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Abstract

We establish local well-posedness in the sense
of Hadamard for a certain third-order nonlinear
Schrodinger equation with a multiterm linear part and
a general power nonlinearity, known as higher-order
nonlinear Schrodinger equation, formulated on the
half-line {x > 0}. We consider the scenario of associated
coefficients such that only one boundary condition is
required and hence assume a general nonhomogeneous
boundary datum of Dirichlet type at x = 0. Our func-
tional framework centers around fractional Sobolev
spaces HS(R,) with respect to the spatial variable. We
treat both high regularity (s > %) and low regularity

(s < %) solutions: in the former setting, the relevant
nonlinearity can be handled via the Banach algebra
property; in the latter setting, however, this is no longer
the case and, instead, delicate Strichartz estimates must
be established. This task is especially challenging in
the framework of nonhomogeneous initial-boundary
value problems, as it involves proving boundary-type
Strichartz estimates that are not common in the study
of Cauchy (initial value) problems. The linear analysis,
which forms the core of this work, crucially relies on a
weak solution formulation defined through the novel
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solution formulae obtained via the Fokas method (also
known as the unified transform) for the associated
forced linear problem. In this connection, we note that
the higher-order Schrodinger equation comes with
an increased level of difficulty due to the presence of
more than one spatial derivatives in the linear part of
the equation. This feature manifests itself via several
complications throughout the analysis, including (i)
analyticity issues related to complex square roots,
which require careful treatment of branch cuts and
deformations of integration contours; (ii) singularities
that emerge upon changes of variables in the Fourier
analysis arguments; and (iii) complicated oscillatory
kernels in the weak solution formula for the linear
initial-boundary value problem, which require a subtle
analysis of the dispersion in terms of the regularity
of the boundary data. The present work provides a
first, complete treatment via the Fokas method of a
nonhomogeneous initial-boundary value problem for a
partial differential equation associated with a multiterm
linear differential operator.

KEYWORDS

Fokas method, higher-order nonlinear Schrodinger equation,
initial-boundary value problem, Korteweg-de Vries equation, low
regularity solutions, nonzero boundary conditions, power nonlin-
earity, Strichartz estimates, unified transform, well-posedness in
Sobolev spaces

1 | INTRODUCTION AND MAIN RESULTS

1.1 | Mathematical model

We consider the nonhomogeneous initial-boundary value problem for the higher-order nonlinear
Schrodinger (HNLS) equation on the half-line

iUy + ifuyyy + AUyy + i0uy, = f(u), (x,t) € Ry x(0,7),

M(X, 0) = uO(x)a

x €R,, D

u(0,t) =g(), te(0,7),
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where @, €R, > 0, f(z) = x|z|Pzwithz € C,x € C, p > 0, and T > 0. The reason why we
only need to supplement one boundary condition at x = 0 is the assumption 8 > 0. On the other
hand, if 8 < 0, then two boundary conditions are required at x = 0; this scenario will be consid-
ered in a future work. Furthermore, here we consider the case of a Dirichlet boundary datum; the
case of a Neumann datum can be handled via entirely analogous ideas and techniques.

We establish local well-posedness of the nonlinear, nonhomogeneous initial-boundary value
problem (1) in the sense of Hadamard, namely, we prove existence of a unique local-in-time solu-
tion that depends continuously on the initial and boundary data (see Theorems 1 and 2 below).
It will be shown (see Theorem 3 below) that the evolution operator associated with the free
higher-order Schrodinger operator enjoys the following regularity property:

” o(—BO3+iadi—69,)t

s+l <c<oo.
HY(R)—-LY (R;H, * (=T.T))

Note that, in the case of the classical second-order Schrodinger operator (i.e., fora =1 and § =

d = 0), the time regularity of the solution is described by the Sobolev exponent 2S4—+1 (see Ref. 1).

Hence, for s < % (which implies 2+ %), the above result for the higher-order Schrodinger

operator can be regarded as a kind of smoothing. Due to this smoothing, one anticipates that

the local well-posedness for the initial-boundary value problem (1) should be studied with initial
s+1

data uy € H3(R,) and boundary data g € H [EC(RJr). In addition, for s large enough and, more

precisely, for s > % the relevant traces make sense in the aforementioned spaces and one has to
also impose compatibility conditions between the initial and the boundary data to obtain solutions
that are continuous at t = 0 (see Section 2.3 for more details).

Our treatment of the nonlinear problem (1) is crucially based on a contraction mapping argu-
ment applied to a weak solution formula for the associated forced linear initial-boundary value
problem. This novel solution formula is derived in Section 2 via the Fokas method (also known as
the unified transform). Showing that the map obtained by replacing the forcing with the power
nonlinearity of (1) in the Fokas method solution is a contraction requires further assumptions on
the smoothness and growth of the nonlinearity in relation to the Sobolev regularity exponent s;
see (3) and (4) for the precise assumptions used in this work.

1.2 | Physical significance and motivation

Fora =1, =6 =0, and p = 2, the HNLS equation in (1) reduces to the celebrated cubic non-
linear Schrédinger equation (NLS) equation. Cubic NLS is a ubiquitous model in mathematical
physics, with a broad spectrum of applications ranging from optics to water waves to plasmas
to Bose—Einstein condensates. However, for pulses in the femtosecond regime, the classical NLS
model is not precise enough and a correction involving a higher-order dispersive term is neces-
sary (see Ref. 2 for a detailed discussion of the higher order effects upon the propagation of an
optical pulse). This need for a more accurate model led to the introduction of the HNLS equation,
originally in the form

. 1 ;
Uy + Sty + |ulPu + i€ (Brtrrx + Bo(lul*u), + Baululy) =0, )
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for modeling the femtosecond pulse propagation in nonlinear optical fibers.>* Note that in (1), we
have a power nonlinearity of general order p > 0, whereas (2) involves cubic nonlinearities that,
nevertheless, contain derivatives.

Furthermore, beyond physical considerations, it should be noted that the cubic NLS equa-
tion is a prototypical example of a completely integrable system.> As such, in addition to analysis
techniques, it has been studied extensively via the inverse scattering transform and related
methods. This is not possible, however, for general nonlinearities like the one of the HNLS
equation in (1), as the corresponding models are not completely integrable. In those general
cases, which nevertheless remain very relevant when it comes to applications, rigorous results
can be established via harmonic analysis techniques. In particular, the well-posedness of the
Cauchy (initial value) problem for HNLS has been treated in a number of articles.* In addi-
tion, numerical solutions were obtained in Ref. 14. Moreover, there are some results concerning
the controllability properties of this equation; see Ref. 15 for exact boundary controllability,
Refs. 16 and ! for internal feedback stabilization, and Refs. 18 and '° for boundary feedback
stabilization.

The goal of this work is to establish the local well-posedness theory for the nonlinear initial-
boundary value problem (1) at the level of H5(R, ) spatial regularity for the initial data. We are
interested in both the high regularity (s > %) and the low regularity (s < %) settings. The main
distinction between the two is that, in the low regularity setting, the well-known Banach alge-
bra property of H5(R,) is no longer available. Instead, handling the nonlinearity |u|Pu when
s < % requires use of more advanced tools that revolve around the celebrated Strichartz estimates.
Estimates of this type measure the size and temporal decay of solutions in space-time Lebesgue
norms and have played a crucial role in the treatment of the Cauchy problem of nonlinear dis-
persive equations since their introduction in 1977.2° On the other hand, the use of Strichartz
estimates in the analysis of initial-boundary value problems is a more recent advancement. For
the Cauchy problem, Strichartz estimates involve certain norms of initial and/or interior data,
whereas for initial-boundary value problems, these estimates additionally depend on information
related to boundary data, for which temporal regularity also plays a key role. Such boundary-
type Strichartz estimates have been recently established for some initial-boundary value problems
associated with dispersive equations, see, for instance, Refs. 21-23 for the one-dimensional NLS,
Refs. 24 and % for the two-dimensional NLS, Refs. 26-28 for NLS in n dimensions, Refs. 29
and *° for the one-dimensional biharmonic NLS, and Ref. 31 for a fourth-order NLS in one
dimension.

1.3 | Challenges, methodology, and main results

The first contribution of the present paper is the development of a sharp linear theory through
the analysis of the solutions of the relevant forced linear initial-boundary value problem (see
problem (5) below). This is accomplished by decomposing this linear problem into three sim-
pler component problems: (i) a homogeneous Cauchy problem associated with (an appropriate
extension of) the initial datum; (ii) a nonhomogeneous Cauchy problem associated with (an
appropriate extension of) the forcing; and (iii) a reduced initial-boundary value problem involv-
ing the original boundary datum and the spatial traces of the two aforementioned Cauchy
problems.
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The homogeneous Cauchy problem of item (i) is studied in Section 2.1 via classical Fourier
analysis. However, the multiterm nature of the spatial differential operator introduces certain
difficulties in the proofs of the temporal estimates, due to the changes of variables performed to
extract the desired Sobolev norms. These difficulties are overcome by introducing a proper cutoff
function that depends on the polynomial structure of the spatial differential operator.

The nonhomogeneous Cauchy problem of item (ii) is analyzed in Section 2.2 by express-
ing its solution in Duhamel form and then estimating it via the nonlocal (i.e., in the physical
space) definition of fractional Sobolev spaces. We note that when the equation involves a mul-
titerm spatial differential operator, the analysis of the corresponding nonhomogeneous Cauchy
problem becomes quite involved when carried out via other approaches such as the Riemann-
Liouville fractional integral method that was successfully applied to the Korteweg-de Vries
equation (without the first-order derivative) and the NLS equation ?**33, In contrast, the physical
space definition of the fractional Sobolev spaces offers a more robust and direct approach in this
framework; furthermore, this approach does not require interpolation arguments.

A major emphasis in this work is placed on the regularity analysis of the solution to the reduced
initial-boundary value problem of item (iii) above. This is done in Section 2.3. Weak solutions of
this reduced initial-boundary value problem are defined via a boundary integral operator whose
explicit form is obtained through the Fokas method.>** Importantly, in the multiterm framework
considered in this paper, certain analyticity issues arise in the application of the Fokas method.
This is because the method relies on the construction of analytic maps that respect certain spectral
invariance properties of the linear dispersion relation. However, for multiterm spatial differential
operators, such a construction requires use of complex square root functions that, in many cases,
cause the invariance maps to be nonanalytic on some parts of the complex spectral plane. We
handle this complication via suitable contour deformations around the branch cuts associated
with these maps. It is worth noting that this phenomenon also appears in the context of higher-
dimensional initial-boundary value problems, see, for instance, Ref. 36, as well as in equations that
involve higher-order time derivatives, for example, the “good” Boussinesq equation analyzed in
Refs. 37 and ** After constructing a suitable boundary integral operator for the reduced initial-
boundary value problem, we analyze it by using the oscillatory integral theory that, in particular,
requires us to establish dispersive estimates of the same type like the ones satisfied by solutions
of the associated Cauchy problem.

The solution of the fully nonlinear problem (1) will be constructed as a fixed point of the
solution operator formed by reunifying the respective solution formulae for the three linear
problems of items (i)-(iii) above. In the high regularity setting of s > % the spatiotemporal esti-
mates established in the linear theory of Section 2 lead to a contraction mapping argument in
the Hadamard-type space C([0, T]; H3(R,)). The uniqueness in this space utilizes the Sobolev
embedding H(R,) & LP(R,) (which is valid for s > é). In the low regularity setting of s < %,
the algebra property in Hy(R, ) and the embedding H}(R,) & LY (R, ) are no longer valid and
Strichartz estimates assume the key role instead. In that case, the solution space is refined to
C([0, T]; HY(R,)) N LE((0, T); HY (R.,)) with (i, r) obeying the admissibility criterion (20) associ-
ated with the underlying evolution operator. However, this only leads to a conditional uniqueness
result in the aforementioned space.

The main results of this work, which emanate from the analysis described above, establish the
local well-posedness of the HNLS initial-boundary value problem (1) in the high and low regularity
settings and read as follows:



208 | ALKIN ET AL.

Theorem 1 (High regularity well-posedness). Let é <s<2and p > 0. In addition, if p & 2Z,
suppose that

ifseZ,,thenp >sifpe Z, andodd; |p| >s—1ifp & Z,,
3)
ifs¢ Z,, thenp>sifpeZ,andodd; |p] > |s]|ifp & Z,.

s+1

Then, for initial data uy € H3(R,) and boundary data g € H [,fOC(RJr) satisfying the compatibility
condition (66), there is T = T(uy,g) > 0 such that the initial-boundary value problem (1) for the
HNLS equation on the half-line has a unique solution u € C([0, T]; H3.(R,)). Furthermore, this
solution depends continuously on the initial and boundary data.

Theorem 2 (Low regularity well-posedness). Suppose

6(p+1 2(p+1
05s<%, 1<p< _6(p+1) _2(p+1)

= = . 4
sPs1oe H p(1—2s)’ ' 1+ 2sp @)

s+1

Then, for initial data u, € Hy (R, ) and boundarydata g € H, fOC(RJr), with the additional assump-

tion that if p = ﬁ (critical case), then ||ug || 3w, ) is sufficiently small, there is T = T(u,g) > 0
such that the initial-boundary value problem (1) for the HNLS equation on the half-line has a
unique solution u € C([0, T]; HL.(R)) n L((0, T); HY' (R,)). Furthermore, this solution depends
continuously on the initial and boundary data.

The linear estimates that form the core of the proofs of the above two theorems are established
in Section 2, and the contraction mapping arguments that complete those proofs are provided in
Section 3.

Remark 1. The assumptions in above theorems offer a large class of cases in terms regularity index
s and the power of nonlinearity p for which the local well-posedness of the initial-boundary value
problem (1) can be established. In particular, these cover physically relevant settings. For instance,
energy-level solutions (s = 1) and strong solutions (s = 2) can be obtained in the presence of a
cubic nonlinear source (p = 2).

1.4 | The Fokas method for the rigorous treatment of initial-boundary
value problems

While the Cauchy problem for nonlinear dispersive equations has been broadly explored through
a variety of techniques, progress toward the rigorous study of initial-boundary value problems
for these equations is more limited. In fact, problems of this latter kind can present signifi-
cant challenges even at the linear level. For example, while on the whole-line linear evolution
equations can be easily solved via Fourier transform in the space variable, on domains with a
boundary like the half-line no classical spatial transform exists for linear equations of spatial order
three or higher. Another important obstacle arises in the case of boundary conditions that are
nonseparable. Moreover, even when a linear initial-boundary value problem can be solved via
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classical techniques, the resulting solution formula is not always useful, especially in regard to
setting up an effective iteration scheme for proving the well-posedness of associated nonlinear
problems.

