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Abstract
We establish local well-posedness in the sense
of Hadamard for a certain third-order nonlinear
Schrödinger equation with a multiterm linear part and
a general power nonlinearity, known as higher-order
nonlinear Schrödinger equation, formulated on the
half-line {𝑥 > 0}. We consider the scenario of associated
coefficients such that only one boundary condition is
required and hence assume a general nonhomogeneous
boundary datum of Dirichlet type at 𝑥 = 0. Our func-
tional framework centers around fractional Sobolev
spaces 𝐻𝑠𝑥(ℝ+) with respect to the spatial variable. We
treat both high regularity (𝑠 > 12 ) and low regularity
(𝑠 < 12 ) solutions: in the former setting, the relevant
nonlinearity can be handled via the Banach algebra
property; in the latter setting, however, this is no longer
the case and, instead, delicate Strichartz estimates must
be established. This task is especially challenging in
the framework of nonhomogeneous initial-boundary
value problems, as it involves proving boundary-type
Strichartz estimates that are not common in the study
of Cauchy (initial value) problems. The linear analysis,
which forms the core of this work, crucially relies on a
weak solution formulation defined through the novel
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solution formulae obtained via the Fokas method (also
known as the unified transform) for the associated
forced linear problem. In this connection, we note that
the higher-order Schrödinger equation comes with
an increased level of difficulty due to the presence of
more than one spatial derivatives in the linear part of
the equation. This feature manifests itself via several
complications throughout the analysis, including (i)
analyticity issues related to complex square roots,
which require careful treatment of branch cuts and
deformations of integration contours; (ii) singularities
that emerge upon changes of variables in the Fourier
analysis arguments; and (iii) complicated oscillatory
kernels in the weak solution formula for the linear
initial-boundary value problem, which require a subtle
analysis of the dispersion in terms of the regularity
of the boundary data. The present work provides a
first, complete treatment via the Fokas method of a
nonhomogeneous initial-boundary value problem for a
partial differential equation associated with a multiterm
linear differential operator.

KEYWORDS
Fokas method, higher-order nonlinear Schrödinger equation,
initial-boundary value problem, Korteweg–de Vries equation, low
regularity solutions, nonzero boundary conditions, power nonlin-
earity, Strichartz estimates, unified transform, well-posedness in
Sobolev spaces

1 INTRODUCTION ANDMAIN RESULTS

1.1 Mathematical model

We consider the nonhomogeneous initial-boundary value problem for the higher-order nonlinear
Schrödinger (HNLS) equation on the half-line

𝑖𝑢𝑡 + 𝑖𝛽𝑢𝑥𝑥𝑥 + 𝛼𝑢𝑥𝑥 + 𝑖𝛿𝑢𝑥 = 𝑓(𝑢), (𝑥, 𝑡) ∈ ℝ+ × (0,𝑇),𝑢(𝑥, 0) = 𝑢0(𝑥), 𝑥 ∈ ℝ+,𝑢(0, 𝑡) = 𝑔(𝑡), 𝑡 ∈ (0,𝑇), (1)
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where 𝛼, 𝛿 ∈ ℝ, 𝛽 > 0, 𝑓(𝑧) = 𝜅|𝑧|𝑝𝑧 with 𝑧 ∈ ℂ, 𝜅 ∈ ℂ, 𝑝 > 0, and 𝑇 > 0. The reason why we
only need to supplement one boundary condition at 𝑥 = 0 is the assumption 𝛽 > 0. On the other
hand, if 𝛽 < 0, then two boundary conditions are required at 𝑥 = 0; this scenario will be consid-
ered in a future work. Furthermore, here we consider the case of a Dirichlet boundary datum; the
case of a Neumann datum can be handled via entirely analogous ideas and techniques.
We establish local well-posedness of the nonlinear, nonhomogeneous initial-boundary value

problem (1) in the sense of Hadamard, namely, we prove existence of a unique local-in-time solu-
tion that depends continuously on the initial and boundary data (see Theorems 1 and 2 below).
It will be shown (see Theorem 3 below) that the evolution operator associated with the free
higher-order Schrödinger operator enjoys the following regularity property:

‖‖‖𝑒(−𝛽𝜕3𝑥+𝑖𝛼𝜕2𝑥−𝛿𝜕𝑥)𝑡‖‖‖𝐻𝑠𝑥(ℝ)→𝐿∞𝑥 (ℝ;𝐻 𝑠+13𝑡 (−𝑇,𝑇)) ≤ 𝑐 <∞.
Note that, in the case of the classical second-order Schrödinger operator (i.e., for 𝛼 = 1 and 𝛽 =𝛿 = 0), the time regularity of the solution is described by the Sobolev exponent 2𝑠+14 (see Ref. 1).
Hence, for 𝑠 < 12 (which implies 2𝑠+14 < 𝑠+13 ), the above result for the higher-order Schrödinger
operator can be regarded as a kind of smoothing. Due to this smoothing, one anticipates that
the local well-posedness for the initial-boundary value problem (1) should be studied with initial

data 𝑢0 ∈ 𝐻𝑠𝑥(ℝ+) and boundary data 𝑔 ∈ 𝐻 𝑠+13𝑡,loc(ℝ+). In addition, for 𝑠 large enough and, more
precisely, for 𝑠 > 12 , the relevant traces make sense in the aforementioned spaces and one has to
also impose compatibility conditions between the initial and the boundary data to obtain solutions
that are continuous at 𝑡 = 0 (see Section 2.3 for more details).
Our treatment of the nonlinear problem (1) is crucially based on a contraction mapping argu-

ment applied to a weak solution formula for the associated forced linear initial-boundary value
problem. This novel solution formula is derived in Section 2 via the Fokas method (also known as
the unified transform). Showing that the map obtained by replacing the forcing with the power
nonlinearity of (1) in the Fokas method solution is a contraction requires further assumptions on
the smoothness and growth of the nonlinearity in relation to the Sobolev regularity exponent 𝑠;
see (3) and (4) for the precise assumptions used in this work.

1.2 Physical significance and motivation

For 𝛼 = 1, 𝛽 = 𝛿 = 0, and 𝑝 = 2, the HNLS equation in (1) reduces to the celebrated cubic non-
linear Schrödinger equation (NLS) equation. Cubic NLS is a ubiquitous model in mathematical
physics, with a broad spectrum of applications ranging from optics to water waves to plasmas
to Bose–Einstein condensates. However, for pulses in the femtosecond regime, the classical NLS
model is not precise enough and a correction involving a higher-order dispersive term is neces-
sary (see Ref. 2 for a detailed discussion of the higher order effects upon the propagation of an
optical pulse). This need for a more accurate model led to the introduction of the HNLS equation,
originally in the form

𝑖𝑢𝑡 + 12𝑢𝑥𝑥 + |𝑢|2𝑢 + 𝑖𝜖(𝛽1𝑢𝑥𝑥𝑥 + 𝛽2(|𝑢|2𝑢)𝑥 + 𝛽3𝑢|𝑢|2𝑥) = 0, (2)
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for modeling the femtosecond pulse propagation in nonlinear optical fibers.3,4 Note that in (1), we
have a power nonlinearity of general order 𝑝 > 0, whereas (2) involves cubic nonlinearities that,
nevertheless, contain derivatives.
Furthermore, beyond physical considerations, it should be noted that the cubic NLS equa-

tion is a prototypical example of a completely integrable system.5 As such, in addition to analysis
techniques, it has been studied extensively via the inverse scattering transform and related
methods. This is not possible, however, for general nonlinearities like the one of the HNLS
equation in (1), as the corresponding models are not completely integrable. In those general
cases, which nevertheless remain very relevant when it comes to applications, rigorous results
can be established via harmonic analysis techniques. In particular, the well-posedness of the
Cauchy (initial value) problem for HNLS has been treated in a number of articles.6–13 In addi-
tion, numerical solutions were obtained in Ref. 14. Moreover, there are some results concerning
the controllability properties of this equation; see Ref. 15 for exact boundary controllability,
Refs. 16 and 17 for internal feedback stabilization, and Refs. 18 and 19 for boundary feedback
stabilization.
The goal of this work is to establish the local well-posedness theory for the nonlinear initial-

boundary value problem (1) at the level of 𝐻𝑠𝑥(ℝ+) spatial regularity for the initial data. We are
interested in both the high regularity (𝑠 > 12 ) and the low regularity (𝑠 < 12 ) settings. The main
distinction between the two is that, in the low regularity setting, the well-known Banach alge-
bra property of 𝐻𝑠𝑥(ℝ+) is no longer available. Instead, handling the nonlinearity |𝑢|𝑝𝑢 when𝑠 < 12 requires use of more advanced tools that revolve around the celebrated Strichartz estimates.
Estimates of this type measure the size and temporal decay of solutions in space-time Lebesgue
norms and have played a crucial role in the treatment of the Cauchy problem of nonlinear dis-
persive equations since their introduction in 1977.20 On the other hand, the use of Strichartz
estimates in the analysis of initial-boundary value problems is a more recent advancement. For
the Cauchy problem, Strichartz estimates involve certain norms of initial and/or interior data,
whereas for initial-boundary value problems, these estimates additionally depend on information
related to boundary data, for which temporal regularity also plays a key role. Such boundary-
type Strichartz estimates have been recently established for some initial-boundary value problems
associated with dispersive equations, see, for instance, Refs. 21–23 for the one-dimensional NLS,
Refs. 24 and 25 for the two-dimensional NLS, Refs. 26–28 for NLS in 𝑛 dimensions, Refs. 29
and 30 for the one-dimensional biharmonic NLS, and Ref. 31 for a fourth-order NLS in one
dimension.

1.3 Challenges, methodology, and main results

The first contribution of the present paper is the development of a sharp linear theory through
the analysis of the solutions of the relevant forced linear initial-boundary value problem (see
problem (5) below). This is accomplished by decomposing this linear problem into three sim-
pler component problems: (i) a homogeneous Cauchy problem associated with (an appropriate
extension of) the initial datum; (ii) a nonhomogeneous Cauchy problem associated with (an
appropriate extension of) the forcing; and (iii) a reduced initial-boundary value problem involv-
ing the original boundary datum and the spatial traces of the two aforementioned Cauchy
problems.
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The homogeneous Cauchy problem of item (i) is studied in Section 2.1 via classical Fourier
analysis. However, the multiterm nature of the spatial differential operator introduces certain
difficulties in the proofs of the temporal estimates, due to the changes of variables performed to
extract the desired Sobolev norms. These difficulties are overcome by introducing a proper cutoff
function that depends on the polynomial structure of the spatial differential operator.
The nonhomogeneous Cauchy problem of item (ii) is analyzed in Section 2.2 by express-

ing its solution in Duhamel form and then estimating it via the nonlocal (i.e., in the physical
space) definition of fractional Sobolev spaces. We note that when the equation involves a mul-
titerm spatial differential operator, the analysis of the corresponding nonhomogeneous Cauchy
problem becomes quite involved when carried out via other approaches such as the Riemann–
Liouville fractional integral method that was successfully applied to the Korteweg–de Vries
equation (without the first-order derivative) and theNLS equation 21,32,33. In contrast, the physical
space definition of the fractional Sobolev spaces offers a more robust and direct approach in this
framework; furthermore, this approach does not require interpolation arguments.
Amajor emphasis in this work is placed on the regularity analysis of the solution to the reduced

initial-boundary value problem of item (iii) above. This is done in Section 2.3. Weak solutions of
this reduced initial-boundary value problem are defined via a boundary integral operator whose
explicit form is obtained through the Fokasmethod.34,35 Importantly, in themultiterm framework
considered in this paper, certain analyticity issues arise in the application of the Fokas method.
This is because themethod relies on the construction of analyticmaps that respect certain spectral
invariance properties of the linear dispersion relation. However, for multiterm spatial differential
operators, such a construction requires use of complex square root functions that, in many cases,
cause the invariance maps to be nonanalytic on some parts of the complex spectral plane. We
handle this complication via suitable contour deformations around the branch cuts associated
with these maps. It is worth noting that this phenomenon also appears in the context of higher-
dimensional initial-boundary value problems, see, for instance, Ref. 36, aswell as in equations that
involve higher-order time derivatives, for example, the “good” Boussinesq equation analyzed in
Refs. 37 and 38 After constructing a suitable boundary integral operator for the reduced initial-
boundary value problem, we analyze it by using the oscillatory integral theory that, in particular,
requires us to establish dispersive estimates of the same type like the ones satisfied by solutions
of the associated Cauchy problem.
The solution of the fully nonlinear problem (1) will be constructed as a fixed point of the

solution operator formed by reunifying the respective solution formulae for the three linear
problems of items (i)–(iii) above. In the high regularity setting of 𝑠 > 12 , the spatiotemporal esti-
mates established in the linear theory of Section 2 lead to a contraction mapping argument in
the Hadamard-type space 𝐶([0,𝑇];𝐻𝑠𝑥(ℝ+)). The uniqueness in this space utilizes the Sobolev
embedding 𝐻𝑠𝑥(ℝ+)↪ 𝐿∞𝑥 (ℝ+) (which is valid for 𝑠 > 12 ). In the low regularity setting of 𝑠 < 12 ,
the algebra property in 𝐻𝑠𝑥(ℝ+) and the embedding 𝐻𝑠𝑥(ℝ+)↪ 𝐿∞𝑥 (ℝ+) are no longer valid and
Strichartz estimates assume the key role instead. In that case, the solution space is refined to𝐶([0,𝑇];𝐻𝑠𝑥(ℝ+)) ∩ 𝐿𝜇𝑡 ((0,𝑇);𝐻𝑠,𝑟𝑥 (ℝ+))with (𝜇, 𝑟) obeying the admissibility criterion (20) associ-
ated with the underlying evolution operator. However, this only leads to a conditional uniqueness
result in the aforementioned space.
The main results of this work, which emanate from the analysis described above, establish the

localwell-posedness of theHNLS initial-boundary value problem (1) in the high and low regularity
settings and read as follows:
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Theorem 1 (High regularity well-posedness). Let 12 < 𝑠 ≤ 2 and 𝑝 > 0. In addition, if 𝑝 ∉ 2ℤ,
suppose that

if 𝑠 ∈ ℤ+, then 𝑝 ≥ 𝑠 if 𝑝 ∈ ℤ+ and odd; ⌊𝑝⌋ ≥ 𝑠 − 1 if 𝑝 ∉ ℤ+,
if 𝑠 ∉ ℤ+, then 𝑝 > 𝑠 if 𝑝 ∈ ℤ+ and odd; ⌊𝑝⌋ ≥ ⌊𝑠⌋ if 𝑝 ∉ ℤ+. (3)

Then, for initial data 𝑢0 ∈ 𝐻𝑠𝑥(ℝ+) and boundary data 𝑔 ∈ 𝐻 𝑠+13𝑡,loc(ℝ+) satisfying the compatibility
condition (66), there is 𝑇 = 𝑇(𝑢0, 𝑔) > 0 such that the initial-boundary value problem (1) for the
HNLS equation on the half-line has a unique solution 𝑢 ∈ 𝐶([0,𝑇];𝐻𝑠𝑥(ℝ+)). Furthermore, this
solution depends continuously on the initial and boundary data.

Theorem 2 (Low regularity well-posedness). Suppose

0 ≤ 𝑠 < 12 , 1 ≤ 𝑝 ≤ 61 − 2𝑠 , 𝜇 = 6(𝑝 + 1)𝑝(1 − 2𝑠) , 𝑟 = 2(𝑝 + 1)1 + 2𝑠𝑝 . (4)

Then, for initial data 𝑢0 ∈ 𝐻𝑠𝑥(ℝ+) and boundary data 𝑔 ∈ 𝐻 𝑠+13𝑡,loc(ℝ+), with the additional assump-
tion that if 𝑝 = 61−2𝑠 (critical case), then ‖𝑢0‖𝐻𝑠𝑥(ℝ+) is sufficiently small, there is 𝑇 = 𝑇(𝑢0, 𝑔) > 0
such that the initial-boundary value problem (1) for the HNLS equation on the half-line has a
unique solution 𝑢 ∈ 𝐶([0,𝑇];𝐻𝑠𝑥(ℝ+)) ∩ 𝐿𝜇𝑡 ((0,𝑇);𝐻𝑠,𝑟𝑥 (ℝ+)). Furthermore, this solution depends
continuously on the initial and boundary data.

The linear estimates that form the core of the proofs of the above two theorems are established
in Section 2, and the contraction mapping arguments that complete those proofs are provided in
Section 3.

Remark 1. The assumptions in above theorems offer a large class of cases in terms regularity index𝑠 and the power of nonlinearity 𝑝 for which the local well-posedness of the initial-boundary value
problem (1) can be established. In particular, these cover physically relevant settings. For instance,
energy-level solutions (𝑠 = 1) and strong solutions (𝑠 = 2) can be obtained in the presence of a
cubic nonlinear source (𝑝 = 2).
1.4 The Fokas method for the rigorous treatment of initial-boundary
value problems

While the Cauchy problem for nonlinear dispersive equations has been broadly explored through
a variety of techniques, progress toward the rigorous study of initial-boundary value problems
for these equations is more limited. In fact, problems of this latter kind can present signifi-
cant challenges even at the linear level. For example, while on the whole-line linear evolution
equations can be easily solved via Fourier transform in the space variable, on domains with a
boundary like the half-line no classical spatial transform exists for linear equations of spatial order
three or higher. Another important obstacle arises in the case of boundary conditions that are
nonseparable. Moreover, even when a linear initial-boundary value problem can be solved via
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classical techniques, the resulting solution formula is not always useful, especially in regard to
setting up an effective iteration scheme for proving the well-posedness of associated nonlinear
problems.
At the linear level, the Fokas method bridges the gap between the Cauchy problem and initial-

boundary value problems by providing the direct analog of the Fourier transform in domains with
a boundary. Indeed, the method provides a fundamentally novel, algorithmic way of solving any
linear evolution equation formulated on a variety of domains in one or higher dimensions and
supplemented with any kind of admissible boundary conditions. An alternative perspective that
further establishes the Fokas method as the natural counterpart of the Fourier transform in the
context of linear initial-boundary value problems stems from the nonlinear component of the
method, which was developed for completely integrable nonlinear equations and corresponds to
the analog of the inverse scattering transform in domains with a boundary. Then, noting that the
linear limit of the inverse scattering transform is nothing but the Fourier transform, it is only
reasonable that the linear limit of the nonlinear component of the Fokas method, namely, the
linear Fokas method, should provide the equivalent of the Fourier transform for linear initial-
boundary value problems.
The analogy between the Fokas method and the Fourier transform has been solidified by a new

approach introduced in recent years by Himonas and one of the authors for the well-posedness
of nonlinear initial-boundary value problems. This approach is based on treating the nonlin-
ear problem as a perturbation of its forced linear counterpart, which is, of course, a classical
idea coming from the Cauchy problem. However, the linear formulae produced via the Fourier
transform in the case of the Cauchy problem are now replaced by the Fokas method solution
formulae (recall that Fourier transform is no longer available). As these novel formulae involve
complex contours of integration, new tools and techniques are required to obtain the various
linear estimates needed for the contraction mapping argument. It should be noted that several
of these estimates are specific to initial-boundary value problems and do not typically arise in
the study of the Cauchy problem; they are results of particular importance, as they capture the
effect of the boundary conditions on the regularity of the solution of both linear and nonlinear
problems.
The Fokas-method-based approach for the rigorous study of initial-boundary value problems

has already been implemented in several works in the literature: NLS on the half-line and the half-
plane 1,23,24,39–41, KdV on the half-line and the finite interval 42–45, “good” Boussinesq on the half-
line 38, biharmonicNLS on the half-line 29, fourth-order Schrödinger equation on the half-line 31, a
higher-dispersion KdV on the half-line 46, and even nondispersive models.47,48 It should be noted
that in those cases where a problem has been previously considered in the literature, the results
via the new method are consistent with the existing ones, typically obtained via the Colliander–
Kenig–Holmer or the Bona–Sun–Zhang approaches, for example, see Refs. 21, 22, 25, 26, 32, 33,
49–51, and 19. Finally, we remark that a certain third-order model with cubic nonlinearity that is
related to Equations (1) and (2) and is known as the Hirota equation has also been considered
in the literature in the context of initial-boundary value problems, see Refs. 52–54. However, it is
important to emphasize that in the present work, we treat the case of a general power nonlinearity
and, furthermore, we study the associated boundary integral operator at the low regularity level
of Strichartz estimates.
We conclude by noting that rigorous treatment of initial-boundary value problems through

the Fokas formulae has not only played an important role in establishing well-posedness results;
it has also given insight toward solving problems that stem from other related fields such as



210 ALKıN et al.

systems theory and control, because there is a close connection between regularity theory and
controllability. It is well known that initial-boundary value problems with nonhomogeneous
boundary conditions can be used to model physical evolutions in which the boundary input acts
as control. Such boundary control models are particularly important for governing dynamics of
physical processes in which access to the interior of a medium is blocked or not feasible, whereas
manipulations through the boundary remain an efficient choice. See, for instance, Refs. 55–57 for
some recent applications of the Fokas method to boundary control problems related to the heat
and Schrödinger equations.

