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We present a universal parameter-free quantum Monte Carlo (QMC) algorithm designed to simulate
arbitrary spin-1/2 Hamiltonians. To ensure the convergence of the Markov chain to equilibrium
for every conceivable case, we devise a clear and simple automated protocol that produces QMC
updates that are provably ergodic and satisfy detailed balance. We demonstrate the applicability
and versatility of our method by considering several illustrative examples, including the simulation
of the XY model on a triangular lattice, the toric code, and random k-local Hamiltonians. We have
made our program code freely accessible on GitHub.

I. INTRODUCTION

Quantum Monte Carlo (QMC) algorithms [1–3]
are an indispensable tool in the study of the equi-
librium properties of large quantum many-body sys-
tems, with applications ranging from superconduc-
tivity and novel quantum materials [4–6] through
the physics of neutron stars [7] and quantum chro-
modynamics [8, 9]. The algorithmic development
of QMC remains an active area of research, with
continual e↵orts being made to extend the scope of
QMC applicability and to improve convergence rates
of existing algorithms with the goal of expanding our
understanding of quantum systems and facilitating
the discovery of novel quantum phenomena [10–14].
While QMC algorithms have been adapted to the

simulation of a wide variety of physical systems,
di↵erent physical models typically require the de-
velopment of distinct model-specific update rules
and measurement schemes, making the simulation of
many large-scale quantum many-body systems pro-
hibitively time-consuming.
In this paper, we introduce a universal parameter-

free QMC algorithm designed to reliably simulate
arbitrary spin-1/2 Hamiltonians. To achieve such
capabilities, we devise a clear and simple automated
protocol for generating the necessary set of updates
to ensure the ergodic Markov chain Monte Carlo
sampling of any conceivable input system. The gen-
erated QMC updates are shown to be ergodic as well
as satisfying detailed balance thereby guaranteeing
the proper convergence of the QMC Markov chain.
We demonstrate the validity and flexibility of our
code by studying in detail a number of models, in-
cluding the XY model on a triangular lattice, the
toric code, random k-local Hamiltonians and more.
We have also made our program code freely accessi-
ble on GitHub [15].
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The technique we propose here builds on the re-
cently introduced Permutation Matrix Representa-
tion (PMR) QMC [16] – an abstract Trotter-error-
free technique wherein the quantum dimension con-
sists of products of elements of permutation groups
and which as a result allows for the general treat-
ment of entire classes of Hamiltonians. In PMR
QMC, the partition function is expanded in a power
series in the o↵-diagonal strength of the Hamiltonian
about the partition function of the classical (diago-
nal) component of the Hamiltonian [17, 18].
The paper is organized as follows. In Sec. II,

we provide a brief overview of the o↵-diagonal se-
ries expansion for quantum partition functions, on
which our approach is founded. In Sec. III, we ana-
lyze spin-1/2 Hamiltonians in the context of PMR-
QMC. In the following section, Sec. IV, we discuss
our method to generate all the necessary QMC up-
dates, proving that these ensure both ergodicity and
detailed balance. Section V is devoted to the imple-
mentation of comprehensive measurement schemes.
In Sec. VI we showcase the power of our technique
by detailing the simulation results of the physical
models mentioned above. We conclude in Sec. VII
with an additional discussion of future directions of
research.

II. THE OFF-DIAGONAL PARTITION
FUNCTION EXPANSION

The permutation matrix representation (PMR)
protocol [16] begins by first casting the to-be-
simulated Hamiltonian in PMR form, i.e., as a sum

H =
MX

j=0

P̃j =
MX

j=0

DjPj = D0 +
MX

j=1

DjPj , (1)

where {P̃j} is a set of M+1 distinct generalized per-
mutation matrices [19], i.e., matrices with at most
one nonzero element in each row and each column.
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Each operator P̃j can be written, without loss of gen-
erality, as P̃j = DjPj where Dj is a diagonal matrix
and Pj is a permutation matrix with no fixed points
(equivalently, no nonzero diagonal elements) except
for the identity matrix P0 = 1. We will refer to the
basis in which the operators {Dj} are diagonal as the
computational basis and denote its states by {|zi}.
We will call the diagonal matrix D0 the ‘classical
Hamiltonian’. The permutation matrices appearing
in H will be treated as a subset of a permutation
group, wherein P0 is the identity element.
The {DjPj} o↵-diagonal operators (in the compu-

tational basis) give the system its ‘quantum dimen-
sion’. For j > 0, each term DjPj obeys DjPj |zi =
dj(z0)|z0i where dj(z0) is a possibly complex-valued
coe�cient and |z0i 6= |zi is a basis state.
Upon casting the Hamiltonian in PMR form,

one can show [16] that the partition function
Z = Tr

⇥
e��H

⇤
can be written as

Z =
X

z

1X

q=0

X

Siq

D(z,Siq )
e��[Ez0 ,...,Ezq ]hz|Siq |zi .

(2)
The sum above is a double sum: over the set of
all basis states z and over all products of q o↵-
diagonal permutation operators Siq = Piq . . . Pi2Pi1

with q running from zero to infinity. The multi-index
iq = (i1, . . . , iq) covers all products of permutation
operators, where each index ij runs from 1 to M .
In the above sum, each summand is a product

of three terms. The first is D(z,Siq )
⌘
Q

q

j=1 d
(ij)
zj

consisting of a product of the matrix elements

d(ij)
zj

= hzj |Dij |zji . (3)

The various {|zji}
q

j=0 states are the states obtained
from the action of the ordered Pij operators in the
product Siq on |z0i, then on |z1i, and so forth. For
Siq = Piq . . . Pi2Pi1 , we have |z0i = |zi, Pij |zj�1i =
|zji for j = 1, 2, . . . , q. The proper indexing of the
states |zji is |z(i1,i2,...,ij)i to indicate that the state
at the j-th step depends on all Pi1 . . . Pij . We will
however use the shorthand |zji to simplify the no-
tation. The sequence of basis states {|zji} may be
viewed as a ‘walk’ [20] on the Hamiltonian graph
where every matrix element Hij corresponds to an
edge between the two basis states, or nodes, i and j.
The second term in each summand, e��[Ez0 ,...,Ezq ],

is called the divided di↵erences of the func-
tion f(·) = e��(·) with respect to the inputs
[Ez0 , . . . , Ezq ], where Ezi = hzi|H|zii = hzi|D0|zii.
The divided di↵erences [21, 22] of the function f is

defined as,1

f [Ez0 , . . . , Ezq ] ⌘
qX

j=0

f(Ezj )Q
k 6=j

(Ezj � Ezk)
. (4)

A useful property is that the divided di↵erences are
invariant under rearrangements of the input values.
Now, the term hz|Siq |zi in Eq. (2) evaluates either

to 1 or to zero. Moreover, since the permutation ma-
trices with the exception of P0 have no fixed points,
the condition hz|Siq |zi = 1 implies Siq = 1, i.e.,
Siq must evaluate to the identity element P0 (note
that the identity element does not appear in the se-
quences Siq ). The expansion Eq. (2) can thus be
more succinctly rewritten as

Z =
X

z

X

Siq=1

D(z,Siq )
e��[Ez0 ,...,Ezq ] , (5)

i.e., as a sum over all basis states and permutation
matrix products that evaluate to the identity matrix.
Having derived the expansion Eq. (5) for any

Hamiltonian cast in the form Eq. (1), we are now
in a position to interpret the partition function ex-
pansion as a sum of weights, i.e., Z =

P
C wC , where

the set of configurations {C} consists of all the dis-
tinct pairs {|zi, Siq}. We refer to

wC = D(z,Siq )
e��[Ez0 ,...,Ezq ] (6)

as the configuration weight. We note that as written,
the weights wC can in general be complex-valued,
despite the partition function Z =

P
C wC being

real (and positive). Hence, the imaginary portions
of the complex-valued weights do not contribute to
the partition function and may be disregarded al-
together.2 We may therefore ignore the imaginary
components of the weights to obtain the strictly real-
valued weights

WC = Re
h
D(z,Siq )

i
e��[Ez0 ,...,Ezq ] . (7)

III. PERMUTATION MATRIX
REPRESENTATION OF SPIN-1/2

HAMILTONIANS

We next discuss the PMR formulation of general
spin-1/2 Hamiltonians, which are the main focus of