At the linear level, the Fokas method bridges the gap between the Cauchy problem and initial-
boundary value problems by providing the direct analog of the Fourier transform in domains with
a boundary. Indeed, the method provides a fundamentally novel, algorithmic way of solving any
linear evolution equation formulated on a variety of domains in one or higher dimensions and
supplemented with any kind of admissible boundary conditions. An alternative perspective that
further establishes the Fokas method as the natural counterpart of the Fourier transform in the
context of linear initial-boundary value problems stems from the nonlinear component of the
method, which was developed for completely integrable nonlinear equations and corresponds to
the analog of the inverse scattering transform in domains with a boundary. Then, noting that the
linear limit of the inverse scattering transform is nothing but the Fourier transform, it is only
reasonable that the linear limit of the nonlinear component of the Fokas method, namely, the
linear Fokas method, should provide the equivalent of the Fourier transform for linear initial-
boundary value problems.

The analogy between the Fokas method and the Fourier transform has been solidified by a new
approach introduced in recent years by Himonas and one of the authors for the well-posedness
of nonlinear initial-boundary value problems. This approach is based on treating the nonlin-
ear problem as a perturbation of its forced linear counterpart, which is, of course, a classical
idea coming from the Cauchy problem. However, the linear formulae produced via the Fourier
transform in the case of the Cauchy problem are now replaced by the Fokas method solution
formulae (recall that Fourier transform is no longer available). As these novel formulae involve
complex contours of integration, new tools and techniques are required to obtain the various
linear estimates needed for the contraction mapping argument. It should be noted that several
of these estimates are specific to initial-boundary value problems and do not typically arise in
the study of the Cauchy problem; they are results of particular importance, as they capture the
effect of the boundary conditions on the regularity of the solution of both linear and nonlinear
problems.

The Fokas-method-based approach for the rigorous study of initial-boundary value problems
has already been implemented in several works in the literature: NLS on the half-line and the half-
plane 23243%-41 'KdV on the half-line and the finite interval *>~*°, “good” Boussinesq on the half-
line **, biharmonic NLS on the half-line %%, fourth-order Schrédinger equation on the half-line *!, a
higher-dispersion KdV on the half-line “°, and even nondispersive models.*”*® It should be noted
that in those cases where a problem has been previously considered in the literature, the results
via the new method are consistent with the existing ones, typically obtained via the Colliander-
Kenig-Holmer or the Bona-Sun-Zhang approaches, for example, see Refs. 21, 22, 25, 26, 32, 33,
49-51, and "°. Finally, we remark that a certain third-order model with cubic nonlinearity that is
related to Equations (1) and (2) and is known as the Hirota equation has also been considered
in the literature in the context of initial-boundary value problems, see Refs. 52-54. However, it is
important to emphasize that in the present work, we treat the case of a general power nonlinearity
and, furthermore, we study the associated boundary integral operator at the low regularity level
of Strichartz estimates.

We conclude by noting that rigorous treatment of initial-boundary value problems through
the Fokas formulae has not only played an important role in establishing well-posedness results;
it has also given insight toward solving problems that stem from other related fields such as
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systems theory and control, because there is a close connection between regularity theory and
controllability. It is well known that initial-boundary value problems with nonhomogeneous
boundary conditions can be used to model physical evolutions in which the boundary input acts
as control. Such boundary control models are particularly important for governing dynamics of
physical processes in which access to the interior of a medium is blocked or not feasible, whereas
manipulations through the boundary remain an efficient choice. See, for instance, Refs. 55-57 for
some recent applications of the Fokas method to boundary control problems related to the heat
and Schrodinger equations.

2 | LINEAR THEORY

In this section, we study the forced linear initial-boundary value problem

iUy + ifuyyy + AUy, +i6u, = f, (x,t) € Ry X (0,7),
u(x,0) = up(x), xeR,, (5)

u(0,t) =g(), te(0,7),
where a,6 € R and 8 > 0. The analysis of the linear problem (5) will be carried out via a
decomposition-reunification approach. This decomposition allows us to split the problem into
three simpler components, two of which are Cauchy problems on the real line with data associ-
ated with u, and f, respectively, and one of which is a (reduced) initial-boundary value problem

with data associated with g as well as the traces of the solutions of the aforementioned Cauchy
problems at x = 0.

2.1 | Homogeneous linear Cauchy problem

Consider the problem

iV +iBYyxx + AVyx +10y, =0, (x,t) ERXR,
(6)
¥(x,0) = yo(x), x€R,

where y, = Equ, denotes an extension of u, with respect to a fixed bounded extension operator
Ey : Hy(R,) - HY(R), namely, we have

IEouollsr) S luollas(wr,)- @)

Theorem 3. Let s € R. The unique solution of the Cauchy problem (6), denoted by y = S[y,;0],
belongs to C(R,; H5(R)) and satisfies the conservation law

“y("t)“HfC(R) = ||YO||H;(R), teR. (8)
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s+1
Moreover, ifoc2 +3B5 >0, theny € C(Rx;Ht 3 (=T, T)) for T > 0 and there exists a constant ¢ =
c(s,a, 3,8) > 0such that

1
sup [lyCe, Il sa < e+ T2)lYoll s ry» )
xeR H,* (=T.T) i}

s+1
while if a® + 386 <0, then y € C(Ry;H,’ (R)) and there is a constant ¢ = c(s,a, 3,8) > 0 such
that

sup [lyCe, Il s < cllyollgs - (10)
xeR H *

2 ®)

Proof. Taking the Fourier transform of (6) with respect to x, we find y(k, t) = e=*¥)* 3, (k) where
w(k) 1= —ipk® +iak? + idk. 11

For k € R, w(k) is purely imaginary; thus, |J(k, t)| = |Jy(k)| and the conservation law (8) read-
ily follows via Plancherel’s theorem. The continuity of the map ¢ — y(t) from [0, T] into H}(R)
follows from the dominated convergence theorem and the fact that y, € Hy(R).

To prove the temporal estimates (9) and (10), we start from the Fourier transform solution
representation

1 i o
) = D010, ) = 5 [ e gy 12)
R

Consider the real-valued map 7 = iw(k). Notice that if «? + 388 < 0, then 7 is monotone increas-
ing and so k = (iw)~!(7) is well-defined. In the case of strict inequality a® + 388 < 0, we observe
that iw’(k) > —(a® + 386)/(38) > 0, and so, by the inverse function theorem, we can change
variable from k to 7 to rewrite (12) as

) = 5 [ O gy G () S 13
R

i ((iw)~1(2))’

In addition, we have iw(k) = O(k3) and ﬁ = O(k~?) as |k| = co. Using the Fourier transform

characterization of the Sobolev norm, for each x € R, we find

G = / 1+7)5 [Hol() @) dt
R

H,3 (R) m
s o
s / (1+K2) Do) Pdk = 1yoll s -
R

which amounts to estimate (10).
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Next, consider the case a? + 338 > 0. Let 6 € C°(R) be a function whose additional properties
will be specified below. Then, we can write y = y; + y,, where

1

M) i= o= [ ekxe®rg)g, )k,
27 R
14)
100 0) 1= = [ eikxer( — a(k))gy(k)dk.
27T R

Taking jth-order time derivative of y; and using Cauchy-Schwarz inequality, we deduce

. 1 . R
0l 52 [ etV Ik
supp(6)

2
5 (/ (1 + kz) Slw(k)|2]dk> ”yO”H)SC([R) = C(S,j, e)llyO”Hi(R)
supp(6)

We note that this inequality holds for any s € R. Thus, by the physical space characterization of
the Sobolev norm, namely,

“
_ J
W ey = 2 N0 iz € No, (15)
j=0
we obtain
1
||y1(X, ')”Hfl(—T,T) <c(s, M, O)T> ”yO”ch([R) (16)

for any u € Ny and any x, s € R. Then, since given any m € R, we can always find u € N U {0}
such that m < u, estimate (16) readily implies

1
1266 Mgy < €65 mOT2 [Yollpgs gy m,5,% € R. 7)
To handle y,, we note that given a,5 € R and § > 0 satisfying a? + 335 > 0, one can find k =

kj(a,8,8) €R, j = 1,2, such that (i) the roots ="+ V‘;‘;“‘” of @’(k) = 0 lie in (k;, k,) and (ii) the

mapping 7 = iw(k) is monotone increasing on R \ (k;, k,). Now, let k; < k; and k, > k, be any
two numbers and fix 6 so that it further satisfies the condition

oK) = 1, k€ [k, k],
0, k& (ks,ky),

as well as the condition 0 < |6(k)| < 1, k € R. Now, we can rewrite y, as

1 ; ~
yale,) = = / ellx=atlr(1 _ 9(k))$o(k)dk
R\[k1,k>]
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_1 i(iw) Y (Ox+iTt (1 _ A((3)~1 o v N1 dr
= (l_w)(R\[kbkzDe (1 = 6((iw) " (T))Po (i)~ (7)) i ((0)1(0)

Using the definition of the Sobolev norm, for each x € R, we have

s+1
1266 P s =/u+ﬂ>w%uﬁwm
R

H,3 (R)
111 = B((iw) 1)) Fo((iw) L (2)I?

= 1 2 3 d

/aw)(R\[kl,kz])( e i’ ((iw)~1(7))|? ‘

A+ (o)) s
< MRV 190 2dk
NAWW] 1o
S’/ (1 + kz)slj)\o(kﬂzdk = ”y()”?-[}\;(R)’ (18)
R

where the last inequality follows from the fact that ico(k) = O(k3) and ﬁ =0k ?)as |k| = .
Hence, (9) follows from (17) and (18). Continuity in x once again follows from the dominated

convergence theorem. [ |

Notice that the conservation law (8) allows us to control the L*((0,T); H5(R)) norm of the
solution to the homogeneous linear Cauchy problem by the H;(R) norm of the initial data. As we
shall show below, this is also the case for the mixed Lebesgue norms Lf ((0,T); HY"(R)), where
H®"(R) is the usual Bessel potential space defined with norm

Hmmmy=fﬂ{0+ﬁﬁﬂﬁ®} , 19)
Lr(R)
and (u, r) is any higher-order Schrédinger admissible pair, that is, any pair (u, r) satistfying
3 1 1
> 4=,
M, 22, /i+r 3 (20)

More precisely, we have the following Strichartz estimate:

Theorem 4. Lets € R and suppose (u, r) is higher-order Schrodinger admissible in the sense of (20).
Then, the solution of the homogeneous linear Cauchy problem (6) satisfies the Strichartz estimate

”y”Lf((O,T);HfC’r(R)) s ”J)OHH;(R)- (21)

Proof. By the definition (19) of the H®"-norm, we have

r—l{(l + k2)§§<X>(k, -)}

”y”Lﬁ‘(R;H;'r(R)) =

LE(0,T)LE(R))
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Recalling that ¥ (k, t) = e~k 5, (k), we have

s

r—l{ (1+k2)299(k, t)} = % / etkx=at (1 4 k2)25,(k)dk = S[g;0](0),

where ¢(x) = F~H(1 + k2)29,(k)}(x). So, it suffices to prove that

”S[go;O]“Li‘((O’T);L;(R)) b ||¢”L§(R)‘ (22)

For this, we note that by the definition of the Fourier transform, we can write

Slpi0100) = 51 [ 163,090y,
R

where

I(x,y,1) 1= / eIy —tOHUFIC ~tek) g
R

Then, invoking the following dispersive estimate from the proof of Lemma 4.2 in Ref. 6,
-1
Iy, 01 S 1Bt 3, £ #0,
where the inequality constant is independent of x, y, f, and proceeding along the lines of the proof
of Theorem 4.1 in Ref. 6 (see also relevant proof in Ref. 13), we infer the desired estimate (22). i
2.2 | Nonhomogeneous linear cauchy problem
We continue our linear analysis with the problem

iZy +ifZyxy + AZyy + 00z, =F, (x,t) € R%(0,7),
(23)
z(x,0)=0, x€R,

where F = Eyf € L}((0,T); Hy(R)) is a spatial extension of f € L*((0,T); Hy(R)). Thanks to

Duhamel’s principle, the solution of the nonhomogeneous problem (23), denoted by S[0; F], can
be expressed as

t
z(x,t) = S[0; F](x,t) = —i/ S[F(-,t");0](x,t — t")dt’
0

. t
__t ellx=e(O= Bk, "\dkdt’
2 Jy Jr ’ ’

(24)
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where, for each t' € [0, t], S[F(-,t"); 0] denotes the solution to the homogeneous problem (6) with
initial data F(x, t"). We then have the following result, whose proof is based on the approach that
was used for the Korteweg—de Vries equation in Ref. 43.

Theorem 5. The unique solution of (23) satisfies the space estimate

sup ”Z(',t)”HS(R) < ”F”Ll((o,T);HS(R))’ seER. (25)
telo,T] * t *

Moreover, if —1 < s < 2with s # %, then the following time estimate holds:

1 1
sup [lz(x, Il s+1 Smax{T2(1+T2), TJ}”F”L[Z((()’T);H)SC(R))’ (26)
xeER H, 30,7
where
1_—28, -1<s<-,
2—65 1 >
o= -<s5<2 (27)
3 2

1

-, s =

2

Remark 2. For2 <s < Z, due to the fractional norm ||9,z(x, -)||,,,—1 (see definition (29) below),
the analog of the time estimate (26) turns out to be

1 1
up 20 Ml s S Max{T 2+ T2), TOHFl oy + SUR IFCE I st
xe

x€R H3 (0,7) H 3

0D

s+1

The appearance of the space C(R,; H T_I(O, T)) via the relevant norm on the right-hand side has
a direct impact on the analysis of the nonlinear problem, as it eventually requires one to establish

an appropriate multilinear estimate for the term || |u|Pu(x, )|l sa_, (note that the underlying
H 3 (07)

t
range of s implies 0 < % -1< i and so the algebra property is not available). For this reason, a
different approach (perhaps via energy estimates) might be preferable for showing well-posedness
in this higher range of s. In any case, this task lies outside the scope of the present work, which
instead focuses on solutions of lower smoothness and, in particular, toward the low regularity
setting 0 < s < §

Proof. In view of the Duhamel representation (24), the space estimate (25) readily follows from
the homogeneous conservation law (8).

