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Abstract 33 

High-latitudinal mixed-phase clouds significantly affect Earth’s radiative balance. 34 
Observations of cloud and radiative properties from two field campaigns in the Southern Ocean 35 
and Antarctica were compared with two global climate model simulations. A cyclone compositing 36 
method was used to quantify “dynamics-cloud-radiation” relationships relative to the extratropical 37 
cyclone centers. Observations show larger asymmetry in cloud and radiative properties between 38 
western and eastern sectors at McMurdo compared with Macquarie Island. Most observed 39 
quantities at McMurdo are higher in the western (i.e., post-frontal) than the eastern (frontal) sector, 40 
including cloud fraction, liquid water path (LWP), net surface shortwave and longwave radiation 41 
(SW and LW), except for ice water path (IWP) being higher in the eastern sector.  42 

The two models were found to overestimate cloud fraction and LWP at Macquarie Island but 43 
underestimate them at McMurdo Station. IWP is consistently underestimated at both locations, 44 
both sectors, and in all seasons. Biases of cloud fraction, LWP, and IWP are negatively correlated 45 
with SW biases and positively correlated with LW biases. The persistent negative IWP biases may 46 
have become one of the leading causes of radiative biases over the high southern latitudes, after 47 
correcting the underestimation of supercooled liquid water in the older model versions. By 48 
examining multi-scale factors from cloud microphysics to synoptic dynamics, this work will help 49 
increase the fidelity of climate simulations in this remote region. 50 

Plain Language Summary 51 

The efficacy of climate prediction is largely dependent on accurately estimating Earth’s 52 
energy budget in global climate models. The Southern Ocean region has a distinct history of 53 
showing large biases in energy budget within global climate models. This region also shows 54 
complex interactions between large-scale dynamical conditions (e.g., low-pressure systems) and 55 
microscale processes (e.g., cloud properties). This work used two field deployments at Macquarie 56 
Island, Southern Ocean and McMurdo Station, Antarctica to understand these interactions. 57 
Observations were obtained from year-long measurements by ground-based instruments, which 58 
were further compared with two global climate models. The two models were found to have errors 59 
representing cloud properties at Macquarie Island (e.g., too much liquid and too little ice) and 60 
McMurdo Station (e.g., too little ice and liquid), as well as errors representing net surface 61 
longwave (terrestrial) radiation and shortwave (solar) radiation. The combination of the 62 
insufficient amounts of cloud ice and liquid in the models at McMurdo, Antarctica may be the 63 
main cause of too much solar radiation absorbed by Earth’s surface over that region, which also 64 
have implications for polar ice melting and ocean circulation in that remote region.  65 
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1. Introduction 66 

Clouds are significant modulators of the Earth’s energy balance, since they can affect the 67 
absorbed shortwave radiation (ASR) and outgoing longwave radiation (OLR) (Liou, 1992). Clouds 68 
over oceans have large influences on the regional radiative budget due to the sharp contrast in 69 
albedo between the highly reflective cloud layers and the dark ocean surface (e.g., Klein & 70 
Hartmann, 1993; Bender et al., 2011; Raschke et al., 2016). As discussed in Trenberth and Fasullo 71 
(2010), model biases of cloud cover and radiation in the ocean-dominated Southern Hemisphere 72 
can lead to errors in poleward energy transport and development of baroclinic eddies and storm 73 
tracks. The future projection is also particularly sensitive to simulated cloud cover over the 74 
Southern Ocean, since a strong relationship between projected cloud cover changes and present-75 
day simulated cloud cover errors were found over this region in that study. The Southern Ocean 76 
circulation further affects sea level rise and ice melting in the southern high latitudes (Holland et 77 
al., 2010; Bouttes et al., 2012). This is also a region that connects deep ocean water with ocean 78 
upwelling and surface air (Marshall and Speer, 2012). The prediction of these interactive processes 79 
among atmosphere, ocean, ice, and land in a future climate relies on accurate representations of 80 
the surface radiation budget (e.g., Essery et al., 2003; Gleckler, 2005). 81 

Global climate models (GCMs) have shown large sensitivities in their prediction of the 82 
radiation budget of Earth’s climate system due to the variations in the representations of Southern 83 
Ocean clouds (e.g., Klein et al., 2017; McCoy et al., 2014a, 2014b, 2015, 2016, 2019; Tan et al., 84 
2016; Terai et al., 2016; Zelinka et al., 2020). A metric used by climate models to quantify 85 
sensitivities of Earth’s climate to the emissions of anthropogenic greenhouse gases is the 86 
equilibrium climate sensitivity (ECS). The ECS value represents the magnitude of air temperature 87 
rise at the Earth’s surface after the climate system reaches a new equilibrium due to an 88 
instantaneous doubling of carbon dioxide concentrations in the atmosphere. Several studies have 89 
shown extratropical low-level clouds play a significant role in contributing to the large variations 90 
of ECS among numerous climate models (Collins et al., 2013; Flynn & Mauritsen, 2020; Zelinka 91 
et al., 2020). In fact, the Intergovernmental Panel on Climate Change (IPCC) reported a large 92 
variation of ECS by various GCMs, which is likely in the range of 1.5°C to 4.5°C in the IPCC 5th 93 
assessment report (AR5) (IPCC AR5, 2013) and likely in the range of 2.5°C to 4.0°C in IPCC 6th 94 
assessment report (AR6) (IPCC AR6, 2023). Thus, in order to reduce uncertainties of future 95 
climate predictions, improved understanding of Southern Ocean cloud properties based on 96 
observational analysis is crucial for model development.  97 

Two specific properties of Southern Ocean clouds are the main foci of this study – the spatial 98 
extent of clouds (i.e., represented by cloud fraction) and the cloud thermodynamic phase (reflected 99 
by the amount of liquid and ice hydrometeors). Several previous studies have shown large 100 
sensitivities of ECS values to the representations of mixed-phase clouds in the mid- to high 101 
latitudes, especially to the treatment of cloud thermodynamic phases in the GCMs (e.g., Tsushima 102 
et al. 2006; Tan et al. 2016; Bjordal et al. 2020). Cloud thermodynamic phases are highly sensitive 103 
to temperature perturbations. A negative cloud feedback would occur when the ice phase 104 
transitions into liquid phase (e.g., Mitchell et al., 1989; Ceppi et al., 2016). That is because liquid 105 
phase contains high concentrations of liquid droplets, which produce higher albedo and can reflect 106 
more solar radiation compared with ice phase, and therefore the reflected solar radiation increases 107 
when ice transitions to liquid phase. In addition, a transition from ice to liquid has a large impact 108 
on cloud top cooling rates in the LW and can also increase surface temperature by increasing 109 
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surface LW radiation. Such surface warming effect via intensified LW radiation is typically a 110 
smaller effect than the enhanced SW cooling effect for low clouds. If the total water content of 111 
clouds remains the same, a higher amount of ice hydrometeors initially existing in clouds would 112 
allow a larger magnitude of phase change from ice to liquid, which can partly buffer the global 113 
warming effect induced by greenhouse gases. Therefore, the partitioning between liquid and ice 114 
phases, which can be partly represented by LWP and IWP, can directly affect the potential change 115 
from ice to liquid phase in clouds as temperature increases, which further leads to significant 116 
impacts on climate sensitivities due to warming as discussed in previous studies (e.g., Tsushima 117 
et al. 2006; Tan et al. 2016; Bjordal et al. 2020). The extensive cloud coverage over the high 118 
southern latitudes and the large variability in their microphysical and macrophysical properties 119 
have been previously reported in observational studies (e.g., D’Alessandro et al., 2019; Yang et 120 
al., 2021; Yip et al., 2021; Maciel et al., 2024; D’Alessandro et al., 2023; Desai et al., 2023), which 121 
illustrate the inherent complexity of representing these properties in GCMs. These former studies 122 
have examined multiple factors controlling mixed-phase cloud properties, including 123 
thermodynamic conditions (i.e., temperature and relative humidity), dynamic conditions (e.g., 124 
vertical velocity), and aerosol indirect effects. One particular factor that requires more detailed 125 
investigation is the influence of synoptic dynamical conditions on cloud macrophysical and 126 
microphysical properties.  127 

 Extratropical cyclone activity over the Southern Ocean region has been previously 128 
documented to affect concurrent cloud and radiation properties, such as cloud type, cover, 129 
thickness, cloud-top height, LWP, and the radiation budget at the top of the atmosphere (e.g., 130 
Bodas-Salcedo et al., 2012, 2014, 2016, 2019; Williams et al. 2013; Kelleher & Grise, 2019; 131 
Montoya Duque et. al., 2022). Previous studies developed various methods to define dynamical 132 
regimes surrounding extratropical cyclones, known as the cyclone compositing methods, in order 133 
to assess the cloud properties in different quadrants relative to extratropical cyclone or anticyclone 134 
centers (Lau & Crane 1995, 1997; Naud et al., 2006, 2010; Field & Wood, 2007; Posselt et al., 135 
2008; Field et al., 2011). Distinctive dynamical conditions were found in two sectors – the warm 136 
sector that is dynamically active in the frontal region, and the cold sector that is dynamically 137 
suppressed in the post-frontal region. Thus, evaluation studies of GCMs frequently targeted the 138 
“dynamics-cloud” relationship, which originates from the parameterizations of microscale cloud 139 
properties in response to different thermodynamic and dynamic conditions. Using the cyclone 140 
compositing methods, previous work showed that cloud and radiation biases in model simulations 141 
and reanalysis data are larger in the cold sectors of the extratropical cyclones over the Southern 142 
Ocean (Bodas-Salcedo et al. 2012, 2014; Williams et al. 2013; Naud et al. 2014).  143 

