. *Atmospheric Chemistry and Physics*, 19(2), 1147–
1064 1172. <https://doi.org/10.5194/acp-19-1147-2019>

1065 McFarquhar, G. M., Bretherton, C. S., Marchand, R., Protat, A., DeMott, P. J., Alexander, S. P.,
1066 et al. (2021). Observations of clouds, aerosols, precipitation, and surface radiation over the
1067 Southern Ocean. *Bulletin of the American Meteorological Society*, 102(4), E894– E928.
1068 <https://doi.org/10.1175/BAMS-D-20-0132.1>

1069 McIlhattan, E. A., Kay, J. E., & L'Ecuyer, T. S. (2020). Arctic clouds and precipitation in the
1070 Community Earth System Model version 2. *Journal of Geophysical Research: Atmospheres*,
1071 125, e2020JD032521. <https://doi.org/10.1029/2020JD032521>

1072 Morris, V. R. (2006). Microwave Radiometer (MWR) Handbook. U.S. Department of Energy,
1073 DOE/SC-ARM-TR-016, doi:10.2172/1020715, <https://www.osti.gov/biblio/1020715>

1074 Mitchell, J. F. B., Senior, C. A., & Ingram, W. J. (1989). CO₂ and climate: A missing feedback?
1075 *Nature*, 341(6238), 132– 134. <https://doi.org/10.1038/341132a0>

1076 Montoya Duque, E., Huang, Y., Siems, S. T., May, P. T., Protat, A., & McFarquhar, G. M.
1077 (2022). A characterization of clouds and precipitation over the Southern Ocean from synoptic
1078 to micro scales during the CAPRICORN field campaigns. *Journal of Geophysical Research: Atmospheres*,
1079 127, e2022JD036796. <https://doi.org/10.1029/2022JD036796>

1080 Murphy, D. M., & Koop, T. (2005). Review of the vapour pressures of ice and supercooled water
1081 for atmospheric applications. *Quarterly Journal of the Royal Meteorological Society*,
1082 131(608), 1539–1565. <https://doi.org/10.1256/qj.04.94>

1083 Naud, C. M., Del Genio, A. D., & Bauer, M. (2006). Observational constraints on the cloud
1084 thermodynamic phase in midlatitude storms, *J. Clim.*, 19(20), 5273– 5288.
1085 <https://doi.org/10.1175/JCLI3919.1>

1086 Naud, C. M., Del Genio, A. D., Bauer, M., & Kovari, W. (2010). Cloud vertical distribution
1087 across warm fronts in CloudSat-CALIPSO data and a general circulation model, *J. Clim.*, 23,
1088 3397– 3415. <https://doi.org/10.1175/2010JCLI3282.1>

1089 Naud, C.M., Booth, J.F., & Del Genio, A.D. (2014) Evaluation of ERA-interim and MERRA
1090 cloudiness in the Southern Ocean. *J. Climate*, 27, no. 5, 2109-2124, doi:10.1175/JCLI-D-13-
1091 00432.1.

1092 Posselt, D., Stephens, G., & Miller, M. (2008). CloudSat—Adding a new dimension to a
1093 classical view of extratropical cyclones, *Bull. Amer. Meteor. Soc.*, 89, 599–609.
1094 <https://doi.org/10.1175/BAMS-89-5-599>

1095 Patnaude, R., Diao, M., Liu, X., & Chu, S. (2021). Effects of thermodynamics, dynamics and
1096 aerosols on cirrus clouds based on in situ observations and NCAR CAM6. *Atmospheric*
1097 *Chemistry and Physics*, 21(3), 1835– 1859. <https://doi.org/10.5194/acp-21-1835-2021>

1098 Rasch, P. J., S. Xie, P.-L. Ma, W. Lin, H. Wang, Q. Tang, S. M. Burrows, P. Caldwell, K.
1099 Zhang, R. C. Easter, et al. (2019), An Overview of the Atmospheric Component of the Energy
1100 Exascale Earth System Model, *J. Adv. Model. Earth Syst.*, 11, 2377–2411,
1101 <https://doi.org/10.1029/2019MS001629>.

1102 Raschke, E., Kinne, S., Rossow, W. B., Stackhouse Jr., P. W., & Wild, M. (2016). Comparison
1103 of radiative energy flows in observational datasets and climate modeling. *Journal of Applied*
1104 *Meteorology and Climatology*, 55, 93–117, <https://doi.org/10.1175/JAMC-D-14-0281.1>

1105 Riihimaki, L., Gaustad, K., & Long, C. (2019). Radiative Flux Analysis (RADFLUXANAL)
1106 Value-Added Product: Retrieval of Clear-Sky Broadband Radiative Fluxes and Other Derived
1107 Values. U.S. Department of Energy. DOE/SC-ARM-TR-228,
1108 <https://www.osti.gov/biblio/1808702>

1109 Schuddeboom, A. J., & McDonald, A. J. (2021). The Southern Ocean Radiative Bias, Cloud
1110 Compensating Errors, and Equilibrium Climate Sensitivity in CMIP6 Models. *Journal of*
1111 *Geophysical Research: Atmospheres*, 126(22). <https://doi.org/10.1029/2021JD035310>

1112 Silber, I., Verlinde, J., Eloranta, E. W., & Cadeddu, M. (2018). Antarctic cloud macrophysical,
1113 thermodynamic phase, and atmospheric inversion coupling properties at McMurdo station: I.
1114 principal data processing and climatology. *Journal of Geophysical Research: Atmospheres*,
1115 123(11), 6099–6121. <https://doi.org/10.1029/2018JD028279>

1116 Silber, I., Verlinde, J., Wang, S.-H., Bromwich, D. H., Fridlind, A. M., Cadeddu, M., et al.
1117 (2019a). Cloud Influence on ERA5 and AMPS Surface Downwelling Longwave Radiation
1118 Biases in West Antarctica. *Journal of Climate*, 32(22), 7935–7949.
1119 <https://doi.org/10.1175/JCLI-D-19-0149.1>

1120 Silber, I., Verlinde, J., Cadeddu, M., Flynn, C. J., Vogelmann, A. M., & Eloranta, E. W. (2019b).
1121 Antarctic Cloud Macrophysical, Thermodynamic Phase, and Atmospheric Inversion Coupling
1122 Properties at McMurdo Station—Part II: Radiative Impact During Different Synoptic
1123 Regimes. *Journal of Geophysical Research: Atmospheres*, 124(3), 1697–1719.
1124 <https://doi.org/10.1029/2018JD029471>

1125 Stanford, M. W., Fridlind, A. M., Silber, I., Ackerman, A. S., Cesana, G., Mülmenstädt, J.,
1126 Protat, A., Alexander, S., & McDonald, A. (2023). Earth-system-model evaluation of cloud
1127 and precipitation occurrence for supercooled and warm clouds over the Southern Ocean's
1128 Macquarie Island. *Atmospheric Chemistry and Physics*, 23(16), 9037–9069.
1129 <https://doi.org/10.5194/ACP-23-9037-2023>

1130 Taljaard, J. J. (1972). Synoptic meteorology of the Southern Hemisphere, in *Meteorology of the*
1131 *Southern Hemisphere*, edited by D. J. Karoly and D. G. Vincent, pp. 139– 211, Am. Meteorol.
1132 Soc. DOI: 10.1007/978-1-935704-33-1_8

1133 Tan, I., & Storelvmo, T. (2016). Sensitivity study on the influence of cloud microphysical
1134 parameters on mixed-phase cloud thermodynamic phase partitioning in CAM5. *Journal of the*
1135 *Atmospheric Sciences*, 73(2), 709–728. <https://doi.org/10.1175/JAS-D-15-0152.1>

1136 Tan, I., Storelvmo, T., & Zelinka, M. D. (2016). Observational constraints on mixed-phase
1137 clouds imply higher climate sensitivity. *Science*, 352, 224–227.
1138 <https://doi.org/10.1126/science.aad5300>

1139 Tansey, E., Marchand, R., Protat, A., Alexander, S. P., & Ding, S. (2022). Southern Ocean
1140 precipitation characteristics observed from CloudSat and ground instrumentation during the
1141 Macquarie Island Cloud & Radiation Experiment (MICRE): April 2016 to March 2017.
1142 *Journal of Geophysical Research: Atmospheres*, 127. e2021JD035370.
1143 <https://doi.org/10.1029/2021jd035370>

1144 Tansey, E., Marchand, R., Alexander, S. P., Klekociuk, A. R., & Protat, A. (2023). Southern
1145 Ocean Low Cloud and Precipitation Phase Observed During the Macquarie Island Cloud and
1146 Radiation Experiment (MICRE). *Journal of Geophysical Research: Atmospheres*, 128(17),
1147 e2023JD039205. <https://doi.org/10.1029/2023JD039205>

1148 Terai, C. R., Klein, S. A., & Zelinka, M. D. (2016). Constraining the low-cloud optical depth
1149 feedback at middle and high latitudes using satellite observations. *Journal of Geophysical*
1150 *Research: Atmospheres*. <https://doi.org/10.1002/2016JD025233>

1151 Trenberth, K. E., & Fasullo, J. T. (2010). Simulation of present-day and twenty-first-century
1152 energy budgets of the southern oceans. *J. Climate*, 23, 440–454,
1153 <https://doi.org/10.1175/2009JCLI3152.1>

1154 Tsushima, Y., Emori, S., Ogura, T., Kimoto, M., Webb, M. J., Williams, K. D., Ringer, M. A.,
1155 Soden, B. J., Li, B., & Andronova, N. (2006). Importance of the mixed-phase cloud
1156 distribution in the control climate for assessing the response of clouds to carbon dioxide
1157 increase: a multi-model study. *Climate Dyn.*, 27, 113–126, doi:10.1007/s00382-006-0127-7.

1158 Turner, D.D., Lo, C., Min, Q., Zhang, D., & Gaustad, K. (2021). Cloud Optical Properties from
1159 the Multi-filter Shadowband Radiometer (MFRSRCLDOD): An ARM Value-Added Product.
1160 Ed. by Robert Stafford, U.S. Department of Energy. DOE/SC-ARM/TR-047.
1161 10.2172/1020280.

1162 Wang, D., Yang, C.A., & Diao, M. (2024). Validation of Satellite-based Cloud Phase
1163 Distributions Using Global-Scale In-Situ Airborne Observations, *Earth and Space Science*,
1164 11, e2023EA003355. <https://doi.org/10.1029/2023EA003355>.

