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Abstract

The question of whether features and behaviors that are characteristic to completely integrable sys-
tems persist in the transition to non-integrable settings is a central one in the field of nonlinear dispersive 
equations. In this work, we investigate this topic in the context of focusing nonlinear Schrödinger (NLS) 
equations. In particular, we consider non-integrable counterparts of the (integrable) focusing cubic NLS 
equation, which are distinct generalizations of cubic NLS and involve a broad class of nonlinearities, with 
the cases of power and saturable nonlinearities serving as illustrative examples. This is a notably different 
direction from the one explored in other works, where the non-integrable models considered are only small 
perturbations of the integrable one. We study the Cauchy problem on the real line for both vanishing and 
non-vanishing boundary conditions at infinity and quantify the proximity of solutions between the integrable 
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and non-integrable models via estimates in appropriate metrics as well as pointwise. These results establish 
that the distance of solutions grows at most linearly with respect to time, while the growth rate of each solu-
tion is chiefly controlled by the size of the initial data and the nonlinearity parameters. A major implication 
of these closeness estimates is that integrable dynamics emerging from small initial conditions may persist 
in the non-integrable setting for significantly long times. In the case of zero boundary conditions at infinity, 
this persistence includes soliton and soliton collision dynamics, while in the case of nonzero boundary con-
ditions at infinity, it establishes the nonlinear behavior of the non-integrable models at the early stages of the 
ubiquitous phenomenon of modulational instability. For this latter and more challenging type of boundary 
conditions, the closeness estimates are proved with the aid of new results concerning the local existence 
of solutions to the non-integrable models. In addition to the infinite line, we also consider the cubic NLS 
equation and its non-integrable generalizations in the context of initial-boundary value problems on a finite 
interval. Apart from their own independent interest and features such as global existence of solutions (which 
does not occur in the infinite domain setting), such problems are naturally used to numerically simulate the 
Cauchy problem on the real line, thereby justifying the excellent agreement between the numerical findings 
and the theoretical results of this work.
© 2024 The Author(s). Published by Elsevier Inc. This is an open access article under the CC BY license 
(http://creativecommons .org /licenses /by /4 .0/).
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1. Introduction and main results

One of the most important notions concerning dynamical systems is that of structural stability, 
e.g. see [53], Section 3.7. Consider as an example the Cauchy (initial value) problem for the 
following semilinear evolution equation

ut + L(u) + N (u) = 0,

u(x,0) = u0(x),
(1.1)

along with its perturbed counterpart

ut + L(u) + N (u) + f (u, x, t) = 0,

u(x,0) = u0(x) + p0(x).
(1.2)

Here, u = u(x, t), L is a linear differential operator and N represents the nonlinearity. Further-
more, the perturbative term in (1.2) may represent external forces, dissipation terms or other 
effects, while p0(x) is a perturbation of the initial condition u0(x) of (1.1).

The solutions of (1.1) are defined in a suitable phase space X . In the context of the structural 
stability theory for (1.1), the perturbations f (u, x, t) and p0(x) are small when measured in some 
suitable norms relevant to X . Then, the main question is whether the solution of the perturbed 
system (1.2) deviates too far from the solution of the original system (1.1) or not. As underlined 
in [53], if the evolution equation (1.1) “is very unstable, then one could doubt on its ability to 
accurately simulate (either numerically or theoretically) a real-life system”. On the other hand, 
it is also emphasized in [53] that “any equation with a good well-posedness theory is also likely 
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to have a good stability theory, by modifying the arguments used to prove well-posedness suit-
ably”. In particular, stability results for (1.1) generalize the property of continuous dependence
of the solution on the initial data (one of the three components of Hadamard well-posedness, the 
other two being existence and uniqueness), which can be obtained as a reduction of such general 
results in the special case of (1.2) with f = 0. Similarly, the uniqueness theory of (1.1) can be 
approached through the special case f = p0 = 0.

The above statements on stability theory emphasize the importance of this direction of study 
and motivate us to examine, in the present paper, a modified notion of stability for an evolution 
equation of the form (1.1) in the framework of Hamiltonian nonlinear Schrödinger equations in 
one spatial dimension. The role of the semilinear equation in (1.1) is assigned to the focusing 
cubic NLS equation

iut + νuxx + µ|u|2u = 0, ν,µ > 0, (1.3)

which is one of the fundamental integrable nonlinear dispersive partial differential equations 
with numerous applications in a broad range of areas within mathematical physics. Furthermore, 
instead of considering a “forced” counterpart of (1.3) as in (1.2), we consider focusing non-
integrable counterparts of (1.3) of the general form

iUt + ν Uxx + γF(|U |2)U = 0, ν,γ > 0, (1.4)

where F : R →R is a sufficiently smooth function satisfying standard conditions that are speci-
fied later. Therefore, instead of small perturbations of (1.3), our investigation in the framework of 
stability is of different nature, as our primary goal is to compare systems of the same class (1.1)
but with different nonlinearities: namely, the integrable NLS (1.3) with nonlinearity NI (u) =
µ|u|2u against its non-integrable counterparts (1.4) with nonlinearities NNI(U) = γF(|U |2)U .

Actually, this stability analysis is directly relevant to the proximity between the solutions 
of the completely integrable NLS equation (1.3) and its non-integrable counterparts (1.4). In 
particular, it sheds light on the potential persistence of integrable dynamics, as these are defined 
by the solutions and dynamical behavior of the integrable NLS equation (1.3), in the setting 
of the general family of non-integrable NLS equations (1.4). Studies of this generic question 
in the context of nonlinear lattices (discrete NLS and Ginzburg-Landau equations) are given 
in [35,37,36]. Nevertheless, the investigation of this question in the context of the NLS partial 
differential equations is a considerably more intricate task due to the following reasons:

(1) Differences between the well-posedness of the integrable and the non-integrable NLS equa-
tions. The cubic NLS equation (1.3) is globally well-posed in all cases of significant bound-
ary conditions. This is not generally the case for the non-integrable equations (1.4), for which 
global existence of solutions in time can be assured under smallness conditions for the ini-
tial data in suitable norms. Therefore, the investigation of stability may be carried out under 
either (i) the assumption of a restricted class of small initial data, in order to ensure global 
existence in time for the non-integrable model, or (ii) the restriction to finite times dictated 
by the maximal interval of existence of the non-integrable model.

(2) Different boundary conditions are associated with different dynamics. The integrable NLS 
equation (1.3) exhibits a rich class of analytical solutions depending on the boundary condi-
tions with which it is supplemented. The question of persistence of these analytical solutions 
in the dynamics of the non-integrable NLS instigates a variety of further studies in terms 
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of potential proximity or deviation of solutions of the integrable and non-integrable NLS, 
respectively.

On account of the above considerations, the main result of this work is quite general and can 
be stated as follows.

Theorem 1.1. Consider the integrable NLS equation (1.3) and the family of its non-integrable 
counterparts (1.4), where the nonlinearity function F satisfies the standard conditions

|F(x) − F(y)| ≤ K(|x|p−1 + |y|p−1)|x − y|, F (0) = 0, |F ′(x)| ≤ K|x|p−1, (1.5)

for some p ≥ 1, a constant K > 0 and any x, y ≥ 0. Let [0, Tmax) define a common maximal in-
terval of existence for the solutions u(x, t) and U(x, t) to (1.3) and (1.4), respectively, associated 
with initial data u0(x) and U0(x) in a suitable Banach space X governed by the supplemented 
boundary conditions for both equations. Furthermore, for each given 0 < ε < 1, assume that the 
distance in X between these initial data is of order O(ε3) while the individual norms of these 
data in X are of order O(ε), i.e.

∥u0 − U0∥X ≤ Cε3, (1.6)

∥u0∥X ≤ Cε, ∥U0∥X ≤ Cε, (1.7)

for some generic constant C > 0. Then, for arbitrary finite 0 < Tf < Tmax, there exists a con-
stant Ĉ = Ĉ(γ , µ, ν, C, Tf ) such that the corresponding solutions u(x, t) and U(x, t) satisfy the 
estimate

sup
t∈[0,Tf ]

∥u(t) − U(t)∥X ≤ Ĉε3. (1.8)

That is, under the assumptions (1.6) and (1.7), the distance between the solutions u(t) and U(t)

measured in X is of order O(ε3) for all t ∈ [0, Tf ].

In view of the condition (1.6), the distance inequality (1.8) provides a generalization of the 
notion of continuous dependence of solutions on the initial data for the equations (1.3) and (1.4), 
at least for small initial data in the sense of the condition (1.7).

It should be noted that the class of nonlinearities satisfying the standard conditions (1.5) is 
quite broad and includes, among others, the following important cases that correspond to non-
integrable NLS models:

(i) The general power nonlinearity F(x) = xp , p ≥ 1, which gives rise to the semilinear 
Schrödinger equation

iUt + νUxx + γ |U |2pU = 0. (1.9)

Indeed, by the Mean Value Theorem, xp − yp = pcp−1(x − y) for some c ∈ (x, y), thus for 
any p ≥ 1 and x, y ∈R we have |xp − yp| = p|c|p−1|x − y| ≤ p

(
|x|p−1 + |y|p−1) |x − y|

and the conditions (1.5) are satisfied with K = p.
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(ii) The rational nonlinearity F(x) = x

κ(1 + x)
, κ > 0, which corresponds to what is known as 

the saturable NLS equation (e.g. see [25,17,43])

iUt + νUxx + γ |U |2U
1 + κ|U |2 = 0. (1.10)

In this case, for any x, y ≥ 0 we have 
∣∣F ′(x)

∣∣ = 1
κ(1+x)2 ≤ 1

κ and |F(x) − F(y)| =
|x−y|

|κ|(1+x)(1+y) ≤ 1
κ |x − y|, thus the conditions (1.5) are satisfied with p = 1 and K = 1

κ . 
Note that the invertible transformation Ũ(x, t) = √

κ e−i%t U(x, t) turns equation (1.10)
into the alternative form

iŨt + νŨxx − %Ũ

1 +
∣∣Ũ

∣∣2 = 0, % = γ

κ
. (1.11)

Concerning the plethora of analytical solutions to the integrable NLS equation (1.3), such as 
solitons, multi-soliton solutions, bound states, rational solutions and others [1,47,60], an impor-
tant implication of the stability result of Theorem 1.1 is that small-amplitude localized analytical 
solutions of the integrable equation (1.3) persist, in the sense of the distance inequality (1.8), 
in the non-integrable setting of equation (1.4). More precisely, the non-integrable equation (1.4)
admits small-amplitude solutions of O(ε) that stay O(ε3) close to the well-known analytical so-
lutions of the integrable equation (1.3) for any t ∈ [0, Tf ] (note that one can impose the same 
initial condition u(x, 0) = U(x, 0) on both equations). This claim is further justified by the fact 
that, as it turns out, estimate (1.8) is also valid pointwise since it holds in L∞.

A case of specific interest is the one of Tmax = ∞. In this regard, we recall that, in the 
focusing case µ, ν, γ > 0 with zero boundary conditions at infinity, global existence for the 
non-integrable model (1.4) is guaranteed, in general, only for small initial data. Hence, the con-
ditions (1.7) become particularly relevant. Such conditions ensure, for example, the persistence 
of small-amplitude bright solitons of the integrable NLS equation (1.3) in the non-integrable set-
ting of equation (1.4) for time intervals that can be significantly long, as well as for even more 
complicated dynamics like bright soliton collisions. Such long time persistence is illustrated by 
numerical experiments at the end of Section 2.

Another application of Theorem 1.1 concerns the robustness of the persistence of analytical 
solutions under perturbations in the following sense: solutions that are stable in one system re-
main stable in the other system as long as they persist in its dynamics. This property can be 
proved via a transitivity argument combining the proximity estimates of Theorem 1.1 and orbital 
stability results for the considered solutions. The discussion leading to Corollary 2.1 below con-
cerns standing waves. For the stability of standing waves, solitons and multi-soliton solutions, 
we refer the reader to the fundamental results in [15,30,31,45,46,39,57].

Importantly, the applicability of Theorem 1.1 extends beyond the framework of zero bound-
ary conditions at infinity, as the analysis carried out in this work also concerns a broad class 
of nonzero boundary conditions at infinity in the general form of vanishing profiles on top of a 
finite nonzero background of constant amplitude. Boundary conditions of this type are of partic-
ular physical relevance. Indeed, in focusing media, nonzero boundary conditions at infinity are 
associated with the emergence of fascinating dynamics related to the well-known phenomenon 
of modulational instability. This effect, which is also known as Benjamin-Feir instability [5], 
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refers to the instability of a constant background to long wavelength perturbations and is ubiqui-
tous across nonlinear science; e.g. see the review article [61], as well as the more recent works 
[40,51,52] that link modulational instability to the formation of rogue waves in optical media and 
the open sea.

In the case of the integrable focusing cubic NLS equation (1.3), the nonlinear stage of mod-
ulational instability induced by the nonzero boundary conditions specified above, was studied in 
a series of recent works [10,11,7,8] via the inverse scattering transform and the nonlinear steep-
est descent method of [18]. In these works, it was rigorously shown that the solution remains 
bounded at all times, as one would naturally expect due to the complete integrability of the 
equation (1.3). Nevertheless, in the case of the general non-integrable NLS model (1.4) such in-
tegrability techniques are no longer available. In fact, in terms of global existence and regularity 
of solutions to the non-integrable equation (1.4), the corresponding results for nonzero boundary 
conditions at infinity are markedly different, e.g. see [12] as well as [13,53]. These observations 
motivated the study [9], which suggests the existence of a universal behavior in modulationally 
unstable media. In fact, by considering several non-integrable models that belong to the general 
NLS family (1.4), evidence is provided that they exhibit the same behavior as the one of the 
integrable NLS equation (1.3) established in [10,11,7,8].

The stability result of Theorem 1.1 proved in this work rigorously establishes the persistence 
of the nonlinear behavior that was conjectured in [9], at least at its early stages. For later times, 
the proximity between the dynamics depends on the type of the nonlinearity present in the non-
integrable model, as illustrated by the numerical simulations provided at the end of Section 4. 
This fact is highlighted by the example of a saturable nonlinearity, where the dynamics exhibits 
a remarkable proximity to the one of the integrable model (as in the case of zero boundary 
conditions). Furthermore, the numerical simulations illustrate that the smallness condition (1.7)
for the initial data is by no means restrictive. In particular, they demonstrate that the modulational 
instability dynamics emerges from initial data that do satisfy the smallness condition in the non-
integrable case.

We emphasize that the numerical findings of Section 4 are predicted by our theoretical results, 
since Theorem 1.1 is also proved when the NLS equations (1.3) and (1.4) are considered on a fi-
nite interval and supplemented with (zero or nonzero) Dirichlet or periodic boundary conditions. 
Problems of this type fall under the class of initial-boundary value problems, in which the spatial 
domain involves an actual boundary (as opposed to extending to infinity in all directions). Such 
problems are significant in their own right and have been studied extensively in the literature 
(e.g. see [20,21] and the references therein). However, they are also directly relevant to numeri-
cal studies related to the Cauchy problem, since such studies are performed by approximating the 
infinite domain by a sufficiently large finite domain, supplemented with appropriate Dirichlet or 
periodic boundary conditions. (Some additional theoretical implications related to the question 
of proximity of solutions in the case of approximation by a finite domain are discussed at the end 
of this introductory section.) Indeed, the numerical results of Section 4 are in excellent agree-
ment with the analytical estimate (1.8). For instance, both for Dirichlet and for periodic boundary 
conditions, the analytical arguments establish that the growth of the distance ∥u(t) − U(t)∥X is 
at most linear for any t ∈ (0, Tmax), since

∥u(t) − U(t)∥X ≤ Ctε3 (1.12)

with C depending only on the nonlinearity parameters γ , µ but not on t (actually, the constant Ĉ
in (1.8) is given by Ĉ = CTf ). We emphasize that the proof provides explicit expressions for the 
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dependence of the constant C on the various parameters, suggesting that these expressions can 
be adjusted to decrease the linear growth rate as desired. Regarding the importance of estimate 
(1.12), we also remark that, in a similar context, the time-growth estimates for the relevant dis-
tance function between the solutions of the complex Ginzburg-Landau and the NLS equations, 
when the inviscid limit of the former is considered [59], can even be exponential in time [50].

To the best of our knowledge, among the vast volume of works on NLS-type equations, the 
one most relevant to the present paper is [19]. However, the results of [19] concern the defocusing
(as opposed to focusing) NLS equation

ivt + vxx − 2|v|2v = 0 (1.13)

supplemented with zero boundary conditions. More precisely, in [19] the authors consider non-
integrable perturbations of (1.13) in the form

iVt + Vxx − 2|V |2V − ϵ|V |pV = 0, p > 2, ϵ > 0, (1.14)

which correspond to µ = 1, ν = −2 in (1.3) and preserve the defocusing nature of (1.13). The 
main result of [19] can be outlined as follows: for sufficiently smooth initial data that decay at an 
appropriate rate (described by a suitably defined weighted Sobolev space) and small ϵ > 0, the 
solutions of (1.14) approach those of (1.13) as t → ∞ in the sense of the estimate

∥v(t) − V (t)∥L∞(R) = O
(

1

t
1
2 +κ

)
, κ > 0. (1.15)

This result is proved by combining the inverse scattering transform method (and, in particular, 
by studying the behavior of the reflection coefficient that emerges in the integrable case (1.13)) 
with detailed estimates in appropriate Sobolev norms derived for the perturbed (non-integrable) 
model (1.14).

The model (1.14) considered in [19] falls under the general perturbative framework (1.2). 
On the other hand, as noted earlier, the results presented herein are of different nature, since 
now the integrable model (1.3) is compared against its distinct non-integrable counterparts (1.4)
which, unlike (1.14), cannot be treated as weak perturbations. Another major difference between 
[19] and the present work stems from the fact that, for zero boundary conditions, while the 
solutions of the defocusing models (1.13) and (1.14) are known to exist globally in time for all 
initial data and to decay for a certain range of nonlinearity exponents [32] even in higher than 
one spatial dimensions [33,34], the solutions of the non-integrable focusing NLS equation (1.4)
are globally defined only for small initial data (see Theorem 2.1 below). Thus, our proximity 
estimates between the solutions of two essentially different systems, namely (1.3) and (1.4), 
concern in general finite time intervals in the spirit of the continuous dependence of solutions on 
the associated small initial data, and do not explore the long-time asymptotic behavior considered 
in [19]. In addition, here we also consider the important case of nonzero boundary conditions at 
infinity, which was not investigated in [19].

For the proof of Theorem 1.1, we employ the Fourier transform for the evolution equation 
satisfied by the difference of solutions '(t) = u(t) − U(t). We also remark on an alternative 
approach through energy estimates and interpolation inequalities. This second approach is appli-
cable in all the cases of boundary conditions, albeit with distinct implications for each specific 
case. For the case of zero boundary conditions, we take advantage of the global existence results 
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for the non-integrable NLS equation in the case of small initial data and also of the regularity of 
solutions when this data belong to a suitable class.

The case of nonzero boundary conditions at infinity turns out to be more challenging since, 
even for small initial data, it is not known in general whether the non-integrable focusing NLS 
equation is globally well-posed [3,49]. Indeed, global existence is only guaranteed in the defo-
cusing case [24,26,29,28]. On the real line, we prove local existence in H 1(R) and then use a 
continuity argument for small data in the sense of (1.7) in order to establish a closeness esti-
mate between the solutions of the integrable and non-integrable systems, at least for a short time 
period.

Furthermore, motivated by the numerical results of [9], which indicate the universality of the 
modulational instability dynamics beyond the integrability barrier, we analytically study the finite 
interval problem for equations (1.3) and (1.4) supplemented with the relevant nonzero Dirichlet 
boundary conditions. This finite domain problem is different from the problem on the real line 
in that, although both problems possess a conservation law for the L2 norm that involves the 
amplitude q0 of the wave background, global existence at the L2 level can be deduced from that 
law only in the case of the finite domain. Hence, up to the critical nonlinearity p = 2, we prove 
(see Theorem 4.1 below) that the solutions to the non-integrable NLS equation (1.4) on the finite 
interval (−L, L) exist globally in time for appropriate smallness conditions on L and the initial 
data (in the subcritical case 1 ≤ p < 2, the latter condition is not necessary). It should be noted 
that the upper bound on L tends to infinity as the amplitude q0 of the nonzero background tends 
to zero, i.e. when the problem approaches the one with zero boundary conditions. Moreover, the 
proximity estimates of Theorem 1.1 under the conditions (1.6) and for q0 = O(ε) are valid for 
L = O (1/ε). Therefore, the accuracy of the closeness estimate between the solutions of the in-
tegrable and non-integrable NLS equations improves when the relevant norms are evaluated over 
the interval (−1/ε, 1/ε) around the core of the respective modulational instability pattern. This 
fact is further discussed in Section 4, where it is also illustrated numerically by the simulations 
of Figs. 4.3 and 4.5.