For the evaluation of GCMs against observations, many previous studies on Southern Ocean 144 
clouds and dynamics utilized spaceborne remote sensing observations to compare with GCM 145 
simulations, such as using the Cloud-Aerosol Lidar and Infrared Pathfinder Satellite Observations 146 
(CALIPSO) data to assess simulated cloud properties including cloud fraction (e.g., Bodas-147 
Salcedo et al., 2012, 2014; Zhang et al., 2021), optical depth (Terai et al., 2016), and 148 
thermodynamic phase (Kay et al., 2016). Other studies used the Clouds and the Earth's Radiant 149 
Energy System (CERES) satellite-based observations of radiative forcings to assess shortwave 150 
cloud forcing at the top of the atmosphere (Ceppi et al., 2012; Hwang et al., 2013), and SW and 151 
LW radiation at the top of the atmosphere (Trenberth & Fasullo, 2010). More recent studies also 152 
evaluated GCMs from the Coupled Model Intercomparison Project 6 (CMIP6) against satellite-153 
based observations such as CALIPSO, CERES, Moderate Resolution Imaging Spectroradiometer 154 
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(MODIS), and International Satellite Cloud Climatology Project (ISCCP) (e.g., Schuddeboom & 155 
McDonald, 2021; Cesana et al., 2022; Zhao et al., 2022). On the other hand, with increasing 156 
availability of flight campaigns over the high southern latitudes, other studies also used airborne 157 
in-situ, ship-based, and ground-based remote sensing observations to evaluate simulated cloud 158 
microphysical properties in various GCMs (e.g., D’Alessandro et al., 2019; Gettelman et al., 2020; 159 
Yang et al., 2021; Yip et al., 2021; Desai et al., 2023). When validating three satellite-based cloud 160 
phase products against in-situ airborne observations, CALIPSO, CloudSat, and DARDAR 161 
(raDAR/liDAR) data do not agree with each other and show different biases of cloud phase 162 
partitioning at various latitudes compared with in-situ observations (Wang et al., 2024). Because 163 
of this, more studies using ground-based or airborne observations are needed to examine the 164 
“dynamics-cloud” relationship as an independent evaluation that can complement the satellite-165 
based model evaluation. 166 

In this work, unique observational datasets are obtained from ground-based remote sensing 167 
measurements at two locations – Macquarie Island and McMurdo Station, Antarctica. These two 168 
stations are located at the north and south side of the Southern Hemisphere storm track, 169 
respectively (Taljaard, 1972; Hoskins & Hodges, 2005; Chapman et al., 2015). Two field 170 
campaigns from these locations provide year-long measurements on cloud fraction, LWP, and 171 
surface SW and LW radiation. These ground-based measurements have unique advantages 172 
compared with spaceborne observations that retrieve radiation at the top of the atmosphere. 173 
Satellite observations commonly have lidar signal attenuation issues when encountering opaque 174 
liquid-containing clouds and radar blind zone at heights below 1 km above the surface, where low-175 
level clouds are ubiquitously seen over this region (Cesana & Chepfer, 2013; Silber et al., 2018; 176 
Liu, 2022). In addition, the ground-based measurements of cloud fraction, LWP, and net surface 177 
radiation are analyzed at hourly basis in this work, which is a higher frequency than the daily or 178 
monthly averages previously used in analysis of dynamics-cloud relationships in this region (e.g., 179 
Govekar et al., 2011, 2014; Bodas-Salcedo et al., 2012, 2014, 2016; Williams et al., 2013; Kelleher 180 
& Grise, 2019). These ground-based observations are uniquely poised to answer a range of science 181 
questions: (i) What are the synoptic-scale dynamical influences on cloud and radiative properties 182 
at Macquarie Island and McMurdo Station based on observations and what are the differences 183 
between the two locations? (ii) What are the model biases in dynamics-cloud-radiation 184 
relationships as well as their individual characteristics? And (iii) How do various controlling 185 
factors contribute to model biases of net surface radiation? In Section 2, observation datasets and 186 
experimental setup of simulations from two GCMs in the CMIP6 are described. Section 3 187 
examines cloud and radiative properties as well as their relationships with extratropical cyclones 188 
over the Southern Ocean using a cyclone compositing method. Lastly, discussions of the main 189 
conclusions and implications for future model development are given in Section 4. 190 

2. Observations, reanalysis data, and climate model simulations 191 

2.1 Ground-based observations and reanalysis data over the Southern Ocean and Antarctica 192 

The Department of Energy (DOE) Atmospheric Radiation Measurement (ARM) Macquarie 193 
Island Cloud and Radiation Experiment (MICRE) campaign provided an extensive ground-based 194 
observational dataset during the time period of March 1, 2016, to March 31, 2018 (Marchand et 195 
al., 2020; McFarquhar et al., 2021). The MICRE campaign was supported by the DOE ARM 196 
program, the Australian Antarctic Division (AAD), and the Australian Bureau of Meteorology 197 
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(BoM), and was located on Macquarie Island at 54.5°S, 158.9°E. Climatologies of weather 198 
conditions at MICRE have been previously investigated (Hande et al., 2012; Wang et al., 2015). 199 
Surface observations from the MICRE campaign have been used in previous studies with a special 200 
focus on seasonal variations of aerosols (Humphries et al., 2023), cloud and precipitation (Tansey 201 
et al., 2022, 2023; Stanford et al., 2023) and radiation (Hinkelman & Marchand, 2020). A suite of 202 
instruments was deployed in the MICRE campaign, which was listed in the overview article of 203 
McFarquhar et al. (2021) in their Table S1. The main instruments included the DOE sky radiation 204 
radiometers (SKYRAD), ground radiation radiometers (GNDRAD), ceilometer, microwave 205 
radiometer, sun photometer, and a multi-filter rotating shadowband radiometer (MFRSR). A 206 
value-added product (VAP) named as Cloud Optical Properties from the Multi-filter Shadowband 207 
Radiometer (MFRSRCLDOD; Turner et al., 2021) provides observed cloud properties (e.g., LWP 208 
and cloud fraction) derived from a combination of instruments, such as MFRSR, microwave 209 
radiometer, GNDRAD, SKYRAD, and ceilometer. The cloud fraction provided in this product 210 
represents cloud fractional sky cover over a hemispheric dome. IWP was derived from the 94 GHz 211 
cloud radar (named as BASTA) observations (Delanoë et al., 2016; Mace and Protat, 2018) by 212 
estimating and vertically integrating ice water content (IWC) (Hogan et al. 2006). Another VAP 213 
product named as Radiative Flux Analysis (RADFLUX1LONG; Riihimaki et al., 2019) compiled 214 
radiative measurements from GNDRAD, SKYRAD, and the MFRSR. This VAP provides 215 
estimates of surface radiation flux, including longwave broadband total downwelling and 216 
upwelling irradiances, shortwave broadband diffuse downwelling irradiances, shortwave 217 
broadband direct normal irradiances, and shortwave broadband total downwelling irradiances. The 218 
quality control test and procedure of radiation measurements were described in Long and Shi (2006, 219 
2008).  220 

The ARM West Antarctic Radiation Experiment (AWARE) was co-funded by the US DOE 221 
and US National Science Foundation (NSF) (Lubin et al., 2020). The second ARM mobile facility 222 
(AMF2) was deployed from December 2015 to January 2017 at the US McMurdo Research Station 223 
located in Ross Island, Antarctica, at 77.85°S, 166.66°E. An ARM best estimate (ARMBE) data 224 
product (awrarmbecldradM1.c1) provides the total cloud fraction measurements. This cloud 225 
fraction product was derived using measurements from cloud radar and micropulse lidar (Xie et 226 
al., 2010). Solar and infrared radiation observations were used to estimate hourly mean surface 227 
longwave and shortwave irradiances (Silber et al., 2019a). Downwelling and upwelling radiation 228 
measurement uncertainty follows the Solar Infrared Radiation Station (SIRS) handbook, 229 
documented in Andreas et al. (2018). We used LWP from the MWR and G-band (183 GHz) Vapor 230 
Radiometer profiler (GVRP) when available. Note that the LWP data were missing for the entire 231 
month of January in 2017 in AWARE since during that period, the MWR used to retrieve the LWP 232 
was deployed in the secondary AWARE site over the West Antarctic Ice Sheet (WAIS). The Ka-233 
band ARM Zenith Radar (KAZR) reflectivity and (linearly interpolated) sounding temperature 234 
measurements were used to derive IWC based on the equations for IWC retrieval (Hogan et al., 235 
2006). Values of IWC were then vertically integrated to derive IWP. Cloud phase observations 236 
were derived from observations of KAZR (Widener et al., 2012) and High Spectral Resolution 237 
Lidar (HSRL; Eloranta, 2006) based on the method from Silber et al. (2018). Radiosondes were 238 
released twice daily at AWARE, providing temperature and water vapor partial pressure profiles. 239 
These data can be used to derive relative humidity with respect to ice (RHice) and relative humidity 240 
with respect to liquid (RHliq) based on the equations of saturation vapor pressure with respect to 241 
ice and liquid in Murphy and Koop (2005), respectively. 242 
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The National Centers for Environmental Prediction (NCEP) – National Center for 243 
Atmospheric Research (NCAR) reanalysis data document the 6-hourly sea level pressure variable, 244 
with a spatial resolution of 2.5° × 2.5° globally (Kalnay et al., 1996). The sea level pressure 245 
distributions and synoptic conditions were analyzed using the NCEP reanalysis data in 2016 and 246 
2017, specifically targeting the ground station locations of McMurdo Station and Macquarie Island, 247 
respectively. 248 

2.2 Climate model simulations 249 

Simulations of two GCMs were conducted, and the model output was used for comparisons 250 
with observations from the MICRE and AWARE campaigns. The first global climate model is the 251 
Community Earth System Model version 2 (CESM2) (Danabasoglu et al., 2020). Its atmosphere 252 
component is called Community Atmosphere Model version 6 (CAM6). The CESM2/CAM6 253 
model is primarily developed by NCAR, and its main configuration is described as follows. The 254 
Cloud Layers Unified by Binormals (CLUBB) scheme (Larson et al., 2002; Golaz et al., 2002a, 255 
2002b; Bogenschutz et al., 2013) is coupled with the Morrison-Gettelman double-moment 256 
microphysics scheme (MG2) (Gettelman & Morrison, 2015; Gettelman et al., 2015), which 257 
contains four classes of hydrometeors: liquid droplets, ice particles, snow, and rain. A four-mode 258 
aerosol model (MAM4) based on Liu et al. (2016) is also coupled with MG2. Radiation is 259 
calculated in the CAM6 simulation by the Rapid Radiative Transfer Model for General Circulation 260 
Models (RRTMG) (Iacono et al., 2000).  261 

