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Abstract

The question of whether features and behaviors that are characteristic to completely integrable sys-
tems persist in the transition to non-integrable settings is a central one in the field of nonlinear dispersive
equations. In this work, we investigate this topic in the context of focusing nonlinear Schrodinger (NLS)
equations. In particular, we consider non-integrable counterparts of the (integrable) focusing cubic NLS
equation, which are distinct generalizations of cubic NLS and involve a broad class of nonlinearities, with
the cases of power and saturable nonlinearities serving as illustrative examples. This is a notably different
direction from the one explored in other works, where the non-integrable models considered are only small
perturbations of the integrable one. We study the Cauchy problem on the real line for both vanishing and
non-vanishing boundary conditions at infinity and quantify the proximity of solutions between the integrable

* Acknowledgments. D.M. gratefully acknowledges support from the U.S. National Science Foundation
(NSF-DMS 2206270). J.C.-M. acknowledges support from the EU (FEDER program 2014-2020) through
MCIN/AEI/10.13039/501100011033 under the project PID2020-112620GB-100.

* Corresponding author.

E-mail addresses: dirkhennig@uth.gr (D. Hennig), karan @uth.gr (N.I. Karachalios), mantzavinos @ku.edu
(D. Mantzavinos), jcuevas @us.es (J. Cuevas-Maraver), istratis@math.uoa.gr (I.G. Stratis).

https://doi.org/10.1016/j.jde.2024.03.005
0022-0396/© 2024 The Author(s). Published by Elsevier Inc. This is an open access article under the CC BY license
(http://creativecommons.org/licenses/by/4.0/).


http://crossmark.crossref.org/dialog/?doi=10.1016/j.jde.2024.03.005&domain=pdf
http://www.sciencedirect.com
https://doi.org/10.1016/j.jde.2024.03.005
http://www.elsevier.com/locate/jde
mailto:dirkhennig@uth.gr
mailto:karan@uth.gr
mailto:mantzavinos@ku.edu
mailto:jcuevas@us.es
mailto:istratis@math.uoa.gr
https://doi.org/10.1016/j.jde.2024.03.005
http://creativecommons.org/licenses/by/4.0/

D. Hennig, N.I. Karachalios, D. Mantzavinos et al. Journal of Differential Equations 397 (2024) 106—165

and non-integrable models via estimates in appropriate metrics as well as pointwise. These results establish
that the distance of solutions grows at most linearly with respect to time, while the growth rate of each solu-
tion is chiefly controlled by the size of the initial data and the nonlinearity parameters. A major implication
of these closeness estimates is that integrable dynamics emerging from small initial conditions may persist
in the non-integrable setting for significantly long times. In the case of zero boundary conditions at infinity,
this persistence includes soliton and soliton collision dynamics, while in the case of nonzero boundary con-
ditions at infinity, it establishes the nonlinear behavior of the non-integrable models at the early stages of the
ubiquitous phenomenon of modulational instability. For this latter and more challenging type of boundary
conditions, the closeness estimates are proved with the aid of new results concerning the local existence
of solutions to the non-integrable models. In addition to the infinite line, we also consider the cubic NLS
equation and its non-integrable generalizations in the context of initial-boundary value problems on a finite
interval. Apart from their own independent interest and features such as global existence of solutions (which
does not occur in the infinite domain setting), such problems are naturally used to numerically simulate the
Cauchy problem on the real line, thereby justifying the excellent agreement between the numerical findings
and the theoretical results of this work.

© 2024 The Author(s). Published by Elsevier Inc. This is an open access article under the CC BY license
(http://creativecommons.org/licenses/by/4.0/).
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1. Introduction and main results

One of the most important notions concerning dynamical systems is that of structural stability,
e.g. see [53], Section 3.7. Consider as an example the Cauchy (initial value) problem for the
following semilinear evolution equation

ur+ Lw) +Nu) =0,
u(x,0) =up(x),

(1.1)

along with its perturbed counterpart

u+ L) +Nw)+ f(u,x,t)=0,
u(x,0) =up(x) + po(x).

(1.2)

Here, u = u(x, t), L is a linear differential operator and A represents the nonlinearity. Further-
more, the perturbative term in (1.2) may represent external forces, dissipation terms or other
effects, while po(x) is a perturbation of the initial condition ug(x) of (1.1).

The solutions of (1.1) are defined in a suitable phase space X'. In the context of the structural
stability theory for (1.1), the perturbations f(u, x, t) and po(x) are small when measured in some
suitable norms relevant to X’. Then, the main question is whether the solution of the perturbed
system (1.2) deviates too far from the solution of the original system (1.1) or not. As underlined
in [53], if the evolution equation (1.1) “is very unstable, then one could doubt on its ability to
accurately simulate (either numerically or theoretically) a real-life system”. On the other hand,
it is also emphasized in [53] that “any equation with a good well-posedness theory is also likely
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to have a good stability theory, by modifying the arguments used to prove well-posedness suit-
ably”. In particular, stability results for (1.1) generalize the property of continuous dependence
of the solution on the initial data (one of the three components of Hadamard well-posedness, the
other two being existence and uniqueness), which can be obtained as a reduction of such general
results in the special case of (1.2) with f = 0. Similarly, the uniqueness theory of (1.1) can be
approached through the special case f = pg =0.