Finally, we comment on the case of periodic boundary conditions, which can also be used for 
approximating the problem on the real line supplemented with zero or nonzero boundary con-
ditions. The proofs in the periodic case are similar to the ones in the finite interval case. Note, 
in particular, that the assumptions for global existence of solutions to the non-integrable model 
are also similar, as the main conservation laws for the energy and power are the standard ones. 
Regarding numerical simulations, however, if the periodic problem is used in order to approxi-
mate the infinite line problem with nonzero boundary conditions by taking the parameter L to be 
large, then a complication arises: the periodic boundary conditions define problems with finite 
energies in Sobolev spaces of periodic functions [4], which is not the case for the problem on 
the real line. Thus, finite domain approximations may not capture essential effects and impli-
cations associated with the infinite domain problem. This issue is especially highlighted by the 
results of the present paper through the contrast between the local existence for the problem on 
the real line and the global existence for the finite domain approximation with nonzero Dirichlet 
boundary conditions.

Structure of the paper. In Section 2, we prove Theorem 1.1 in the case of vanishing boundary 
conditions, namely we establish Theorem 2.2. In addition, we present numerical studies for the 
concrete examples of bright solitons and soliton collisions. In Section 3, we establish the version 
of Theorem 1.1 associated with the case of non-vanishing boundary conditions emerging from a 
constant nonzero background, namely Theorem 3.2. A key result, which is used for the derivation 
of the proximity estimates, is the proof of Theorem 3.1 for the local existence of solutions to the 
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non-integrable NLS models in the class C([0, T ]; H 1(R)). In Section 4, we turn our attention to 
the case of a finite domain. First, we prove the version of Theorem 1.1 for the problem on a finite 
interval with nonzero Dirichlet boundary conditions, namely Theorem 4.2, then we establish the 
corresponding result (Theorem 4.3) for periodic boundary conditions, and finally we conclude 
with a numerical study simulating the problem with nonzero boundary conditions for a variety 
of localized initial data on the top of a finite background.

2. Zero boundary conditions at infinity

In this section, we establish the version of Theorem 1.1 that corresponds to the scenario in 
which both the integrable NLS equation (1.3) and its non-integrable counterpart (1.4) satisfy 
zero boundary conditions at infinity, namely

lim
|x|→∞

u(x, t) = lim
|x|→∞

U(x, t) = 0, t ≥ 0. (2.1)

We begin by recalling the following well-known global existence and regularity results for the 
general non-integrable NLS equation (1.4).

Theorem 2.1 (Existing results on well-posedness). Consider the Cauchy problem on the line for 
the non-integrable NLS equation (1.4) with zero conditions at infinity.

(i) If 1 ≤ p < 2, then for any initial datum U0 ∈ H 1(R) there exists a global in time solution 
U(x, t) which is uniformly bounded in H 1(R), i.e. there is a constant M > 0 independent 
of t such that

sup
t≥0

∥U(t)∥H 1(R) ≤ M ∥U0∥H 1(R) . (2.2)

Furthermore, if U0 ∈ Hm(R) with m > 1 then the solution exists globally in Hm(R) and is 
uniformly bounded in Hm(R).

(ii) If p ≥ 2, then there exists a constant δ > 0 such that if ∥U0∥H 1(R) ≤ δ then the solution 
U(x, t) exists globally in time and is uniformly bounded in H 1(R), satisfying the esti-
mate (2.2) for some constant M > 0. Furthermore, for initial data U0 ∈ Hm(R) with m > 1
the solution possesses the same regularity as in case (i).

For the proofs of the results stated in Theorem 2.1, we refer the reader to the monographs 
[12,13,53]. Specifically for the further regularity properties of solutions, we also refer to [32,33]. 
We now proceed to the main result of this section, which provides the counterpart of Theorem 1.1
in the case of zero boundary conditions at infinity.

Theorem 2.2 (Theorem 1.1 for zero boundary conditions at infinity). Let p ≥ 1 and suppose that 
the integrable and non-integrable focusing NLS equations (1.3) and (1.4) are supplemented with 
the initial conditions u(x, 0) = u0(x) and U(x, 0) = U0(x), respectively.

(i) L2 closeness: Given 0 < ε < 1, suppose that the initial data satisfy

∥u0 − U0∥L2(R) ≤ Cε3, (2.3)
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∥u0∥H 1(R) ≤ c0 ε, ∥U0∥H 1(R) ≤ C0 ε, (2.4)

for some constants c0, C0, C > 0. Then, for arbitrary finite time 0 < Tf < ∞, there exists 
a constant C̃ = C̃(µ, γ , c0, C0, C, Tf ) such that the corresponding solutions u(x, t) and 
U(x, t) satisfy the estimate

sup
t∈[0,Tf ]

∥u(t) − U(t)∥L2(R) ≤ C̃ε3. (2.5)

(ii) H 1 and L∞ closeness: If the initial data u0, U0 satisfy (2.4) along with the stronger condi-
tion (in place of (2.3))

∥u0 − U0∥H 1(R) ≤ C1ε
3 (2.6)

for some constant C1 > 0, then there exists a constant C̃1 depending on C1 and with a 
similar dependency on Tf and µ, γ , c0, C0 as the constant C̃ in (2.5) such that

sup
t∈[0,Tf ]

∥u(t) − U(t)∥H 1(R) ≤ C̃1ε
3. (2.7)

Consequently, there exists a constant C̃2 with similar dependencies as C̃1 such that

sup
t∈[0,Tf ]

∥u(t) − U(t)∥L∞(R) ≤ C̃2ε
3. (2.8)

Proof. The L∞ estimate (2.8) is a direct consequence of the H 1 estimate (2.7) via the Sobolev 
embedding theorem. The L2 estimate (2.5) and the H 1 estimate (2.7) are proved in a similar way, 
by forming the equation

i't + ν'xx = −µ|u|2u + γF(|U |2)U =: N(x, t) (2.9)

satisfied by the difference

'(x, t) := u(x, t) − U(x, t) (2.10)

of solutions to the integrable and non-integrable NLS equations (1.3) and (1.4), and employing 
the Fourier transform pair given for any f ∈ L2(R) by

f̂ (ξ) =
∫

R

e−iξxf (x)dx, ξ ∈R,

f (x) = 1
2π

∫

R

eiξxf̂ (ξ)dξ, x ∈ R.

(2.11)
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In particular, taking the Fourier transform of equation (2.9) and integrating in t , we obtain

'̂(ξ, t) = e−iξ2t'̂(ξ,0) − i

t∫

0

e−iξ2(t−τ )N̂(ξ, τ )dτ. (2.12)

Starting from this expression and employing successively Plancherel’s theorem, Minkowski’s 
integral inequality, and the fact that e−iξ2t is unitary, we find

∥'(t)∥L2(R) ≤ 1√
2π

∥∥e−iξ2t'̂(ξ,0)
∥∥

L2(R)
+ 1√

2π

t∫

0

∥∥e−iξ2(t−τ )N̂(ξ, τ )
∥∥

L2(R)
dτ

= ∥'(0)∥L2(R) +
t∫

0

∥N(τ )∥L2(R) dτ.

(2.13)

Hence, we need to estimate the L2 norm of the nonlinearity N . By the inequality |a + b|2 ≤
2|a|2 + 2|b|2 and the first of the assumptions (1.5), we have

∥N(t)∥2
L2(R)

≤ 2µ2
∫

R

|u(x, t)|6 dx + 2γ 2
∫

R

∣∣∣F(|U(x, t)|2)
∣∣∣
2
|U(x, t)|2 dx

≤ 2µ2 ∥u(t)∥6
L6(R)

+ 2γ 2K2 ∥U(t)∥2(2p+1)

L2(2p+1)(R)
. (2.14)

Thus, invoking the Sobolev embedding (see Theorem 4.12, last part of Case A on page 85 of [2])

H 1(R) ⊂ Lq(R) ⇒ ∥f ∥Lq(R) ≤ c ∥f ∥H 1(R) , 2 ≤ q ≤ ∞, (2.15)

for q = 6 and also q = 2(2p + 1), we obtain

∥N(t)∥2
L2(R)

≤ 2µ2 ∥u(t)∥6
H 1(R)

+ 2γ 2K2 ∥U(t)∥2(2p+1)

H 1(R)
. (2.16)

In turn, since 
√

a + b ≤ √
a +

√
b, we have

t∫

0

∥N(τ )∥L2(R) dτ ≤
√

2µ

t∫

0

∥u(τ )∥3
H 1(R)

dτ +
√

2γK

t∫

0

∥U(τ )∥2p+1
H 1(R)

dτ

≤ A sup
τ∈[0,t]

(
∥u(τ )∥3

H 1(R)
+ ∥U(τ )∥2p+1

H 1(R)

)
t (2.17)

where A =
√

2 max{µ, γK}. In view of the estimate (2.17), inequality (2.13) yields

∥'(t)∥L2(R) ≤ ∥'(0)∥L2(R) + A sup
τ∈[0,t]

(
∥u(τ )∥3

H 1(R)
+ ∥U(τ )∥2p+1

H 1(R)

)
t (2.18)
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which along with the solution bound (2.2) and the conditions (2.4) and (2.3) gives rise to the 
desired estimate (2.5) with constant C̃ = C + A 

(
c3

0 + C
2p+1
0

)
Tf .

We proceed to the proof of the H 1 estimate (2.7). Expression (2.12) combined with the in-
equality |a + b|2 ≤ 2|a|2 + 2|b|2 yields

∥'(t)∥2
H 1(R)

≤ 2
∫

R

(
1 + ξ2

) ∣∣e−iξ2t'̂(ξ,0)
∣∣2

dξ

+ 2
∫

R

(
1 + ξ2

)
∣∣∣∣∣∣

t∫

0

e−iξ2(t−τ )N̂(ξ, τ )dτ

∣∣∣∣∣∣

2

dξ

so using Minkowski’s integral inequality in the second integral we find

∥'(t)∥2
H 1(R)

≤ 2
∫

R

(
1 + ξ2

) ∣∣'̂(ξ,0)
∣∣2

dξ

+ 2

⎛

⎝
t∫

0

(∫

R

(
1 + ξ2

) ∣∣N̂(ξ, τ )
∣∣2

dξ

) 1
2

dτ

⎞

⎠
2

= 2∥'(0)∥2
H 1(R)

+ 2

⎛

⎝
t∫

0

∥N(τ )∥H 1(R) dτ

⎞

⎠
2

. (2.19)

Note that ∥N∥H 1(R) = ∥N∥L2(R) + ∥∂xN∥L2(R). The L2 norm of N has already been estimated 
by (2.17). Differentiating the right-hand side of (2.9), we have

∥∂xN(t)∥2
L2(R)

≤ 2µ2
∫

R

∣∣∣2|u|2ux + u2ūx

∣∣∣
2
dx

+ 2γ 2
∫

R

∣∣∣F ′(|U |2)|U |2Ux + F ′(|U |2)U2Ūx + F(|U |2)Ux

∣∣∣
2
dx

≤ 18µ2
∫

R

|u|4|ux |2dx + 4γ 2
∫

R

(
4
∣∣F ′(|U |2)

∣∣2|U |4|Ux |2 +
∣∣F(|U |2)

∣∣2|Ux |2
)

dx.

Then, due to the first and third assumption in (1.5),

∥∂xN(t)∥2
L2(R)

≤ 18µ2
∫

R

|u|4|ux |2dx + 20γ 2K2
∫

R

|U |4p|Ux |2dx

≤ 18µ2 ∥u(t)∥4
L∞(R) ∥ux(t)∥2

L2(R)
+ 20γ 2K2 ∥U(t)∥4p

L∞(R)
∥Ux(t)∥2

L2(R)
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and so, by the Sobolev embedding theorem,

∥∂xN(t)∥2
L2(R)

≤ 18µ2 ∥u(t)∥6
H 1(R)

+ 20γ 2K2 ∥U(t)∥2(2p+1)

H 1(R)
. (2.20)

In turn, since 
√

a + b ≤ √
a +

√
b, we obtain

t∫

0

∥∂xN(τ )∥L2(R) dτ ≤ A′ sup
τ∈[0,t]

(
∥u(τ )∥3

H 1(R)
+ ∥U(τ )∥2p+1

H 1(R)

)
t (2.21)

with A′ = max
{

3
√

2µ,2
√

5γK
}

. Overall, estimates (2.17) and (2.21) combined with inequality 
(2.19) imply (note that A ≤ A′)

∥'(t)∥H 1(R) ≤
√

2∥'(0)∥H 1(R) +
√

2A′ sup
τ∈[0,t]

(
∥u(τ )∥3

H 1(R)
+ ∥U(τ )∥2p+1

H 1(R)

)
t. (2.22)

Hence, thanks to the solution estimate (2.2) and the assumptions (2.4) and (2.6) on the initial 
data and their H 1 distance, we infer

∥'(t)∥H 1(R) ≤
√

2C1ε
3 +

√
2A′

(
M3 ∥u0∥3

H 1(R)
+ M

2p+1
1 ∥U0∥2p+1

H 1(R)

)
t

≤
√

2C1ε
3 +

√
2A′

(
M3c3

0ε
3 + M

2p+1
1 C

2p+1
0 ε2p+1

)
t.

(2.23)

Then, noting that ε2p+1 ≤ ε3 as ε < 1 and 2p + 1 ≥ 3 (recall that p ≥ 1), we arrive at the H 1

estimate (2.7) with constant C̃1 =
√

2C1 +
√

2A′ max
{
M3C3

µ,0, M
2p+1
1 C

2p+1
γ ,0

}
Tf .

The proof of Theorem 2.2 is complete. !

Remarks on Theorem 2.2.
Persistence of the analytical localized solutions of the integrable NLS in the non-integrable 
setting. An important implication of Theorem 2.2 is that it rigorously justifies that (at least) 
small-amplitude localized structures satisfying the integrable NLS equation along with the zero 
boundary conditions (2.1) may persist in the non-integrable setting of equation (1.4) for signifi-
cant times. In particular, the non-integrable NLS equation (1.4) admits small-amplitude solutions 
of O(ε) that remain O(ε3) close to the analytical solutions of the integrable NLS (1.3) in the H 1

and L∞ norms. In this regard, in the case where u0 ≡ U0 (i.e. C = 0 in (2.3)), the analytical 
estimates of Theorem 2.2 simplify to show that the distance of solutions grows at most linearly 
for any t ∈ (0, ∞), since

∥'(t)∥X ≤ Mε3t, X = H 1(R) or L∞(R), (2.24)

where M is one of the constants C̃1, ̃C2. For example, for times t ∼ O
(
1/ε2) the distance func-

tion ∥'(t)∥X ∼ O(ε).
The time growth of the bound for the distance function in estimate (2.24) can be juxtaposed 

against the time growth in the corresponding estimates for the distance function between the 
solutions of the complex Ginzburg-Landau and the NLS equations when the inviscid limit of the 
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former is considered [59]. These latter estimates can grow at an even exponential rate [50], which 
has to be distinguished from the linear growth result of (2.24) proved here.

Alternative proof of Theorem 2.2 via energy estimates and interpolation. An alternative proof of 
Theorem 2.2 can be provided through an energy argument combined with interpolation estimates 
by using the one-dimensional Gagliardo-Nirenberg inequality and the regularity of the initial 
data. This method, however, results in weaker stability estimates under stronger conditions on 
the initial data.

Indeed, via the energy method, (2.9) yields the differential inequality

d

dt
∥'(t)∥L2(R) ≤ M2

(
∥u0∥3

H 1(R)
+ ∥U0∥2p+1

H 1(R)

)
(2.25)

for some constant M2 = M2(M, M1, c, γ , µ). Integrating (2.25) for any t in the arbitrary interval 
[0, Tf ] and using the assumptions (2.4) and (2.3) on the initial data and their L2 distance along 
with the fact that 0 < ε < 1, we obtain estimate (2.5) with constant C̃ = C+M2

(
c3

0 +C
2p+1
0

)
Tf . 

Moreover, the H 1 estimate for ' can be derived via interpolation by using the Gagliardo-
Nirenberg inequality (e.g. see Theorem 1.3.4 in [14]), namely

∥∥∂j f
∥∥

Lp(R)
≤ CGN ∥f ∥1−θ

Lq(R)

∥∥∂mf
∥∥θ

Lr(R)
, j,m ∈N, 0 ≤ j < m,

j

m
≤ θ ≤ 1, (2.26)

where 1 ≤ q, r ≤ ∞, p is given by 1
p = j + θ

( 1
r − m

)
+ 1−θ

q , and CGN = CGN(q, r, j, m, θ). 
However, this step requires sufficient regularity of the initial data. In particular, assume that 
u0, U0 ∈ Hm(R) with m > 1. Then, according to the global existence results of Theorem 2.1, the 
solutions of the integrable and non-integrable NLS equations (1.3) and (1.4) satisfy uniform in 
time estimates,

sup
t≥0

∥u(t)∥Hm(R) ≤ R, sup
t≥0

∥U(t)∥Hm(R) ≤ R,

for some general constant R which depends only on the norm of the initial data u0 and U0 but 
is independent of t ≥ 0. Hence, by the triangle inequality, the distance ' also admits such a 
uniform bound as

sup
t≥0

∥'(t)∥Hm(R) ≤ sup
t≥0

∥u(t)∥Hm(R) + sup
t≥0

∥U(t)∥Hm(R) ≤ 2R. (2.27)

Employing the Gagliardo-Nirenberg inequality (2.26) for f = ', j = 1, p = q = r = 2 and any 
m > 1 (these choices imply θ = 1

m ), we have

∥∂x'(t)∥L2(R) ≤ CGN ∥'(t)∥
m−1
m

L2(R)
∥'(t)∥

1
m

Hm(R)
, t ≥ 0. (2.28)

The right-hand side of (2.28) can be estimated via the L2 closeness estimate (2.5) and the uniform 
bound (2.27). In particular, there exists a constant c2 = c2(CGN, ̃C, R, m) such that

∥∂x'(t)∥L2(R) ≤ c2ε
σ t

m−1
m , σ = 3(m − 1)

m
, t ≥ 0. (2.29)
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Observe that, although the time growth rate m−1
m is sublinear (as opposed to the linear growth of 

the bounds in Theorem 2.2), the proximity exponent σ is smaller as it belongs to (0, 3). In the 
limit of infinitely smooth initial data m → ∞, which is a much stronger assumption than the one 
of Theorem 2.2, we recover (2.24) after adding (2.29) to the L2 closeness estimate (2.5). That 
is, the energy method yields the cubic proximity exponent of the Fourier transform method of 
Theorem 2.2 only in the special case of infinitely smooth initial data.

Robustness of stable solutions. An interesting application of Theorem 2.2 (and of the general 
statement in Theorem 1.1) is related to the robustness of stable solutions of one system in the 
dynamics of the other. As an illustrative example, we consider the case of standing wave solutions 
to the general focusing semilinear Schrödinger equation (1.9), namely solutions of the form

U(x, t) = eiωt W(x), ω > 0, (2.30)

with W satisfying the stationary equation

−W ′′ + ωW + µ|W |2pW = 0, µ > 0. (2.31)

Associated with the solutions of (2.31) is the functional

1
2

∫

R

|W ′|2dx + ω

2

∫

R

|W |2dx − µ

2p + 2

∫

R

|W |2p+2dx (2.32)

and the set

Ap =
{
W ∈ H 1(R) : W ≠ 0 and − W ′′ + ωW + µ|W |2pW = 0

}
. (2.33)

The orbital stability of the solutions (2.30) is discussed in [13]. In particular, the stability result 
reads as follows.

Theorem 2.3 (Theorem 8.3.1 in [13]). Let p < 2. If W ∈ Ap , then (2.30) is a stable solution of 
equation (1.9) in the following sense. For every ϵ > 0, there exists a δ(ϵ) such that if U0 ∈ H 1(R)

satisfies ∥U0 −W∥H 1(R) ≤ δ(ϵ) then the maximal solution U(x, t) of (1.9) associated with U0(x)

satisfies

sup
t>0

inf
θ∈R

inf
y∈R

∥∥∥U(·, t) − eiθ(t)W(· − y(t))
∥∥∥

H 1(R)
≤ ϵ. (2.34)

In other words, if U0 is close to W in H 1(R), then the corresponding solution U remains close 
to the orbit of W , up to space translations and rotations.