1
The expression, Eq. (4), is ill-defined if two (or more) of

the inputs are repeated, in which case f [Ez0 , . . . , Ezq ] can

be properly evaluated using limits.
2
In fact, it can be shown that for every configuration

C = {|zi, Piq . . . Pi2Pi1} the configuration with reverse or-

der of operators C = {|zi, P�1
i1

P�1
i2

. . . P�1
iq

} produces the

conjugate weight wC = wC .
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this work. Hamiltonians of spin-1/2 systems are of-
ten, and can always be, represented using Pauli ma-
trices (X, Y , and Z). In order to represent this class
of Hamiltonians in PMR form, Eq. (1), we choose
our group of permutations to be the set of all tensor
products of Pauli-X operators, GX , while the diago-
nal matrices Dj will be expressed in terms of tensor
products of Pauli-Z matrices. As we shall see, any
permutation operator for spin-1/2 systems belongs
to GX .
Consider a Hamiltonian H given as a linear com-

bination of Pauli strings S(i) =
N

j
s(i)
j
. Here, s(i)

j

represents a Pauli matrix s 2 {X,Y, Z} in the i-
th Pauli string, which acts on the j-th spin, where
j 2 {1, . . . , n} with n being the number of spins in
the system (we assume that each Pauli string S(i)

contains no more than one Pauli matrix s(i)
j

for each
spin index j). Explicitly, the Hamiltonian has the
form

H =
X

i

ciS
(i) , (8)

where the ci’s are real-valued coe�cients. To cast
the Hamiltonian in PMR form, we first write each
Pauli string as a product of a diagonal operator and
a permutation operator, i.e. we will write S(i) as a
string of Pauli-Z’s multiplied by a string of Pauli-
X’s using the fact that Y = �iZX giving

H =
X

i

c̃iZ
(i)X(i) , (9)

where c̃i = (�i)n
(i)
y ci with n(i)

y being the number of
Y operators appearing in the i-th Pauli string. Here,
X(i) represents the i-th string (or product) of Pauli-
X operators. The notation Z(i) similarly represents
a string of Pauli-Z operators.
Noting that Pauli-X strings are permutation op-

erators and that Pauli-Z strings are diagonal in our
chosen basis, we next group together all terms that
have the same Pauli-X component, ending up with
a Hamiltonian of the form

H =
X

i

0

@
X

j

c̃jZ
(i)
j

1

AX(i). (10)

The permutation operators X(i)
2 GX in the above

expression are now distinct products of Pauli-X op-

erators, and we identify Di =
P

j
c̃jZ

(i)
j

as the ac-
companying diagonal operators, as desired.

IV. QMC UPDATES FOR ARBITRARY
SPIN-1/2 HAMILTONIANS

A. QMC configurations

As was discussed above, for any Hamiltonian cast
in PMR form, the partition function Z = Tr [e��H ]
can be written as a sum of configuration weights,
where a configuration C = {|zi, Siq} is a pair of a
‘classical’ basis state |zi (an eigenstate of diago-
nal operators) and a product Siq of permutation
operators that must evaluate to the identity ele-
ment P0 = 1. The configuration C induces a list
of states {|z0i = |zi, |z1i, . . . , |zqi = |zi}, which in
turn generates a corresponding multi-set of energies
EC = {Ez0 , Ez1 , . . . , Ezq} for the configuration.
We can now consider a QMC algorithm, i.e., a

Markov Chain Monte Carlo routine, that samples
these configurations with probabilities proportional
to their weights WC , Eq. (7). The Markov process
would start with some initial configuration and a set
of (probabilistic) rules, or QMC updates, will dictate
transitions from one configuration to the next.
We will take the initial state of the chain to be

C0 = {|zi, S0 = 1} where |zi is a randomly generated
initial classical state. The weight of this initial con-
figuration is

WC0 = e��[Ez ] = e��Ez , (11)

i.e., the classical Boltzmann weight of the initial ran-
domly generated basis state |zi.
The set of QMC updates will be discussed in the

next sections. Before doing so, we note that to make
certain that configurations are sampled properly, i.e.
in proportion to their weight, we will ensure that the
Markov chain is (i) ergodic, i.e., that the QMC up-
dates are capable of generating all basis states |zi
as well as all sequences Siq evaluating to the iden-
tity, and (ii) satisfies detailed balance, a su�cient
(but not strictly necessary) condition dictating that
the ratio of transition probabilities from one config-
uration to another and the transition in the oppo-
site direction equals to the ratio of their respective
weights [23, 24]. In what follows, we show how both
conditions are made to be satisfied.

B. Fundamental cycles

As noted above, for spin-1/2 Hamiltonians, the
permutation operators Pi are Pauli-X strings. As
such, they obey (i) [Pi, Pj ] = 0 for every i, j, i.e.,
they all commute and (ii) P 2

i
= 1. Moreover, each

Pauli-X string can be represented as a bit-string of
the form [b1b2 · · · bn] where the i-th bit bi 2 {0, 1}
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indicates whether Xi is in the string (bi = 1) or
not (bi = 0). (For example, [1 0 1 0 0 1] would cor-
respond to the string X1X3X6.) Denoting by pi
the bit-string corresponding to the operator Pi, one
can easily verify that the product of two permu-
tation operators Pi and Pj would likewise corre-
spond to the addition modulo 2 (the XOR opera-
tion) of the two respective bit-strings pi�pj . Specifi-
cally, a sequence of operators evaluating to the iden-
tity, Siq = Piq . . . Pi2Pi1 = 1, can be written as
�

q

j=1pij = 0, where 0 is the zero bit-string – the
bit-string consisting of only zeros.
Moreover, the following observations may be

made: (i) Any given sequence of permutation op-
erators Siq that evaluates to the identity is a per-
mutation of a multi-set of operators, the product of
which evaluates to the identity. (ii) A multi-set of
operators obtained from another by the removal of a
pair of identical operators will evaluate to the iden-
tity if and only if the original multi-set evaluates to
the identity (this follows from the commutativity of
permutation operators and the fact that P 2

i
= 1).

(iii) Upon removing all pairs of identical operators
from a multi-set, one is left with a (proper) set of
permutation operators, the product of which evalu-
ates to the identity. This set consists of the permu-
tation operators that are contained an odd number
of times in the original sequence Siq .
We shall call a set of permutation operators that

multiply to the identity a ‘cycle’. In terms of binary
strings, cycles may be represented by bit-strings
[a1a2 · · · aM ] indicating which of the permutation
operators P1, . . . , PM belong to the set. The length
of a cycle would be the number of permutation op-
erators in it (equivalently, the number of 1’s in its
binary vector representation). As pointed out above,
any sequence of operators Siq has a ‘core’ cycle from
which Siq can be generated via insertions of operator
pairs followed by reordering.
The question of how one can generate all possible

sequences of operators (which evaluate to the iden-
tity) is thus reduced to the question of how one can
generate all possible cycles (as the former can be de-
rived from the latter). In terms of binary strings,
the above question translates to generating the bit-
strings [a1a2 · · · aM ] (aj 2 {0, 1}) that obey the fol-
lowing system of linear equations over mod-2 ad-
dition: �

M

j=1ajpj = 0. This question can be an-
swered by finding the nullspace over mod-2 addition
of the matrix whose columns are the bit-strings pj .
Any bit-string [a1a2 · · · aM ] obeying the condition
�

M

j=1ajpj = 0 can be written as mod-2 addition of
bit-strings from the nullspace basis.
Now, the nullspace basis can be found e�ciently

via Gaussian elimination over mod-2 addition [25].
We shall refer to cycles represented by the bit-strings

from the nullspace basis as fundamental cycles. Any
cycle is therefore a combination of fundamental cy-
cles.
Generally, the nullspace basis states can be chosen

in many di↵erent ways, and so the choice of the set
of fundamental cycles is not unique. From a practi-
cal point of view, however, we find that obtaining a
‘minimal cycle basis’, i.e., a basis that minimizes the
lengths of all basis cycles, is advantageous from the
QMC standpoint. This follows from the fact that the
probability of a QMC update to be accepted is a de-
creasing function of the cycle length (see Sec. IVD).
To reduce the cycles lengths, we therefore find a
basis using Gaussian elimination and then proceed
to replace long-cycle basis states with shorter basis
states by performing mod-2 additions between the
bit-strings of pairs of cycles, accepting the changes
each time a new cycle with a shorter length is found.
The process ends when a pass through all pairs of
cycles does not result in an improvement.
It is worth noting that minimizing cycle lengths

of Hamiltonians with nontrivial topologies will not
always lead to a cycle basis whose fundamental cycle
lengths are all of the order O(1), i.e., do not grow
with system size. In the presence of a non-trivial
topology, e.g., where periodic boundary conditions
are imposed or for other nonzero genus models, there
may exist fundamental cycles becoming longer with
the system size such as the cycles ‘wrapping around
the system’, consisting of an extensive number of
permutation operators.