This work also evaluates simulations from the DOE Energy Exascale Earth System Model 262 
version 1 (E3SM1) (Golaz et al., 2019), specifically its atmosphere component – E3SM 263 
Atmosphere Model version 1 (EAMv1) (Rasch et al., 2019). Similar to CAM6, EAMv1 264 
incorporates the coupled MG2 and CLUBB for cloud parameterizations, and its radiation scheme 265 
uses RRTMG. The CAM6 simulations use the default 32 sigma hybrid pressure layers and a 266 
horizontal grid size of 0.5° latitude by 0.63° longitude. The vertical resolution of EAMv1 is the 267 
default 72 sigma hybrid pressure layers, and its horizontal resolution is approximately 1° latitude 268 
by 1° longitude. As for the similarities and differences between the two climate models, the 269 
horizontal resolution for CAM6 and EAMv1 are both around 1 degree but CAM6 uses a finite 270 
volume dynamical core, while EAMv1 uses a spectral element core. In addition, the vertical 271 
resolution of EAMv1 (i.e., 72 vertical layers) is finer compared with CAM6 with 32 layers. The 272 
two models share the same physical parameterizations for deep convection, shallow convection, 273 
cloud macrophysics, and cloud microphysics, but different tuning parameters are applied. A major 274 
difference is that the Wegener-Bergeron-Findeisen (WBF) process is scaled down by a factor of 275 
10 in EAMv1 compared to CAM6. 276 

For both CAM6 and EAMv1 simulations, their temperature and horizontal wind fields were 277 
nudged towards the MERRA-2 reanalysis data, in order to focus our analyses on clouds and 278 
radiation. The nudged simulations were run over the entire period of MICRE and AWARE 279 
campaigns separately, with a 6-month spin-up time in each simulation. The nudging methodology 280 
is consistent with previous studies that compare GCM output with shipborne (Desai et al., 2023), 281 
ground-based (Yip et al., 2021) and airborne (Yang et al., 2021; Zhao et al., 2023) observations. 282 
For the evaluation of cloud and radiative properties, the model output was saved as a single-column 283 
output, collocated with either McMurdo Station or Macquarie Island. That is, the closest grid box 284 
with respect to each station location was selected. Since both sites are close to the ocean, the model 285 
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grids are over a mixture of land and ocean for both EAMv1 and CAM6. Another type of model 286 
output was saved over the entire region of Southern Ocean for the purpose of evaluating simulated 287 
synoptic conditions against the reanalysis data, specifically for sea level pressure distributions and 288 
low-pressure system locations. The model output of cloud properties – cloud fraction, LWP and 289 
IWP – were at 30-minute frequency, while the model output of radiative properties in SW and LW 290 
were saved at 1-hour frequency. 291 

Several variables were further derived to facilitate comparisons between model simulations 292 
and observations. For the analysis of radiative properties in observations and simulations, net 293 
surface radiation is defined as the downwelling component minus the upwelling component for 294 
both SW and LW radiation (i.e., positive net values indicate net gain of energy). To reduce the 295 
radiative biases in models caused by discrepancies of surface albedo, we replaced the simulated 296 
albedo with the observed albedo for SW radiation, and re-calculated the upwelling SW radiation 297 
component in CAM6 and EAMv1 as shown in Equation (1), where SWup,obs/SWdown,obs equals the 298 
observed surface albedo:  299 

𝑆𝑆𝑊𝑊𝑢𝑢𝑢𝑢,𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚 = 𝑆𝑆𝑊𝑊𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑,𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚 × 𝑆𝑆𝑆𝑆𝑢𝑢𝑢𝑢,𝑜𝑜𝑜𝑜𝑜𝑜

𝑆𝑆𝑊𝑊𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑,𝑜𝑜𝑜𝑜𝑜𝑜
 (1) 300 

For comparisons of cloud properties, a threshold of cloud fraction > 10-4 was applied to 301 
model output to denote in-cloud conditions, following the threshold used in previous studies 302 
(D’Alessandro et al., 2019; Yip et al., 2021; Desai et al., 2023). Furthermore, a minimum threshold 303 
of cloud water content (i.e., the sum of ice and liquid water content) of 10-7 g m-3 was used as an 304 
additional necessary criterion to define the in-cloud condition. A similar threshold was also used 305 
in previous evaluation of GCM simulations (Patnaude et al., 2021; Yip et al., 2021; Maciel et al., 306 
2023). Lastly, observation and simulation data for cloud fraction, LWP, IWP, and radiation are all 307 
averaged to hourly samples for direct comparisons.  308 

3. Results 309 

3.1 Cloud and radiative properties in MICRE and AWARE based on case studies and year-long 310 
observations 311 

Case studies of cloud and radiative properties are conducted for selected days during the 312 
MICRE and AWARE campaigns (Figures 1 and 2). Both case studies feature an extratropical 313 
cyclone track in close proximity to the respective station locations. A convective cloud system was 314 
selected for the MICRE case study, while a low-level stratiform cloud system was selected for 315 
AWARE case study. The case studies allow for examinations of the responses of cloud and 316 
radiation properties to the nearby cyclones in two different types of cloud systems. A series of 317 
variables are examined, including cloud fraction, cloud phase, LWP, IWP, and net surface 318 
radiation. The synoptic conditions are also examined using the Worldview satellite images based 319 
on Terra/MODIS base layer taken at 00:00 UTC on each day of the respective case study. Sea 320 
level pressure maps at 6-hourly frequency are also shown. Both CAM6 and EAMv1 simulations 321 
can capture the temporal variability in cloud fraction for both cases.  322 

The case study of the MICRE campaign spans from January 12, 2017, 12:00 UTC to January 323 
15, 2017, 12:00 UTC. When examining the Worldview images and sea level pressure maps 324 
(Figures 1a–1f), frontal cloud bands passed through the Macquarie Island shortly after 00:00 UTC 325 
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on January 13, leading to an increasing trend of cloud fraction and LWP as shown in the 326 
observations (Figure 1g and 1j). The center of an extratropical cyclone passed by Macquarie Island 327 
around 22:00 UTC on January 14. Both CAM6 and EAMv1 show similar increasing trends of 328 
cloud fraction, LWP, and IWP as seen in the observations starting from 08:00 UTC January 13 329 
(Figure 1g–1j), as part of a convective system. Based on the vertical profiles of simulated cloud 330 
phases (Figure 1h and 1i), this convective cloud has an ice layer up to 10 km, a mixed-phase layer 331 
from surface to 6 km and a liquid layer below 2 km. However, both simulations underestimate 332 
IWP and overestimate LWP from 18:00 UTC January 13 to 03:00 UTC January 14 (Figure 1j). 333 
The overestimated LWP likely leads to the higher reflected SW radiation in the simulations around 334 
that time, which results in lower net surface SW radiation in the simulations (Figure 1k). The 335 
observations show a net gain of surface LW radiation from 08:00 to 20:00 UTC on January 13 336 
(i.e., local nighttime 18:00 pm on January 13 to 6:00 am on January 14 in Australian Eastern 337 
Standard Time), which is opposite to the net loss of surface LW radiation in the simulations (Figure 338 
1l). This is likely caused by the underestimation of IWP by simulations, which leads to 339 
underestimation of the warming effect of clouds on Earth’s surface especially during local 340 
nighttime in this case study. Comparing the sea level pressure maps between NCEP reanalysis data 341 
and simulations, only small differences are seen in the trajectory of the low-pressure center of the 342 
extratropical cyclone and the overall sea level pressure distributions.  343 

The AWARE campaign case study spans from March 11, 2016, 12:00 UTC to March 14, 344 
2016, 12:00 UTC (Figure 2). An extratropical cyclone was seen moving eastward around 60°S, 345 
which is ~15° north of the latitudinal location of McMurdo Station (Figure 2a–2f). Similar to the 346 
MICRE case study, the simulated sea level pressure maps show very similar synoptic conditions 347 
to NCEP data during this three-day period. Both simulations show a low-level stratiform cloud, 348 
similar to the thickness of a low cloud observed by the combined lidar and radar measurements 349 
(Figure 2g–2i). The vertical profiles of cloud layers show a thick liquid layer in CAM6 between 350 
surface and 4 km and a thick mixed-phase layer in EAMv1 between 1 – 3 km that are not seen in 351 
the observed profiles (Figure 2h and 2i). CAM6 and EAMv1 both overestimate LWP from 18:00 352 
UTC March 11 to 12:00 UTC March 12 (Figure 2j), while the simulated IWP are much lower than 353 
the observed values. The competition of these two biases leads to simulated surface net SW being 354 
not significantly different from the observed values (Figure 2f). Around 00:00 UTC March 13, 355 
both simulations significantly underestimate LWP and IWP, which leads to a positive bias in net 356 
SW and a negative bias in net LW radiation at surface.  357 

Using monthly-averaged datasets spanning the entire campaigns, the seasonal variability of 358 
cloud and radiative properties are contrasted among observations, reanalysis, and model 359 
simulations (Figure 3). The differences between various datasets for monthly averaged variables 360 
are shown in Figure S1 in the supplemental material. Figure 3 is the only analysis using monthly 361 
averages while the rest of the tables and figures shown in the main text are based on 1-hour 362 
resolution data. The standard deviations of variables within each month are also illustrated for each 363 
bin. Sea level pressure values are similar between NCEP data and GCM simulations for both 364 
MICRE and AWARE, with small differences of a few hPa to up to 5 hPa (Figure 3a and 3b). The 365 
seasonal variability of sea level pressures is similar between MICRE and AWARE data, which 366 
both show lower values in January and September as well as higher values in April and November. 367 
Cloud fraction in MICRE is close to 1, while the monthly average cloud fraction in AWARE 368 
ranges from 0.5 to 0.9 (Figure 3c and 3d). The simulated cloud fractions by CAM6 and EAMv1 369 
are slightly higher than the observed values for the MICRE campaign (by 0.05), while the 370 
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simulated cloud fractions by two models are lower than the observed values for AWARE (by 0.1 371 
– 0.4). The simulated LWP by both models shows large positive biases in MICRE and small 372 
negative biases in AWARE, except for December and January in AWARE showing positive LWP 373 
biases (Figure 3e and 3f). For IWP biases, both models show negative IWP biases at both locations, 374 
underestimating IWP by 0.5 – 1 order of magnitude. Based on the vertical profiles of RHice and 375 
RHliq from radiosonde observations and model simulations (Figure 4), CAM6 and EAMv1 show 376 
higher RHice and RHliq than observations for AWARE, which indicates that the lack of water 377 
vapor supply may not explain the underestimated cloud fraction, LWP, and IWP in AWARE by 378 
the two models. This type of comparison is limited to AWARE since radiosonde data were not 379 
available for MICRE. 380 