It is crucial to recall that, in the subcritical case 0 < p < 2, any standing wave solution can be 
mapped via the transformation

U(x, t) 0→ Uϱ(x, t) := ϱ
1
p U(ϱx,ϱ2t), ϱ > 0, (2.35)

to one with an L2 norm of arbitrary size [58], as
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∥∥Uϱ(t)
∥∥

L2(R)
= ϱ

2−p
2p

∥∥U(ϱ2t)
∥∥

L2(R)
(2.36)

and so for p < 2 one may construct standing waves of arbitrary L2 norm for a suitable choice of 

ϱ. Moreover, for X := ϱx we have ∂xUϱ(x, t) = ϱ
p+1
p ∂XU(X, ϱ2t) and so

∥∥∂xUϱ(t)
∥∥

L2(R)
= ϱ

p+2
2p

∥∥∂xU(ϱ2t)
∥∥

L2(R)
. (2.37)

Therefore, the scaling (2.35) preserves the stability of standing waves. Indeed, suppose W ∈
Ap corresponds to a stable standing wave. Then, given ϵ > 0 and initial data U0 satisfying the 

hypothesis of Theorem 2.3, for Wϱ(x) := ϱ
1
p W(ϱx) and U0ϱ(x) defined analogously we have, 

in view of (2.36) and (2.37),

∥∥U0ϱ − Wϱ

∥∥
H 1(R)

≤ max
{
ϱ

2−p
2p ,ϱ

2+p
2p

}
δ (2.38)

and

sup
t>0

inf
θ∈R

inf
y∈R

∥∥∥Uϱ(·,ϱ2t) − eiθWϱ(· − y)
∥∥∥

H 1(R)
≤ max

{
ϱ

2−p
2p ,ϱ

2+p
2p

}
ϵ, (2.39)

implying the stability of the standing wave associated with Wϱ. Note that the restriction p < 2
ensures that the exponents in (2.36) and (2.37) can both be controlled by ϱ sufficiently small; 
otherwise, if p > 2 then the former equality requires ϱ large and the latter ϱ small, so they 
cannot be combined to control the H 1 norm.

With the above preparations, a transitivity argument that combines Theorem 2.2 proved in this 
work with Theorem 2.3 from [13] implies the following result.

Corollary 2.1. Suppose 1 < p < 2 and let UNI(x, t) = eiωt WNI(x), WNI ∈ Ap , ω > 0, be a 
standing wave solution of the non-integrable NLS equation (1.9) which is stable in the sense of 
Theorem 2.3. Furthermore, given 0 < ε < 1, let u0, U0 ∈ H 1(R) be initial data for the integrable 
and non-integrable NLS equations (1.3) and (1.9), respectively, satisfying the conditions

∥U0 − WNI∥H 1(R) ≤ δ(ε), (2.40)

∥u0∥H 1(R) ≤ c0ε, (2.41)

∥u0 − U0∥H 1(R) ≤ c1ε, (2.42)

for some constants c0, c1 > 0, with δ(ε) satisfying the stability criterion of Theorem 2.3. Then, 
∥u0 − WNI∥H 1(R) ≤ c1ε + δ(ε) =: δ̂(ε) and for arbitrary 0 < Tf < ∞ there exists a constant 
K̂(Tf ) > 0 such that

sup
t∈[0,Tf ]

inf
θ∈R

inf
y∈R

∥∥∥u(·, t) − eiθ(t)WNI(· − y(t))
∥∥∥

H 1(R)
≤ K̂ε. (2.43)

Proof. Let 0 < ε < 1. First, note that the conditions (2.40) and (2.42) combined with the triangle 
inequality readily yield ∥u0 − WNI∥H 1(R) ≤ ∥u0 − U0∥H 1(R) + ∥U0 − WNI∥H 1(R) ≤ δ̂(ε). Next, 
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since WNI and U0 satisfy the hypothesis of Theorem 2.3, the solution U of the non-integrable 
NLS equation (1.9) associated with U0 satisfies the bound

sup
t>0

inf
θ∈R

inf
y∈R

∥∥∥U(·, t) − eiθWNI(· − y)
∥∥∥

H 1(R)
≤ ε. (2.44)

Let u denote the solution of the integrable NLS equation (1.3) associated with u0. Then, in view 
of the conditions (2.41) and (2.42), which via the triangle inequality and the fact that ε < 1 imply 
∥U0∥H 1(R) ≤ (c0 + c1) ε ≤ (c0 + c1) ε

1
3 , estimate (2.7) of Theorem 2.2 yields

∥u(t) − U(t)∥H 1(R) ≤ C̃1ε, t ∈ [0, Tf ], C̃1 = C̃1(Tf ). (2.45)

Hence, combining the triangle inequality with (2.44) and (2.45), we deduce

sup
t∈[0,Tf ]

inf
θ∈R

inf
y∈R

∥∥∥u(·, t) − eiθWNI(· − y)
∥∥∥

H 1(R)

≤ sup
t∈[0,Tf ]

∥u(t) − U(t)∥H 1(R) + sup
t>0

inf
θ∈R

inf
y∈R

∥∥∥U(·, t) − eiθWNI(· − y)
∥∥∥

H 1(R)
≤ C̃1ε + ε,

which amounts to the desired estimate (2.43) with K̂ = C̃1 + 1. !

Numerical simulations. We conclude this section with a numerical study illustrating our ana-
lytical results in the case of the zero boundary conditions (2.1). As a first example, we consider 
the case of bright solitons. The second example concerns the more intricate case of collision of 
bright solitons.

Bright solitons. We supplement the non-integrable NLS equation (1.4) with the initial condition 
emanating from the one-soliton solution of the integrable NLS equation (1.3) (e.g. see [41]), 
namely

U0(x) = uS(x,0) := Asech(Ax)eicsx (2.46)

with the parameters A, cs chosen so that the smallness conditions of Theorem 2.2 are met.
More specifically, we trigger the dynamics of the non-integrable NLS equation (1.4) with 

ν = 1/2, γ = 1 and the initial condition (2.46) with small amplitude A = 0.02 and velocity 
cs = 1. We examine the case of a power nonlinearity (1.9) with p = 3 (top left panel in Fig. 2.1) 
as well as the saturable nonlinearity model (1.10) (top right panel in Fig. 2.1). As explained be-
low, in both cases the evolution is essentially indistinguishable from the one of the integrable 
NLS equation. The bottom panels of Fig. 2.1 show the evolution of the distance norms ∥'∥L2(R)

(middle (blue) line), ∥'∥H 1(R) (upper (yellow) line) and ∥'∥L∞(R) (bottom (red) line). The 
evolution of these norms appears to be in an excellent agreement with the theoretical predic-
tion (2.24) for their linear growth with respect to time. For the aforementioned set of parameter 
values, we have ∥uS(0)∥H 1(R) = ∥U0∥H 1(R) ≃ 0.2, i.e. we may take ε = 0.2 in which case there 
is an excellent agreement with the theoretical predictions regarding the growth of the distance 
in terms of ε. Indeed, for times t ∼ O

(
1/ε2) the bound (2.24) predicts that ∥'(t)∥X ∼ O(ε), 

which is consistent with the evolution of the distance norms over the interval t ∈ [0, Tf ] with 
Tf = 100 depicted in the bottom row of Fig. 2.1.
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Fig. 2.1. Top row: Spatiotemporal evolution of the density |U(x, t)|2 of the non-integrable NLS equation (1.4) with 
ν = 1/2, γ = 1 and supplemented with the soliton initial condition (2.46). Left: Power nonlinearity (1.9) with p = 3 (su-
percritical case). Right: Saturable nonlinearity (1.10). Bottom row: The corresponding evolution of the norms ∥'(t)∥X
with X = L2, H 1 or L∞ for each of the two cases. (For interpretation of the colors in the figure(s), the reader is referred 
to the web version of this article.)

Note that in the case of the saturable nonlinearity the linear growth of ∥'(t)∥X is incremental, 
suggesting that the dynamics of the saturable NLS equation may be even closer to those of 
the integrable one, compared to the power nonlinearity model. This behavior also insinuates 
that in the non-integrable cases the persistence of small-amplitude bright solitons may last for a 
significantly long time, which is quite remarkable.

The left panel of Fig. 2.2 depicts the numerical evolution of the center of mass of the 
soliton, presented by solid lines for the non-integrable models and by a dashed line for the 
integrable model (in fact, the two solid lines for the power and saturable nonlinearities are indis-
tinguishable). For this study, we use a spatial translation of the initial condition (2.46), namely 
U0(x) = Asech[A(x − x0)]eics (x−x0) with x0 = 125 and A = 0.02, cs = 1 as before. The two 
lines corresponding to the non-integrable models are indistinguishable from the one of the inte-
grable NLS which is extended in the figure also to x < 0 for visualization purposes. The solitary 
waves of the non-integrable models demonstrate remarkable robustness.

Besides the case of small-amplitude initial data considered above, it is also important 
to investigate the case when the value of the parameter ε is increased. The right panel of 
Fig. 2.2 shows logarithmic scale plots of the variation of the distance norm ∥'(t)∥X for 
X = L2(R), H 1(R) or L∞(R) as a function of ε for fixed Tf = 600. The dots along the solid 
lines correspond to the numerically obtained rates of these variations fitted to the lines of the form 
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Fig. 2.2. Left: Spatiotemporal evolution of the soliton’s center of mass for the integrable and the non-integrable models. 
Right: Logarithmic scale plots of the variation of the distance norm ∥'(t)∥X with X = L2, H 1 or L∞ as a function of 
ε for fixed Tf = 600. See text for more details.

∥∥'(Tf )
∥∥

L2(R)
versus K1ε

σ1 , 
∥∥'(Tf )

∥∥
H 1(R)

versus K2ε
σ2 , and 

∥∥'(Tf )
∥∥

L∞(R)
versus K3ε

σ3 . 
The fitting results in the following values: K1 = 8.87, K2 = 17.77, K3 = 2.96 and σ1 = σ2 = 4.5, 
σ3 = 4.86. For these values of constants Kj , the dashed lines correspond to the analytical esti-
mates of Theorem 2.2 of the form 

∥∥'(Tf )
∥∥

X versus Kjε
3. The numerical results are consistent 

with the order of the analytical estimates and, in fact, indicate that the numerical variation of the 
distance norms may be of significantly lower rate, namely of O(ε4.5) or O(ε5).

Bright soliton collisions. For the study of the dynamics of bright soliton collisions, we choose 
as initial datum two incoming soliton solutions of the cubic NLS equation (1.3) of the same 
amplitude A, initially separated by a distance x0 and moving against one other at speed cs , 
namely

U0(x) = Asech [A(x − x0)] e−ics (x−x0) + Asech [A(x + x0)] eics(x+x0). (2.47)

We take A = 0.1 and x0 = 50. For the velocities, we considered both fast solitons with cs = 2
and very slow solitons with cs = 0.02.

Fig. 2.3 depicts the results for the soliton collision dynamics in the case of the fast solitons. 
The top row corresponds to the power nonlinearity model (1.9) in the supercritical case p = 3 and 
the bottom row to the saturable NLS equation (1.10). The plots of the spatiotemporal evolution 
of the density |U(x, t)|2 in the left panels reveal that the non-integrable systems exhibit collision 
dynamics that are almost identical to the integrable (cubic) case. This persistence of integrable 
soliton dynamics is even more evident in the plots of the evolution of the distance norm ∥'(t)∥X
with X = L2(R), H 1(R) or L∞(R), which are in excellent agreement with the predictions of 
Theorem 2.2. Note that the collision event is captured by the evolution of norms as the sigmoid-
shaped portion of the curve featuring an interlude of increased, but still moderate, slope.

Furthermore, the evolution of norms highlights two features:

(i) The saturable NLS equation seems to be a more structurally stable non-integrable model 
with respect to the dynamics of the integrable NLS equation, an effect which was already 
observed in the dynamics of the single bright soliton earlier.
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Fig. 2.3. Fast bright soliton collisions. Left column: Spatiotemporal evolution of the density |U(x, t)|2 initiated by the 
datum (2.47) with A = 0.1, x0 = 50, cs = 2 for the non-integrable NLS equation with power nonlinearity (1.9) in the 
supercritical case p = 3 (top) and the non-integrable saturable NLS equation (1.10) (bottom). Right column: Evolution 
of the norms ∥'(t)∥X with X = L2, H 1 or L∞ for the power nonlinearity p = 3 (top) and the saturable nonlinearity 
(bottom). In both cases, ν = 1/2 and µ = γ = 1.

(ii) The relatively slow growth of ∥'(t)∥L∞(R) indicates that the solutions are closer in the 
sense of pointwise convergence than they are in the sense of convergence in the L2(R)

or H 1(R) norms; a larger deviation in the latter norms hints at rather complex dynamics 
on smaller scales that may contribute to the overall difference between the integrable and 
non-integrable cases.

These two features are further elucidated by the study of the slow solitons collisions shown in 
Fig. 2.4. There, the top row corresponds to the power nonlinearity with p = 3. The breakdown of 
integrability in this case appears to be dramatic, as it is illustrated by the spatiotemporal evolution 
of the density in the top left panel. Part of the energy is trapped at the collision site, a common 
feature also present in other non-integrable models (e.g. the Klein-Gordon equation φ4). This 
is not the case for the saturable nonlinearity, as shown in the bottom row. Qualitatively, the 
dynamics of the saturable NLS equation is almost identical to the one of the integrable NLS 
equation and, in contrast to the power nonlinearity, no energy trapping effect is observed. The 
vast difference between the two non-integrable models is also prominent in the corresponding 
evolution of the distance norms ∥'(t)∥X . For the septic power nonlinearity, the deviation of 
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Fig. 2.4. Slow bright soliton collisions. Same as in Fig. 2.3 but with cs = 0.02.

the L∞ norm is still moderate and compliant with an L∞ closeness of solutions. However, the 
larger growth and the behavior of the L2 and H 1 norms (particularly after the collision) gives 
further demonstration of the integrability breakdown induced by the power nonlinearity. On the 
other hand, the corresponding study of the behavior of ∥'(t)∥X for all three norms in the case 
of the saturable NLS equation provides additional evidence of structural stability of that model 
in reference to the integrable one.

3. Nonzero boundary conditions at infinity

The main objective of this section is to prove the analogue of Theorem 1.1 — namely, Theo-
rem 3.2 below — on the proximity of solutions between the integrable and non-integrable NLS 
equations (1.3) and (1.4) when these are supplemented with a broad class of nonzero boundary 
conditions at infinity. For this task, we first assume (local) existence of solutions to the non-
integrable problem in H 1(R) in order to derive the relevant closeness estimates. In this regard, 
we note that the well-posedness results for the general non-integrable problem with nonzero 
boundary conditions are quite limited when compared to the plethora of results in the case of 
zero boundary conditions and, in particular, the powerful results of Theorem 2.1. Thus, en route 
to establishing Theorem 3.2, we also prove local existence in H 1(R) for the non-integrable NLS 
equations (1.9) and (1.10) that correspond to the power and saturable nonlinearities, respectively, 
and as such represent the two most prominent members of the general family of equations (1.4).
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Motivated by the physically significant description given in [11,9,28], we supplement the 
integrable and non-integrable NLS equations (1.3) and (1.4) with the following general class of 
nonzero boundary conditions at infinity:

lim
|x|→∞

u(x, t) = lim
|x|→∞

eiµq2
0 tζ(x), lim

|x|→∞
U(x, t) = lim

|x|→∞
eiγF(q2

0 )tζ(x), t ≥ 0, (3.1)

where the complex-valued function ζ(x) belongs to the Zhidkov space

X1(R) :=
{
ζ ∈ L∞(R) : ζ ′ ∈ L2(R)

}
(3.2)

and satisfies

lim
x→±∞

ζ(x) = ζ± ∈C, |ζ±| = q0 > 0. (3.3)

According to the above boundary conditions, the behavior of the solutions u(x, t) and U(x, t)
as |x| → ∞ is dictated by the function ζ(x), which approaches a constant background of size 
q0 > 0 as described by the limit conditions (3.3).

The precise form of the conditions (3.1) can be motivated as follows. Let u(x, t) and U(x, t)
be solutions of equations (1.3) and (1.4), respectively, such that

lim
x→±∞

u(x, t) = u±(t), lim
x→±∞

U(x, t) = U±(t), (3.4)

where U±(t) and u±(t) are temporal functions of constant modulus equal to q0 but are oth-
erwise to be determined. Then, taking the limit of (1.3) and (1.4) as x → ±∞ while assum-
ing that the nonlinearity function F has sufficient smoothness so that lim|x|→∞ F(|U |2) =
F(lim|x|→∞ |U |2) = F(q2

0 ) (note, in particular, that this is true both in the semilinear case (1.9)
and in the saturable case (1.10)), we have

i(u±)t + µq2
0u± = 0 ⇒ u±(t) = eiµq2

0 t u±(0),

i(U±)t + γF(q2
0 )U± = 0 ⇒ U±(t) = eiγF(q2

0 )tU±(0).
(3.5)

Therefore, if the initial data are such that limx→±∞ u(x, 0) = limx→±∞ U(x, 0) = ζ±, i.e. if 
u±(0) = U±(0) = ζ±, then for ζ satisfying (3.3) the expressions (3.4) and (3.5) give rise to the 
conditions (3.1).

A few remarks are now in place:

(i) The assumption for ζ ∈ X1(R) covers the standard case ζ(x) = ζ0 ∈ C being a constant 
with |ζ0| = q0 > 0.

(ii) The pure step function

ζs(x) =
{

ζ+ ∈ C, x > 0,

ζ− ∈ C, x < 0,

does not belong to X1(R), since ζ ′
s(x) = (ζ+ − ζ−) δ(x) in the sense of distributions and so 

ζ ′
s /∈ L2(R). Nevertheless, although our analysis does not cover the pure step function ζs , it 
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does cover any continuous function approximating ζs , as the derivative of such a function 
will belong to L2(R) (and hence that function will belong to X1(R)).

(iii) Generalizations from the pure step function ζs to a nontrivial ζ belonging to the class 
(3.2)-(3.3) covered by the present work are relevant in the context of the dynamics of NLS 
equations. In the case where q0 = 0, localized waveforms in the form of Peregrine solitons 
may locally emerge on a nontrivial decaying ζ(x) induced by the initial conditions for the 
semiclassical limit of the focusing integrable NLS equation [6]. For fundamental results on 
the semiclassical problem for NLS, we refer to [38,48,56]. The local emergence of local-
ized structures reminiscent of the Peregrine soliton has been observed also in experimental 
setups [54,55] and is expected to be robust in the presence of damping and forcing effects 
[22,23]. However, herein we will restrict ourselves to the case q0 > 0.

The boundary conditions (3.1) can be made time independent (i.e. constant) via the change of 
variables

u(x, t) = eiµq2
0 t q(x, t), U(x, t) = eiγF(q2

0 )tQ(x, t). (3.6)

Then, equations (1.3) and (1.4) take the form

iqt + νqxx + µ
(
|q|2 − q2

0
)
q = 0, (3.7)

iQt + νQxx + γ
[
F(|Q|2) − F(q2

0 )
]
Q = 0, (3.8)

the initial conditions remain unchanged, namely q(x, 0) = u0(x) and Q(x, 0) = U0(x), and the 
boundary conditions become

lim
x→±∞

q(x, t) = lim
x→±∞

Q(x, t) = ζ± (3.9)

so that lim|x|→∞ |q(x, t)| = lim|x|→∞ |Q(x, t)| = q0 > 0. Furthermore, the additional change of 
variables

q(x, t) = φ(x, t) + ζ(x), Q(x, t) = 3(x, t) + ζ(x) (3.10)

leads to the modified NLS equations

iφt + ν (φ + ζ )xx + µ
(
|φ + ζ |2 − q2

0

)
(φ + ζ ) = 0, (3.11)

i3t + ν (3 + ζ )xx + γ
[
F(|3 + ζ |2) − F(q2

0 )
]
(3 + ζ ) = 0, (3.12)

along with the initial conditions

φ(x,0) = u0(x) − ζ(x) =: φ0(x), 3(x,0) = U0(x) − ζ(x) =: 30(x) (3.13)

and zero boundary conditions at infinity, i.e.

lim
|x|→∞

φ(x, t) = lim
|x|→∞

3(x, t) = 0, t ≥ 0. (3.14)
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The rest of this section is organized as follows. First, we establish L2 and H 1 closeness 
estimates for the modified NLS equations (3.11) and (3.12). Through the transformations (3.6)
and (3.10), these closeness results imply corresponding estimates for the difference

e−iµq2
0 t u(x, t) − e−iγF(q2

0 )tU(x, t)

involving the solutions of the original integrable and non-integrable NLS equations (1.3) and 
(1.4). The derivation of the closeness estimates is accomplished under the assumption of (at 
least) local H 1 existence for the non-integrable equation (1.4). In this connection, we empha-
size that the case of nonzero boundary conditions is substantially different from the one of zero 
boundary conditions, even at the fundamental level of well-posedness. In particular, to the best 
of our knowledge, the well-posedness of the non-integrable NLS equation (1.4) with general 
nonlinearities is much less understood in the former case. In the focusing regime, one of the 
few known results in Sobolev spaces is due to [49], where local existence was established for 
the semilinear Schrödinger equation (1.9) in the case of Hs(R) perturbations of the background 
wave with s > 1/2. It should be noted that the proofs in [49] are given only for p = 1 correspond-
ing to the integrable cubic NLS equation, although it is remarked that the arguments should go 
through also in the case of general p > 1. In this regard, below we also prove local existence in 
H 1(R) for the modified NLS equation (3.12) (and hence for the non-integrable NLS equation 
(1.4)) in the cases of a general power nonlinearity as well as of a saturable nonlinearity, which 
are respectively associated with the models (1.9) and (1.10). This local existence result is crucial 
as (i) it removes the relevant assumption used for the derivation of the closeness estimates, and 
(ii) via a continuity argument with respect to time (since our local solutions end up in the class 
C([0, T ]; H 1(R))), it allows us to obtain the analogue of Theorem 1.1 in the case of the nonzero 
boundary conditions (3.1), namely Theorem 3.2.