C. Ergodicity

We are now in a position to utilize the insights
from the previous subsection to establish a set of
updates to the sequence of operators Siq that would
allow for the possibility of generating all possible
operator sequences that evaluate to the identity.
As a preliminary step, prior to the simulation

taking place, we produce a list of fundamental cy-
cles C1, . . . , CT , where T is the dimension of the
nullspace, for the to-be-simulated Hamiltonian cast
in PMR form.
We next prove that all possible sequences can be

generated, i.e., that the Markov chain is ergodic, via
a combination of insertion and removal of fundamen-
tal cycles, changing the order of the permutation op-
erators in the sequence (permutation operator swap-
ping), and the insertion and removal of pairs of iden-
tical permutation operators.
Claim: Every permutation operator sequence eval-
uating to the identity can be generated by (i) inser-
tion and removal of fundamental cycles, (ii) inser-
tion and removal of pairs of identical permutation
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operators, (iii) swapping the order of two adjacent
permutation operators.
Proof: For each permutation operator sequence Siq
evaluating to the identity, one can consider the cycle
Ciq consisting of permutation operators that appear
an odd number of times in Siq . In other words, by
removal of pairs of identical operators, the multi-set
of operators that are contained in Siq can be reduced
to the cycle Ciq consisting of permutation operators
that appear only once.
As shown in Sec. IVB, the cycle Ciq can be ex-

pressed through fundamental cycles, since any cycle
can be expressed in terms of the mod-2 nullspace
of the matrix containing bit-strings of permutation
operators Pi from (1). Specifically, ciq = �

T

j=1↵jµj ,
where ciq is the bit-string representation of the cycle
Ciq , µj is a bit-string representation of the funda-
mental cycle Cj , and ↵j 2 {0, 1}, j = 1, 2, . . . , T .
The latter observation implies that the cycle Ciq

can be obtained by inserting those fundamental cy-
cles Cj for which the condition ↵j = 1 is satisfied,
accompanied by any necessary reordering of permu-
tation operators and the removal of pairs of identical
permutation operators. In turn, the sequence Siq
can be obtained from Ciq via the addition of pairs of
permutation operators together with reordering of
permutation operators. This concludes the proof of
our claim.

⌅
The ability to generate all permutation operator

sequences that evaluate to the identity, Siq , implies
ergodicity along the quantum (or imaginary time)
dimension. In addition, the generation of all pos-
sible classical basis states |zi can be achieved inde-
pendently by considering moves such as single- or
multi-spin flips of the basis states. Moves of this
nature guarantee ergodicity along the ‘classical’ di-
mension.
In the next section we will use the above observa-

tions to devise QMC updates that ensure ergodicity
in the entire configuration space, which is the direct
product of the classical and quantum configuration
spaces, i.e., the pairs C = {|zi, Siq}.

D. QMC updates

We next describe the basic update moves for our
QMC algorithm. To ensure both performance and
high accuracy of evaluating the weight of any given
configuration C = {|zi, Siq}, we employ a divided
di↵erences calculation by means of addition and re-
moval of items from the input multi-set of classi-
cal energies [26]. We recall that the weight of a
configuration requires the calculation of the divided
di↵erences e��[Ez0 ,...,Ezq ] with inputs [Ez0 , . . . , Ezq ],

where Ezi = hzi|H|zii = hzi|D0|zii. For Siq =
Piq . . . Pi2Pi1 , we have |z0i = |zi, Pij |zj�1i = |zji
for j = 1, 2, . . . , q. As it was shown in Ref. [26],
upon adding an item to or removing an item from
the input list of an already evaluated divided dif-
ferences e��[E0,...,Eq ], the re-evaluation can be done
with only O(sq) floating point operations and O(sq)
bytes of memory, where [E0, . . . , Eq] are the inputs
and s / maxi,j |�Ei � �Ej |.
Following the analysis of the previous subsection,

to ensure the ergodicity of the Markov chain Monte
Carlo, we find that employing the following QMC
updates su�ces.

1. Simple (local) swap

Simple swap is an update that consists of selecting
a random integer m from {1, . . . , q � 1}, and then
attempting to swap the permutation operators Pim

and Pim+1 in Siq , namely:

PimPim+1 ! Pim+1Pim . (12)

The updated sequence also evaluates to the identity.
Since the internal classical state |zmi may change,
implementing the swap involves adding a new energy
Ez0

m
and removing the old one Ezm from the energy

multi-set. The acceptance probability for the update
satisfying the detailed balance condition is

p = min

✓
1,

WC0

WC

◆
, (13)

where it follows from Eq. (7) that
WC = Re[DC ]e��[EC ], WC0 = Re[DC0 ]e��[EC0 ], and
the energy multi-set EC0 = EC + {Ez0

m
} � {Ezm}.

Here, e��[EC ] is a shorthand for e��[Ez0 ,Ez1 ,...,Ezq ]

for the configuration C and likewise for C0.

2. Pair insertion and deletion

Pair insertion is an update consisting of select-
ing random integers m 2 {1, . . . , q + 1} and j 2

{1, . . . ,M}, and then attempting an insertion of the
pair of permutation operators Pj into the Siq se-
quence in such a way that the updated operators
Pim and Pim+1 are Pj . As a result, the length of the
sequences increases: q ! q + 2.
The updated sequence also evaluates to the iden-

tity. The input multi-set of energies of the new con-
figuration di↵ers from that of the current configu-
ration by having two additional energies Ez0

m
and

Ez
0
m+1

. The weight of the new configuration is then

WC0 = Re[DC0 ]e��[EC0 ], where the energy multi-set
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EC0 = EC+{Ez0
m
}+{Ez

0
m+1

}. The acceptance prob-

ability is as in Eq. (13) with the aforementioned EC0 .
The reverse update of pair insertion is that of pair

deletion. This update can be implemented only for
q � 2. It consists of selecting a random integer
m 2 {1, . . . , q � 1} checking the validity of the con-
dition Pim = Pim+1 , and attempting the removal of
the pair of operators Pim and Pim+1 if this condi-
tion is true. The updated sequence also evaluates
to the identity. The input multi-set of energies of
the new configuration di↵ers from that of the cur-
rent configuration by having one fewer Ezm value
and one fewer Ezm+1 value. The weight of the new
configuration is then proportional to e��[EC0 ], where
EC0 = EC � {Ezm}� {Ezm+1}. To maintain the de-
tailed balance condition, the acceptance probability
turns out to be

p =
1

M
min

✓
1,

WC0

WC

◆
. (14)

3. Block swap

Block swap is an update that involves a change
of the classical state z. Here, a random position
k 2 {1, . . . , q � 1} in the product Siq is picked such
that the product is split into two (non-empty) sub-
sequences, Siq = S2S1, with S1 = Pik · · ·Pi1 and
S2 = Piq · · ·Pik+1 . The classical state |z

0
i at position

k in the product is given by

|z0i = S1|zi = Pik · · ·Pi1 |zi , (15)

where |zi is the classical state of the current config-
uration. The state |z0i has energy Ez0 , and the state
|zi has energy Ez. The new block-swapped config-
uration is C

0 = {|z0i, S1S2}. The input multi-set of
energies of this configuration di↵ers from that of the
current configuration by having one fewer Ez value
and one additional Ez0 value. The weight of the
new configuration is then proportional to e��[EC0 ]

where the energy multi-set EC0 = EC+{Ez0}�{Ez}.
The acceptance probability is as in Eq. (13) with the
aforementioned EC0 .