1165 Wang, Z., Siems, S. T., Belusic, D., Manton, M. J., & Huang, Y. (2015). A climatology of the
1166 precipitation over the Southern Ocean as observed at Macquarie Island. *Journal of Applied*
1167 *Meteorology and Climatology*, 54(12), 2321–2337. <https://doi.org/10.1175/JAMC-D-14-0211.1>

1169 Widener, K., Bharadwaj, N., & Johnson, K. (2012). Ka-Band ARM Zenith Radar (KAZR)
1170 Instrument Handbook. <https://doi.org/10.2172/1035855>

1171 Williams, K., Bodas-Salcedo, A., Déqué, M., Fermepin, S., Medeiros, B., Jakob, C., et al.
1172 (2013). The transpose AMIP II experiment and its application to the understanding of
1173 Southern Ocean cloud biases in climate models. *Journal of Climate*, 26(10), 3258–3274.
1174 <https://doi.org/10.1175/JCLI-D-12-00429.1>

1175 Xie, S., and Coauthors (2010). Clouds and more: ARM climate modeling best estimate data.
1176 *Bull. Amer. Meteor. Soc.*, 91, 13–20, <https://doi.org/10.1175/2009BAMS2891.1>

1177 Xie, S., Lin, W., Rasch, P. J., Ma, P.-L., Neale, R., Larson, V. E., et al. (2018). Understanding
1178 cloud and convective characteristics in version 1 of the E3SM atmosphere model. *Journal of*
1179 *Advances in Modeling Earth Systems*, 10, 2618–2644.
1180 <https://doi.org/10.1029/2018MS001350>

1181 Yang, C. A., Diao, M., Gettelman, A., Zhang, K., Sun, J., Mcfarquhar, G., & Wu, W. (2021). Ice
1182 and supercooled liquid water distributions over the Southern Ocean based on in situ
1183 observations and climate model simulations. *Journal of Geophysical Research: Atmospheres*,
1184 126(24), e2021JD036045. <https://doi.org/10.1029/2021JD036045>

1185 Yip, J., Diao, M., Barone, T., Silber, I., & Gettelman, A. (2021). Evaluation of the CAM6
1186 climate model using cloud observations at McMurdo Station, Antarctica. *Journal of*
1187 *Geophysical Research: Atmospheres*, 126, e2021JD034653. [https://doi.](https://doi.org/10.1029/2021JD034653)
1188 [org/10.1029/2021JD034653](https://doi.org/10.1029/2021JD034653)

1189 Zelinka, M. D., Myers, T. A., McCoy, D. T., Po-Chedley, S., Caldwell, P. M., Ceppli, P., et al.
1190 (2020). Causes of higher climate sensitivity in CMIP6 models. *Geophysical Research Letters*,
1191 47(1). <https://doi.org/10.1029/2019GL085782>

1192 Zhang, M., Liu, X., Diao, M., D'Alessandro, J. J., Wang, Y., Wu, C., et al. (2019). Impacts of
1193 Representing Heterogeneous Distribution of Cloud Liquid and Ice on Phase Partitioning of
1194 Arctic Mixed-Phase Clouds with NCAR CAM5. *Journal of Geophysical Research: Atmospheres*,
1195 124(23), 13071–13090. <https://doi.org/10.1029/2019JD030502>

1196 Zhang, M., Xie, S., Liu, X., Lin, W., Zhang, K., Ma, H.-Y., et al. (2020). Toward understanding
1197 the simulated phase partitioning of arctic single-layer mixed-phase clouds in E3SM. *Earth and*
1198 *Space Science*, 7, e2020EA001125. <https://doi.org/10.1029/2020EA001125>

1199 Zhang, M., Xie, S., Liu, X., Zhang, D., Lin, W., Zhang, K., et al. (2023). Evaluating EAMv2
1200 Simulated High Latitude Clouds Using ARM Measurements in the Northern and Southern
1201 Hemispheres. *Journal of Geophysical Research: Atmospheres*, 128(15), e2022JD038364.
1202 <https://doi.org/10.1029/2022JD038364>

1203 Zhang, Y., Xie, S., Lin, W., Klein, S. A., Zelinka, M., Ma, P.-L., et al. (2019). Evaluation of
1204 clouds in version 1 of the E3SM atmosphere model with satellite simulators. *Journal of*
1205 *Advances in Modeling Earth Systems*, 11, 1253–1268.
1206 <https://doi.org/10.1029/2018MS001562>

1207 Zhao, L., Wang, Y., Zhao, C., Dong, X., & Yung, Y. L. (2022). Compensating Errors in Cloud
1208 Radiative and Physical Properties over the Southern Ocean in the CMIP6 Climate Models.
1209 Advances in Atmospheric Sciences, 39(12). <https://doi.org/10.1007/s00376-022-2036-z>

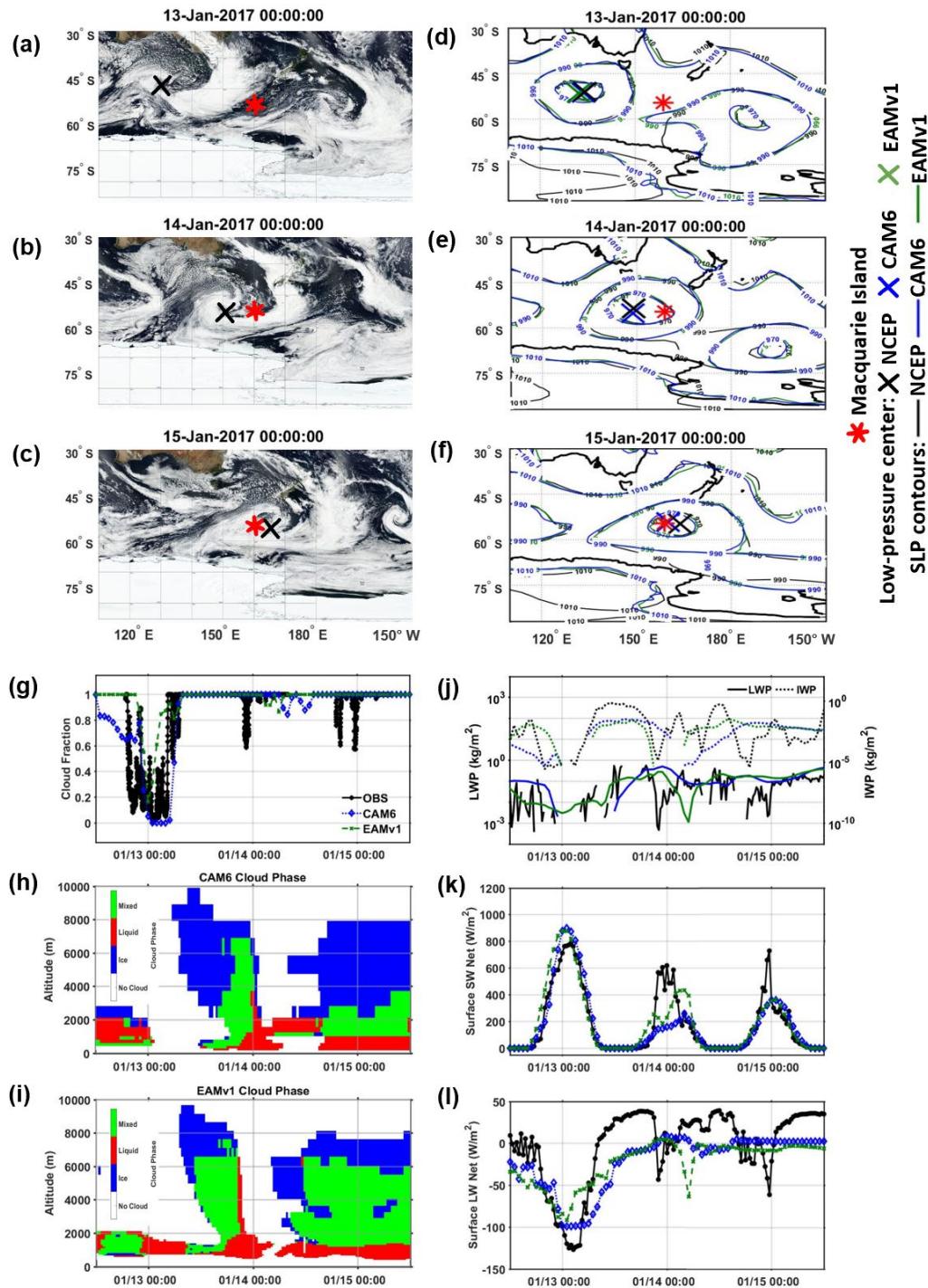
1210 Zhao, X., Liu, X., Burrows, S., DeMott, P. J., Diao, M., McFarquhar, G. M., et al. (2023).
1211 Important Ice Processes Are Missed by the Community Earth System Model in Southern
1212 Ocean Mixed-Phase Clouds: Bridging SOCRATES Observations to Model Developments.
1213 Journal of Geophysical Research: Atmospheres, 128(4).
1214 <https://doi.org/10.1029/2022JD037513>
1215

1216 **Table 1.** Comparisons of the average cloud fraction, LWP, and net surface SW and LW radiation
 1217 between Q2 & Q3 and Q1 & Q4 for observations and simulations in MICRE and AWARE.