Regarding radiative biases, the seasonal variability of net surface SW radiation is clearly 381 
seen in both observations and simulations (Figure 3i and 3j). Both simulations overestimate the 382 
net surface SW radiation by 10 – 30 W m-2 in austral spring and summer (i.e., September – 383 
February), and show smaller biases (less than 10 W m-2) for austral fall and winter (Figure S1 i 384 
and j). For net surface LW radiation in MICRE (Figure 3k), the observations show slightly positive 385 
net surface LW from January to April, followed by more negative LW values for the rest of the 386 
year. Both simulations show net surface LW consistently being negative and closer to zero, with 387 
smaller seasonal variability than the observed trend. For the AWARE campaign (Figure 3l), the 388 
simulated net surface LW values are more comparable to the observed values for most time of the 389 
year (i.e., February to October) with relatively small negative model biases within ±10 W m-2. For 390 
the austral summer in AWARE, the LW biases become positive and larger, which are up to +50 391 
W m-2 (Figure S1 k and l). Comparing the two models, similar directions and magnitudes of biases 392 
are seen in each variable for both sites, except for CAM6 showing slightly smaller biases in cloud 393 
fraction and LWP for AWARE compared with EAMv1. 394 

Overall, the main cloud biases in simulations are the positive cloud fraction and LWP biases 395 
in MICRE, negative cloud fraction and LWP biases in AWARE, and negative IWP in both 396 
campaigns. The dry biases of the simulations in AWARE are consistent with previous studies such 397 
as Silber et al. (2019a), Hines et al. (2019), and Yip et al. (2021) in the McMurdo region. In the 398 
above analyses of case studies and monthly averages during MICRE and AWARE campaigns, 399 
correlations between model biases in cloud properties and surface radiation are seen, the 400 
correlations of these biases with dynamical conditions will be further examined in the following 401 
sections. Previous studies have reported that the climatology of clouds at McMurdo is strongly 402 
influenced by mesoscale dynamics and forcing (e.g., Carrasco & Bromwich, 1993; Carrasco et al., 403 
2003; Jolly et al., 2018; Silber et al., 2019b). But since mesoscales are often too fine for GCMs 404 
simulations to represent, we focus on the analysis of the role of synoptic conditions in this study. 405 

3.2 Identifications of extratropical cyclone centers using a cyclone compositing method 406 

The positions of extratropical cyclones (low-pressure systems) are identified using the NCEP 407 
reanalysis data for every 6 hours in 2016 and 2017 (Figure 5). An algorithm was developed to 408 
locate the centers of extratropical cyclones. The algorithm detects the sea level pressure minimum 409 
at each time stamp within a ±30° × 30° latitudinal and longitudinal box surrounding respective 410 
station locations. The size of the box was selected to ensure that the locations of extratropical 411 
cyclones are not too far away from the station location and a sufficient number of samples can be 412 
provided. In fact, we tested several different sizes of the boxes, such as ±15°×15°, ±30°×30°, and 413 



 
 

11 
 

±60°×60°, and finally chose ±30°×30° surrounding each station. The sea level pressure minimum 414 
identified represents the extratropical cyclone center. A manual inspection of the cyclone centers 415 
was applied to verify that this algorithm can capture the eastward trajectories of cyclones. The 416 
spatial distributions of cloud and radiation properties at each station are then analyzed relative to 417 
the extratropical cyclone centers.  418 

Figure 5a and 5b show the latitude and longitude distributions of extratropical cyclones for 419 
MICRE and AWARE, respectively, with the highest number of extratropical cyclones located 420 
around two clusters – 63°S, 180°E and 67°S, 180°E, and a secondary peak at 120°E for both sites. 421 
The geographical locations of extratropical cyclones are similar between the two campaigns even 422 
though they sampled different years. Both campaigns show extratropical cyclones moving 423 
eastward and poleward, consistent with the previous study of Hoskins & Hodges (2005) which 424 
showed that cyclonic systems spiraled poleward from lower latitudes to Antarctica. The seasonal 425 
distributions of extratropical cyclones are displayed on geographic maps (Figures 5c–5f), 426 
including December, January, and February (DJF), March, April, and May (MAM), June, July, 427 
and August (JJA), and September, October, and November (SON). The locations of extratropical 428 
cyclones using pressure output from the two model simulations are also shown in Figures S2 and 429 
S3 in the supplemental material.  430 

A relative coordinate system is developed to identify each station’s position relative to the 431 
nearby extratropical cyclone centers. The “L” at (0, 0) position of this coordinate system (as shown 432 
in Figures 6 and 7) marks the center of each extratropical cyclone. Latitudinal and longitudinal 433 
differences between each ground station and the nearest extratropical cyclone within 6 hours are 434 
shown as the ordinate and abscissa, respectively. Four quadrants of the relative positions of a 435 
ground station with respect to the low-pressure system centers are defined as quadrants 1, 2, 3 and 436 
4 (Q1 – Q4). These quadrants represent cases when a ground station is at the northeast, northwest, 437 
southwest, and southeast side of an extratropical cyclone, respectively. The definition of four 438 
quadrants follows the conventional definition used by previous studies of cyclone compositing, 439 
such as a schematic map illustrated in Bodas-Salcedo et al. (2014) in their Figure 3a1, and in 440 
Tansey et al. (2022) in their Figure 1. Among the four quadrants, Q1 (northeast) is considered the 441 
frontal region also known as the warm-air sector, as illustrated in Bodas-Salcedo et al. (2012) in 442 
their Figure 6, and in Montoya Duque et al. (2022) in their Figure 1. Different methods have been 443 
used to contrast different regions surrounding the extratropical cyclones. Lang et al. (2018) and 444 
Montoya Duque et al. (2022) used the k-mean clustering techniques to separate the four quadrants 445 
and their surrounding regions into 7 detailed categories. Bodas-Salcedo et al. (2012, 2014) 446 
contrasted the warm (Q1) and cold sectors (Q2-4). Another study by Kelleher and Grise (2019) 447 
developed dynamical regimes using mid-tropospheric vertical velocity (ω) and estimated inversion 448 
strength (EIS) and showed distinct differences in these variables in four quadrants surrounding 449 
extratropical cyclones, especially between the eastern sector (Q1 and Q4) and western sector (Q2 450 
and Q3). Their study showed that the eastern sector of the cyclone (particularly Q1 in frontal region) 451 
is mainly associated with negative anomalies of pressure vertical velocity (i.e., ω’<0) relative to 452 
multi-year daily mean values, indicating rising air motion on the large scale, while the western 453 
sector of the cyclone is mainly associated with positive anomalies of vertical velocity (i.e., ω’> 0), 454 
indicating subsiding motion on the large scale. Thus, in the rest of the analysis we contrast the two 455 
sectors of the cyclones based on their distinct differences in large-scale vertical motion.  456 
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Vertical profiles of temperature, RHice, and RHliq are contrasted between the western and 457 
eastern sectors in Figure 4. In addition, distributions of the mid-tropospheric vertical velocity at 458 
500 hPa (ω500’, defined as dPressure/dtime) are analyzed in supplemental Figure S4. Here ω500’ is 459 
calculated as the daily mean anomaly by subtracting the 10-day average ω500 values surrounding 460 
each daily ω500 value. In MICRE, the eastern sector is seen to be warmer and moister and associated 461 
with ascent motion, while the western sector is colder and drier and associated with descent motion. 462 
The warmer and moister air in the eastern sector in MICRE is consistent with the rising air motion 463 
seen in Kelleher and Grise (2019), and is also consistent with the advection of moist, warm air into 464 
this sector as discussed in Field and Wood (2007) and Tansey et al. (2022). On the other hand, 465 
AWARE shows smaller differences in ω500’ between two sectors, and its eastern sector is seen to 466 
be warmer and drier. Comparing the distance to the low-pressure centers, MICRE is closer to the 467 
low-pressure centers with distance less than 15° in latitude, while AWARE is farther from the low-468 
pressure centers with distance larger than 15° in latitude. This may explain why AWARE shows 469 
warmer but drier air in the eastern sector, with reduced influences from cyclones. The diminishing 470 
influences of extratropical cyclones with increasing distances are also shown in Tansey et al. 471 
(2022). 472 

3.3 Spatial distributions of cloud and radiation properties in a dynamic coordinate relative to the 473 
cyclone centers 474 

Cloud properties (i.e., cloud fraction, LWP, and IWP) and surface net radiation in SW and 475 
LW are examined in this relative coordinate system for the entire dataset of MICRE (Figure 6) and 476 
AWARE (Figure 7). For the MICRE campaign in Figure 6, both observations and simulations 477 
show that the majority of cloud fraction data have values close to 1 in all four quadrants (Figure 6 478 
column 1), consistent with the monthly average values being close to 1 shown in Figure 3c. For 479 
the observations in AWARE, larger asymmetries between the western (i.e., Q3) and eastern (i.e., 480 
Q4) sector of the extratropical cyclones are seen in cloud fraction and LWP (Figure 7 bottom row) 481 
compared with MICRE (Figure 6 bottom row), while IWP is more symmetric at both sites. Higher 482 
LWP in the western sector (post-frontal) of the cyclones are seen in both MICRE and AWARE 483 
observations, which is consistent with previous studies (e.g., Bauer and Del Genio, 2006; Naud et 484 
al., 2006), since this is a cold-air region with descending air motion, often producing extensive 485 
coverage of closed-cell cumulus with high amount of supercooled liquid water that can eventually 486 
develop into congestus clouds.  487 