4. Classical updates

Classical moves are moves that involve a manip-
ulation of the classical state |zi while leaving Siq
unchanged. In a single bit-flip classical move, a spin
from the classical bit-string state |zi of C is picked
at random and is subsequently flipped, generating a
state |z0i and hence a new configuration C

0. Calcu-
lating the weight of C0 requires the calculation of the

new energy multi-set EC0 and recalculation of the di-
vided di↵erences, so it can become computationally
intensive if q is large. Classical moves should there-
fore be attempted with relatively low probabilities
if q is large. Simply enough, the acceptance prob-
ability for a classical move satisfying the detailed
balance condition is (13).
In the absence of a quantum part of the Hamilto-

nian (M = 0), not only are classical moves the only
moves necessary, but they are also the only moves
that have nonzero acceptance probabilities. Since
the initial configuration of the QMC algorithm is
a random classical configuration |zi and an empty
operator sequence S0 = 1, for a purely classical
Hamiltonian, the algorithm automatically reduces to
a classical thermal algorithm keeping the size of the
imaginary-time dimension at zero (q = 0) for the
duration of the simulation.

5. Fundamental cycle completion

Fundamental cycle completion is an update that
consists of choosing a subsequence S from Siq , choos-
ing a fundamental cycle containing all operators of
the subsequence S, and attempting to replace the
subsequence S with the remaining operators from
the selected cycle.
As is discussed in Sec IVC, for the ergodicity con-

dition to be fulfilled, it is necessary to be able to
perform the insertion (or, equivalently, completion)
of any of the fundamental cycles. For the probabil-
ity of accepting an update to be non-negligible it is
preferable that the change in the value of q will be
minimal. The above implies that to complete a fun-
damental cycle of length l it is most advantageous to
replace a subsequence of length r from Siq by the re-
maining l� r permutation operators, where r ⇡ l/2.
We find that in some cases, there are fundamental

cycles such that a simple cycle completion update,
where the subsequence S comprises consecutive ele-
ments of Siq , is always rejected for these cycles due
to the zero weight of the resulting configuration [see
Eq. (7)]. Thus, the fundamental cycle completion
routine may never accept some of the fundamental
cycles during the Markov process if inserted ‘as is’.
To resolve this issue, we have developed a subrou-
tine that we refer to as ‘cycle completion with gaps’,
which does not require the elements of the sequence
S to be consecutive within Siq . Specific details of
this protocol can be found in Appendix A.
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6. Composite update

The role of the composite update is to ensure that
non-fundamental cycles have the chance of being in-
corporated into the sequence of operators directly
rather than via the concatenation of fundamental
cycles which are inserted through the cycle comple-
tion move. The composite update is required for
situations where fundamental cycle insertions may
have zero weight [due to the vanishing of one or more
of the matrix elements in the product D(z,Siq )

, see

Eq. (7)], whereas non-fundamental cycles may not.
The update consists of a combination of several

basic updates and is described as follows. (i) Per-
form one of the basic QMC updates equally likely:
either a simple swap, a pair insertion, a pair dele-
tion, or a fundamental cycle completion. (ii) If the
resulting weight is zero, reject the entire update with
a probability of 1/2, and with the remaining prob-
ability, return to step (i). (iii) Finalize the update
C1 ! C2 ! · · · ! Ck with the following acceptance
probability, which satisfies the detailed balance con-
dition:

Paccept (C1 ! · · · ! Ck) =

min

✓
1,

WCk

WC1

R(C1, C2) . . . R(Ck�1, Ck)

◆
. (16)

Here, R(C, C0) = 1 when the update C ! C
0 is a

simple swap, R(C, C0) = M when it is a pair inser-
tion, R(C, C0) = 1/M when it is a pair deletion, and
R(C, C0) = (pr(q0) · nc · r0!)/(pr(q) · n0

c
· r!) when it is

a cycle completion (see Appendix A).
To prove that the QMC updates ensure ergodic-

ity in the entire configuration space, consider two
arbitrary configurations C = {|zi, Siq} and C

0 =
{|z0i, Si0q0 } such that WC 6= 0 and WC0 6= 0. It fol-
lows from Sec. IVC that the above QMC updates
allow in particular the following sequence of trans-
formations: C ! C0 ! C

0
0 ! C

0, where C0 = {|zi, 1}
and C

0
0 = {|z0i, 1}. Hence, the transformation from

C to C
0 is possible, and the ergodicity holds.

7. Worm update

An alternative to the composite update, also ca-
pable of incorporating non-fundamental cycles is a
worm-type global update for PMR-QMC. This up-
date involves introducing a ‘disturbance’ (or a ‘worm
head’) into the sequence of operators Siq by either
appending Siq with a single operator or removing
one from it (we will refer to this addition or removal
of an operator as ‘single operator moves’). Inser-
tion or removal of a single permutation operator
causes the sequence to evaluate to a non-identity

permutation, thus resulting in a zero-weight con-
figuration. Consequently, the disturbed sequence
must be ‘healed’ back to an identity-forming se-
quence. The healing process involves introducing
further moves, either by employing the basic updates
described above such as simple swap, fundamental
cycle completion, pair insertion, and pair deletion or
by applying additional single operator moves. These
single operator moves have the power to heal the se-
quence. After each such move, the instantaneous
sequence Siq is checked to determine if it evaluates
to the identity. If it does, the worm update ends; if
not, additional moves are required.
To make sure that detailed balance is conserved,

and that the acceptance rates of intermediate worm
moves are su�ciently high, we assign non-identity
intermediate configurations (sequences of operators
that do not evaluate to the identity) their ‘natural’
weight WC as per Eq. (7). This allows intermediate
moves to be accepted or rejected with probabilities
obeying detailed balance. Additionally, to prevent
the worm from straying too far from being healed (in
other words, to ensure that the sequence of operators
is not too far from the identity), we introduce a small
probability pf to reject the entire worm update at
each intermediate state.
The worm update is specified as follows. (i) Start

with a sequence of operators Siq that evaluates to
the identity, and store Siq . (ii) Generate a modified
sequence of operators by applying one of the follow-
ing updates with equal probabilities: either a local
swap, fundamental cycle completion, pair insertion
or deletion, or a single operator move. Accept or re-
ject the new configuration with probabilities obeying
detailed balance. (iii) The worm update ends if the
new Siq evaluates to the identity. If it does not eval-
uate to the identity, revert to the stored Siq and exit
with probability pf ; with the remaining probability,
return to step (ii).

V. MEASUREMENTS

The PMR formulation allows one to measure a
wide range of static operators and additional dy-
namical quantities [27]. The key to being able to do
so is to write for any given operator A its thermal
average as

hAi =
Tr [Ae��H ]

Tr [e��H ]
=

P
C ACwCP
C wC

. (17)

Although, generally, both wC and AC are complex-
valued, both the sums

P
C ACwC and

P
C wC are

real-valued since both H and A are Hermitian oper-



8

ators. Therefore, we have

hAi =

P
C Re[ACwC ]/Re[wC ] ·WCP

C WC
, (18)

where WC = Re[wC ]. The quantity
Re[ACwC ]/Re[wC ] is therefore the instanta-
neous quantity associated with the configuration
C = (z, Siq ) that will be gathered during the
simulation.

A. Measurements of standard observables

We next provide the instantaneous quantities
to be collected throughout the simulation for
the following operators (i) the Hamiltonian H,
(ii) the Hamiltonian squared H2, (iii) the diago-
nal component of the Hamiltonian Hdiag = D0,
(iv) the diagonal component squared H2

diag, (v)
the o↵-diagonal component of the Hamiltonian
Ho↵diag =

P
M

j=1 DjPj and (vi) the o↵-diagonal com-

ponent of the Hamiltonian squared H2
o↵diag.

We have �@e��[Ez0 ,...,Ezq ]/@� = h[Ez0 , . . . , Ezq ],
where h(E) = E · e��E . Using the Leibniz rule for
divided di↵erences [21, 22], we obtain

�
@wC
@�

= HCwC , (19)

where

HC =

(
Ez0 , for q = 0,

Ez0 +
e
��[Ez1 ,...,Ezq ]

e
��[Ez0 ,...,Ezq ] , for q > 0.