Variables	MICRE			AWARE		
	Q2 & 3	Q1 & 4	T	Q2 & 3	Q1 & 4	T
CF OBS	0.8931	0.8986	<u>0.45</u> *	0.7553	0.6542	7.46
CF CAM6	0.9408	0.9520	<u>1.61</u>	0.7735	0.6544	8.17
CF EAMv1	0.9646	0.9501	<u>2.43</u>	0.7053	0.5226	12.07
dCF CAM6	0.0169	0.0383	<u>1.27</u>	0.0349	-0.0367	4.61
dCF EAMv1	0.1246	0.1057	1.39	-0.0722	-0.1359	4.68
LWP OBS (kg/m ²)	0.0844	0.0772	1.80	0.0214	0.0149	4.00
LWP CAM6 (kg/m ²)	0.1364	0.1521	<u>2.69</u>	0.0252	0.0205	1.60
LWP EAMv1 (kg/m ²)	0.0998	0.1292	<u>8.02</u>	0.0234	0.0060	11.42
dLWP CAM6 (kg/m ²)	0.0594	0.0705	<u>1.66</u>	0.0032	0.0031	0.02
dLWP EAMv1 (kg/m ²)	0.0247	0.0507	<u>5.11</u>	-0.0043	-0.0116	4.53
IWP OBS (kg/m ²)	0.0687	0.0810	<u>1.99</u>	0.0368	0.0379	<u>0.29</u>
IWP CAM6 (kg/m ²)	0.0096	0.0114	<u>3.06</u>	0.0024	0.0020	2.67
IWP EAMv1 (kg/m ²)	0.0124	0.0096	4.37	0.0026	0.0021	3.74
DIWP CAM6 (kg/m ²)	-0.0574	-0.0562	<u>0.20</u>	-0.0271	-0.0364	2.89
DIWP EAMv1 (kg/m ²)	-0.0475	-0.0632	<u>3.03</u>	-0.0378	-0.0311	<u>2.02</u>
SW OBS (W/m ²)	100.6071	82.3412	<u>3.31</u>	109.0580	92.6947	<u>3.18</u>
SW CAM6 (W/m ²)	85.5737	85.7278	<u>0.03</u>	117.5711	93.7900	2.27
SW EAMv1 (W/m ²)	76.1329	86.1451	<u>1.95</u>	116.6847	104.3017	2.33
dSW CAM6 (W/m ²)	4.0713	-4.1469	2.54	11.6501	13.1566	<u>0.59</u>
dSW EAMv1 (W/m ²)	1.8820	1.4762	0.14	12.0925	11.8888	0.12
LW OBS (W/m ²)	-21.7609	-14.9637	<u>5.59</u>	-56.5636	-60.6723	2.90
LW CAM6 (W/m ²)	-33.5267	-17.8421	<u>15.73</u>	-50.8223	-49.6846	<u>1.25</u>
LW EAMv1 (W/m ²)	-31.8418	-17.0154	<u>18.12</u>	-51.8221	-57.7519	7.05
dLW CAM6 (W/m ²)	-11.6276	-0.8038	<u>9.08</u>	8.7343	8.9403	<u>0.15</u>
dLW EAMv1 (W/m ²)	-10.9050	0.3734	<u>10.73</u>	3.1776	1.7216	1.40

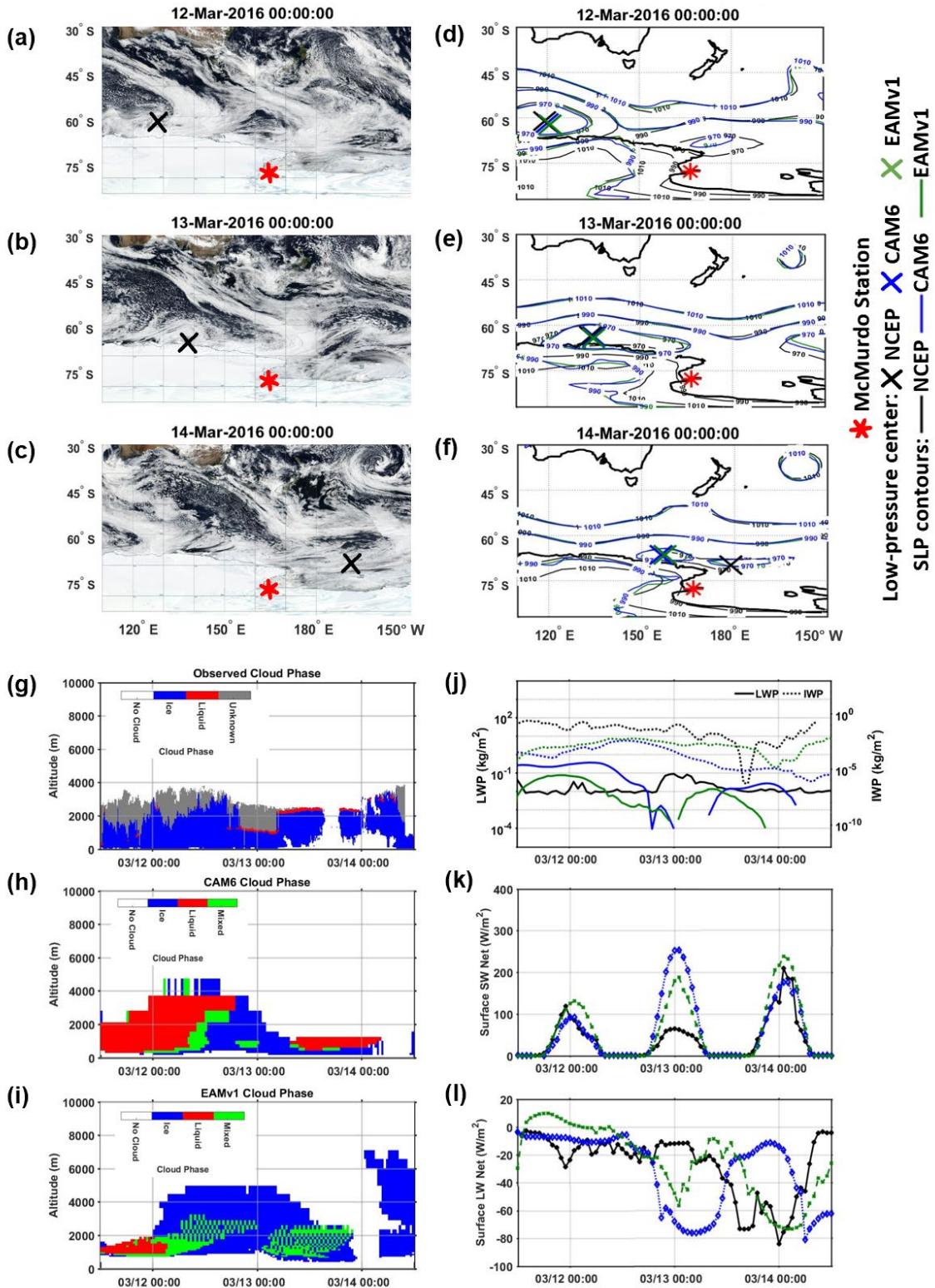
1218 *Statistically significant differences between the two regimes are highlighted in *italics*, which is
 1219 defined as $|T| > t_{0.95}$. Here $t_{0.95} = 1.96$, calculated using the two-tail t-test at the 95% confidence
 1220 interval. Underlined $|T|$ values indicate higher values in Q1 and Q4 (i.e., the warm frontal region
 1221 in eastern sector) and lower values in Q2 and Q3 (i.e., the cold post-frontal western sector).

1222 **Table 2.** Similar to Table 1, but for comparisons between two regimes of $\omega_{500}' > 0$ and $\omega_{500}' \leq 0$.
1223