We proceed to the time estimate (26). Restricting s > —1 allows us to employ the physical space
characterization of the Sobolev norm since then the exponent % is nonnegative. In particular,

for -1 < s < 2,settingm := % and observing that 0 < m < 1, we have

N2Cx, Ml pmeo.ry = 1206 M0,y + 1206y (28)
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where the fractional part of the Sobolev norm is zero for m = 0 and for 0 < m < 1 is given by

T T—t _ 2
Iz, =2 [ [ BRSO g 29)
0 0

[1+2m

For each x € R, employing Minkowski’s integral inequality and subsequently using the homoge-
neous time estimates (9) and (10) for a® + 386 > 0 and a® + 336 < 0, respectively, along with the
Cauchy-Schwarz inequality, we obtain

T
”Z(-x’ ')”Ltz((),T) S / ||S[F(‘7 t,)y 0](x’ t T t,)”LtZ(O,T)dt,
0

1 T
SA+T2) [ IOy GO
0

1 1
S T> (M +T2)IF N2,y ))-
For the fractional norm, noting that

2
|2Cx, ¢ + 1) — 2(x, )] <

t
/ S[F(-,t");0](x,t +1—t") — S[F(-,t'); 0](x, t — t")dt’
0
2

t+l
+’/[ S[F(-,t");0](x, t + 1 —t')dt

we have ||z(x, -)||%, ST +J, where

2

T T—t 1 T
g :=/ / m(/ |S[F(-,t’);0](x,t+l—t’)—S[F(-,t’);O](x,t—t’)|dt’> didt, (31)
0 0 0

t+1 2
/ S[F(-,t");0](x,t + L —t")dt'| dldt. (32)
t

b /T /T—t 1

' 0 0 [1+2m

For I, we proceed as follows. First, we multiply the integrand by the characteristic function

Xio,7—t)(1) so that yjo7—;j(1) = 1for 0 <1 < T —t and x| r—(]) = 0 otherwise. This allows us to

replace T — t by T in the upper limit of the integral with respect to I. Then, we use Minkowski’s

inequality for the triple integral, and finally, we use the definition of y|or_;(l) once again to

switch T by T — t in the limit of the integral taken with respect to I. Performing these steps and
employing the homogeneous time estimates (9) and (10), we find

2

T T T—t 1 , :
I= / (/ / [i+2m ’S[F("t,); 0](x,t +1—1t") = S[F(-,t");0](x, t — t’)‘ dldt) dat’
0 o Jo

(33)
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2 2

T T T
z< / |S[FC, ¢");0]Cx, - — 1], dt’) s( / IFC ) s ) dt’) ST / IIF(-,t)Ili,S(R)dt.
0 0 * 0 x

. . 1 1 1
To estimate J, we consider the cases 0 < m < 3 and ;<m< 1 separately. The range ;<m< 1

corresponds to % < § < 2, and hence, we can employ the Sobolev embedding theorem in x. In par-

ticular, substituting for S[F(-,¢'); 0](x, t + | — t) via (12) and then using the Sobolev embedding,
the Fourier transform characterization of the Sobolev norm, and the fact that w(k) is imaginary
for k € R, we have

T T—t 1
<[ [

0 0 [1+2m

T T—t
)] =
~ [1+2m

0 0

T T—t

1 / s

= _— 1+ k2

L e [ 0ee)

Thus, by Minkowski’s integral inequality between the integrals with respect to t' and k, Cauchy-
Schwarz inequality in the #'-integral, and Fubini’s theorem between the integrals with respect to

tandt’,
T Tt 1 t+1 2
JS/O /0 [1+2m </t ”F('JI)HH;(R)dt’) dldt
T ,T-t pt+l ,
- /0 /o /t G, gy gy " A dld
T 2 T [/
- / IFC s / — / drdlds’
0 x o o

r2-2m T N
2—Mﬁ£|whﬂm@mﬁﬂ

1

t+1 2
_/eikx—co(k)(t+l)/ ew(k)t'ﬁ(k’t/)dtldk didt
27 Jn :

LY(R)

t+1 2
i/eikx—cu(k)(t+l)/ ea)(k)t’ﬁ(k,tl)dtldk dldt
R

27 [
HL(R)

2

t+1
/ e Bk, )dt'| dkdldt.
t

(34)

~

The range 0 < m < § corresponds to —1 < § < é and hence, Sobolev embedding is no longer

available. However, the fact that m < % allows to proceed via the Cauchy-Schwarz inequality in
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t' as follows:

T 1 T-1 ,t+l
J< / o / / IS[F(-,t");0](x, ¢t + 1 —t")|>d¢t’dedl
0 0 t

T 1 T ,t
=/ 2_/ / ISIEC, £');01Cx, ¢ — ')[>dt dtdl
o i Jiy
T 1 T ,
: </ zz—mdl> ) IstEC 01 = Ol

T
2
; ”F("t,)”H;l(R)dt,'

(35)

T1—2m

<
~1-2m

Note that the equality above is due to the change of variable ¢ — ¢ — [, and the inequality succeed-
ing it follows by extending the range of the integrals with respect to ¢” and t and then interchanging
the resulting integrals. The final inequality is thanks to Theorem 3.

Estimates (30), (33), (34), and (35) combined with the Sobolev norm definition (28) imply the
desired time estimate (26) in the range —1 < s < 2 with s # %

Finally, we consider 2 < s < g As this range corresponds to 1 < m < %, the Sobolev norm (28)
must be modified to

2 2 2
126 Mgcory = 1266 Mg 7y + 196266,y

Differentiating (24) in ¢, we have
t
0,z(x,t) = —iS[F(-,1);0](x,0) — i/ 8, [S[F(-,t");01(x, t — t")]dt’. (36)
0

We begin by observing that S[F(-,t); 0](x,0) = i ]R e**F(k, t)dk = F(x, t). Moreover, by using
the Fourier transform property for derivatives, we note that

a[ [S[F(a t,)’o](xa t— t,)] = a[ [% / eikx_w(k)(t_t/)ﬁ(k5 tl)dk
R

= / [—ea(k)]e™ = (e, ' )dk 7
R

= S[(=B33 + iad2 — 60, )F(:,"); 0] (x, t — t').

Therefore, (36) can be rewritten as

t
9,z(x,t) = —iF(x,t) —1i / S[(—B3; + iad: — 63,)F(-,t');0](x,t — ¢")dt’ (38)
0
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and so,

t
/ S[(—B3; + iad? — 80, )F(-,t');0](x,t — t")dt’
0

19, 2(x, .)”LtZ(O,T) < IF(x, ')”L[Z(O,T) +

L(0,1)

The first term on the right-hand side can be handled as follows:

IF G 20y < sup IFCe iz < IFI oo (39
t xeR ! LEOT)HE  (R))

For the second term, extending the range of integration in ¢’ and then applying Minkowski’s
integral inequality in combination with Theorem 3, we have

t
/ S[(—B3;3 + iad? — 63,)F(-,t');0](x,t — ¢")dt’
0

L(0,T)

dt’
H'(®)

<A +T3) / ' H(—/safc +i00% — 80,)F (-, ")
0

1 T
5(1+T5)lﬁ/
0

L T T T
sawz)[ﬁ [ IOt + 10l [ IFC O e +161 [ ||F(-,r'>||Lg<R>dr']
0 0 0

T
(., t’)’|H;1(R)dt’ + al /0

T
a,%F(-,t')”H_l(R)dt’ + 18 / |85 FC-, t’)||H;1(R)dt’]
x 0

T
1
<A +T3) / 1 ) (40)
0 X
Together, estimates (39) and (40) imply the bound

1 1
10, z(x, ')”Lf(O,T) ST2(1+ TZ)HFHL[Z(((),T);H%(R)), (41)
which corresponds to the desired estimate (26) in the case s = 2. [ ]
Regarding Lf L’ Strichartz-type estimates for the nonhomogeneous linear Cauchy problem (23),
we have the following result that is a consequence of the homogeneous Strichartz estimates given
in Theorem 4.
Theorem 6. Let s € R and suppose (u,r) is higher-order Schrodinger admissible in the sense of

(20). Then, the solution of the nonhomogeneous linear Cauchy problem (23) satisfies the Strichartz
estimate

120 oy S WE Lo, mymswyy: (42)
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Proof.  Letting H(x,t,t') := y<y(t)S[F(-,t');0](x,t —t'), we rewrite W21 4o rymsr m)y)
< #((0,1);Hy
as

T
STy = H(, -, t"dt . 43
1211 o rye23 ) H /0 ¢ t') “Lﬁz((O,T);HiJ(R)) (43)

Therefore, in view of the homogeneous Strichartz estimate (21), we readily infer

T
!/ /
12110 rym3r ) < /O 1HCs s M o myipasr e

T T
< /0 ISTEC:01C - = )]yt S /O ]y

2.3 | Reduced initial-boundary value problem
We consider the reduced initial-boundary value problem
i + iBqxxx + Aqyx + 169, =0, (x,1) € R x(0,T"),
q(x,00=0, xeR,, (44)

q(0,1) = go(t) := Ep[g — y(0,-) — 2(0,)I(t), t€(0,T"),

where T’ > T, y(0,t) and z(0, ) are the solutions to the homogeneous and nonhomogeneous
Cauchy problems (6) and (23) evaluated at x = 0, and E}, : Ht(s+1)/3(0, T) - HESH)B(IR) is a fixed
bounded extension operator satisfying the additional property that supp g, C [0,T’). The con-
struction of such an extension is analogous to the one provided in detail in Section 3 of Ref. 40 in
the context of the linear Schrddinger equation. In particular, we note that, for continuous Sobolev
data, a compactly supported extension can be constructed thanks to the compatibility between
the initial and boundary data at (x, t) = (0, 0) (see also discussion above Theorem 7). In this con-
nection, observe that the traces y(0, t) and z(0, t) are well defined and belong to H[(Hl)/ 3(0, T)in
view of Theorems 3 and 5.

2.3.1 | Solution formula

We obtain a formula to represent weak solutions of the reduced initial-boundary value problem
(44) via Fokas’s unified transform method. To this end, we first assume that g is sufficiently
smooth up to the boundary of R, X (0, T") and decays sufficiently fast as x — oo, uniformly in
[0, T'].
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The definition of the standard Fourier transform on R applied on the piecewise-defined
function

F(x) = {f 0 x>0 120, 00),
0, x <0,

gives rise to the half-line Fourier transform pair

~

fk) = /°° e kx f(x)dx, Im(k) <0,
0
(45)
fx) = % / ek fk)dk, x> 0.

R

Note that the above half-line Fourier transform makes sense for all Im(k) < 0 and not just for k €
R as its whole-line counterpart. Taking the half-line Fourier transform (45) of (44) and integrating
over (0, t), we obtain the following spectral identity known as the global relation:

e®®r gk, 1) = (—pk* + ak + ) §y(w(k), 1) + (iBk — iat) § (w(k), 1) + B S (w(k), 1), Imk <0,
(46)
where w is given by (11) and the temporal transforms g;(«(k), t) are defined by

t
gilk,t) = / ek'8lq(0,t")dt’, keC, j=0,1,2. (47)
0
Then, by the inversion formula in (45),

) = 5 [ e (=B 4 ak 4 8) B(@(l), ) + (B — 0 (@ (O00) + B B0k O]k

(48)
The transforms g7 and g, involve the unknown boundary values q,.(0, t) and q,.,(0, t). To elimi-
nate them from (48), we proceed as follows. For D := {k € C : Re(w(k)) < 0}, consider the region

2

D* := D {im(k) > 0} = {Im(k) > 0 - 3<Re(k) - %) _ (i - 28

<o},
7 (49)
which is depicted in Figure 1 for the various signs of the quantity a? + 386. Then, thanks to ana-
lyticity (Cauchy’s theorem) and exponential decay, it follows that (e.g., see Appendix A in Ref. 24
for a detailed explanation in the context of the linear Schrodinger equation)

q(x,0) = L / el (k2 + ak + 8) go(w(k), 1) + (iBk — ia) & (w(k), ) + B §x(w(k), 1)] dk,
oD+

21
(50)
where the contour D7 is positively oriented, that is, it is traversed in the direction such that D*
stays to the left of the contour, as shown in Figure 1.
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A I3
. Dt
b_ by
c_ ¢y

FIGURE 1 The region D" defined by (49) for a® + 386 > 0 (left), o> + 338 = 0 (center), and a® + 338 < 0
(right). In the first case, the square root branch cut B = (—o0, b_] U [b,, 00) with branch points
b, = i(a + 24/a? + 3$6) (shown in red) stays outside the region D*, whereas in the second case, there is no

3

branching. On the other hand, in the third case, the branch cut B (shown in red) is taken along the vertical line
segment connecting b, to b_ and so part of it lies in D*; thus, a local deformation around B is performed as
shown in Figure 2 below.

The fact that the integral (50) is taken along the deformed contour D" will allow us to elimi-
nate the unknown transforms g; and g, from (50) by employing two additional spectral identities
emanating from the global relation (46) through suitable transformations that keep the spectral
function w(k) invariant. In particular, both of these identities are valid along dD*, and so, we will
be able to use them simultaneously. It is important to emphasize that the two additional identities
are not valid along R, which is the reason why the deformation from R to dD* that leads to (50)
is necessary.

To determine the symmetry transformations, we solve the equation w(v) = w(k) for v = v(k).