2 LINEAR THEORY

In this section, we study the forced linear initial-boundary value problem

𝑖𝑢𝑡 + 𝑖𝛽𝑢𝑥𝑥𝑥 + 𝛼𝑢𝑥𝑥 + 𝑖𝛿𝑢𝑥 = 𝑓, (𝑥, 𝑡) ∈ ℝ+ × (0,𝑇),𝑢(𝑥, 0) = 𝑢0(𝑥), 𝑥 ∈ ℝ+,𝑢(0, 𝑡) = 𝑔(𝑡), 𝑡 ∈ (0,𝑇), (5)

where 𝛼, 𝛿 ∈ ℝ and 𝛽 > 0. The analysis of the linear problem (5) will be carried out via a
decomposition-reunification approach. This decomposition allows us to split the problem into
three simpler components, two of which are Cauchy problems on the real line with data associ-
ated with 𝑢0 and 𝑓, respectively, and one of which is a (reduced) initial-boundary value problem
with data associated with 𝑔 as well as the traces of the solutions of the aforementioned Cauchy
problems at 𝑥 = 0.
2.1 Homogeneous linear Cauchy problem

Consider the problem

𝑖𝑦𝑡 + 𝑖𝛽𝑦𝑥𝑥𝑥 + 𝛼𝑦𝑥𝑥 + 𝑖𝛿𝑦𝑥 = 0, (𝑥, 𝑡) ∈ ℝ × ℝ,𝑦(𝑥, 0) = 𝑦0(𝑥), 𝑥 ∈ ℝ, (6)

where 𝑦0 = 𝐸0𝑢0 denotes an extension of 𝑢0 with respect to a fixed bounded extension operator𝐸0 ∶ 𝐻𝑠𝑥(ℝ+)→ 𝐻𝑠𝑥(ℝ), namely, we have
‖𝐸0𝑢0‖𝐻𝑠𝑥(ℝ) ≲ ‖𝑢0‖𝐻𝑠𝑥(ℝ+). (7)

Theorem 3. Let 𝑠 ∈ ℝ. The unique solution of the Cauchy problem (6), denoted by 𝑦 = 𝑆[𝑦0; 0],
belongs to 𝐶(ℝ𝑡;𝐻𝑠𝑥(ℝ)) and satisfies the conservation law

‖𝑦(⋅, 𝑡)‖𝐻𝑠𝑥(ℝ) = ‖𝑦0‖𝐻𝑠𝑥(ℝ), 𝑡 ∈ ℝ. (8)
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Moreover, if 𝛼2 + 3𝛽𝛿 ≥ 0, then 𝑦 ∈ 𝐶(ℝ𝑥;𝐻 𝑠+13𝑡 (−𝑇,𝑇)) for 𝑇 > 0 and there exists a constant 𝑐 =𝑐(𝑠,𝛼, 𝛽, 𝛿) ≥ 0 such that
sup𝑥∈ℝ ‖𝑦(𝑥, ⋅)‖𝐻 𝑠+13𝑡 (−𝑇,𝑇) ≤ 𝑐(1 + 𝑇 12 )‖𝑦0‖𝐻𝑠𝑥(ℝ), (9)

while if 𝛼2 + 3𝛽𝛿 < 0, then 𝑦 ∈ 𝐶(ℝ𝑥;𝐻 𝑠+13𝑡 (ℝ)) and there is a constant 𝑐 = 𝑐(𝑠,𝛼, 𝛽, 𝛿) ≥ 0 such
that

sup𝑥∈ℝ ‖𝑦(𝑥, ⋅)‖𝐻 𝑠+13𝑡 (ℝ) ≤ 𝑐‖𝑦0‖𝐻𝑠𝑥(ℝ). (10)

Proof. Taking the Fourier transform of (6) with respect to 𝑥, we find 𝑦(𝑘, 𝑡) = 𝑒−𝜔(𝑘)𝑡 𝑦0(𝑘)where
𝜔(𝑘) ∶= −𝑖𝛽𝑘3 + 𝑖𝛼𝑘2 + 𝑖𝛿𝑘. (11)

For 𝑘 ∈ ℝ, 𝜔(𝑘) is purely imaginary; thus, |𝑦(𝑘, 𝑡)| = |𝑦0(𝑘)| and the conservation law (8) read-
ily follows via Plancherel’s theorem. The continuity of the map 𝑡 ↦ 𝑦(𝑡) from [0,𝑇] into 𝐻𝑠𝑥(ℝ)
follows from the dominated convergence theorem and the fact that 𝑦0 ∈ 𝐻𝑠𝑥(ℝ).
To prove the temporal estimates (9) and (10), we start from the Fourier transform solution

representation

𝑦(𝑥, 𝑡) = 𝑆[𝑦0; 0](𝑥, 𝑡) = 12𝜋 ∫ℝ 𝑒𝑖𝑘𝑥−𝜔(𝑘)𝑡 𝑦0(𝑘)𝑑𝑘. (12)

Consider the real-valued map 𝜏 = 𝑖𝜔(𝑘). Notice that if 𝛼2 + 3𝛽𝛿 ≤ 0, then 𝜏 is monotone increas-
ing and so 𝑘 = (𝑖𝜔)−1(𝜏) is well-defined. In the case of strict inequality 𝛼2 + 3𝛽𝛿 < 0, we observe
that 𝑖𝜔′(𝑘) > −(𝛼2 + 3𝛽𝛿)∕(3𝛽) > 0, and so, by the inverse function theorem, we can change
variable from 𝑘 to 𝜏 to rewrite (12) as

𝑦(𝑥, 𝑡) = 12𝜋 ∫ℝ 𝑒𝑖(𝑖𝜔)−1(𝜏)𝑥+𝑖𝜏𝑡 𝑦0((𝑖𝜔)−1(𝜏)) 𝑑𝜏𝑖𝜔′((𝑖𝜔)−1(𝜏)) . (13)

In addition, we have 𝑖𝜔(𝑘) = (𝑘3) and 1𝑖𝜔′(𝑘) = (𝑘−2) as |𝑘| →∞. Using the Fourier transform
characterization of the Sobolev norm, for each 𝑥 ∈ ℝ, we find

‖𝑦(𝑥, ⋅)‖2𝐻 𝑠+13𝑡 (ℝ) = ∫ℝ(1 + 𝜏2) 𝑠+13 |𝑦0((𝑖𝜔)−1(𝜏))|2 𝑑𝜏
|𝑖𝜔′((𝑖𝜔)−1(𝜏))|2

≲ ∫ℝ
(1 + 𝑘2)𝑠|𝑦0(𝑘)|2𝑑𝑘 = ‖𝑦0‖2𝐻𝑠𝑥(ℝ),

which amounts to estimate (10).
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Next, consider the case 𝛼2 + 3𝛽𝛿 ≥ 0. Let 𝜃 ∈ 𝐶∞𝑐 (ℝ) be a function whose additional properties
will be specified below. Then, we can write 𝑦 = 𝑦1 + 𝑦2, where

𝑦1(𝑥, 𝑡) ∶= 12𝜋 ∫ℝ 𝑒𝑖𝑘𝑥−𝜔(𝑘)𝑡𝜃(𝑘)𝑦0(𝑘)𝑑𝑘,𝑦2(𝑥, 𝑡) ∶= 12𝜋 ∫ℝ 𝑒𝑖𝑘𝑥−𝜔(𝑘)𝑡(1 − 𝜃(𝑘))𝑦0(𝑘)𝑑𝑘. (14)

Taking 𝑗th-order time derivative of 𝑦1 and using Cauchy–Schwarz inequality, we deduce
|𝜕𝑗𝑡 𝑦1(𝑥, 𝑡)| ≤ 12𝜋 ∫supp(𝜃) |𝜔(𝑘)|𝑗|𝜃(𝑘)‖𝑦0(𝑘)|𝑑𝑘

≲ (

∫supp(𝜃)
(1 + 𝑘2)−𝑠|𝜔(𝑘)|2𝑗𝑑𝑘) 12

‖𝑦0‖𝐻𝑠𝑥(ℝ) = 𝑐(𝑠, 𝑗, 𝜃)‖𝑦0‖𝐻𝑠𝑥(ℝ).
We note that this inequality holds for any 𝑠 ∈ ℝ. Thus, by the physical space characterization of
the Sobolev norm, namely,

‖𝑓‖𝐻𝜇𝑡 (−𝑇,𝑇) = 𝜇∑
𝑗=0 ‖‖𝜕𝑗𝑡 𝑓‖‖𝐿2𝑡 (−𝑇,𝑇), 𝜇 ∈ ℕ0, (15)

we obtain

‖𝑦1(𝑥, ⋅)‖𝐻𝜇𝑡 (−𝑇,𝑇) ≤ 𝑐(𝑠,𝜇, 𝜃)𝑇 12 ‖𝑦0‖𝐻𝑠𝑥(ℝ) (16)

for any 𝜇 ∈ ℕ0 and any 𝑥, 𝑠 ∈ ℝ. Then, since given any 𝑚 ∈ ℝ, we can always find 𝜇 ∈ ℕ ∪ {0}
such that𝑚 ≤ 𝜇, estimate (16) readily implies

‖𝑦1(𝑥, ⋅)‖𝐻𝑚𝑡 (−𝑇,𝑇) ≤ 𝑐(𝑠,𝑚, 𝜃)𝑇 12 ‖𝑦0‖𝐻𝑠𝑥(ℝ), 𝑚, 𝑠,𝑥 ∈ ℝ. (17)

To handle 𝑦2, we note that given 𝛼, 𝛿 ∈ ℝ and 𝛽 > 0 satisfying 𝛼2 + 3𝛽𝛿 ≥ 0, one can find 𝑘𝑗 =𝑘𝑗(𝛼, 𝛿, 𝛽) ∈ ℝ, 𝑗 = 1, 2, such that (i) the roots 𝛼±√𝛼2+3𝛽𝛿3𝛽 of 𝜔′(𝑘) = 0 lie in (𝑘1, 𝑘2) and (ii) the
mapping 𝜏 = 𝑖𝜔(𝑘) is monotone increasing on ℝ ⧵ (𝑘1, 𝑘2). Now, let 𝑘3 < 𝑘1 and 𝑘4 > 𝑘2 be any
two numbers and fix 𝜃 so that it further satisfies the condition

𝜃(𝑘) = {1, 𝑘 ∈ [𝑘1, 𝑘2],0, 𝑘 ∉ (𝑘3, 𝑘4),
as well as the condition 0 ≤ |𝜃(𝑘)| ≤ 1, 𝑘 ∈ ℝ. Now, we can rewrite 𝑦2 as

𝑦2(𝑥, 𝑡) = 12𝜋 ∫ℝ⧵[𝑘1,𝑘2] 𝑒𝑖𝑘𝑥−𝜔(𝑘)𝑡(1 − 𝜃(𝑘))𝑦0(𝑘)𝑑𝑘
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= 12𝜋 ∫(𝑖𝜔)(ℝ⧵[𝑘1,𝑘2]) 𝑒𝑖(𝑖𝜔)−1(𝜏)𝑥+𝑖𝜏𝑡(1 − 𝜃((𝑖𝜔)−1(𝜏)))𝑦0((𝑖𝜔)−1(𝜏)) 𝑑𝜏𝑖𝜔′((𝑖𝜔)−1(𝜏)) .
Using the definition of the Sobolev norm, for each 𝑥 ∈ ℝ, we have

‖𝑦2(𝑥, ⋅)‖2𝐻 𝑠+13𝑡 (ℝ) = ∫ℝ(1 + 𝜏2) 𝑠+13 |𝑦2(𝑥, 𝜏)|2𝑑𝜏
= ∫(𝑖𝜔)(ℝ⧵[𝑘1,𝑘2])(1 + 𝜏2) 𝑠+13 |1 − 𝜃((𝑖𝜔)−1(𝜏))|2|𝑦0((𝑖𝜔)−1(𝜏))|2

|𝑖𝜔′((𝑖𝜔)−1(𝜏))|2 𝑑𝜏
≲ ∫ℝ⧵[𝑘1,𝑘2]

(1 + (𝑖𝜔(𝑘))2) 𝑠+13
|𝑖𝜔′(𝑘)| |𝑦0(𝑘)|2𝑑𝑘

≲ ∫ℝ
(1 + 𝑘2)𝑠|𝑦0(𝑘)|2𝑑𝑘 = ‖𝑦0‖2𝐻𝑠𝑥(ℝ), (18)

where the last inequality follows from the fact that 𝑖𝜔(𝑘) = (𝑘3) and 1𝑖𝜔′(𝑘) = (𝑘−2) as |𝑘| →∞.
Hence, (9) follows from (17) and (18). Continuity in 𝑥 once again follows from the dominated
convergence theorem. ■
Notice that the conservation law (8) allows us to control the 𝐿∞𝑡 ((0,𝑇);𝐻𝑠𝑥(ℝ)) norm of the

solution to the homogeneous linear Cauchy problem by the𝐻𝑠𝑥(ℝ) norm of the initial data. As we
shall show below, this is also the case for the mixed Lebesgue norms 𝐿𝜇𝑡 ((0,𝑇);𝐻𝑠,𝑟𝑥 (ℝ)), where𝐻𝑠,𝑟(ℝ) is the usual Bessel potential space defined with norm

‖𝑓‖𝐻𝑠,𝑟(ℝ) ∶= ‖‖‖‖‖
−1{(1 + 𝑘2) 𝑠2 {𝑓}(𝑘)}‖‖‖‖‖𝐿𝑟(ℝ), (19)

and (𝜇, 𝑟) is any higher-order Schrödinger admissible pair, that is, any pair (𝜇, 𝑟) satisfying
𝜇, 𝑟 ≥ 2, 3𝜇 + 1𝑟 = 12 . (20)

More precisely, we have the following Strichartz estimate:

Theorem 4. Let 𝑠 ∈ ℝ and suppose (𝜇, 𝑟) is higher-order Schrödinger admissible in the sense of (20).
Then, the solution of the homogeneous linear Cauchy problem (6) satisfies the Strichartz estimate

‖𝑦‖𝐿𝜇𝑡 ((0,𝑇);𝐻𝑠,𝑟𝑥 (ℝ)) ≲ ‖𝑦0‖𝐻𝑠𝑥(ℝ). (21)

Proof. By the definition (19) of the𝐻𝑠,𝑟-norm, we have
‖𝑦‖𝐿𝜇𝑡 (ℝ;𝐻𝑠,𝑟𝑥 (ℝ)) = ‖‖‖‖‖

−1{(1 + 𝑘2) 𝑠2 𝑦(𝑥)(𝑘, ⋅)}‖‖‖‖‖𝐿𝜇𝑡 ((0,𝑇);𝐿𝑟𝑥(ℝ)).
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Recalling that 𝑦(𝑥)(𝑘, 𝑡) = 𝑒−𝜔(𝑘)𝑡 𝑦0(𝑘), we have
−1{(1 + 𝑘2) 𝑠2 𝑦(𝑥)(𝑘, 𝑡)} = 12𝜋 ∫

∞
−∞ 𝑒𝑖𝑘𝑥−𝜔(𝑘)𝑡(1 + 𝑘2) 𝑠2 𝑦0(𝑘)𝑑𝑘 = 𝑆[𝜑; 0](𝑡),

where 𝜑(𝑥) = −1{(1 + 𝑘2) 𝑠2 𝑦0(𝑘)}(𝑥). So, it suffices to prove that
‖𝑆[𝜑; 0]‖𝐿𝜇𝑡 ((0,𝑇);𝐿𝑟𝑥(ℝ)) ≲ ‖𝜑‖𝐿2𝑥(ℝ). (22)

For this, we note that by the definition of the Fourier transform, we can write

𝑆[𝜑; 0](𝑥, 𝑡) = 12𝜋 ∫ℝ 𝐼(𝑥, 𝑦, 𝑡)𝜑(𝑦)𝑑𝑦,
where

𝐼(𝑥, 𝑦, 𝑡) ∶= ∫ℝ 𝑒𝑖𝑘(𝑥−𝑦−𝑡𝛿)+𝑖(𝑡𝛽𝑘3−𝑡𝛼𝑘2)𝑑𝑘.
Then, invoking the following dispersive estimate from the proof of Lemma 4.2 in Ref. 6,

|𝐼(𝑥, 𝑦, 𝑡)| ≲ |𝛽𝑡|− 13 , 𝑡 ≠ 0,
where the inequality constant is independent of 𝑥, 𝑦, 𝑡, and proceeding along the lines of the proof
of Theorem 4.1 in Ref. 6 (see also relevant proof in Ref. 13), we infer the desired estimate (22). ■
2.2 Nonhomogeneous linear cauchy problem

We continue our linear analysis with the problem

𝑖𝑧𝑡 + 𝑖𝛽𝑧𝑥𝑥𝑥 + 𝛼𝑧𝑥𝑥 + 𝑖𝛿𝑧𝑥 = 𝐹, (𝑥, 𝑡) ∈ ℝ × (0,𝑇),𝑧(𝑥, 0) = 0, 𝑥 ∈ ℝ, (23)

where 𝐹 = 𝐸0𝑓 ∈ 𝐿2𝑡 ((0,𝑇);𝐻𝑠𝑥(ℝ)) is a spatial extension of 𝑓 ∈ 𝐿2𝑡 ((0,𝑇);𝐻𝑠𝑥(ℝ+)). Thanks to
Duhamel’s principle, the solution of the nonhomogeneous problem (23), denoted by 𝑆[0;𝐹], can
be expressed as

𝑧(𝑥, 𝑡) = 𝑆[0;𝐹](𝑥, 𝑡) = −𝑖 ∫ 𝑡
0 𝑆[𝐹(⋅, 𝑡′); 0](𝑥, 𝑡 − 𝑡′)𝑑𝑡′

= − 𝑖2𝜋 ∫
𝑡

0 ∫ℝ 𝑒𝑖𝑘𝑥−𝜔(𝑘)(𝑡−𝑡′)𝐹(𝑘, 𝑡′)𝑑𝑘𝑑𝑡′,
(24)



ALKıN et al. 215

where, for each 𝑡′ ∈ [0, 𝑡], 𝑆[𝐹(⋅, 𝑡′); 0] denotes the solution to the homogeneous problem (6) with
initial data 𝐹(𝑥, 𝑡′). We then have the following result, whose proof is based on the approach that
was used for the Korteweg–de Vries equation in Ref. 43.

Theorem 5. The unique solution of (23) satisfies the space estimate

sup𝑡∈[0,𝑇] ‖𝑧(⋅, 𝑡)‖𝐻𝑠𝑥(ℝ) ≤ ‖𝐹‖𝐿1𝑡 ((0,𝑇);𝐻𝑠𝑥(ℝ)), 𝑠 ∈ ℝ. (25)

Moreover, if −1 ≤ 𝑠 ≤ 2 with 𝑠 ≠ 12 , then the following time estimate holds:
sup𝑥∈ℝ ‖𝑧(𝑥, ⋅)‖𝐻 𝑠+13𝑡 (0,𝑇) ≲ max{𝑇 12 (1 + 𝑇 12 ),𝑇𝜎}‖𝐹‖𝐿2𝑡 ((0,𝑇);𝐻𝑠𝑥(ℝ)), (26)

where

𝜎 =
⎧
⎪
⎪
⎨
⎪
⎪⎩

1−2𝑠6 , −1 ≤ 𝑠 < 12 ,2−𝑠3 , 12 < 𝑠 < 2,12 , 𝑠 = 2. (27)

Remark 2. For 2 < 𝑠 < 72 , due to the fractional norm ‖𝜕𝑡𝑧(𝑥, ⋅)‖𝑚−1 (see definition (29) below),
the analog of the time estimate (26) turns out to be

sup𝑥∈ℝ ‖𝑧(𝑥, ⋅)‖𝐻 𝑠+13𝑡 (0,𝑇) ≲ max{𝑇 12 (1 + 𝑇 12 ),𝑇𝜎}‖𝐹‖𝐿2𝑡 ((0,𝑇);𝐻𝑠𝑥(ℝ)) + sup𝑥∈ℝ ‖𝐹(𝑥, ⋅)‖𝐻 𝑠+13 −1𝑡 (0,𝑇).
The appearance of the space 𝐶(ℝ𝑥;𝐻 𝑠+13 −1(0,𝑇)) via the relevant norm on the right-hand side has
a direct impact on the analysis of the nonlinear problem, as it eventually requires one to establish
an appropriate multilinear estimate for the term ‖|𝑢|𝑝𝑢(𝑥, ⋅)‖𝐻 𝑠+13 −1𝑡 (0,𝑇) (note that the underlying
range of 𝑠 implies 0 < 𝑠+13 − 1 < 12 and so the algebra property is not available). For this reason, a
different approach (perhaps via energy estimates)might be preferable for showingwell-posedness
in this higher range of 𝑠. In any case, this task lies outside the scope of the present work, which
instead focuses on solutions of lower smoothness and, in particular, toward the low regularity
setting 0 ≤ 𝑠 < 12 .
Proof. In view of the Duhamel representation (24), the space estimate (25) readily follows from
the homogeneous conservation law (8).
We proceed to the time estimate (26). Restricting 𝑠 ≥ −1 allows us to employ the physical space

characterization of the Sobolev norm since then the exponent 𝑠+13 is nonnegative. In particular,
for −1 ≤ 𝑠 < 2, setting𝑚 ∶= 𝑠+13 and observing that 0 ≤ 𝑚 < 1, we have

‖𝑧(𝑥, ⋅)‖𝐻𝑚𝑡 (0,𝑇) = ‖𝑧(𝑥, ⋅)‖𝐿2𝑡 (0,𝑇) + ‖𝑧(𝑥, ⋅)‖𝑚, (28)
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where the fractional part of the Sobolev norm is zero for𝑚 = 0 and for 0 < 𝑚 < 1 is given by
‖𝑧(𝑥, ⋅)‖2𝑚 = 2∫ 𝑇

0 ∫
𝑇−𝑡

0 |𝑧(𝑥, 𝑡 + 𝑙) − 𝑧(𝑥, 𝑡)|2𝑙1+2𝑚 𝑑𝑙𝑑𝑡. (29)

For each 𝑥 ∈ ℝ, employing Minkowski’s integral inequality and subsequently using the homoge-
neous time estimates (9) and (10) for 𝛼2 + 3𝛽𝛿 ≥ 0 and 𝛼2 + 3𝛽𝛿 < 0, respectively, along with the
Cauchy–Schwarz inequality, we obtain

‖𝑧(𝑥, ⋅)‖𝐿2𝑡 (0,𝑇) ≤ ∫
𝑇

0 ‖‖𝑆[𝐹(⋅, 𝑡′); 0](𝑥, ⋅ − 𝑡′)‖‖𝐿2𝑡 (0,𝑇)𝑑𝑡′
≲ (1 + 𝑇 12 )∫ 𝑇

0 ‖‖𝐹(⋅, 𝑡′)‖‖𝐻−1𝑥 (ℝ)𝑑𝑡′
≲ 𝑇 12 (1 + 𝑇 12 ) ‖𝐹‖𝐿2𝑡 ((0,𝑇);𝐻𝑠𝑥(ℝ)).