The above statements on stability theory emphasize the importance of this direction of study
and motivate us to examine, in the present paper, a modified notion of stability for an evolution
equation of the form (1.1) in the framework of Hamiltonian nonlinear Schrédinger equations in
one spatial dimension. The role of the semilinear equation in (1.1) is assigned to the focusing
cubic NLS equation

ity + vitey + plulPu=0, v, u>0, (1.3)

which is one of the fundamental integrable nonlinear dispersive partial differential equations
with numerous applications in a broad range of areas within mathematical physics. Furthermore,
instead of considering a “forced” counterpart of (1.3) as in (1.2), we consider focusing non-
integrable counterparts of (1.3) of the general form

iU +vUi +yF(UHU =0, v,y >0, 1.4)

where F : R — R is a sufficiently smooth function satisfying standard conditions that are speci-
fied later. Therefore, instead of small perturbations of (1.3), our investigation in the framework of
stability is of different nature, as our primary goal is to compare systems of the same class (1.1)
but with different nonlinearities: namely, the integrable NLS (1.3) with nonlinearity N7 (1) =
uu |2u against its non-integrable counterparts (1.4) with nonlinearities Nxp(U) = y F(|U |2)U .
Actually, this stability analysis is directly relevant to the proximity between the solutions
of the completely integrable NLS equation (1.3) and its non-integrable counterparts (1.4). In
particular, it sheds light on the potential persistence of integrable dynamics, as these are defined
by the solutions and dynamical behavior of the integrable NLS equation (1.3), in the setting
of the general family of non-integrable NLS equations (1.4). Studies of this generic question
in the context of nonlinear lattices (discrete NLS and Ginzburg-Landau equations) are given
in [35,37,36]. Nevertheless, the investigation of this question in the context of the NLS partial
differential equations is a considerably more intricate task due to the following reasons:

(1) Differences between the well-posedness of the integrable and the non-integrable NLS equa-
tions. The cubic NLS equation (1.3) is globally well-posed in all cases of significant bound-
ary conditions. This is not generally the case for the non-integrable equations (1.4), for which
global existence of solutions in time can be assured under smallness conditions for the ini-
tial data in suitable norms. Therefore, the investigation of stability may be carried out under
either (i) the assumption of a restricted class of small initial data, in order to ensure global
existence in time for the non-integrable model, or (ii) the restriction to finite times dictated
by the maximal interval of existence of the non-integrable model.

(2) Different boundary conditions are associated with different dynamics. The integrable NLS
equation (1.3) exhibits a rich class of analytical solutions depending on the boundary condi-
tions with which it is supplemented. The question of persistence of these analytical solutions
in the dynamics of the non-integrable NLS instigates a variety of further studies in terms
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of potential proximity or deviation of solutions of the integrable and non-integrable NLS,
respectively.

On account of the above considerations, the main result of this work is quite general and can
be stated as follows.

Theorem 1.1. Consider the integrable NLS equation (1.3) and the family of its non-integrable
counterparts (1.4), where the nonlinearity function F satisfies the standard conditions

IF)— FO) < K(xIP +yIP Dlx =y, FO)=0, [F@I<KlxI”™', (15

for some p > 1, a constant K > 0 and any x,y > 0. Let [0, Tmax) define a common maximal in-
terval of existence for the solutions u(x, t) and U (x, t) to (1.3) and (1.4), respectively, associated
with initial data uo(x) and Uy (x) in a suitable Banach space X governed by the supplemented
boundary conditions for both equations. Furthermore, for each given 0 < ¢ < 1, assume that the
distance in X between these initial data is of order O (&) while the individual norms of these
data in X are of order O(¢), i.e.

luo — Upllx < Ce?, (1.6)
luollx < Ce, IlUsllx < Ce, (1.7)

for some generic constant C > 0. Then, for arbitrary finite 0 < Ty < Tmax, there exists a con-
stant C = C (¥s , v, C, Ty) such that the corresponding solutions u(x,t) and U (x, t) satisfy the
estimate

sup Ju(r) —U@)lly < Cé>. (1.8)
1€[0,T]

That is, under the assumptions (1.6) and (1.7), the distance between the solutions u(t) and U (t)
measured in X is of order O(&3) for all t € [0, Tyl

In view of the condition (1.6), the distance inequality (1.8) provides a generalization of the
notion of continuous dependence of solutions on the initial data for the equations (1.3) and (1.4),
at least for small initial data in the sense of the condition (1.7).

It should be noted that the class of nonlinearities satisfying the standard conditions (1.5) is
quite broad and includes, among others, the following important cases that correspond to non-
integrable NLS models:

(i) The general power nonlinearity F(x) = xP, p > 1, which gives rise to the semilinear
Schrodinger equation

iU +vUy, +y|UPPU =0. (1.9)
Indeed, by the Mean Value Theorem, x? — y? = pcp’1 (x — y) for some ¢ € (x, y), thus for
any p > 1 and x, y € R we have [x” — y?| = ple[P~'x —y| < p (Ix[P~" + [y[P7) [x — y
and the conditions (1.5) are satisfied with K = p.
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(i) The rational nonlinearity F(x) = (1):_ ) k > 0, which corresponds to what is known as
K by
the saturable NLS equation (e.g. see [25,17,43])
U, v, 1+ YIUPU (1.10)
i v — = .
t XX 1 + P | U |2
In this case, for any x,y > 0 we have |F'(x)| = :c(llT)z =< % and |F(x) — F(y)| =

[x—y] <1
lkl(A+x)(1+y) — « ~ .
Note that the invertible transformation U (x,t) = /k e T U(x,t) turns equation (1.10)

into the alternative form

|x — y|, thus the conditions (1.5) are satisfied with p =1 and K = %

-~ ro
iU, +v0,, — % (1.11)

—— =0, I=
1+ |0

Concerning the plethora of analytical solutions to the integrable NLS equation (1.3), such as
solitons, multi-soliton solutions, bound states, rational solutions and others [1,47,60], an impor-
tant implication of the stability result of Theorem 1.1 is that small-amplitude localized analytical
solutions of the integrable equation (1.3) persist, in the sense of the distance inequality (1.8),
in the non-integrable setting of equation (1.4). More precisely, the non-integrable equation (1.4)
admits small-amplitude solutions of O(g) that stay O(&?) close to the well-known analytical so-
lutions of the integrable equation (1.3) for any ¢ € [0, T¢] (note that one can impose the same
initial condition u(x, 0) = U (x, 0) on both equations). This claim is further justified by the fact
that, as it turns out, estimate (1.8) is also valid pointwise since it holds in L.

A case of specific interest is the one of Tax = 0o. In this regard, we recall that, in the
focusing case w, v,y > 0 with zero boundary conditions at infinity, global existence for the
non-integrable model (1.4) is guaranteed, in general, only for small initial data. Hence, the con-
ditions (1.7) become particularly relevant. Such conditions ensure, for example, the persistence
of small-amplitude bright solitons of the integrable NLS equation (1.3) in the non-integrable set-
ting of equation (1.4) for time intervals that can be significantly long, as well as for even more
complicated dynamics like bright soliton collisions. Such long time persistence is illustrated by
numerical experiments at the end of Section 2.