(i) Ifa? 4 388 > 0, then the two nontrivial symmetries are

1

Vi(k)=_1<k_g>i@l(k 06>2_Mr_ (51)

2 KV 982

The square root term in (51) is defined as follows. Denoting the two branch points by b, :=
%(a +2+/a? + 383), we write k — b, = |k — b, |ei® with —7 < 6_ < 7 and 0 < 6, < 27,

1
which correspond to branch cuts along [b,, o) for (k — b, )2 and along (—oo, b_] for (k —
1

b_)z. Then, we associate the square root in (51) with the single-valued function

a\’ 4(a’ + 3B95) % 0.46.)
-_ -_—— = —_ —_ o4 - /
l(k 3ﬁ> 982 k= by |lk—b_|eC+e)/2, (52)

which is analytic for all k € B := (—o0,b_] U [b,, 00). In turn, this definition ensures that
v, are analytic for all k € C \ B. Importantly, as shown in Figure 1, BN D+ = .
(ii) a?® + 385 = 0. In this case, the symmetries are the two entire functions

vi(k>=—1(k—9>i@(k—i>, (59

2 5 2

as shown in Figure 1.
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FIGURE 2 Deformation of A A

8D* to 8D* for a? + 35 = 0 (left) : L3 5
and o + 385 < 0 (right). The left : \ D+ /
A >

deformation is carried out to stay

away from the point %,whichisa R AN 1b+ s
zero of the quantity v_(k) — v, (k). L : >
The right deformation is done to c & c, G- |b C+

3p ' _

avoid crossing the branch cut B
(shown in red).

(iii) a? +3B4 < 0. In that case, the symmetries are again given by (51); however, as the branch
points b, are now complex conjugates along the line Re(k) = % we write k — b, = |k —

bilei(er‘”/ 2) with 0 < 0, < 27 and corresponding branch cuts along the vertical half-lines
from b, to % — ioo, so that

2 2 ) %
l(k—%) —%] =1/|k = by|lk — b_| €iC++0-—m)/2 (54)

is single-valued and analytic for all k € C \ B, where 5 is the finite vertical segment con-
necting b, and b_, as shown in Figure 1. Note that BN D+ # oo as part of the branch cut B
lies inside the region D*. For this reason, before employing the symmetries v, for the elimi-
nation of the unknown transforms g, and g; from (50), we use Cauchy’s theorem to deform
the contour dD* in (50) to the modified contour dD*, which corresponds to the positively
oriented boundary of the region D* shown in Figure 2. This way, the branch cut /3 is avoided
prior to the use of the symmetries v, , allowing us to take advantage of analyticity inside the
region D* later.

In view of the above discussion, we rewrite (50) as

q(x, 1) = % / elkx=e(ON[(—Bk? + ak + §)Zy(w(k), 1) + i(Bk — a)gy (w(k), 1) + B Zr(w(k), )] dk,
T

(55)
where the integration contour I' is given by
oD%, a®+3B5 >0,
= _ (56)
oD*, a?+3B5<0.

Replacing k by v..(k) in the global relation (46) and using the fact that w(v,.(k)) = w(k), we get
the spectral identities

W Gy, (k), 1) = (=pri(k) + av.(k) + 8)go(w(k), 1) + i(Bv.(k) — a) g (w(k), 1)

(57)

We emphasize that the above identities are valid only for k such that Im(v, (k)) < 0. Thus, to
employ them for the elimination of the unknown boundary values from (55), we need to ensure
that I' C {Im(v..(k)) < 0}. This is proved in the following lemma.
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Lemma 1. Let v, = v, (k) be the nontrivial (i.e, v, # k) solutions of the equation w(®) = w(k) as
given by (51) or (53), depending on the value of a® + 3B6. If k € D*, then Im(v,) < 0.

Proof. For all k = kg + ik; € D+ such that »(k) # k satisfies w(v) = w(k), we must have B(»? +
kv +k?) —a(v + k) — & = 0. Writing v = vg +iv; and taking real and imaginary parts, this
equation is equivalent to the system

77R17[ = Ckl, 77122 — 17[2 = d, (58)

5. = ke @ 5 _ Moo 2 3k 32 2 Ll
where Jg =vg + - — oo U=y + 0= -5 andd = k + = k-+ kR+4W-+51f
v; =0, thenvy; = —% < 0ask € D+ and we are done. So, let us assume V7 # 0. Then, comblmng

the two equations in (58), we obtain 7% v+ dv — czk2 = 0, which can be solved for ¥: to yield v v

—d+/d2+4c2k? RSN ; 5
fcl = —5 * 1 / — + czkz. Note that only the positive sign is acceptable since ¥; € R =

v7 > 0. That is, 7 = —= \/ i c2k? implying 7 = +\/ \/— + c2k?. In turn, from the

first of Equations (58), we get ¥, = +— and so
-4y %+czk12
Ck[ kR a k[ d d2 2
Vr =% —74‘%, 'VI=—?i —§+ T+02k1. (59)
\/_ﬂ +1/E+ c2k?
2

Observe that the radicand of the outer square root involved in the above expressions is a nonneg-
ative number, and hence, that square root is a real (nonnegative) number. In addition, note that
expressions (59) are consistent with Equations (51) and (53); however, their dependence on ki and
k; (as opposed to k) is not suitable for discussing the analyticity of the associated expressions for
v, which is why (51) and (53) were used earlier for that purpose. On the other hand, (59) are the
forms convenient for proving Lemma 1.

The case of the negative square root sign in (59) is straightforward as then v; < 0 for all k; > 0
and, in particular, for k € D+ as desired. On the other hand, the case of positive square root sign
in(59) requires more work. More specifically, by definition (49), for k € D_+, we have

2 2 S
<@—£>—ﬁ—3%giga (60)

which can be rearranged to —zkﬁ + ikf + 21kR + % > 0. For k; # 0 (note that k; = 0 implies

v; = 0 and we are done), this is equivalent to L + k2 > (:2k2 or, after completlng the square,

kK2 d I d i} d
(L +-)Y> + c?k?. Hence, L > —= + 4/ — L pektord < 4[24 g2 and, as the sec-
4 2 2 4 17" 4 2 4 1

ond inequahty is not possible because it would imply that k? < 0, taking the square root of the first
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J— 2
inequality and using the fact that k; > 0 for k € D+, we obtain 0 > —k—2’ + \/—g +4/ d: + c2kI2 =

vy as desired.

The proof so far has been under the assumption that v(k) # k; however, although v # k by
hypothesis, there could still be points in D+ where v(k) = k, and hence, this scenario must also
be considered. In that case, recalling that v, satisfy ﬁ(vi + kv, +k?) —a(v, +k)—6 =0, we
infer that if k € C is such that v, (k) = k, then 38k? — 2ak — 8 = 0. If a® + 388 > 0, then k =
k.= % + _wﬂ;;ﬁc? € R, thatis, k; = Im(v, ) = 0 and we are done. Ifa® + 335 < 0,thenk =k, =
Z 4 i—”_(az%. Note that k_ ¢ D+ since Im(k_) < 0. Also, k, & D+ because if a® + 366 <0

38 3B

_a243p8  y/—(a?+388) | vV—(a?+388) _
R 758 > Y = Im(k,).
This completes the proof of Lemma 1. [ |

and k € D+, then by (60), we must have k; >

Thanks to Lemma 1, both of the identities (57) are valid for k € D+ and hence can be solved
simultaneously as a system for the unknown transforms g; (w(k), t) and g,(w(k), t) to yield

~ . _ ew(k)t
&i(w(k), 1) = iBlvy(k) —v_(k)]

w(k)t

[@v..(K), 1) = Glv_(k), )] + ikgo(w(k), 1), (61)

e

B2 [v-(k) — v, (k)]
= k*go(w(k), 1).

&2(w(k), 1) =

[(Bv-(k) — )q(v,(k), 1) — (Bvi (k) —a)gv_(k),1)]  (62)

Substituting these expressions in the integral representation (55), we obtain

q(x,t) = % / etkx=(Ot (—38k2 + 2ak + 8)o(w(k), 1)dk
' 63)

1 x| V- =k _ n-k
+5— /F e [—V_ BERG) qvy(k), 1) ROETR) qv_(k),t)|dk.

Note that the definition (56) of ' in conjunction with the choices of the contour D™, as shown
in Figure 2, ensures that v_(k) — v, (k) stays away from zero. Indeed, for a® + 335 > 0, the solu-
tions of v_(k) — v, (k) = 0 occur at the branch points b, which lie on the real axis and outside

segment [%(a — Va2 +3696), %(a + v/a2 + 386)] forming the base of ' = dD* (see left panel
of Figure 1). Moreover, for a? + 388 = 0, the quantity v_(k) — v, (k) vanishes at %, which is

bypassed by I' = D as shown on the left panel of Figure 2. Finally, for a® + 385 < 0, the roots of
v_(k) — v, (k) = 0 are again at the branch points b, , and so, they stay below the contour I = dD*
depicted on the right panel of Figure 2.

Therefore, using analyticity (Cauchy’s theorem) along with exponential decay as |k| — oo
inside D* or D*, as appropriate, we conclude that the second k-integral on the right-hand side of
(63) is equal to zero. (To see the decay, note that |ek*¥~1V+V| = ¢~ Im()x+Im(vL)y and yse Lemma 1
together with the fact that x,y > 0.) Consequently, we deduce the solution formula

i) = =5 [ e 0 gl k. (64)
r
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In fact, noting that |e=*(®)(—)| = ¢Re(@())t'~1) and recalling that, by definition (49), Re(w(k)) < 0
inside D*, we see that the exponential eikx—a(k)(t—t") decays as |k| — oo inside D™ for all x > 0,
t' > t. Thus, combining this decay with analyticity, in the second argument of the time transform
8o, we can replace t by any fixed T > t and thereby obtain the following equivalent version of the
solution formula (64), which is more convenient for the purpose of linear estimates as we will see
below:

aCeit) =~ [ e 10 gy, Tk (69)
r

2.3.2 | Compatibility between the data

Recall that the initial and boundary data of the initial-boundary value problem (5) belong to the

L?-based Sobolev spaces H3(R,.) and H t(s+1)/ 3(0, T), respectively. Moreover, in view of the range
of validity of Theorem 5 for the nonhomogeneous Cauchy problem established earlier, as well as
of Theorem 7 for the reduced initial-boundary value problem proved below, we will restrict our
attention to the range 0 < s < 2 with s # i

1 L . .
For - < s < 2, continuity becomes relevant to our analysis and it turns out that we need to

impose a compatibility condition between the initial and the boundary data. More specifically,

note that if % < § <2, then % < % < 1. Therefore, both of the traces uy(0) and g(0) are well

defined. Furthermore, since y(0, -) and z(0, -) belong to Ht(SH)/ 3(O, T) by Theorems 3 and 5, the
traces y(0,0) and z(0, 0) are well defined and equal to u,(0) and 0, respectively, due to continuity
and the initial conditions in problems (6) and (23). Thus, using continuity at zero for the function

g €H t(SH)/ 3(IR) defined in (44), we have
80(0) = lim go(t) = lim [g(t) — y(0,1) — 2(0, )] = g(0) — ¥(0,0) — z(0,0) = g(0) — o (0),
which, upon imposing the (natural) compatibility condition,
1

uo(0) = g(0), 5 <S <2, (66)

implies that the boundary datum of the reduced problem (44) vanishes at ¢t = 0, that is,
1
g0 =0, 5 <s<2. (67)

This feature will turn out to be convenient in the proof of Theorem 7 that follows next.

2.3.3 | Sobolev-type estimates

We now establish the basic space estimate in the initial-boundary value problem setting. More
precisely, we prove the following.
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Theorem 7. Let s > 0. Then, the unique solution of the reduced initial-boundary value problem (44)
satisfies

laC Dllmsce,) < e (1+ VI Yligoll s (68)
H,3 (0,1

uniformly fort € [0,T'], where ¢ > 0 is a constant that only depends on a, 3, 8, and s.
Proof. We employ the Fokas method solution formula (65). First, recalling the definition (49) of

D and the various scenarios depending on the sign of a? + 336 that are shown in Figures 1 and
2, we parameterize the integration contour in (65) as I = (—y;) U ¥, U y3 with

o —/382m2 + a2 + 336 v

y1(m) = 38 im, A< m< oo,
y,(m) = m+iAd, c_<m<cy, (69)
a+4/3B2m2 +a? + 336

oy = 2V B vim, P<m<,

. . . o 2 . e .
where, as depicted in Figures1and 2, c, = Ve e W and A > 0 is a fixed nonnegative real
number such that

1=0, a?+3B85 >0, (first panel in Figure 1)
2/=(@2+383) (70)

A> , a’+3B5 <0. (Figure?2).

34

In view of the above parameterization, for any j € Ny, we have

. .

dlax.t) = ~5 [ Gralm)y e gyagyyom), A am
e N dl[i

- % /C (iy2(m))] elr2mx=@r2(mDt g (ey(y, (m)), T’)W dm (72)

- % A (iy3(m))] elr3mx=(lrs(mt g (y(y5(m)), T')W dm 7

=: ql(x9 t) + qZ(x’ t) + q3(x’ t)

As the terms g; and g3 are analogous, they can be handled in a similar fashion, and hence, we
only provide the details for the estimation of g; given by (71). Since

2
1
lg: (-, D112 =—

= dx
Li(Ry) 4772

oo‘/00(i)/l(m))je:i}’l(m)x—(w(h(rn))t Fo(w(y,(m)), T,)d[iw(;/;q(m))] dm
0 i

2

Aol dm) i

5 /0 </0 e~ mx |}/1(M)|J |§0(a)(y1(m))’ T/)| i
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by the boundedness of the Laplace transform in L?(R, ) (e.g., see Lemma 3.2 in !), we have

[+3] ) drli 2
T AN VRS B s EU O

LZRy) ™

Let 7(m) = iw(y,(m)), m € [, o). Note that 7(m) € R since y;(m) € dD* and Re(w(k)) =0
for k € dD* and, more precisely, Range(r) = [iw(c_ + i1), 00). Furthermore, since 7/(m) # 0 on
(A4, 0)and7 - coasm — oo, itfollowsthatt : [4,00) — [iw(c_ + id), 00) is monotone increasing
and so 7/(m) > 0. Then, (74) becomes

19GOS [ I OmP (e, TP )

3 (75)
- A )1 |G e m) [ (m)] dm

after observing that the time transform (47) of g, at T’ is, in fact, the Fourier transform of g, thanks
to the fact that g, has compact support inside (0, T’), namely,

go(—it(m), T") = go(r(m)). (76)

Next, we have the following auxiliary result.