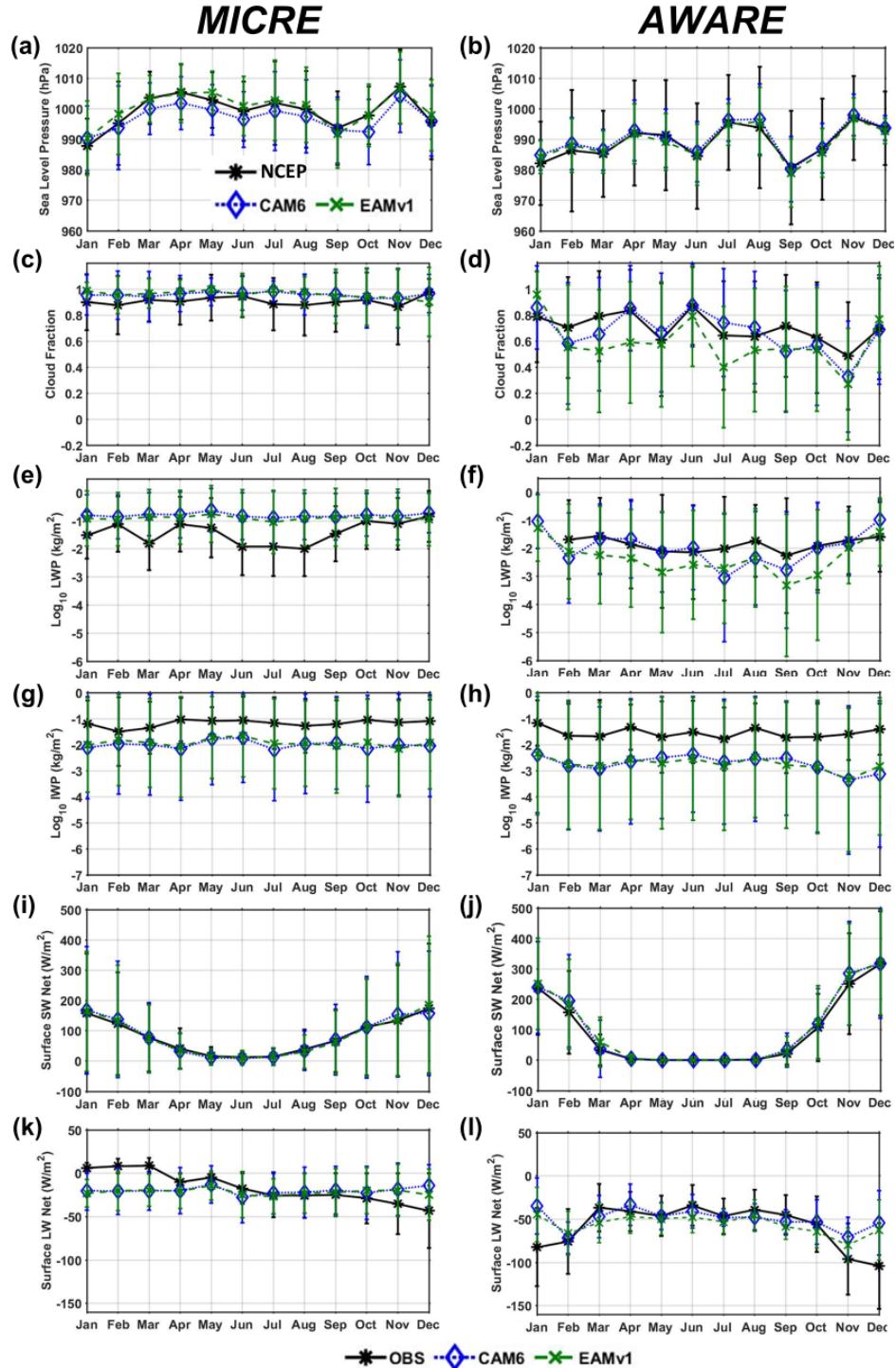

Variables	MICRE			AWARE		
	$\omega_{500}' > 0$	$\omega_{500}' \leq 0$	$ T $	$\omega_{500}' > 0$	$\omega_{500}' \leq 0$	$ T $
CF OBS	0.8915	0.904	<u>1.06</u> *	0.6138	0.8205	<u>14.70</u>
CF CAM6	0.9352	0.954	<u>2.73</u>	0.7343	0.6861	<u>3.21</u>
CF EAMv1	0.9259	0.9834	<u>9.51</u>	0.6023	0.5757	1.57
dCF CAM6	-0.0022	0.0387	<u>2.55</u>	0.0313	-0.0429	<u>4.69</u>
dCF EAMv1	0.1198	0.1025	1.36	-0.1007	-0.1534	<u>3.24</u>
LWP OBS (kg/m ²)	0.0966	0.1015	<u>0.77</u>	0.014	0.025	<u>4.00</u>
LWP CAM6 (kg/m ²)	0.1418	0.147	<u>0.93</u>	0.0224	0.0232	<u>0.27</u>
LWP EAMv1 (kg/m ²)	0.0836	0.1477	<u>19.2</u>	0.0092	0.0097	<u>0.40</u>
dLWP CAM6 (kg/m ²)	0.0689	0.0595	1.43	0.00007	0.0075	<u>2.07</u>
dLWP EAMv1 (kg/m ²)	0.011	0.0665	<u>11.43</u>	-0.013	-0.0095	<u>2.00</u>
IWP OBS (kg/m ²)	0.088	0.0776	1.64	0.0176	0.0628	<u>11.89</u>
IWP CAM6 (kg/m ²)	0.0088	0.0121	<u>6.43</u>	0.0025	0.0018	<u>4.39</u>
IWP EAMv1 (kg/m ²)	0.0099	0.0114	<u>2.31</u>	0.0021	0.0017	<u>2.81</u>
dIWP CAM6 (kg/m ²)	-0.0491	-0.0698	<u>3.64</u>	-0.0351	-0.027	<u>2.55</u>
dIWP EAMv1 (kg/m ²)	-0.018	-0.1101	<u>16.8</u>	-0.033	-0.0253	<u>2.48</u>
SW OBS (W/m ²)	94.4634	97.7646	<u>0.59</u>	94.4529	74.4002	<u>4.17</u>
SW CAM6 (W/m ²)	92.1424	87.2763	<u>0.85</u>	105.048	106.0821	<u>0.08</u>
SW EAMv1 (W/m ²)	96.3371	78.6174	<u>3.36</u>	106.5067	117.6624	<u>1.89</u>
dSW CAM6 (W/m ²)	-1.8353	1.5304	<u>1.07</u>	10.8144	3.8436	0.64
dSW EAMv1 (W/m ²)	1.4223	2.7548	<u>0.46</u>	12.2731	15.4239	<u>1.76</u>
LW OBS (W/m ²)	-22.5687	-13.6375	<u>7.45</u>	-63.1567	-46.0194	<u>11.74</u>
LW CAM6 (W/m ²)	-30.6093	-19.5213	<u>11.24</u>	-48.0286	-53.1619	<u>5.57</u>
LW EAMv1 (W/m ²)	-32.5702	-14.8369	<u>22.39</u>	-56.8248	-60.5154	<u>4.32</u>
dLW CAM6 (W/m ²)	-6.3109	-5.4308	<u>0.74</u>	8.7107	9.2576	<u>0.41</u>
dLW EAMv1 (W/m ²)	-3.6199	-6.0637	<u>2.34</u>	-0.0562	2.0066	<u>1.71</u>

1224
1225 *Similar to Table 1, $|T| > t_{0.95}$ indicates statistically significant differences between two sectors
1226 and are marked in *italics*. Underline indicates higher values in the region of $\omega_{500}' \leq 0$ (i.e., the
1227 warm frontal region with ascent motion) than the regions of $\omega_{500}' > 0$ (i.e., the cold post-frontal
1228 region with descent motion).

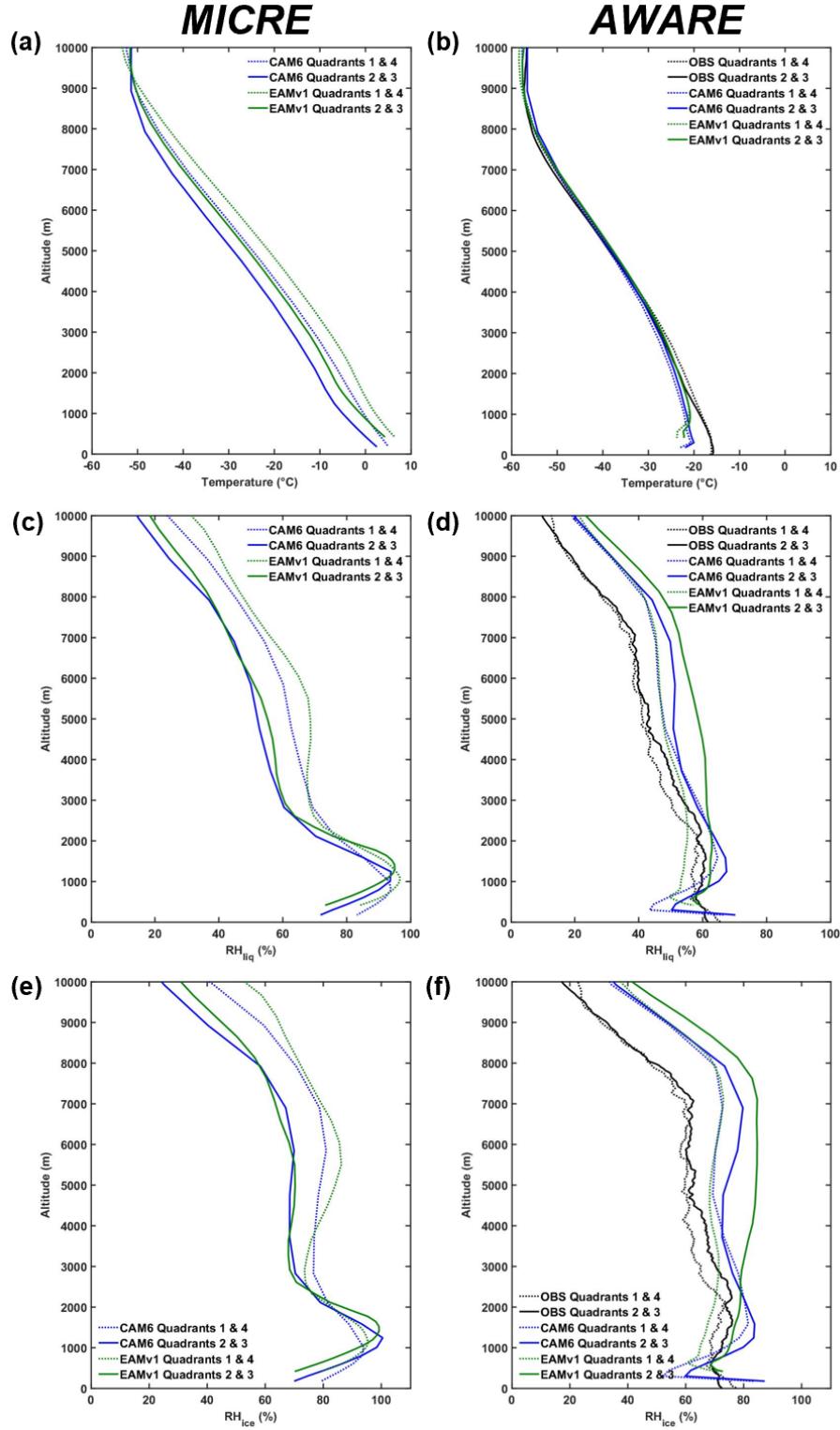
1229 **Table 3.** Linear regression slope and r^2 values for net surface SW and LW radiation binned by
 1230 various ranges of observed CF, LWP, and IWP, and model biases of dCF, dLWP, and dIWP.