Another application of Theorem 1.1 concerns the robustness of the persistence of analytical
solutions under perturbations in the following sense: solutions that are stable in one system re-
main stable in the other system as long as they persist in its dynamics. This property can be
proved via a transitivity argument combining the proximity estimates of Theorem 1.1 and orbital
stability results for the considered solutions. The discussion leading to Corollary 2.1 below con-
cerns standing waves. For the stability of standing waves, solitons and multi-soliton solutions,
we refer the reader to the fundamental results in [15,30,31,45,46,39,57].

Importantly, the applicability of Theorem 1.1 extends beyond the framework of zero bound-
ary conditions at infinity, as the analysis carried out in this work also concerns a broad class
of nonzero boundary conditions at infinity in the general form of vanishing profiles on top of a
finite nonzero background of constant amplitude. Boundary conditions of this type are of partic-
ular physical relevance. Indeed, in focusing media, nonzero boundary conditions at infinity are
associated with the emergence of fascinating dynamics related to the well-known phenomenon
of modulational instability. This effect, which is also known as Benjamin-Feir instability [5],
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refers to the instability of a constant background to long wavelength perturbations and is ubiqui-
tous across nonlinear science; e.g. see the review article [61], as well as the more recent works
[40,51,52] that link modulational instability to the formation of rogue waves in optical media and
the open sea.

In the case of the integrable focusing cubic NLS equation (1.3), the nonlinear stage of mod-
ulational instability induced by the nonzero boundary conditions specified above, was studied in
a series of recent works [10,11,7,8] via the inverse scattering transform and the nonlinear steep-
est descent method of [18]. In these works, it was rigorously shown that the solution remains
bounded at all times, as one would naturally expect due to the complete integrability of the
equation (1.3). Nevertheless, in the case of the general non-integrable NLS model (1.4) such in-
tegrability techniques are no longer available. In fact, in terms of global existence and regularity
of solutions to the non-integrable equation (1.4), the corresponding results for nonzero boundary
conditions at infinity are markedly different, e.g. see [12] as well as [13,53]. These observations
motivated the study [9], which suggests the existence of a universal behavior in modulationally
unstable media. In fact, by considering several non-integrable models that belong to the general
NLS family (1.4), evidence is provided that they exhibit the same behavior as the one of the
integrable NLS equation (1.3) established in [10,11,7,8].

The stability result of Theorem 1.1 proved in this work rigorously establishes the persistence
of the nonlinear behavior that was conjectured in [9], at least at its early stages. For later times,
the proximity between the dynamics depends on the type of the nonlinearity present in the non-
integrable model, as illustrated by the numerical simulations provided at the end of Section 4.
This fact is highlighted by the example of a saturable nonlinearity, where the dynamics exhibits
a remarkable proximity to the one of the integrable model (as in the case of zero boundary
conditions). Furthermore, the numerical simulations illustrate that the smallness condition (1.7)
for the initial data is by no means restrictive. In particular, they demonstrate that the modulational
instability dynamics emerges from initial data that do satisfy the smallness condition in the non-
integrable case.

We emphasize that the numerical findings of Section 4 are predicted by our theoretical results,
since Theorem 1.1 is also proved when the NLS equations (1.3) and (1.4) are considered on a fi-
nite interval and supplemented with (zero or nonzero) Dirichlet or periodic boundary conditions.
Problems of this type fall under the class of initial-boundary value problems, in which the spatial
domain involves an actual boundary (as opposed to extending to infinity in all directions). Such
problems are significant in their own right and have been studied extensively in the literature
(e.g. see [20,21] and the references therein). However, they are also directly relevant to numeri-
cal studies related to the Cauchy problem, since such studies are performed by approximating the
infinite domain by a sufficiently large finite domain, supplemented with appropriate Dirichlet or
periodic boundary conditions. (Some additional theoretical implications related to the question
of proximity of solutions in the case of approximation by a finite domain are discussed at the end
of this introductory section.) Indeed, the numerical results of Section 4 are in excellent agree-
ment with the analytical estimate (1.8). For instance, both for Dirichlet and for periodic boundary
conditions, the analytical arguments establish that the growth of the distance ||u(t) — U(¢)| x is
at most linear for any t € (0, Tiax), since

lu(t) —U@)|x < Cte’ (1.12)

with C depending only on the nonlinearity parameters y,  but not on 7 (actually, the constant c
in (1.8) is given by C = CT ). We emphasize that the proof provides explicit expressions for the
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dependence of the constant C on the various parameters, suggesting that these expressions can
be adjusted to decrease the linear growth rate as desired. Regarding the importance of estimate
(1.12), we also remark that, in a similar context, the time-growth estimates for the relevant dis-
tance function between the solutions of the complex Ginzburg-Landau and the NLS equations,
when the inviscid limit of the former is considered [59], can even be exponential in time [50].

To the best of our knowledge, among the vast volume of works on NLS-type equations, the
one most relevant to the present paper is [ 19]. However, the results of [19] concern the defocusing
(as opposed to focusing) NLS equation

iv 4 vy — 2P =0 (1.13)

supplemented with zero boundary conditions. More precisely, in [19] the authors consider non-
integrable perturbations of (1.13) in the form

iVi+ Vi —2|VIEV —€|VIPV =0, p>2, €>0, (1.14)

which correspond to = 1, v = —2 in (1.3) and preserve the defocusing nature of (1.13). The
main result of [19] can be outlined as follows: for sufficiently smooth initial data that decay at an
appropriate rate (described by a suitably defined weighted Sobolev space) and small € > 0, the
solutions of (1.14) approach those of (1.13) as t — oo in the sense of the estimate

||U(l‘)—V(l‘)||Loo(R)=O< ), K > 0. (1.15)

136

This result is proved by combining the inverse scattering transform method (and, in particular,
by studying the behavior of the reflection coefficient that emerges in the integrable case (1.13))
with detailed estimates in appropriate Sobolev norms derived for the perturbed (non-integrable)
model (1.14).