(20)

Therefore,

hHi = �
1

Z

@Z

@�
=

P
C HCwCP
C wC

, (21)

which coincides with Eq. (17) for A = H. Similarly,
we have hH2

i = hHi
2
� @hHi/@�, where

@

@�
hHi =

1

Z

@

@�

 
X

C
HCwC

!
+ hHi

2. (22)

It follows that
�
H2
�
C = (HC)2 � @HC/@�, and

�
H2
�
C =

8
>>>>>><

>>>>>>:

E2
z0
, for q = 0,

E2
z0

+
(Ez0+Ez1)e

��Ez1

e
��[Ez0 ,Ez1 ] , for q = 1,

E2
z0
+

(Ez0 + Ez1)
e
��[Ez1 ,...,Ezq ]

e
��[Ez0 ,...,Ezq ]+
e
��[Ez2 ,...,Ezq ]

e
��[Ez0 ,...,Ezq ] , for q > 1,

(23)

It is straightforward to obtain the remaining expres-
sions:

(Hdiag)C = Ez0 , (24)
�
H2

diag

�
C = E2

z0
, (25)

(Ho↵diag)C = HC � Ez0 , (26)
�
H2

o↵diag

�
C = H2

C + Ez0 (Ez0 � 2HC) . (27)

B. Measurements of custom static operators

We next consider the measurement of a general
static operator A. We proceed by casting it in PMR
form, i.e., as A =

P
i
ÃiP̃i where each Ãi is diagonal

and the P̃i’s are permutation operators. The opera-
tors P̃i belong to the group GX containing all possi-
ble Pauli-X tensor products, whose elements appear
in the PMR representation of the Hamiltonian (see
section III). We note that in the most general case,
the P̃i operators in the representation of A may not
all appear in the Hamiltonian’s PMR decomposition
Eq. (1). Nonetheless, we can always write

hAi =
Tr [Ae��H ]

Tr [e��H ]
=
X

i

Tr [ÃiP̃ie��H ]

Tr [e��H ]
, (28)

and we may focus on a single ÃP̃ term at a time.
Carrying out the o↵-diagonal expansion [27], we end
up with:

Tr [ÃP̃ e��H ] =
X

z

Ã(z)
1X

q=0

X

Siq

D(z,Siq )

⇥ e��[Ez0 ,...,Ezq ]hz|P̃Siq |zi . (29)

where D(z,Siq )
e��[Ez0 ,...,Ezq ] is the weight of the con-

figuration (z, Siq ).
We di↵erentiate between two cases: (i) the opera-

tor P̃ appears in the Hamiltonian or can be written
as a product of permutation operators that appear
in the Hamiltonian, (ii) The operator P̃ does not ap-
pear in the Hamiltonian and cannot be written as a
product of permutation operators that do.
In the latter case, since every Siq sequence con-

sists of the permutation operators that appear in the
Hamiltonian, we always have hz|P̃Siq |zi = 0. Then,

it follows from Eq. (29) that hÃP̃ i = 0.
In the former case, the operator to be measured

has the form A = ÃP̃ where Ã is diagonal and P̃ =
Pi1Pi2 · · ·Pik . We modify Eq. (29) so that (z, S̃iq )

with S̃iq = P̃Siq is seen as a configuration instead of
(z, Siq ). Thus, we arrive at:

hAi =

P
(z,S̃iq )

w(z,S̃iq )
M

ÃP̃
(z, S̃iq )P

(z,S̃iq )
w(z,S̃iq )

, (30)
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where

M
ÃP̃

(z, S̃iq ) = �
P̃
Ã(z)

1

D(z,P̃ )

e��[Ez0 ,...,Ezq�k
]

e��[Ez0 ,...,Ezq ]
.

(31)
In the above, �

P̃
= 1 if the leftmost operators of S̃iq

are Pi1Pi2 · · ·Pik and is zero otherwise, and

D(z,P̃ ) =
D(z,S̃iq )

D(z,Siq )
=

kY

m=1

hzq�m+1|Dim |zq�m+1i.

(32)
The above formulation allows automatic measure-

ments of static operators as long as these are set up
as linear combinations of Pauli strings as in Eq. (8).
For an arbitrary static operator A given as a linear
combination of Pauli strings, one is required to cast
the expression in the form

P
i
ÃiP̃i. As a next step,

the P̃i operators are expressed in terms of the permu-
tations Pi of the Hamiltonian. Here, the Gaussian
elimination over mod-2 addition can be used [25].
Finally, Eqs. (30), (31) are employed to compute the
thermal average hAi.
However, for the thermal average of a custom ob-

servable to be computed correctly, it is necessary
to account for the following restrictions on its struc-
ture. We find that employing Eqs. (30) and (31) lead
to obtaining the correct value of the thermal average
hAi under the condition that Ã(z) = 0 for all basis
states |zi for which D(z,P̃ ) = 0. Otherwise, it is
possible that the following conditions hold for some
of the configurations: D(z,P̃ ) = 0 and D(z,S̃iq )

= 0

while D(z,Siq )
6= 0 and Ã(z) 6= 0, where S̃iq = P̃Siq .

Such configurations (z, Siq ) have a nonzero contribu-
tion in Eq. (29), but the Markov chain does not gen-
erate the corresponding configurations (z, S̃iq ) be-
cause they have zero weights: W(z,S̃iq )

= 0.

In particular, it is possible to obtain the ther-
mal average of any observable of the form A =P

i
AiDiPi, where each Ai is an arbitrary diagonal

matrix and each DiPi is a generalized permutation
matrix appearing in Eq. (1). Any operator A sat-
isfying hz|A|z0i = 0 for all basis states |zi and |z0i
such that hz|H|z0i = 0, can be written in such a form
and hence its thermal average (30) will be computed
correctly.
In addition to the above measurement protocol,

there is also a way to correctly obtain a thermal
average of a static operator A which can be written
in the form A =

P
i
P̃ (i), where each P̃ (i) is a matrix

of the general form

P̃ (i) = A(i)
k
DjkPjk . . . A

(i)
2 Dj2Pj2 ·A

(i)
1 Dj1Pj1 ·A

(i)
0 ,
(33)

where A(i)
0 , . . . , A(i)

k
are arbitrary diagonal matrices

and Dj1Pj1 , . . . , DjkPjk are the generalized permu-
tation matrices appearing in Eq. (1).
Focusing on a single such term, we calculate the

expectation value for an observable of the form

P̄ = AkDjkPjk · · ·A2Dj2Pj2A1Dj1Pj1A0 , (34)

where each of theDjkPjk appear in the PMR decom-
position of the Hamiltonian and the Ak matrices are
arbitrary diagonal operators. Carrying out the o↵-
diagonal expansion for Tr [P̄ e��H ], we first obtain

Tr [P̄ e��H ] =
X

z

MP̄ (z, Siq )
1X

q=0

X

Siq

D(z,Siq )
⇥

⇥ e��[Ez0 ,...,Ezq ]hz|P̃Siq |zi , (35)

where

MP̄ (z, Siq ) = Ak(zq+k)d
(jk)
zq+k

· · ·A1(zq+1)d
(j1)
zq+1

A0(zq) ,
(36)

with Ai(zj) ⌘ hzj |Ai|zji. Note that there is a
one-to-one correspondence between non-vanishing
terms hz|P̃Siq |zi = hz|Pjk · · ·Pj2Pj1Siq |zi and non-
vanishing terms hz|Siq |zi which appear in the par-
tition function expansion. We can therefore rewrite
the above as:

Tr [P̄ e��H ] =
X

z

0

@
kY

j=0

Aj(zq+j)

1

A
1X

q=0

X

Siq

D(z,S̃i)
⇥

⇥ e��[Ez0 ,...,Ezq ]
D(z,Si)e

��[Ez0 ,...,Ezq+k
]

D(z,S̃i)
e��[Ez0 ,...,Ezq+k

]
hz|S̃i|zi .