(30)

For the fractional norm, noting that

|𝑧(𝑥, 𝑡 + 𝑙) − 𝑧(𝑥, 𝑡)|2 ≤ ||||∫
𝑡

0 𝑆[𝐹(⋅, 𝑡′); 0](𝑥, 𝑡 + 𝑙 − 𝑡′) − 𝑆[𝐹(⋅, 𝑡′); 0](𝑥, 𝑡 − 𝑡′)𝑑𝑡′||||2
+ ||||∫

𝑡+𝑙
𝑡 𝑆[𝐹(⋅, 𝑡′); 0](𝑥, 𝑡 + 𝑙 − 𝑡′)𝑑𝑡′||||2,

we have ‖𝑧(𝑥, ⋅)‖2𝑚 ≲ 𝐼 + 𝐽, where
𝐼 ∶= ∫

𝑇
0 ∫

𝑇−𝑡
0 1𝑙1+2𝑚

(

∫
𝑇

0 |||𝑆[𝐹(⋅, 𝑡′); 0](𝑥, 𝑡 + 𝑙 − 𝑡′) − 𝑆[𝐹(⋅, 𝑡′); 0](𝑥, 𝑡 − 𝑡′)|||𝑑𝑡′)2𝑑𝑙𝑑𝑡, (31)

𝐽 ∶= ∫
𝑇

0 ∫
𝑇−𝑡

0 1𝑙1+2𝑚 ||||∫
𝑡+𝑙

𝑡 𝑆[𝐹(⋅, 𝑡′); 0](𝑥, 𝑡 + 𝑙 − 𝑡′)𝑑𝑡′||||2𝑑𝑙𝑑𝑡. (32)

For 𝐼, we proceed as follows. First, we multiply the integrand by the characteristic function𝜒[0,𝑇−𝑡](𝑙) so that 𝜒[0,𝑇−𝑡](𝑙) = 1 for 0 ≤ 𝑙 ≤ 𝑇 − 𝑡 and 𝜒[0,𝑇−𝑡](𝑙) = 0 otherwise. This allows us to
replace 𝑇 − 𝑡 by 𝑇 in the upper limit of the integral with respect to 𝑙. Then, we use Minkowski’s
inequality for the triple integral, and finally, we use the definition of 𝜒[0,𝑇−𝑡](𝑙) once again to
switch 𝑇 by 𝑇 − 𝑡 in the limit of the integral taken with respect to 𝑙. Performing these steps and
employing the homogeneous time estimates (9) and (10), we find

𝐼 ≤ ⎛
⎜
⎜
⎜⎝
∫

𝑇
0

(

∫
𝑇

0 ∫
𝑇−𝑡

0 1𝑙1+2𝑚 |||𝑆[𝐹(⋅, 𝑡′); 0](𝑥, 𝑡 + 𝑙 − 𝑡′) − 𝑆[𝐹(⋅, 𝑡′); 0](𝑥, 𝑡 − 𝑡′)|||2𝑑𝑙𝑑𝑡)
12 𝑑𝑡′⎞⎟⎟

⎟⎠

2

(33)
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≃ (

∫
𝑇

0 ‖‖𝑆[𝐹(⋅, 𝑡′); 0](𝑥, ⋅ − 𝑡′)‖‖𝑚 𝑑𝑡′)2 ≲ (

∫
𝑇

0 ‖‖𝐹(⋅, 𝑡′)‖‖𝐻𝑠𝑥(ℝ) 𝑑𝑡′
)2 ≲ 𝑇 ∫

𝑇
0 ‖𝐹(⋅, 𝑡)‖2𝐻𝑠𝑥(ℝ)𝑑𝑡.

To estimate 𝐽, we consider the cases 0 < 𝑚 < 12 and 12 < 𝑚 < 1 separately. The range 12 < 𝑚 < 1
corresponds to 12 < 𝑠 < 2, and hence, we can employ the Sobolev embedding theorem in 𝑥. In par-
ticular, substituting for 𝑆[𝐹(⋅, 𝑡′); 0](𝑥, 𝑡 + 𝑙 − 𝑡′) via (12) and then using the Sobolev embedding,
the Fourier transform characterization of the Sobolev norm, and the fact that 𝜔(𝑘) is imaginary
for 𝑘 ∈ ℝ, we have

𝐽 ≤ ∫
𝑇

0 ∫
𝑇−𝑡

0 1𝑙1+2𝑚 ‖‖‖‖‖
12𝜋 ∫ℝ 𝑒𝑖𝑘𝑥−𝜔(𝑘)(𝑡+𝑙) ∫ 𝑡+𝑙

𝑡 𝑒𝜔(𝑘)𝑡′𝐹(𝑘, 𝑡′)𝑑𝑡′𝑑𝑘‖‖‖‖‖
2
𝐿∞𝑥 (ℝ)𝑑𝑙𝑑𝑡

≲ ∫
𝑇

0 ∫
𝑇−𝑡

0 1𝑙1+2𝑚 ‖‖‖‖‖
12𝜋 ∫ℝ 𝑒𝑖𝑘𝑥−𝜔(𝑘)(𝑡+𝑙) ∫ 𝑡+𝑙

𝑡 𝑒𝜔(𝑘)𝑡′𝐹(𝑘, 𝑡′)𝑑𝑡′𝑑𝑘‖‖‖‖‖
2
𝐻𝑠𝑥(ℝ)𝑑𝑙𝑑𝑡

= ∫
𝑇

0 ∫
𝑇−𝑡

0 1𝑙1+2𝑚 ∫ℝ
(1 + 𝑘2)𝑠||||∫ 𝑡+𝑙

𝑡 𝑒𝜔(𝑘)𝑡′𝐹(𝑘, 𝑡′)𝑑𝑡′||||2𝑑𝑘𝑑𝑙𝑑𝑡.
Thus, by Minkowski’s integral inequality between the integrals with respect to 𝑡′ and 𝑘, Cauchy–
Schwarz inequality in the 𝑡′-integral, and Fubini’s theorem between the integrals with respect to𝑡 and 𝑡′,

𝐽 ≲ ∫
𝑇

0 ∫
𝑇−𝑡

0 1𝑙1+2𝑚
(

∫
𝑡+𝑙

𝑡 ‖‖𝐹(⋅, 𝑡′)‖‖𝐻𝑠𝑥(ℝ)𝑑𝑡′
)2𝑑𝑙𝑑𝑡

≤ ∫
𝑇

0 ∫
𝑇−𝑡

0 ∫
𝑡+𝑙

𝑡 ‖‖𝐹(⋅, 𝑡′)‖‖2𝐻𝑠𝑥(ℝ) 𝑙−2𝑚 𝑑𝑡′𝑑𝑙𝑑𝑡
= ∫

𝑇
0 ‖‖𝐹(⋅, 𝑡′)‖‖2𝐻𝑠𝑥(ℝ) ∫

𝑇
0 𝑙−2𝑚 ∫

𝑡′
𝑡′−𝑙 𝑑𝑡𝑑𝑙𝑑𝑡′

≃ 𝑇2−2𝑚2 − 2𝑚 ∫
𝑇

0 ‖‖𝐹(⋅, 𝑡′)‖‖2𝐻𝑠𝑥(ℝ)𝑑𝑡′.

(34)

The range 0 < 𝑚 < 12 corresponds to −1 < 𝑠 < 12 , and hence, Sobolev embedding is no longer
available. However, the fact that 𝑚 < 12 allows to proceed via the Cauchy–Schwarz inequality in
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𝑡′ as follows:
𝐽 ≲ ∫

𝑇
0 1𝑙2𝑚 ∫

𝑇−𝑙
0 ∫

𝑡+𝑙
𝑡 |𝑆[𝐹(⋅, 𝑡′); 0](𝑥, 𝑡 + 𝑙 − 𝑡′)|2𝑑𝑡′𝑑𝑡𝑑𝑙

= ∫
𝑇

0 1𝑙2𝑚 ∫
𝑇

𝑙 ∫
𝑡

𝑡−𝑙 |𝑆[𝐹(⋅, 𝑡′); 0](𝑥, 𝑡 − 𝑡′)|2𝑑𝑡′𝑑𝑡𝑑𝑙
≲ (

∫
𝑇

0 1𝑙2𝑚 𝑑𝑙
)

∫
𝑇

0 ‖‖𝑆[𝐹(⋅, 𝑡′); 0](𝑥, ⋅ − 𝑡′)‖‖2𝐿2𝑡 (𝑡′,𝑇)𝑑𝑡′
≲ 𝑇1−2𝑚1 − 2𝑚 ∫

𝑇
0 ‖‖𝐹(⋅, 𝑡′)‖‖2𝐻−1𝑥 (ℝ)𝑑𝑡′.

(35)

Note that the equality above is due to the change of variable 𝑡 ↦ 𝑡 − 𝑙, and the inequality succeed-
ing it follows by extending the range of the integralswith respect to 𝑡′ and 𝑡 and then interchanging
the resulting integrals. The final inequality is thanks to Theorem 3.
Estimates (30), (33), (34), and (35) combined with the Sobolev norm definition (28) imply the

desired time estimate (26) in the range −1 ≤ 𝑠 < 2 with 𝑠 ≠ 12 .
Finally, we consider 2 ≤ 𝑠 < 72 . As this range corresponds to 1 ≤ 𝑚 < 32 , the Sobolev norm (28)

must be modified to

‖𝑧(𝑥, ⋅)‖2𝐻𝑚𝑡 (0,𝑇) = ‖𝑧(𝑥, ⋅)‖2𝐻1𝑡 (0,𝑇) + ‖𝜕𝑡𝑧(𝑥, ⋅)‖2𝑚−1.
Differentiating (24) in 𝑡, we have

𝜕𝑡𝑧(𝑥, 𝑡) = −𝑖𝑆[𝐹(⋅, 𝑡); 0](𝑥, 0) − 𝑖 ∫ 𝑡
0 𝜕𝑡[𝑆[𝐹(⋅, 𝑡′); 0](𝑥, 𝑡 − 𝑡′)]𝑑𝑡′. (36)

We begin by observing that 𝑆[𝐹(⋅, 𝑡); 0](𝑥, 0) = 12𝜋 ∫ℝ 𝑒𝑖𝑘𝑥𝐹(𝑘, 𝑡)𝑑𝑘 = 𝐹(𝑥, 𝑡). Moreover, by using
the Fourier transform property for derivatives, we note that

𝜕𝑡[𝑆[𝐹(⋅, 𝑡′); 0](𝑥, 𝑡 − 𝑡′)] = 𝜕𝑡[ 12𝜋 ∫ℝ 𝑒𝑖𝑘𝑥−𝜔(𝑘)(𝑡−𝑡′)𝐹(𝑘, 𝑡′)𝑑𝑘
]

= 12𝜋 ∫ℝ[−𝜔(𝑘)]𝑒𝑖𝑘𝑥−𝜔(𝑘)(𝑡−𝑡′)𝐹(𝑘, 𝑡′)𝑑𝑘= 𝑆[(−𝛽𝜕3𝑥 + 𝑖𝛼𝜕2𝑥 − 𝛿𝜕𝑥)𝐹(⋅, 𝑡′); 0](𝑥, 𝑡 − 𝑡′).
(37)

Therefore, (36) can be rewritten as

𝜕𝑡𝑧(𝑥, 𝑡) = −𝑖𝐹(𝑥, 𝑡) − 𝑖 ∫ 𝑡
0 𝑆[(−𝛽𝜕3𝑥 + 𝑖𝛼𝜕2𝑥 − 𝛿𝜕𝑥)𝐹(⋅, 𝑡′); 0](𝑥, 𝑡 − 𝑡′)𝑑𝑡′ (38)
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and so,

‖𝜕𝑡𝑧(𝑥, ⋅)‖𝐿2𝑡 (0,𝑇) ≤ ‖𝐹(𝑥, ⋅)‖𝐿2𝑡 (0,𝑇) + ‖‖‖‖‖∫
𝑡

0 𝑆[(−𝛽𝜕3𝑥 + 𝑖𝛼𝜕2𝑥 − 𝛿𝜕𝑥)𝐹(⋅, 𝑡′); 0](𝑥, 𝑡 − 𝑡′)𝑑𝑡′‖‖‖‖‖𝐿2𝑡 (0,𝑇).
The first term on the right-hand side can be handled as follows:

‖𝐹(𝑥, ⋅)‖𝐿2𝑡 (0,𝑇) ≤ sup𝑥∈ℝ ‖𝐹(𝑥, ⋅)‖𝐿2𝑡 (0,𝑇) ≤ ‖𝐹‖𝐿2𝑡 ((0,𝑇);𝐻 12 +𝑥 (ℝ)). (39)

For the second term, extending the range of integration in 𝑡′ and then applying Minkowski’s
integral inequality in combination with Theorem 3, we have

‖‖‖‖‖∫
𝑡

0 𝑆[(−𝛽𝜕3𝑥 + 𝑖𝛼𝜕2𝑥 − 𝛿𝜕𝑥)𝐹(⋅, 𝑡′); 0](𝑥, 𝑡 − 𝑡′)𝑑𝑡′‖‖‖‖‖𝐿2𝑡 (0,𝑇)
≲ (1 + 𝑇 12 )∫ 𝑇

0 ‖‖‖(−𝛽𝜕3𝑥 + 𝑖𝛼𝜕2𝑥 − 𝛿𝜕𝑥)𝐹(⋅, 𝑡′)‖‖‖𝐻−1𝑥 (ℝ)𝑑𝑡′
≲ (1 + 𝑇 12 )[𝛽 ∫ 𝑇

0 ‖‖‖𝜕3𝑥𝐹(⋅, 𝑡′)‖‖‖𝐻−1𝑥 (ℝ)𝑑𝑡′ + |𝛼|∫ 𝑇
0 ‖‖‖𝜕2𝑥𝐹(⋅, 𝑡′)‖‖‖𝐻−1𝑥 (ℝ)𝑑𝑡′ + |𝛿|∫ 𝑇

0 ‖‖𝜕𝑥𝐹(⋅, 𝑡′)‖‖𝐻−1𝑥 (ℝ)𝑑𝑡′]
≲ (1 + 𝑇 12 )[𝛽 ∫ 𝑇

0 ‖‖𝐹(⋅, 𝑡′)‖‖𝐻2𝑥(ℝ)𝑑𝑡′ + |𝛼|∫ 𝑇
0 ‖‖𝐹(⋅, 𝑡′)‖‖𝐻1𝑥(ℝ)𝑑𝑡′ + |𝛿|∫ 𝑇

0 ‖‖𝐹(⋅, 𝑡′)‖‖𝐿2𝑥(ℝ)𝑑𝑡′
]

≲ (1 + 𝑇 12 )∫ 𝑇
0 ‖‖𝐹(⋅, 𝑡′)‖‖𝐻2𝑥(ℝ)𝑑𝑡′. (40)

Together, estimates (39) and (40) imply the bound

‖𝜕𝑡𝑧(𝑥, ⋅)‖𝐿2𝑡 (0,𝑇) ≲ 𝑇 12 (1 + 𝑇 12 )‖𝐹‖𝐿2𝑡 ((0,𝑇);𝐻2𝑥(ℝ)), (41)

which corresponds to the desired estimate (26) in the case 𝑠 = 2. ■
Regarding𝐿𝜇𝑡 𝐿𝑟𝑥 Strichartz-type estimates for the nonhomogeneous linearCauchy problem (23),

we have the following result that is a consequence of the homogeneous Strichartz estimates given
in Theorem 4.

Theorem 6. Let 𝑠 ∈ ℝ and suppose (𝜇, 𝑟) is higher-order Schrödinger admissible in the sense of
(20). Then, the solution of the nonhomogeneous linear Cauchy problem (23) satisfies the Strichartz
estimate

‖𝑧‖𝐿𝜇𝑡 ((0,𝑇);𝐻𝑠,𝑟𝑥 (ℝ)) ≲ ‖𝐹‖𝐿1𝑡 ((0,𝑇);𝐻𝑠𝑥(ℝ)). (42)
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Proof. Letting 𝐻(𝑥, 𝑡, 𝑡′) ∶= 𝜒{𝑡′≤𝑡}(𝑡′)𝑆[𝐹(⋅, 𝑡′); 0](𝑥, 𝑡 − 𝑡′), we rewrite ‖𝑧‖𝐿𝜇𝑡 ((0,𝑇);𝐻𝑠,𝑟𝑥 (ℝ))
as

‖𝑧‖𝐿𝜇𝑡 ((0,𝑇);𝐻𝑠,𝑟𝑥 (ℝ)) = ‖‖‖∫
𝑇

0 𝐻(⋅, ⋅, 𝑡′)𝑑𝑡′‖‖‖𝐿𝜇𝑡 ((0,𝑇);𝐻𝑠,𝑟𝑥 (ℝ)). (43)

Therefore, in view of the homogeneous Strichartz estimate (21), we readily infer

‖𝑧‖𝐿𝜇𝑡 ((0,𝑇);𝐻𝑠,𝑟𝑥 (ℝ)) ≤ ∫
𝑇

0 ‖‖𝐻(⋅, ⋅, 𝑡′)‖‖𝐿𝜇𝑡 ((0,𝑇);𝐻𝑠,𝑟𝑥 (ℝ))𝑑𝑡′
≤ ∫

𝑇
0 ‖‖𝑆[𝐹(⋅, 𝑡′); 0](⋅, ⋅ − 𝑡′)‖‖𝐿𝜇𝑡 ((0,𝑇);𝐻𝑠,𝑟𝑥 (ℝ))𝑑𝑡′ ≲ ∫

𝑇
0 ‖‖𝐹(⋅, 𝑡′)‖‖𝐻𝑠𝑥(ℝ)𝑑𝑡′.

■
2.3 Reduced initial-boundary value problem

We consider the reduced initial-boundary value problem

𝑖𝑞𝑡 + 𝑖𝛽𝑞𝑥𝑥𝑥 + 𝛼𝑞𝑥𝑥 + 𝑖𝛿𝑞𝑥 = 0, (𝑥, 𝑡) ∈ ℝ+ × (0,𝑇′),
𝑞(𝑥, 0) = 0, 𝑥 ∈ ℝ+,
𝑞(0, 𝑡) = 𝑔0(𝑡) ∶= 𝐸𝑏[𝑔 − 𝑦(0, ⋅) − 𝑧(0, ⋅)](𝑡), 𝑡 ∈ (0,𝑇′),

(44)

where 𝑇′ > 𝑇, 𝑦(0, 𝑡) and 𝑧(0, 𝑡) are the solutions to the homogeneous and nonhomogeneous
Cauchy problems (6) and (23) evaluated at 𝑥 = 0, and 𝐸𝑏 ∶ 𝐻(𝑠+1)∕3𝑡 (0,𝑇)→ 𝐻(𝑠+1)∕3𝑡 (ℝ) is a fixed
bounded extension operator satisfying the additional property that supp 𝑔0 ⊂ [0,𝑇′). The con-
struction of such an extension is analogous to the one provided in detail in Section 3 of Ref. 40 in
the context of the linear Schrödinger equation. In particular, we note that, for continuous Sobolev
data, a compactly supported extension can be constructed thanks to the compatibility between
the initial and boundary data at (𝑥, 𝑡) = (0, 0) (see also discussion above Theorem 7). In this con-
nection, observe that the traces 𝑦(0, 𝑡) and 𝑧(0, 𝑡) are well defined and belong to 𝐻(𝑠+1)∕3𝑡 (0,𝑇) in
view of Theorems 3 and 5.

2.3.1 Solution formula

We obtain a formula to represent weak solutions of the reduced initial-boundary value problem
(44) via Fokas’s unified transform method. To this end, we first assume that 𝑞 is sufficiently
smooth up to the boundary of ℝ+ × (0,𝑇′) and decays sufficiently fast as 𝑥 → ∞, uniformly in[0,𝑇′].
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The definition of the standard Fourier transform on ℝ applied on the piecewise-defined
function

𝐹(𝑥) = {𝑓(𝑥), 𝑥 > 0,0, 𝑥 < 0, 𝑓 ∈ 𝐿2(0,∞),
gives rise to the half-line Fourier transform pair

𝑓(𝑘) = ∫
∞

0 𝑒−𝑖𝑘𝑥𝑓(𝑥)𝑑𝑥, Im(𝑘) ≤ 0,
𝑓(𝑥) = 12𝜋 ∫ℝ 𝑒𝑖𝑘𝑥𝑓(𝑘)𝑑𝑘, 𝑥 > 0. (45)

Note that the above half-line Fourier transformmakes sense for all Im(𝑘) ≤ 0 and not just for 𝑘 ∈ℝ as its whole-line counterpart. Taking the half-line Fourier transform (45) of (44) and integrating
over (0, 𝑡), we obtain the following spectral identity known as the global relation:
𝑒𝜔(𝑘)𝑡 𝑞(𝑘, 𝑡) = (−𝛽𝑘2 + 𝛼𝑘 + 𝛿) 𝑔0(𝜔(𝑘), 𝑡) + (𝑖𝛽𝑘 − 𝑖𝛼) 𝑔1(𝜔(𝑘), 𝑡) + 𝛽 𝑔2(𝜔(𝑘), 𝑡), Im𝑘 ≤ 0,

(46)
where 𝜔 is given by (11) and the temporal transforms 𝑔𝑗(𝜔(𝑘), 𝑡) are defined by

𝑔𝑗(𝑘, 𝑡) = ∫
𝑡

0 𝑒𝑘𝑡′𝜕𝑗𝑥𝑞(0, 𝑡′)𝑑𝑡′, 𝑘 ∈ ℂ, 𝑗 = 0, 1, 2. (47)

Then, by the inversion formula in (45),

𝑞(𝑥, 𝑡) = 12𝜋 ∫
∞

−∞ 𝑒𝑖𝑘𝑥−𝜔(𝑘)𝑡[(−𝛽𝑘2 + 𝛼𝑘 + 𝛿) 𝑔0(𝜔(𝑘), 𝑡) + (𝑖𝛽𝑘 − 𝑖𝛼) 𝑔1(𝜔(𝑘), 𝑡) + 𝛽 𝑔2(𝜔(𝑘), 𝑡)]𝑑𝑘.
(48)

The transforms 𝑔1 and 𝑔2 involve the unknown boundary values 𝑞𝑥(0, 𝑡) and 𝑞𝑥𝑥(0, 𝑡). To elimi-
nate them from (48), we proceed as follows. For𝐷 ∶= {𝑘 ∈ ℂ ∶ Re(𝜔(𝑘)) < 0}, consider the region
𝐷+ ∶= 𝐷 ∩ {Im(𝑘) > 0} = {

Im(𝑘) > 0 ∶ 3(Re(𝑘) − 𝛼3𝛽)2 − Im(𝑘)2 − 𝛼2 + 3𝛽𝛿3𝛽2 < 0}, (49)

which is depicted in Figure 1 for the various signs of the quantity 𝛼2 + 3𝛽𝛿. Then, thanks to ana-
lyticity (Cauchy’s theorem) and exponential decay, it follows that (e.g., see Appendix A in Ref. 24
for a detailed explanation in the context of the linear Schrödinger equation)

𝑞(𝑥, 𝑡) = 12𝜋 ∫𝜕𝐷+ 𝑒𝑖𝑘𝑥−𝜔(𝑘)𝑡[(−𝛽𝑘2 + 𝛼𝑘 + 𝛿) 𝑔0(𝜔(𝑘), 𝑡) + (𝑖𝛽𝑘 − 𝑖𝛼) 𝑔1(𝜔(𝑘), 𝑡) + 𝛽 𝑔2(𝜔(𝑘), 𝑡)]𝑑𝑘,
(50)

where the contour 𝜕𝐷+ is positively oriented, that is, it is traversed in the direction such that 𝐷+
stays to the left of the contour, as shown in Figure 1.
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F IGURE 1 The region 𝐷+ defined by (49) for 𝛼2 + 3𝛽𝛿 > 0 (left), 𝛼2 + 3𝛽𝛿 = 0 (center), and 𝛼2 + 3𝛽𝛿 < 0
(right). In the first case, the square root branch cut  = (−∞, 𝑏−] ∪ [𝑏+,∞) with branch points𝑏± = 13𝛽 (𝛼 ± 2√𝛼2 + 3𝛽𝛿) (shown in red) stays outside the region 𝐷+, whereas in the second case, there is no
branching. On the other hand, in the third case, the branch cut 𝐵 (shown in red) is taken along the vertical line
segment connecting 𝑏+ to 𝑏− and so part of it lies in 𝐷+; thus, a local deformation around 𝐵 is performed as
shown in Figure 2 below.