The model (1.14) considered in [19] falls under the general perturbative framework (1.2).
On the other hand, as noted earlier, the results presented herein are of different nature, since
now the integrable model (1.3) is compared against its distinct non-integrable counterparts (1.4)
which, unlike (1.14), cannot be treated as weak perturbations. Another major difference between
[19] and the present work stems from the fact that, for zero boundary conditions, while the
solutions of the defocusing models (1.13) and (1.14) are known to exist globally in time for all
initial data and to decay for a certain range of nonlinearity exponents [32] even in higher than
one spatial dimensions [33,34], the solutions of the non-integrable focusing NLS equation (1.4)
are globally defined only for small initial data (see Theorem 2.1 below). Thus, our proximity
estimates between the solutions of two essentially different systems, namely (1.3) and (1.4),
concern in general finite time intervals in the spirit of the continuous dependence of solutions on
the associated small initial data, and do not explore the long-time asymptotic behavior considered
in [19]. In addition, here we also consider the important case of nonzero boundary conditions at
infinity, which was not investigated in [19].

For the proof of Theorem 1.1, we employ the Fourier transform for the evolution equation
satisfied by the difference of solutions A(¢) = u(t) — U(¢t). We also remark on an alternative
approach through energy estimates and interpolation inequalities. This second approach is appli-
cable in all the cases of boundary conditions, albeit with distinct implications for each specific
case. For the case of zero boundary conditions, we take advantage of the global existence results
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for the non-integrable NLS equation in the case of small initial data and also of the regularity of
solutions when this data belong to a suitable class.

The case of nonzero boundary conditions at infinity turns out to be more challenging since,
even for small initial data, it is not known in general whether the non-integrable focusing NLS
equation is globally well-posed [3,49]. Indeed, global existence is only guaranteed in the defo-
cusing case [24,26,29,28]. On the real line, we prove local existence in H 1 (R) and then use a
continuity argument for small data in the sense of (1.7) in order to establish a closeness esti-
mate between the solutions of the integrable and non-integrable systems, at least for a short time
period.

Furthermore, motivated by the numerical results of [9], which indicate the universality of the
modulational instability dynamics beyond the integrability barrier, we analytically study the finite
interval problem for equations (1.3) and (1.4) supplemented with the relevant nonzero Dirichlet
boundary conditions. This finite domain problem is different from the problem on the real line
in that, although both problems possess a conservation law for the L? norm that involves the
amplitude go of the wave background, global existence at the L? level can be deduced from that
law only in the case of the finite domain. Hence, up to the critical nonlinearity p =2, we prove
(see Theorem 4.1 below) that the solutions to the non-integrable NLS equation (1.4) on the finite
interval (—L, L) exist globally in time for appropriate smallness conditions on L and the initial
data (in the subcritical case 1 < p < 2, the latter condition is not necessary). It should be noted
that the upper bound on L tends to infinity as the amplitude gq of the nonzero background tends
to zero, i.e. when the problem approaches the one with zero boundary conditions. Moreover, the
proximity estimates of Theorem 1.1 under the conditions (1.6) and for go = O(¢) are valid for
L = O (1/¢). Therefore, the accuracy of the closeness estimate between the solutions of the in-
tegrable and non-integrable NLS equations improves when the relevant norms are evaluated over
the interval (—1/e, 1/¢) around the core of the respective modulational instability pattern. This
fact is further discussed in Section 4, where it is also illustrated numerically by the simulations
of Figs. 4.3 and 4.5.

Finally, we comment on the case of periodic boundary conditions, which can also be used for
approximating the problem on the real line supplemented with zero or nonzero boundary con-
ditions. The proofs in the periodic case are similar to the ones in the finite interval case. Note,
in particular, that the assumptions for global existence of solutions to the non-integrable model
are also similar, as the main conservation laws for the energy and power are the standard ones.
Regarding numerical simulations, however, if the periodic problem is used in order to approxi-
mate the infinite line problem with nonzero boundary conditions by taking the parameter L to be
large, then a complication arises: the periodic boundary conditions define problems with finite
energies in Sobolev spaces of periodic functions [4], which is not the case for the problem on
the real line. Thus, finite domain approximations may not capture essential effects and impli-
cations associated with the infinite domain problem. This issue is especially highlighted by the
results of the present paper through the contrast between the local existence for the problem on
the real line and the global existence for the finite domain approximation with nonzero Dirichlet
boundary conditions.

Structure of the paper. In Section 2, we prove Theorem 1.1 in the case of vanishing boundary
conditions, namely we establish Theorem 2.2. In addition, we present numerical studies for the
concrete examples of bright solitons and soliton collisions. In Section 3, we establish the version
of Theorem 1.1 associated with the case of non-vanishing boundary conditions emerging from a
constant nonzero background, namely Theorem 3.2. A key result, which is used for the derivation
of the proximity estimates, is the proof of Theorem 3.1 for the local existence of solutions to the
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non-integrable NLS models in the class C([0, T]; H 1(R)). In Section 4, we turn our attention to
the case of a finite domain. First, we prove the version of Theorem 1.1 for the problem on a finite
interval with nonzero Dirichlet boundary conditions, namely Theorem 4.2, then we establish the
corresponding result (Theorem 4.3) for periodic boundary conditions, and finally we conclude
with a numerical study simulating the problem with nonzero boundary conditions for a variety
of localized initial data on the top of a finite background.

2. Zero boundary conditions at infinity

In this section, we establish the version of Theorem 1.1 that corresponds to the scenario in
which both the integrable NLS equation (1.3) and its non-integrable counterpart (1.4) satisfy
zero boundary conditions at infinity, namely

Iim u(x,t)= lim U(x,t)=0, t=>0. 2.1
[x]—00

[x]—00

We begin by recalling the following well-known global existence and regularity results for the
general non-integrable NLS equation (1.4).

Theorem 2.1 (Existing results on well-posedness). Consider the Cauchy problem on the line for
the non-integrable NLS equation (1.4) with zero conditions at infinity.