Lemma 2. There is a constant ¢ > 0 depending only on «, 3, 8 such that

21
Sup MSC:<OO

melLe) 11+ 12(m)] 5

We prove Lemma 2 after the end of the current proof. Employing it in combination with (75),
we obtain

IO < / [+ 720m)] * 8o(e(m) e (m)dm
A

LARy) ™
® 1 (77)
- / A+ g@Pdr = gl .,
iw(c_+id) H3 ®)
t
uniformly for ¢t € [0, T’], completing the estimation of ¢;.
We proceed to the estimation of g, given by (72).
Case I: a® + 338 > 0. Then, 1 = 0 and by the definition of y,, we can rewrite g, as
i [
i) = =5 [ Gme™ 0 gl T Gy, 7®)
c_

so that g,(-, t) can be regarded as the inverse spatial Fourier transform of the function

Q(m.1) = {0’ m o) (79)

—i(im) e~ g (w(m), T ' (m), m € (c_,c,).
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Note that [e®™P| = 1 for m € (c_, c4), p € R. Hence, using the definition of the ¢-transform (47)
and the Cauchy-Schwarz inequality, we have

1o(0(m), T < VT" l1goll 20,7, (80)

implying via Plancherel’s theorem that

[+5) Ct
L D)|? = m, t)|>dm < T'||goll? m|¥ o' (m)|>dm
[CACHI / _1Qulm,OPdm < T'lgollzy 1y [ 1m0 Om)
i (8D)
= cT'llgoll 7y S T'NRON s
! H3 (01

with the various constants depending on «, 8, 8, and j.

—(a2
Case 2: a® + 335 < 0. Then, 1 > 2Y=@+39)

Y > 0 and, by the definition of y,,

cy ; .
lga(x,1)] < %e"lx/ |m? + 22| 2 e @M+t & () (m + i), T') ' (m + id)|dm.  (82)
C_

Recall that for k € D*, we have Re(w(k)) < 0, which implies |e*("+ 0P| < 1form € (c_,c,), p €
[0, T"]. Therefore, similarly to (80),

1Bo(co(m + 1), TN < VT l1goll 200,77y (83)

Combining (82) and (83), we deduce

4 —
|g>(x, O] < eVT'e T lIgoll 20mye -

Taking the square of the above inequality, integrating with respect to x € (0, o) (for this step,
recall that A > 0), and then taking square roots, we obtain

Cc ’
192G Ol 2w,y < —=VT"eT lIgollz0.r) S VI'eT ligoll 111,
V24 H,* (0.1)

where the constant of the last inequality depends only on «, 8, 8, and j.

The desired estimate (68) has been established for s € N. The proof for s > 0 follows by inter-
polation, for example, see Theorem 5.1 in Ref. 58. Make a remark about the possibility of using the
fractional norm along the lines of the nonhomogeneous Cauchy problem and Ref. 1. [ |

Proof of Lemma 2. First, we make a few observations. From the definition (11) of w and the triangle
inequality,

lw()| > BIk|® — |ak? + 8k| > BIkI® — (lallk|* + |8]|KI).

In addition, for |k| > lol+ya*+2410] ”OZJFW, we have |a||k|? + |8]]k| < %,8|k|3, and so, noting also that
Re(w(k)) = 0 along 8D,
IR — : ! (34)

< ~ .
L+ [P = g f Bgs 1HIKI°
4
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Observe further that |y;(m)| > m thus |y;(m)| can be made as large as we wish by taking m €
[4, o0) large enough. Therefore, using (84), for large enough m, we have
1 1 < 1
1+72(m) 1+ [iw((m)]2 ~ 1+ |y (m)[6’

On the other hand, for |k| > 1, we have |k|? > |k|, and so, by the triangle inequality,
|’ (k)| < 3B1k|* + 2lallk] + 18] < 3B +2lal +|SDA + [kI*).
From the definition of y;, there exist nonnegative constants c;, ¢, depending on «, 3, § such that
lyi(m)| < cymand [yj(m)] <c,, m €[4, ).

Hence, there are some constants c; > 0, M > 1 depending on «, 8, § such that

ly1(m) |||’ (y1(m))y; (m) . Uy m)12Y (1 + |y, (m)P)
- C3

T < <c;, m>M.

[1+72(m)] 5 A+l m)*!

However, by continuity of the function on the left-hand side on the compact interval [A, M], there
is also some constant ¢4, > 0 depending on «, 8, & such that

ly1(m)|¥ ||’ (y1(m))y (m)

<c¢, mEA,M].

Jj+1

[1+2(m)] s

Combining the last two inequalities yields the desired estimate with ¢ = max{cs, c;} < 0. [ |

2.3.4 | Strichartz-type estimates

It turns out convenient to reparameterize the contour of integration in the solution formula (65)
of the reduced initial-boundary value problem (44) asT' = I'; U T, U I'; with

2
a2z + 3838
F1(m)=m+i\/3<m—%> _TZ‘B’ —oco<m<ec_,
L(m)=m+il, c_<m<cy, (85)
a\’ a+3p8
F3(m)=m+i 3<m—%> —3—‘82, ¢, <m< oo,
+v/ . . . .
where, as before, c, = W and A > 0 satisfies (70). With this parameterization,

formula (65) can be expressed as the sum

3

. 3
g, =-=— Y / el g (w(k), T ) (K)dk =: Y q;(x.0).
j=1"T;

27 =
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We first consider g, which after recalling also (76) takes the form

. Cc_
@) = -5 / eMmx=ehimlt g (ico(Ty (m))) @' (Ty (M), (m)dm

—00

(86)
1 C_ ) [0e] )
— E elFl(m)x—cu(Fl(m))t </ e‘lmy‘Pl(y)dy)dm,
—00 —00
where ¥, is the inverse Fourier transform of
& —igy(iw(T1(m))) ' (T (M)} (M), m<c_,
Yi(m) :=
0, m>c_.
Then, introducing the kernel
Cc_
K@;x,t) = / eI mxy.0 p(m; x)dm (87)
—00
with amplitude
—x 3(m_z)2_a2+3ﬁ6
p(m;x) =e ¥/ 3 (88)
and phase
d(m;x,y,t) = m(x — y) + iw(Ty(m))t
2 (89)
=m(x—y) +t[—85m3 + 8am? +2<5— a—)m - oc_é]
B B
we can rearrange (86) in the form
1 [s9)
0 (x, 1) = [Ky (P ](x) 1= / Ky x, )¢ (y)dy. (90)
—0o0

This writing provides the starting point for proving the following central estimate of Strichartz
type.

Theorem 8. Let s > 0 and (u, r) be higher-order Schrodinger admissible in the sense of (20). Then,

1,1
lalhsormmray S (14T igoll 2 o1
! H, 3 (01

where HY' (R,) is the restriction on R of the Bessel potential space Hy' (R) defined by (19) and the
inequality constant depends only r, s.
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Proof. We will use a standard duality argument. Let n € C.([0,T']; D(R,)) be an arbitrary
function. Then,

T/ T oo 00
/ <K1(t)‘1‘1,77(-,t)>L§(R+)dt’=‘ [ ([] ko owo Je i

00 T! 0
- / w,(y) / / Km0 n(x, Odxdidy  (92)
—00 0 0

27

< W llr2qry

T’ 0
/ / K2 0) 1, Odocdt
0 0

L3(R)

SetK,(p) := fOT /Ooo K(y; x, t)n(x, t)dxdt. By the definition of the L?>-norm, we have

[+5} T! T’ . ©
Kol = [ < [/ IC(y;x,t)n(x,t)IC(y;x/’tz)n(x/,t/)dxdx/dtdt,) o
—o\Jo Jo Jo Jo
T T .00 .0
B / / / / n(x, On(x’, t)K3(x, x';t, " )dxdx' dedi’
0 0 0 0

T’ IS T/ )
_ / / n(x, 1) / / DO K A(x, X' 1, )dx'de’ \dxdt,
0 0 0 0

where K;(x,x';t,t") := ]_ozo K®y;x,)K(y; x',t")dy. Then, by Holder’s inequality in (x,t) and
then Minkowski’s integral inequality between x and ¢’, we deduce

T’ [«
2 , !+ /. / ! 3+
”K2”L2(R)S”77HL§‘ ((O,T/);L;’(R+))/o /0 n(x!, t)K3(x, x'; ¢, t")dx"dt
LT SLE(R )

(93)

dt’
LL(Ry)

(o4}
/ n(x!, tHhK5(x, x";t,t")dx’
0

T
<l oy @y /0
L¥ (0,11

We begin with the estimation of the interior L},(R )-norm. Using the definition (87) of K, we
rewrite K3 in the form of an oscillatory integral:

© c_ c_
K3(x, x/; t, l’,) — / </ e—igb(m;x,y,t)p(m; x)dm> </ ei¢(m,;x,’y’[,)p(m,; x/)dm’>dy
—o0 —00 —o0

C_ (s8] C_
— / p(m;x)/ e—i¢(m;x,y,t)</ ei¢(m,5x’,y’”)p(m’;x')dm')dydm.
—00 —00 —00

Recalling the definition (89) of the phase function ¢ and introducing the function

im’ x' —w(Ty (m"))t!

e pm’;x"), m' € (—o0,c_],

0, m' € (c_, ),

Q(m'; x',t") ::{
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we have via the Fourier inversion theorem

0 c_
/ e—i¢(m;x,y,t) </ ei¢(m’3x,’y’t’)p(m’; x’)dm’)dy

= 2re imx+ali(m)t . % / elmy < / e~ MyYQ(m!; x', t")dm'’ >dy
—0o0 —0o0

— 27T€—imx+cu(1"1(m))t Q(m, xl, t,).

Thus, for m € (—o0, c_], we deduce

[o0] Cc_
/ e~ id(mx.y,t) </ eiqb(m’;x’,y,t’)p(ml;xl)dm/>dy — zne—iq.‘)(m;x,x',t—t’)p(m;xl)’
—o _

o)

and consequently,
C_
Ks(x,x';t,t") = 271'/ e~ #mxXL=t) b(m; x 4 x")dm.
—o0

Next, we employ the following fundamental result.

Lemma 3. Let K(x,y,z,t) = /_C;o ei¢(M?x’y")p(m; z)dm, where x,z € R, and y,t € R. Then,

1
IK(x,y, 2,0l S t] 3, t#0, (94)
where the constant of the inequality is independent of x, y, z, t.
The proof of Lemma 3 relies on the classical van der Corput lemma and is provided after the end

of the current proof. Observe that Lemma 3 with y, z, t replaced, respectively, by x’, x + x/,t — t/
yields

1
K3, x", 6, ) S o=t 3, t#0,

with inequality constant independent of x, x’, ¢, and t’. This dispersive estimate implies

©0 1
/ n(x’, tHK;5(x, x'; t, " )dx' Sle=t1 5 In(lr g, )- 95)
0 LP(Ry)
On the other hand, we also have
[ ok | SOl %)
0 LA(R,)

Indeed, we have

[ 2 [+ 2
/ n(x!, tHK5(x, x";t,t")dx’ / n(x!, tHK5(x,x";t,t")dx"| dx
0 0

LA(R,)

:/0‘”
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(o] [o+] C_
= (27)? / / n(x, t’)</ e~ idlmxx =) p (i x 4 x’)dm>dx’
0 0 .
2

[s] C_ o0
< (27r)2/ </ e‘xs(m)</ e‘xls(m)ln(x’,t’)ldx’)dm) dx,
0 —00 0

- _ Xy 224366
where s(m) = \/3(m 3/3) R

ing the following lemma, which provides a generalization of the L?>(R,)-boundedness of the
Laplace transform given in Ref. 1 and is established after the end of the current proof.

2
dx

The claimed estimate (96) then directly follows by invok-

Lemma 4. The estimates in (i) and (ii) below hold true for f € L2,(—c0,c_) and f € L3(R,),
respectively.

SN2 (—ooe )
L2(Ry)

i) H / =0 f(m)dm

(ii) / e=5m) £ (x)dx
0

S ”f”Lfc([RJr)-
L2,(—c0,c_)

Now, (95) and (96) together with Riesz-Thorin interpolation theorem yield for any r > 2 that

[ee) 2
[ iR | Sl Ol g,y ©7)
0 X

LL(R,)

where l, =1 — 2 and we have also used (20). Hence, for any 7 € Lt ,((0, T'); L} (R,,)), we obtain
r r

T/
«A

Handling the right-hand side via Hardy-Littlewood-Sobolev fractional integration (e.g., see
Theorem 1 on page 119 of Ref. 59) and combining the resulting inequality with (93), we infer

0 T’ 2
/ n(x!, tHK;3(x, x'; 8, t")dx’ ar' 5 / e = "I #ln()I Ly gydt'.
0 0 x

Ly (R)

<
1Koz S Wl o g,y
which can be combined with (92) to yield
Ilql”Lﬁ‘((O,T’);L;(RJr)) S “lPl“LZ(R)- (98)

Differentiating the expression (86) j times in x and repeating the above arguments, for any
Jj € Ny, we conclude that

”ayjc‘h||L“((0,T/);L;(R+)) S “ailPl“LZ(R) Sgoll . (99)
' H,* [R)

Observe that the left-hand side of estimate (99) is simply the Lf ((0,T"); W7 (R,))-norm of g;. In
this connection, note that, according to a classical result by Calderén ®°, forany j € Ny, 1 < r < oo
the Sobolev space W/ (R) and the Bessel potential space H/”'(R) coincide (i.e., they are equal as
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sets). Indeed, it is not hard to show that W/ (R) C H/"(R). On the other hand, showing that
HJT(R) C W/'(R) is more involved; see page 22 of §2.3 in Ref. 61, where the result is proved with
the help of the Mikhlin-H6rmander theorem for LP multipliers (Theorem 6.2.7 in Ref. 62). Thus,

forany j € Ny, 1 <1 < co, we have || - || girw) = || - llwirmw)> and so,
laillyirw,y = inf  NG@illyirg = nf NGl = 1l @, ) (100)
Dliwirwy) *= o gy " wirw = - G o) 19 @ = 11l @)
Qlry =0 QiR =

Observing that the left-hand side of estimate (99) is simply the W/"(R, )-norm of gq;, in view of
(100), we see that (99) is, in fact, equivalent to

g Il oy S 8ol 1 (101)
Ly ((0.T"):Hy (R4)) HY ®)
Finally, by interpolation (e.g., see Theorem 5.1 in Ref. 58), we deduce
”‘h||L;‘((0’T/);chv’(R+)) Slgoll s, s20, (102)