Closeness estimates. As noted above, in order to investigate the proximity between the solutions 
of equations (3.11) and (3.12), we first assume local existence of these solutions in H 1(R). Local 
estimates validating this assumption in the case of a general power nonlinearity and the saturable 
nonlinearity are obtained after the proof of the closeness estimates.

The difference of solutions to equations (3.11) and (3.12) is the same as the one of solutions 
to equations (3.7) and (3.8), because it is unaffected by the change of variables (3.10). On the 
other hand, the change of variables (3.6) does not preserve that difference, as it results in different 
phase factors multiplying each of the solutions to the original equations (1.3) and (1.4). That is,

'̃(x, t) := φ(x, t) − 3(x, t) = q(x, t) − Q(x, t) = e−iµq2
0 t u(x, t) − e−iγF(q2

0 )t U(x, t)

with '̃ satisfying the equation

i'̃t + ν'̃xx = γ GF,3(x, t) − µG1,φ(x, t), (3.15)

where

GF,3(x, t) =
[
F(|3 + ζ |2) − F(q2

0 )
]
(3 + ζ ) (3.16)

and the subscript “1” denotes the identity function, so that G1,φ(x, t) =
(
|φ + ζ |2 − q2

0

)
(φ + ζ ). 

Starting from equation (3.15), we first establish closeness estimates in L2(R) and then in H 1(R), 
the latter also implying the result in L∞(R) via Sobolev embedding.
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L2 closeness. Taking the Fourier transform (2.11) of equation (3.15) and integrating over t , 
we find

̂̃'(ξ, t) = e−iνξ2t ̂̃'(ξ,0) − i

t∫

0

e−iνξ2(t−τ )
[
γ ĜF,3(ξ, τ ) − µĜ1,φ(ξ, τ )

]
dτ. (3.17)

Hence, by Plancherel’s theorem, Minkowski’s integral inequality and the triangle inequality,

∥∥'̃(t)
∥∥

L2(R)
≤ 1

2π

∥∥̂̃'(0)
∥∥

L2(R)

+ 1
2π

t∫

0

∥∥∥e−iνξ2(t−τ )
[
γ ĜF,3(ξ, τ ) − µĜ1,φ(ξ, τ )

]∥∥∥
L2(R)

dτ

=
∥∥'̃(0)

∥∥
L2(R)

+
t∫

0

[
γ

∥∥GF,3(τ )
∥∥

L2(R)
+ µ

∥∥G1,φ(τ )
∥∥

L2(R)

]
dτ

(3.18)

and we need to estimate the spatial L2 norms of GF,3 and G1,φ . Note that the conditions (3.3)
and (3.14) already imply lim|x|→∞ GF,3(x, t) = lim|x|→∞ G1,φ(x, t) = 0. More precisely, we 
have the following estimate:

Lemma 3.1. Let F satisfy the properties (1.5). Then, for any p ≥ 1 and each t ≥ 0, the function 
GF,3 defined by (3.16) admits the bound

∥∥GF,3(t)
∥∥

L2(R)

≤ 2
√

2K
(∥3(t)∥L∞(R) + ∥ζ∥L∞(R) + q0

)2p
(
∥3(t)∥L2(R) +

∥∥|ζ | − q0
∥∥

L2(R)

)
(3.19)

where K is the constant associated with F via (1.5).

Proof. By the first of the properties (1.5), we have

∣∣∣F(|3 + ζ |2) − F(q2
0 )

∣∣∣ ≤ K
(
|3 + ζ |2(p−1) + q

2(p−1)
0

) ∣∣∣|3 + ζ |2 − q2
0

∣∣∣ , p ≥ 1.

Then, noting that

∣∣∣|3 + ζ |2 − q2
0

∣∣∣ ≤
{

(|3| + |ζ |)2 − q2
0 , |3 + ζ | ≥ q0,

q2
0 − ||3| − |ζ ||2 , |3 + ζ | ≤ q0,

we obtain
∣∣∣|3 + ζ |2 − q2

0

∣∣∣ ≤
∣∣∣(|3| + |ζ |)2 − q2

0

∣∣∣ +
∣∣∣(|3| − |ζ |)2 − q2

0

∣∣∣

≤ 2 (|3| + |ζ | + q0)
(
|3| +

∣∣|ζ | − q0
∣∣)

(3.20)
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and, in turn,
∣∣∣F(|3 + ζ |2) − F(q2

0 )
∣∣∣ ≤ 2K

(
|3 + ζ |2(p−1) + q

2(p−1)
0

)
(|3| + |ζ | + q0)

(
|3| +

∣∣|ζ | − q0
∣∣)

≤ 2K (|3| + |ζ | + q0)
2p−1 (

|3| +
∣∣|ζ | − q0

∣∣) . (3.21)

Using this inequality, we find

∥∥∥
[
F(|3 + ζ |2) − F(q2

0 )
]
(3 + ζ )

∥∥∥
L2(R)

≤ 2K

⎛

⎝
∫

R

(|3| + |ζ | + q0)
2(2p−1)

(
|3| +

∣∣|ζ | − q0
∣∣)2

(|3| + |ζ |)2 dx

⎞

⎠

1
2

≤ 2
√

2K sup
x∈R

[
(|3| + |ζ | + q0)

2p−1 (|3| + |ζ |)
]
⎛

⎝
∫

R

(
|3|2 +

∣∣|ζ | − q0
∣∣2)

dx

⎞

⎠

1
2

,

which readily implies the claimed estimate. !

In view of the L2 estimate (3.19) for general GF,3 as well as for G1,φ with p = K = 1, 
inequality (3.18) yields

∥∥'̃(t)
∥∥
L2(R) ≤

∥∥'̃(0)
∥∥
L2(R)

+ 2
√

2 t sup
τ∈[0,t]

[
γK

(∥3(τ )∥L∞(R) + ∥ζ∥L∞(R) + q0
)2p

(
∥3(τ )∥L2(R) +

∥∥|ζ | − q0
∥∥
L2(R)

)

+ µ
(∥φ(τ )∥L∞(R) + ∥ζ∥L∞(R) + q0

)2
(
∥φ(τ )∥L2(R) +

∥∥|ζ | − q0
∥∥
L2(R)

)]
, (3.22)

which for each t ≥ 0 provides an L2 estimate for '̃(t) in terms of the L2 norms of '̃(0), 3(t), 
φ(t), |ζ | − q0, the L∞ norms of 3(t), φ(t), ζ , and the background q0.

H 1 closeness. Starting from the definition of the Sobolev norm and using expression (3.17) along 
with the unitarity of e−iνξ2t and Minkowski’s integral inequality, we have

∥∥'̃(t)
∥∥
H1(R) =

⎛

⎜⎝
∫

R

(
1 + ξ2

) ∣∣∣e−iνξ2t ̂̃'(ξ,0) − i

t∫

0

e−iνξ2(t−τ ) [
γ ĜF,3(ξ, τ ) − µĜ1,φ(ξ, τ )

]
dτ

∣∣∣
2
dξ

⎞

⎟⎠

1
2

≤
√

2

⎛

⎝∥∥'̃(0)
∥∥
H1(R) +

t∫

0

[
γ

∥∥GF,3(τ )
∥∥
H1(R) + µ

∥∥G1,φ(τ )
∥∥
H1(R)

]
dτ

⎞

⎠ .

(3.23)

Thus, for each t ≥ 0, we need to estimate GF,3(t) and G1,φ(t) in H 1(R).

Lemma 3.2. Let F satisfy the properties (1.5). Then, for any p ≥ 1 and each t ≥ 0, the function 
GF,3 defined by (3.16) admits the bound
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∥∥GF,3(t)
∥∥

H 1(R)

≤ 2
√

2K
(∥3(t)∥L∞(R) + ∥ζ∥L∞(R) + q0

)2p−1
[

2
(∥3(t)∥L∞(R) + ∥ζ∥L∞(R) + q0

)

·
(
∥3(t)∥H 1(R) +

∥∥ζ ′∥∥
L2(R)

+
∥∥|ζ | − q0

∥∥
L2(R)

)
+

(∥3(t)∥L∞(R) + ∥|ζ | − q0∥L∞(R)

)

·
(
∥3(t)∥H 1(R) +

∥∥ζ ′∥∥
L2(R)

)]
(3.24)

where K is the constant associated with F via (1.5).

Proof. Since 
∥∥GF,3(t)

∥∥
H 1(R)

=
∥∥GF,3(t)

∥∥
L2(R)

+
∥∥∂xGF,3(t)

∥∥
L2(R)

and we have already es-

timated the L2 norm of GF,3 via (3.19), we proceed to the L2 norm of the derivative ∂xGF,3. 
Differentiating (3.16) and applying the triangle inequality, we have

∥∥∂xGF,3(t)
∥∥

L2(R)
≤ 2

∥∥∥F ′(|3 + ζ |2)(3 + ζ )2(3 + ζ )x

∥∥∥
L2(R)

+
∥∥∥
[
F(|3 + ζ |2) − F(q2

0 )
]
(3 + ζ )x

∥∥∥
L2(R)

.

(3.25)

For the first term on the right-hand side, by the third of the properties (1.5) we find

∥∥∥F ′(|3 + ζ |2)(3 + ζ )2(3 + ζ )x

∥∥∥
L2(R)

≤ K

⎛

⎝
∫

R

|3 + ζ |4p |(3 + ζ )x |2 dx

⎞

⎠

1
2

≤
√

2K
(∥3∥L∞(R) + ∥ζ∥L∞(R)

)2p
(
∥3∥H 1(R) +

∥∥ζ ′∥∥
L2(R)

)
.

Moreover, for the second term, using inequality (3.21) we infer
∥∥∥
[
F(|3 + ζ |2) − F(q2

0 )
]
(3 + ζ )x

∥∥∥
L2(R)

≤ 2K

⎛

⎝
∫

R

(|3| + |ζ | + q0)
2(2p−1)

(
|3| +

∣∣|ζ | − q0
∣∣)2 |(3 + ζ )x |2 dx

⎞

⎠

1
2

≤ 2
√

2K
(∥3∥L∞(R) + ∥ζ∥L∞(R) + q0

)2p−1 (∥3∥L∞(R) + ∥|ζ | − q0∥L∞(R)

)

·
(
∥3∥H 1(R) +

∥∥ζ ′∥∥
L2(R)

)
.

Combining the last two estimates with (3.25), we deduce

∥∥∂xGF,3(t)
∥∥

L2(R)
≤ 2

√
2K

(∥3∥L∞(R) + ∥ζ∥L∞(R)

)2p
(
∥3∥H 1(R) +

∥∥ζ ′∥∥
L2(R)

)

+ 2
√

2K
(∥3∥L∞(R) + ∥ζ∥L∞(R) + q0

)2p−1 (∥3∥L∞(R) + ∥|ζ | − q0∥L∞(R)

)

·
(
∥3∥H 1(R) +

∥∥ζ ′∥∥
L2(R)

)
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which alongside (3.19) yields the desired estimate (3.24). !

In view of the H 1 estimate (3.24) for general GF,3 as well as for G1,φ with K = p = 1, 
inequality (3.23) yields

∥∥'̃(t)
∥∥

H 1(R)
≤

√
2
∥∥'̃(0)

∥∥
H 1(R)

+ 4t sup
τ∈[0,t]

{
γK

(∥3(τ )∥L∞(R) + ∥ζ∥L∞(R) + q0
)2p−1

·
[

2
(∥3(τ )∥L∞(R) + ∥ζ∥L∞(R) + q0

)(
∥3(τ )∥H 1(R) +

∥∥ζ ′∥∥
L2(R)

+
∥∥|ζ | − q0

∥∥
L2(R)

)

+
(∥3(τ )∥L∞(R) + ∥|ζ | − q0∥L∞(R)

)(
∥3(τ )∥H 1(R) +

∥∥ζ ′∥∥
L2(R)

)]

+ µ
(∥φ(τ )∥L∞(R) + ∥ζ∥L∞(R) + q0

)[
2
(∥φ(τ )∥L∞(R) + ∥ζ∥L∞(R) + q0

)

·
(
∥φ(τ )∥H 1(R) +

∥∥ζ ′∥∥
L2(R)

+
∥∥|ζ | − q0

∥∥
L2(R)

)

+
(∥φ(τ )∥L∞(R) + ∥|ζ | − q0∥L∞(R)

)(
∥φ(τ )∥H 1(R) +

∥∥ζ ′∥∥
L2(R)

)]}
, (3.26)

which at each time t ≥ 0 provides a spatial H 1 estimate for '̃(t) in terms of the H 1 norms 
of '̃(0), 3(t), φ(t), the L2 norms of ζ ′, |ζ | − q0, the L∞ norms of 3(t), φ(t), ζ , and the 
background q0.

L∞ closeness. By the Sobolev embedding theorem, the bound in (3.26) is also satisfied by the 
L∞ norm of '̃(t), thereby extending our closeness result to that space as well.

Local existence in H 1(R) for power and saturable nonlinearities. The closeness esti-
mates (3.22) and (3.26) were derived under the assumption of existence of solution to equa-
tions (3.11) and (3.12) in the function spaces involved in those estimates. In what follows, we 
establish local existence in H 1(R) for equation (3.12) with a general power nonlinearity (this re-
sult also covers equation (3.11)) as well as with a saturable nonlinearity. Note that, since the L∞

norm is controlled by the H 1 norm via the Sobolev embedding theorem, existence in H 1 suf-
fices for removing the aforementioned assumption from the derivation of the closeness estimates. 
More precisely, we prove

Theorem 3.1 (Local existence in H 1(R)). Consider the modified NLS equation (3.12) with ei-

ther the saturable nonlinearity F(x) = x

κ(1 + x)
or the power nonlinearity F(x) = xp , p ≥ 1. 

Then, the associated Cauchy problem (3.12)-(3.14) possesses a unique solution 3 ∈ B(0, ρ) ⊂
C([0, Tf ]; H 1(R)), where for some fixed T > 0 the radius ρ > 0 is defined by (3.33) and the 
lifespan 0 < Tf ≤ T satisfies (3.47) in the saturable case and (3.57) in the case of the power 
nonlinearity.

Proof. The proof combines linear estimates with bounds for the nonlinear terms and relies on 
a contraction mapping argument. It consists of several steps, starting from the linear terms and 
moving to the handling of the nonlinearities and their differences as required in order to invoke 
the contraction mapping theorem in H 1(R).
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Taking the spatial Fourier transform of equation (3.12) while noting that ζ ′ → 0 as |x| → ∞
since ζ ′ ∈ L2(R), we obtain

3̂t + iνξ23̂ = −νξ ζ̂ ′(ξ) + iγ ĜF,3 (3.27)

with GF,3 defined by (3.16). Then, integrating with respect to t , implementing the initial condi-
tion (3.13) and inverting the Fourier transform, we arrive at the integral equation

3(x, t) = 5[3](x, t) (3.28)

where

5[3](x, t) := 1
2π

∫

R

eiξx−iνξ2t 3̂0(ξ)dξ

+ 1
2π

∫

R

eiξx

[
iγ

t∫

0

e−iνξ2(t−τ )ĜF,3(ξ, τ )dτ + e−iνξ2t − 1
iξ

ζ̂ ′(ξ)

]
dξ .

(3.29)

This formulation motivates our notion of solution to the Cauchy problem (3.12)-(3.14), namely 
we say that 3 solves (3.12)-(3.14) if it satisfies the integral equation (3.28). Thus, proving local 
existence of solution to (3.12)-(3.14) amounts to showing that (3.28) has a (unique) fixed point, 
which in turn will be established by proving that the mapping 3 0→ 5[3] is a contraction in the 
claimed solution space C([0, Tf ]; H 1(R)) for an appropriate choice of Tf > 0. The first step in 
this direction is to obtain an estimate for the H 1 norm of 5[3](t) for each t ∈ R. This will be 
followed by a corresponding estimate for the difference 5[3](t) −5[6](t). These two estimates 
will then be combined to deduce that 5 is a contraction in a subset B(0, ρ) of C([0, Tf ]; H 1(R))

for a suitably chosen radius ρ > 0 and (minimum) lifespan Tf > 0.
By (3.29) and the definition of the H 1 norm,

∥5[3](t)∥2
H 1(R)

≤ 2
∫

R

(
1 + ξ2

) ∣∣3̂0(ξ)
∣∣2

dξ + 4γ 2
∫

R

(
1 + ξ2

)
∣∣∣∣∣∣

t∫

0

eiνξ2τ ĜF,3(ξ, τ )dτ

∣∣∣∣∣∣

2

dξ

+ 4
∫

R

(
1 + ξ2

) ∣∣∣∣
e−iνξ2t − 1

iξ

∣∣∣∣
2∣∣ζ̂ ′(ξ)

∣∣2
dξ .

Concerning the integral involving ζ ′, we note that 
∣∣∣ 1−cos(k)

k

∣∣∣ ≤ 1 for all k ∈ R and so 
∣∣∣∣
e−iνξ2 t−1

iξ

∣∣∣∣
2

= 2 1−cos(νξ2t)
ξ2 = 2|ν|t

∣∣∣ 1−cos(νξ2t)
νξ2t

∣∣∣ ≤ 2|ν|t for all ξ ∈ R and t ≥ 0. This inequality 

is useful for ξ near 0, while for |ξ | ≥ 1 we can simply observe that 0 ≤ 1−cos(νξ2t)
ξ2 ≤ 2

ξ2 ≤ 4
1+ξ2 . 

Thus, using also Minkowski’s integral inequality for the term involving GF,3, we infer

134



D. Hennig, N.I. Karachalios, D. Mantzavinos et al. Journal of Differential Equations 397 (2024) 106–165

∥5[3](t)∥2
H 1(R)

≤ 2∥30∥2
H 1(R)

+ 4γ 2

⎛

⎝
t∫

0

∥∥GF,3(τ )
∥∥

H 1(R)
dτ

⎞

⎠
2

+ 4
∫

|ξ |≤1

2 · 2|ν|t
∣∣ζ̂ ′(ξ)

∣∣2
dξ + 4

∫

|ξ |≥1

(
1 + ξ2

) 8
1 + ξ2

∣∣ζ̂ ′(ξ)
∣∣2

dξ

and, in turn, by Plancherel’s theorem we obtain

∥5[3](t)∥H 1(R) ≤
√

2∥30∥H 1(R) + 4
(√

|ν|
√

t +
√

2
)∥∥ζ ′∥∥

L2(R)

+ 2γ

t∫

0

∥∥GF,3(τ )
∥∥

H 1(R)
dτ. (3.30)

The H 1 norm of GF,3 can be estimated in terms of the H 1 norm of 3 by combining esti-
mate (3.24) with the Sobolev embedding theorem:

∥∥GF,3(t)
∥∥

H 1(R)
≤ 4

√
2K

(∥3(t)∥H 1(R) + ∥ζ∥L∞(R) + q0
)2p

(
∥3(t)∥H 1(R) +

∥∥ζ ′∥∥
L2(R)

+
∥∥|ζ | − q0

∥∥
L2(R)

)

+ 2
√

2K
(∥3(t)∥H 1(R) + ∥ζ∥L∞(R) + q0

)2p−1 (∥3(t)∥H 1(R) + ∥|ζ | − q0∥L∞(R)

)

·
(
∥3(t)∥H 1(R) +

∥∥ζ ′∥∥
L2(R)

)

≤ 6
√

2K
(
∥3(t)∥H 1(R) + ∥ζ∥L∞(R) +

∥∥ζ ′∥∥
L2(R)

+
∥∥|ζ | − q0

∥∥
L2(R)

+ q0

)2p+1

≤ 3 · 22p+ 3
2 K

[
∥3(t)∥2p+1

H 1(R)
+

(
∥ζ∥L∞(R) +

∥∥ζ ′∥∥
L2(R)

+
∥∥|ζ | − q0

∥∥
L2(R)

+ q0

)2p+1
]

,

(3.31)

where for the last step we have used the inequality (a + b)σ ≤ 2σ−1(aσ + bσ ), a, b ≥ 0, σ ≥ 1, 
which follows from applying Jensen’s inequality to the convex function xσ , σ ≥ 1.