Both CAM6 and EAMv1 simulations capture similar asymmetrical distributions of cloud 488 
fraction, LWP, and net SW and LW between two sectors of the cyclones in AWARE and MICRE, 489 
indicating that the relationships between these properties and extratropical cyclones are well 490 
represented in the models at both locations. In addition, both simulations are able to represent the 491 
relatively smaller cloud fraction, LWP, and IWP at AWARE compared with MICRE. The main 492 
cloud biases for both models are the consistent underestimation of IWP at both sites. In MICRE, 493 
both CAM6 and EAMv1 simulations show higher LWP than the observations in two sectors 494 
(Figure 6q). In AWARE, both models underestimate cloud fraction in the eastern sector and 495 
underestimate LWP in two sectors. For the radiation biases, the two models show different biases 496 
for net SW and net LW between MICRE and AWARE. That is, two models show negative biases 497 
of both net SW and LW in MICRE and positive biases of them in AWARE. The differences in 498 
radiation biases may be related to the variations in cloud biases between two sites, such as the 499 
variations in cloud fraction biases and LWP biases. 500 
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3.4 Comparisons of cloud and radiation properties in western and eastern sectors of extratropical 501 
cyclones  502 

To assess whether the asymmetrical or symmetrical distributions of the cloud and radiation 503 
properties between two sectors of the cyclones are statistically significant, distributions of a series 504 
of quantities are compared between the two regimes (i.e., the eastern sector with more frontal 505 
influences versus the western sector with more post-frontal influences), including cloud fraction, 506 
LWP, IWP, and net SW and LW radiation at surface. In addition, the model biases for each of 507 
these properties are also contrasted (Table 1). Standard deviations of samples within each sector 508 
in Tables 1 and 2 are quantified in supplemental Tables S1 and S2. The two-tail t-tests with 95% 509 
confidence intervals are used to assess the statistical significance of their differences. The |T| 510 
values calculated for the t-test are listed, and those indicating statistically significant differences 511 
between two regimes are marked in italics. Quantities with higher values in the eastern sector of 512 
the cyclones are marked with an underscore. Overall, AWARE campaign shows that 18 out of 25 513 
quantities have statistically significant differences between the two sides (marked with italics in 514 
Table 1 last column). In addition, 5 out of 25 quantities in AWARE show higher values in the 515 
eastern sector of the cyclones (marked with underscores in Table 1 last column). The observed 516 
IWP is the only observed quantity showing no statistically significant difference between the two 517 
sectors and also is the only observed quantity showing a higher average value in the eastern sector. 518 

Compared with the AWARE campaign which shows significantly different cloud fraction 519 
and LWP in two dynamic regimes based on the observations, the observed quantities in the MICRE 520 
campaign show no statistically significant differences in them. CAM6 also shows no statistically 521 
significant differences in these two quantities, while EAMv1 shows a higher cloud fraction in the 522 
western side and higher LWP in the eastern sector. Comparisons of IWP show more 523 
inconsistencies between models and observations, with either one or both models showing the 524 
opposite asymmetry of IWP at two sites.  525 

The asymmetrical distributions in net SW and LW are mostly consistent between 526 
observations and simulations for AWARE, except for CAM6 showing the opposite asymmetry for 527 
net LW compared with observations. For MICRE, both models show the same asymmetry in net 528 
LW as that observed, but show opposite asymmetry in net SW, i.e., the observations show higher 529 
SW (statistically significant) in the western sector and two models show higher SW (not 530 
statistically significant) in the eastern sector. As for model biases in SW and LW, the domain 531 
average dSW of two models are -4.15–4.07 W m-2 for MICRE and 11.65–13.16 W m-2 for 532 
AWARE. The domain averages of dLW in MICRE and AWARE are -11.63–0.37 W m-2 and 1.72–533 
8.94 W m-2, respectively. In previous model evaluation studies, the asymmetrical distributions of 534 
model biases have been a major issue related to the severe underestimation of supercooled liquid 535 
water in the climate models (Bodas-Salcedo et al. 2012, 2014; Williams et al. 2013; Naud et al. 536 
2014). This is because the cold-air, post-frontal region that is dynamically suppressed provides a 537 
favorable condition for persistent low-level clouds containing supercooled-cooled liquid water. 538 
The fact that this model evaluation study finds more similar asymmetrical distributions in SW and 539 
LW between models and observations in the two sectors is consistent with the model 540 
improvements in cloud microphysics parameterizations as discussed in D’Alessandro et al. (2019), 541 
Yang et al. (2021) and Desai et al. (2023), i.e., the CAM6 and EAMv1 models now allow more 542 
supercooled liquid water to occur compared with older model versions, and therefore reduce the 543 
positive biases of net absorbed SW in the cold post-frontal sector.  544 
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Table 2 shows another type of comparison of observed and simulated quantities in different 545 
dynamical regimes using ω500’. The samples are separated into two regimes, i.e., ω500’ > 0 and 546 
ω500’ ≤ 0. As mentioned previously, the warm frontal eastern sector is more associated with ascent 547 
motion, i.e., ω500’ ≤ 0, while the cold post-frontal western sector is more associated with descent 548 
motion, i.e., ω500’ > 0 as shown in Kelleher & Grise (2019) in their Figure 3. As a result, the main 549 
asymmetrical distributions between descending and ascending regions in Table 2 are comparable 550 
to those seen between the western and eastern sectors in Table 1, respectively. For example, the 551 
observations in AWARE campaign show statistically significant differences in all the quantities 552 
between the two dynamic regimes, including cloud fraction, LWP, IWP, and net SW and LW 553 
radiation. The observations in MICRE only show statistically significant differences in net LW 554 
but not in other quantities. Note that the dynamical regimes of ω500’ > 0 and ω500’ ≤ 0 do not fully 555 
align with the separation between western and eastern sectors, since part of the western (eastern) 556 
sector still shows ω500’ ≤ 0 (ω500’ > 0). This likely causes the results in Tables 1 and 2 to be not 557 
identical. 558 

Weighted root mean square error (RMSE) is calculated for each model variable to examine 559 
the model performance for simulating different variables (Figure 8). The weighted RMSE is 560 
calculated as the square root of the mean differences between simulated and observed quantities, 561 
normalized by the standard deviation of the observed quantity. Quantities with statistically 562 
significant differences between the two sectors of the cyclones (i.e., italics in Table 1) are 563 
illustrated with filled markers. A total of 11 out of 20 variables show statistically significant 564 
differences between the two sectors. The markers located above and below the 1:1 line indicate 565 
higher RMSE values in the western and eastern sector, respectively. About half of the variables 566 
are very close to the 1:1 line, and the rest of the quantities show a similar number of points being 567 
higher in one sector than the other. The curved thin black lines illustrate the multiplication of the 568 
two weighted RMSE values on the two sectors of the cyclones. Markers located at the top-right 569 
(bottom-left) corners indicate those values in simulations with larger (smaller) discrepancies 570 
compared with the observations. Comparing the two simulations, the LWP biases of CAM6 and 571 
EAMv1 in MICRE have the largest RMSE, followed by cloud fraction biases of AWARE and 572 
IWP biases at both locations. In addition, CAM6 shows higher RMSE than EAMv1 for both SW 573 
and LW AWARE, as well as higher LW and LWP biases in MICRE. The smallest model RMSE 574 
values are seen in net SW radiation in AWARE, possibly due to the smaller solar radiation at 575 
higher latitudes as well as relatively smaller biases of LWP in AWARE compared with MICRE.  576 

3.5 Diagnosis of factors contributing to radiation biases in simulations 577 

The impacts of multiple factors on the model simulations of net surface SW and LW radiation 578 
are investigated, including cloud properties and seasonal variability. The seasonal variability of 579 
net radiation is shown in Figures 9 and 10. Linear regressions are applied to the simulated versus 580 
observed values, with slope values (b) and coefficient of determination (r2) values shown in figure 581 
legends. Comparing the two campaigns, the slope values of net surface SW radiation for MICRE 582 
for all seasons are 0.894 and 0.907 for CAM6 and EAMv1, respectively (Figure 9a and 9b), which 583 
have larger deviation from the 1:1 line than the slope values for AWARE (0.949 and 1.007 in 584 
Figure 9c and 9d). The r2 values of net surface SW radiation are also lower in MICRE (0.710 and 585 
0.764 for CAM6 and EAMv1, respectively) than those in AWARE (0.780 and 0.901).  586 



 
 

15 
 

For net surface LW radiation (Figure 10), the b values are in the range of 0.2 – 0.5 and r2 587 
values are in the range of 0.1 – 0.5. For CAM6 and EAMv1, b values are 0.354 and 0.374 in 588 
MICRE and 0.271 and 0.340 in AWARE; r2 values are 0.199 and 0.280 in MICRE and 0.182 and 589 
0.313 in AWARE, respectively. The two modes seen in Figure 10c and d become one mode when 590 
analyzing columns without cloud layers, but the two modes are still seen for cloudy-sky conditions, 591 
suggesting that these two modes may be caused by different types of clouds. Comparing the two 592 
models, EAMv1 shows slightly better results than CAM6 when analyzing net SW and LW 593 
radiation in almost all seasons, with the exception of LW radiation in MICRE, where two models 594 
show similar results. Overall, net surface LW shows larger deviation from the 1:1 line and larger 595 
seasonality in the biases compared with net SW, consistent with monthly averages in Figure 2. 596 

To further diagnose the effects of cloud properties on simulated radiative properties, slope b 597 
and r2 values from linear regressions of net surface SW and LW are further shown for various 598 
ranges of observed cloud properties (i.e., observed cloud fraction, LWP, and IWP) and model 599 
biases in cloud properties (i.e., dCF, dLWP, and dIWP) in Table 3. For various cloud fractions, 600 
the conditions closer to clear sky (cloud fraction < 0.1) show the highest slope and r2 values for 601 
almost all SW and LW linear regressions at both sites, which means that both CAM6 and EAMv1 602 
have better simulations of net surface radiation when observations are closer to clear-sky 603 
conditions. When examining the correlations with observed LWP, better model performance (i.e., 604 
slope closer to 1) for both SW and LW linear regressions are seen when observed LWP are lower 605 
than 0.05 kg m-2, indicating that clouds containing smaller mass concentrations of liquid 606 
hydrometeors tend to be represented better for their radiative effects in the two models. Similarly, 607 
when examining the correlations with simulated biases of cloud properties, the smaller values of 608 
dCF (within ± 0.5) and dLWP (within ± 0.1 kg m-2) are associated with linear regression slopes 609 
closer to one. On the other hand, for various ranges of observed IWP, the linear regressions of 610 
model simulations do not necessarily show better results when IWP values are at a specific range. 611 
This result may be caused by the fact that the model simulations often show negative biases in 612 
IWP on 0.5 – 1 orders of magnitudes, which is a persistent bias regardless of the observed value. 613 
This is corroborated by the fact that the model simulations show linear regression slopes closer to 614 
one in the dIWP range of -0.1 to 0 kg m-2 compared with those in the dIWP range of -0.1 to -0.5 615 
kg m-2.  616 