(37)

where D(z,S̃i)
e��[Ez0 ,...,Ezq+k

] is the weight of con-
figuration (z, S̃i) with S̃i = Pjk · · ·Pj2Pj1Siq . This
gives:

Tr [P̄ e��H ] =
X

z

1X

q=0

X

Siq

D(z,Siq )
e��[Ez0 ,...,Ezq ]⇥

⇥MP̄ (z, Siq )hz|Siq |zi . (38)

where MP̄ (z, Siq ) is redefined as

MP̄ (z, Siq ) = �P̄

0

@
kY

j=0

Aj(zq�k+j)

1

A e��[Ez0 ,...,Ezq�k
]

e��[Ez,...,Ezq ]
.

(39)
In the above expression, �P̄ = 1 if the leftmost op-
erators of Siq is Pj1Pj2 · · ·Pjk and is zero otherwise.

Denoting eA(z, Siq ) =
P

q

i=0 MP̄i
(z, Siq ), we can

thus write hAi as

hAi =

*
X

i

P̄ (i)

+
=

P
(z,Siq )

w(z,Siq )
eA(z, Siq )P

(z,Siq )
w(z,Siq )

.

(40)
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C. Monitoring the average sign

A necessary condition for the proper importance
sampling of partition function weights is that all
weights are nonnegative. Whenever the partition
function expansion produces negative weights [see
Eq. (7)], the system is said to possess a sign
problem [28]. In the presence of a sign prob-
lem, configuration weights cannot be treated as un-
normalized probabilities as they should in Markov
chain Monte Carlo simulations. In such cases, a
common workaround is to take the configuration
weights to be the absolute values of the original ones
|WC | [28–30]. By doing so, a thermal average of an
observable A is re-written as

hAi =
hA · sgn(W )i|W |

hsgn(W )i|W |
, (41)

where the average sign

hsgni = hsgn(W )i|W | =

P
C WCP
C |WC |

(42)

is monitored throughout the simulation. The aver-
age sign is usually considered a figure of merit of
how adverse the sign problem is. For models that
do not have a sign problem, all weights are pos-
itive, hsgni = 1 and the expression for hAi nat-
urally reduces to its original form, Eq. (18). For
sign-problematic systems, hsgni ⇡ 0, and one would
expect to obtain extremely large error bars for hAi

that would as a result require an exponentially long
simulation time for an accurate computation of ob-
servables.
As we demonstrate in the next section, in some

cases accurate calculations are achievable even when
hsgni is relatively small. In Appendix B we provide
an improved approximation of hAi in the presence
of a sign problem and an approximation for the sta-
tistical error �(A), which can be determined during
the simulation.

VI. RESULTS AND DISCUSSION

In this section, we demonstrate the success of our
method in simulating a variety of large-scale quan-
tum many-body systems, taking as test cases models
that would help highlight the extensive scope of the
algorithm.
Wherever exact calculations were possible, we

have verified the correctness and accuracy of our
technique by ensuring that the calculated values
agree with exact values.

1 2

4

𝑉12 = 𝑋1 𝑋2

32

𝑉23 = 𝑋2 𝑋3

5 3

𝑉78 = 𝑋7 𝑋87

3

6

8 9
𝑉89 = 𝑋8 𝑋9

𝑉45 = 𝑋4 𝑋5 𝑉56 = 𝑋5 𝑋6

Figure 1. A triangular lattice with open boundary
conditions. Here the side length is L = 3.

A. The XY model on a triangular lattice

We consider the prototypical quantum anisotropic
XY (XZ) model [31–33] on a triangular lattice
with open boundary conditions (see Fig. 1). This
model and variants thereof have been used exten-
sively as simplified models for a variety of physical
systems such as liquid helium, high-Tc superconduc-
tors, anisotropic magnets and more. The Hamilto-
nian we study is

H = J
X

hjki

ZjZk + �
X

hjki

XjXk , (43)

where hjki denotes neighbors on a triangular lattice
with n = L2 spins containing L sites on each side.
The above XY model gives rise to a severe sign prob-
lem, preventing a true quantitative understanding of
the phase diagram of the model if J > 0 and � > 0,
which will be our region of interest. Specifically, we
shall consider a system with L = 8 and J = 1 and
allow the parameter �, which serves as the strength
of the quantum component of the Hamiltonian, to
vary.
The PMR form of the Hamiltonian, Eq. (43), is

H = D0 + �
X

hjki

Vjk . (44)

Here, D0 = J
P

hjki ZjZk is the ‘classical’ compo-
nent of the Hamiltonian that is diagonal in the com-
putational basis. The set {Vjk = XjXk} consists of
o↵-diagonal permutation operators that give the sys-
tem its ‘quantum dimension’ and obey Vij |zi = |z0i
for every basis state |zi, where |z0i 6= |zi is also a
basis state di↵ering from |zi by two spin flips. There
are M = 3L2

�4L+1 o↵-diagonal operators Vjk, one
for each edge of the lattice (see Fig. 1).
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Figure 2. Top: Dependence of mean energy and hsgni
on � for L = 8 and � = 0.3. Bottom: hsgni and relative
error of the mean energy as a function of � for L = 8
and � = 1.

Since VijVjkVki = 1 for every triplet of spins with
indices i, j and k that form a basic triangle of the
lattice (or a triangular plaquette), we conclude that
the model admits 2(L� 1)2 fundamental cycles, one
for each basic triangle (see Sec. IVB).
Figure 2 shows the computed mean energy, its er-

ror bar, and hsgni as a function of � and �. Here,
we have used 2 · 109 Monte-Carlo updates. As is
shown in Fig. 2, the observables can be accurately
calculated using our method even in cases where the
values of hsgni are as small as 10�3. However, as
expected, the values of hsgni decrease exponentially
with both � and �.
Table I shows the increase in complexity of the

calculation with the severity of the sign problem in
more detail. In particular, one can see that the
wall-clock time is roughly proportional to hqi for
hqi > 1 (in agreement with prior results pertain-
ing to divided-di↵erence calculations [26]). This is
because most of the computing time is spent on the
calculation and reevaluation of the divided di↵er-

� hsgni hqi max(q) time (s.) per

MC update

0.05 0.994 0.2 9 2.0 · 10�6

0.1 0.95 0.84 13 2.7 · 10�6

0.2 0.64 4 30 5.4 · 10�6

0.3 0.19 11 46 1.2 · 10�5

0.35 0.06 17 59 1.8 · 10�5

0.4 0.01 27 75 3.5 · 10�5

0.45 0.001 41 93 5.7 · 10�5

Table I. Dependence of the expansion order and average
sign on the o↵-diagonal strength � for the antiferromag-
netic XY model on a triangular lattice. Calculations are
shown for L = 8, J = 1, � = 1.

ences.

B. The XY model on a square lattice:
Dependence of convergence time on

temperature

0 5 10 15 20
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Figure 3. Calculations of the XY-model on a square lat-
tice with periodic boundary conditions: wall-clock time
in seconds of 107 QMC updates as a function of �. Pa-
rameters: L = 8, J = 1, � = �0.25. The dashed line
is 3.14 ⇥ �2.23. Inset: estimated statistical error of 107

QMC updates as a function of �.

We next investigate the dependence of simulation
runtimes on the inverse-temperature �, using as a
test case the XY-model on a square lattice with
periodic boundary conditions imposed. Similar to
the XY model on the triangular lattice discussed
in the previous subsection, the permutations of the
XY model on the square lattice are two-body XX
interactions. The fundamental cycles are therefore
length-4 products of permutations corresponding to
edges surrounding each plaquette. On top of these,
the periodic boundary conditions induce additional
cycles that wrap around the lattice. For an 8 ⇥ 8
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square lattice, the nullspace consists of 65 cycles, of
which 56 are of length four and 9 of length eight
wrapping around the lattice either horizontally or
vertically.
Figure 3 shows the wall-clock time of 107 QMC

updates as a function of �, fitted by the dashed
curve with the optimal fit of 3.14 ⇥ �2.23. The in-
set shows the estimated error �(hEi) of 107 QMC
updates versus �. The statistical error turns out to
be of the same order of magnitude across the entire
tested temperature range.
We thus find that the convergence time of the al-

gorithm grows relatively slowly with �, obeying a
modest power-law, indicating that low-temperature
simulations are readily attainable.