() If 1 < p <2, then for any initial datum Uy € H'(R) there exists a global in time solution
U (x,t) which is uniformly bounded in H'(R), i.e. there is a constant M > 0 independent
of t such that

sup [U ()l g1 gy < M 100l 1 ) - (2.2)
t>0

Furthermore, if Uy € H™ (R) with m > 1 then the solution exists globally in H™ (R) and is
uniformly bounded in H™ (R).

(i) If p = 2, then there exists a constant § > 0 such that if ||Uoll g1y < 0 then the solution
U(x,t) exists globally in time and is uniformly bounded in H'(R), satisfying the esti-
mate (2.2) for some constant M > 0. Furthermore, for initial data Uy € H™ (R) withm > 1
the solution possesses the same regularity as in case (i).

For the proofs of the results stated in Theorem 2.1, we refer the reader to the monographs
[12,13,53]. Specifically for the further regularity properties of solutions, we also refer to [32,33].
We now proceed to the main result of this section, which provides the counterpart of Theorem 1.1
in the case of zero boundary conditions at infinity.

Theorem 2.2 (Theorem 1.1 for zero boundary conditions at infinity). Let p > 1 and suppose that
the integrable and non-integrable focusing NLS equations (1.3) and (1.4) are supplemented with
the initial conditions u(x,0) = ug(x) and U (x,0) = Up(x), respectively.

(i) L? closeness: Given 0 < & < 1, suppose that the initial data satisfy

lluo — Uoll2r) = Ce, 2.3)
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||“0||H‘(R) <coé&, ||UO||H|(]R) <Cpe, 2.4)

for some constants cq, Co, C > 0. Then, for arbitrary finite time 0 < Ty < 00, there exists
a constant C = C(u, y, co, Co, C, Ty) such that the corresponding solutions u(x,t) and
U (x, t) satisfy the estimate

sup [u(t) = U@ 2wy < Ce’. (2.5)
1€[0,Ty]

(ii) H' and L™ closeness: If the initial data uo, Uy satisfy (2.4) along with the stronger condi-
tion (in place of (2.3))

luo — Uoll g1 (r)y < Cie’ (2.6)

for some constant C| > 0, then there exists a constant Ci depending on Ci and with a
similar dependency on Ty and ., y, co, Co as the constant C in (2.5) such that

sup [lu(t) = U 1 (g < Cre°. 2.7)
1€[0,T]

Consequently, there exists a constant C» with similar dependencies as C\ such that

sup Nu(r) — U@l ow) < Cae>. (2.8)
1€[0,T]

Proof. The L*° estimate (2.8) is a direct consequence of the H I estimate (2.7) via the Sobolev

embedding theorem. The L? estimate (2.5) and the H'! estimate (2.7) are proved in a similar way,
by forming the equation

i+ VA =—plulu+yF(UIHU =: N(x, 1) 2.9)

satisfied by the difference

Alx,t):=ulx,t) —U(x,t) (2.10)

of solutions to the integrable and non-integrable NLS equations (1.3) and (1.4), and employing
the Fourier transform pair given for any f € L?(R) by

&= / e f(x)dx, E€R,
R

1 e~
f)= 2—fe’f’Cf(s)dg, x eR.
T
R

@2.11)
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In particular, taking the Fourier transform of equation (2.9) and integrating in ¢, we obtain

t
AE D= 5AE0)—i / DN €, Tyd. (2.12)
0

Starting from this expression and employing successively Plancherel’s theorem, Minkowski’s
. . . iE2 ..
integral inequality, and the fact that e 4"/ is unitary, we find

1A < —= e RE 0 2, + [eTECINE D gy dT

1
7= 7/
0 (2.13)

=202, +f IN@ 2R dT.
0

Hence, we need to estimate the L2 norm of the nonlinearity N. By the inequality |a + b|> <
2|a|? 4 2|b|? and the first of the assumptions (1.5), we have

INOIR: @, =20 [ e dx+ 272 [ |[Faueenp)| weniax
R R

2(2p+1
<202 w6 g, + 2 KNV O350 g, - (2.14)

Thus, invoking the Sobolev embedding (see Theorem 4.12, last part of Case A on page 85 of [2])
H'R)CLIR) = [ flpew) <clflmm). 2<g =00, (2.15)

for ¢ =6 and also ¢ =2(2p + 1), we obtain

2(2p+1
IN Oy < 267 10O g, + 2 K2 IUO 155" (2.16)

In turn, since /a + b < /a + +/b, we have

/HN(r)an(R) r<fuf||u(r>||H1(R)dr+ny/||U(r)||§;’lfﬂ§)

2p+1
<A sup (Ju@I g V@I )t 2.17)
7€[0,1]

where A = v/2 max{pu, y K}. In view of the estimate (2.17), inequality (2.13) yields

18Ol2m) < 18Olm +4 sup (nu(r)n,,l(R) V@I (2.18)

TE
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which along with the solution bound (2.2) and the conditions (2.4) and (2.3) gives rise to the

desired estimate (2.5) with constant C=C+A (6(3) + Cng) Ty.

We proceed to the proof of the H L estimate (2.7). Expression (2.12) combined with the in-
equalit b|?> < 2|al> +2|b|? yield
quality |a + b|~ <2|a|” +2|b|” yields

||A(t)||?11(R) < 2/ (1 +52> |e—i52z3(g,o)’2d$
R
t 2

+2/(1 +g2) /e’igz(”t)ﬁ(é,r)dr dt

R 0

so using Minkowski’s integral inequality in the second integral we find

1O g, < 2] (1+8%) 1A 0)a

R
' 1 2
+2 /(f(1+s2)yﬁ(g,r)\2ds)zdr
0 R
, 2
21800 @ +2 | [ INO @ dr | - 2.19)
0

Note that ||N||H'(]R) = ||N||L2(]R) + ||8xN||L2(R). The L2 norm of N has already been estimated
by (2.17). Differentiating the right-hand side of (2.9), we have

19 N (01175 g,

2
§2u2/’2|u|2ux+u2ﬁx‘ dx
R

2
dx

+272 [ [FQUPIORU, + FAUPUT, + F(U P,
R

2 2
s18#2/|u|“|ux|2dx+4y2/(4|F’<|U|2>| UHU P + | FOUP)PIUL P ) dx.
R R

Then, due to the first and third assumption in (1.5),
195 N ()72 g, < 1814 / Jul*lux Pdx +20y K> / UI*P U, Pdx
R R