The correlations between radiative biases (dSW and dLW) and cloud property biases are 617 
examined for two sectors, including correlations with dCF, dLWP and dIWP in Figures 11 – 13, 618 
respectively. The signs of the linear correlation slopes (positive or negative) between radiative 619 
biases and three cloud property biases are consistent between two simulations, as well as being 620 
consistent between two campaigns. That is, dSW is negatively correlated with dCF, dLWP, and 621 
dIWP (Figures 11 – 13 rows 1 and 3), and dLW is positively correlated with dCF, dLWP and dIWP 622 
(rows 2 and 4). However, one should note that the r2 values are very small for most linear 623 
regressions, possibly due to other factors besides cloud biases that also contribute to the net 624 
radiation biases. Even though the misrepresentation of cloud properties is not necessarily the same 625 
between two sites or between the two simulations, the correlations between model biases in cloud 626 
properties and biases in radiation are more consistent. This feature indicates that the fundamental 627 
physical mechanisms controlling cloud-radiation relationships are similar between the two models.  628 

Contrasting the two sectors, the stronger correlations between radiative and cloud biases (i.e., 629 
r2 values closer 1) do not always occur in one sector compared with the other sector. In addition, 630 
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the correlations of radiative biases with dIWP all show much lower r2 values, because the radiative 631 
biases can be either negative or positive while dIWP show more negative values. These lower r2 632 
values do not suggest that dIWP is not an important factor for radiative biases, but rather suggest 633 
that simulated IWP are consistently too low than the observed values regardless of the radiative 634 
biases, which is consistent with the findings in Table 3. The consistent low biases of IWP are also 635 
shown in supplemental Figure S5 for the correlations between dIWP and dLWP. The figure shows 636 
that dIWP are almost exclusively negative, while dLWP can be both positive and negative. In 637 
addition, weak positive correlations between dIWP and dLWP are seen in both MICRE and 638 
AWARE for both model simulations, suggesting that negative biases of dIWP do not necessarily 639 
correlate with positive biases of dLWP. This result indicates that the lack of ice phase clouds may 640 
partly originate from the lack of ice nucleation and/or ice growth and is not limited to errors in 641 
phase partitioning.  642 

An additional analysis focusing on the downwelling component of the LW radiation is shown 643 
in Figure S6. The linear regressions between observed and simulated values for downwelling LW 644 
radiation shows r2 values closer to 1 for both MICRE and AWARE, and also show b values closer 645 
to 1 for AWARE, compared with the net LW radiation linear regressions in Figure 8. The closer 646 
match between simulated and observed downwelling LW radiation is likely caused by other factors 647 
influencing the net LW radiation, such as surface temperatures and land-energy partitioning 648 
affecting LW cooling, latent heat fluxes, and sensible heat fluxes. In addition, the supplemental 649 
Figure S7 shows the relationships between model biases in downwelling LW radiation and model 650 
biases in cloud properties. Similar to the directions of the relationships between net LW biases and 651 
cloud biases seen in Figures 11 – 13, positive correlations are seen for downwelling LW biases 652 
with respect to dCF, dLWP, and dIWP. For the r2 values in the linear regressions against dCF, 653 
analysis of downwelling LW biases shows r2 values slightly closer to 1 compared with the analysis 654 
of net LW biases, but the r2 values are not always closer to 1 when analyzing downwelling LW 655 
biases against dLWP and dIWP. 656 

4. Summary, Conclusions, and Implications 657 

The polar regions are experiencing disproportionate warming compared with the rest of the 658 
globe. Thus, accurately representing radiative forcing for the polar regions in climate models has 659 
become an urgent task. In this work, we compared the ground-based measurements of clouds and 660 
radiation with the simulations of two GCMs – the NCAR CESM2/CAM6 and DOE E3SM/EAMv1. 661 
Synoptic conditions at two ground sites – McMurdo Station and Macquarie Island were also 662 
contrasted, especially focusing on the variations of cloud and radiative properties in different 663 
quadrants relative to the center of extratropical cyclones. The analysis helps to shed light on the 664 
influence of synoptic conditions on cloud and radiative properties from lower to higher southern 665 
latitudes. Various factors that may contribute to model biases in net surface SW and LW radiation 666 
were also diagnosed.  667 

The influences of synoptic conditions on clouds and radiation were examined at each site. A 668 
cyclone compositing method was used to track the low-pressure centers of extratropical cyclones 669 
as they propagated across the two sites (Figures 5–7). When evaluating the relationships of 670 
dynamics-cloud-radiation in AWARE, both models capture the asymmetrical distributions of most 671 
cloud and radiative properties between two sectors of the cyclones (Table 1). That is, observations 672 
and two simulations in AWARE show statistically significant differences between the two sectors 673 
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of the cyclones for cloud fraction, LWP, and net surface SW and LW radiation (Table 1). One 674 
exception is that CAM6 shows the opposite asymmetry for LW radiation in AWARE. In addition, 675 
most of these quantities have higher values in the western sector of the cyclones in the AWARE 676 
campaign, i.e., the post-frontal region with subsiding air. Some exceptions include the observed 677 
IWP and CAM6 simulated LW being higher in the eastern sector. 678 

The MICRE observations on the other hand show symmetric cloud fraction and LWP 679 
between the two sectors, while IWP and net SW and LW radiation are more asymmetric between 680 
two sectors. The two simulations captured the asymmetry in LW radiation in MICRE but at least 681 
one or both models misrepresent the asymmetry of other cloud variables. The main model biases 682 
in MICRE include the overestimations of cloud fraction and LWP and the underestimations of LW 683 
radiation in both sectors, as well as the underestimation of net SW in the western sector (Figure 6). 684 
The main model biases in AWARE include the underestimations of cloud fraction and LWP, as 685 
well as the overestimations of net SW and LW radiation (Figure 7). For both sites, IWP values are 686 
consistently underestimated. The large cloud fraction biases in AWARE seen in Figure 8 may be 687 
caused by the strong mesoscale dynamical influences at the McMurdo Station including the 688 
katabatic winds as previously mentioned (e.g., Carrasco & Bromwich, 1993; Carrasco et al., 2003; 689 
Jolly et al., 2018; Silber et al., 2019b). 690 

One of the main objectives of this work is to quantify the relationships between model biases 691 
of liquid and ice phase hydrometeors and synoptic-scale dynamics in both CAM6 and EAMv1, 692 
which are part of the CMIP6 project. Previously, analyses of older versions of models (e.g., models 693 
from CMIP3) have shown a significant overestimation of net absorbed SW at the top of the 694 
atmosphere in model simulations of cloudy conditions over the Southern Ocean (e.g., Trenberth 695 
and Fasullo, 2010), especially in the cold-air post-frontal regions of the extratropical cyclone (e.g., 696 
Bodas-Salcedo et al., 2012, 2014). Other studies have shown using satellite observations that the 697 
insufficient amount of supercooled liquid water in the models may be the main cause for such 698 
previously reported SW radiative biases in the older model versions (e.g., Kay et al., 2016; Frey 699 
and Kay, 2018; Tan et al., 2016; Tan & Storelvmo, 2016; Zhang et al., 2019, 2020). In this work, 700 
we found that the underestimation of supercooled liquid water in CAM6 and EAMv1 has been 701 
significantly improved, if not overcompensated. This result is consistent with the findings in 702 
McIlhattan et al. (2020), which evaluated CESM2 model simulations of Arctic clouds and 703 
precipitation and showed slight decrease of Arctic cloud ice and dramatic increase of liquid cloud 704 
water. In this study, a positive LWP bias around 0.1 kg m-2 (Figure S1 e) is shown at Macquarie 705 
Island, while a small negative LWP bias around 0.01 kg m-2 (Figure S1 f) is shown at McMurdo 706 
Station. A better representation of supercooled liquid water in the newer models was also 707 
previously shown in the observation-based evaluation by D’Alessandro et al. (2019) and Yang et 708 
al. (2021). Those two studies contrasted the CAM version 5 with CAM version 6 and showed 709 
significant improvements of allowing supercooled liquid water to occur below -10°C. 710 

Compared with an improved representation of liquid phase, negative biases in IWP are 711 
consistently seen at both Macquarie Island (dIWP around -0.1 kg m-2) and McMurdo Station 712 
(dIWP between -0.01 to -0.1 kg m-2) (Figure S1). Both models consistently underestimate IWP by 713 
a factor of 3 – 10 in both dynamical sectors (Figures 6 and 7) as well as in four seasons (Figure 3). 714 
This finding is consistent with other evaluation studies of CAM6 and EAMv1 models, which also 715 
pointed out the underestimation of the ice phase in CAM6 and EAMv1 simulations over Southern 716 
Ocean and Antarctica (e.g., D’Alessandro et al., 2019; Yang et al., 2021; Yip et al., 2021; Desai et 717 
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al., 2023; Zhao et al., 2023). This result indicates that these negative biases of IWP in CAM6 and 718 
EAMv1 have a weaker dependence on the dynamical forcings related to extratropical cyclones 719 
compared with the stronger dynamical dependence of insufficient supercooled liquid water 720 
previously reported for the older model versions. In addition, the analyses between radiative biases 721 
and cloud property biases (Figures 11 – 13) have two implications – first, improving the 722 
parameterizations of liquid hydrometeors from the older model versions are not sufficient to reduce 723 
all cloud-induced radiation biases; second, underlying issues still exist with parameterizations of 724 
ice hydrometeors (e.g., ice and snow), which may become one of the main causes of the simulated 725 
radiative biases in this region in the newer versions of models, as also suggested by previous 726 
studies (e.g., Cesana et al., 2021; Zhang et al., 2023).  727 