C. Topological models

As mentioned above, in the presence of a non-
trivial topology, e.g., where periodic boundary con-
ditions are imposed or for other nonzero genus mod-
els, there may exist fundamental cycles becoming
longer with the system size such as the cycles ‘wrap-
ping around the system’, consisting of an exten-
sive number of permutation operators (as was the
case in the XY model on a square lattice with peri-
odic boundary conditions discussed above). For such
models, some fundamental cycle lengths will be of
the order O(N), i.e., grow with system size, (as op-
posed to being O(1). For that reason, these models
are usually exceptionally di�cult to study as they
require so-called ‘global’ rather than local moves.
To demonstrate that our proposed method can

successfully solve these models as well, we next
present some results pertaining to the well-known
‘toric code’ model. The toric code is defined on a
periodic two-dimensional lattice (a torus), usually
chosen to be the square lattice, with a spin-1/2 par-
ticle located on each edge. The Hamiltonian of the
toric code is given by [34, 35]:

Htoric = J

 
X

v

Av +
X

p

Bp

!
, (45)

where J > 0 and Av =
Q

i2v
Xi and Bp =

Q
i2p

Zi

with i 2 v denoting the edges touching the vertex
v, and i 2 p denoting the edges surrounding the
plaquette p. In PMR, the Hamiltonian is rewritten
as

Htoric = D0 +
X

v

DvPv (46)

where D0 =
P

p
Bp, Pv = Av and Dv = J · 1. The

only fundamental cycle is equal to the product of all
plaquette terms P ⌘

Q
v
Pv.
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β

Nodd

N

Figure 4. Toric code: the fraction of time in the odd
sector as a function of � for L = 4, L = 6, and L = 8.

The local moves of insertion and deletion of pairs
of permutation operators are however not ergodic
on their own. This can be seen by noticing that
the annihlation/creation local updates implies that
plaquette terms Pv appear in even numbers. On
the other hand, the product of all plaquette terms
P ⌘

Q
v
Pv also evaluates to the identity and so se-

quences where all plaquette terms are odd-numbered
should also be accounted for. There are thus two
topological sectors: an even one and an odd one.
For the simulation to sample configurations in both,
there must be a global move that jumps between the
two and which changes the parity of all plaquette op-
erators. As follows from Sec. IVC, the fundamental
cycle completion accomplishes this move.
Figure 4 shows Nodd/N versus �, where Nodd is

the number of visited odd-sector configurations, and
N is the total number of visited configurations. As
can be seen, the Markov chain switches easily be-
tween the even sector and the odd one for su�ciently
low temperatures, indicating that the Markov chain
is ergodic and the algorithm works properly. The
above results also agree with the expected behav-
ior of toric code, where transitions between ground
states are generated by pairs of excitations at su�-
ciently low temperatures [36].

D. Random spin-1/2 Hamiltonians

To illustrate the versatility of our algorithm, we
next present simulation results for randomly gen-
erated spin-1/2 Hamiltonians. We produce ran-
dom n-spin m-term k-local spin-1/2 Hamiltonian by
adding togetherm randomly generated Pauli strings.
To create a k-local Pauli string, we first sample k
spin indices i1, . . . , ik from the set of spin indices
{1, . . . , n}. For each chosen index, we pick at ran-
dom an operator from the set {X,Y, Z}, thereby cre-
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Figure 5. Top: Average energy hEi over 200 randomly
generated Hamiltonian instances as a function of m for
random k-local 40-spin Hamiltonians for k = 3, k = 5,
and k = 8. Bottom: A similar plot for hsgni, averaged
over the 200 Hamiltonian instances. Here, � = 1.

ating a Pauli string with locality k. Our final ran-
dom Hamiltonian attains the form

P
i
c(i)S(i), where

each randomly generated Pauli string S(i) is multi-
plied by a real-valued coe�cient c(i) randomly drawn
from the interval [�1, 1].
To demonstrate the ease with which our approach

allows the simulation of such systems, we have gen-
erated random 40-spin m-term Hamiltonians with
m varying from m = 1 to m = 50, simulating 200
randomly generated instances per each value of m
at � = 1 for three choices of locality k = 3, k = 5,
and k = 8. Figure 5 (top) shows the average of the
energy hEi over the 200 instances as a function of m.
The error bars indicate magnitude of fluctuations of
the averaged energy. The bottom panel of Fig. 5 de-
picts the average sign hsgni, averaged over the 200
instances per each choice of m and k. Similarly, Fig-
ure 6 depicts hEi and hsgni as a function of m for
� = 5.
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Figure 6. Top: Average energy hEi over 200 randomly
generated Hamiltonian instances as a function of m for
random k-local 40-spin Hamiltonians for k = 3, k = 5,
and k = 8. Bottom: A similar plot for hsgni, averaged
over the 200 Hamiltonian instances. Here, � = 5.

E. Classically frustrated spin models

It is important to note that while our approach
guarantees a correct equilibrium distribution of the
Markov chain for any input spin-1/2 Hamiltonian, a
universal rapid mixing of the Markov chain cannot
be ensured in general.
One class of many-body systems that is known

to considerably hinder the convergence of Monte
Carlo algorithms – classical or quantum – is that
of strongly frustrated spin models. For these, there
exist competing terms in the Hamiltonians the min-
imization of one directly conflicts with the mini-
mization of others creating ‘frustration’. For such
Hamiltonians, employing a Markov chain whose clas-
sical updates are based on single spin-flip Metropolis
moves will result in slow mixing. This is because sin-
gle spin-flip moves may cause the simulation to get
trapped in metastable regions of configuration space
(i.e., ‘local minima’).
In many cases, the slowdown caused by frustration

can be significantly mitigated (but not fully cured
in general due to the NP-hardness of the underly-
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ing problem) by replacing the classical Metropolis
updates with suitable cluster updates if such ex-
ist [37–41]. Replacing classical Metropolis updates
(see Sec. IVD4) with relevant cluster updates often
results in a much faster converging algorithm.3 An-
other e�cient approach to some frustrated systems
is to combine the QMC algorithm with parallel tem-
pering [42, 43] or population annealing [44–46].
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Figure 7. Dependence of mean energy on � for the
slightly frustrated XY model on a triangular lattice. In-
set: error estimation. Parameters: L = 8, � = �0.25,
J = 1 for a few randomly selected edges and J = �1 for
the remaining edges.

A simple way to detect whether geometric frus-
tration leads to a computational ine�ciency in a
Monte Carlo calculation is to compare the statis-
tical error obtained from binning analysis (see Ap-
pendix B) with the statistical error estimated from
multiple completely independent, and hence uncor-
related, runs of the algorithm. If the system is ther-
malized throughout the course of the simulation,
these two estimates should roughly agree. For a
highly frustrated system at a low temperature, for
which the auto-correlation time is longer than the
timescale of the simulation, the error obtained from
the binning analysis is significantly underestimated
due to the measurements being not fully decorre-
lated.
Figure 7 shows the computed mean energy as a

function of � for a slightly frustrated model where
only a small fraction of the edges are antiferromag-
netic. The inset shows the error estimates from bin-
ning analysis and from independent runs. This ex-
ample suggests that it is possible to compute the
observables with high accuracy at low temperatures

3
These classical cluster moves can be generalized to quan-

tum cluster moves for which the configuration weights are

di↵erent from Boltzmann weights. However, such a gener-

alization is beyond the scope of the present paper.

if the fraction of frustrated plaquettes is su�ciently
low.

F. Code parallelization
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Figure 8. Strong scaling speedup. Here, T (p) is the time
required to complete the same amount of work using the
parallel setup with p processing threads. The total num-
bers of initial thermalization QMC updates and main
QMC updates are equal to 2.5 ⇥ 107 and 2.5 ⇥ 108, re-
spectively, for each of the parallel setups. Calculations
were performed for the XY-model on a square lattice
with periodic boundary conditions with L = 8, J = 1,
� = �0.25.

Markov chain Monte Carlo algorithms are natu-
rally well-suited for massively parallel simulations,
where independently run Markov chains contribute
equally to the collection of statistics. As shown in
Fig. 8, the algorithm, indeed, demonstrates a near-
perfect strong scaling speedup, with the only re-
striction being that each of the parallel processes
is expected to employ a su�cient number of ini-
tial thermalization (warmup) steps prior to measure-
ment collection.
In addition to sequential execution of the C++

program code, our software package includes capa-
bilities for executing the code in a parallel fashion
on high-performance compute clusters using Mes-
sage Passing Interface (MPI) protocols [47], allowing
for extensive parallelization of the algorithm [15].