By combining the bound (3.31) with inequality (3.30), we obtain

∥5[3](t)∥H 1(R) ≤
√

2∥30∥H 1(R) + 4
(√

|ν|
√

t +
√

2
)∥∥ζ ′∥∥

L2(R)

+ 3 · 22p+ 5
2 γK · t

(
∥ζ∥L∞(R) + q0 +

∥∥ζ ′∥∥
L2(R)

+
∥∥|ζ | − q0

∥∥
L2(R)

)2p+1

+ 3 · 22p+ 5
2 γK · t sup

τ∈[0,t]
∥3(τ )∥2p+1

H 1(R)
. (3.32)

Motivated by (3.32), for fixed T > 0 we let
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ρ = 2 · 3 · 22p+ 5
2 γK

[
∥30∥H 1(R) +

(√
|ν|

√
T +

√
2
)∥∥ζ ′∥∥

L2(R)

+ T
(
∥ζ∥L∞(R) + q0 +

∥∥ζ ′∥∥
L2(R)

+
∥∥|ζ | − q0

∥∥
L2(R)

)2p+1
]

> 0

(3.33)

and denote by B(0, ρ) the open ball of radius ρ centered at zero in C([0, Tf ]; H 1(R)), 0 <
Tf ≤ T . Then, in order for the map 3 0→ 5[3] to be a contraction in B(0, ρ), we must have 
5[3] ∈ B(0, ρ) whenever 3 ∈ B(0, ρ). In view of estimate (3.32), this first requirement yields 
the following condition for the lifespan Tf :

ρ

2
+ 3 · 22p+ 5

2 γKTf ρ2p+1 ≤ ρ ⇒ Tf ≤ 1

3 · 22p+ 7
2 γKρ2p

. (3.34)

The second requirement which alongside (3.34) guarantees that 3 0→ 5[3] is a contrac-
tion in B(0, ρ) is that ∥5[3] − 5[6]∥C([0,Tf ];H 1(R)) ≤ M ∥3 − 6∥C([0,Tf ];H 1(R)) for all 3, 6 ∈
B(0, ρ) and some constant M < 1. Similarly to (3.30), we have

∥5[3](t) − 5[6](t)∥H 1(R) ≤ 2γ

t∫

0

∥∥GF,3(τ ) − GF,6(τ )
∥∥

H 1(R)
dτ. (3.35)

In order to estimate the H 1 norm on the right-hand side, we first manipulate the difference of 
nonlinearities GF,3 − GF,6 so that a convenient factor of 3 − 6 can be extracted. Noting that

GF,3 − GF,6 =
[
F(|3 + ζ |2) − F(|6 + ζ |2)

]
(3 + ζ ) +

[
F(|6 + ζ |2) − F(q2

0 )
]
(3 − 6)

(3.36)
and recalling the conditions (1.5) for F , we have

∣∣GF,3 − GF,6

∣∣ ≤ K
{(

|3 + ζ |2(p−1) + |6 + ζ |2(p−1)
) ∣∣∣|3 + ζ |2 − |6 + ζ |2

∣∣∣ |3 + ζ |

+
(
|6 + ζ |2p + q

2p
0

)
|3 − 6|

}
.

Thus, observing that

∣∣∣|3 + ζ |2 − |6 + ζ |2
∣∣∣ =

( |3 + ζ | + |6 + ζ | )
∣∣ |3 + ζ | − |6 + ζ |

∣∣

≤
( |3 + ζ | + |6 + ζ | ) |3 − 6| ,

(3.37)

we deduce

∣∣GF,3(x, t) − GF,6(x, t)
∣∣

≤ K
{(

|3 + ζ |2(p−1) + |6 + ζ |2(p−1)
)

(|3 + ζ | + |6 + ζ |) |3 + ζ |

+ |6 + ζ |2p + q
2p
0

}
|3 − 6| .
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In turn, we can estimate the difference of nonlinearities in L2 as follows:

∥∥GF,3 − GF,6

∥∥
L2(R)

≤ K
[(

∥3 + ζ∥2(p−1)
L∞(R)

+ ∥6 + ζ∥2(p−1)
L∞(R)

)(∥3 + ζ∥L∞(R) + ∥6 + ζ∥L∞(R)

)

·∥3 + ζ∥L∞(R) + ∥6 + ζ∥2p
L∞(R)

+ q
2p
0

]
∥3 − 6∥L2(R)

≤ K
[(∥3 + ζ∥L∞(R) + ∥6 + ζ∥L∞(R)

)2p + q
2p
0

]
∥3 − 6∥L2(R)

≤ K
(∥3∥L∞(R) + ∥6∥L∞(R) + 2∥ζ∥L∞(R) + q0

)2p ∥3 − 6∥L2(R)

≤ K
(∥3∥H 1(R) + ∥6∥H 1(R) + 2∥ζ∥L∞(R) + q0

)2p ∥3 − 6∥L2(R) (3.38)

with the last step due to Sobolev embedding.
It remains to also estimate the L2 norm of the derivative ∂x

(
GF,3 − GF,6

)
. This task turns 

out to be more involved due to the appearance of the difference F ′(|3 + ζ |2) − F ′(|6 + ζ |2). 
First, differentiating (3.36) and rearranging appropriately, we have

∂x

(
GF,3 − GF,6

)
=

{
F ′(|3 + ζ |2)

[
(3 + ζ )x

(
3 + ζ

)
+ (3 + ζ )

(
3 + ζ

)
x

]

− F ′(|6 + ζ |2)
[
(6 + ζ )x

(
6 + ζ

)
+ (6 + ζ )

(
6 + ζ

)
x

]}
(3 + ζ )

+
[
F(|3 + ζ |2) − F(|6 + ζ |2)

]
(3 + ζ )x

+ F ′(|6 + ζ |2)
[
(6 + ζ )x

(
6 + ζ

)
+ (6 + ζ )

(
6 + ζ

)
x

]
(3 − 6)

+
[
F(|6 + ζ |2) − F(q2

0 )
]
(3 − 6)x. (3.39)

Therefore, using also the conditions (1.5), the embedding H 1(R) ⊂ L∞(R) and inequality 
(3.37), we obtain

∥∥∂x

(
GF,3 − GF,6

)∥∥
L2(R)

≤
∥∥∥F ′(|3 + ζ |2)

[
(3 + ζ )x

(
3 + ζ

)
+ (3 + ζ )

(
3 + ζ

)
x

]

− F ′(|6 + ζ |2)
[
(6 + ζ )x

(
6 + ζ

)
+ (6 + ζ )

(
6 + ζ

)
x

]∥∥∥
L2(R)

·
(∥3∥H 1(R) + ∥ζ∥L∞(R)

)

+ 22p−1K
(∥3∥H 1(R) + ∥6∥H 1(R) + ∥ζ∥L∞(R)

)2p−1

·
(
∥3∥H 1(R) +

∥∥ζ ′∥∥
L2(R)

)
∥3 − 6∥H 1(R)

+ 2K
(∥6∥H 1(R) + ∥ζ∥L∞(R)

)2p−1
(
∥6∥H 1(R) +

∥∥ζ ′∥∥
L2(R)

)
∥3 − 6∥H 1(R)

+ K
(∥6∥H 1(R) + ∥ζ∥L∞(R) + q0

)2p ∥3 − 6∥H 1(R) . (3.40)

The difference ∥3 − 6∥H 1(R) has conveniently appeared in the last three terms on the right-hand 
side of the above inequality. In order to also extract it from the first term, we use the identity
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u1v1w1 − u2v2w2 = u1v1
(
w1 − w2

)
+ u1w2 (v1 − v2) + v2w2 (u1 − u2)

to express the first of the differences involved in the first term of (3.40) as

F ′(|3 + ζ |2) (3 + ζ )x
(
3 + ζ

)
− F ′(|6 + ζ |2) (6 + ζ )x

(
6 + ζ

)

= F ′(|3 + ζ |2) (3 + ζ )x
(
3 − 6

)
+ F ′(|3 + ζ |2)

(
6 + ζ

)
(3 − 6)x

+ (6 + ζ )x
(
6 + ζ

) [
F ′(|3 + ζ |2) − F ′(|6 + ζ |2)

]
.

In view of this writing and also the properties (1.5) satisfied by F , we find

∥∥∥F ′(|3 + ζ |2) (3 + ζ )x
(
3 + ζ

)
− F ′(|6 + ζ |2) (6 + ζ )x

(
6 + ζ

)∥∥∥
L2(R)

≤
∥∥∥F ′(|3 + ζ |2)

∥∥∥
L∞(R)

∥∥3x + ζ ′∥∥
L2(R) ∥3 − 6∥L∞(R) +

∥∥∥F ′(|3 + ζ |2)
∥∥∥
L∞(R)

∥6 + ζ∥L∞(R)

·
∥∥(3 − 6)x

∥∥
L2(R) +

∥∥(6 + ζ )x
∥∥
L2(R) ∥6 + ζ∥L∞(R)

∥∥∥F ′(|3 + ζ |2) − F ′(|6 + ζ |2)
∥∥∥
L∞(R)

≤ K
(
∥3∥H1(R) + ∥ζ∥L∞(R)

)2(p−1) (
∥3∥H1(R) + ∥6∥H1(R) +

∥∥ζ ′∥∥
L2(R) + ∥ζ∥L∞(R)

)
∥3 − 6∥H1(R)

+
(
∥6∥H1(R) +

∥∥ζ ′∥∥
L2(R)

)(
∥6∥H1(R) + ∥ζ∥L∞(R)

)∥∥∥F ′(|3 + ζ |2) − F ′(|6 + ζ |2)
∥∥∥
L∞(R)

. (3.41)

Furthermore, by symmetry with respect to complex conjugation, the exact same bound is also 
satisfied by the L2 norm of the second difference in the first term of (3.40), i.e.
∥∥∥F ′(|3 + ζ |2) (3 + ζ )

(
3 + ζ

)
x

− F ′(|6 + ζ |2) (6 + ζ )
(
6 + ζ

)
x

∥∥∥
L2(R)

≤ RHS(3.41). (3.42)

Thanks to the bounds (3.41) and (3.42), it suffices to extract the H 1 norm of 3 − 6 from the 
norm

∥∥∥F ′(|3 + ζ |2) − F ′(|6 + ζ |2)
∥∥∥

L∞(R)
. (3.43)

This norm cannot be handled as easily as the L∞ norm of F(|3 + ζ |2) −F(|6 + ζ |2) that arose 
earlier in the L2 estimation of (3.36). Indeed, note in particular that the first of the conditions (1.5)
is not necessarily satisfied by F ′. For example, in the case of power nonlinearity F(x) = xp we 
have F ′(x) = pxp−1 and, unless p ≥ 3

2 , it is not possible to bound the difference |F ′(x) −F ′(y)|
by a factor of 

∣∣√x − √
y
∣∣ (let alone |x −y|), which is the minimum requirement in order to make 

∥3 − 6∥L∞(R) appear in the bound for (3.43). On the other hand, in the case of the saturable 
nonlinearity F(x) = x

κ(1+x) we have

∣∣F ′(x) − F ′(y)
∣∣ = 1

|κ|

∣∣∣∣
1

(1 + x)2 − 1
(1 + y)2

∣∣∣∣ = |2 + x + y|
|κ|(1 + x)2(1 + y)2 |x − y|

! 1
|κ|

(
1

1 + x3 + 1
1 + y3

)
|x − y| ≤ 2

|κ| |x − y| , x, y ≥ 0,

(3.44)

and so it seems possible to control (3.43) by ∥3 − 6∥L∞(R).
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Following the above observations, we revisit the estimation of 
∥∥∂x

(
GF,3 − GF,6

)∥∥
L2(R)

by 
treating the two cases F(x) = x

κ(1+x) (saturable nonlinearity) and F(x) = xp (power nonlinear-
ity) separately.

Contraction estimate for the saturable nonlinearity. In this case, F(x) = x
κ(1+x) and F ′(x) =

1
κ(1+x)2 are uniformly bounded by 1

|κ| for x ≥ 0. In addition, the first of the conditions (1.5) is 

met with K = 1
|κ| and p = 1. Thus, returning to (3.39) and using these uniform bounds along 

with the embedding H 1(R) ⊂ L∞(R) and inequality (3.37) as appropriate, we have

∥∥∂x

(
GF,3 − GF,6

)∥∥
L2(R)

≤
∥∥∥F ′(|3 + ζ |2)

[
(3 + ζ )x

(
3 + ζ

)
+ (3 + ζ )

(
3 + ζ

)
x

]

− F ′(|6 + ζ |2)
[
(6 + ζ )x

(
6 + ζ

)
+ (6 + ζ )

(
6 + ζ

)
x

]∥∥∥
L2(R)

(∥3∥H 1(R) + ∥ζ∥L∞(R)

)

+ 2
|κ|

(∥3∥H 1(R) + ∥6∥H 1(R) + ∥ζ∥L∞(R)

)∥3 − 6∥H 1(R)

(
∥3∥H 1(R) +

∥∥ζ ′∥∥
L2(R)

)

+ 2
|κ|

(∥6∥H 1(R) + ∥ζ∥L∞(R)

)(
∥6∥H 1(R) +

∥∥ζ ′∥∥
L2(R)

)
∥3 − 6∥H 1(R)

+ 2
|κ| ∥3 − 6∥H 1(R) . (3.45)

Notice that the bound (3.44) together with inequality (3.37) imply

∣∣∣F ′(|3 + ζ |2) − F ′(|6 + ζ |2)
∣∣∣ ≤ 2

|κ|
( |3 + ζ | + |6 + ζ | ) |3 − 6| .

Hence, in the saturable case, the norm (3.43) satisfies the inequality
∥∥∥F ′(|3 + ζ |2) − F ′(|6 + ζ |2)

∥∥∥
L∞(R)

≤ 4
|κ|

(∥3∥H 1(R) + ∥6∥H 1(R) + ∥ζ∥L∞(R)

)∥3 − 6∥H 1(R) ,

which can be combined with (3.41) and the fact that p = 1 and K = 1
|κ| to deduce

∥∥∥F ′(|3 + ζ |2) (3 + ζ )x
(
3 + ζ

)
− F ′(|6 + ζ |2) (6 + ζ )x

(
6 + ζ

)∥∥∥
L2(R)

≤ 1
|κ|

[(
∥3∥H 1(R) + ∥6∥H 1(R) +

∥∥ζ ′∥∥
L2(R)

+ ∥ζ∥L∞(R)

)
+ 4

(
∥6∥H 1(R) +

∥∥ζ ′∥∥
L2(R)

)

·
(∥6∥H 1(R) + ∥ζ∥L∞(R)

) (∥3∥H 1(R) + ∥6∥H 1(R) + ∥ζ∥L∞(R)

)]
∥3 − 6∥H 1(R) .

Moreover, by symmetry, the same estimate also holds for the left-hand side of (3.42). Therefore, 
returning to (3.45), we eventually obtain
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∥∥∂x

(
GF,3 − GF,6

)∥∥
L2(R)

≤ 8
|κ|

(
1 + ∥3∥H 1(R) + ∥6∥H 1(R) +

∥∥ζ ′∥∥
L2(R)

+ ∥ζ∥L∞(R)

)4
∥3 − 6∥H 1(R) .

(3.46)

The L2 estimates (3.38) and (3.46) combine to yield the H 1 estimate

∥∥GF,3 − GF,6

∥∥
H 1(R)

≤ 16
|κ|

(
1 + ∥3∥H 1(R) + ∥6∥H 1(R) +

∥∥ζ ′∥∥
L2(R)

+ ∥ζ∥L∞(R) + q0

)4
∥3 − 6∥H 1(R)

which in turn implies, via inequality (3.35),

∥5[3](t) − 5[6](t)∥H 1(R) ≤ 32γ

|κ| t sup
τ∈[0,t]

(
1 + ∥3(τ )∥H 1(R) + ∥6(τ )∥H 1(R) +

∥∥ζ ′∥∥
L2(R)

+ ∥ζ∥L∞(R) + q0

)4
∥(3 − 6)(τ )∥H 1(R) .

Therefore, a sufficient condition for the map 3 0→ 5[3] to be a contraction in the ball B(0, ρ) ⊂
C([0, Tf ]; H 1(R)) is

Tf <
|κ|

32γ
(
1 + 2ρ + ∥ζ ′∥L2(R) + ∥ζ∥L∞(R) + q0

)4 . (3.47)

Observe that (3.47) is a stronger condition than (3.34).

Contraction estimate for the power nonlinearity. By the triangle inequality,

∥∥∂x

(
GF,3 − GF,6

)∥∥
L2(R)

≤
∥∥∥∂x

[
|3 + ζ |2p (3 + ζ ) − |6 + ζ |2p (6 + ζ )

]∥∥∥
L2(R)

+ |q0|2p ∥3 − 6∥H 1(R) . (3.48)

We then invoke the following widely used result, whose proof we include below for complete-
ness.

Lemma 3.3. For any p ≥ 1 and any pair of complex numbers z, z′,

|z|2pz− |z′|2pz′ = (p + 1)

( 1∫

0

|Zλ|2p dλ

)
(
z − z′)+p

( 1∫

0

|Zλ|2(p−1) Z2
λ dλ

)

(z − z′), (3.49)

where Zλ := λz + (1 − λ) z′, λ ∈ [0, 1].

Proof of Lemma 3.3. Letting z = x + iy, x, y ∈ R, we have |z|2pz =
(
x2 + y2)p

x +
i
(
x2 + y2)p

y. For f (x, y) =
(
x2 + y2)p

x, define the function g : [0, 1] → R by g(λ) =
f (λx + (1 − λ)x′, λy + (1 − λ)y′). Then, by the Fundamental Theorem of Calculus,
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(
x2 + y2

)p
x −

(
x′2 + y′2

)p
x′ ≡ f (x, y) − f (x′, y′) ≡ g(1) − g(0) =

1∫

0

dg

dλ
dλ.

Furthermore, by the chain rule, for each (x, y), (x′, y′) ∈ R2 we have

dg

dλ
=

(
x − x′) ∂f

∂x
(λx + (1 − λ)x′,λy + (1 − λ)y′)

+
(
y − y′) ∂f

∂y
(λx + (1 − λ)x′,λy + (1 − λ)y′).

Thus, computing ∂f
∂x (x, y) = 2p

(
x2 + y2)p−1

x2 +
(
x2 + y2)p , ∂f

∂y (x, y) = 2p
(
x2 + y2)p−1

xy

and letting Xλ = λx + (1 − λ) x′, Yλ = λy + (1 − λ) y′ so that Xλ + iYλ = λz+ (1 −λ)z′ =: Zλ, 
we obtain

(
x2 + y2

)p
x −

(
x′2 + y′2

)p
x′ =

⎛

⎝
1∫

0

[
2p |Zλ|2(p−1) X2

λ + |Zλ|2p
]
dλ

⎞

⎠(
x − x′)

+

⎛

⎝
1∫

0

2p |Zλ|2(p−1) XλYλdλ

⎞

⎠(
y − y′) .

In addition, the symmetry in x and y readily implies

(
x2 + y2

)p
y −

(
x′2 + y′2

)p
y′ =

⎛

⎝
1∫

0

[
2p |Zλ|2(p−1) Y 2

λ + |Zλ|2p
]
dλ

⎞

⎠(
y − y′)

+

⎛

⎝
1∫

0

2p |Zλ|2(p−1) XλYλdλ

⎞

⎠(
x − x′) .

The last two equations can be combined to yield

|z|2pz − |z′|2pz′ =
( 1∫

0

|Zλ|2p dλ

)
(
z − z′) + 2p

1∫

0

|Zλ|2(p−1)
[
X2

λ

(
x − x′) + XλYλ

(
y − y′)

+ iYλ

(
y − y′) + iXλYλ

(
x − x′)

]
dλ,

which is the desired expression since, upon completing the square, the quantity inside the square 
bracket on the right-hand side is equal to 1

2Z2
λ (z − z′) + 1

2 |Zλ|2
(
z − z′). !

Returning to (3.48), we employ Lemma 3.3 with z = 3 + ζ and z′ = 6 + ζ , which imply 
Zλ = λ(3 + ζ ) + (1 − λ)(6 + ζ ) = λ3 + (1 − λ)6 + ζ , to obtain
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∥∥∥∂x

[
|3 + ζ |2p (3 + ζ ) − |6 + ζ |2p (6 + ζ )

]∥∥∥
L2(R)

≤ (p + 1)

∥∥∥∥∥∥
∂x

[( 1∫

0

|Zλ|2p dλ

)

(3 − 6)

]∥∥∥∥∥∥
L2(R)

+ p

∥∥∥∥∥∥
∂x

[( 1∫

0

|Zλ|2(p−1) Z2
λ dλ

)

(3 − 6)

]∥∥∥∥∥∥
L2(R)

≤ (p + 1)

1∫

0

∥∥∥∂x

[
|Zλ|2p (3 − 6)

]∥∥∥
L2(R)

dλ

+ p

1∫

0

∥∥∥∂x

[
|Zλ|2(p−1) Z2

λ (3 − 6)
]∥∥∥

L2(R)
dλ

≤ (p + 1) sup
λ∈[0,1]

∥∥∥∂x

[
|Zλ|2p (3 − 6)

]∥∥∥
L2(R)

+ p sup
λ∈[0,1]

∥∥∥∂x

[
|Zλ|2(p−1) Z2

λ (3 − 6)
]∥∥∥

L2(R)
.