4
< B2 @)1} oo ) l1x (D117 2y + 207 K NU O 2 gy 1Ux D172 g
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and so, by the Sobolev embedding theorem,

22 1
10N 12 gy < 1867 1% g +2072 K> MU O (2.20)

In turn, since va + b < \/a + /b, we obtain

t
2
/ 10N @l 2wy dr < 4" sup (@1 gy + IV @I, )1 @21)
J ,

with A’ = max {Sﬁu, 2V5yK } Overall, estimates (2.17) and (2.21) combined with inequality
(2.19) imply (note that A < A”)

2
IAD 1 @) < V2 IAO) 1Ry + V247 s?op](uu(r)ni,mﬁ||U<r>||:.fﬂg))r. (2.22)
7€l0,t

Hence, thanks to the solution estimate (2.2) and the assumptions (2.4) and (2.6) on the initial
data and their H! distance, we infer

3 3 3 2p+1 2p+1
1Ay < V2C18+ V24 (Mol g, + M2 WIS )

2.23)
= V2018 + V24 (M + My a2 )

Then, noting that 2Pt < g3 as e <1 and 2p + 1 > 3 (recall that p > 1), we arrive at the H!
estimate (2.7) with constant 51 = \/ECl + \/EA’ max {M3C2 0 MIZPJrl Ci’;;r] }Tf.
The proof of Theorem 2.2 is complete. O

Remarks on Theorem 2.2.

Persistence of the analytical localized solutions of the integrable NLS in the non-integrable
setting. An important implication of Theorem 2.2 is that it rigorously justifies that (at least)
small-amplitude localized structures satisfying the integrable NLS equation along with the zero
boundary conditions (2.1) may persist in the non-integrable setting of equation (1.4) for signifi-
cant times. In particular, the non-integrable NLS equation (1.4) admits small-amplitude solutions
of O(e) that remain O(g) close to the analytical solutions of the integrable NLS (1.3) in the H 1
and L* norms. In this regard, in the case where ug = Uy (i.e. C =0 in (2.3)), the analytical
estimates of Theorem 2.2 simplify to show that the distance of solutions grows at most linearly
for any ¢ € (0, 00), since

ANy < Medr, X =H'(R)or L°(R), (2.24)

where M is one of the constants C 1 6‘2. For example, for times ¢ ~ O (1 / 82) the distance func-
tion | AWl ~ Oe).

The time growth of the bound for the distance function in estimate (2.24) can be juxtaposed
against the time growth in the corresponding estimates for the distance function between the
solutions of the complex Ginzburg-Landau and the NLS equations when the inviscid limit of the
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former is considered [59]. These latter estimates can grow at an even exponential rate [50], which
has to be distinguished from the linear growth result of (2.24) proved here.

Alternative proof of Theorem 2.2 via energy estimates and interpolation. An alternative proof of
Theorem 2.2 can be provided through an energy argument combined with interpolation estimates
by using the one-dimensional Gagliardo-Nirenberg inequality and the regularity of the initial
data. This method, however, results in weaker stability estimates under stronger conditions on
the initial data.

Indeed, via the energy method, (2.9) yields the differential inequality

d 2p+1
TNAWD 2@y = M2 (0l gy + 1015710 ) (2.25)

for some constant My = M>(M, My, c, v, iu). Integrating (2.25) for any ¢ in the arbitrary interval
[0, T¢] and using the assumptions (2.4) and (2.3) on the initial data and their L? distance along
with the fact that 0 < & < 1, we obtain estimate (2.5) with constant C = C + M, (cg+ Cgp +1) Ty.
Moreover, the H'! estimate for A can be derived via interpolation by using the Gagliardo-
Nirenberg inequality (e.g. see Theorem 1.3.4 in [14]), namely

0
Lr (R) I

197 1l oy < Con I £ 1Ry 197 jomeN,0<j<m, —<0<1, (226)

S|~

where 1 < ¢,r < oo, p is given by % =j+6 (% —m) + lq;(", and Cgn = Cgn(g, 1, j, m, 0).
However, this step requires sufficient regularity of the initial data. In particular, assume that
ug, Up € H™(R) with m > 1. Then, according to the global existence results of Theorem 2.1, the
solutions of the integrable and non-integrable NLS equations (1.3) and (1.4) satisfy uniform in
time estimates,

sup [lu(@) |l gm@®y < R, sup [U@®)] gm(w) = R,
>0 >0

for some general constant R which depends only on the norm of the initial data u( and Uy but
is independent of ¢ > 0. Hence, by the triangle inequality, the distance A also admits such a
uniform bound as

sup A | gm(wy < sup lu(@ll gmry + sup U@l gmr) < 2R. (2.27)
0 >0

t>0 >

Employing the Gagliardo-Nirenberg inequality (2.26) for f = A, j =1, p=¢g =r =2 and any
m > 1 (these choices imply 6 = %), we have

m—1 1

19 AWl 2@y < Con IAD S IAO gy 120, (2.28)

The right-hand side of (2.28) can be estimated via the L? closeness estimate (2.5) and the uniform
bound (2.27). In particular, there exists a constant ¢; = ¢3(Cgn, C, R, m) such that

m= 3(m—1
0x A L2r) < cze"tT', o= 3m—1) ), t>0. (2.29)
m
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Observe that, although the time growth rate 2 is sublinear (as opposed to the linear growth of
the bounds in Theorem 2.2), the proximity exponent o is smaller as it belongs to (0, 3). In the
limit of infinitely smooth initial data m — oo, which is a much stronger assumption than the one
of Theorem 2.2, we recover (2.24) after adding (2.29) to the L? closeness estimate (2.5). That
is, the energy method yields the cubic proximity exponent of the Fourier transform method of
Theorem 2.2 only in the special case of infinitely smooth initial data.