H?* ®R)

completing the estimation of q;.
To estimate ||q, | LA (R ) We use (78)-(80) (note the difference in notation, as g, in those

expressions now corresponds to aiqz) as the portions y, and T, of the two parameterizations (69)
and (85) coincide. In particular,

193¢ Ol g, = </ IQz(m,t)I’dm>
1

r Cy r
< ((T’)Z ”gOllztz(O’T,) /C m'" |a)’(I’Yl)|’dm> = Cj’r V T “gO”L[Z(O’T/).
Therefore, for any j € Ny, we find

1 1 1 1
i —4= 4=
||5>JCCI2||L¢‘((o,T');L;(R+)) = ¢ (T)# 2 18oll 20,y < €1, (T 2 Igoll S

H,? (0.1

and, using again the equivalence of the Bessel potential and Sobolev norms (100) along with
interpolation, we conclude that

1 1
- + -
192050z S T lgoll s s 20 (103)
2o
As the estimation of g3 is similar to that of g;, the proof of Theorem 8 is complete. [ |

Proof of Lemma 3. By the Fundamental Theorem of Calculus, K can be rewritten as

d

C_
K(x,y,z,t) = —/ d—il(m;x,y, t) p(m; z)dm,
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where I(m;x,y,t) .= fnif ei¢(5;x’y’t)d§. Integrating by parts using the fact that I(c_;x,y,t) =0

and p(m; z) — 0 as m - —oo0, and noting also that j—p(m; z) > 0, we get
m

¢ d
K, p,2,0] < / 1ms x,y, 01 2 (m; 2y dm

According to van der Corput’s lemma (e.g., see page 370 in Ref. 63), if n(§) is a real function such
that [#)(€)| > « on [a, b], with the additional condition that z’(£) is monotone if j = 1, then
b

1
/ em@)dg’ <o,
a

Noting that [¢®)(€;x,y,t)| = 488]t], we can employ this classical result for I with 5(¢) =
1

¢(&;x,y,t) to infer that [I(m;x,y,t)| S |t| 3, t #0, where the constant of inequality is
independent of m, x, y, t. In turn, for any t # 0 and z > 0, we obtain

_L r“dp _1 _1
|K(x’y’zr t)l S |t| 3 / —(m,Z)dm = |t| Se_AZ S |t| 3,
e dm

which is the desired estimate. |

Proof of Lemma 4. First, we prove part (i). By definition of s(m), we have

ds(m) _ 3(m— %) _\/_ \/Sz(m) +Cups

dm — s(m) s(m)

. 24386
with ¢, g s = a +38

. Therefore, upon change of variable s = s(m), we get

/_ w e f(m)dm = —— / e F(m(s) ———ds = /0 " e (s)ds,

s2+cqps
where
(m(s))———= s € 4,),
£a05) 1= e Vs €
0, s & (4, ).

Using the L?-boundedness of the Laplace transform (see Lemma 3.2 in Ref. 1), we get

/ e X5 f,(s)ds
0

< ||f/1||L§(R+)'

LZ(Ry)
Finally, note that

1 [ , 82
= 5 4
I£112 3//1 |f(m(s))] R s

LAR,)
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U gm < / 1famPdm.

1 - 2
= —/ lf(m)| ——=
\/g —oo \/$2(m) +co 85 -

Next, we establish part (ii). Setting F(m) := fooo e=*(M) f(x)dx and using the Cauchy-Schwarz
inequality along the lines of the proof of Lemma 3.2 in Ref. 1, we have

2

|F(m)|* =

/ g xs(m) f(x)dx
0

© 1 © 1
< </ e_XS(m)|f(x)|2x5dx> </ e‘xs(m)x_de>.
0 0

oo _ xs(m) 1 1 xs(m)
/ e 2 f(x)x+-x 4e 2 dx
0

. . I Sl 1 © _, - =
Then, since the second integral on the right-hand side is equal to e fo e "u 2du = o

/_:|F<m>|2dm=\/%/_:</ow

Finally, noting that

1 —xs(m) 2 = )
e |f(0)|*x2dx |dm.
Vs(m)

1 1
XSg 2x2ds < C\/;,

e 1 1 1 o 11 s ©
/ x2e~Mdp = — / e s 2x2 ——ds < / e
—o0 \/ S(m) \/g /1 ’SZ + Coc,ﬁj /1
we arrive at the desired estimate

/ FGm)Pdm < / FCOdx

oo 0

completing the proof of the lemma. [ |

3 | NONLINEAR ANALYSIS

The various linear estimates established in Section 2 will now be combined with a contraction
mapping argument in order to establish local well-posedness in the sense of Hadamard for the
nonlinear initial-boundary value problem (1). In view of these linear results, the solution space
will change as we transition from the setting of high regularity (% < § < 2) to the one of low regu-

larity (0 < s < %). More specifically, in the former case, well-posedness will be established in the
space C([0, T]; H5(R.,)) for a appropriate choice of T > 0 (see Theorem 1), while in the latter case,
that space will be refined by intersecting it with the Strichartz-inspired space Lﬁ‘ (0, T); HY (R,))
for an admissible choice of exponents (i, r) in terms of the nonlinearity order p and the Sobolev
exponent s according to (20) (see Theorem 2).
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3.1 | Linear reunification

The nonlinear analysis will be performed by using a solution operator u — ®u associated with the
original forced linear initial-boundary value problem (5). To this end, thanks to the superposition
principle, we reunify the solution representation formulae corresponding to (i) the homogeneous
Cauchy problem (6), (ii) the nonhomogeneous Cauchy problem (23), and (iii) the reduced initial-
boundary value problem (44). More precisely, given u, we formally define the map

Qu = ylo, +2%lo, + 9"l

_ . : i ikx—a ()t 1 (1) 3 , (104)
= S[Eouo; 0l| o, + S[0; f(EW| o, — 5= /r e o' (k) §4(w(k), T )dk|(0’T),
where Qr = R, X (0, T) for some T > 0 to be determined and
g4(t) 1= Ep{g(-) = S[Equo; 0](0, -) — S[0; f(Ew)](0,-) } (1) (105)

with the temporal transform g (w(k), T") defined according to (47). The extension operators E,
and E;, were defined below problems (6) and (44) respectively; importantly, E, satisfies inequality
(7) and Ej, induces compact support on g,, namely, suppg, C [0,T’), T’ > T. Moreover, the opera-
tor E is a similar bounded fixed extension operator. In particular, for s > % we take E = E,, while

for0<s< % we take E from H3(R,) n HY'(R,) into H3(R) n HY'(R) for a certain r > 2 to be
specified later.
In view of (104), we define the solutions of the nonlinear problem (1) as the fixed points of

the operator ®. Thus, our goal will be to prove the existence of a unique such fixed point in a
s+1

suitable function space. Throughout our analysis, we assume u, € Hy(R,) and g€ H ; (R})

with s € [0,2] \ {%} and the compatibility conditions (66) in place as necessary. We first treat the
high regularity case § < s < 2 in which we are able to employ the algebra property of Hy.(R,),

and then move on to the low regularity case 0 < s < % in which we address the lack of the algebra
property by refining our solution space motivated by the linear Strichartz estimates.

3.2 | High regularity solutions: Proof of Theorem 1

In the high regularity setting, we suppose that % < 5 <2and p > 0 with the additional assump-
tions (3) as necessary. Our goal is to establish local well-posedness in the space X :=
C([0,T]; HY(R,)) for some T > 0 to be determined. We consider X as a metric space with the
metric

dx, (U, up) 1= llug — wallx,,  up, Uy € X7

Note that any closed ball in Xy is a complete subspace.
Showing that ® is into. The conservation law (8) in Theorem 3 and the boundedness (7) of the
spatial extension operator E, imply

Iylo,llx, < IS[Eoto; Olllcqo.rymswyy = IEotollmsw) S luollesw,), (106)
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which takes care of the first term in (104). For the second term in (104), let u € Xt and combine
the nonhomogeneous estimate (25) in Theorem 5 with the algebra property in H; (R) to yield

T
1210,y < (15105 f Bt o rpprs ey S / I (EouC, D)5yt
0
(107)

T T
+1 +1 +1
S / IBouC, OlIF: oy dt < / I Ol At S Tl
0 x 0 x

Regarding the third term in (104), using estimate (68) in Theorem 7 and the boundedness of the
temporal extension operator Ej, (see Section 3 of Ref. 40 for more details), we get (say with T' = 2T)

!
9"l llx, < Nlgllx, S (1+ VT )liggll sn
T
H,3 (0,1)
(108)

S+ VT )ighl w5 (14 VTeT)llghl s

H* (0OT) H,3 (0T)

By using the definition of g, in (44) and temporal trace estimates (9), (10), and (26), we obtain

1
gl s Slgh sa + A+ T2)lugllpw,)
H,* (0.1) H> (01 109)

1 1
+ max{T2(1+7T2),T% “f(EOu)”L?((O,T);H;(R))’

with o given by (27). By using the definition of the solution space X and the boundedness (7) of
the spatial extension operator E,, we have

1

= 1
I1f Boll 2oz S T2 Mullf, (10)

Using the definition (104) of ® and combining estimates (106)-(110), we deduce

1
le@llx, < co(cl(T)||uo||H;<R+) +oMlgh s +esDllulg! ) (1)
H,3 (0,T)

1
where the positive constants ¢;, ¢, c; are given by ¢;(T) = (1 + ﬁeCT)(l +T2), c5(T) =1+
1 1 1

VTeT), ei(T) =T + (1 + \/Te")T> max{T2(1 + T2),T°} and ¢, is a nonnegative constant
independent of T and only depending on fixed parameters such as a, 3, §, and s.
In view of estimate (111), we set R(T) := 2A(T) with

A(T) := Co<Cl(T)||uo||H;(R+) +o(DIligll s ),

H,* (0,1)

and choose T small enough so that A(T)+ cyc3(T)R(T)PT! < R(T) or, equivalently,
coc3(T)RP(T) < % We note that such a choice is possible because ¢;(T) — 07 and R(T) remains

bounded as T — 0*. Then, for that choice of T, the map & takes the closed ball Bgr(0) C X7
into itself. It remains to show that @ is a contraction on Bgry(0).
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Showing that @ is a contraction. Let u, u, € Bg(r)(0). Then,

|P(uy) — ‘I’(uz)”XT =

z" o, — Z”2|QT“XT +|lq* o) — g |(0,T)||XT
< ”S[O’f(EOul) - f(EOuz)]”C([O,T];H)S((R)) (]_12)

+ <1+ ﬁeCT)

s+1 .

H,3 (0T)

u Uz
8 ~ &

We then recall the following difference estimate (e.g., see Ref. 50).
Lemma5. Lets > % p > Osatisfy (3) and @, 1, 9, € H5(R). Then,

g1 171 = 1221702 sy S (19112 + 102123 ) )91 = Palliscey-

Employing Lemma 5 and the arguments used earlier in (107), we deduce

1105 £ (Eou) = fBo)ll oo ryns oy S T (Il + aaally, Yl = ol (113)

Moreover, for the difference of boundary data, we have, similarly to (109),

1 1
”ggl - ggz Il % Smax{T2(1+T2), T} f(Eguy) — f(EOuZ)”LtZ((O,T);HfC(R))
Ho oD (114)

1 1 1
S max{T2(L+ T, 772 (I, + Il )l = wlx,,
where o is given by (27). Combining (113) and (114) with (112), we obtain
() = )l S ex(P (Il + el Yl = woll, S es(DRPDllus = ol (115)

Note that ¢;(T) — 0% and R(T) remains bounded as T — 0%. Therefore, for sufficiently small T >
0, the map @ is a contraction on Bg(ry(0), and hence, ® has a unique fixed point in Bg(ry(0) that, as
noted earlier, amounts to local existence of a unique solution to the HNLS initial-boundary value
problem (1) on Bg(ry(0).

Extending uniqueness to Xr. To prove uniqueness over the entire space X and not just the

closed ball Bgry(0), we suppose that u, u, € X are two solutions associated with the same pair of
initial and boundary data (u,, g). At first, we consider the case of u;, u, being sufficiently smooth
and, along with their derivatives, decaying sufficiently fast as x — oco. This allows us to proceed
via energy estimates. In particular, we note that the difference w : = u; — u, solves the following
problem:

iwt + iﬁwxxx + AWxx + iawx = f(ul) - f(uz)’ (x’ t) € R+ X (07 T),
w(x,0)=0, xeR,, (116)

w(0,t) =0, te(0,T).



ALKIN ET AL. | 241

Multiplying the main equation by w, integrating in x, taking imaginary parts, and using Lemma 5
and the embedding H3(R,) & LL(R, ), which is valid for s > % we find

SO, = =5 1w.0.0P +1m [ [0 - Flate )l 0ds
0

1
2 L2Ry) 2

< / (s G, 1P + e, O1PY wx, 1) 2dx
0

S (IO )+ 1O g IROI |

S (Ml + 1aOIF, JIw O, ,
Setting y(t) := ||lw(®)|| 2R, the above energy estimate is satisfied, provided that y'(¢) — cy(¢) <
0, t € (0,T) for some nonnegative constant c. Solving this differential inequality alongside the
condition y(0) = ||w(0)||L§(R+) = 0 (note that w(x,0) = 0), we obtain y = 0, thatis,w = u; —u, =
0. The case of rough u;, u, can be treated via mollification along the lines of the arguments used
in the proof of Proposition 1.4 in Ref. 21.

s+1

Continuous dependence on the data. For (uy, g) € H3.(R,) X H, fOC(R+), let
Tmax -= sup{T > 0] there is a solution associated to the data (ug, g) on [0, T]}.

Then, either T, = oo or else Tpy, < oo and there is no solution u € X1 since otherwise the
lifespan of u could be extended beyond T, by starting with initial datum equal to u(T'y,x). There-
fore,we mayletu € C([0, Tray); Hx(R,)) be the maximal solution associated with the data (uy, g);
then, for T < Tp,,y, in particular, u|o 7 is the unique solution in X7 established above.