The fact that the integral (50) is taken along the deformed contour 𝜕𝐷+ will allow us to elimi-
nate the unknown transforms 𝑔1 and 𝑔2 from (50) by employing two additional spectral identities
emanating from the global relation (46) through suitable transformations that keep the spectral
function 𝜔(𝑘) invariant. In particular, both of these identities are valid along 𝜕𝐷+, and so, we will
be able to use them simultaneously. It is important to emphasize that the two additional identities
are not valid along ℝ, which is the reason why the deformation from ℝ to 𝜕𝐷+ that leads to (50)
is necessary.
To determine the symmetry transformations, we solve the equation𝜔(𝜈) = 𝜔(𝑘) for 𝜈 = 𝜈(𝑘).
(i) If 𝛼2 + 3𝛽𝛿 > 0, then the two nontrivial symmetries are

𝜈±(𝑘) = −12(𝑘 − 𝛼𝛽) ± √3 𝑖2
[(𝑘 − 𝛼3𝛽)2 − 4(𝛼2 + 3𝛽𝛿)9𝛽2

] 12 . (51)

The square root term in (51) is defined as follows. Denoting the two branch points by 𝑏± ∶=13𝛽 (𝛼 ± 2√𝛼2 + 3𝛽𝛿), we write 𝑘 − 𝑏± = |𝑘 − 𝑏±|𝑒𝑖𝜃± with −𝜋 < 𝜃− ≤ 𝜋 and 0 ≤ 𝜃+ < 2𝜋,
which correspond to branch cuts along [𝑏+,∞) for (𝑘 − 𝑏+) 12 and along (−∞, 𝑏−] for (𝑘 −𝑏−) 12 . Then, we associate the square root in (51) with the single-valued function

[(𝑘 − 𝛼3𝛽)2 − 4(𝛼2 + 3𝛽𝛿)9𝛽2
] 12 = √

||𝑘 − 𝑏+|||𝑘 − 𝑏−| 𝑒𝑖(𝜃++𝜃−)∕2, (52)

which is analytic for all 𝑘 ∉  ∶= (−∞, 𝑏−] ∪ [𝑏+,∞). In turn, this definition ensures that𝜈± are analytic for all 𝑘 ∈ ℂ ⧵ . Importantly, as shown in Figure 1,  ∩ 𝐷+ =∞.
(ii) 𝛼2 + 3𝛽𝛿 = 0. In this case, the symmetries are the two entire functions

𝜈±(𝑘) = −12(𝑘 − 𝛼𝛽) ± √3 𝑖2 (𝑘 − 𝛼3𝛽), (53)

as shown in Figure 1.
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F IGURE 2 Deformation of𝜕𝐷+ to 𝜕𝐷̃+ for 𝛼2 + 3𝛽𝛿 = 0 (left)
and 𝛼2 + 3𝛽𝛿 < 0 (right). The left
deformation is carried out to stay
away from the point 𝛼3𝛽 , which is a
zero of the quantity 𝜈−(𝑘) − 𝜈+(𝑘).
The right deformation is done to
avoid crossing the branch cut 𝐵
(shown in red).

(iii) 𝛼2 + 3𝛽𝛿 < 0. In that case, the symmetries are again given by (51); however, as the branch
points 𝑏± are now complex conjugates along the line Re(𝑘) = 𝛼3𝛽 , we write 𝑘 − 𝑏± = |𝑘 −𝑏±|𝑒𝑖(𝜃±−𝜋∕2) with 0 ≤ 𝜃± < 2𝜋 and corresponding branch cuts along the vertical half-lines
from 𝑏± to 𝛼3𝛽 − 𝑖∞, so that

[(𝑘 − 𝛼3𝛽)2 − 4(𝛼2 + 3𝛽𝛿)9𝛽2
] 12 = √

||𝑘 − 𝑏+|||𝑘 − 𝑏−| 𝑒𝑖(𝜃++𝜃−−𝜋)∕2 (54)

is single-valued and analytic for all 𝑘 ∈ ℂ ⧵ ̃, where ̃ is the finite vertical segment con-
necting 𝑏+ and 𝑏−, as shown in Figure 1. Note that 𝐵 ∩ 𝐷+ ≠ ∞ as part of the branch cut 𝐵
lies inside the region 𝐷+. For this reason, before employing the symmetries 𝜈± for the elimi-
nation of the unknown transforms 𝑔2 and 𝑔1 from (50), we use Cauchy’s theorem to deform
the contour 𝜕𝐷+ in (50) to the modified contour 𝜕𝐷̃+, which corresponds to the positively
oriented boundary of the region 𝐷̃+ shown in Figure 2. This way, the branch cut ̃ is avoided
prior to the use of the symmetries 𝜈±, allowing us to take advantage of analyticity inside the
region 𝐷̃+ later.

In view of the above discussion, we rewrite (50) as

𝑞(𝑥, 𝑡) = 12𝜋 ∫Γ 𝑒𝑖𝑘𝑥−𝜔(𝑘)𝑡[(−𝛽𝑘2 + 𝛼𝑘 + 𝛿)𝑔0(𝜔(𝑘), 𝑡) + 𝑖(𝛽𝑘 − 𝛼)𝑔1(𝜔(𝑘), 𝑡) + 𝛽 𝑔2(𝜔(𝑘), 𝑡)]𝑑𝑘,
(55)

where the integration contour Γ is given by
Γ = {𝜕𝐷+, 𝛼2 + 3𝛽𝛿 > 0,𝜕𝐷̃+, 𝛼2 + 3𝛽𝛿 ≤ 0. (56)

Replacing 𝑘 by 𝜈±(𝑘) in the global relation (46) and using the fact that 𝜔(𝜈±(𝑘)) = 𝜔(𝑘), we get
the spectral identities

𝑒𝜔(𝑘)𝑡 𝑞(𝜈±(𝑘), 𝑡) = (−𝛽𝜈2±(𝑘) + 𝛼𝜈±(𝑘) + 𝛿)𝑔0(𝜔(𝑘), 𝑡) + 𝑖(𝛽𝜈±(𝑘) − 𝛼)𝑔1(𝜔(𝑘), 𝑡)+ 𝛽 𝑔2(𝜔(𝑘), 𝑡), Im(𝜈±(𝑘)) ≤ 0. (57)

We emphasize that the above identities are valid only for 𝑘 such that Im(𝜈±(𝑘)) ≤ 0. Thus, to
employ them for the elimination of the unknown boundary values from (55), we need to ensure
that Γ ⊆ {Im(𝜈±(𝑘)) ≤ 0}. This is proved in the following lemma.
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Lemma 1. Let 𝜈± = 𝜈±(𝑘) be the nontrivial (i.e., 𝜈± ≢ 𝑘) solutions of the equation 𝜔(𝜈) = 𝜔(𝑘) as
given by (51) or (53), depending on the value of 𝛼2 + 3𝛽𝛿. If 𝑘 ∈ 𝐷+, then Im(𝜈±) ≤ 0.
Proof. For all 𝑘 = 𝑘𝑅 + 𝑖𝑘𝐼 ∈ 𝐷+ such that 𝜈(𝑘) ≠ 𝑘 satisfies 𝜔(𝜈) = 𝜔(𝑘), we must have 𝛽(𝜈2 +𝑘𝜈 + 𝑘2) − 𝛼(𝜈 + 𝑘) − 𝛿 = 0. Writing 𝜈 = 𝜈𝑅 + 𝑖𝜈𝐼 and taking real and imaginary parts, this
equation is equivalent to the system

𝜈𝑅𝜈𝐼 = 𝑐𝑘𝐼 , 𝜈2𝑅 − 𝜈2𝐼 = 𝑑, (58)

where 𝜈𝑅 = 𝜈𝑅 + 𝑘𝑅2 − 𝛼2𝛽 , 𝜈𝐼 = 𝜈𝐼 + 𝑘𝐼2 , 𝑐 = 𝛼4𝛽 − 3𝑘𝑅4 , and 𝑑 = − 34𝑘2𝑅 + 34𝑘2𝐼 + 𝛼2𝛽 𝑘𝑅 + 𝛼24𝛽2 + 𝛿𝛽 . If𝜈𝐼 = 0, then 𝜈𝐼 = −𝑘𝐼2 ≤ 0 as 𝑘 ∈ 𝐷+ and we are done. So, let us assume 𝜈𝐼 ≠ 0. Then, combining
the two equations in (58), we obtain 𝜈4𝐼 + 𝑑𝜈2𝐼 − 𝑐2𝑘2𝐼 = 0, which can be solved for 𝜈2𝐼 to yield 𝜈2𝐼 =−𝑑±√𝑑2+4𝑐2𝑘2𝐼2 = −𝑑2 ±√𝑑24 + 𝑐2𝑘2𝐼 . Note that only the positive sign is acceptable since 𝜈𝐼 ∈ ℝ ⇒
𝜈2𝐼 ≥ 0. That is, 𝜈2𝐼 = −𝑑2 +√𝑑24 + 𝑐2𝑘2𝐼 implying 𝜈𝐼 = ±√−𝑑2 +√𝑑24 + 𝑐2𝑘2𝐼 . In turn, from the

first of Equations (58), we get 𝜈𝑅 = ± 𝑐𝑘𝐼√−𝑑2 +√ 𝑑24 +𝑐2𝑘2𝐼
and so

𝜈𝑅 = ± 𝑐𝑘𝐼√−𝑑2 +√𝑑24 + 𝑐2𝑘2𝐼
− 𝑘𝑅2 + 𝛼2𝛽 , 𝜈𝐼 = −𝑘𝐼2 ±√−𝑑2 +√𝑑24 + 𝑐2𝑘2𝐼 . (59)

Observe that the radicand of the outer square root involved in the above expressions is a nonneg-
ative number, and hence, that square root is a real (nonnegative) number. In addition, note that
expressions (59) are consistent with Equations (51) and (53); however, their dependence on 𝑘𝑅 and𝑘𝐼 (as opposed to 𝑘) is not suitable for discussing the analyticity of the associated expressions for𝜈, which is why (51) and (53) were used earlier for that purpose. On the other hand, (59) are the
forms convenient for proving Lemma 1.
The case of the negative square root sign in (59) is straightforward as then 𝜈𝐼 ≤ 0 for all 𝑘𝐼 ≥ 0

and, in particular, for 𝑘 ∈ 𝐷+ as desired. On the other hand, the case of positive square root sign
in(59) requires more work. More specifically, by definition (49), for 𝑘 ∈ 𝐷+, we have

3(𝑘𝑅 − 𝛼3𝛽)2 − 𝑘2𝐼 − 𝛼2 + 3𝛽𝛿3𝛽2 ≤ 0, (60)

which can be rearranged to − 34𝑘2𝑅 + 14𝑘2𝐼 + 𝛼2𝛽 𝑘𝑅 + 𝛿4𝛽 ≥ 0. For 𝑘𝐼 ≠ 0 (note that 𝑘𝐼 = 0 implies𝜈𝐼 = 0 and we are done), this is equivalent to 𝑘4𝐼16 + 𝑘2𝐼 𝑑4 ≥ 𝑐2𝑘2𝐼 or, after completing the square,( 𝑘2𝐼4 + 𝑑2 )2 ≥ 𝑑24 + 𝑐2𝑘2𝐼 . Hence, 𝑘2𝐼4 ≥ −𝑑2 +√𝑑24 + 𝑐2𝑘2𝐼 or 𝑘2𝐼4 ≤ −𝑑2 −√𝑑24 + 𝑐2𝑘2𝐼 and, as the sec-
ond inequality is not possible because it would imply that 𝑘2𝐼 ≤ 0, taking the square root of the first
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inequality and using the fact that 𝑘𝐼 ≥ 0 for 𝑘 ∈ 𝐷+, we obtain 0 ≥ −𝑘𝐼2 +√−𝑑2 +√𝑑24 + 𝑐2𝑘2𝐼 =𝜈𝐼 as desired.
The proof so far has been under the assumption that 𝜈(𝑘) ≠ 𝑘; however, although 𝜈 ≢ 𝑘 by

hypothesis, there could still be points in 𝐷+ where 𝜈(𝑘) = 𝑘, and hence, this scenario must also
be considered. In that case, recalling that 𝜈± satisfy 𝛽(𝜈2± + 𝑘𝜈± + 𝑘2) − 𝛼(𝜈± + 𝑘) − 𝛿 = 0, we
infer that if 𝑘 ∈ ℂ is such that 𝜈±(𝑘) = 𝑘, then 3𝛽𝑘2 − 2𝛼𝑘 − 𝛿 = 0. If 𝛼2 + 3𝛽𝛿 ≥ 0, then 𝑘 =𝑘± = 𝛼3𝛽 ± √𝛼2+3𝛽𝛿3𝛽 ∈ ℝ, that is, 𝑘𝐼 = Im(𝜈±) = 0 andwe are done. If𝛼2 + 3𝛽𝛿 < 0, then 𝑘 = 𝑘± =𝛼3𝛽 ± 𝑖√−(𝛼2+3𝛽𝛿)3𝛽 . Note that 𝑘− ∉ 𝐷+ since Im(𝑘−) < 0. Also, 𝑘+ ∉ 𝐷+ because if 𝛼2 + 3𝛽𝛿 < 0
and 𝑘 ∈ 𝐷+, then by (60), we must have 𝑘𝐼 ≥ √−𝛼2+3𝛽𝛿3𝛽2 = √−(𝛼2+3𝛽𝛿)√3𝛽 > √−(𝛼2+3𝛽𝛿)3𝛽 = Im(𝑘+).
This completes the proof of Lemma 1. ■
Thanks to Lemma 1, both of the identities (57) are valid for 𝑘 ∈ 𝐷+ and hence can be solved

simultaneously as a system for the unknown transforms 𝑔1(𝜔(𝑘), 𝑡) and 𝑔2(𝜔(𝑘), 𝑡) to yield
𝑔1(𝜔(𝑘), 𝑡) = 𝑒𝜔(𝑘)𝑡𝑖𝛽[𝜈+(𝑘) − 𝜈−(𝑘)] [𝑞(𝜈+(𝑘), 𝑡) − 𝑞(𝜈−(𝑘), 𝑡)] + 𝑖𝑘𝑔0(𝜔(𝑘), 𝑡), (61)

𝑔2(𝜔(𝑘), 𝑡) = 𝑒𝜔(𝑘)𝑡𝛽2[𝜈−(𝑘) − 𝜈+(𝑘)] [(𝛽𝜈−(𝑘) − 𝛼)𝑞(𝜈+(𝑘), 𝑡) − (𝛽𝜈+(𝑘) − 𝛼)𝑞(𝜈−(𝑘), 𝑡)] (62)

− 𝑘2𝑔0(𝜔(𝑘), 𝑡).
Substituting these expressions in the integral representation (55), we obtain

𝑞(𝑥, 𝑡) = 12𝜋 ∫Γ 𝑒𝑖𝑘𝑥−𝜔(𝑘)𝑡(−3𝛽𝑘2 + 2𝛼𝑘 + 𝛿)𝑔0(𝜔(𝑘), 𝑡)𝑑𝑘
+ 12𝜋 ∫Γ 𝑒𝑖𝑘𝑥

[ 𝜈−(𝑘) − 𝑘𝜈−(𝑘) − 𝜈+(𝑘) 𝑞(𝜈+(𝑘), 𝑡) − 𝜈+(𝑘) − 𝑘𝜈−(𝑘) − 𝜈+(𝑘) 𝑞(𝜈−(𝑘), 𝑡)
]𝑑𝑘. (63)

Note that the definition (56) of Γ in conjunction with the choices of the contour 𝜕𝐷̃+, as shown
in Figure 2, ensures that 𝜈−(𝑘) − 𝜈+(𝑘) stays away from zero. Indeed, for 𝛼2 + 3𝛽𝛿 > 0, the solu-
tions of 𝜈−(𝑘) − 𝜈+(𝑘) = 0 occur at the branch points 𝑏±, which lie on the real axis and outside
segment [ 13𝛽 (𝛼 −√𝛼2 + 3𝛽𝛿), 13𝛽 (𝛼 +√𝛼2 + 3𝛽𝛿)] forming the base of Γ = 𝜕𝐷+ (see left panel
of Figure 1). Moreover, for 𝛼2 + 3𝛽𝛿 = 0, the quantity 𝜈−(𝑘) − 𝜈+(𝑘) vanishes at 𝛼3𝛽 , which is
bypassed by Γ = 𝜕𝐷+ as shown on the left panel of Figure 2. Finally, for 𝛼2 + 3𝛽𝛿 < 0, the roots of𝜈−(𝑘) − 𝜈+(𝑘) = 0 are again at the branch points 𝑏±, and so, they stay below the contour Γ = 𝜕𝐷+
depicted on the right panel of Figure 2.
Therefore, using analyticity (Cauchy’s theorem) along with exponential decay as |𝑘| →∞

inside 𝐷+ or 𝐷̃+, as appropriate, we conclude that the second 𝑘-integral on the right-hand side of
(63) is equal to zero. (To see the decay, note that |𝑒𝑖𝑘𝑥−𝑖𝜈±𝑦| = 𝑒−Im(𝑘)𝑥+Im(𝜈±)𝑦 and use Lemma 1
together with the fact that 𝑥, 𝑦 > 0.) Consequently, we deduce the solution formula

𝑞(𝑥, 𝑡) = − 𝑖2𝜋 ∫Γ 𝑒𝑖𝑘𝑥−𝜔(𝑘)𝑡𝜔′(𝑘) 𝑔0(𝜔(𝑘), 𝑡)𝑑𝑘. (64)
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In fact, noting that |𝑒−𝜔(𝑘)(𝑡−𝑡′)| = 𝑒Re(𝜔(𝑘))(𝑡′−𝑡) and recalling that, by definition (49), Re(𝜔(𝑘)) < 0
inside 𝐷+, we see that the exponential 𝑒𝑖𝑘𝑥−𝜔(𝑘)(𝑡−𝑡′) decays as |𝑘| →∞ inside 𝐷+ for all 𝑥 > 0,𝑡′ > 𝑡. Thus, combining this decay with analyticity, in the second argument of the time transform𝑔0, we can replace 𝑡 by any fixed 𝑇′ > 𝑡 and thereby obtain the following equivalent version of the
solution formula (64), which is more convenient for the purpose of linear estimates as we will see
below:

𝑞(𝑥, 𝑡) = − 𝑖2𝜋 ∫Γ 𝑒𝑖𝑘𝑥−𝜔(𝑘)𝑡𝜔′(𝑘) 𝑔0(𝜔(𝑘),𝑇′)𝑑𝑘. (65)

2.3.2 Compatibility between the data

Recall that the initial and boundary data of the initial-boundary value problem (5) belong to the𝐿2-based Sobolev spaces 𝐻𝑠𝑥(ℝ+) and 𝐻(𝑠+1)∕3𝑡 (0,𝑇), respectively. Moreover, in view of the range
of validity of Theorem 5 for the nonhomogeneous Cauchy problem established earlier, as well as
of Theorem 7 for the reduced initial-boundary value problem proved below, we will restrict our
attention to the range 0 ≤ 𝑠 ≤ 2 with 𝑠 ≠ 12 .
For 12 < 𝑠 ≤ 2, continuity becomes relevant to our analysis and it turns out that we need to

impose a compatibility condition between the initial and the boundary data. More specifically,
note that if 12 < 𝑠 ≤ 2, then 12 < 𝑠+13 ≤ 1. Therefore, both of the traces 𝑢0(0) and 𝑔(0) are well
defined. Furthermore, since 𝑦(0, ⋅) and 𝑧(0, ⋅) belong to 𝐻(𝑠+1)∕3𝑡 (0,𝑇) by Theorems 3 and 5, the
traces 𝑦(0, 0) and 𝑧(0, 0) are well defined and equal to 𝑢0(0) and 0, respectively, due to continuity
and the initial conditions in problems (6) and (23). Thus, using continuity at zero for the function𝑔0 ∈ 𝐻(𝑠+1)∕3𝑡 (ℝ) defined in (44), we have

𝑔0(0) = lim𝑡→0+ 𝑔0(𝑡) = lim𝑡→0+ [𝑔(𝑡) − 𝑦(0, 𝑡) − 𝑧(0, 𝑡)] = 𝑔(0) − 𝑦(0, 0) − 𝑧(0, 0) = 𝑔(0) − 𝑢0(0),
which, upon imposing the (natural) compatibility condition,

𝑢0(0) = 𝑔(0), 12 < 𝑠 ≤ 2, (66)

implies that the boundary datum of the reduced problem (44) vanishes at 𝑡 = 0, that is,
𝑔0(0) = 0, 12 < 𝑠 ≤ 2. (67)

This feature will turn out to be convenient in the proof of Theorem 7 that follows next.