Thus, by the product rule,

∥∥∥∂x

[
|3 + ζ |2p (3 + ζ ) − |6 + ζ |2p (6 + ζ )

]∥∥∥
L2(R)

≤ (p + 1) sup
λ∈[0,1]

(∥∥∥∂x

( |Zλ|2p
)
· (3 − 6)

∥∥∥
L2(R)

+
∥∥∥|Zλ|2p (3 − 6)x

∥∥∥
L2(R)

)

+ p sup
λ∈[0,1]

(∥∥∥∂x

( |Zλ|2(p−1) Z2
λ

)
· (3 − 6)

∥∥∥
L2(R)

+
∥∥∥|Zλ|2(p−1) Z2

λ (3 − 6)x

∥∥∥
L2(R)

)
.

(3.50)
The second and fourth norms on the right-hand side of (3.50) are easy to handle as follows:

∥∥∥|Zλ|2p (3 − 6)x

∥∥∥
L2(R)

=
∥∥∥|Zλ|2(p−1) Z2

λ (3 − 6)x

∥∥∥
L2(R)

≤ ∥Zλ∥2p
L∞(R)

∥∥(3 − 6)x
∥∥

L2(R)

≤
(∥3∥H 1(R) + ∥6∥H 1(R) + ∥ζ∥L∞(R)

)2p ∥3 − 6∥H 1(R) .

(3.51)

In order to estimate the first and third norms on the right-hand side of (3.50), we note that

∂x |Zλ|2p = 2p|Zλ|2p−1∂x |Zλ| = 2p|Zλ|2p−2 (∂x |Zλ|) |Zλ|,
∂x |Zλ|2(p−1) = 2(p − 1)|Zλ|2p−3∂x |Zλ| = 2(p − 1)|Zλ|2(p−2) (∂x |Zλ|) |Zλ|.
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Hence, it suffices to compute (∂x |Zλ|) |Zλ|. For this, we observe that ∂x |Zλ|2 = 2|Zλ|∂x |Zλ| and 
so we first compute

|Zλ|2 =λ|3|2 + (1 − λ)2|6|2 + q2
0 + λ(1 − λ)

(
36 + 36

)

+ λ
(
3ζ + 3ζ

)
+ (1 − λ)

(
6ζ + 6ζ

)
,

which upon differentiation yields

2|Zλ|∂x |Zλ| = λ2 (
3x3 + 3x3

)
+ λ(1 − λ)

(
3x6 + 3x6

)
+ λ

(
3x ζ̄ + 3xζ

)

+ λ(1 − λ)
(
36x + 36x

)
+ (1 − λ)2 (

66x + 66x

)
+ (1 − λ)

(
6x ζ̄ + 6xζ

)

+ λ
(
3ζ ′ + 3ζ̄ ′) + (1 − λ)

(
6ζ ′ + 6ζ̄ ′) +

(
ζ ′ζ̄ + ζ̄ ′ζ

)
. (3.52)

Therefore,
∥∥∥∂x

( |Zλ|2p
)
· (3 − 6)

∥∥∥
L2(R)

≤ 2p ∥3 − 6∥L∞(R)

∥∥∥|Zλ|2(p−1) (∂x |Zλ|) |Zλ|
∥∥∥

L2(R)

≤ p ∥3 − 6∥L∞(R) ∥Zλ∥2(p−1)
L∞(R)

[∥∥3x3 + 3x3
∥∥

L2(R)
+

∥∥3x6 + 3x6
∥∥

L2(R)

+
∥∥3x ζ̄ + 3xζ

∥∥
L2(R)

+
∥∥36x + 36x

∥∥
L2(R)

+
∥∥66x + 66x

∥∥
L2(R)

+
∥∥6x ζ̄ + 6xζ

∥∥
L2(R)

+
∥∥3ζ ′ + 3ζ̄ ′∥∥

L2(R)
+

∥∥6ζ ′ + 6ζ̄ ′∥∥
L2(R)

+
∥∥ζ ′ζ̄ + ζ̄ ′ζ

∥∥
L2(R)

]

≤ 2p ∥3 − 6∥L∞(R) ∥Zλ∥2(p−1)
L∞(R)

(∥3∥L∞(R) + ∥6∥L∞(R) + ∥ζ∥L∞(R)

)

·
(
∥3x∥L2(R) + ∥6x∥L2(R) +

∥∥ζ ′∥∥
L2(R)

)
(3.53)

hence, noting that |Zλ| ≤ |3| + |6| + |ζ | and using the embedding H 1(R) ⊂ L∞(R), we obtain 
the following bound for the first norm on the right-hand side of (3.50):
∥∥∥∂x

( |Zλ|2p
)
· (3 − 6)

∥∥∥
L2(R)

≤ 2p ∥3 − 6∥H 1(R)

(∥3∥H 1(R) + ∥6∥H 1(R) + ∥ζ∥L∞(R)

)2p−1

·
(
∥3∥H 1(R) + ∥6∥H 1(R) +

∥∥ζ ′∥∥
L2(R)

)
. (3.54)

Proceeding to the third norm on the right-hand side of (3.50), we have
∥∥∥∂x

( |Zλ|2(p−1) Z2
λ

)
· (3 − 6)

∥∥∥
L2(R)

≤ ∥3 − 6∥L∞(R)

∥∥∥∂x

( |Zλ|2(p−1) Z2
λ

)∥∥∥
L2(R)

≤ ∥3 − 6∥L∞(R)

[∥∥∥2(p − 1) |Zλ|2(p−2) |Zλ| (∂x |Zλ|)Z2
λ

∥∥∥
L2(R)

+
∥∥∥|Zλ|2(p−1) · 2Zλ (∂xZλ)

∥∥∥
L2(R)

]

≤ ∥3 − 6∥L∞(R)

[
(p − 1)∥Zλ∥2(p−1)

L∞(R)
∥2|Zλ| (∂x |Zλ|)∥L2(R)

143



D. Hennig, N.I. Karachalios, D. Mantzavinos et al. Journal of Differential Equations 397 (2024) 106–165

+2∥Zλ∥2p−1
L∞(R)

∥∂xZλ∥L2(R)

]
.

The first of the L2 norms on the right-hand side can be handled along the lines of (3.53). For the 
second L2 norm, we have

∥∂xZλ∥L2(R) =
∥∥λ3x + (1 − λ)6x + ζ ′∥∥

L2(R)
≤ ∥3∥H 1(R) + ∥6∥H 1(R) +

∥∥ζ ′∥∥
L2(R)

.

Thus, using once again the embedding H 1(R) ⊂ L∞(R), we obtain the bound

∥∥∥∂x

( |Zλ|2(p−1) Z2
λ

)
· (3 − 6)

∥∥∥
L2(R)

≤ 2p ∥3 − 6∥H 1(R)

(∥3∥H 1(R) + ∥6∥H 1(R) + ∥ζ∥L∞(R)

)2p−1

·
(
∥3∥H 1(R) + ∥6∥H 1(R) +

∥∥ζ ′∥∥
L2(R)

)
. (3.55)

Overall, the bounds (3.51), (3.54) and (3.55) combine with inequality (3.50) to yield

∥∥∥∂x

[
|3 + ζ |2p (3 + ζ ) − |6 + ζ |2p (6 + ζ )

]∥∥∥
L2(R)

≤ (2p + 1)2
(
∥3∥H 1(R) + ∥6∥H 1(R) + ∥ζ∥L∞(R) +

∥∥ζ ′∥∥
L2(R)

)2p
∥3 − 6∥H 1(R)

which together with inequality (3.48) implies

∥∥∂x

(
GF,3 − GF,6

)∥∥
L2(R)

≤ (2p + 1)2
(
∥3∥H 1(R) + ∥6∥H 1(R) + ∥ζ∥L∞(R) +

∥∥ζ ′∥∥
L2(R)

+ q0

)2p
∥3 − 6∥H 1(R) .

(3.56)
Hence, in view of the L2 estimate (3.38), we have

∥∥GF,3 − GF,6

∥∥
H 1(R)

≤
[
22p+1p + (2p + 1)2

] (∥3∥H 1(R) + ∥6∥H 1(R)

+∥ζ∥L∞(R) +
∥∥ζ ′∥∥

L2(R)
+ q0

)2p
· ∥3 − 6∥H 1(R) .

In turn, inequality (3.35) yields

∥5[3](t) − 5[6](t)∥H 1(R) ≤ 2γ
[
22p+1p + (2p + 1)2

]
t

· sup
τ∈[0,t]

[(
∥3(τ )∥H 1(R) + ∥6(τ )∥H 1(R)

+ ∥ζ∥L∞(R) +
∥∥ζ ′∥∥

L2(R)
+ q0

)2p
∥(3 − 6)(τ )∥H 1(R)

]
,

which ensures that 5 is a contraction in the ball B(0, ρ) ⊂ C([0, Tf ]; H 1(R)) provided that
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Tf <
1

2γ
[
22p+1p + (2p + 1)2] (

2ρ + ∥ζ∥L∞(R) + ∥ζ ′∥L2(R) + q0
)2p

. (3.57)

The proof of the local H 1 existence Theorem 3.1 is complete. !

Remark 3.1. The bounds (3.47) and (3.57) for the lifespan Tf get larger as the norms 
∥30∥H 1(R), ∥ζ∥L∞(R), 

∥∥ζ ′∥∥
L2(R)

, 
∥∥|ζ | − q0

∥∥
L2(R)

and the background q0 get smaller. This 
is consistent with the fact that, when all of these quantities are small, the problem heuristically 
approximates the one with zero boundary conditions, for which global existence is ensured for all 
p ≥ 1 and sufficiently small initial data according to the known results of Theorem 2.1. Specif-
ically, when ζ = q0 = 0 and 1 ≤ p < 2, the arguments of Theorem 3.1 provide the first step 
towards establishing global existence of solutions satisfying the size estimate (2.2). In particular, 
this first step implies local existence of solutions satisfying (2.2). This result is then extended to 
global existence by employing appropriate conservation laws, which are useful in the context of 
zero boundary conditions unlike the case of nonzero boundary conditions (see discussion in the 
next section).

Closeness estimates for finite times. Combining the closeness estimates (3.22) and (3.26) with 
the local existence result of Theorem 3.1, we arrive at the following analogue of Theorem 1.1 for 
the case of nonzero boundary conditions at infinity.

Theorem 3.2 (Theorem 1.1 for the nonzero boundary conditions (3.1)). Consider the modified 
NLS equations (3.11) and (3.12) with initial data φ0, 30 ∈ H 1(R) given by (3.13) and the bound-

ary conditions (3.14), in the case of either the saturable nonlinearity F(x) = x

κ(1 + x)
or the 

power nonlinearity F(x) = xp with p ≥ 1.

(i) L2 closeness: Given 0 < ε < 1, suppose that the initial data satisfy

∥φ0 − 30∥L2(R) ≤ Cε3, (3.58)

∥φ0∥H 1(R) ≤ c0 ε, ∥30∥H 1(R) ≤ C0 ε (3.59)

for some constants C, c0, C0 > 0. In addition, suppose that the nonzero background de-
scribed by the function ζ ∈ X1(R) satisfies

q0 ≤ Bε, ∥ζ∥L∞(R) ≤ B0ε,
∥∥ζ ′∥∥

L2(R)
≤ B1ε,

∥∥|ζ | − q0
∥∥

L2(R)
≤ B2ε (3.60)

for some constants B, B0, B1, B2 > 0. Then, there exists a finite time Tc ∈
[
0, Tf

]
, where 

Tf is the lifespan of solutions to the non-integrable NLS equation (3.12) from Theorem 3.1, 
and a constant C̃ = C̃(µ, γ , c0, C0, C, B, B0, B1, B2, Tc) such that the solutions φ(x, t)
and 3(x, t) satisfy the closeness estimate

sup
t∈[0,Tc]

∥φ(t) − 3(t)∥L2(R) ≡ sup
t∈[0,Tc]

∥∥∥e−iµq2
0 t u(t) − e−iγF(q2

0 )tU(t)
∥∥∥

L2(R)
≤ C̃ε3. (3.61)

(ii) H 1 and L∞ closeness: If the initial data φ0, 30 satisfy (3.59) along with the stronger con-
dition (in place of (3.58))
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∥φ0 − 30∥H 1(R) ≤ C1ε
3 (3.62)

for some constant C1 > 0 and, in addition, (3.60) holds, then there exists a constant C̃1
depending on C1 and with a similar dependency on Tc and µ, γ , c0, C0, B0, B1, B2 as the 
constant C̃ in (3.61) such that

sup
t∈[0,Tc]

∥φ(t) − 3(t)∥H 1(R) ≡ sup
t∈[0,Tc]

∥∥∥e−iµq2
0 t u(t) − e−iγF(q2

0 )tU(t)
∥∥∥

H 1(R)
≤ C̃1ε

3.

(3.63)
Consequently, there exists a constant C̃2 with similar dependencies as C̃1 such that

sup
t∈[0,Tc]

∥φ(t) − 3(t)∥L∞(R) ≡ sup
t∈[0,Tc]

∥∥∥e−iµq2
0 t u(t) − e−iγF(q2

0 )tU(t)
∥∥∥

L∞(R)
≤ C̃2ε

3.

(3.64)

Proof. We only give the details for part (ii), as part (i) can be established similarly. The solutions 
to the modified cubic NLS equation (3.11) exist globally in time with φ ∈ C([0, ∞); H 1(R)). 
On the other hand, thanks to Theorem 3.1, the solutions to the modified general NLS equation 
exist at least locally with 3 ∈ C([0, Tf ]; H 1(R)). Consider both solutions on the time interval 
[0, Tf ] and suppose that the conditions (3.59) are met. Then, since both solutions belong to 
C([0, Tf ]; H 1(R)), by continuity there exist T1, T2 ∈ [0, Tf ] associated with the solutions φ, 3
of the integrable and non-integrable NLS equations, respectively, such that

∥φ(t)∥H 1(R) ≤ c̃0 ε ∀t ∈ [0, T1],
∥3(t)∥H 1(R) ≤ C̃0 ε ∀t ∈ [0, T2],

(3.65)

for some constants c̃0, C̃0 > 0 independent of t ∈ [0, T1] and t ∈ [0, T2], respectively. Let 
Tc := min {T1, T2}. Then, estimates (3.65) hold for all t ∈ [0, Tc] and can be combined with 
the closeness estimate (3.26) to imply

∥∥'̃(t)
∥∥

H 1(R)
≤ M1Tc ε2p+1 + M2 ε2p+1 + M3 ε3, (3.66)

for some constants Mj(µ, γ , C1, B0, B1, B2), j = 1, 2, 3 and all t ∈ [0, Tc] (recall that for the 
saturable nonlinearity p = 1, while for the power nonlinearity p ≥ 1). !

Remark 3.2. The fact that the NLS solutions belong to C([0, Tf ]; H 1(R)) is crucial, since it 
allows us to establish that solutions starting from initial data that satisfy the smallness conditions 
(3.59) remain small in the sense of the bounds (3.65), at least for short times. Such an argument 
could not be implemented for solutions that are not continuous with respect to time, e.g. for 
solutions belonging in a weaker class such as L2([0, Tf ]; H 1(R)).

Moreover, estimates (3.61), (3.63) and (3.64) highlight that the rotations e−iµq2
0 t and 

e−iγF(q2
0 )t are necessary in order to establish the closeness between the solutions of the orig-

inal NLS equations (1.3) and (1.9) or (1.10) in the case of the nonzero boundary conditions (3.1). 
Indeed, these rotations are the result of converting the non-vanishing conditions (3.1) into van-
ishing ones via the changes of variables (3.6) and (3.10), which lead to the modified problems 

146



D. Hennig, N.I. Karachalios, D. Mantzavinos et al. Journal of Differential Equations 397 (2024) 106–165

(3.11) and (3.12), respectively. For the importance of rotations in the context of orbital stabil-
ity of standing waves in the case of the vanishing boundary conditions, we refer the reader to 
Remark 8.3.4 on page 274 of [13].

4. The case of a finite interval

In this section, we examine the proximity question for initial-boundary value problems for-
mulated on a finite interval. The impact of our results is twofold. On the one hand, they provide 
analytical justification for the forthcoming numerical simulations, in which the real line is ap-
proximated by finite domains. On the other hand, they shed light on the finite domain problem, 
which is interesting on its own right especially in the context of global existence of solutions. 
In that direction, we identify major differences between the case of general nonzero boundary 
conditions and the case of periodic conditions.

Nonzero boundary conditions on a finite interval. Consider the integrable and non-integrable 
NLS equations (1.3) and (1.4) on the finite interval I = (−L, L), L > 0, supplemented with the 
boundary conditions (we use the limit notation in order to illustrate the motivation of studying 
this problem as a finite domain approximation to the one on R)

lim
x→±L

u(x, t) = lim
x→±L

eiµq2
0 tζ(x), lim

x→±L
U(x, t) = lim

x→±L
eiγF(q2

0 )tζ(x), t ≥ 0, (4.1)

where the function ζ satisfies

ζ ∈ X1(I ), lim
x→±L

ζ(x) = ζ± ∈C, |ζ±| = q0 > 0, lim
x→±L

ζ ′(x) = 0, (4.2)

with X1(I ) denoting the Zhidkov space on the interval I , defined analogously to (3.2). In view 
of (4.1) and (4.2), limx→±L |u(x, t)| = limx→±L |U(x, t)| = q0, t ≥ 0. Thus, making the changes 
of variables (3.6) and (3.10), we obtain the modified NLS equations (3.11) and (3.12) with zero 
Dirichlet boundary conditions on I , namely

lim
x→±L

φ(x, t) = lim
x→±L

3(x, t) = 0, t ≥ 0. (4.3)

In the rest of this section, we confine our analysis to the case of the power nonlinearity

i3t + ν (3 + ζ )xx + γ
( |3 + ζ |2p − q

2p
0

)
(3 + ζ ) = 0, p ≥ 1. (4.4)

The case of the saturable nonlinearity can be handled similarly. Defining the Sobolev space 
H 2

0 (I ) as the closure of C∞
c (I ) in H 2(I ), which can be characterized by

H 2
0 (I ) =

{
f ∈ H 2(I ) : f (±L) = f ′(±L) = 0

}
(e.g. see [44]), we begin with the following re-

sult.

Lemma 4.1. Let ζ satisfy (4.2) and 30 ∈ H 2
0 (I ). Then, there exists Tmax > 0 (possibly infinite) 

such that the modified NLS equation (4.4) supplemented with the initial condition 3(x, 0) =
30(x) and the zero Dirichlet boundary conditions (4.3) has a unique solution 3(t) ∈ H 2

0 (I ), 
t ∈ [0, Tmax).
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The proof of Lemma 4.1 follows by adapting the proofs of the existence result given in Theo-
rem 3.1 and the regularity result given in Theorem 4.1 of [28] to the focusing regime considered 
here. We remark that, in the defocusing regime with power nonlinearity considered in [28], global 
existence can be proved for the problem in higher dimensional setups for general bounded or 
unbounded domains 8 ⊆ RN , N ≥ 1. In [28], Galerkin approximations are combined with an 
approximative domain expansion scheme for the original domain 8. This is achieved by in-
troducing suitable extension/restriction operators and cutoff functions; for further details and 
illustrative examples, we also refer the reader to [27]. The existence of global in time solutions in 
the defocusing regime is proved via suitable versions of Trudinger/Gagliardo–Nirenberg inequal-
ities establishing existence for arbitrary time intervals through non-uniform in time estimates and 
continuation for all t ∈R, while regularity of solutions is proved by estimates derived by a com-
bination of multivariate Faá di Bruno formulas and Gagliardo–Nirenberg type inequalities. On 
the other hand, in the focusing regime considered here, global existence is established at a later 
stage, unconditionally for 1 ≤ p < 2 and with appropriate smallness conditions on the data and 
the size of I when p = 2 (see Remark 4.1 and Theorem 4.1 below).

The next result provides a conservation law involving the L2 norm of the solution of (3.12).

Proposition 4.1. Suppose that the hypothesis of Lemma 4.1 holds true and consider the func-
tional

P[3(t)] := 1
2

∥3(t)∥2
L2(I )

+ Re
∫

I

3(x, t)ζ(x)dx. (4.5)

Then, for every t ∈ [0, Tmax), we have the conservation law

P[3(t)] = P[30]. (4.6)

Proof. Multiplying equation (4.4) by 3 + ζ and taking the imaginary part of the resulting ex-
pression, we have

−Re
(
3t3

)
− Re

(
3tζ

)
+ νIm

[
(3 + ζ )xx(3 + ζ )

]
= 0.