Variables	Bin ranges	MICRE				AWARE			
		CAM6 SW	EAMv1 SW	CAM6 LW	EAMv1 LW	CAM6 SW	EAMv1 SW	CAM6 LW	EAMv1 LW
CF	(0 to 0.1)	0.931 (0.844)	0.833 (0.842)	0.469 (0.377)	0.437 (0.456)	0.972 (0.846)	1.007 (0.961)	0.278 (0.286)	0.295 (0.521)
	(0.1 to 0.9)	0.890 (0.694)	0.899 (0.842)	0.366 (0.204)	0.393 (0.276)	0.913 (0.797)	0.978 (0.932)	0.246 (0.154)	0.272 (0.288)
	(0.9 to 1)	0.915 (0.814)	0.985 (0.765)	0.346 (0.180)	0.382 (0.245)	0.918 (0.768)	1.024 (0.882)	0.146 (0.033)	0.129 (0.041)
LWP (kg m^{-2})	(0 to 0.025)	0.875 (0.746)	0.848 (0.792)	0.382 (0.202)	0.401 (0.291)	0.972 (0.832)	1.013 (0.947)	0.333 (0.290)	0.391 (0.442)
	(0.025 to 0.05)	0.949 (0.762)	0.984 (0.816)	0.374 (0.197)	0.419 (0.283)	1.009 (0.652)	1.146 (0.796)	0.114 (0.014)	0.271 (0.051)
	(> 0.05)	0.896 (0.659)	0.946 (0.732)	0.321 (0.188)	0.348 (0.273)	1.134 (0.603)	1.279 (0.725)	0.100 (0.003)	0.069 (0.005)
IWP (kg m^{-2})	(0 to 0.1)	0.909 (0.725)	0.844 (0.688)	0.427 (0.292)	0.317 (0.259)	0.941 (0.785)	1.002 (0.905)	0.250 (0.160)	0.289 (0.269)
	(0.1 to 0.2)	1.253 (0.746)	1.159 (0.685)	0.527 (0.343)	0.488 (0.362)	1.009 (0.716)	1.051 (0.827)	0.009 (0.000)	0.148 (0.022)
	(> 0.2)	1.494 (0.451)	1.338 (0.722)	0.711 (0.198)	0.589 (0.443)	1.464 (0.810)	1.335 (0.873)	0.099 (0.007)	0.385 (0.117)
dCF	(-0.5 to 0.5)	0.853 (0.718)	0.893 (0.765)	0.292 (0.162)	0.316 (0.224)	0.957 (0.787)	1.008 (0.904)	0.324 (0.248)	0.400 (0.380)
	(0.5 to 0.9)	0.872 (0.688)	0.839 (0.779)	0.396 (0.208)	0.325 (0.193)	0.804 (0.816)	0.929 (0.893)	0.159 (0.057)	0.249 (0.199)
	(-0.5 to -0.9)	1.135 (0.950)	1.164 (0.725)	0.076 (0.033)	0.031 (0.009)	1.059 (0.773)	1.062 (0.903)	0.182 (0.307)	0.251 (0.432)
dLWP (kg m^{-2})	(-0.1 to 0.1)	1.074 (0.862)	0.952 (0.823)	0.388 (0.224)	0.399 (0.324)	1.001 (0.854)	1.023 (0.962)	0.322 (0.455)	0.393 (0.557)
	(0.1 to 0.5)	0.814 (0.764)	0.797 (0.816)	0.209 (0.140)	0.191 (0.147)	0.769 (0.856)	0.838 (0.903)	0.106 (0.136)	0.207 (0.538)
	(-0.1 to -0.5)	1.097 (0.836)	1.106 (0.854)	0.308 (0.165)	0.401 (0.293)	1.253 (0.803)	1.295 (0.894)	0.293 (0.205)	0.294 (0.151)
dIWP (kg m^{-2})	(0 – 0.1)	0.909 (0.787)	0.744 (0.728)	0.383 (0.297)	0.281 (0.251)	0.937 (0.818)	0.946 (0.929)	0.222 (0.139)	0.298 (0.273)
	(-0.1 to 0)	1.212 (0.626)	1.209 (0.709)	0.580 (0.219)	0.510 (0.403)	0.973 (0.758)	1.043 (0.884)	0.296 (0.178)	0.355 (0.284)
	(-0.5 to -0.1)	1.1682 (0.929)	1.798 (0.904)	0.574 (0.142)	0.549 (0.242)	1.367 (0.832)	1.684 (0.777)	0.013 (0.000)	0.246 (0.037)

*The two values in each textbox denote linear regression slope values and coefficients of determination, i.e., b (r^2). The slope values closest to 1 in each category are highlighted in **bold**.


1233

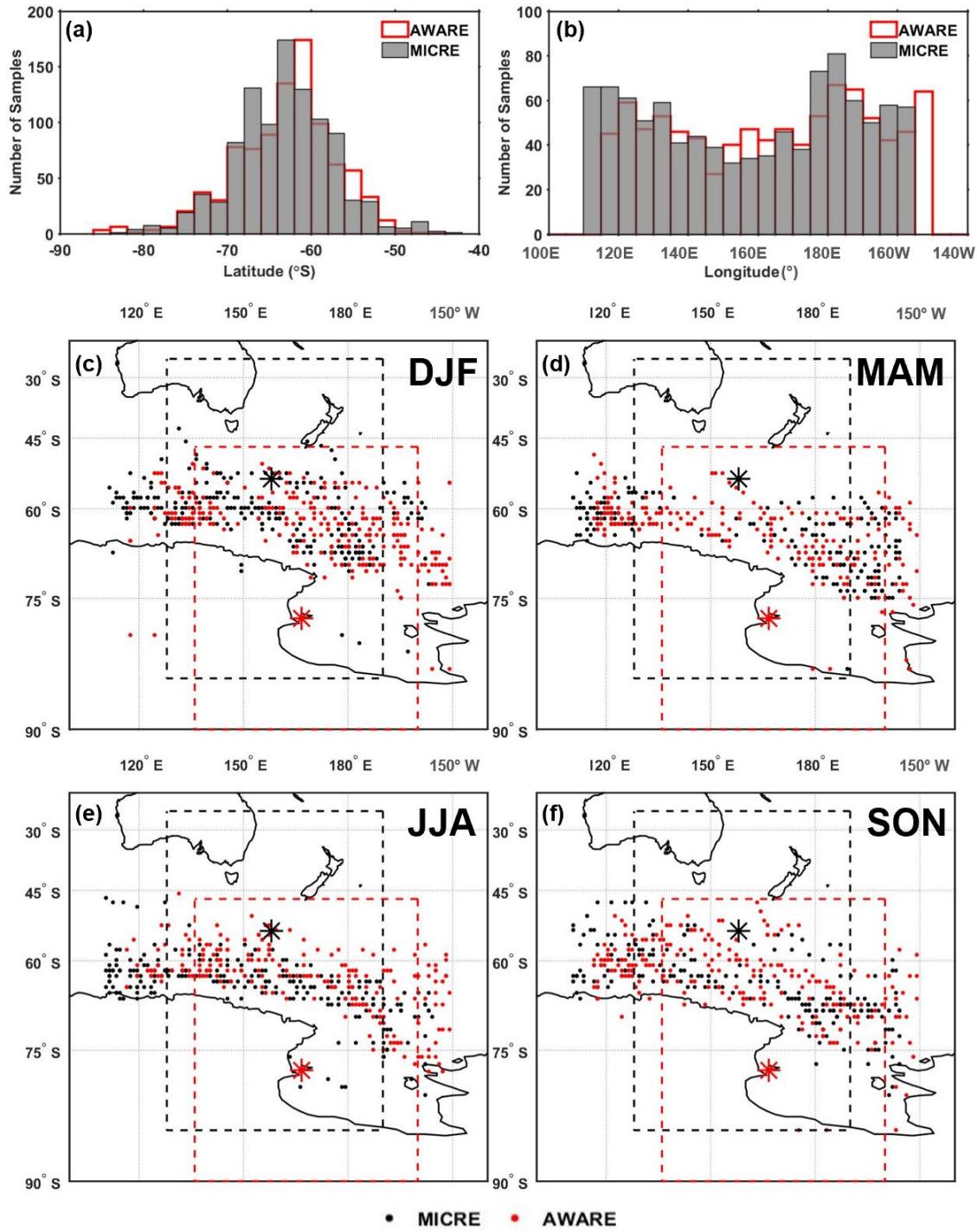
1234 **Figure 1.** A case study of MICRE campaign from 12 UTC, January 12, 2017 to 12 UTC, January
 1235 15, 2017. (a) Observed and simulated cloud fraction. (b, c) Cloud phase for CAM6 and EAMv1,
 1236 respectively. (d-f) LWP, IWP, net surface SW and LW, respectively. (g-i) GOES-16 satellite
 1237 images (clean infrared 10.3 μm , band 13). (j-l) Sea level pressure contour maps in units of
 1238 hectopascal based on NCEP reanalysis in black, CAM6 in blue and EAMv1 in green contours.
 1239 Cross markers in g-l illustrate the position of low-pressure centers for NCEP (red), CAM6 (blue)
 1240 and EAMv1 (green).


1241

1242 **Figure 2.** Similar to Figure 1, but for a case study of AWARE campaign from 12 UTC, March 11,
1243 2016 to 12 UTC, March 14, 2016. Different from Figure 1a, Figure 2a illustrates observed cloud
1244 phase.

1245

1246 **Figure 3.** Monthly averages of (a, b) sea level pressure, (c, d) cloud fraction, (e, f) LWP, (g, h)
 1247 IWP, (i, j) net surface SW and (k, l) LW radiation from observations and simulations. Black lines
 1248 in all panels stand for ground-based observations, except for panel (a) which shows NCEP data in
 1249 black line.