Let T < T,y be small enough that @ is a contraction on Bg7)(0) for any solution associated
s+1

with data (vy, h) € HL.(R,) X H3 (R,) and satisfying

t,loc

lvollsry,y + AN s < 2| Nuollmsw,) + gl st .
H,3 (07) H,* (0T)

If follows that if § > 0 is small enough, for (v, h) satisfying

lvo — uoll s (r,) + g — Al s <94,
H,3 (0,T)

the associated solution v belongs to Bg(r(0). Therefore, u and v are both fixed points of ® on

Bg(1)(0) associated with the pairs of data (u,, g) and (v, h), respectively. Then, the corresponding
nonlinear estimates from the contraction argument imply

llu —vllx, = lPu - dv|lx, S C(T)<|Iuo — Uollmsw,) + 11 = All 1 ) < 6e(T),
H,? (0T

which amounts to continuity of the data-to-solution map. The proof of Theorem 1 for
well-posedness in the high regularity setting is complete.
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3.3 | Low regularity solutions: Proof of theorem 2

In this setting, we work under the assumptions (4). The lack of the algebra property brings in the
need for the various Strichartz estimates established in Section 2 and hence motivates the solution
space

Yr := C([0, TH HY(R.)) 0 Li (0, T): HY (R,)).
It is convenient to also consider the associated space on the whole spatial line, namely,
Y 1= C([0.T]: HY(R)) N L (0. T); HY' (R)).
The following lemma will serve as the low regularity analog of the algebra property and Lemma 5.

Lemma 6. Let (s, p), (u, r) satisfy (4) and suppose ¢, 1, ¢, € L((0, T); HY (R)). Then,

Hu=—p-1
p < p+1
” |¢| gO”Ltl((O,T);H;(R)) ~ T * ”gDHL;‘((O,T);Hi’r(R))’ (117)

H—P—

Pp, — p <
|||§01| P1 |§02| ¢2||L}((0,T);H;(R)) ST * <”¢1”L“((0 T); Hsr(R)) + ||§02”Lu((0 ; HS'(R))>

o1 = qDZHL:‘((O,T);HfC"(R))' (118)

Lemma 6 is proved after the end of the current proof and corresponds to the one-dimensional
analog of inequality (6.17) for the two-dimensional NLS equation proved in Ref. 24. Note, impor-
tantly, that the admissibility conditions (4) are different than those in Ref. 24 due to the third-order
dispersion of the HNLS equation. Thus, the proof of Lemma 6 does not follow from Ref. 24. Now,

we are ready to prove Theorem 2 for low regularity solutions
u—

Existence. First, we consider the subcritical case p ;é " that L > 0. Wework again with

the solution operator (104), which was obtained via hnear reunlflcatlon Theorems 3 and 4 imply

yloplly, < Wllg, S IEouollms @ S luolles e, ) (119)
while Theorems 5 and 6 along with inequality (117) and the same argument that was used in (107)
yield

u=p-1
+1
I1z%1o,lly, < 2%y, S <T+T " )IIMIII;T . (120)

Furthermore, Theorem 8 (with say T/ = 2T) and the same arguments that led to (108) imply

1
llg" |(0T)||YT~<1+\/_QCT+T” 2>||g0|| s (121)

301

Combining (119)-(121) and proceeding along the lines of the arguments that resulted in (109) and
(110), we obtain

le@)lly, < CO<C1(T)”u0”HS(R+) + Cz(T)||g|| a1
31

+ c3<T)||u||"“>
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where the p031t1ve constants c1,Cy,C3 are given by ¢ (T) = (1 + \/_ el + T# 2)(1 + Tz) c,(T) =
p=p-1 1
(1+ \/TeT +T# 2) (T)=T+T # )+(1+\TeT +T# 2)Tz max{T2(1 +T2) T°} and
¢o is a nonnegative constant independent of T and only depending on fixed parameters such as
a,f3,6,and s.
For the contraction, given u;,u, € Yy, we employ inequality 118 together with the same
arguments that led to (115) to infer

o) = @)ly, $ es(D (Il + el Yllws = wly, (122)

This estimate implies the existence of a fixed point in Y for sufficiently small T > 0 via the same
arguments that were used in the proof of Theorem 1.
Next, we consider the critical case p = ﬁ The difference here compared to the subcritical

case is that the limit ¢;(T) - 0" as T — 0" is no longer true; however, ® is still a contraction,
provided that the data (and, correspondingly, the radius of the closed ball that depends on the
size of the data) are chosen sufficiently small.

Uniqueness. We adapt the method used for the Cauchy problem in the proof of Proposition 4.2
of Ref. 64 to the framework of initial-boundary value problems.

First, consider the subcritical case p # 1—Lzs' Let u; = ®(uyp), u, = ®(u,) € Yr be two solutions
associated with the same pair of initial and boundary data. Suppose to the contrary that there is
t € [0, T] for which u;(t) # u,(t), and let

ting i = inf{t € [0, T][u; (1) # ux(0)}.

Taking ¢, < tiy¢ such that ¢, — ¢, . as n — oo, we see that u;(f,) = u,(,) by definition of ;.
Thus, in view of the fact that u;, u, are both continuous from [0, T] into H}(R ), taking the limit
n — oo, we deduce that u;(ti,) = uy(ting) =: @ € Hy(R,) makes sense. Set U;(t) = uy (¢ + tinr)
and U, (t) = uy(t + tiyr)- Then, U; and U, are both solutions on the temporal interval [0, T — ;¢]
that satisfy the same initial and boundary conditions, namely,

U1(0) = Uy(0) = ¢, Uilx=o = Uslx=o = 8(- + tinf) =" &inr-

Since U, and U, are continuous in ¢, by the definition of ¢;,¢, there is a § > 0 such that U; # U,
fort € (0,6). Let t = t;,¢ + € with € € (0, §) fixed and to be specified below. We have

s,r <
1U; — U2”L”((0 O HE (RL)) = Cmf(£)<”U1”Lu((0 HY (R,)) + |l 2”L”((0 eyHS r(R+))) 123

MU = Ul oermy oy
p=p—-1 1 1.1 7

where ¢cipe(e) :=¢ #* + er 22 maX{EZ(l + 52) €%}. Let € € (0,6) be small enough so that

Cinf(€) < lo,11? (124)

+ <1,
LE©eHY (R,)) I 2”L“<<o )H”(R+))>

which is possible because c;,f(€) — 0 as ¢ — 0*. Then, (123) implies that U; = U, on (0,¢) C
(0,6), leading to a contradiction. Hence, uniqueness follows.
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In the critical case p = 1—Lzs’ although the limit ¢;,;(¢) - 0T as ¢ — 0% is no longer true, the
uniqueness argument remains valid as (124) still holds due to the fact that, due to the domi-
nated convergence theorem, the norms || U || LAe)HY (R,)) and ||U,|| LA xS () €A be made
arbitrarily small by taking ¢ small enough.

Finally, the continuous dependence of the unique solution in Yt on the initial and boundary
data can be proved as in the high regularity setting, thereby completing the proof of Theorem 2.

Proof of Lemma 6. By Holder’s inequality,

p+l
p=p-1 T w

p+l

p+1 _ M —_— . .
On the other hand, ||¢||L¢‘(O’T0;Hi,,(R)) =( /0 ||go(t)||H”(R)dt) # . Hence, in order to establish (117),
it suffices to prove that

ID°UpOP Oz, S lPWITE . 1€ ©T), (125)

for 6 = 0 and 6 = s. To this end, we set F(z) := |z|Pz, z € C. If s # 0, by using the chain rule for
fractional derivatives (e.g., see Proposition 3.1 in 65), we have

IDF(e()ll 2wy S IF (@)l g(R)IID%(t)Ing(R) (126)

X

with % = % + % Noting that [F'(¢(t))| < (p + 1)|@(t)|P, we further find

IF' (@)l &« S eI’ e (127)
Lx3 (R) LXS (R)

while for i = % — s, we also have the embedding
le@l 2 S 19Ol ). (128)
L’ (R)

Combining (127) and (128) with (126), we obtain (125) for 6 = s # 0. Notice that r = 2(p + 1) for
s = 0. Therefore,

p+1 _ p+1
HeOPeOllzzee) = 12O, = 1POI7 gy

which corresponds to (125) for 6 = 0.
Regarding inequality (118) for the differences, we first consider the case s = 0, which implies
r = 2(p + 1). Using the standard pointwise difference estimate for the power-type nonlinearity
and then applying Holder’s inequality in x, we get
T 2 2
lipr12es = loalP el ymazn S | (] Geie0l? +lpsGe0l9) lorte. 0 - pate D)
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T
< / (121ONE, 2y + 12O, ) 11 (B) = 2Ol eyt
0

and the desired estimate (118) for s = 0 follows via Holder’s inequality in ¢.
Next, let us consider the case s # 0, in which r = %. First, observe that for z;,z, € C and
sp

E(p) = (1 - p)zy + pz;1, p € [0,1], we have £(0) = z1, £(1) = z,, £'(p) = z; — z,. Moreover,
1
d
Py, — |z,|Pz, = = p d
|221Pzy — |z1|P2zy /0 dp(|§(P)| §(p))dp

(p+2)

(21~ 22 / Ee)Pdp+ Bz~ 2) / Ee)IP2E2p)dp.
Combining this writing with the fractional product rule (see Proposition 3.3 in Ref. 65), we find

IDSF(@1(£)) = DF(@a(tDll 2y S ID*(1(8) = p2(O)llzzmy sup [w(®IP]| -
pelo0,1] L’ Z(R)

+ ”¢1(t)_(p2(t)”Lj3M(R)< sup {IIDS(G(w(t)))IILQ(R)}),

p€E[0,1]

where = = 1
r 2
C.
Observing that |G'(w(t))| < p(p + 1)|w(t)|P~! for p > 1, we use the fractional chain rule
(Proposition 3.1 in Ref. 65) to infer that, for p > 1,

- i, w(t) = (1= P)pa(t) + pp1(1), and G(2) = F'(2) = E2|z1P + £)z1p=222, z €

DS G@ONN 11 gy S WO 2 gy ID WOl ry

-1
SHwONI’ e ID WOl @ S lwOIF

LY ® e
where — = -~ — 1. In the above, the second inequality is due to the fact that, in view of (4),
ry r r
2p+l)  _ _pp

r, = = , and the third inequality follows from the embedding (128). Furthermore,
(p-1DA-25)  3(p-D

notice that 2 % and so, using once again, the embedding (128),

Nw®OIPIl 2 = w1 S 1wl
LI72(R) L3 (R)

Combining the last three estimates, we deduce

IDF@1(0) = DF@alze) S (19101 g + 122010 191 = 22Ol

Then, integrating over (0, T), applying Holder’s inequality in ¢, and combining the resulting

estimate with the case of s = 0, we obtain (118) for s # 0 and p > 1.
Finally, for p = 1, we note that I + o + s _1 + i. Therefore,
2 4 4 r 4 r M

IDF(@1(1)) = DF(@a()ll 2 S ID@1(0) = x(O)lizey sup (D]
0€[0,1] L3 (R)
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S IORLOT mp{mfmwm»mﬁmﬁ>

x (R)\ p€l0,1]

S (IO ) + 1920170 ) 121D = 2Ol ey

with the last step thanks to the embedding (128). [ |

ACKNOWLEDGMENTS

The authors would like to thank the Isaac Newton Institute for Mathematical Sciences, Cam-
bridge, UK, for support and hospitality during the program “Dispersive Hydrodynamics,” when
work on this paper was undertaken (EPSRC Grant Number EP/R014604/1). The second author
gratefully acknowledges partial support from the U.S. National Science Foundation (NSF-DMS
2206270).

DATA AVAILABILITY STATEMENT
Data sharing is not applicable to this paper as no data sets were generated or analyzed during the
current study.

REFERENCES

1.

w

10.

11.
12.

13.

14.

15.

16.

17.

Fokas AS, Himonas AA, Mantzavinos D. The nonlinear Schrodinger equation on the half-line. Trans Amer
Math Soc. 2017;369(1):681-709. doi: https://doi.org/10.1090/tran/6734

. Agrawaal GP. Nonlinear Fiber Optics. 5th ed. Academic Press; 2013.
. Kodama Y. Optical solitons in a monomode fiber. J Statist Phys. 1985;39:597-614.
. Kodama Y, Hasegawa A. Nonlinear pulse propagation in a monomode dielectric guide. IEEE J Quantum

Electron. 1987;23(5):510-524.

. Zakharov VE, Shabat AB. Exact theory of two-dimensional self-focusing and one-dimensional self-modulation

of waves in nonlinear media. Z Eksper Teoret Fiz. 1971;61(1):118-134.

. Carvajal X, Linares F. A higher-order nonlinear Schrodinger equation with variable coefficients. Differ Integral

Equ. 2003;16(9):1111-1130.

. Carvajal X. Local well-posedness for a higher order nonlinear Schrédinger equation in Sobolev spaces of

negative indices. Electron J Differential Equations. 2004;13:10.

. Carvajal X. Sharp global well-posedness for a higher order Schrddinger equation. J Fourier Anal Appl.

2006;12(1):53-70. doi: https://doi.org/10.1007/s00041-005-5028-3

. Carvajal X. Sharp global well-posedness for a higher order Schrodinger equation. J Fourier Anal Appl.

2006;12(1):53-70. doi: https://doi.org/10.1007/s00041-005-5028-3

Laurey C. The Cauchy problem for a third order nonlinear Schrédinger equation. Nonlinear Anal.
1997;29(2):121-158. doi: https://doi.org/10.1016/S0362-546X(96)00081-8

Staffilani G. On the generalized Korteweg-de Vries-type equations. Differ Integral Equ. 1997;10(4):777-796.
Takaoka H. Well-posedness for the higher order nonlinear SchrOdinger equation. Adv Math Sci Appl.
2000;10(1):149-171.

Faminskii AV. The higher order nonlinear Schrédinger equation with quadratic nonlinearity on the real axis.
Adbv Differential Equations. 2023;28(5-6):413-466.

Marcelo M. Cavalcanti MASC, Asem RV. Finite difference scheme for a high order nonlinear Schrodinger
equation with localized damping. Stud Univ Babes-Bolyai Math. 2019;64(2):161-172. doi: https://doi.org/10.
24193/subbmath.2019.2.03

Juan CCV, Ricardo PF, Villagran OPV. Exact boundary controllability for higher order nonlinear Schrodinger
equations with constant coefficients. Electron J Differential Equations. 2005;122:31.

Bisognin E, Bisognin V, Vera Villagran OP. Stabilization of solutions to higher-order nonlinear Schrédinger
equation with localized damping. Electron J Differential Equations. 2007;6:18.