Robustness of stable solutions. An interesting application of Theorem 2.2 (and of the general
statement in Theorem 1.1) is related to the robustness of stable solutions of one system in the
dynamics of the other. As an illustrative example, we consider the case of standing wave solutions
to the general focusing semilinear Schrodinger equation (1.9), namely solutions of the form

Ux,t)=e“" W), >0, (2.30)
with W satisfying the stationary equation
W + oW+ u|WP?PW =0, pn=>0. (2.31)

Associated with the solutions of (2.31) is the functional

1 2 H 2p+2
W' |*dx w W24 2.32
3 [ wrar§ [iweas— Lo [weras 232)
R R R
and the set
A, = {WeHl(R) - W %0 and —W”+wW+u|W|2”W=O}. (2.33)

The orbital stability of the solutions (2.30) is discussed in [13]. In particular, the stability result
reads as follows.

Theorem 2.3 (Theorem 8.3.1 in [13]). Let p < 2. If W € A, then (2.30) is a stable solution of
equation (1.9) in the following sense. For every € > 0, there exists a 8(¢) such that if Uy € H' (R)
satisfies ||Up — W || g1 (ry < 8(€) then the maximal solution U (x, t) of (1.9) associated with Up(x)

satisfies

sup inf inf HU 1) —e?Ow( — H <e. 2.34
,>806Rye]R (1) — (—y®) H®R) S (2.34)

In other words, if Uy is close to W in H'(R), then the corresponding solution U remains close
to the orbit of W, up to space translations and rotations.

It is crucial to recall that, in the subcritical case 0 < p < 2, any standing wave solution can be
mapped via the transformation

1
U, 1) Upy(x,t) ::QFU(Qx,ta), o >0, (2.35)
to one with an L2 norm of arbitrary size [58], as
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2—p
[0 2y =07 [U@D] 2m, (2.36)

and so for p < 2 one may construct standing waves of arbitrary L norm for a suitable choice of

+1
0. Moreover, for X := gx we have 0, U, (x,t) = QPT dxU (X, 0%t) and so

42
10U 2y =0 7 [0:U @] 2 2.37)

Therefore, the scaling (2.35) preserves the stability of standing waves. Indeed, suppose W
A, corresponds to a stable standing wave. Then, given € > 0 and initial data Uy satisfying the

1
hypothesis of Theorem 2.3, for W, (x) := o» W(ox) and Up, (x) defined analogously we have,
in view of (2.36) and (2.37),

2p 2
” Uog = Wp ”HI(R) = max{g w0 }5 (2.38)
and
sup inf inf HU ¢, 0%t) —e'W,(-—y) H < max {922;1’[7 Q22+7p }6 (2.39)
10 0cR yeR |27 @ H'(R) — ’ ’

implying the stability of the standing wave associated with W,. Note that the restriction p < 2
ensures that the exponents in (2.36) and (2.37) can both be controlled by o sufficiently small;
otherwise, if p > 2 then the former equality requires ¢ large and the latter o small, so they
cannot be combined to control the H' norm.

With the above preparations, a transitivity argument that combines Theorem 2.2 proved in this
work with Theorem 2.3 from [13] implies the following result.

Corollary 2.1. Suppose 1 < p < 2 and let Uni(x,t) = e Wyi(x), Wnr € Ap, © >0, be a
standing wave solution of the non-integrable NLS equation (1.9) which is stable in the sense of
Theorem 2.3. Furthermore, given 0 < & < 1, let ug, Uy € H' (R) be initial data for the integrable
and non-integrable NLS equations (1.3) and (1.9), respectively, satisfying the conditions

1Uo — Wnitll g1 ry < 8(8), (2.40)
||u0||H1(]R) < co¢, 2.41)
lluo — UO||H1(R) =<c1¢, (2.42)

for some constants cq, c1 > 0, with (&) satisfying the stability criterion of Theorem 2.3. Then,
luo — Wnill g1 <cie + 8(e) =: 8(¢) and for arbitrary 0 < T¢ < 00 there exists a constant
I H'(R) f

K(Ty¢) > 0 such that

sup inf inf Hu(.,t)—e”(’)WNI(-— (r))H < Re. (2.43)
te[O,gf]GERyE]R Y HI(R)

Proof. Let 0 < ¢ < 1. First, note that the conditions (2.40) and (2.42) combined with the triangle
inequality readily yield [luo — Wnill g1 (r) < lluo — Uoll g1 w) + 100 — Wnill g1 ry < 8(e). Next,
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since Wn1 and Uy satisfy the hypothesis of Theorem 2.3, the solution U of the non-integrable
NLS equation (1.9) associated with Uy satisfies the bound

sup inf inf H UG, 1) — e Wai(- — y) H

2.44
~00€R yeR ( )

<e.
HI(R)

Let u denote the solution of the integrable NLS equation (1.3) associated with u#¢. Then, in view
of the conditions (2.41) and (2.42), which via the triangle inequality and the fact that ¢ < 1 imply
1
||U0||H1(R) <(co+c1)e <(co+cy)e3,estimate (2.7) of Theorem 2.2 yields
lu(®) = Ul g1 g, < Cre, t€[0,Ty], C1=Ci(Ty). (2.45)

Hence, combining the triangle inequality with (2.44) and (2.45), we deduce

sup inf inf Hu( 0 — e Wai(- — y) H

te[O,Tf]eeR)'ER H!(R)
= sup [u) = Ul +sup inf inf [UC0—eWat=w)| - <Ciete,
1€[0,T7] ®) T 06eR yeR H'R)

which amounts to the desired estimate (2.43) with K=C 1+1. 0O

Numerical simulations. We conclude this section with a numerical study illustrating our ana-
lytical results in the case of the zero boundary conditions (2.1). As a first example, we consider
the case of bright solitons. The second example concerns the more intricate case of collision of
bright solitons.

Bright solitons. We supplement the non-integrable NLS equation (1.4) with the initial condition
emanating from the one-soliton solution of the integrable NLS equation (1.3) (e.g. see [41]),
namely

Up(x) = us(x, 0) := Asech(Ax)e's~ (2.46)

with the parameters A, c; chosen so that the smallness conditions of Theorem 2.2 are met.