1250

1251

1252

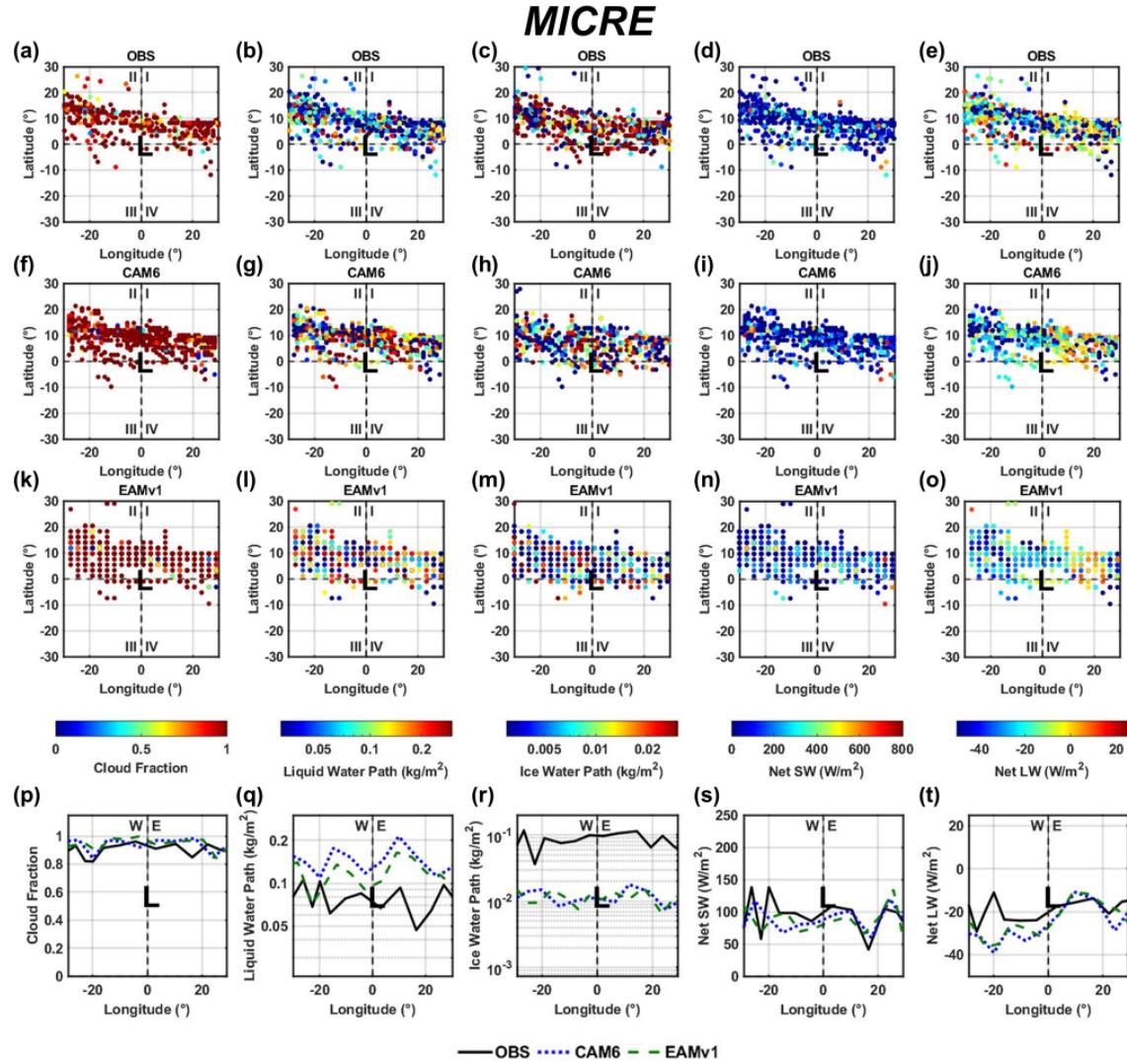
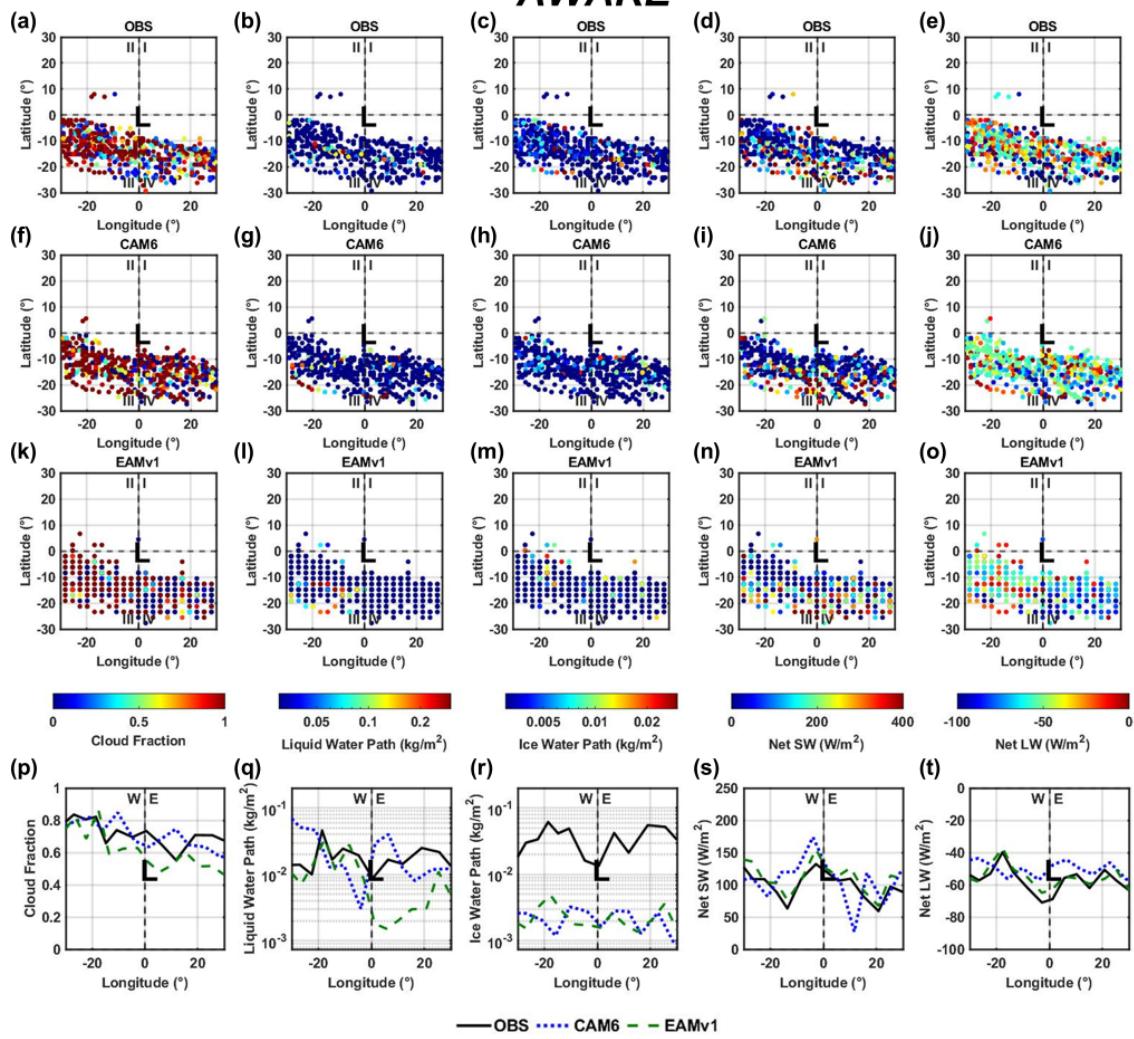
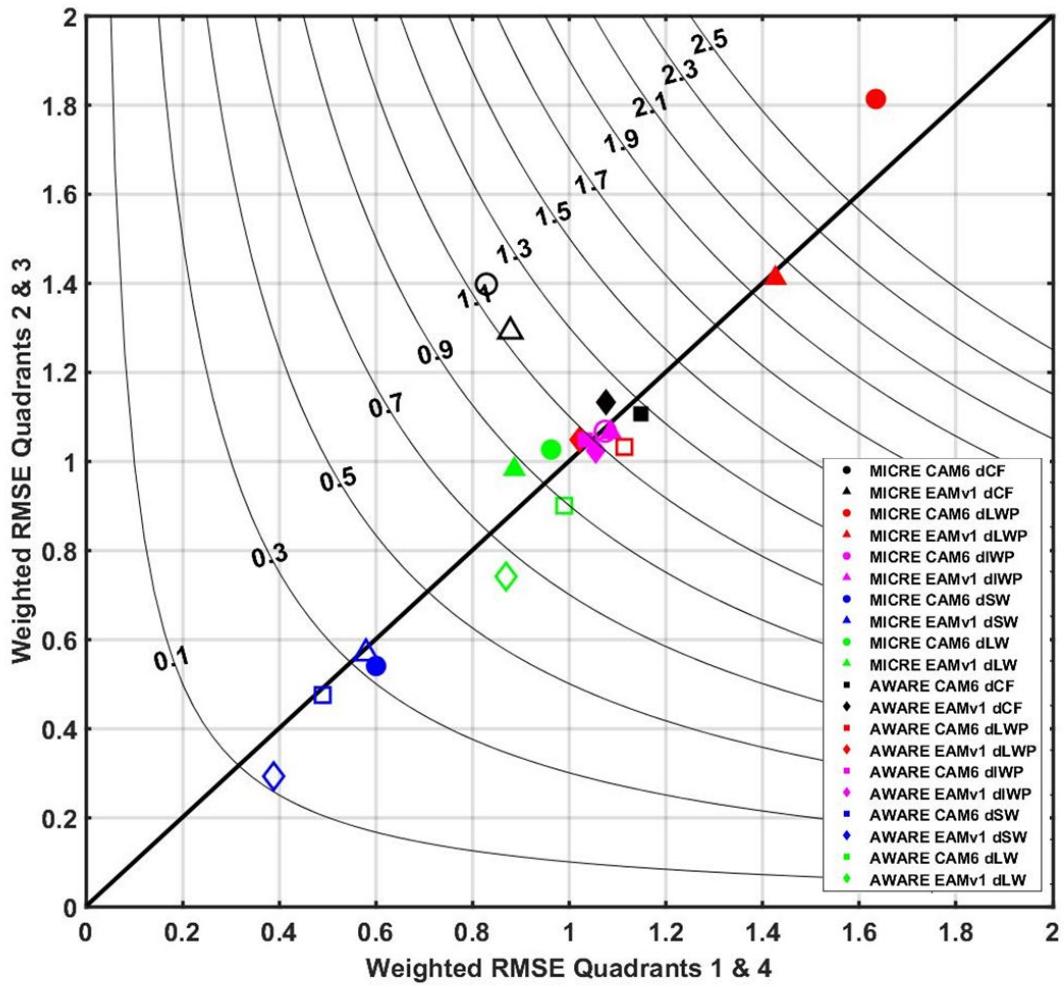

1253

Figure 4. Vertical profiles of temperature, RHice, and RHliq, separated by the eastern (Q1 & Q4) and western (Q2 & Q3) sectors, based on observations and simulations.