VII. SUMMARY AND OUTLOOK

We presented a universal, parameter-free, Trotter-
error-free quantum Monte Carlo scheme capable
of simulating, for the first time, arbitrary spin-
1/2 Hamiltonians. We have demonstrated that
the permutation matrix representation of Hamilto-
nians allows one to automatically produce QMC up-
dates that are provably ergodic and satisfy detailed
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balance, thereby ensuring the convergence of the
Markov chain to the proper thermal equilibrium. We
have in addition illustrated how a wide range of ob-
servables may be calculated throughout the simula-
tion.

Our algorithm therefore allows one to study the
equilibrium properties of essentially any conceivable
spin-1/2 system with a single piece of code that ac-
cepts as input a description of a Hamiltonian. This
is in stark contrast to existing techniques, which gen-
erally require specially tailored model-specific QMC
updates for each to-be-simulated system, and are
thus limited to simulating models of very specified
structures and geometries.

We believe that the generality and versatility of
our approach make our proposed technique a very
useful tool for condensed matter physicists studying
spin systems, allowing the community to explore,
with ease, an extremely wide range of physical mod-
els, many of which have so far been inaccessible,
cumbersome to code, or too large to implement with
existing techniques. To that aim, we have made our
program code freely accessible on GitHub [15].

We note though that while our approach guaran-

tees a correct equilibrium distribution of the Markov
chain, the proposed algorithm does not guarantee a
universal rapid mixing of the Markov chain, nor does
it resolve or aims to resolve the sign problem.
The generality of the technique covered in this

study makes it easily extendable to other types of
systems, e.g., fermionic, bosonic or higher spin sys-
tems. We intend to explore these in future work.

ACKNOWLEDGMENTS

This project was supported in part by NSF award
#2210374. In addition, this material is based
upon work supported by the Defense Advanced Re-
search Projects Agency (DARPA) under Contract
No. HR001122C0063. All material, except scientific
articles or papers published in scientific journals,
must, in addition to any notices or disclaimers by the
Contractor, also contain the following disclaimer:
Any opinions, findings and conclusions or recom-
mendations expressed in this material are those of
the author(s) and do not necessarily reflect the views
of the Defense Advanced Research Projects Agency
(DARPA).

[1] J. Gubernatis, N. Kawashima, and P. Werner,
Quantum Monte Carlo Methods: Algorithms for
Lattice Models (Cambridge University Press, 2016).

[2] D. Landau and K. Binder, A Guide to Monte Carlo
Simulations in Statistical Physics, 5th ed. (Cam-
bridge University Press, 2021).
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the Markov process, which can in turn lead to the
ergodicity violation.
To resolve this issue, we have developed a protocol

that we call ‘cycle completion with gaps’. This pro-
tocol does not require the elements of the sequence
S to form a consecutive unit within Siq . A detailed
description of this subroutine follows.
The parameters are: rmin, rmax, lmin(r), lmax(r).

We usually choose: rmin = (fmin � 1)/2, rmax =
(fmax + 1)/2, lmin(r) = 2r � 1, lmax(r) = 2r + 1,
where fmin and fmax are minimal and maximal fun-
damental cycles lengths, respectively. The other
option (‘exhaustive search’) is to choose rmin = 0,
rmax = fmax, lmin(r) = r, lmax(r) = fmax.
The sequence of operations is as follows.

1. Pick a random integer u according to a geo-
metric distribution pu. As we’ll see, u is the
total number of operators in the ‘gaps’.

2. If q < u+ rmin, then the update is rejected.

3. Pick a random integer r such that rmin  r 

min(rmax, q�u). We note that the probability
pr(q) = (min(rmax, q�u)�rmin+1)�1 depends
on q.

4. Randomly pick a sub-sequence eS of length r+u
containing consecutive operators from the se-
quence Siq .

5. Randomly choose a subsequence S of length r
from eS. The remaining u operators in eS we
will call ‘gaps’.

6. If S contains repeated operators, the update is
rejected.

7. Find all fundamental cycles of lengths l such
that lmin(r)  l  lmax(r), each containing all
operators of the sub-sequence S. Denote by nc

the number of found cycles.

8. If nc = 0, the update is rejected. Otherwise,
we randomly choose one of the found funda-
mental cycles.

9. Attempt to replace the sub-sequence eS of
length r+u by the sequence eS0 of length r0+u
which contains all the remaining r0 operators
from the selected cycle, as well as all the ‘gaps’.
We shu✏e the sequence eS0 so that its opera-
tors are contained in random order. We accept
the update with the probability Paccept, which
is considered below.

Let us now find the acceptance probability Paccept

such that the detailed balance holds for the above

protocol. Suppose that the u gaps contain ui of op-
erators Pi, where i = 1, 2, . . . ,M , so that

P
i
ui =

u. Let us denote the old and new configurations
as A and B, probability to select B from A as
Pselect(A ! B), probability to select A from B as
Pselect(B ! A). Then, we have

Pselect(A ! B) = pu · pr(q) · (q � (r + u) + 1)�1
⇥

⇥
1

nc

·

✓
r + u

u

◆�1✓r0 + u

u

◆�1

·
1

r0!
·
u1! . . . uM !

u!
,

(A1)

Pselect(B ! A) = pu ·pr(q
0) · (q0� (r0+u)+1)�1

⇥

⇥
1

n0
c

·

✓
r0 + u

u

◆�1✓r + u

u

◆�1

·
1

r!
·
u1! . . . uM !

u!
.

(A2)

Here, n0
c
is the number of fundamental cycles of

lengths l such that lmin(r0)  l  lmax(r0), each con-
taining all r0 operators of the sub-sequence S0. Since
q0 = q+r0�r, we have q�(r+u)+1 = q0�(r0+u)+1.
Therefore,

Paccept(A ! B)

= min

✓
1,

WB

WA

·
Pselect(B ! A)

Pselect(A ! B)

◆

= min

✓
1,

WB

WA

·
pr(q0)

pr(q)
·
nc

n0
c

·
r0!

r!

◆
. (A3)

Here, WA and WB are the weights of the old and
the new operator sequences. Because P (A ! B) =
Pselect(A ! B)Paccept(A ! B) and P (B ! A) =
Pselect(B ! A)Paccept(B ! A), Eq. (A3) satisfies
the detailed balance condition.

Appendix B: Estimation of the statistical errors

It is known that statistical errors in a Monte-Carlo
calculation can be estimated by employing binning
analysis [48, 49]. By grouping N measurements of
an observable O into nB non-overlapping blocks of
length B = N/nB , one first obtains a single data
point for each of the nB bins as follows

O
(B)
i

=
1

B

iBX

j=(i�1)B+1

Oj , i = 1, . . . , nB . (B1)

If the bins are large enough, the averages O(B)
i

will
be e↵ectively uncorrelated, and one could then use
the simple (uncorrelated) variance estimator to find
the variance of the mean,

�2(hOi) =
1

nB(nB � 1)

nBX

i=1

(O(B)
i

� hOi)2, (B2)
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where hOi = hO
(B)

i =
P

nB

j=1 O
(B)
j

/nB . Similarly,
the covariance estimator of the mean values of two
observables O and Q is

cov(hOi, hQi) =

1

nB(nB � 1)

nBX

i=1

(O(B)
i

� hOi)(Q(B)
i

� hQi). (B3)

Since hAi is the ratio Eq. (41) of two random vari-
ables, the improved approximation for hAi and the

approximation for �2(A) are as follows [50]:

hAi =
hA · sgni

hsgni

✓
1 +

�2(hsgni)

hsgni2

◆
�

cov(hsgni, hA · sgni)

hsgni2
, (B4)

and

�2(A) =
hA · sgni2

hsgni2

✓
�2(hA · sgni)

hA · sgni2
+

�2(hsgni)

hsgni2
� 2

cov(hsgni, hA · sgni)

hsgnihA · sgni

◆
. (B5)

Here, the values of �2(hsgni), �2(hA · sgni), and
cov(hsgni, hA·sgni) should be obtained via Eqs. (B2)
and (B3).
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