Comparing the two models, CAM6 shows better agreement with the observations in terms 728 
of representing the symmetry in cloud fraction and LWP between two sectors at Macquarie Island 729 
(Table 1), while EAMv1 overestimates the asymmetry of these cloud properties by showing higher 730 
cloud fraction in the western sector and higher LWP in the eastern sector of the cyclones. On the 731 
other hand, when evaluating the RMSE in the models (Figure 8), CAM6 shows larger RMSE 732 
values for net SW and LW at both locations than EAMv1. Linear regressions of simulated radiative 733 
properties show slightly better comparison results (i.e., slope values closer to 1) by EAMv1 734 
compared with CAM6 (Figures 9 and 10). One factor that has not been investigated in this study 735 
is the nudging time scale. Gettelman et al. (2020) showed that using two nudging time scales – 24 736 
hrs versus 1 hr to nudge the horizontal winds and temperature in CAM6, the 1-hr nudging method 737 
increases the simulated LWP by 50% and therefore increases cloud optical depth by 50%. However, 738 
the changes in IWP between the two nudging methods are minimal (6%) in that study. This 739 
indicates that the nudging time scale plays a significant role in controlling the cloud liquid 740 
microphysical properties in simulations but may not be able to compensate for the insufficient 741 
amount of simulated IWP.  742 

One caveat of this study is the data availability and representativeness from two limited 743 
geographical locations due to the scarcity of ground-based observations in the high southern 744 
latitudes. At Macquarie Island, climatological studies of precipitation records have shown marked 745 
increases of precipitation and mean wind speed since 1970, which are consistent with the predicted 746 
regional trend of the sub-Antarctic regions in response to a changing global climate (Adams, 2009). 747 
Another observational study by Lang et al. (2018) also showed that cloud structure at Macquarie 748 
Island frequently resides within a shallow marine atmospheric boundary layer, which is a 749 
representative feature of Southern Ocean low-level clouds. Compared with Macquarie Island, the 750 
McMurdo station in Antarctica is associated with more extreme conditions such as very low 751 
temperature and humidity (Bromwich et al., 2012). McMurdo Station is also under stronger 752 
orographic influences by the nearby mountains and islands which produce higher katabatic winds 753 
than Macquarie Island with modest orography. Previous study by Silber, Verlinde, Cadeddu et al. 754 
(2019b) showed that the cloud properties at McMurdo may not fully represent statistical cloud 755 
properties of the entire Antarctic continent, but measurements from the McMurdo station still 756 
provides a highly valuable observational dataset over this remote region. 757 

Overall, using ground-based observations from two DOE field campaigns in the southern 758 
hemisphere, this work investigates synoptic influences spanning over four seasons for each site. 759 
The results provide a different perspective compared with the frequently used spaceborne remote 760 
sensing measurements in this remote region. The insufficient amount of ice phase hydrometeors 761 
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has been identified as a persistent bias in Southern Ocean and Antarctica. The combination of 762 
underestimated LWP and IWP at McMurdo, Antarctica may be the main cause of the more severe 763 
overestimations of absorption of solar radiation at the surface in this high-latitudinal region 764 
compared with the low-latitudinal regions. Further investigation on ice processes in the model 765 
parameterization is needed to diagnose the specific reasons for biases of ice phase in order to 766 
improve the accuracy of representations of cloud and radiative properties in the high southern 767 
latitudinal regions. 768 
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Table 1. Comparisons of the average cloud fraction, LWP, and net surface SW and LW radiation 1216 
between Q2 & Q3 and Q1 & Q4 for observations and simulations in MICRE and AWARE. 1217 

Variables MICRE AWARE 

Q2 & 3 Q1 & 4 |T|   Q2 & 3 Q1 & 4 |T|   

CF OBS  0.8931 0.8986 0.45 * 0.7553 0.6542 7.46  

CF CAM6   0.9408 0.9520 1.61 0.7735 0.6544 8.17 

CF EAMv1  0.9646 0.9501 2.43 0.7053 0.5226 12.07  

dCF CAM6  0.0169 0.0383 1.27 0.0349 -0.0367 4.61  

dCF EAMv1 0.1246 0.1057 1.39 -0.0722 -0.1359 4.68 

LWP OBS (kg/m²) 0.0844 0.0772 1.80  0.0214  0.0149 4.00 

LWP CAM6 (kg/m²) 0.1364 0.1521 2.69 0.0252 0.0205 1.60 

LWP EAMv1 (kg/m²) 0.0998 0.1292 8.02 0.0234 0.0060 11.42 

dLWP CAM6 (kg/m²) 0.0594 0.0705 1.66   0.0032 0.0031 0.02 

dLWP EAMv1 (kg/m²) 0.0247 0.0507 5.11 -0.0043 -0.0116 4.53 

IWP OBS (kg/m²) 0.0687 0.0810 1.99 0.0368 0.0379 0.29  

IWP CAM6 (kg/m²) 0.0096 0.0114 3.06 0.0024 0.0020 2.67 

IWP EAMv1 (kg/m²) 0.0124 0.0096 4.37 0.0026 0.0021 3.74 

dIWP CAM6 (kg/m²) -0.0574 -0.0562 0.20 -0.0271 -0.0364 2.89 

dIWP EAMv1 (kg/m²) -0.0475 -0.0632 3.03 -0.0378 -0.0311 2.02 

SW OBS (W/m²) 100.6071 82.3412 3.31 109.0580 92.6947 3.18 

SW CAM6 (W/m²) 85.5737 85.7278 0.03 117.5711 93.7900 2.27 

SW EAMv1 (W/m²) 76.1329 86.1451 1.95 116.6847 104.3017 2.33 

dSW CAM6 (W/m²) 4.0713 -4.1469 2.54 11.6501 13.1566 0.59 

dSW EAMv1 (W/m²) 1.8820 1.4762 0.14 12.0925 11.8888 0.12 

LW OBS (W/m²) -21.7609 -14.9637 5.59   -56.5636 -60.6723 2.90 

LW CAM6 (W/m²) -33.5267 -17.8421 15.73 -50.8223 -49.6846 1.25 

LW EAMv1 (W/m²) -31.8418 -17.0154 18.12 -51.8221 -57.7519 7.05 

dLW CAM6 (W/m²) -11.6276 -0.8038 9.08 8.7343 8.9403 0.15 

dLW EAMv1 (W/m²) -10.9050 0.3734 10.73 3.1776 1.7216 1.40 

*Statistically significant differences between the two regimes are highlighted in italics, which is 1218 
defined as |T| > t0.95. Here t0.95 = 1.96, calculated using the two-tail t-test at the 95% confidence 1219 
interval. Underlined |T| values indicate higher values in Q1 and Q4 (i.e., the warm frontal region 1220 
in eastern sector) and lower values in Q2 and Q3 (i.e., the cold post-frontal western sector).  1221 
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Table 2. Similar to Table 1, but for comparisons between two regimes of ω500’ > 0 and ω500’ ≤ 0. 1222 
 1223 

Variables MICRE AWARE 

ω500’ > 0 ω500’ ≤ 0 |T|   ω500’ > 0 ω500’ ≤ 0 |T|   

CF OBS  0.8915 0.904 1.06 * 0.6138 0.8205 14.70 

CF CAM6   0.9352 0.954 2.73 0.7343 0.6861 3.21 

CF EAMv1  0.9259 0.9834 9.51 0.6023 0.5757 1.57 

dCF CAM6  -0.0022 0.0387 2.55 0.0313 -0.0429 4.69 

dCF EAMv1 0.1198 0.1025 1.36 -0.1007 -0.1534 3.24 

LWP OBS (kg/m²) 0.0966 0.1015 0.77 0.014 0.025 4.00 

LWP CAM6 (kg/m²) 0.1418 0.147 0.93 0.0224 0.0232 0.27 

LWP EAMv1 (kg/m²) 0.0836 0.1477 19.2 0.0092 0.0097 0.40 

dLWP CAM6 (kg/m²) 0.0689 0.0595 1.43 0.00007 0.0075 2.07 

dLWP EAMv1 (kg/m²) 0.011 0.0665 11.43 -0.013 -0.0095 2.00 

IWP OBS (kg/m²) 0.088 0.0776 1.64 0.0176 0.0628 11.89 

IWP CAM6 (kg/m²) 0.0088 0.0121 6.43 0.0025 0.0018 4.39 

IWP EAMv1 (kg/m²) 0.0099 0.0114 2.31 0.0021 0.0017 2.81 

dIWP CAM6 (kg/m²) -0.0491 -0.0698 3.64 -0.0351 -0.027 2.55 

dIWP EAMv1 (kg/m²) -0.018 -0.1101 16.8 -0.033 -0.0253 2.48 

SW OBS (W/m²) 94.4634 97.7646 0.59 94.4529 74.4002 4.17 

SW CAM6 (W/m²) 92.1424 87.2763 0.85 105.048 106.0821 0.08 

SW EAMv1 (W/m²) 96.3371 78.6174 3.36 106.5067 117.6624 1.89 

dSW CAM6 (W/m²) -1.8353 1.5304 1.07 10.8144 3.8436 0.64 

dSW EAMv1 (W/m²) 1.4223 2.7548 0.46 12.2731 15.4239 1.76 

LW OBS (W/m²) -22.5687 -13.6375 7.45 -63.1567 -46.0194 11.74 

LW CAM6 (W/m²) -30.6093 -19.5213 11.24 -48.0286 -53.1619 5.57 

LW EAMv1 (W/m²) -32.5702 -14.8369 22.39 -56.8248 -60.5154 4.32 

dLW CAM6 (W/m²) -6.3109 -5.4308 0.74 8.7107 9.2576 0.41 

dLW EAMv1 (W/m²) -3.6199 -6.0637 2.34 -0.0562 2.0066 1.71 
 1224 
*Similar to Table 1, |T| > t0.95 indicates statistically significant differences between two sectors 1225 
and are marked in italics. Underline indicates higher values in the region of ω500’ ≤ 0 (i.e., the 1226 
warm frontal region with ascent motion) than the regions of ω500’ > 0 (i.e., the cold post-frontal 1227 
region with descent motion).  1228 
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Table 3. Linear regression slope and r2 values for net surface SW and LW radiation binned by 1229 
various ranges of observed CF, LWP, and IWP, and model biases of dCF, dLWP, and dIWP. 1230 