Then, integrating over I and employing integration by parts, we obtain

− 1
2

d

dt
∥3(t)∥2

L2(I )
− d

dt
Re

∫

I

3(t)ζdx

+ νIm
[
(3 + ζ )x

(
3 + ζ

)]L
−L

− νIm
∫

I

∣∣(3 + ζ )x
∣∣2

dx = 0.

Thus, in view of the conditions (4.2) and the fact that 3 ∈ H 2
0 (I ), we arrive at the desired re-

sult. !

Note that, under the assumption ζ ∈ X1(R), the conservation law (4.6) is also valid on I = R. 
In the case of the bounded interval I = (−L, L), (4.6) provides uniform in time L2 estimates. In 
particular, we have
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Proposition 4.2. Suppose that the hypothesis of Lemma 4.1 holds true and let 30 ∈ H 2
0 (I ). Then, 

the unique local solution 3(t) ∈ H 2
0 (I ) of equation (4.4) with the initial condition 3(x, 0) =

30(x) and the zero boundary conditions (4.3) is uniformly bounded in L2(I ) for all t ∈ [0, Tmax), 
satisfying the estimate

sup
t∈[0,Tmax)

∥3(t)∥2
L2(I )

≤ ∥30∥2
L2(I )

+ L∥ζ∥L∞(I ) . (4.7)

Proof. By the conservation law (4.6), for each t ∈ [0, Tmax) we have

1
2

∥3(t)∥2
L2(I )

+ Re
∫

I

3(x, t)ζ(x)dx = 1
2

∥30∥2
L2(I )

+ Re
∫

I

30(x)ζ(x)dx. (4.8)

By the Cauchy-Schwarz inequality and the fact that 2ab ≤ a2 + b2 for any a, b ∈ R, the second 
term of the left-hand side of (4.8) admits the estimate

∣∣∣∣∣∣

∫

I

3(x, t)ζ(x)dx

∣∣∣∣∣∣
≤ ∥ζ∥L∞(I )

∫

I

|3(x, t)|dx

≤
√

2L∥ζ∥L∞(I ) ∥3(t)∥L2(I ) ≤ 1
4

∥3(t)∥2
L2(I )

+ 2L∥ζ∥2
L∞(I ) .

(4.9)

Similarly,

∣∣∣∣∣∣

∫

I

30(x)ζ(x)dx

∣∣∣∣∣∣
≤ 1

4
∥30∥2

L2(I )
+ 2L∥ζ∥2

L∞(I ) . (4.10)

Combining (4.9) and (4.10) with (4.8) and the triangle inequality yields the uniform in time 
estimate (4.7). !

Importantly, the proof of Proposition (4.2) given above is not valid when I = R. In the case 
of the bounded domain I = (−L, L), where that proposition is valid, it can be used to infer 
global existence of solutions at the level of H 1

0 (I ). In order to prove this result, we consider 
the following energy functional E : H 1

0 (I ) → R, along the lines of Section 2.2 in [28] but now 
adapting the definition to the focusing regime:

E [3(t);q0,p, ζ ] := 1
2

∥(3(t) + ζ )x∥2
L2(I )

− G [3(t);q0,p, ζ ] , (4.11)

where the functional G : H 1
0 (I ) → R is defined by

G [3(t);q0,p, ζ ] :=
∫

I

V (|3(x, t) + ζ(x)| ;q0,p) dx,

V (f ;q0,p) = 1
2p + 2

f 2p+2 − 1
2
q

2p
0 f 2 + p

2p + 2
q

2p+2
0 .

(4.12)
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For the local in time H 2
0 (I ) solutions of Lemma 4.1, the energy functional E is conserved:

Proposition 4.3. Suppose that the hypothesis of Lemma 4.1 holds true and let 30 ∈ H 2
0 (I ). Then, 

the unique local solution 3(t) ∈ H 2
0 (I ) of equation (4.4) supplemented with the initial condition 

3(x, 0) = 30(x) and the boundary conditions (4.3) conserves the energy functional E defined 
by (4.11), i.e.

E [3(t);q0,p, ζ ] = E [30;q0,p, ζ ] , t ∈ [0, Tmax). (4.13)

Proof. The proof is similar to the one of Proposition 4.1. In particular, thanks to the regularity 
of the local solution, (4.13) can be derived by multiplying (4.4) by (3 + ζ )x and integrating over 
I , now keeping the real parts of the resulting expression. !

Remark 4.1. In the defocusing regime, the negative sign in front of G in (4.11) changes to a 
positive one and hence, since V : [0, ∞) → [0, ∞) (this can be shown via calculus techniques), 
thanks to the conservation law (4.13), the first term in (4.11) can be controlled by the value of 
E at t = 0. Then, by continuation in time, Tmax can be extended to infinity for all initial data 
in H 2

0 (I ) with the improvement in comparison to [28], that the estimates are uniform in time. 
On the other hand, due to the negative sign in (4.11), this argument cannot be employed in the 
focusing case considered here. Instead, we also need the uniform bounds of Proposition 4.2 at 
the L2 level.

We remark that, as shown in [28], Proposition (4.3) is also valid when I = R and ζ is in the 
general Zhidkov space Xm(R) :=

{
ζ ∈ L∞(R) : ∂j ζ ∈ L2(R), j = 1, . . . ,m

}
for some m ≥ 1. 

For simplicity, we shall hereafter denote the functionals E [3(t);q0,p, ζ ] and G [3(t);q0,p, ζ ]
by E [3] and G [3] respectively. The next result can be proved via estimates that are very similar 
to those involved in the proof of Theorem 3.1 (see also Proposition 2.3 in [28]).

Lemma 4.2. Let ϕ, ψ ∈ H 1
0 (I ) and p ∈ N . Then, there exist a constant C1

(∥ζ∥L∞(I )

)
=

O
(∥ζ∥2p+2

L∞(I )

)
such that the functional G given by (4.12) satisfies the inequality

∣∣G [ϕ] − G [ψ]
∣∣ ≤ C1

∫

I

(
|ϕ|2p+1 + |ψ |2p+1 +

∣∣ |ζ | − q0
∣∣
)

|ϕ − ψ |dx. (4.14)

We are now ready to proceed to the proof of global existence of solutions at the level of the 
H 1

0 (I ) norm.

Theorem 4.1. Suppose that the hypothesis of Lemma 4.1 holds true and let 30 ∈ H 2
0 (I ). Then, 

under appropriate smallness conditions when p = 2 (see (4.15) below), the unique local solution 
3(t) ∈ H 2

0 (I ) of equation (4.4) supplemented with the initial condition 3(x, 0) = 30(x) and the 
boundary conditions (4.3) exists globally in H 1

0 (I ). In particular,

(i) If 1 ≤ p < 2, then 3(t) is uniformly bounded in H 1
0 (I ), unconditionally with respect to the 

size of the L2(I ) norm of the initial data.
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(ii) If p = 2, then there exists a constant C
(
p, ∥ζ∥L∞(I )

)
= O

(∥ζ∥2p+2
L∞(I )

)
such that if

L <
1

∥ζ∥L∞(I )

(
1

4C

) 2
p+2

, ∥30∥2
L2(I )

<

(
1

4C

) 2
p+2

− L∥ζ∥L∞(I ) (4.15)

then 3(t) is uniformly bounded in H 1
0 (I ).

Proof. If Tmax in Lemma 4.1 is infinite, then we are done. Otherwise, if Tmax is finite, then in 
order for the solution to exist only locally in H 1

0 (I ) it must be that limt→Tmax ∥3(t)∥H 1(I ) = ∞. 
However, below we show that supt∈[0,Tmax)

∥3(t)∥H 1(I ) < C(30, ζ, q0, p, L) < ∞, reaching a 
contradiction. Of course, it could be that limt→Tmax ∥3xx(t)∥L2(I ) = ∞, which is why we do not 
claim global existence in H 2

0 (I ), i.e. we do not claim that Tmax = ∞ in Lemma 4.1 but only at 
the level of the H 1

0 (I ) norm.
We begin by noting that the norm ∥3(t)∥L2(I ) is uniformly bounded in t thanks to (4.7). Thus, 

we only need to consider ∥3x(t)∥L2(I ). Suppressing the dependence on t , by the conservation 
law (4.13)

1
2

∥∥3x + ζ ′∥∥2
L2(I )

= 1
2

∥∥30x + ζ ′∥∥2
L2(I )

+ G [3] − G [30] .

Then, employing inequality (4.14) with ϕ = 3 and ψ = 30, we obtain

1
2

∥∥3x + ζ ′∥∥2
L2(I )

≤1
2

∥∥30x + ζ ′∥∥2
L2(I )

+ C1

∫

I

(
|3|2p+1 + |30|2p+1 +

∣∣|ζ | − q0
∣∣
)

|3 − 30|dx. (4.16)

By the triangle inequality, the second term on the right-hand side of (4.16) can be bounded by

∫

I

|3|2p+2dx +
∫

I

|3|2p+1|30|dx +
∫

I

|30|2p+1|3|dx

+
∫

I

|30|2p+2dx +
∫

I

∣∣|ζ | − q0
∣∣|3|dx +

∫

I

∣∣|ζ | − q0
∣∣|30|dx.

(4.17)

For the first term in (4.17), we employ the Gagliardo-Nirenberg inequality (2.26) with 2p + 2
in place of p, j = 0, q = r = 2 and m = 1 (so that θ = p

2p+2 ) to infer

C1

∫

I

|3|2p+2dx ≤ C2 ∥3∥p+2
L2(I )

∥3x∥p

L2(I )
(4.18)

where the constant C2 depends only on ζ and p. Note that the constant in the Gagliardo-
Nirenberg inequality is independent of the domain I , i.e. it is independent of L. For the second 
term in (4.17), we first apply Hölder’s inequality with p′ = 2p+2

2p+1 > 1 and q ′ = 2p + 2 (so that 
1
p′ + 1

q ′ = 1) and then Young’s product inequality for the same choice of p′ and q ′ to obtain
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∫

I

|3|2p+1|30|dx ≤∥3∥2p+1
L2p+2(I )

∥30∥L2p+2(I )

≤2p + 1
2p + 2

∥3∥2p+2
L2p+2(I )

+ 1
2p + 2

∥30∥2p+2
L2p+2(I )

so that via (4.18) we find

C1

∫

I

|3|2p+1|30|dx ≤ C3 ∥3∥p+2
L2(I )

∥3x∥p

L2(I )
+ C4 ∥30∥2p+2

L2p+2(I )
. (4.19)

We note that C3, C4 = O
(∥ζ∥2p+2

L∞(I )

)
similarly to C1. For the third term in (4.17), the Cauchy-

Schwarz inequality yields
∫

I

|30|2p+1|3|dx ≤ ∥3∥L2(I ) ∥30∥2p+1
L4p+2(I )

. (4.20)

The fourth term in (4.17) is analogous to the first one. For the fifth term we recall that according 
to (4.2) we have limx→±L(|ζ | − q0) = 0 and |ζ | − q0 ∈ L2(I ) and so by the Cauchy-Schwarz 
inequality

∫

I

∣∣|ζ | − q0
∣∣|3|dx ≤

∥∥|ζ | − q0
∥∥

L2(I )
∥3∥L2(I ) , (4.21)

with the sixth and final term in (4.17) admitting an analogous estimate.
In view of (4.17) and of the estimates (4.18)-(4.21), inequality (4.16) becomes

1
2

∥∥3x + ζ ′∥∥2
L2(I )

≤ 1
2

∥∥30x + ζ ′∥∥2
L2(I )

+ C4 ∥30∥2p+2
L2p+2(I )

+ C1 ∥3∥L2(I ) ∥30∥2p+1
L4p+2(I )

+ C2 ∥30∥p+2
L2(I )

∥30x∥p

L2(I )
+ C5 ∥3∥p+2

L2(I )
∥3x∥p

L2(I )

+ C1
∥∥|ζ | − q0

∥∥
L2(I )

∥3∥L2(I ) + C1
∥∥|ζ | − q0

∥∥
L2(I )

∥30∥L2(I ) (4.22)

where C5 = O
(∥ζ∥2p+2

L∞(I )

)
similarly to C1.

At this point, the uniform in time estimate (4.7) comes into play (recall that this estimate is 
not valid on R, which is why we only claim global existence on the finite interval I ). Letting

R2 = R2(∥30∥L2(I ) ,∥ζ∥L∞(I ) ,L
)
:= ∥30∥2

L2(I )
+ L∥ζ∥L∞(I ) ,

we combine (4.7) with (4.22) to deduce

sup
t∈[0,Tmax)

∥∥3x(t) + ζ ′∥∥2
L2(I )

≤
∥∥30x + ζ ′∥∥2

L2(I )
+ 2C4 ∥30∥2p+2

L2p+2(I )
+ 2C1R ∥30∥2p+1

L4p+2(I )

+ 2C2 ∥30∥p+2
L2(I )

∥30x∥p

L2(I )
+ 2C5R

p+2 sup
t∈[0,Tmax)

∥3x(t)∥p

L2(I )

+ 2C1
∥∥|ζ | − q0

∥∥
L2(I )

(
R + ∥30∥L2(I )

)
.
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Thus, in view of the inequality ∥3x∥2
L2(I )

≤ 2 
∥∥3x + ζ ′∥∥2

L2(I )
+ 2 

∥∥ζ ′∥∥2
L2(I )

,

sup
t∈[0,Tmax)

∥3x(t)∥2
L2(I )

≤ 2
∥∥30x + ζ ′∥∥2

L2(I )
+ 4C4 ∥30∥2p+2

L2p+2(I )
+ 4C1R ∥30∥2p+1

L4p+2(I )

+ 4C2 ∥30∥p+2
L2(I )

∥30x∥p

L2(I )
+ 4C1

∥∥|ζ | − q0
∥∥

L2(I )

(
R + ∥30∥L2(I )

)

+ 2
∥∥ζ ′∥∥2

L2(I )
+ 4C5R

p+2 sup
t∈[0,Tmax)

∥3x(t)∥p

L2(I )
. (4.23)

Note that the various Lebesgue norms on the right-hand side can be controlled by the L∞(I )

norm (and hence by the H 1
0 (I ) norm) due to the crucial fact that we are working on the finite 

domain I .
In the subcritical case 1 ≤ p < 2, dividing (4.23) by supt∈[0,Tmax)

∥3x(t)∥p

L2(I )
we obtain

sup
t∈[0,Tmax)

∥3x(t)∥2−p

L2(I )

≤ 4C5R
p+2 + 1

supt∈[0,Tmax)
∥3x(t)∥p

L2(I )

[
2
∥∥30x + ζ ′∥∥2

L2(I )

+ 4C4 ∥30∥2p+2
L2p+2(I )

+ 4C1R ∥30∥2p+1
L4p+2(I )

+ 4C2 ∥30∥p+2
L2(I )

∥30x∥p

L2(I )

+ 4C1
∥∥|ζ | − q0

∥∥
L2(I )

(
R + ∥30∥L2(I )

)
+ 2

∥∥ζ ′∥∥2
L2(I )

]
, (4.24)

which shows that supt∈[0,Tmax)
∥3x(t)∥L2(I ) < ∞ and hence implies global existence in H 1

0 (I ). 
Indeed, if supt∈[0,Tmax)

∥3x(t)∥L2(I ) = ∞ then, due to the fact that 2 − p > 0 and p > 0, (4.24)
leads to the contradiction ∞ ≤ 4C5R

p+2. Thus, part (i) of the theorem has been proved.
In the critical case p = 2, (4.23) can be rearranged to yield the uniform bound

(
1 − 4C5R

4
)

sup
t∈[0,Tmax)

∥3x(t)∥2
L2(I )

≤ 2
∥∥30x + ζ ′∥∥2

L2(I )
+ 4C4 ∥30∥6

L6(I )
+ 4C1R ∥30∥5

L10(I )
+ 4C2 ∥30∥4

L2(I )
∥30x∥2

L2(I )

+ 4C1
∥∥|ζ | − q0

∥∥
L2(I )

(
R + ∥30∥L2(I )

)
+ 2

∥∥ζ ′∥∥2
L2(I )

(4.25)

and so we once again deduce supt∈[0,Tmax)
∥3x(t)∥L2(I ) < ∞, but now provided that 1 −

4C5R
p+2 > 0, which is precisely the second condition in (4.15) (note that this condition is real-

izable thanks to the first condition in (4.15)). This implies global well-posedness in H 1
0 (I ) and 

hence completes the proof of part (ii) of the theorem with C = C5 (which depends only on p and 
∥ζ∥L∞(I )). !

We remark that if p > 2 then neither of the two arguments used in the proof of Theorem 4.1
works. Theorem 4.1 has the following implication concerning the proximity of solutions to the 
integrable and non-integrable NLS equations in the case of a finite domain.
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Theorem 4.2 (Theorem 1.1 for the finite interval). Given 0 < ε < 1, suppose that the hypothesis 
of Theorem 3.2 with the relevant norms over R replaced with their counterparts over the finite 
interval I = (−L, L) holds true. If L = O

( 1
ε

)
, then the closeness estimates of Theorem 3.2 are 

valid on I for arbitrary 0 < Tf < ∞.

Proof. Since ∥ζ∥L∞(I ) = O(ε) and L = O
( 1

ε

)
by hypothesis, the second condition in (4.15) is 

satisfied for sufficiently small initial data such that ∥30∥L2(I ) = O(ε) and thus we can invoke 
the global existence result of Theorem 4.1. In particular, we may assume that ∥30∥H 1

0 (I ) = O(ε)

so that the form of the right-hand side of estimates (4.24) and (4.25) guarantees (at least) 
∥3(t)∥H 1

0 (I ) = O(ε). Then, assuming also the condition (3.62) on the H 1(I ) distance between 
the initial data of the integrable and non-integrable models, we can derive the closeness estimates 
exactly as in the proof of Theorem 3.2. Now, however, thanks to the global existence result of 
Theorem 4.1, we can replace Tc by any arbitrary finite time 0 < Tf < ∞. !

The periodic problem. We turn our attention to the periodic Cauchy problem, namely to the 
case where the integrable and non-integrable NLS equations (1.3) and (1.4) are supplemented 
with the periodic boundary conditions

u(−L, t) = u(L, t), U(−L, t) = U(L, t), t ≥ 0. (4.26)

Importantly, the counterpart of Theorem 2.1 for the periodic conditions (4.26), which guaran-
tees global solutions at the level of the H 1 norm with the same estimate as (2.2), is proved in 
Theorem 2.1 of [42]. With this global existence result in hand, the analogue of Theorem 1.1 on 
the proximity of solutions to the integrable and non-integrable NLS equations in the case of the 
periodic boundary conditions (4.26) can be stated as follows.

Theorem 4.3 (Theorem 1.1 for the periodic Cauchy problem). For p ≥ 1 and ν, µ, γ > 0, con-
sider the integrable and non-integrable focusing NLS equations (1.3) and (1.4) with x ∈ I =
(−L, L), the initial conditions u(x, 0) = u0(x), U(x, 0) = U0(x), and the periodic boundary 
conditions (4.26).