2.3.3 Sobolev-type estimates

We now establish the basic space estimate in the initial-boundary value problem setting. More
precisely, we prove the following.
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Theorem 7. Let 𝑠 ≥ 0. Then, the unique solution of the reduced initial-boundary value problem (44)
satisfies

‖𝑞(⋅, 𝑡)‖𝐻𝑠𝑥(ℝ+) ≤ 𝑐 (1 +√𝑇′𝑒𝑐𝑇′)‖𝑔0‖𝐻 𝑠+13𝑡 (0,𝑇′) (68)

uniformly for 𝑡 ∈ [0,𝑇′], where 𝑐 > 0 is a constant that only depends on 𝛼, 𝛽, 𝛿, and 𝑠.
Proof. We employ the Fokas method solution formula (65). First, recalling the definition (49) of𝐷+ and the various scenarios depending on the sign of 𝛼2 + 3𝛽𝛿 that are shown in Figures 1 and
2, we parameterize the integration contour in (65) as Γ = (−𝛾1) ∪ 𝛾2 ∪ 𝛾3 with

𝛾1(𝑚) = 𝛼 −√3𝛽2𝑚2 + 𝛼2 + 3𝛽𝛿3𝛽 + 𝑖𝑚, 𝜆 ≤ 𝑚 <∞,
𝛾2(𝑚) = 𝑚 + 𝑖𝜆, 𝑐− < 𝑚 < 𝑐+, (69)

𝛾3(𝑚) = 𝛼 +√3𝛽2𝑚2 + 𝛼2 + 3𝛽𝛿3𝛽 + 𝑖𝑚, 𝜆 ≤ 𝑚 <∞,
where, as depicted in Figures 1 and 2, 𝑐± = 𝛼±√3𝛽2𝜆2+𝛼2+3𝛽𝛿3𝛽 and 𝜆 > 0 is a fixed nonnegative real
number such that

⎧
⎪
⎨
⎪⎩

𝜆 = 0, 𝛼2 + 3𝛽𝛿 > 0, (first panel in Figure 1)𝜆 > 2√−(𝛼2+3𝛽𝛿)3𝛽 , 𝛼2 + 3𝛽𝛿 ≤ 0. (Figure 2). (70)

In view of the above parameterization, for any 𝑗 ∈ ℕ0, we have
𝜕𝑗𝑥𝑞(𝑥, 𝑡) = − 12𝜋 ∫

𝜆
∞ (𝑖𝛾1(𝑚))𝑗𝑒𝑖𝛾1(𝑚)𝑥−(𝜔(𝛾1(𝑚))𝑡 𝑔0(𝜔(𝛾1(𝑚)),𝑇′)𝑑[𝑖𝜔(𝛾1(𝑚))]𝑑𝑚 𝑑𝑚 (71)

− 12𝜋 ∫
𝑐+

𝑐− (𝑖𝛾2(𝑚))𝑗𝑒𝑖𝛾2(𝑚)𝑥−(𝜔(𝛾2(𝑚))𝑡 𝑔0(𝜔(𝛾2(𝑚)),𝑇′)𝑑[𝑖𝜔(𝛾2(𝑚))]𝑑𝑚 𝑑𝑚 (72)

− 12𝜋 ∫
∞

𝜆 (𝑖𝛾3(𝑚))𝑗𝑒𝑖𝛾3(𝑚)𝑥−(𝜔(𝛾3(𝑚))𝑡 𝑔0(𝜔(𝛾3(𝑚)),𝑇′)𝑑[𝑖𝜔(𝛾3(𝑚))]𝑑𝑚 𝑑𝑚 (73)

=∶ 𝑞1(𝑥, 𝑡) + 𝑞2(𝑥, 𝑡) + 𝑞3(𝑥, 𝑡).
As the terms 𝑞1 and 𝑞3 are analogous, they can be handled in a similar fashion, and hence, we

only provide the details for the estimation of 𝑞1 given by (71). Since
‖𝑞1(⋅, 𝑡)‖2𝐿2𝑥(ℝ+) = 14𝜋2 ∫ ∞

0
||||∫

∞
𝜆 (𝑖𝛾1(𝑚))𝑗𝑒𝑖𝛾1(𝑚)𝑥−(𝜔(𝛾1(𝑚))𝑡 𝑔0(𝜔(𝛾1(𝑚)),𝑇′)𝑑[𝑖𝜔(𝛾1(𝑚))]𝑑𝑚 𝑑𝑚||||

2 𝑑𝑥
≲ ∫

∞
0

(
∫

∞
0 𝑒−𝑚𝑥|𝛾1(𝑚)|𝑗||𝑔0(𝜔(𝛾1(𝑚)),𝑇′)||||||𝑑[𝑖𝜔(𝛾1(𝑚))]𝑑𝑚 ||||𝜒(𝜆,∞)(𝑚)𝑑𝑚)2 𝑑𝑥,
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by the boundedness of the Laplace transform in 𝐿2(ℝ+) (e.g., see Lemma 3.2 in 1), we have

‖𝑞1(⋅, 𝑡)‖2𝐿2𝑥(ℝ+) ≲ ∫
∞

𝜆 |𝛾1(𝑚)|2𝑗|𝑔0(𝜔(𝛾1(𝑚)),𝑇′)|2||||𝑑[𝑖𝜔(𝛾1(𝑚))]𝑑𝑚 ||||
2𝑑𝑚. (74)

Let 𝜏(𝑚) = 𝑖𝜔(𝛾1(𝑚)), 𝑚 ∈ [𝜆,∞). Note that 𝜏(𝑚) ∈ ℝ since 𝛾1(𝑚) ∈ 𝜕𝐷+ and Re(𝜔(𝑘)) = 0
for 𝑘 ∈ 𝜕𝐷+ and, more precisely, Range(𝜏) = [𝑖𝜔(𝑐− + 𝑖𝜆),∞). Furthermore, since 𝜏′(𝑚) ≠ 0 on(𝜆,∞) and 𝜏 → ∞ as𝑚 → ∞, it follows that 𝜏 ∶ [𝜆,∞)→ [𝑖𝜔(𝑐− + 𝑖𝜆),∞) ismonotone increasing
and so 𝜏′(𝑚) > 0. Then, (74) becomes

‖𝑞1(⋅, 𝑡)‖2𝐿2𝑥(ℝ+) ≲ ∫
∞

𝜆 |𝛾1(𝑚)|2𝑗|𝑔0(−𝑖𝜏(𝑚),𝑇′)|2[𝜏′(𝑚)]2𝑑𝑚
= ∫

∞
𝜆 |𝛾1(𝑚)|2𝑗|𝑔0(𝜏(𝑚))|2[𝜏′(𝑚)]2𝑑𝑚 (75)

after observing that the time transform (47) of 𝑔0 at𝑇′ is, in fact, the Fourier transform of 𝑔0 thanks
to the fact that 𝑔0 has compact support inside (0,𝑇′), namely,𝑔0(−𝑖𝜏(𝑚),𝑇′) = 𝑔0(𝜏(𝑚)). (76)

Next, we have the following auxiliary result.

Lemma 2. There is a constant 𝑐 > 0 depending only on 𝛼, 𝛽, 𝛿 such that
sup𝑚∈[𝜆,∞) |𝛾1(𝑚)|2𝑗𝜏′(𝑚)[1 + 𝜏2(𝑚)] 𝑗+13 ≤ 𝑐 <∞.

We prove Lemma 2 after the end of the current proof. Employing it in combination with (75),
we obtain

‖𝑞1(⋅, 𝑡)‖2𝐿2𝑥(ℝ+) ≲ ∫
∞

𝜆 [1 + 𝜏2(𝑚)] 𝑗+13 |𝑔0(𝜏(𝑚))|2𝜏′(𝑚)𝑑𝑚
= ∫

∞
𝑖𝜔(𝑐−+𝑖𝜆)(1 + 𝜏2) 𝑗+13 |𝑔0(𝜏)|2𝑑𝜏 = ‖𝑔0‖2𝐻 𝑗+13𝑡 (ℝ)

(77)

uniformly for 𝑡 ∈ [0,𝑇′], completing the estimation of 𝑞1.
We proceed to the estimation of 𝑞2 given by (72).
Case 1: 𝛼2 + 3𝛽𝛿 > 0. Then, 𝜆 = 0 and by the definition of 𝛾2, we can rewrite 𝑞2 as

𝑞2(𝑥, 𝑡) = − 𝑖2𝜋 ∫
𝑐+

𝑐− (𝑖𝑚)𝑗𝑒𝑖𝑚𝑥−𝜔(𝑚)𝑡 𝑔0(𝜔(𝑚),𝑇′)𝜔′(𝑚)𝑑𝑚, (78)

so that 𝑞2(⋅, 𝑡) can be regarded as the inverse spatial Fourier transform of the function

𝑄2(𝑚, 𝑡) = {0, 𝑚 ∉ (𝑐−, 𝑐+),−𝑖(𝑖𝑚)𝑗𝑒−𝜔(𝑚)𝑡 𝑔0(𝜔(𝑚),𝑇′)𝜔′(𝑚), 𝑚 ∈ (𝑐−, 𝑐+). (79)
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Note that |𝑒𝜔(𝑚)𝜌| = 1 for𝑚 ∈ (𝑐−, 𝑐+), 𝜌 ∈ ℝ. Hence, using the definition of the 𝑡-transform (47)
and the Cauchy–Schwarz inequality, we have

|𝑔0(𝜔(𝑚),𝑇′)| ≤ √𝑇′ ‖𝑔0‖𝐿2𝑡 (0,𝑇′), (80)

implying via Plancherel’s theorem that

‖𝑞2(⋅, 𝑡)‖2𝐿2𝑥(ℝ+) = ∫
∞

−∞ |𝑄2(𝑚, 𝑡)|2𝑑𝑚 ≤ 𝑇′‖𝑔0‖2𝐿2𝑡 (0,𝑇′) ∫ 𝑐+
𝑐− |𝑚|2𝑗|𝜔′(𝑚)|2𝑑𝑚

= 𝑐𝑇′‖𝑔0‖2𝐿2𝑡 (0,𝑇′) ≲ 𝑇′‖𝑔0‖2𝐻 𝑗+13𝑡 (0,𝑇′)
(81)

with the various constants depending on 𝛼, 𝛽, 𝛿, and 𝑗.
Case 2: 𝛼2 + 3𝛽𝛿 ≤ 0. Then, 𝜆 > 2√−(𝛼2+3𝛽𝛿)3𝛽 > 0 and, by the definition of 𝛾2,

|𝑞2(𝑥, 𝑡)| ≤ 12𝜋𝑒−𝜆𝑥 ∫ 𝑐+
𝑐− |𝑚2 + 𝜆2| 𝑗2 |||𝑒−(𝜔(𝑚+𝑖𝜆)𝑡 𝑔0(𝜔(𝑚 + 𝑖𝜆),𝑇′)𝜔′(𝑚 + 𝑖𝜆)|||𝑑𝑚. (82)

Recall that for 𝑘 ∈ 𝐷+, we have Re(𝜔(𝑘)) < 0, which implies |𝑒𝜔(𝑚+𝑖𝜆)𝜌| ≤ 1 for𝑚 ∈ (𝑐−, 𝑐+), 𝜌 ∈[0,𝑇′]. Therefore, similarly to (80),
|𝑔0(𝜔(𝑚 + 𝑖𝜆),𝑇′)| ≤ √𝑇′ ‖𝑔0‖𝐿2𝑡 (0,𝑇′). (83)

Combining (82) and (83), we deduce

|𝑞2(𝑥, 𝑡)| ≤ 𝑐√𝑇′𝑒𝑐𝑇′‖𝑔0‖𝐿2𝑡 (0,𝑇′)𝑒−𝜆𝑥.
Taking the square of the above inequality, integrating with respect to 𝑥 ∈ (0,∞) (for this step,
recall that 𝜆 > 0), and then taking square roots, we obtain

‖𝑞2(⋅, 𝑡)‖𝐿2𝑥(ℝ+) ≤ 𝑐√2𝜆√𝑇′𝑒𝑐𝑇′‖𝑔0‖𝐿2𝑡 (0,𝑇′) ≲ √𝑇′𝑒𝑐𝑇′‖𝑔0‖𝐻 𝑗+13𝑡 (0,𝑇′),
where the constant of the last inequality depends only on 𝛼, 𝛽, 𝛿, and 𝑗.
The desired estimate (68) has been established for 𝑠 ∈ ℕ0. The proof for 𝑠 ≥ 0 follows by inter-

polation, for example, see Theorem 5.1 in Ref. 58. Make a remark about the possibility of using the
fractional norm along the lines of the nonhomogeneous Cauchy problem and Ref. 1. ■
Proof of Lemma 2. First, wemake a few observations. From the definition (11) of𝜔 and the triangle
inequality,

|𝜔(𝑘)| ≥ 𝛽|𝑘|3 − |𝛼𝑘2 + 𝛿𝑘| ≥ 𝛽|𝑘|3 − (|𝛼||𝑘|2 + |𝛿||𝑘|).
In addition, for |𝑘| ≥ |𝛼|+√𝛼2+2𝛽|𝛿|𝛽 , we have |𝛼||𝑘|2 + |𝛿||𝑘| ≤ 12𝛽|𝑘|3, and so, noting also that
Re(𝜔(𝑘)) = 0 along 𝜕𝐷+,

|𝑖𝜔(𝑘)| ≥ 𝛽2 |𝑘|3 ⇒ 11 + [𝑖𝜔(𝑘)]2 ≤ 11 + 𝛽24 |𝑘|6 ≃
11 + |𝑘|6 . (84)
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Observe further that |𝛾1(𝑚)| ≥ 𝑚 thus |𝛾1(𝑚)| can be made as large as we wish by taking 𝑚 ∈[𝜆,∞) large enough. Therefore, using (84), for large enough𝑚, we have11 + 𝜏2(𝑚) = 11 + [𝑖𝜔(𝛾1(𝑚)]2 ≲ 11 + |𝛾1(𝑚)|6 .
On the other hand, for |𝑘| ≥ 1, we have |𝑘|2 ≥ |𝑘|, and so, by the triangle inequality,

|𝜔′(𝑘)| ≤ 3𝛽|𝑘|2 + 2|𝛼‖𝑘| + |𝛿| ≤ (3𝛽 + 2|𝛼| + |𝛿|)(1 + |𝑘|2).
From the definition of 𝛾1, there exist nonnegative constants 𝑐1, 𝑐2 depending on 𝛼, 𝛽, 𝛿 such that

|𝛾1(𝑚)| ≤ 𝑐1𝑚 and |𝛾′1(𝑚)| ≤ 𝑐2, 𝑚 ∈ [𝜆,∞).
Hence, there are some constants 𝑐3 > 0,𝑀 ≥ 𝜆 depending on 𝛼, 𝛽, 𝛿 such that

|𝛾1(𝑚)|2𝑗||||𝜔′(𝛾1(𝑚))𝛾′1(𝑚)|||[1 + 𝜏2(𝑚)] 𝑗+13 ≤ 𝑐3 (|𝛾1(𝑚)|2)𝑗(1 + |𝛾1(𝑚)|2)(1 + |𝛾1(𝑚)|2)𝑗+1 ≤ 𝑐3, 𝑚 > 𝑀.
However, by continuity of the function on the left-hand side on the compact interval [𝜆,𝑀], there
is also some constant 𝑐4 > 0 depending on 𝛼, 𝛽, 𝛿 such that

|𝛾1(𝑚)|2𝑗||||𝜔′(𝛾1(𝑚))𝛾′1(𝑚)|||[1 + 𝜏2(𝑚)] 𝑗+13 ≤ 𝑐4, 𝑚 ∈ [𝜆,𝑀].
Combining the last two inequalities yields the desired estimate with 𝑐 = max{𝑐3, 𝑐4} <∞. ■
2.3.4 Strichartz-type estimates

It turns out convenient to reparameterize the contour of integration in the solution formula (65)
of the reduced initial-boundary value problem (44) as Γ = Γ1 ∪ Γ2 ∪ Γ3 with

Γ1(𝑚) = 𝑚 + 𝑖√3(𝑚 − 𝛼3𝛽)2 − 𝛼2 + 3𝛽𝛿3𝛽2 , −∞ < 𝑚 ≤ 𝑐−,
Γ2(𝑚) = 𝑚 + 𝑖𝜆, 𝑐− < 𝑚 < 𝑐+, (85)

Γ3(𝑚) = 𝑚 + 𝑖√3(𝑚 − 𝛼3𝛽)2 − 𝛼2 + 3𝛽𝛿3𝛽2 , 𝑐+ ≤ 𝑚 <∞,
where, as before, 𝑐± = 𝛼±√3𝛽2𝜆2+𝛼2+3𝛽𝛿3𝛽 and 𝜆 > 0 satisfies (70). With this parameterization,
formula (65) can be expressed as the sum

𝑞(𝑥, 𝑡) = − 𝑖2𝜋 3∑
𝑗=1 ∫Γ𝑗 𝑒𝑖𝑘𝑥−𝜔(𝑘)𝑡 𝑔0(𝜔(𝑘),𝑇′)𝜔′(𝑘)𝑑𝑘 =∶

3∑
𝑗=1 𝑞𝑗(𝑥, 𝑡).
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We first consider 𝑞1, which after recalling also (76) takes the form
𝑞1(𝑥, 𝑡) = − 𝑖2𝜋 ∫

𝑐−
−∞ 𝑒𝑖Γ1(𝑚)𝑥−𝜔(Γ1(𝑚))𝑡 𝑔0(𝑖𝜔(Γ1(𝑚)))𝜔′(Γ1(𝑚))Γ′1(𝑚)𝑑𝑚

= 12𝜋 ∫
𝑐−

−∞ 𝑒𝑖Γ1(𝑚)𝑥−𝜔(Γ1(𝑚))𝑡(∫ ∞
−∞ 𝑒−𝑖𝑚𝑦Ψ1(𝑦)𝑑𝑦)𝑑𝑚, (86)

where Ψ1 is the inverse Fourier transform of

Ψ̂1(𝑚) ∶= {−𝑖𝑔0(𝑖𝜔(Γ1(𝑚)))𝜔′(Γ1(𝑚))Γ′1(𝑚), 𝑚 ≤ 𝑐−,0, 𝑚 > 𝑐−.
Then, introducing the kernel

(𝑦;𝑥, 𝑡) = ∫
𝑐−

−∞ 𝑒𝑖𝜙(𝑚;𝑥,𝑦,𝑡)𝑝(𝑚;𝑥)𝑑𝑚 (87)

with amplitude

𝑝(𝑚;𝑥) = 𝑒−𝑥√3(𝑚− 𝛼3𝛽 )2−𝛼2+3𝛽𝛿3𝛽2 (88)

and phase

𝜙(𝑚;𝑥, 𝑦, 𝑡) = 𝑚(𝑥 − 𝑦) + 𝑖𝜔(Γ1(𝑚))𝑡
= 𝑚(𝑥 − 𝑦) + 𝑡[−8𝛽𝑚3 + 8𝛼𝑚2 + 2(𝛿 − 𝛼2𝛽 )𝑚 − 𝛼𝛿𝛽 ], (89)

we can rearrange (86) in the form

𝑞1(𝑥, 𝑡) = [𝐾1(𝑡)Ψ1](𝑥) ∶= 12𝜋 ∫
∞

−∞(𝑦;𝑥, 𝑡)Ψ1(𝑦)𝑑𝑦. (90)

This writing provides the starting point for proving the following central estimate of Strichartz
type.