Variables Bin ranges 

MICRE AWARE 

CAM6 
SW 

EAMv1 
SW 

CAM6 
LW 

EAMv1 
LW 

CAM6 
SW 

EAMv1 
SW 

CAM6 
LW 

EAMv1 
LW 

CF (0 to 0.1) 
  

0.931 
(0.844) 

0.833 
(0.842) 

0.469 
(0.377) 

0.437 
(0.456) 

0.972 
(0.846) 

1.007 
(0.961) 

0.278 
(0.286) 

0.295 
(0.521) 

(0.1 to 0.9) 
  

0.890 
(0.694) 

0.899 
(0.842) 

0.366 
(0.204) 

0.393 
(0.276) 

0.913 
(0.797) 

0.978 
(0.932) 

0.246 
(0.154) 

0.272 
(0.288) 

(0.9 to 1) 
  

0.915 
(0.814) 

0.985 
(0.765) 

0.346 
(0.180) 

0.382 
(0.245) 

0.918 
(0.768) 

1.024 
(0.882) 

0.146 
(0.033) 

0.129 
(0.041) 

LWP 
(kg m-2) 

(0 to 0.025)  0.875 
(0.746) 

0.848 
(0.792) 

0.382 
(0.202) 

0.401 
(0.291) 

0.972 
(0.832) 

1.013 
(0.947) 

0.333 
(0.290) 

0.391 
(0.442) 

(0.025 to 0.05)  0.949 
(0.762) 

0.984 
(0.816) 

0.374 
(0.197) 

0.419 
(0.283) 

1.009 
(0.652) 

1.146 
(0.796) 

0.114 
(0.014) 

0.271 
(0.051) 

(> 0.05)  0.896 
(0.659) 

0.946 
(0.732) 

0.321 
(0.188) 

0.348 
(0.273) 

1.134 
(0.603) 

1.279 
(0.725) 

0.100 
(0.003) 

0.069 
(0.005) 

IWP 
(kg m-2) 

(0 to 0.1)  0.909 
(0.725) 

0.844 
(0.688) 

0.427 
(0.292) 

0.317 
(0.259) 

0.941 
(0.785) 

1.002 
(0.905) 

0.250 
(0.160) 

0.289 
(0.269) 

(0.1 to 0.2)  1.253 
(0.746) 

1.159 
(0.685) 

0.527 
(0.343) 

0.488 
(0.362) 

1.009 
(0.716) 

1.051 
(0.827) 

0.009 
(0.000) 

0.148 
(0.022) 

(> 0.2)  1.494 
(0.451) 

1.338 
(0.722) 

0.711 
(0.198) 

0.589 
(0.443) 

1.464 
(0.810) 

1.335 
(0.873) 

0.099 
(0.007) 

0.385 
(0.117) 

dCF (-0.5 to 0.5) 0.853 
(0.718) 

0.893 
(0.765) 

0.292 
(0.162) 

0.316 
(0.224) 

0.957 
(0.787) 

1.008 
(0.904) 

0.324 
(0.248) 

0.400 
(0.380) 

(0.5 to 0.9) 0.872 
(0.688) 

0.839 
(0.779) 

0.396 
(0.208) 

0.325 
(0.193) 

0.804 
(0.816) 

0.929 
(0.893) 

0.159 
(0.057) 

0.249 
(0.199) 

(-0.5 to -0.9) 1.135 
(0.950) 

1.164 
(0.725) 

0.076 
(0.033) 

0.031 
(0.009) 

1.059 
(0.773) 

1.062 
(0.903) 

0.182 
(0.307) 

0.251 
(0.432) 

dLWP 
(kg m-2) 

(-0.1 to 0.1) 1.074 
(0.862) 

0.952 
(0.823) 

0.388 
(0.224) 

0.399 
(0.324) 

1.001 
(0.854) 

1.023 
(0.962) 

0.322 
(0.455) 

0.393 
(0.557) 

(0.1 to 0.5) 0.814 
(0.764) 

0.797 
(0.816) 

0.209 
(0.140) 

0.191 
(0.147) 

0.769 
(0.856) 

0.838 
(0.903) 

0.106 
(0.136) 

0.207 
(0.538) 

(-0.1 to -0.5) 1.097 
(0.836) 

1.106 
(0.854) 

0.308 
(0.165) 

0.401 
(0.293) 

1.253 
(0.803) 

1.295 
(0.894) 

0.293 
(0.205) 

0.294 
(0.151) 

dIWP 
(kg m-2) 

(0 – 0.1) 0.909 
(0.787) 

0.744 
(0.728) 

0.383 
(0.297) 

0.281 
(0.251) 

0.937 
(0.818) 

0.946 
(0.929) 

0.222 
(0.139) 

0.298 
(0.273) 

(-0.1 to 0)  1.212 
(0.626) 

1.209 
(0.709) 

0.580 
(0.219) 

0.510 
(0.403) 

0.973 
(0.758) 

1.043 
(0.884) 

0.296 
(0.178) 

0.355 
(0.284) 

(-0.5 to -0.1)  1.1682 
(0.929) 

1.798 
(0.904) 

0.574 
(0.142) 

0.549 
(0.242) 

1.367 
(0.832) 

1.684 
(0.777) 

0.013 
(0.000) 

0.246 
(0.037) 

*The two values in each textbox denote linear regression slope values and coefficients of 1231 
determination, i.e., b (r2). The slope values closest to 1 in each category are highlighted in bold.  1232 
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 1233 

Figure 1. A case study of MICRE campaign from 12 UTC, January 12, 2017 to 12 UTC, January 1234 
15, 2017. (a) Observed and simulated cloud fraction. (b, c) Cloud phase for CAM6 and EAMv1, 1235 
respectively. (d-f) LWP, IWP, net surface SW and LW, respectively. (g-i) GOES-16 satellite 1236 
images (clean infrared 10.3 µm, band 13). (j-l) Sea level pressure contour maps in units of 1237 
hectopascal based on NCEP reanalysis in black, CAM6 in blue and EAMv1 in green contours. 1238 
Cross markers in g-l illustrate the position of low-pressure centers for NCEP (red), CAM6 (blue) 1239 
and EAMv1 (green).  1240 
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 1241 

Figure 2. Similar to Figure 1, but for a case study of AWARE campaign from 12 UTC, March 11, 1242 
2016 to 12 UTC, March 14, 2016. Different from Figure 1a, Figure 2a illustrates observed cloud 1243 
phase. 1244 
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 1245 

Figure 3. Monthly averages of (a, b) sea level pressure, (c, d) cloud fraction, (e, f) LWP, (g, h) 1246 
IWP, (i, j) net surface SW and (k, l) LW radiation from observations and simulations. Black lines 1247 
in all panels stand for ground-based observations, except for panel (a) which shows NCEP data in 1248 
black line.  1249 
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 1250 
 1251 
Figure 4. Vertical profiles of temperature, RHice, and RHliq, separated by the eastern (Q1 & Q4) 1252 
and western (Q2 & Q3) sectors, based on observations and simulations. 1253 
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 1254 

Figure 5. (a) Latitudinal and (b) longitudinal distributions of extratropical cyclones surrounding 1255 
each station, using 6-hourly frequency of NCEP data. (c-f) Locations of low-pressure centers of 1256 
extratropical cyclones in four seasons. The black and red boxes in (c) – (f) denote the ±30 degrees 1257 
latitude and ±30 degrees longitude box surrounding MICRE and AWARE stations, respectively. 1258 
These boxes are used to identify low-pressure centers, which are defined as the sea level pressure 1259 
minima within that box. 1260 
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 1261 

Figure 6. Distributions of cloud and radiative properties in a relative coordinate with respect to 1262 
low-pressure centers of extratropical cyclones for the MICRE campaign. Columns 1 to 5 represent 1263 
cloud fraction, LWP, IWP, net SW and LW, respectively. The first three rows represent 1264 
observations, CAM6 and EAMv1 simulations, respectively. The last row represents the average 1265 
values in each longitudinal bin. The “L” marker located at (0, 0) indicates the low-pressure center. 1266 
Four quadrants, Q1–Q4, are labeled as I, II, III and IV, respectively, indicating ground stations 1267 
located at the northeast, northwest, southwest, and southeast side relative to the low-pressure 1268 
centers. Two sectors (eastern or western) are labelled in the bottom row.  1269 
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 1270 

Figure 7. Similar to Figure 6, except for the AWARE campaign.1271 
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 1272 

Figure 8. Weighted RMSE calculated for CAM6 and EAMv1 simulations, separately shown for 1273 
Q2 & Q3 (western sector) and Q1 & Q4 (eastern sector) in ordinate and abscissa, respectively. 1274 
Black solid line indicates 1:1 line. Thin black curves indicate the multiplications of the weighted 1275 
RMSE values in both sectors. Filled markers indicate RMSE values with statistically significant 1276 
differences between the two sectors, that is, their differences pass the t-test with 95% confidence 1277 
interval, while the unfilled markers indicate no statistically significant differences.  1278 
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 1279 

Figure 9. Seasonal variations of net surface SW radiation compared between observations and 1280 
simulations. Data are gridded and the color code shows the number of samples in each grid. Row 1281 
1 is for all seasons, while rows 2 – 5 are for different seasons (i.e., DJF, MAM, JJA and SON). 1282 
Black lines show linear regressions. The slope, coefficient of determination, and number of counts 1283 
are denoted by b, r² and n, respectively.  1284 
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 1285 

Figure 10. Same as Figure 9, except for analysis of net surface LW radiation.  1286 
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 1287 

Figure 11. Correlations between model biases of net surface radiation (dSW and dLW) and cloud 1288 
fraction biases (dCF) shown in the (a-h) eastern and (i-p) western sectors. Rows 1 and 3 show 1289 
dSW, while rows 2 and 4 show dLW. 1290 
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 1291 

Figure 12. Similar to Figure 11, except for correlations between radiation biases and dLWP. 1292 
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 1293 

Figure 13. Similar to Figure 11, except for correlations between radiation biases and dIWP. 1294 
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