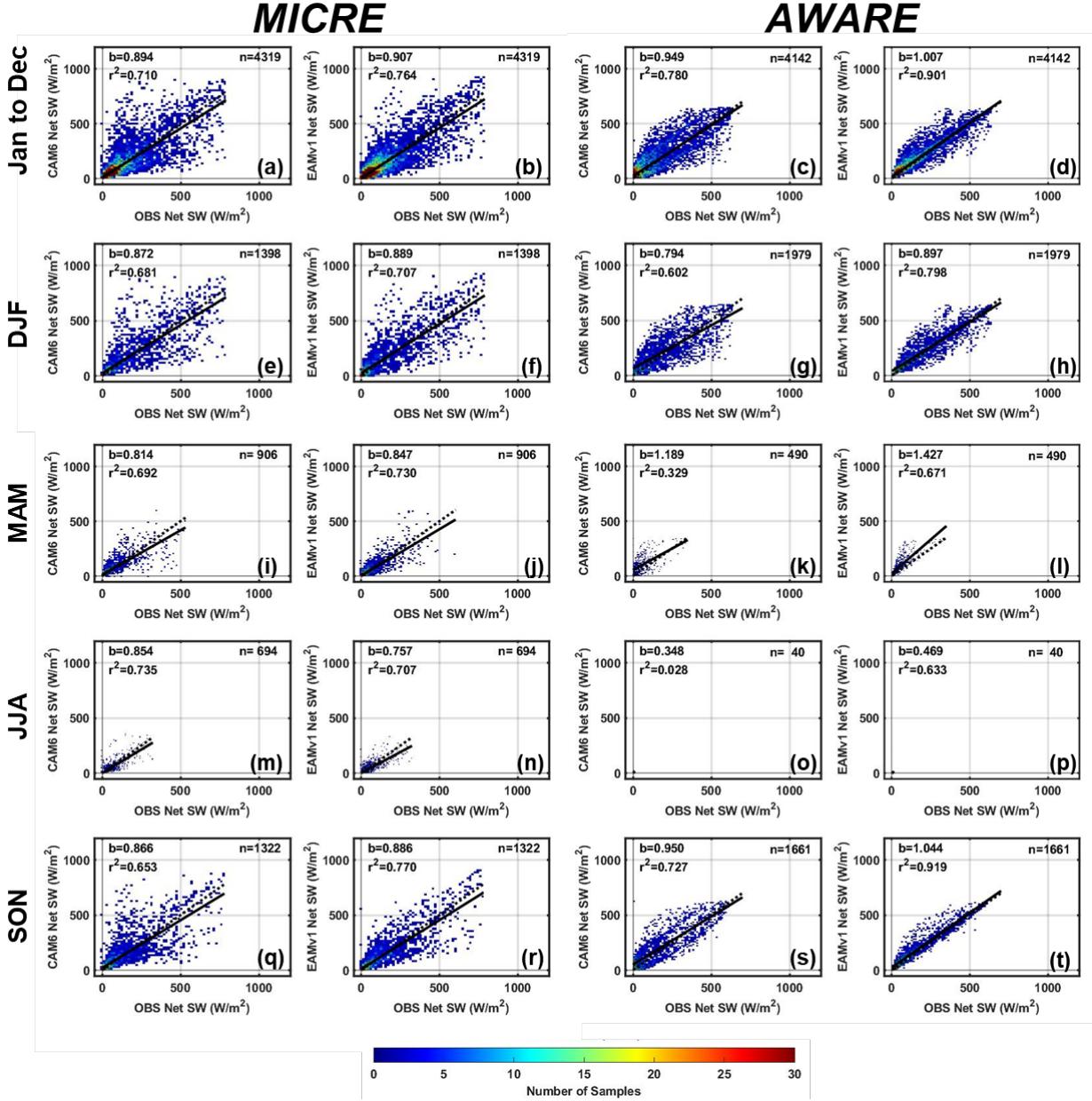
1254


1255 **Figure 5.** (a) Latitudinal and (b) longitudinal distributions of extratropical cyclones surrounding
1256 each station, using 6-hourly frequency of NCEP data. (c-f) Locations of low-pressure centers of
1257 extratropical cyclones in four seasons. The black and red boxes in (c) – (f) denote the ± 30 degrees
1258 latitude and ± 30 degrees longitude box surrounding MICRE and AWARE stations, respectively.
1259 These boxes are used to identify low-pressure centers, which are defined as the sea level pressure
1260 minima within that box.

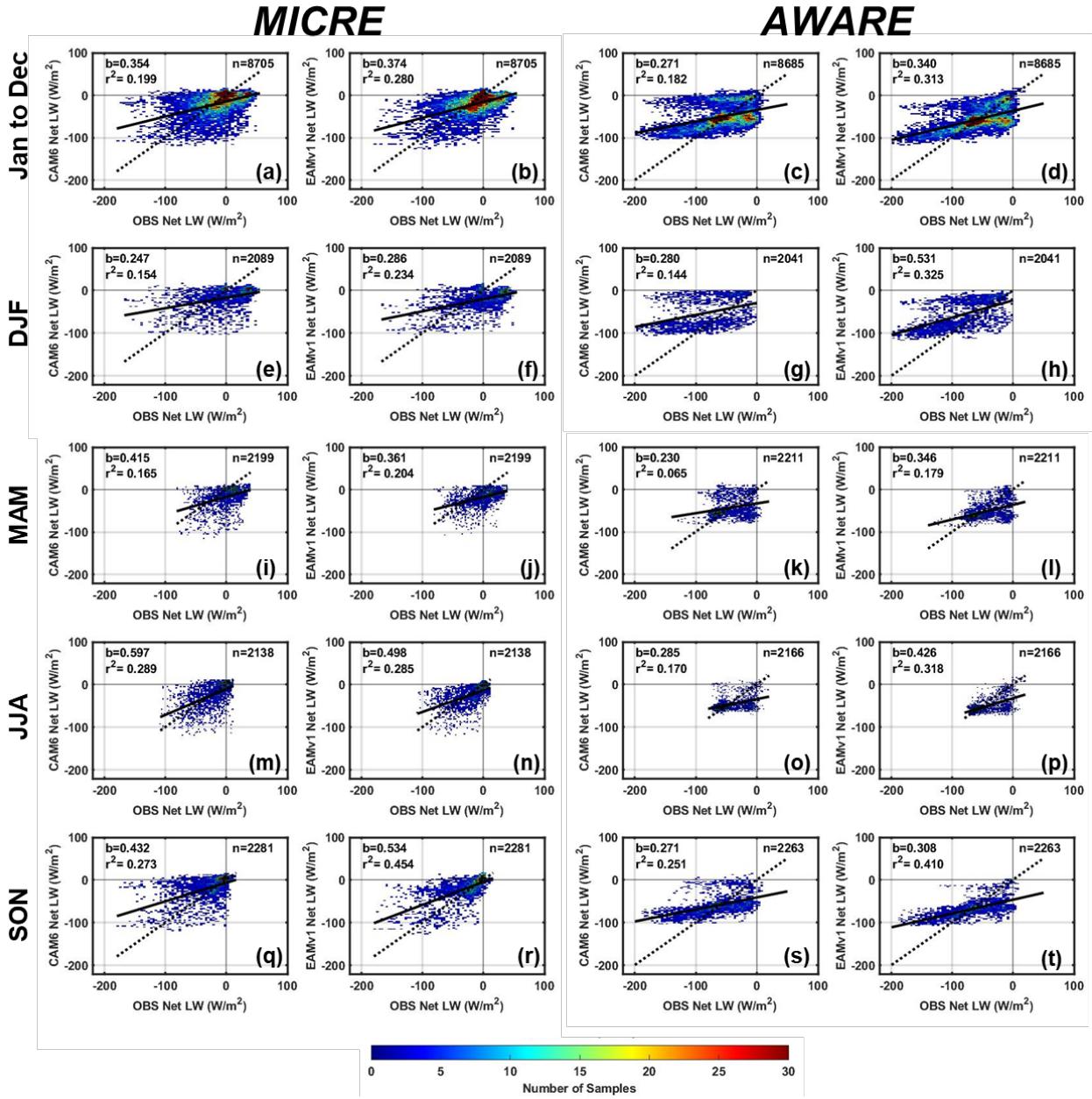
1261


1262 **Figure 6.** Distributions of cloud and radiative properties in a relative coordinate with respect to
1263 low-pressure centers of extratropical cyclones for the MICRE campaign. Columns 1 to 5 represent
1264
1265 observations, CAM6 and EAMv1 simulations, respectively. The first three rows represent
1266
1267 the average values in each longitudinal bin. The “L” marker located at (0, 0) indicates the low-pressure center.
1268 Four quadrants, Q1–Q4, are labeled as I, II, III and IV, respectively, indicating ground stations
1269 located at the northeast, northwest, southwest, and southeast side relative to the low-pressure
1270 centers. Two sectors (eastern or western) are labelled in the bottom row.