Theorem 8. Let 𝑠 ≥ 0 and (𝜇, 𝑟) be higher-order Schrödinger admissible in the sense of (20). Then,
‖𝑞‖𝐿𝜇𝑡 ((0,𝑇′);𝐻𝑠,𝑟𝑥 (ℝ+)) ≲ (1 + (𝑇′) 1𝜇+12)‖𝑔0‖𝐻 𝑠+13𝑡 (0,𝑇′), (91)

where𝐻𝑠,𝑟𝑥 (ℝ+) is the restriction onℝ+ of the Bessel potential space𝐻𝑠,𝑟𝑥 (ℝ) defined by (19) and the
inequality constant depends only 𝑟, 𝑠.
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Proof. We will use a standard duality argument. Let 𝜂 ∈ 𝐶𝑐([0,𝑇′];(ℝ+)) be an arbitrary
function. Then,

2𝜋 ||||∫
𝑇′

0 ⟨𝐾1(𝑡)Ψ1, 𝜂(⋅, 𝑡)⟩𝐿2𝑥(ℝ+)𝑑𝑡|||| = ||||||∫
𝑇′

0 ∫
∞

0
(
∫

∞
−∞(𝑦;𝑥, 𝑡)Ψ1(𝑦)𝑑𝑦)𝜂(𝑥, 𝑡)𝑑𝑥𝑑𝑡||||||

= ∫
∞

−∞ Ψ1(𝑦) ∫ 𝑇′
0 ∫

∞
0 (𝑦;𝑥, 𝑡) 𝜂(𝑥, 𝑡)𝑑𝑥𝑑𝑡 𝑑𝑦

≤ ‖Ψ1‖𝐿2(ℝ)‖‖‖‖‖‖∫
𝑇′

0 ∫
∞

0 (𝑦;𝑥, 𝑡) 𝜂(𝑥, 𝑡)𝑑𝑥𝑑𝑡‖‖‖‖‖‖𝐿2𝑦(ℝ).
(92)

Set 𝐾2(𝑦) ∶= ∫ 𝑇′0 ∫ ∞0 (𝑦;𝑥, 𝑡)𝜂(𝑥, 𝑡)𝑑𝑥𝑑𝑡. By the definition of the 𝐿2-norm, we have
‖𝐾2‖2𝐿2(ℝ) = ∫

∞
−∞

(

∫
𝑇′

0 ∫
𝑇′

0 ∫
∞

0 ∫
∞

0 (𝑦;𝑥, 𝑡)𝜂(𝑥, 𝑡)(𝑦;𝑥′, 𝑡′)𝜂(𝑥′, 𝑡′)𝑑𝑥𝑑𝑥′𝑑𝑡𝑑𝑡′)𝑑𝑦
= ∫

𝑇′
0 ∫

𝑇′
0 ∫

∞
0 ∫

∞
0 𝜂(𝑥, 𝑡)𝜂(𝑥′, 𝑡′)𝐾3(𝑥,𝑥′; 𝑡, 𝑡′)𝑑𝑥𝑑𝑥′𝑑𝑡𝑑𝑡′

= ∫
𝑇′

0 ∫
∞

0 𝜂(𝑥, 𝑡)(∫
𝑇′

0 ∫
∞

0 𝜂(𝑥′, 𝑡′)𝐾3(𝑥,𝑥′; 𝑡, 𝑡′)𝑑𝑥′𝑑𝑡′)𝑑𝑥𝑑𝑡,
where 𝐾3(𝑥,𝑥′; 𝑡, 𝑡′) ∶= ∫ ∞−∞(𝑦;𝑥, 𝑡)(𝑦;𝑥′, 𝑡′)𝑑𝑦. Then, by Hölder’s inequality in (𝑥, 𝑡) and
then Minkowski’s integral inequality between 𝑥 and 𝑡′, we deduce

‖𝐾2‖2𝐿2(ℝ) ≤ ‖𝜂‖𝐿𝜇′𝑡 ((0,𝑇′);𝐿𝑟′𝑥 (ℝ+))
‖‖‖‖‖‖∫

𝑇′
0 ∫

∞
0 𝜂(𝑥′, 𝑡′)𝐾3(𝑥,𝑥′; 𝑡, 𝑡′)𝑑𝑥′𝑑𝑡′‖‖‖‖‖‖𝐿𝜇𝑡 ((0,𝑇′);𝐿𝑟𝑥(ℝ+))

≤ ‖𝜂‖𝐿𝜇′𝑡 ((0,𝑇′);𝐿𝑟′𝑥 (ℝ+))
‖‖‖‖‖‖∫

𝑇′
0

‖‖‖‖‖∫
∞

0 𝜂(𝑥′, 𝑡′)𝐾3(𝑥,𝑥′; 𝑡, 𝑡′)𝑑𝑥′‖‖‖‖‖𝐿𝑟𝑥(ℝ+)𝑑𝑡′
‖‖‖‖‖‖𝐿𝜇𝑡 (0,𝑇′)

. (93)

We begin with the estimation of the interior 𝐿𝑟𝑥(ℝ+)-norm. Using the definition (87) of , we
rewrite 𝐾3 in the form of an oscillatory integral:

𝐾3(𝑥,𝑥′; 𝑡, 𝑡′) = ∫
∞

−∞
(
∫

𝑐−
−∞ 𝑒−𝑖𝜙(𝑚;𝑥,𝑦,𝑡)𝑝(𝑚;𝑥)𝑑𝑚)(

∫
𝑐−

−∞ 𝑒𝑖𝜙(𝑚′;𝑥′,𝑦,𝑡′)𝑝(𝑚′;𝑥′)𝑑𝑚′)𝑑𝑦
= ∫

𝑐−
−∞ 𝑝(𝑚;𝑥)∫ ∞

−∞ 𝑒−𝑖𝜙(𝑚;𝑥,𝑦,𝑡)(∫ 𝑐−
−∞ 𝑒𝑖𝜙(𝑚′;𝑥′,𝑦,𝑡′)𝑝(𝑚′;𝑥′)𝑑𝑚′)𝑑𝑦𝑑𝑚.

Recalling the definition (89) of the phase function 𝜙 and introducing the function
𝑄(𝑚′;𝑥′, 𝑡′) ∶= {𝑒𝑖𝑚′𝑥′−𝜔(Γ1(𝑚′))𝑡′𝑝(𝑚′;𝑥′), 𝑚′ ∈ (−∞, 𝑐−],0, 𝑚′ ∈ (𝑐−,∞),
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we have via the Fourier inversion theorem

∫
∞

−∞ 𝑒−𝑖𝜙(𝑚;𝑥,𝑦,𝑡)(∫ 𝑐−
−∞ 𝑒𝑖𝜙(𝑚′;𝑥′,𝑦,𝑡′)𝑝(𝑚′;𝑥′)𝑑𝑚′)𝑑𝑦

= 2𝜋𝑒−𝑖𝑚𝑥+𝜔(Γ1(𝑚))𝑡 ⋅ 12𝜋 ∫
∞

−∞ 𝑒𝑖𝑚𝑦(∫ ∞
−∞ 𝑒−𝑖𝑚′𝑦𝑄(𝑚′;𝑥′, 𝑡′)𝑑𝑚′)𝑑𝑦

= 2𝜋𝑒−𝑖𝑚𝑥+𝜔(Γ1(𝑚))𝑡 𝑄(𝑚;𝑥′, 𝑡′).
Thus, for𝑚 ∈ (−∞, 𝑐−], we deduce

∫
∞

−∞ 𝑒−𝑖𝜙(𝑚;𝑥,𝑦,𝑡)(∫ 𝑐−
−∞ 𝑒𝑖𝜙(𝑚′;𝑥′,𝑦,𝑡′)𝑝(𝑚′;𝑥′)𝑑𝑚′)𝑑𝑦 = 2𝜋𝑒−𝑖𝜙(𝑚;𝑥,𝑥′,𝑡−𝑡′)𝑝(𝑚;𝑥′),

and consequently,

𝐾3(𝑥,𝑥′; 𝑡, 𝑡′) = 2𝜋 ∫
𝑐−

−∞ 𝑒−𝑖𝜙(𝑚;𝑥,𝑥′,𝑡−𝑡′)𝑝(𝑚;𝑥 + 𝑥′)𝑑𝑚.
Next, we employ the following fundamental result.

Lemma 3. Let 𝐾(𝑥, 𝑦, 𝑧, 𝑡) = ∫ 𝑐−−∞ 𝑒𝑖𝜙(𝑚;𝑥,𝑦,𝑡)𝑝(𝑚; 𝑧)𝑑𝑚, where 𝑥, 𝑧 ∈ ℝ+ and 𝑦, 𝑡 ∈ ℝ. Then,
|𝐾(𝑥, 𝑦, 𝑧, 𝑡)| ≲ |𝑡|− 13 , 𝑡 ≠ 0, (94)

where the constant of the inequality is independent of 𝑥, 𝑦, 𝑧, 𝑡.
The proof of Lemma 3 relies on the classical van der Corput lemma and is provided after the end

of the current proof. Observe that Lemma 3 with 𝑦, 𝑧, 𝑡 replaced, respectively, by 𝑥′,𝑥 + 𝑥′, 𝑡 − 𝑡′
yields

|𝐾3(𝑥,𝑥′, 𝑡, 𝑡′)| ≲ |𝑡 − 𝑡′|− 13 , 𝑡 ≠ 𝑡′,
with inequality constant independent of 𝑥, 𝑥′, 𝑡, and 𝑡′. This dispersive estimate implies

‖‖‖‖‖∫
∞

0 𝜂(𝑥′, 𝑡′)𝐾3(𝑥,𝑥′; 𝑡, 𝑡′)𝑑𝑥′‖‖‖‖‖𝐿∞𝑥 (ℝ+) ≲ |𝑡 − 𝑡′|− 13 ‖𝜂(𝑡′)‖𝐿1𝑥(ℝ+). (95)

On the other hand, we also have

‖‖‖‖‖∫
∞

0 𝜂(𝑥′, 𝑡′)𝐾3(𝑥,𝑥′; 𝑡, 𝑡′)𝑑𝑥′‖‖‖‖‖𝐿2𝑥(ℝ+) ≲ ‖𝜂(𝑡′)‖𝐿2𝑥(ℝ+). (96)

Indeed, we have

‖‖‖‖‖∫
∞

0 𝜂(𝑥′, 𝑡′)𝐾3(𝑥,𝑥′; 𝑡, 𝑡′)𝑑𝑥′‖‖‖‖‖
2
𝐿2𝑥(ℝ+) = ∫

∞
0

||||∫
∞

0 𝜂(𝑥′, 𝑡′)𝐾3(𝑥,𝑥′; 𝑡, 𝑡′)𝑑𝑥′||||2 𝑑𝑥
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= (2𝜋)2 ∫ ∞
0

||||∫
∞

0 𝜂(𝑥′, 𝑡′)(∫
𝑐−

−∞ 𝑒−𝑖𝜙(𝑚;𝑥,𝑥′,𝑡−𝑡′)𝑝(𝑚;𝑥 + 𝑥′)𝑑𝑚)𝑑𝑥′||||2𝑑𝑥
≤ (2𝜋)2 ∫ ∞

0
(
∫

𝑐−
−∞ 𝑒−𝑥𝑠(𝑚)(∫

∞
0 𝑒−𝑥′𝑠(𝑚)|𝜂(𝑥′, 𝑡′)|𝑑𝑥′)𝑑𝑚)2𝑑𝑥,

where 𝑠(𝑚) = √3(𝑚 − 𝛼3𝛽 )2 − 𝛼2+3𝛽𝛿3𝛽2 . The claimed estimate (96) then directly follows by invok-

ing the following lemma, which provides a generalization of the 𝐿2(ℝ+)-boundedness of the
Laplace transform given in Ref. 1 and is established after the end of the current proof.

Lemma 4. The estimates in (𝑖) and (𝑖𝑖) below hold true for 𝑓 ∈ 𝐿2𝑚(−∞, 𝑐−) and 𝑓 ∈ 𝐿2𝑥(ℝ+),
respectively.

(i)
‖‖‖‖‖∫

𝑐−
−∞ 𝑒−𝑥𝑠(𝑚)𝑓(𝑚)𝑑𝑚‖‖‖‖‖𝐿2𝑥(ℝ+) ≲ ‖𝑓‖𝐿2𝑚(−∞,𝑐−),

(ii)
‖‖‖‖‖∫

∞
0 𝑒−𝑥𝑠(𝑚)𝑓(𝑥)𝑑𝑥‖‖‖‖‖𝐿2𝑚(−∞,𝑐−) ≲ ‖𝑓‖𝐿2𝑥(ℝ+).

Now, (95) and (96) together with Riesz–Thorin interpolation theorem yield for any 𝑟 ≥ 2 that
‖‖‖‖‖∫

∞
0 𝜂(𝑥′, 𝑡′)𝐾3(𝑥,𝑥′; 𝑡, 𝑡′)𝑑𝑥′‖‖‖‖‖𝐿𝑟𝑥(ℝ+) ≲ |𝑡 − 𝑡′|− 2𝜇 ‖𝜂(𝑡′)‖𝐿𝑟′𝑥 (ℝ+), (97)

where 1𝑟′ = 1 − 1𝑟 and we have also used (20). Hence, for any 𝜂 ∈ 𝐿𝜇′𝑡 ((0,𝑇′);𝐿𝑟′𝑥 (ℝ+)), we obtain
∫

𝑇′
0

‖‖‖‖‖∫
∞

0 𝜂(𝑥′, 𝑡′)𝐾3(𝑥,𝑥′; 𝑡, 𝑡′)𝑑𝑥′‖‖‖‖‖𝐿𝑟𝑥(ℝ)𝑑𝑡′ ≲ ∫
𝑇′

0 |𝑡 − 𝑡′|− 2𝜇 ‖𝜂(𝑡′)‖𝐿𝑟′𝑥 (ℝ)𝑑𝑡′.
Handling the right-hand side via Hardy–Littlewood–Sobolev fractional integration (e.g., see
Theorem 1 on page 119 of Ref. 59) and combining the resulting inequality with (93), we infer

‖𝐾2‖𝐿2(ℝ) ≲ ‖𝜂‖𝐿𝜇′𝑡 ((0,𝑇′);𝐿𝑟′𝑥 (ℝ+)),
which can be combined with (92) to yield

‖𝑞1‖𝐿𝜇𝑡 ((0,𝑇′);𝐿𝑟𝑥(ℝ+)) ≲ ‖Ψ1‖𝐿2(ℝ). (98)

Differentiating the expression (86) 𝑗 times in 𝑥 and repeating the above arguments, for any𝑗 ∈ ℕ0, we conclude that
‖𝜕𝑗𝑥𝑞1‖𝐿𝜇𝑡 ((0,𝑇′);𝐿𝑟𝑥(ℝ+)) ≲ ‖𝜕𝑗𝑥Ψ1‖𝐿2(ℝ) ≲ ‖𝑔0‖𝐻 𝑗+13𝑡 (ℝ). (99)

Observe that the left-hand side of estimate (99) is simply the 𝐿𝜇𝑡 ((0,𝑇′);𝑊𝑗,𝑟(ℝ+))-norm of 𝑞1. In
this connection, note that, according to a classical result by Calderón 60, for any 𝑗 ∈ ℕ0, 1 < 𝑟 <∞
the Sobolev space𝑊𝑗,𝑟(ℝ) and the Bessel potential space 𝐻𝑗,𝑟(ℝ) coincide (i.e., they are equal as
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sets). Indeed, it is not hard to show that 𝑊𝑗,𝑟(ℝ) ⊆ 𝐻𝑗,𝑟(ℝ). On the other hand, showing that𝐻𝑗,𝑟(ℝ) ⊆ 𝑊𝑗,𝑟(ℝ) is more involved; see page 22 of §2.3 in Ref. 61, where the result is proved with
the help of the Mikhlin–Hörmander theorem for 𝐿𝑝 multipliers (Theorem 6.2.7 in Ref. 62). Thus,
for any 𝑗 ∈ ℕ0, 1 < 𝑟 <∞, we have ‖ ⋅ ‖𝐻𝑗,𝑟(ℝ) ≃ ‖ ⋅ ‖𝑊𝑗,𝑟(ℝ), and so,

‖𝑞1‖𝑊𝑗,𝑟(ℝ+) ∶= inf𝑞1∈𝑊𝑗,𝑟(ℝ)𝑞1|ℝ+=𝑞1
‖𝑞1‖𝑊𝑗,𝑟(ℝ) ≃ inf𝑞1∈𝐻𝑗,𝑟(ℝ)𝑞1|ℝ+=𝑞1

‖𝑞1‖𝐻𝑗,𝑟(ℝ) =∶ ‖𝑞1‖𝐻𝑠,𝑟(ℝ+). (100)

Observing that the left-hand side of estimate (99) is simply the𝑊𝑗,𝑟(ℝ+)-norm of 𝑞1, in view of
(100), we see that (99) is, in fact, equivalent to

‖𝑞1‖𝐿𝜇𝑡 ((0,𝑇′);𝐻𝑗,𝑟𝑥 (ℝ+)) ≲ ‖𝑔0‖𝐻 𝑗+13𝑡 (ℝ). (101)

Finally, by interpolation (e.g., see Theorem 5.1 in Ref. 58), we deduce

‖𝑞1‖𝐿𝜇𝑡 ((0,𝑇′);𝐻𝑠,𝑟𝑥 (ℝ+)) ≲ ‖𝑔0‖𝐻 𝑠+13𝑡 (ℝ), 𝑠 ≥ 0, (102)

completing the estimation of 𝑞1.
To estimate ‖𝑞2‖𝐿𝜇𝑡 ((0,𝑇′);𝐻𝑠,𝑟𝑥 (ℝ+)), we use (78)–(80) (note the difference in notation, as 𝑞2 in those

expressions now corresponds to 𝜕𝑗𝑥𝑞2) as the portions 𝛾2 and Γ2 of the two parameterizations (69)
and (85) coincide. In particular,

‖𝜕𝑗𝑥𝑞2(⋅, 𝑡)‖𝐿𝑟𝑥(ℝ+) = (
∫

∞
−∞ |𝑄2(𝑚, 𝑡)|𝑟𝑑𝑚) 1𝑟

≤
((𝑇′) 𝑟2 ‖𝑔0‖𝑟𝐿2𝑡 (0,𝑇′) ∫ 𝑐+

𝑐− 𝑚𝑗𝑟|𝜔′(𝑚)|𝑟𝑑𝑚) 1𝑟 = 𝑐𝑗,𝑟√𝑇′‖𝑔0‖𝐿2𝑡 (0,𝑇′).
Therefore, for any 𝑗 ∈ ℕ0, we find

‖𝜕𝑗𝑥𝑞2‖𝐿𝜇𝑡 ((0,𝑇′);𝐿𝑟𝑥(ℝ+)) = 𝑐𝑗,𝑟(𝑇′) 1𝜇+12 ‖𝑔0‖𝐿2𝑡 (0,𝑇′) ≤ 𝑐𝑗,𝑟(𝑇′) 1𝜇+12 ‖𝑔0‖𝐻 𝑗+13𝑡 (0,𝑇′),
and, using again the equivalence of the Bessel potential and Sobolev norms (100) along with
interpolation, we conclude that

‖𝑞2‖𝐿𝜇𝑡 ((0,𝑇′);𝐻𝑠,𝑟𝑥 (ℝ+)) ≲ (𝑇′) 1𝜇+12 ‖𝑔0‖𝐻 𝑠+13𝑡 (0,𝑇′), 𝑠 ≥ 0. (103)

As the estimation of 𝑞3 is similar to that of 𝑞1, the proof of Theorem 8 is complete. ■
Proof of Lemma 3. By the Fundamental Theorem of Calculus, 𝐾 can be rewritten as

𝐾(𝑥, 𝑦, 𝑧, 𝑡) = −∫
𝑐−

−∞ 𝑑𝐼𝑑𝑚 (𝑚;𝑥, 𝑦, 𝑡)𝑝(𝑚; 𝑧)𝑑𝑚,
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where 𝐼(𝑚;𝑥, 𝑦, 𝑡) ∶= ∫ 𝑐−𝑚 𝑒𝑖𝜙(𝜉;𝑥,𝑦,𝑡)𝑑𝜉. Integrating by parts using the fact that 𝐼(𝑐−;𝑥, 𝑦, 𝑡) = 0
and 𝑝(𝑚; 𝑧)→ 0 as𝑚 → −∞, and noting also that 𝑑𝑝𝑑𝑚 (𝑚; 𝑧) > 0, we get

|𝐾(𝑥, 𝑦, 𝑧, 𝑡)| ≤ ∫
𝑐−

−∞ |𝐼(𝑚;𝑥, 𝑦, 𝑡)| 𝑑𝑝𝑑𝑚 (𝑚; 𝑧)𝑑𝑚.
According to van der Corput’s lemma (e.g., see page 370 in Ref. 63), if 𝜂(𝜉) is a real function such
that |𝜂(𝑗)(𝜉)| ≥ 𝛼 on [𝑎, 𝑏], with the additional condition that 𝜂′(𝜉) is monotone if 𝑗 = 1, then

||||∫
𝑏

𝑎 𝑒𝑖𝜂(𝜉)𝑑𝜉|||| ≤ 𝑐𝑗𝛼− 1𝑗 .
Noting that |𝜙(3)(𝜉;𝑥, 𝑦, 𝑡)| = 48𝛽|𝑡|, we can employ this classical result for 𝐼 with 𝜂(𝜉) =𝜙(𝜉;𝑥, 𝑦, 𝑡) to infer that |𝐼(𝑚;𝑥, 𝑦, 𝑡)| ≲ |𝑡|− 13 , 𝑡 ≠ 0, where the constant of inequality is
independent of𝑚,𝑥, 𝑦, 𝑡. In turn, for any 𝑡 ≠ 0 and 𝑧 > 0, we obtain

|𝐾(𝑥, 𝑦, 𝑧, 𝑡)| ≲ |𝑡|− 13 ∫
𝑐−

−∞ 𝑑𝑝𝑑𝑚 (𝑚; 𝑧)𝑑𝑚 = |𝑡|− 13 𝑒−𝜆𝑧 ≤ |𝑡|− 13 ,
which is the desired estimate. ■
Proof of Lemma 4. First, we prove part (i). By definition of 𝑠(𝑚), we have

𝑑𝑠(𝑚)𝑑𝑚 = 3(𝑚 − 𝛼𝛽 )𝑠(𝑚) = −√3 √𝑠2(𝑚) + 𝑐𝛼,𝛽,𝛿𝑠(𝑚)
with 𝑐𝛼,𝛽,𝛿 = 𝛼2+3𝛽𝛿3𝛽2 . Therefore, upon change of variable 𝑠 = 𝑠(𝑚), we get

∫
𝑐−

−∞ 𝑒−𝑥𝑠(𝑚)𝑓(𝑚)𝑑𝑚 = 1√3 ∫
∞

𝜆 𝑒−𝑥𝑠𝑓(𝑚(𝑠)) 𝑠√𝑠2 + 𝑐𝛼,𝛽,𝛿 𝑑𝑠 = ∫
∞

0 𝑒−𝑥𝑠𝑓𝜆(𝑠)𝑑𝑠,
where

𝑓𝜆(𝑠) ∶= ⎧
⎪
⎨
⎪⎩

1√3𝑓(𝑚(𝑠)) 𝑠√𝑠2+𝑐𝛼,𝛽,𝛿 𝑠 ∈ (𝜆,∞),0, 𝑠 ∉ (𝜆,∞).
Using the 𝐿2-boundedness of the Laplace transform (see Lemma 3.2 in Ref. 1), we get

‖‖‖‖‖∫
∞

0 𝑒−𝑥𝑠𝑓𝜆(𝑠)𝑑𝑠‖‖‖‖‖𝐿2𝑥(ℝ+) ≲ ‖𝑓𝜆‖𝐿2𝑠 (ℝ+).
Finally, note that

‖𝑓𝜆‖2𝐿2𝑠 (ℝ+) = 13 ∫
∞

𝜆 |𝑓(𝑚(𝑠))|2 𝑠2𝑠2 + 𝑐𝛼,𝛽,𝛿 𝑑𝑠
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= 1√3 ∫
𝑐−