Chen M. Stabilization of the higher order nonlinear Schrédinger equation with constant coefficients. Proc
Indian Acad Sci Math Sci. 2018;128(3):Art. 39, 15. doi: https://doi.org/10.1007/s12044-018-0410-7


https://doi.org/10.1090/tran/6734
https://doi.org/10.1007/s00041-005-5028-3
https://doi.org/10.1007/s00041-005-5028-3
https://doi.org/10.1016/S0362-546X(96)00081-8
https://doi.org/10.24193/subbmath.2019.2.03
https://doi.org/10.24193/subbmath.2019.2.03
https://doi.org/10.1007/s12044-018-0410-7

ALKiIN ET AL. 247

18.

19.

20.

21.

22.

23.

24.

25.

26.

27.

28.

29.

30.

31

32.

33.

34.

35.

36.

37.

38.

39.

40.

41.

42.

43.

Batal A, Ozsari T, Yilmaz KC. Stabilization of higher order Schrédinger equations on a finite interval: Part I.
Evol Equ Control Theory. 2021;10(4):861-919. doi: https://doi.org/10.3934/eect.2020095

Ozsar1 T, Yilmaz KC. Stabilization of higher order Schrédinger equations on a finite interval: Part IT. Evol Equ
Control Theory. 2022;11(4):1087-1148. doi: https://doi.org/10.3934/eect.2021037

Strichartz R. Restrictions of Fourier transforms to quadratic surfaces and decay of solutions of wave equations.
Duke Math J. 1977;44:705-714.

Holmer J. The initial-boundary-value problem for the 1D nonlinear Schrodinger equation on the half-line.
Differ Integral Equ. 2005;18(6):647-663.

Bona JL, Sun SM, Zhang BY. Nonhomogeneous boundary-value problems for one-dimensional nonlinear
Schrodinger equations. J Math Pures Appl (9). 2018;109:1-66. doi: https://doi.org/10.1016/j.matpur.2017.11.001
Koksal B, Ozsar1 T. The interior-boundary Strichartz estimate for the Schrédinger equation on the half line
revisited. Turkish J Math. 2022;46(8):3323-3351.

Himonas AA, Mantzavinos D. Well-posedness of the nonlinear Schrodinger equation on the half-plane.
Nonlinearity. 2020;33(10):5567-5609. doi: https://doi.org/10.1088/1361-6544/ab9499

Ran Y, Sun SM, Zhang BY. Nonhomogeneous boundary value problems of nonlinear Schrodinger equations
in a half plane. SIAM J Math Anal. 2018;50(3):2773-2806. doi: https://doi.org/10.1137/17M1119743

Audiard C. Global Strichartz estimates for the Schrodinger equation with non zero boundary conditions and
applications. Ann Inst Fourier (Grenoble). 2019;69(1):31-80.

Hayashi N, Kaikina EI, Ogawa T. Inhomogeneous Dirichlet boundary value problem for nonlinear
Schrodinger equations in the upper half-space. Partial Differ Equ Appl. 2021;2(6):69, 24. doi: https://doi.org/
10.1007/s42985-021-00120-9

Hayashi N, Kaikina EI, Ogawa T. Inhomogeneous Neumann-boundary value problem for nonlinear
Schrodinger equations in the upper half-space. Differ Integral Equ. 2021;34(11-12):641-674.

Ozsar1 T, Yolcu N. The initial-boundary value problem for the biharmonic Schrédinger equation on the half-
line. Commun Pure Appl Anal. 2019;18(6):3285-3316. doi: https://doi.org/10.3934/cpaa.2019148
Capistrano-Filho RDA, Cavalcante M, Gallego FA. Lower regularity solutions of the biharmonic Schrodinger
equation in a quarter plane. Pacific J Math. 2020;309(1):35-70. doi: https://doi.org/10.2140/pjm.2020.309.35
Ozsar1 T, Alkan K, Kalimeris K. Dispersion estimates for the boundary integral operator associated with the
fourth order Schrodinger equation posed on the half line. Math Inequal Appl. 2022;25(2):551-571. doi: https://
doi.org/10.7153/mia-2022-25-34

Colliander JE, Kenig CE. The generalized Korteweg-de Vries equation on the half line. Comm Partial
Differential Equations. 2002;27(11-12):2187-2266. doi: https://doi.org/10.1081/PDE-120016157

Holmer J. The initial-boundary value problem for the Korteweg-de Vries equation. Comm Partial Differential
Equations. 2006;31(7-9):1151-1190. doi: https://doi.org/10.1080/03605300600718503

Fokas AS. A unified transform method for solving linear and certain nonlinear PDESs. Proc Roy Soc London
Ser A.1997;453(1962):1411-1443. doi: https://doi.org/10.1098/rspa.1997.0077

Fokas AS. A unified approach to boundary value problems. In: 78th of CBMS-NSF Regional Conference Series
in Applied Mathematics. Society for Industrial and Applied Mathematics (SIAM); 2008

Batal A, Fokas AS, Ozsar1 T. Fokas method for linear boundary value problems involving mixed spatial
derivatives. Proc Roy Soc A. 2020;476(2239):20200076, 15. doi: https://doi.org/10.1098/rspa.2020.0076
Himonas AA, Mantzavinos D. On the initial-boundary value problem for the linearized Boussinesq equation.
Stud Appl Math. 2015;134(1):62-100. doi: https://doi.org/10.1111/sapm.12055

Himonas AA, Mantzavinos D. The “good” Boussinesq equation on the half-line. J Differential Equations.
2015;258(9):3107-3160. doi: https://doi.org/10.1016/j.jde.2015.01.005

Himonas AA, Mantzavinos D, Yan F. The nonlinear Schrédinger equation on the half-line with Neumann
boundary conditions. Appl Numer Math. 2019;141:2-18. doi: https://doi.org/10.1016/j.apnum.2018.09.018
Himonas AA, Mantzavinos D. The nonlinear Schrédinger equation on the half-line with a Robin boundary
condition. Anal Math Phys. 2021;11(4):157, 25. doi: https://doi.org/10.1007/s13324-021-00589-y

Himonas AA, Mantzavinos D. The Robin and Neumann problems for the nonlinear Schrodinger equation on
the half-plane. Proc Roy Soc A. 2022;478(2265):279, 20.

Fokas AS, Himonas AA, Mantzavinos D. The Korteweg-de Vries equation on the half-line. Nonlinearity.
2016;29(2):489-527. doi: https://doi.org/10.1088/0951-7715/29/2/489

Himonas AA, Mantzavinos D, Yan F. The Korteweg-de Vries equation on an interval. J Math Phys.
2019;60(5):051507, 26. doi: https://doi.org/10.1063/1.5080366


https://doi.org/10.3934/eect.2020095
https://doi.org/10.3934/eect.2021037
https://doi.org/10.1016/j.matpur.2017.11.001
https://doi.org/10.1088/1361-6544/ab9499
https://doi.org/10.1137/17M1119743
https://doi.org/10.1007/s42985-021-00120-9
https://doi.org/10.1007/s42985-021-00120-9
https://doi.org/10.3934/cpaa.2019148
https://doi.org/10.2140/pjm.2020.309.35
https://doi.org/10.7153/mia-2022-25-34
https://doi.org/10.7153/mia-2022-25-34
https://doi.org/10.1081/PDE-120016157
https://doi.org/10.1080/03605300600718503
https://doi.org/10.1098/rspa.1997.0077
https://doi.org/10.1098/rspa.2020.0076
https://doi.org/10.1111/sapm.12055
https://doi.org/10.1016/j.jde.2015.01.005
https://doi.org/10.1016/j.apnum.2018.09.018
https://doi.org/10.1007/s13324-021-00589-y
https://doi.org/10.1088/0951-7715/29/2/489
https://doi.org/10.1063/1.5080366

248

ALKIN ET AL.

44.

45.

46.

47.

48.

49.

50.

51.

52.

53.

54.

55.

56.

57.

58.

59.

60.

61.

62.

63.

64.

65.

Himonas AA, Madrid C, Yan F. The Neumann and Robin problems for the Korteweg-de Vries equation on
the half-line. J Math Phys. 2021;62(11):111503, 24. doi: https://doi.org/10.1063/5.0064147

Himonas AA, Yan F. The Korteweg-de Vries equation on the half-line with Robin and Neumann data in low
regularity spaces. Nonlinear Anal. 2022;222:113008, 31. doi: https://doi.org/10.1016/j.na.2022.113008

Himonas AA, Yan F. A higher dispersion KdV equation on the half-line. J Differential Equations. 2022;333:55-
102. doi: https://doi.org/10.1016/j.jde.2022.06.003

Himonas AA, Mantzavinos D, Yan F. Initial-boundary value problems for a reaction-diffusion equation.
J Math Phys. 2019;60(8):081509, 19. doi: https://doi.org/10.1063/1.5118767

Chatziafratis A, Mantzavinos D. Boundary behavior for the heat equation on the half-line. Math Methods Appl
Sci. 2022;45(12):7364-7393.

Erdogan MB, Tzirakis N. Regularity properties of the cubic nonlinear Schrédinger equation on the half line. J
Funct Anal. 2016;271(9):2539-2568. doi: https://doi.org/10.1016/j.jfa.2016.08.012

Batal A, Ozsar1 T. Nonlinear Schrodinger equations on the half-line with nonlinear boundary conditions.
Electron J Differential Equations. 2016;2016:222, 20.

Compaan E, Tzirakis N. Well-posedness and nonlinear smoothing for the “good” Boussinesq equation on the
half-line. J Differential Equations. 2017;262(12):5824-5859. doi: https://doi.org/10.1016/j.jde.2017.02.016

Huang L. The initial-boundary-value problems for the Hirota equation on the half-line. Chinese Ann Math Ser
A. 2020;41(1):117-132. doi: https://doi.org/10.1007/s11401-019-0189-6

Guo B, Wu J. Well-posedness of the initial-boundary value problem for the Hirota equation on the half line.
J Math Anal Appl. 2021;504(2):125571, 25. doi: https://doi.org/10.1016/j.jmaa.2021.125571

Wu J, Guo B. Initial-boundary value problem for the Hirota equation posed on a finite interval. J Math Anal
Appl. 2023;526(2):127330. doi: https://doi.org/10.1016/j.jmaa.2023.127330

Kalimeris K, Ozsar1 T. An elementary proof of the lack of null controllability for the heat equation on the half
line. Appl Math Lett. 2020;104:106241, 6. doi: https://doi.org/10.1016/j.am1.2020.106241

Kalimeris K, Ozsar1 T, Dikaios N. Numerical computation of Neumann controls for the heat equation on a
finite interval. IEEE Trans Automat Control. early view. doi: https://doi.org/10.1109/TAC.2023.3263753

Ozsan T, Kalimeris K. Existence of unattainable states for Schrodinger type flows on the half-line.
forthcoming.

Lions JL, Magenes E. Non-Homogeneous Boundary Value Problems and Applications. Vol I, Die Grundlehren
der mathematischen Wissenschaften, Band 181. Springer-Verlag; 1972. Translated from the French by P.
Kenneth.

Stein EM. Singular Integrals and Differentiability Properties of Functions. Princeton Mathematical Series, No.
30. Princeton University Press; 1970.

Calderon AP. Lebesgue Spaces of Differentiable Functions and Distributions. American Mathematical Society;
1961:33-49.

Grafakos L. Modern Fourier Analysis. 250 of Graduate Texts in Mathematics. 3rd ed. Springer; 2014.

Grafakos L. Classical Fourier Analysis. 249 of Graduate Texts in Mathematics. 3rd ed. Springer; 2014.

Stein EM. Oscillatory integrals in Fourier analysis. In: Beijing Lectures in Harmonic Analysis. 112 of Annals of
Mathematics Studies. Princeton University Press; 1986:307-355. Edited by Elias M Stein.

Cazenave T, Weissler FB. The Cauchy problem for the critical nonlinear Schrédinger equation in H*. Nonlinear
Anal. 1990;14(10):807-836. doi: https://doi.org/10.1016/0362-546X(90)90023- A

Christ FM, Weinstein MI. Dispersion of small amplitude solutions of the generalized Korteweg-de Vries
equation. J Funct Anal. 1991;100(1):87-109. doi: https://doi.org/10.1016/0022-1236(91)90103-C

How to cite this article: Alkin A, Mantzavinos D, Ozsar1 T. Local well-posedness of the
higher-order nonlinear Schrodinger equation on the half-line: Single-boundary condition
case. Stud Appl Math. 2024;152:203-248. https://doi.org/10.1111/sapm.12642


https://doi.org/10.1063/5.0064147
https://doi.org/10.1016/j.na.2022.113008
https://doi.org/10.1016/j.jde.2022.06.003
https://doi.org/10.1063/1.5118767
https://doi.org/10.1016/j.jfa.2016.08.012
https://doi.org/10.1016/j.jde.2017.02.016
https://doi.org/10.1007/s11401-019-0189-6
https://doi.org/10.1016/j.jmaa.2021.125571
https://doi.org/10.1016/j.jmaa.2023.127330
https://doi.org/10.1016/j.aml.2020.106241
https://doi.org/10.1109/TAC.2023.3263753
https://doi.org/10.1016/0362-546X(90)90023-A
https://doi.org/10.1016/0022-1236(91)90103-C
https://doi.org/10.1111/sapm.12642

	Local well-posedness of the higher-order nonlinear Schrödinger equation on the half-line: Single-boundary condition case
	Abstract
	1 | INTRODUCTION AND MAIN RESULTS
	1.1 | Mathematical model
	1.2 | Physical significance and motivation
	1.3 | Challenges, methodology, and main results
	1.4 | The Fokas method for the rigorous treatment of initial-boundary value problems

	2 | LINEAR THEORY
	2.1 | Homogeneous linear Cauchy problem
	2.2 | Nonhomogeneous linear cauchy problem
	2.3 | Reduced initial-boundary value problem
	2.3.1 | Solution formula
	2.3.2 | Compatibility between the data
	2.3.3 | Sobolev-type estimates
	2.3.4 | Strichartz-type estimates


	3 | NONLINEAR ANALYSIS
	3.1 | Linear reunification
	3.2 | High regularity solutions: Proof of Theorem 1
	3.3 | Low regularity solutions: Proof of theorem 2

	ACKNOWLEDGMENTS
	DATA AVAILABILITY STATEMENT

	REFERENCES