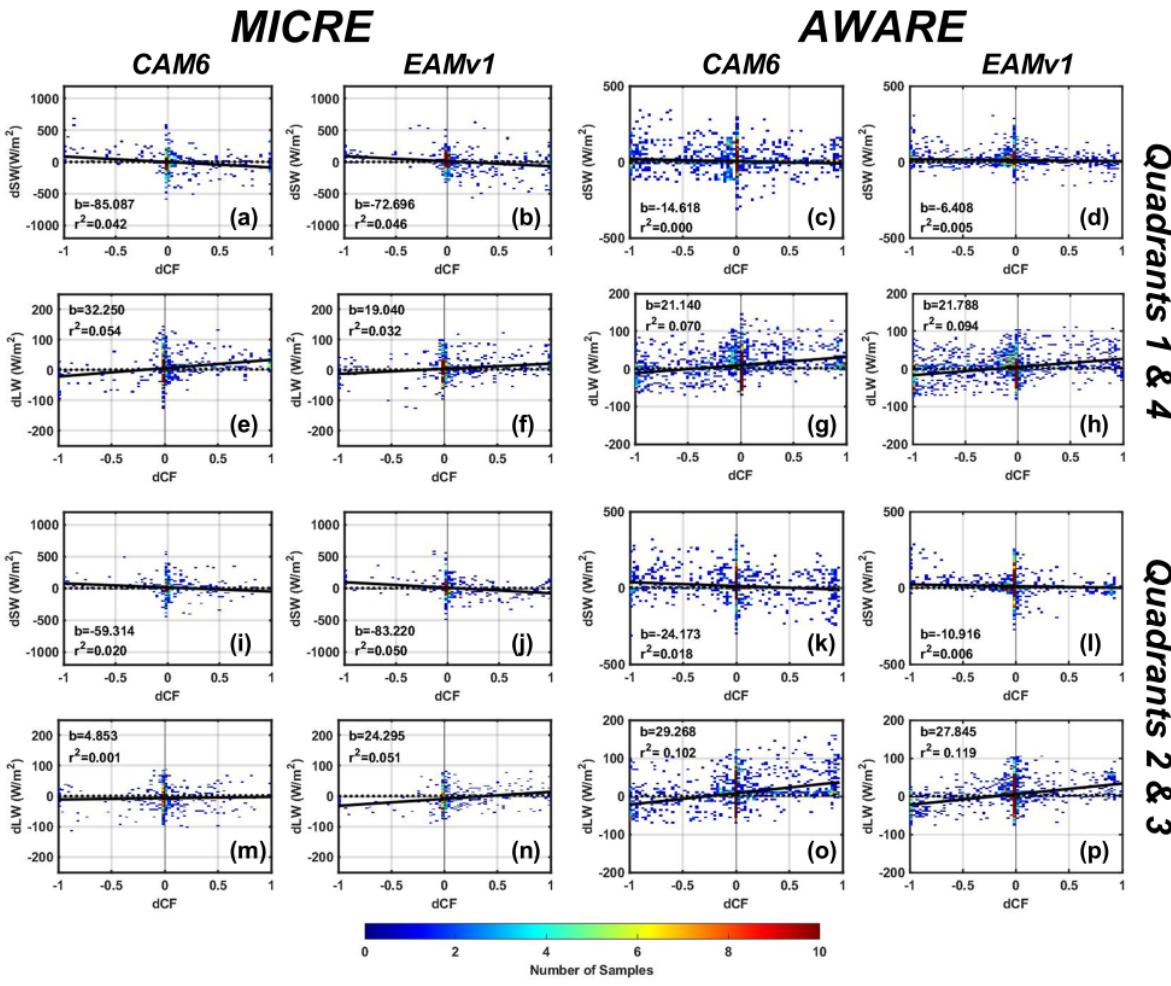
AWARE


1270

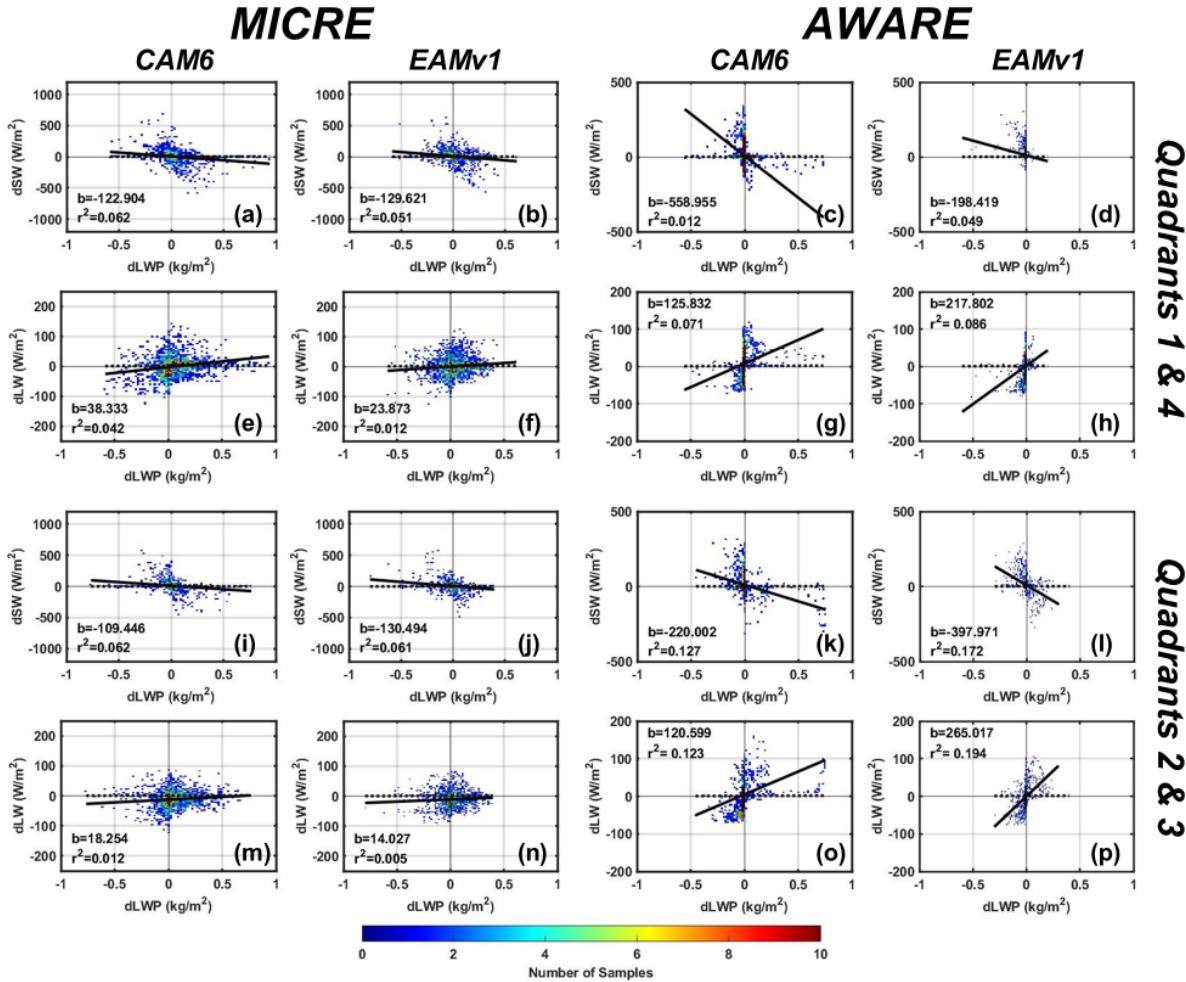
1271 **Figure 7.** Similar to Figure 6, except for the AWARE campaign.


1272

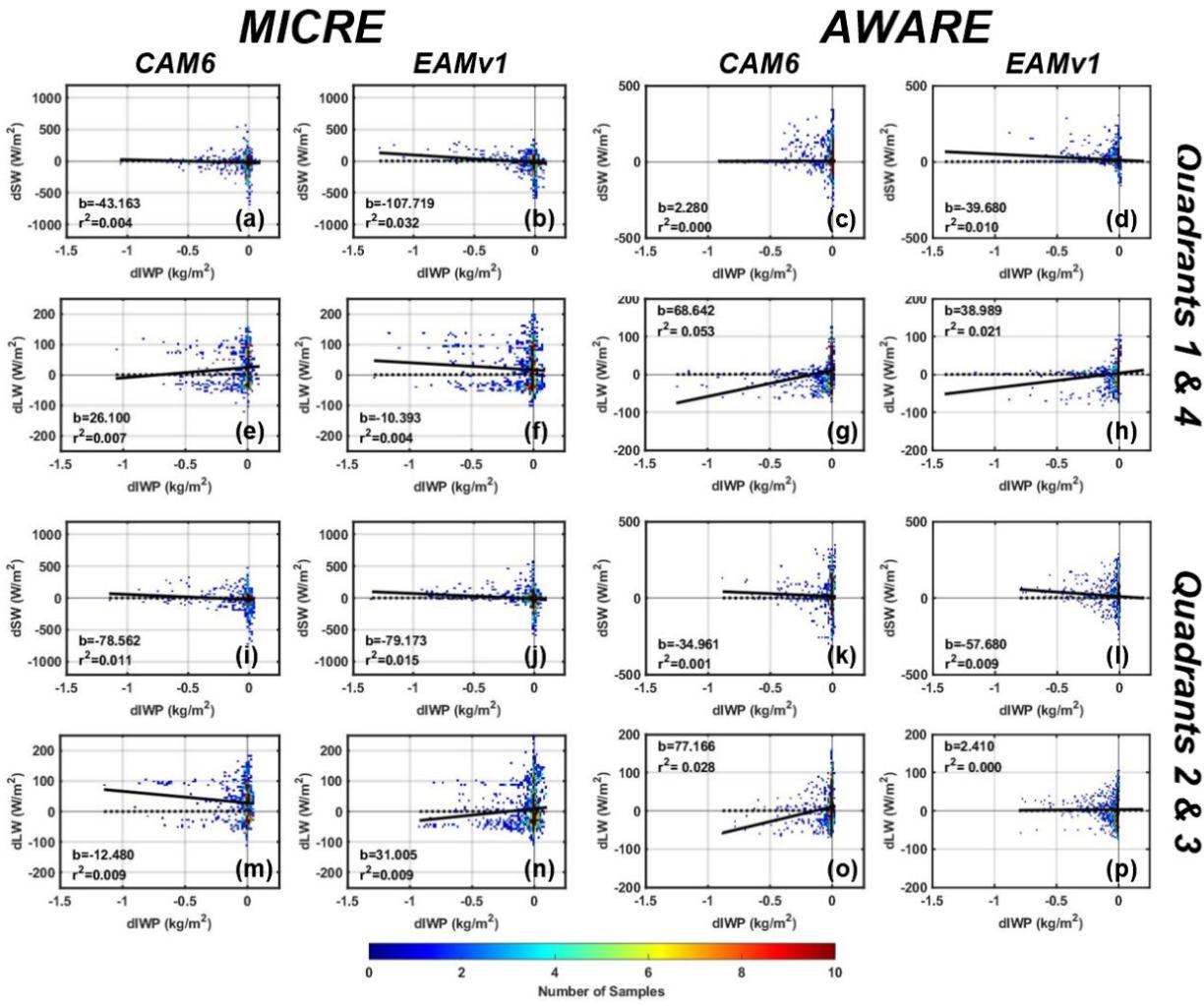
1273 **Figure 8.** Weighted RMSE calculated for CAM6 and EAMv1 simulations, separately shown for
1274 Q2 & Q3 (western sector) and Q1 & Q4 (eastern sector) in ordinate and abscissa, respectively.
1275 Black solid line indicates 1:1 line. Thin black curves indicate the multiplications of the weighted
1276 RMSE values in both sectors. Filled markers indicate RMSE values with statistically significant
1277 differences between the two sectors, that is, their differences pass the t-test with 95% confidence
1278 interval, while the unfilled markers indicate no statistically significant differences.


1279

1280 **Figure 9.** Seasonal variations of net surface SW radiation compared between observations and
 1281 simulations. Data are gridded and the color code shows the number of samples in each grid. Row
 1282 1 is for all seasons, while rows 2 – 5 are for different seasons (i.e., DJF, MAM, JJA and SON).
 1283 Black lines show linear regressions. The slope, coefficient of determination, and number of counts
 1284 are denoted by b , r^2 and n , respectively.


1285

1286 **Figure 10.** Same as Figure 9, except for analysis of net surface LW radiation.


1287

1288 **Figure 11.** Correlations between model biases of net surface radiation (dSW and dLW) and cloud
1289 fraction biases (dCF) shown in the (a-h) eastern and (i-p) western sectors. Rows 1 and 3 show
1290 dSW, while rows 2 and 4 show dLW.

1291

1292 **Figure 12.** Similar to Figure 11, except for correlations between radiation biases and dLWP.

1293

1294 **Figure 13.** Similar to Figure 11, except for correlations between radiation biases and dIWP.