−∞ |𝑓(𝑚)|2 𝑠(𝑚)√𝑠2(𝑚) + 𝑐𝛼,𝛽,𝛿 𝑑𝑚 ≲ ∫
𝑐−

−∞ |𝑓(𝑚)|2𝑑𝑚.
Next, we establish part (ii). Setting 𝐹(𝑚) ∶= ∫ ∞0 𝑒−𝑥𝑠(𝑚)𝑓(𝑥)𝑑𝑥 and using the Cauchy–Schwarz

inequality along the lines of the proof of Lemma 3.2 in Ref. 1, we have

|𝐹(𝑚)|2 = |||||∫
∞

0 𝑒−𝑥𝑠(𝑚)𝑓(𝑥)𝑑𝑥|||||
2 = |||||∫

∞
0 𝑒−𝑥𝑠(𝑚)2 𝑓(𝑥)𝑥 14 ⋅ 𝑥− 14 𝑒−𝑥𝑠(𝑚)2 𝑑𝑥|||||

2

≤
(
∫

∞
0 𝑒−𝑥𝑠(𝑚)|𝑓(𝑥)|2𝑥 12 𝑑𝑥)(

∫
∞

0 𝑒−𝑥𝑠(𝑚)𝑥− 12 𝑑𝑥).
Then, since the second integral on the right-hand side is equal to 1√𝑠(𝑚) ∫ ∞0 𝑒−𝑢𝑢− 12 𝑑𝑢 = √𝜋√𝑠(𝑚) ,

∫
𝑐−

−∞ |𝐹(𝑚)|2𝑑𝑚 = √𝜋 ∫
𝑐−

−∞
(

∫
∞

0 1√𝑠(𝑚) 𝑒−𝑥𝑠(𝑚)|𝑓(𝑥)|2𝑥 12 𝑑𝑥)𝑑𝑚.
Finally, noting that

∫
𝑐−

−∞ 1√𝑠(𝑚) 𝑥 12 𝑒−𝑥𝑠(𝑚)𝑑𝑚 = 1√3 ∫
∞

𝜆 𝑒−𝑥𝑠𝑠− 12 𝑥 12 𝑠√𝑠2 + 𝑐𝛼,𝛽,𝛿 𝑑𝑠 ≲ ∫
∞

𝜆 𝑒−𝑥𝑠𝑠− 12 𝑥 12 𝑑𝑠 ≤ 𝑐√𝜋,
we arrive at the desired estimate

∫
𝑐−

−∞ |𝐹(𝑚)|2𝑑𝑚 ≲ ∫
∞

0 |𝑓(𝑥)|2𝑑𝑥
completing the proof of the lemma. ■
3 NONLINEAR ANALYSIS

The various linear estimates established in Section 2 will now be combined with a contraction
mapping argument in order to establish local well-posedness in the sense of Hadamard for the
nonlinear initial-boundary value problem (1). In view of these linear results, the solution space
will change as we transition from the setting of high regularity ( 12 < 𝑠 ≤ 2) to the one of low regu-
larity (0 ≤ 𝑠 < 12 ). More specifically, in the former case, well-posedness will be established in the
space 𝐶([0,𝑇];𝐻𝑠𝑥(ℝ+)) for a appropriate choice of 𝑇 > 0 (see Theorem 1), while in the latter case,
that space will be refined by intersecting it with the Strichartz-inspired space 𝐿𝜇𝑡 ((0,𝑇);𝐻𝑠,𝑟𝑥 (ℝ+))
for an admissible choice of exponents (𝜇, 𝑟) in terms of the nonlinearity order 𝑝 and the Sobolev
exponent 𝑠 according to (20) (see Theorem 2).
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3.1 Linear reunification

The nonlinear analysis will be performed by using a solution operator 𝑢 ↦ Φ𝑢 associatedwith the
original forced linear initial-boundary value problem (5). To this end, thanks to the superposition
principle, we reunify the solution representation formulae corresponding to (i) the homogeneous
Cauchy problem (6), (ii) the nonhomogeneous Cauchy problem (23), and (iii) the reduced initial-
boundary value problem (44). More precisely, given 𝑢, we formally define the map

Φ𝑢 ∶= 𝑦|𝑄𝑇 + 𝑧𝑢|𝑄𝑇 + 𝑞𝑢|(0,𝑇)
≡ 𝑆[𝐸0𝑢0; 0]||𝑄𝑇 + 𝑆[0;𝑓(𝐸𝑢)]||𝑄𝑇 − 𝑖2𝜋 ∫Γ 𝑒𝑖𝑘𝑥−𝜔(𝑘)𝑡𝜔′(𝑘) 𝑔𝑢0 (𝜔(𝑘),𝑇′)𝑑𝑘|||(0,𝑇), (104)

where 𝑄𝑇 = ℝ+ × (0,𝑇) for some 𝑇 > 0 to be determined and
𝑔𝑢0 (𝑡) ∶= 𝐸𝑏{𝑔(⋅) − 𝑆[𝐸0𝑢0; 0](0, ⋅) − 𝑆[0;𝑓(𝐸𝑢)](0, ⋅)}(𝑡) (105)

with the temporal transform 𝑔𝑢0 (𝜔(𝑘),𝑇′) defined according to (47). The extension operators 𝐸0
and 𝐸𝑏 were defined below problems (6) and (44) respectively; importantly, 𝐸0 satisfies inequality
(7) and 𝐸𝑏 induces compact support on 𝑔0, namely, supp𝑔0 ⊂ [0,𝑇′), 𝑇′ > 𝑇. Moreover, the opera-
tor 𝐸 is a similar bounded fixed extension operator. In particular, for 𝑠 > 12 , we take 𝐸 = 𝐸0, while
for 0 ≤ 𝑠 < 12 , we take 𝐸 from 𝐻𝑠𝑥(ℝ+) ∩ 𝐻𝑠,𝑟𝑥 (ℝ+) into 𝐻𝑠𝑥(ℝ) ∩ 𝐻𝑠,𝑟𝑥 (ℝ) for a certain 𝑟 > 2 to be
specified later.
In view of (104), we define the solutions of the nonlinear problem (1) as the fixed points of

the operator Φ. Thus, our goal will be to prove the existence of a unique such fixed point in a
suitable function space. Throughout our analysis, we assume 𝑢0 ∈ 𝐻𝑠𝑥(ℝ+) and 𝑔 ∈ 𝐻 𝑠+13𝑡,loc(ℝ+)
with 𝑠 ∈ [0, 2] ⧵ { 12 } and the compatibility conditions (66) in place as necessary. We first treat the
high regularity case 12 < 𝑠 ≤ 2 in which we are able to employ the algebra property of 𝐻𝑠𝑥(ℝ+),
and thenmove on to the low regularity case 0 ≤ 𝑠 < 12 in which we address the lack of the algebra
property by refining our solution space motivated by the linear Strichartz estimates.

3.2 High regularity solutions: Proof of Theorem 1

In the high regularity setting, we suppose that 12 < 𝑠 ≤ 2 and 𝑝 > 0 with the additional assump-
tions (3) as necessary. Our goal is to establish local well-posedness in the space 𝑋𝑇 ∶=𝐶([0,𝑇];𝐻𝑠𝑥(ℝ+)) for some 𝑇 > 0 to be determined. We consider 𝑋𝑇 as a metric space with the
metric

𝑑𝑋𝑇 (𝑢1,𝑢2) ∶= ‖𝑢1 − 𝑢2‖𝑋𝑇 , 𝑢1,𝑢2 ∈ 𝑋𝑇 .
Note that any closed ball in 𝑋𝑇 is a complete subspace.
Showing that Φ is into. The conservation law (8) in Theorem 3 and the boundedness (7) of the

spatial extension operator 𝐸0 imply
‖𝑦|𝑄𝑇‖𝑋𝑇 ≤ ‖𝑆[𝐸0𝑢0; 0]‖𝐶([0,𝑇];𝐻𝑠𝑥(ℝ)) = ‖𝐸0𝑢0‖𝐻𝑠𝑥(ℝ) ≲ ‖𝑢0‖𝐻𝑠𝑥(ℝ+), (106)
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which takes care of the first term in (104). For the second term in (104), let 𝑢 ∈ 𝑋𝑇 and combine
the nonhomogeneous estimate (25) in Theorem 5 with the algebra property in𝐻𝑠𝑥(ℝ) to yield

‖𝑧𝑢|𝑄𝑇‖𝑋𝑇 ≤ ‖‖𝑆[0;𝑓(𝐸0𝑢)]‖‖𝐶([0,𝑇];𝐻𝑠𝑥(ℝ)) ≲ ∫
𝑇

0 ‖𝑓(𝐸0𝑢(⋅, 𝑡))‖𝐻𝑠𝑥(ℝ)𝑑𝑡
≲ ∫

𝑇
0 ‖𝐸0𝑢(⋅, 𝑡)‖𝑝+1𝐻𝑠𝑥(ℝ)𝑑𝑡 ≲ ∫

𝑇
0 ‖𝑢(⋅, 𝑡)‖𝑝+1𝐻𝑠𝑥(ℝ+)𝑑𝑡 ≲ 𝑇‖𝑢‖𝑝+1𝑋𝑇 . (107)

Regarding the third term in (104), using estimate (68) in Theorem 7 and the boundedness of the
temporal extension operator𝐸𝑏 (see Section 3 ofRef. 40 formore details), we get (saywith𝑇′ = 2𝑇)

‖𝑞𝑢|(0,𝑇)‖𝑋𝑇 ≤ ‖𝑞‖𝑋𝑇′ ≲ (1 +√𝑇′𝑒𝑐𝑇′)‖𝑔𝑢0‖𝐻 𝑠+13𝑡 (0,𝑇′)
≲ (1 +√𝑇′𝑒𝑐𝑇′)‖𝑔𝑢0‖𝐻 𝑠+13𝑡 (0,𝑇) ≲ (1 +√𝑇𝑒𝑐𝑇)‖𝑔𝑢0‖𝐻 𝑠+13𝑡 (0,𝑇).

(108)

By using the definition of 𝑔0 in (44) and temporal trace estimates (9), (10), and (26), we obtain
‖𝑔𝑢0‖𝐻 𝑠+13𝑡 (0,𝑇) ≲ ‖𝑔‖𝐻 𝑠+13𝑡 (0,𝑇) + (1 + 𝑇 12 )‖𝑢0‖𝐻𝑠𝑥(ℝ+)

+ max{𝑇 12 (1 + 𝑇 12 ),𝑇𝜎} ‖𝑓(𝐸0𝑢)‖𝐿2𝑡 ((0,𝑇);𝐻𝑠𝑥(ℝ)),
(109)

with 𝜎 given by (27). By using the definition of the solution space 𝑋𝑇 and the boundedness (7) of
the spatial extension operator 𝐸0, we have

‖𝑓(𝐸0𝑢)‖𝐿2𝑡 ((0,𝑇);𝐻𝑠𝑥(ℝ)) ≲ 𝑇 12 ‖𝑢‖𝑝+1𝑋𝑇 . (110)

Using the definition (104) of Φ and combining estimates (106)–(110), we deduce

‖Φ(𝑢)‖𝑋𝑇 ≤ 𝑐0(𝑐1(𝑇)‖𝑢0‖𝐻𝑠𝑥(ℝ+) + 𝑐2(𝑇)‖𝑔‖𝐻 𝑠+13𝑡 (0,𝑇) + 𝑐3(𝑇)‖𝑢‖𝑝+1𝑋𝑇
), (111)

where the positive constants 𝑐1, 𝑐2, 𝑐3 are given by 𝑐1(𝑇) = (1 +√𝑇𝑒𝑐𝑇)(1 + 𝑇 12 ), 𝑐2(𝑇) = (1 +√𝑇𝑒𝑐𝑇), 𝑐3(𝑇) = 𝑇 + (1 +√𝑇𝑒𝑐𝑇)𝑇 12 max{𝑇 12 (1 + 𝑇 12 ),𝑇𝜎} and 𝑐0 is a nonnegative constant
independent of 𝑇 and only depending on fixed parameters such as 𝛼, 𝛽, 𝛿, and 𝑠.
In view of estimate (111), we set 𝑅(𝑇) ∶= 2𝐴(𝑇) with

𝐴(𝑇) ∶= 𝑐0(𝑐1(𝑇)‖𝑢0‖𝐻𝑠𝑥(ℝ+) + 𝑐2(𝑇)‖𝑔‖𝐻 𝑠+13𝑡 (0,𝑇)
),

and choose 𝑇 small enough so that 𝐴(𝑇) + 𝑐0𝑐3(𝑇)𝑅(𝑇)𝑝+1 ≤ 𝑅(𝑇) or, equivalently,𝑐0𝑐3(𝑇)𝑅𝑝(𝑇) ≤ 12 . We note that such a choice is possible because 𝑐3(𝑇)→ 0+ and 𝑅(𝑇) remains
bounded as 𝑇 → 0+. Then, for that choice of 𝑇, the map Φ takes the closed ball 𝐵𝑅(𝑇)(0) ⊂ 𝑋𝑇
into itself. It remains to show that Φ is a contraction on 𝐵𝑅(𝑇)(0).
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Showing that Φ is a contraction. Let 𝑢1,𝑢2 ∈ 𝐵𝑅(𝑇)(0). Then,
‖Φ(𝑢1) − Φ(𝑢2)‖𝑋𝑇 = ‖‖‖𝑧𝑢1 |𝑄𝑇 − 𝑧𝑢2 |𝑄𝑇‖‖‖𝑋𝑇 + ‖‖𝑞𝑢1 |(0,𝑇) − 𝑞𝑢2 |(0,𝑇)‖‖𝑋𝑇≲ ‖‖𝑆[0;𝑓(𝐸0𝑢1) − 𝑓(𝐸0𝑢2)]‖‖𝐶([0,𝑇];𝐻𝑠𝑥(ℝ))+ (1 +√𝑇𝑒𝑐𝑇)‖‖‖𝑔𝑢10 − 𝑔𝑢20 ‖‖‖𝐻 𝑠+13𝑡 (0,𝑇).

(112)

We then recall the following difference estimate (e.g., see Ref. 50).

Lemma 5. Let 𝑠 > 12 , 𝑝 > 0 satisfy (3) and 𝜑,𝜑1,𝜑2 ∈ 𝐻𝑠(ℝ). Then,
‖|𝜑1|𝑝𝜑1 − |𝜑2|𝑝𝜑2‖𝐻𝑠(ℝ) ≲ (

‖𝜑1‖𝑝𝐻𝑠(ℝ) + ‖𝜑2‖𝑝𝐻𝑠(ℝ))‖𝜑1 − 𝜑2‖𝐻𝑠(ℝ).
Employing Lemma 5 and the arguments used earlier in (107), we deduce

‖‖𝑆[0;𝑓(𝐸0𝑢1) − 𝑓(𝐸0𝑢2)]‖‖𝐶([0,𝑇];𝐻𝑠𝑥(ℝ)) ≲ 𝑇(‖𝑢1‖𝑝𝑋𝑇 + ‖𝑢2‖𝑝𝑋𝑇)‖𝑢1 − 𝑢2‖𝑋𝑇 . (113)

Moreover, for the difference of boundary data, we have, similarly to (109),

‖𝑔𝑢10 − 𝑔𝑢20 ‖𝐻 𝑠+13𝑡 (0,𝑇) ≲ max{𝑇 12 (1 + 𝑇 12 ),𝑇𝜎}‖𝑓(𝐸0𝑢1) − 𝑓(𝐸0𝑢2)‖𝐿2𝑡 ((0,𝑇);𝐻𝑠𝑥(ℝ))
≲ max{𝑇 12 (1 + 𝑇 12 ),𝑇𝜎}𝑇 12(‖𝑢1‖𝑝𝑋𝑇 + ‖𝑢2‖𝑝𝑋𝑇)‖𝑢1 − 𝑢2‖𝑋𝑇 , (114)

where 𝜎 is given by (27). Combining (113) and (114) with (112), we obtain
‖Φ(𝑢1) − Φ(𝑢2)‖𝑋𝑇 ≲ 𝑐3(𝑇)(‖𝑢1‖𝑝𝑋𝑇 + ‖𝑢2‖𝑝𝑋𝑇)‖𝑢1 − 𝑢2‖𝑋𝑇 ≲ 𝑐3(𝑇)𝑅𝑝(𝑇)‖𝑢1 − 𝑢2‖𝑋𝑇 . (115)

Note that 𝑐3(𝑇)→ 0+ and 𝑅(𝑇) remains bounded as 𝑇 → 0+. Therefore, for sufficiently small 𝑇 >0, themapΦ is a contraction on 𝐵𝑅(𝑇)(0), and hence,Φ has a unique fixed point in 𝐵𝑅(𝑇)(0) that, as
noted earlier, amounts to local existence of a unique solution to the HNLS initial-boundary value
problem (1) on 𝐵𝑅(𝑇)(0).
Extending uniqueness to 𝑋𝑇 . To prove uniqueness over the entire space 𝑋𝑇 and not just the

closed ball𝐵𝑅(𝑇)(0), we suppose that 𝑢1,𝑢2 ∈ 𝑋𝑇 are two solutions associatedwith the same pair of
initial and boundary data (𝑢0, 𝑔). At first, we consider the case of 𝑢1,𝑢2 being sufficiently smooth
and, along with their derivatives, decaying sufficiently fast as 𝑥 → ∞. This allows us to proceed
via energy estimates. In particular, we note that the difference 𝑤 ∶= 𝑢1 − 𝑢2 solves the following
problem:

𝑖𝑤𝑡 + 𝑖𝛽𝑤𝑥𝑥𝑥 + 𝛼𝑤𝑥𝑥 + 𝑖𝛿𝑤𝑥 = 𝑓(𝑢1) − 𝑓(𝑢2), (𝑥, 𝑡) ∈ ℝ+ × (0,𝑇),𝑤(𝑥, 0) = 0, 𝑥 ∈ ℝ+,𝑤(0, 𝑡) = 0, 𝑡 ∈ (0,𝑇). (116)
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Multiplying themain equation by𝑤, integrating in 𝑥, taking imaginary parts, and using Lemma 5
and the embedding𝐻𝑠𝑥(ℝ+)↪ 𝐿∞𝑥 (ℝ+), which is valid for 𝑠 > 12 , we find12 𝑑𝑑𝑡‖𝑤(𝑡)‖2𝐿2𝑥(ℝ+) = −𝛽2 |𝑤𝑥(0, 𝑡)|2 + Im∫

∞
0 [𝑓(𝑢1(𝑥, 𝑡)) − 𝑓(𝑢2(𝑥, 𝑡))]𝑤̄(𝑥, 𝑡)𝑑𝑥

≲ ∫
∞

0 (|𝑢1(𝑥, 𝑡)|𝑝 + |𝑢2(𝑥, 𝑡)|𝑝)|𝑤(𝑥, 𝑡)|2𝑑𝑥
≲ (

‖𝑢1(𝑡)‖𝑝𝐻𝑠𝑥(ℝ+) + ‖𝑢2(𝑡)‖𝑝𝐻𝑠𝑥(ℝ+))‖𝑤(𝑡)‖2𝐿2𝑥(ℝ+)≲ (
‖𝑢1‖𝑝𝑋𝑇 + ‖𝑢2(𝑡)‖𝑝𝑋𝑇)‖𝑤(𝑡)‖2𝐿2𝑥(ℝ+).

Setting 𝑦(𝑡) ∶= ‖𝑤(𝑡)‖𝐿2𝑥(ℝ+), the above energy estimate is satisfied, provided that 𝑦′(𝑡) − 𝑐𝑦(𝑡) ≤0, 𝑡 ∈ (0,𝑇) for some nonnegative constant 𝑐. Solving this differential inequality alongside the
condition 𝑦(0) = ‖𝑤(0)‖𝐿2𝑥(ℝ+) = 0 (note that𝑤(𝑥, 0) ≡ 0), we obtain 𝑦 ≡ 0, that is,𝑤 = 𝑢1 − 𝑢2 ≡0. The case of rough 𝑢1,𝑢2 can be treated via mollification along the lines of the arguments used
in the proof of Proposition 1.4 in Ref. 21.

Continuous dependence on the data. For (𝑢0, 𝑔) ∈ 𝐻𝑠𝑥(ℝ+) × 𝐻 𝑠+13𝑡,loc(ℝ+), let𝑇max ∶= sup {𝑇 > 0 | there is a solution associated to the data (𝑢0, 𝑔) on [0,𝑇]}.
Then, either 𝑇max =∞ or else 𝑇max <∞ and there is no solution 𝑢 ∈ 𝑋𝑇max since otherwise the
lifespan of𝑢 could be extended beyond𝑇max by startingwith initial datumequal to𝑢(𝑇max). There-
fore,wemay let𝑢 ∈ 𝐶([0,𝑇max);𝐻𝑠𝑥(ℝ+)) be themaximal solution associatedwith the data (𝑢0, 𝑔);
then, for 𝑇 < 𝑇max, in particular, 𝑢|[0,𝑇] is the unique solution in 𝑋𝑇 established above.
Let 𝑇 < 𝑇max be small enough that Φ is a contraction on 𝐵𝑅(𝑇)(0) for any solution associated

with data (𝑣0,ℎ) ∈ 𝐻𝑠𝑥(ℝ+) × 𝐻 𝑠+13𝑡,loc(ℝ+) and satisfying
‖𝑣0‖𝐻𝑠𝑥(ℝ+) + ‖ℎ‖𝐻 𝑠+13𝑡 (0,𝑇) ≤ 2(‖𝑢0‖𝐻𝑠𝑥(ℝ+) + ‖𝑔‖𝐻 𝑠+13𝑡 (0,𝑇)

).
If follows that if 𝛿 > 0 is small enough, for (𝑣0,ℎ) satisfying

‖𝑣0 − 𝑢0‖𝐻𝑠𝑥(ℝ+) + ‖𝑔 − ℎ‖𝐻 𝑠+13𝑡 (0,𝑇) < 𝛿,
the associated solution 𝑣 belongs to 𝐵𝑅(𝑇)(0). Therefore, 𝑢 and 𝑣 are both fixed points of Φ on𝐵𝑅(𝑇)(0) associated with the pairs of data (𝑢0, 𝑔) and (𝑣0,ℎ), respectively. Then, the corresponding
nonlinear estimates from the contraction argument imply

‖𝑢 − 𝑣‖𝑋𝑇 = ‖Φ𝑢 − Φ𝑣‖𝑋𝑇 ≲ 𝑐(𝑇)(‖𝑢0 − 𝑣0‖𝐻𝑠𝑥(ℝ+) + ‖𝑔 − ℎ‖𝐻 𝑠+13𝑡 (0,𝑇)
) ≲ 𝛿𝑐(𝑇),

which amounts to continuity of the data-to-solution map. The proof of Theorem 1 for
well-posedness in the high regularity setting is complete.
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3.3 Low regularity solutions: Proof of theorem 2

In this setting, we work under the assumptions (4). The lack of the algebra property brings in the
need for the various Strichartz estimates established in Section 2 and hencemotivates the solution
space 𝑌𝑇 ∶= 𝐶([0,𝑇];𝐻𝑠𝑥(ℝ+)) ∩ 𝐿𝜇𝑡 ((0,𝑇);𝐻𝑠,𝑟𝑥 (ℝ+)).
It is convenient to also consider the associated space on the whole spatial line, namely,𝑌𝑇 ∶= 𝐶([0,𝑇];𝐻𝑠𝑥(ℝ)) ∩ 𝐿𝜇𝑡 ((0,𝑇);𝐻𝑠,𝑟𝑥 (ℝ)).
The following lemmawill serve as the low regularity analog of the algebra property and Lemma 5.