(i) L2 closeness: Let 0 < ε < 1 and suppose that the initial data satisfy

∥u0 − U0∥L2(I ) ≤ Cε3, (4.27)

∥u0∥H 1(I ) ≤ c0 ε, ∥U0∥H 1(I ) ≤ C0 ε, (4.28)

for some constants c0, C0, C > 0. Then, for arbitrary finite 0 < Tf < ∞, there exists a 
constant C̃ = C(µ, γ , c0, C0, C, Tf ) such that

sup
t∈[0,Tf ]

∥u(t) − U(t)∥L2(I ) ≤ C̃ε3. (4.29)

(ii) H 1 and L∞ closeness: Suppose that the initial data satisfy (4.28) and the stronger condi-
tion (instead of (4.27))

∥u0 − U0∥H 1(I ) ≤ C1ε
3 (4.30)
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for some constant C1. Then, there exists a constant C̃1 with similar dependencies as C̃ in 
(2.5) such that

sup
t∈[0,Tf ]

∥u(t) − U(t)∥H 1(I ) ≤ C̃1ε
3, (4.31)

and, in turn,

sup
t∈[0,Tf ]

∥u(t) − U(t)∥L∞(I ) ≤ C̃2ε
3. (4.32)

Proof. The argument is entirely analogous to the one used for the proof of Theorem 2.2 in 
the non-periodic case. In particular, expressing periodic functions ϕ ∈ L2(I ) in the form of the 

Fourier series ϕ(x) =
∑

ξ∈Z
ei π

L ξx ϕ̃(ξ) where now ϕ̂(ξ) = 1
2L

L∫

−L

e−i π
L ξx ϕ(x)dx, we find that the 

difference of solutions ' = u − U to the integrable and non-integrable NLS equations satisfies

'̂(ξ, t) = e−iν
(

π
L ξ

)2
t'̂(ξ,0) − i

t∫

0

e−iν
(

π
L ξ

)2
(t−τ )N̂(ξ, τ )dτ, (4.33)

where N̂(ξ, t) denotes the spatial Fourier series of the nonlinearity function N(x, t) defined 
by (2.9). Thus, since ∥'(t)∥L2(I ) =

√
2L

∥∥'̂(t)
∥∥

ℓ2(Z)
by Parseval’s theorem, using Minkowski’s 

integral inequality and the fact that eiν
(

π
L ξ

)2
t is unitary, we have

∥'(t)∥L2(I ) ≤ ∥'(0)∥L2(I ) + t sup
τ∈[0,t]

∥N(τ )∥L2(I ) . (4.34)

Then, similarly to the steps that led to estimate (2.16), we employ (1.5) and the analogue of the 
embedding (2.15) on I for q = 6 and also for q = 2(p + 1) to obtain

∥N(t)∥2
L2(I )

≤ 2µ2 ∥u(t)∥6
L6(I )

+ 2γ 2K2 ∥U(t)∥2(2p+1)

L2(2p+1)(I )

≤ 2µ2 ∥u(t)∥6
H 1(I )

+ 2γ 2K2 ∥U(t)∥2(2p+1)

H 1(I )

from which we infer

∥'(t)∥L2(I ) ≤ ∥'(0)∥L2(I ) + A sup
τ∈[0,t]

(
∥u(τ )∥3

H 1(I )
+ ∥U(τ )∥2p+1

H 1(I )

)
t

with A =
√

2 max{µ, γK} as before. Therefore, for initial data u0, U0 satisfying (4.27)
and (4.28), using the periodic analogue of Theorem 2.1 and the solution size estimate (2.2) (see 
Theorem 2.1 on page 662 of [42]), we deduce the desired L2 bound (4.29), namely

∥'(t)∥L2(I ) ≤ Cε3 + A
(
M3c3

0 ε3 + M2p+1C
2p+1
0 ε2p+1)t ≤ C̃ε3, t ∈ [0, Tf ],
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with C̃ = max
{
C, AM3c3

0Tf , AM2p+1C
2p+1
0 Tf

}
.

In order to prove (4.31), we combine the definition of the H 1(I ) norm with (4.33) to infer

∥'(t)∥2
H 1(I )

≤ 2
∑

ξ∈Z

(
1 + ξ2

) ∣∣'̂(ξ,0)
∣∣2 + 2

∑

ξ∈Z

(
1 + ξ2

)( t∫

0

∣∣N̂(ξ, τ )
∣∣dτ

)2

.

Hence, by Minkowski’s integral inequality,

∥'(t)∥2
H 1(I )

≤ 2∥'(0)∥H 1(I ) + 2t2 sup
τ∈[0,t]

∥N(τ )∥H 1(I )

and proceeding as for (2.16) and (2.21) we eventually obtain the analogue of (2.7). Finally, 
the L∞ estimate (4.32) follows from the H 1 estimate (4.31) via the Sobolev embedding theo-
rem. !

Numerical studies for the case of nonzero boundary conditions. We now present the results 
of numerical studies in the case of nonzero boundary conditions in order to illustrate (i) our 
theoretical results of Section 3 on the nonzero boundary conditions on the whole line and (ii) the 
preceding theoretical results of the current section concerning the approximations of the problem 
on the infinite line by finite intervals. The numerical studies are motivated by the numerical 
investigations of [11] and [9]. We consider the simplest case where ζ(x) = q0 > 0. We will treat 
two examples of initial conditions decaying on the nonzero background, namely exponentially 
and algebraically decaying ones, the latter stemming from the Peregrine soliton.

I. Exponentially decaying initial data on the top of the nonzero background q0. We study the 
dynamics of the NLS equations emerging from the initial condition of the form

u(x,0) = q0(1 + i sechx) = U(x,0). (4.35)

In all the numerical results we set µ = γ = 1 for the nonlinearity parameters of the integrable and 
non-integrable NLS equations, and ν = 1, for the linear dispersion parameter. For the amplitude 
of the background we set q0 = 0.25 in order to comply with the smallness conditions on the 
initial data of Theorem 3.2. Based on the analysis presented in Section 3 and Theorem 3.2, we 
may expect closeness between the solutions of the integrable and the non-integrable NLS for 
short times. Thus, we start with the presentation of the numerical results for a short time interval 
t ∈ [0, 10]. Fig. 4.1 depicts contour plots of the spatiotemporal evolution of the density of the 
NLS equations. The left panel depicts the dynamics for the integrable NLS, the central panel for 
the non-integrable NLS with the subcritical power nonlinearity (1.9) with p = 3/2 (quartic case), 
and the right panel for the non-integrable NLS (1.10) with saturable nonlinearity. The patterns 
look almost indistinguishable and we expect this to be verified by the evolution of norms of the 
distance function. This is indeed the case, as it is shown in Fig. 4.2. Due to estimate (3.61) of 
Theorem 3.2, we examine the evolution of the norm

∥'̃(t)∥X :=
∥∥∥e−iµq2

0 t u(t) − e−iγF(q2
0 )tU(t)

∥∥∥
X

. (4.36)

For all norms we observe an excellent agreement with the predictions of Theorem 3.2 regarding 
their linear growth. On the other hand, we find again the moderate increase of ∥'̃(t)∥L∞ and the 
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Fig. 4.1. Contour plots of the spatiotemporal evolution of the initial condition (4.35) with q0 = 0.25. Left: Integrable NLS 
p = 1. Center: Non-integrable NLS (1.9) with power nonlinearity in the subcritical case p = 3/2. Right: Non-integrable 
NLS (1.10) with saturable nonlinearity.

Fig. 4.2. Evolution of the distance norm (4.36) for the dynamics shown in Fig. 4.1. Left: ∥'̃(t)∥L∞ . Center: ∥'̃(t)∥L2 . 
Right: ∥'̃(t)∥H1 .

Fig. 4.3. Contour plots of the spatiotemporal evolution of the initial condition (4.35) with q0 = 0.25 for longer times 
t ∈ [0, 400]. Left: Integrable NLS p = 1. Center: Non-integrable NLS (1.9) with power nonlinearity in the subcritical 
case p = 3/2. Right: Non-integrable NLS (1.10) with saturable nonlinearity.

larger growth of ∥'̃(t)∥L2 and ∥'̃(t)∥H 1 . Again the saturable model exhibits dynamics which 
are closer to the integrable one than the quartic NLS, while both non-integrable systems are closer 
to the integrable one in the sense of the pointwise topology. The larger, although still mediocre 
deviation in the L2 and H 1 norms, is a first indication that in the non-integrable dynamics there 
may be smaller, finer structures or oscillations present in the solutions that are not captured by the 
large-scale pattern. These smaller scales could be associated with faster oscillations or sharper 
gradients in the solutions of the non-integrable NLS. The existence of such scales can become 
more eminent over longer time intervals.

To investigate further these issues, we extended considerably the time-horizon of the above nu-
merical investigations. Fig. 4.3 extends the study presented in Fig. 4.1 to a time span t ∈ [0, 400]. 
The results of Fig. 4.3 verify that the evolution observed for t ∈ [0, 10] is the initial stage of the 
modulational instability dynamics discussed in detail in [11] and [9]. In each panel, the bounding 
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Fig. 4.4. Evolution of the distance norm (4.36) for the dynamics of Fig. 4.3 over t ∈ [0, 400]. Left: ∥'̃(t)∥L∞ . Center: 
∥'̃(t)∥L2 . Right: ∥'̃(t)∥H1 .

Fig. 4.5. Evolution of the distance norm (4.36) for the dynamics of Fig. 4.3 over t ∈ [0, 400], but with the norm eval-
uated over a spatial interval of length O(1/ε), namely x ∈ (−1/ε, 1/ε) = (−4, 4). Left: ∥'̃(t)∥L∞(−4,4) . Center: 
∥'̃(t)∥L2(−4,4) . Right: ∥'̃(t)∥H1(−4,4) .

Fig. 4.6. Contour plots of the spatiotemporal evolution of the initial condition (4.39) with δ = ν = 1, γ = µ = 1, q0 = 0.3
and T0 = −25 for t ∈ [−50, 100]. Left: Integrable NLS p = 1. Center: Non-integrable NLS (1.9) with power nonlinearity 
in the subcritical case p = 3/2. Right: Non-integrable NLS (1.10) with saturable nonlinearity.

lines represent the linear caustics separating the xt-plane into two types of regions: a left far-field 
region and a right far-field region, where the solution meets the condition at infinity (up to a phase 
shift), and a central region in which the asymptotic behavior is described by slowly modulated 
periodic oscillations. Although at the level of the nonlinear stage of modulational instability the 
non-integrable dynamics shares to a great extent the basic features of the ones of the integrable 
counterpart, there are still some important findings revealed. Comparing the pattern of the inte-
grable NLS (shown in the left panel) and the corresponding one for the saturable nonlinearity 
(right panel), we observe that they have more in common than the pattern for the quartic non-
linearity and the integrable one (central panel). The long-time behavior of the saturable model 
confirms that, in the case of nonzero boundary conditions too, this is the more structurally stable 
model in reference to the integrable one when compared to its power nonlinearity counterpart. 
For the quartic NLS, the oscillatory pattern within the caustics region is markedly different as it 
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Fig. 4.7. Snapshots of the evolution of the initial condition (4.39) with δ = ν = 1, γ = µ = 1, q0 = 0.3 and T0 = −25, 
portraying the comparison between the profiles of the solutions of the integrable NLS with p = 1, the non-integrable 
NLS with power nonlinearity p = 3/2, and the non-integrable NLS with saturable nonlinearity. The bottom right panel 
depicts the comparison of the profiles of the first event in each of the panels of Fig. 4.6, which occurs at t̃ = 25 for the 
integrable case p = 1, t̃ ∼ 30 for the power nonlinearity p = 3/2, and t̃ ∼ 25 for the saturable case.

exhibits a considerably longer period of the internal modulated wave (i.e. longer times between 
the peak events) than in the other systems. On the other hand, the maximum amplitude of the 
internal oscillations seems to be similar in all systems indicating that the similarity of all pat-
terns at large amplitudes should be manifested in the L∞ closeness while the differences of the 
patterns in their finer structures should be reflected in more pronounced deviations in the L2 and 
H 1 norms.

In connection with these predictions, we illustrate in Fig. 4.4 the evolution of the distance 
∥'̃(t)∥X associated with the dynamics shown in Fig. 4.3. From the central panel, showing the 
evolution of ∥'̃(t)∥L∞ it is evident that the non-integrable modulational instability dynamics 
are remarkably close to the integrable ones in the sense of the pointwise topology, as ∥'̃(t)∥L∞

initially grows linearly but then becomes bounded and at most of order ∼ O(10−1). Concerning 
∥'̃(t)∥L2 (central panel) and ∥'̃(t)∥H 1 (right panel), we observe an almost linear growth for 
t ∈ [0, 100] and a large deviation in compliance with the differences of the oscillatory behavior 
seen in Fig. 4.3. Revisiting the latter in the saturable and integrable cases, there are important 
differences between their oscillations close to the bounding caustics. These differences explain 
the deviation of the systems in the L2 and H 1 topology. On the other hand, the patterns of the 
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Fig. 4.8. Contour plots of the spatiotemporal evolution of the initial condition (4.39) with δ = 2, ν = 1, γ = µ = 1, 
q0 = 0.25 and T0 = 50 for t ∈ [−50, 200]. Left: Integrable NLS p = 1. Center: Non-integrable NLS (1.9) with power 
nonlinearity in the subcritical case p = 3/2. Right: Non-integrable NLS (1.10) with saturable nonlinearity.

Fig. 4.9. Evolution of the distance norm ∥'̃(t)∥X defined in (4.36) for the dynamics of the initial condition (4.39) with 
the parameters of Fig. 4.8, x ∈ [−4, 4] and t ∈ [−50, 250]. Left: ∥'̃(t)∥L∞ . Center: ∥'̃(t)∥L2 . Right: ∥'̃(t)∥H1 .

integrable and the saturable NLS look very similar in the core, close to x = 0. This observation 
suggests an agreement with the theoretical claim of Theorem 4.1 for the bounded domain approx-
imation, that the dynamics should be more similar when considered on finite intervals of length 
L ∼ O

( 1
ε

)
(cf. Theorem 4.2). The fact that, when restricted to an interval of length ∼ O

( 1
ε

)
, 

the similarity is significantly more noticeable than on the full length interval L, is confirmed in 
Fig. 4.5.

With our choice of ∥ζ∥L∞ = q0 = 0.25 we monitor the behavior of the distances in the re-
stricted interval for x ∈ [−4, 4] in accordance with Theorems 4.1 and 4.2. The plots feature the 
remarkable decrease of the deviation from the integrable dynamics particularly for the ∥'̃(t)∥L2

and ∥'̃(t)∥H 1 norms; in contrast with the plots of Fig. 4.4, the deviation in these norms seems is 
bounded and at most of order O(1), suggesting that on large spatial scales, most of the deviation 
stems from the finer oscillating structures far from the core of the pattern.

II. Algebraically decaying initial data on top of the nonzero background q0. We conclude with 
the presentation of a numerical study concerning the dynamics emerging from a quadratically 
decaying initial condition on top of the finite background q0 > 0. For this purpose, we will use 
initial conditions defined by the Peregrine soliton solution-the famous rational solution of the 
integrable NLS

iut + δ

2
uxx + µ|u|2u = 0, (4.37)

given by the formula
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Fig. 4.10. Simulation of the spatiotemporal evolution of the density of the solutions to the integrable and non-integrable 
NLS equations with the nonzero boundary conditions (3.1) over the non-constant background ζ(x) of the form (4.40)
and the initial conditions (4.41) (corresponding to the modified NLS equations (3.11) and (3.12)). Parameters A1 = 0.3, 
β = 0.01, q0 = 0.1, A2 = 0.1. Top left panel: Integrable (cubic) NLS. Top right panel: Quartic NLS (p = 3/2). Bottom 
left panel: Saturable NLS. Bottom right panel: Evolution of the L∞ norm of the distance function ̃' for x ∈ [−200, 200]
and t ∈ [0, 400]. More details in the text.

uPS(x, t; δ;µ;T0;q0) = q0

{

1 − 4
[
1 + 2i(t+T0)

5

]

1 + 4x2

K2
0

+ 4(t+T0)2

52

}

e
i(t+T0)

5 . (4.38)

The parameters in (4.38) are 5 = 1
µq2

0
, K0 =

√
δ 5, and T0 is a time-translation. Comparing the 

dispersion coefficients of the NLS equations (1.9) and (4.37), we see that they coincide when 
δ = 2ν. With this observation we distinguish between two examples.

(a) δ ≠ 2ν. We consider the parameters δ = ν = 1, γ = µ = 1, q0 = 0.3 and T0 = −25, in order 
to be compliant with the smallness conditions on the initial data when considering the initial 
condition

u(x,0) = uPS(x,0; δ;µ;T0;q0), (4.39)

for the above set of parameters. This is an example where (4.38) is not an analytical solution of 
the NLS (1.9) for its integrable case p = 1.

The theoretical results of [11] and [9] establish very similar spatiotemporal behavior of the 
integrable NLS as in the case I, and this fact is confirmed in the left panel of Fig. 4.6. Comparing 
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this panel with the central one which corresponds to the case p = 3/2 and the right one which 
corresponds to the saturable NLS, we again observe that the saturable dynamics is closer to 
the integrable one than its power nonlinearity counterpart. The first events of large amplitude 
occurring in all contour plots suggest also the presence of features reminiscent of Peregrine rogue 
waves (PRWs) governed by the specific type of the initial condition. To highlight this feature, 
as well as the similarities and differences of the solutions, we present in Fig. 4.7 snapshots of 
the profiles of the solutions for specific times. The similarities to PRWs can be observed for 
times around t = 25 where the function (4.38) attains its maximum as shown in the fourth panel 
(t = t̃ ∼ 30 for the quartic and t = t̃ ∼ 25 for the saturable). For larger times (t = 50, third 
panel), the differences of the profiles are reflected in the larger deviation of the norms of the 
distance function between the solutions. The proximity around the center x0 = 0 predicted by 
Theorem 4.2 is also illustrated by the snapshots exhibiting the similarity of the central spikes.

(b) δ = 2ν. For µ = γ = 1, we choose δ = 2, q0 = 0.25 and T0 = 50 in the formula (4.38) and 
ν = 1 for the NLS (1.9). Now, the formula (4.38) defines an analytical solution of the NLS (1.9)
for its integrable case p = 1. Using the initial condition (4.39) for this choice of parameters 
we observe crucial differences in comparison with the dynamics of the case (a), as it can be 
seen in Fig. 4.8, for long times. In the left panel, which shows the dynamics for the integrable 
case p = 1, the PRW attains it maximum at t = 0, since we have triggered initially, the exact 
analytical PRW solution and the MI effects predicted by [11,9] should occur much later. This is 
not the case for the non-integrable models whose dynamics are represented in the central panel 
(power nonlinearity with p = 3/2) and the right panel (saturable), respectively. Fig. 4.9, showing 
the time evolution of the norms of the distances for x ∈ [−4, 4], further confirms for the initial 
condition (4.39), that when considering sufficiently small spatial scales and small time intervals, 
one observes diminished deviations between non-integrable and integrable dynamics in all of the 
distances ∥'̃(t)∥X . Particularly, for t ∈ [−50, 50], the behavior of the norms for the saturable 
NLS suggests the proximity of the first RW occurring close to t = 0, as in the integrable case 
p = 1. For the quartic nonlinearity, the first RW appears much later at t ∼ 50, in compliance with 
the larger deviation of norms. However, both patterns and norms show that for t ∈ [−50, 50], the 
dynamics of all systems are similar. This is an illustration that Theorems 3.2 and 4.2 may capture 
important nonlinear effects, particularly when these occur within short time scales.

III. Dynamics for non-constant ζ(x). We conclude with a brief presentation of numerical 
results concerning the case of the nonzero boundary conditions (4.1), now with a non-constant 
ζ(x). We consider a simple example of a non-constant background

ζ(x) = A1 exp(−βx2) + q0, A1,β, q0 > 0, (4.40)

so that ζ(x) → q0 > 0 at an exponential rate as |x| → ∞. For ζ(x) given by (4.40), we solve nu-
merically the finite interval problems approximating the ones on the infinite line for the modified 
NLS equations (3.11) and (3.12) supplemented with the nonzero boundary conditions (4.1). The 
corresponding initial conditions are

φ(x,0) = 3(x,0) = iA2sechx, A2 > 0, (4.41)

which approximately satisfy the zero Dirichlet boundary conditions (4.3) for large L. We return 
to the solutions u and U of the original equations (1.3) and (1.4) with the nonzero boundary con-
ditions (3.1) via the transformations (3.6) and (3.10). The top left panel of Fig. 4.10 shows the 
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spatiotemporal evolution of the density |u(x, t)|2 for the cubic NLS equation, and the top right 
and bottom left panels for the quartic (p = 3/2) and the saturable nonlinearities respectively. 
The bottom right panel depicts the evolution of the norm ∥'̃(t)∥L∞ for x ∈ [−200, 200] and 
t ∈ [0, 400]. The parameters are A1 = 0.3, β = 0.01 for the non-constant background (4.40)
and A2 = 0.1 for the initial condition (4.41); ζ(x) decays slowly to q0. For this example, 
∥ζ − q0∥L2(R) = 1.06 (so we are in the limit of the theoretical assumption for the smallness 
condition for ∥ζ − q0∥L2(R)) and ∥3(0)∥L2(R) = 0.16. Although the long-time asymptotics are 
covered by the results of [11] (recall that the initial conditions of the original problems are of the 
form u(x, 0) = φ(x, 0) +ζ(x)), interesting dynamics are generated, as we observe the emergence 
of waveforms reminiscent to Kuznetzov-Ma breathers. For the emergence of such waveforms in 
the case of vanishing boundary conditions with Gaussian initial data, we refer to [16]. As it is 
expected by the analysis of the previous cases, the corresponding waveforms for the cubic and 
saturable NLS equations are very similar. They resemble a two-period Kuznetzov-Ma breather 
alike waveform, with the peak of the larger amplitude reminiscent of the form of a second-order 
rogue wave. In the quartic case, after their initial stage, the dynamics stabilize to a single period 
Kuznetzov-Ma breather alike waveform. Despite the differences of the waveforms, this example 
still shows that the proximity analysis may justify consequently the proximity of the dynamics 
between the integrable and the non-integrable models (as it is also shown by the evolution of 
∥'̃(t)∥L∞ in the bottom right panel of Fig. 4.10). This is showcased by the stronger localization 
of the centered oscillations, similar to the one exhibited by Kuznetzov-Ma breathers.
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