Lemma 6. Let (𝑠,𝑝), (𝜇, 𝑟) satisfy (4) and suppose 𝜑,𝜑1,𝜑2 ∈ 𝐿𝜇𝑡 ((0,𝑇);𝐻𝑠,𝑟𝑥 (ℝ)). Then,
‖‖|𝜑|𝑝𝜑‖‖𝐿1𝑡 ((0,𝑇);𝐻𝑠𝑥(ℝ)) ≲ 𝑇 𝜇−𝑝−1𝜇 ‖𝜑‖𝑝+1𝐿𝜇𝑡 ((0,𝑇);𝐻𝑠,𝑟𝑥 (ℝ)), (117)

‖‖|𝜑1|𝑝𝜑1 − |𝜑2|𝑝𝜑2‖‖𝐿1𝑡 ((0,𝑇);𝐻𝑠𝑥(ℝ)) ≲ 𝑇 𝜇−𝑝−1𝜇 (
‖𝜑1‖𝑝𝐿𝜇𝑡 ((0,𝑇);𝐻𝑠,𝑟𝑥 (ℝ)) + ‖𝜑2‖𝑝𝐿𝜇𝑡 ((0,𝑇);𝐻𝑠,𝑟𝑥 (ℝ))

)

⋅ ‖𝜑1 − 𝜑2‖𝐿𝜇𝑡 ((0,𝑇);𝐻𝑠,𝑟𝑥 (ℝ)). (118)

Lemma 6 is proved after the end of the current proof and corresponds to the one-dimensional
analog of inequality (6.17) for the two-dimensional NLS equation proved in Ref. 24. Note, impor-
tantly, that the admissibility conditions (4) are different than those in Ref. 24 due to the third-order
dispersion of the HNLS equation. Thus, the proof of Lemma 6 does not follow from Ref. 24. Now,
we are ready to prove Theorem 2 for low regularity solutions.
Existence. First, we consider the subcritical case𝑝 ≠ 61−2𝑠 so that 𝜇−𝑝−1𝜇 > 0.Wework againwith

the solution operator (104), which was obtained via linear reunification. Theorems 3 and 4 imply

‖𝑦|𝑄𝑇‖𝑌𝑇 ≤ ‖𝑦‖𝑌𝑇 ≲ ‖𝐸0𝑢0‖𝐻𝑠𝑥(ℝ) ≲ ‖𝑢0‖𝐻𝑠𝑥(ℝ+), (119)

while Theorems 5 and 6 along with inequality (117) and the same argument that was used in (107)
yield

‖𝑧𝑢|𝑄𝑇‖𝑌𝑇 ≤ ‖𝑧𝑢‖𝑌𝑇 ≲ (𝑇 + 𝑇 𝜇−𝑝−1𝜇 )
‖𝑢‖𝑝+1𝑌𝑇 . (120)

Furthermore, Theorem 8 (with say 𝑇′ = 2𝑇) and the same arguments that led to (108) imply
‖𝑞𝑢|(0,𝑇)‖𝑌𝑇 ≲ (1 +√𝑇𝑒𝑐𝑇 + 𝑇 1𝜇+12)‖𝑔𝑢0‖𝐻 𝑠+13𝑡 (0,𝑇). (121)

Combining (119)–(121) and proceeding along the lines of the arguments that resulted in (109) and
(110), we obtain

‖Φ(𝑢)‖𝑌𝑇 ≤ 𝑐0(𝑐1(𝑇)‖𝑢0‖𝐻𝑠𝑥(ℝ+) + 𝑐2(𝑇)‖𝑔‖𝐻 𝑠+13𝑡 (0,𝑇) + 𝑐3(𝑇)‖𝑢‖𝑝+1𝑌𝑇
),
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where the positive constants 𝑐1, 𝑐2, 𝑐3 are given by 𝑐1(𝑇) = (1 +√𝑇𝑒𝑐𝑇 + 𝑇 1𝜇+12 )(1 + 𝑇 12 ), 𝑐2(𝑇) =(1 +√𝑇𝑒𝑐𝑇 + 𝑇 1𝜇+12 ), 𝑐3(𝑇) = (𝑇 + 𝑇 𝜇−𝑝−1𝜇 ) + (1 +√𝑇𝑒𝑐𝑇 + 𝑇 1𝜇+12 )𝑇 12 max{𝑇 12 (1 + 𝑇 12 ),𝑇𝜎} and𝑐0 is a nonnegative constant independent of 𝑇 and only depending on fixed parameters such as𝛼, 𝛽, 𝛿, and 𝑠.
For the contraction, given 𝑢1,𝑢2 ∈ 𝑌𝑇 , we employ inequality 118 together with the same

arguments that led to (115) to infer

‖Φ(𝑢1) − Φ(𝑢2)‖𝑌𝑇 ≲ 𝑐3(𝑇)(‖𝑢1‖𝑝𝑌𝑇 + ‖𝑢2‖𝑝𝑌𝑇)‖𝑢1 − 𝑢2‖𝑌𝑇 . (122)

This estimate implies the existence of a fixed point in 𝑌𝑇 for sufficiently small 𝑇 > 0 via the same
arguments that were used in the proof of Theorem 1.
Next, we consider the critical case 𝑝 = 61−2𝑠 . The difference here compared to the subcritical

case is that the limit 𝑐3(𝑇)→ 0+ as 𝑇 → 0+ is no longer true; however, Φ is still a contraction,
provided that the data (and, correspondingly, the radius of the closed ball that depends on the
size of the data) are chosen sufficiently small.
Uniqueness. We adapt the method used for the Cauchy problem in the proof of Proposition 4.2

of Ref. 64 to the framework of initial-boundary value problems.
First, consider the subcritical case 𝑝 ≠ 61−2𝑠 . Let 𝑢1 = Φ(𝑢1),𝑢2 = Φ(𝑢2) ∈ 𝑌𝑇 be two solutions

associated with the same pair of initial and boundary data. Suppose to the contrary that there is𝑡 ∈ [0,𝑇] for which 𝑢1(𝑡) ≠ 𝑢2(𝑡), and let𝑡inf ∶= inf {𝑡 ∈ [0,𝑇] |𝑢1(𝑡) ≠ 𝑢2(𝑡)}.
Taking 𝑡𝑛 < 𝑡inf such that 𝑡𝑛 → 𝑡−inf as 𝑛 → ∞, we see that 𝑢1(𝑡𝑛) = 𝑢2(𝑡𝑛) by definition of 𝑡inf.
Thus, in view of the fact that 𝑢1,𝑢2 are both continuous from [0,𝑇] into𝐻𝑠𝑥(ℝ+), taking the limit𝑛 → ∞, we deduce that 𝑢1(𝑡inf) = 𝑢2(𝑡inf) =∶ 𝜑 ∈ 𝐻𝑠𝑥(ℝ+) makes sense. Set 𝑈1(𝑡) = 𝑢1(𝑡 + 𝑡inf)
and𝑈2(𝑡) = 𝑢2(𝑡 + 𝑡inf). Then,𝑈1 and𝑈2 are both solutions on the temporal interval [0,𝑇 − 𝑡inf]
that satisfy the same initial and boundary conditions, namely,

𝑈1(0) = 𝑈2(0) = 𝜑, 𝑈1|𝑥=0 = 𝑈2|𝑥=0 = 𝑔(⋅ + 𝑡inf) =∶ 𝑔inf.
Since 𝑈1 and 𝑈2 are continuous in 𝑡, by the definition of 𝑡inf, there is a 𝛿 > 0 such that 𝑈1 ≠ 𝑈2
for 𝑡 ∈ (0, 𝛿). Let 𝑡 = 𝑡inf + 𝜀 with 𝜀 ∈ (0, 𝛿) fixed and to be specified below. We have

‖𝑈1 −𝑈2‖𝐿𝜇𝑡 ((0,𝜀);𝐻𝑠,𝑟𝑥 (ℝ+)) ≲ 𝑐inf(𝜀)(‖𝑈1‖𝑝𝐿𝜇𝑡 ((0,𝜀);𝐻𝑠,𝑟𝑥 (ℝ+)) + ‖𝑈2‖𝑝𝐿𝜇𝑡 ((0,𝜀);𝐻𝑠,𝑟𝑥 (ℝ+))
)

⋅ ‖𝑈1 −𝑈2‖𝐿𝜇𝑡 ((0,𝜀);𝐻𝑠,𝑟𝑥 (ℝ+)), (123)

where 𝑐inf(𝜀) ∶= 𝜀 𝜇−𝑝−1𝜇 + 𝜀 1𝜇+12 𝜀 12 max{𝜀 12 (1 + 𝜀 12 ), 𝜀𝜎}. Let 𝜀 ∈ (0, 𝛿) be small enough so that
𝑐inf(𝜀)(‖𝑈1‖𝑝𝐿𝜇𝑡 ((0,𝜀);𝐻𝑠,𝑟𝑥 (ℝ+)) + ‖𝑈2‖𝑝𝐿𝜇𝑡 ((0,𝜀);𝐻𝑠,𝑟𝑥 (ℝ+))

) < 1, (124)

which is possible because 𝑐inf(𝜀)→ 0+ as 𝜀 → 0+. Then, (123) implies that 𝑈1 = 𝑈2 on (0, 𝜀) ⊂(0, 𝛿), leading to a contradiction. Hence, uniqueness follows.
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In the critical case 𝑝 = 61−2𝑠 , although the limit 𝑐inf(𝜀)→ 0+ as 𝜀 → 0+ is no longer true, the
uniqueness argument remains valid as (124) still holds due to the fact that, due to the domi-
nated convergence theorem, the norms ‖𝑈1‖𝐿𝜇𝑡 ((0,𝜀);𝐻𝑠,𝑟𝑥 (ℝ+)) and ‖𝑈2‖𝐿𝜇𝑡 ((0,𝜀);𝐻𝑠,𝑟𝑥 (ℝ+)) can be made
arbitrarily small by taking 𝜀 small enough.
Finally, the continuous dependence of the unique solution in 𝑌𝑇 on the initial and boundary

data can be proved as in the high regularity setting, thereby completing the proof of Theorem 2.

Proof of Lemma 6. By Hölder’s inequality,

‖‖|𝜑|𝑝𝜑‖‖𝐿1𝑡 ((0,𝑇);𝐻𝑠(ℝ)) ≤ 𝑇 𝜇−𝑝−1𝜇
(

∫
𝑇

0 ‖‖|𝜑(𝑡)|𝑝𝜑(𝑡)‖‖ 𝜇𝑝+1𝐻𝑠𝑥(ℝ)𝑑𝑡
) 𝑝+1𝜇 .

On the other hand, ‖𝜑‖𝑝+1𝐿𝜇𝑡 (0,𝑇0;𝐻𝑠,𝑟𝑥 (ℝ)) = (∫ 𝑇0 ‖𝜑(𝑡)‖𝜇𝐻𝑠,𝑟𝑥 (ℝ)𝑑𝑡) 𝑝+1𝜇 . Hence, in order to establish (117),
it suffices to prove that

‖𝐷𝜃(|𝜑(𝑡)|𝑝𝜑(𝑡))‖𝐿2𝑥(ℝ) ≲ ‖𝜑(𝑡)‖𝑝+1𝐻𝜃,𝑟𝑥 (ℝ), 𝑡 ∈ (0,𝑇), (125)

for 𝜃 = 0 and 𝜃 = 𝑠. To this end, we set 𝐹(𝑧) ∶= |𝑧|𝑝𝑧, 𝑧 ∈ ℂ. If 𝑠 ≠ 0, by using the chain rule for
fractional derivatives (e.g., see Proposition 3.1 in 65), we have

‖𝐷𝑠𝐹(𝜑(𝑡))‖𝐿2𝑥(ℝ) ≲ ‖𝐹′(𝜑(𝑡))‖𝐿 𝜇3𝑥 (ℝ)‖𝐷𝑠𝜑(𝑡)‖𝐿𝑟𝑥(ℝ) (126)

with 12 = 3𝜇 + 1𝑟 . Noting that |𝐹′(𝜑(𝑡))| ≤ (𝑝 + 1)|𝜑(𝑡)|𝑝, we further find
‖𝐹′(𝜑(𝑡))‖𝐿 𝜇3𝑥 (ℝ) ≲ ‖𝜑(𝑡)‖𝑝𝐿 𝑝𝜇3𝑥 (ℝ), (127)

while for 3𝑝𝜇 = 1𝑟 − 𝑠, we also have the embedding
‖𝜑(𝑡)‖𝐿 𝑝𝜇3𝑥 (ℝ) ≲ ‖𝜑(𝑡)‖𝐻𝑠,𝑟𝑥 (ℝ). (128)

Combining (127) and (128) with (126), we obtain (125) for 𝜃 = 𝑠 ≠ 0. Notice that 𝑟 = 2(𝑝 + 1) for𝑠 = 0. Therefore,
‖|𝜑(𝑡)|𝑝𝜑(𝑡)‖𝐿2𝑥(ℝ) = ‖𝜑(𝑡)‖𝑝+1𝐿2(𝑝+1)𝑥 (ℝ) = ‖𝜑(𝑡)‖𝑝+1𝐿𝑟𝑥(ℝ),

which corresponds to (125) for 𝜃 = 0.
Regarding inequality (118) for the differences, we first consider the case 𝑠 = 0, which implies𝑟 = 2(𝑝 + 1). Using the standard pointwise difference estimate for the power-type nonlinearity

and then applying Hölder’s inequality in 𝑥, we get
‖‖|𝜑1|𝑝𝜑1 − |𝜑2|𝑝𝜑2‖‖𝐿1𝑡 ((0,𝑇);𝐿2𝑥(ℝ)) ≲ ∫

𝑇
0

(
∫

∞
−∞(|𝜑1(𝑥, 𝑡)|𝑝 + |𝜑2(𝑥, 𝑡)|𝑝)2|𝜑1(𝑥, 𝑡) − 𝜑2(𝑥, 𝑡)|2𝑑𝑥)

12 𝑑𝑡
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≲ ∫
𝑇

0
(
‖𝜑1(𝑡)‖𝑝𝐿𝑟𝑥(ℝ) + ‖𝜑2(𝑡)‖𝑝𝐿𝑟𝑥(ℝ))‖𝜑1(𝑡) − 𝜑2(𝑡)‖𝐿𝑟𝑥(ℝ)𝑑𝑡,

and the desired estimate (118) for 𝑠 = 0 follows via Hölder’s inequality in 𝑡.
Next, let us consider the case 𝑠 ≠ 0, in which 𝑟 = 2(𝑝+1)1+2𝑠𝑝 . First, observe that for 𝑧1, 𝑧2 ∈ ℂ and𝜉(𝜌) = (1 − 𝜌)𝑧2 + 𝜌𝑧1, 𝜌 ∈ [0, 1], we have 𝜉(0) = 𝑧1, 𝜉(1) = 𝑧2, 𝜉′(𝜌) = 𝑧1 − 𝑧2. Moreover,
|𝑧2|𝑝𝑧2 − |𝑧1|𝑝𝑧1 = ∫

1
0 𝑑𝑑𝜌 (|𝜉(𝜌)|𝑝𝜉(𝜌))𝑑𝜌

= (𝑝 + 2)2 (𝑧1 − 𝑧2)∫ 1
0 |𝜉(𝜌)|𝑝𝑑𝜌 + 𝑝2 (𝑧̄1 − 𝑧̄2)∫ 1

0 |𝜉(𝜌)|𝑝−2𝜉2(𝜌)𝑑𝜌.
Combining this writing with the fractional product rule (see Proposition 3.3 in Ref. 65), we find

‖𝐷𝑠𝐹(𝜑1(𝑡)) − 𝐷𝑠𝐹(𝜑2(𝑡))‖𝐿2𝑥(ℝ) ≲ ‖𝐷𝑠(𝜑1(𝑡) − 𝜑2(𝑡))‖𝐿𝑟𝑥(ℝ) sup𝜌∈[0,1] ‖|𝑤(𝑡)|𝑝‖𝐿 2𝑟𝑟−2𝑥 (ℝ)
+ ‖𝜑1(𝑡) − 𝜑2(𝑡)‖𝐿 𝑝𝜇3𝑥 (ℝ)

( sup𝜌∈[0,1]
{
‖𝐷𝑠(𝐺(𝑤(𝑡)))‖𝐿𝑟1𝑥 (ℝ)}

),
where 1𝑟1 = 12 − 3𝑝𝜇 , 𝑤(𝑡) = (1 − 𝜌)𝜑2(𝑡) + 𝜌𝜑1(𝑡), and 𝐺(𝑧) = 𝐹′(𝑧) = 𝑝+22 |𝑧|𝑝 + 𝑝2 |𝑧|𝑝−2𝑧2, 𝑧 ∈ℂ.
Observing that |𝐺′(𝑤(𝑡))| ≤ 𝑝(𝑝 + 1)|𝑤(𝑡)|𝑝−1 for 𝑝 > 1, we use the fractional chain rule

(Proposition 3.1 in Ref. 65) to infer that, for 𝑝 > 1,
‖𝐷𝑠(𝐺(𝑤(𝑡)))‖𝐿𝑟1𝑥 (ℝ) ≲ ‖|𝑤(𝑡)|𝑝−1‖𝐿𝑟2𝑥 (ℝ)‖𝐷𝑠𝑤(𝑡)‖𝐿𝑟𝑥(ℝ)≲ ‖𝑤(𝑡)‖𝑝−1𝐿 𝜇𝑝3𝑥 (ℝ)‖𝐷𝑠𝑤(𝑡)‖𝐿𝑟𝑥(ℝ) ≲ ‖𝑤(𝑡)‖𝑝𝐻𝑠,𝑟𝑥 (ℝ),

where 1𝑟2 = 1𝑟1 − 1𝑟 . In the above, the second inequality is due to the fact that, in view of (4),𝑟2 = 2(𝑝+1)(𝑝−1)(1−2𝑠) = 𝜇𝑝3(𝑝−1) , and the third inequality follows from the embedding (128). Furthermore,

notice that 2𝑟𝑟−2 = 𝜇3 and so, using once again, the embedding (128),
‖|𝑤(𝑡)|𝑝‖𝐿 2𝑟𝑟−2𝑥 (ℝ) = ‖𝑤(𝑡)‖𝑝𝐿 𝜇𝑝3𝑥 (ℝ) ≲ ‖𝑤(𝑡)‖𝑝𝐻𝑠,𝑟𝑥 (ℝ).

Combining the last three estimates, we deduce

‖𝐷𝑠𝐹(𝜑1(𝑡)) − 𝐷𝑠𝐹(𝜑2(𝑡))‖𝐿2𝑥(ℝ) ≲ (
‖𝜑1(𝑡)‖𝑝𝐻𝑠,𝑟𝑥 (ℝ) + ‖𝜑2(𝑡)‖𝑝𝐻𝑠,𝑟𝑥 (ℝ))‖𝜑1(𝑡) − 𝜑2(𝑡)‖𝐻𝑠,𝑟𝑥 (ℝ).

Then, integrating over (0,𝑇), applying Hölder’s inequality in 𝑡, and combining the resulting
estimate with the case of 𝑠 = 0, we obtain (118) for 𝑠 ≠ 0 and 𝑝 > 1.
Finally, for 𝑝 = 1, we note that 12 = 1+2𝑠4 + 1−2𝑠4 = 1𝑟 + 1−2𝑠4 = 1𝑟 + 3𝜇 . Therefore,
‖𝐷𝑠𝐹(𝜑1(𝑡)) − 𝐷𝑠𝐹(𝜑2(𝑡))‖𝐿2𝑥(ℝ) ≲ ‖𝐷𝑠(𝜑1(𝑡) − 𝜑2(𝑡))‖𝐿𝑟𝑥(ℝ) sup𝜌∈[0,1] ‖𝑤(𝑡)‖𝐿 𝜇3𝑥 (ℝ)
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+ ‖𝜑1(𝑡) − 𝜑2(𝑡)‖𝐿 𝜇3𝑥 (ℝ)
( sup𝜌∈[0,1]

{
‖𝐷𝑠(𝐺(𝑤(𝑡)))‖𝐿𝑟𝑥(ℝ)})

≲ (
‖𝜑1(𝑡)‖𝑝𝐻𝑠,𝑟𝑥 (ℝ) + ‖𝜑2(𝑡)‖𝑝𝐻𝑠,𝑟𝑥 (ℝ))‖𝜑1(𝑡) − 𝜑2(𝑡)‖𝐻𝑠,𝑟𝑥 (ℝ)

with the last step thanks to the embedding (128). ■
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