More specifically, we trigger the dynamics of the non-integrable NLS equation (1.4) with
v=1/2, y =1 and the initial condition (2.46) with small amplitude A = 0.02 and velocity
¢y = 1. We examine the case of a power nonlinearity (1.9) with p = 3 (top left panel in Fig. 2.1)
as well as the saturable nonlinearity model (1.10) (top right panel in Fig. 2.1). As explained be-
low, in both cases the evolution is essentially indistinguishable from the one of the integrable
NLS equation. The bottom panels of Fig. 2.1 show the evolution of the distance norms ||A[| 2R,
(middle (blue) line), [|All 1R (upper (yellow) line) and [|All;~R) (bottom (red) line). The
evolution of these norms appears to be in an excellent agreement with the theoretical predic-
tion (2.24) for their linear growth with respect to time. For the aforementioned set of parameter
values, we have [us(0)l| g1 (r) = [1Uoll g1 (r) = 0.2, i.e. we may take ¢ = 0.2 in which case there
is an excellent agreement with the theoretical predictions regarding the growth of the distance
in terms of ¢. Indeed, for times ¢t ~ O (1/82) the bound (2.24) predicts that ||A(#)|| x ~ O(e),
which is consistent with the evolution of the distance norms over the interval ¢ € [0, T¢] with
Ty =100 depicted in the bottom row of Fig. 2.1.

122



D. Hennig, N.I. Karachalios, D. Mantzavinos et al. Journal of Differential Equations 397 (2024) 106—165

x107*

o~

U (z,2)]

-500 -500

t 100 500 T t 100 500 T
0.01 g X107
o T
0.008 | ffl 1 251 fql
2 L

0.006 -

—0.004 -

0.002 ¢ // ] 051 /

0 : : : 0 : : ‘
0 20 40 60 80 100 0 20 40 60 80 100

Al
lA]|

Fig. 2.1. Top row: Spatiotemporal evolution of the density |U (x, )2 of the non-integrable NLS equation (1.4) with
v=1/2, y =1 and supplemented with the soliton initial condition (2.46). Left: Power nonlinearity (1.9) with p = 3 (su-
percritical case). Right: Saturable nonlinearity (1.10). Bottom row: The corresponding evolution of the norms || A(#)|| x
with X = L2, H' or L™ for each of the two cases. (For interpretation of the colors in the figure(s), the reader is referred
to the web version of this article.)

Note that in the case of the saturable nonlinearity the linear growth of || A(¢)|| x is incremental,
suggesting that the dynamics of the saturable NLS equation may be even closer to those of
the integrable one, compared to the power nonlinearity model. This behavior also insinuates
that in the non-integrable cases the persistence of small-amplitude bright solitons may last for a
significantly long time, which is quite remarkable.

The left panel of Fig. 2.2 depicts the numerical evolution of the center of mass of the
soliton, presented by solid lines for the non-integrable models and by a dashed line for the
integrable model (in fact, the two solid lines for the power and saturable nonlinearities are indis-
tinguishable). For this study, we use a spatial translation of the initial condition (2.46), namely
Up(x) = Asech[A(x — x0)]e!0) with xg = 125 and A = 0.02, ¢, = 1 as before. The two
lines corresponding to the non-integrable models are indistinguishable from the one of the inte-
grable NLS which is extended in the figure also to x < O for visualization purposes. The solitary
waves of the non-integrable models demonstrate remarkable robustness.

Besides the case of small-amplitude initial data considered above, it is also important
to investigate the case when the value of the parameter ¢ is increased. The right panel of
Fig. 2.2 shows logarithmic scale plots of the variation of the distance norm |A(#)| y for
X = L%R), H'(R) or L>°(R) as a function of ¢ for fixed Ty = 600. The dots along the solid
lines correspond to the numerically obtained rates of these variations fitted to the lines of the form
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Fig. 2.2. Left: Spatiotemporal evolution of the soliton’s center of mass for the integrable and the non-integrable models.
Right: Logarithmic scale plots of the variation of the distance norm [|A(#) || x with X = L2, H1 or L™ as a function of
¢ for fixed Ty =600. See text for more details.

HA(TJ")”U(R) versus K;g°!, HA(Tf)”HI(R) versus K£°2, and ”A(Tf)”LOO(R) versus K3£93.
The fitting results in the following values: K1 = 8.87, Kp = 17.77, K3 =2.96 and 01 = 0, = 4.5,
03 = 4.86. For these values of constants K ;, the dashed lines correspond to the analytical esti-
mates of Theorem 2.2 of the form H A(Ty) H y versus K j83. The numerical results are consistent
with the order of the analytical estimates and, in fact, indicate that the numerical variation of the
distance norms may be of significantly lower rate, namely of O(g*?) or O(&”).

Bright soliton collisions. For the study of the dynamics of bright soliton collisions, we choose
as initial datum two incoming soliton solutions of the cubic NLS equation (1.3) of the same
amplitude A, initially separated by a distance xo and moving against one other at speed c;,
namely

Uo(x) = Asech[A(x — x)] e *@=%0) 4 Asech[A(x + xg)] €/ T¥0), (2.47)

We take A = 0.1 and xg = 50. For the velocities, we considered both fast solitons with ¢, = 2
and very slow solitons with ¢; = 0.02.

Fig. 2.3 depicts the results for the soliton collision dynamics in the case of the fast solitons.
The top row corresponds to the power nonlinearity model (1.9) in the supercritical case p = 3 and
the bottom row to the saturable NLS equation (1.10). The plots of the spatiotemporal evolution
of the density |U (x, t)|? in the left panels reveal that the non-integrable systems exhibit collision
dynamics that are almost identical to the integrable (cubic) case. This persistence of integrable
soliton dynamics is even more evident in the plots of the evolution of the distance norm ||A () || x
with X = L2(R), H'(R) or L*°(R), which are in excellent agreement with the predictions of
Theorem 2.2. Note that the collision event is captured by the evolution of norms as the sigmoid-
shaped portion of the curve featuring an interlude of increased, but still moderate, slope.

Furthermore, the evolution of norms highlights two features:

(i) The saturable NLS equation seems to be a more structurally stable non-integrable model
with respect to the dynamics of the integrable NLS equation, an effect which was already

observed in the dynamics of the single bright soliton earlier.
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Fig. 2.3. Fast bright soliton collisions. Left column: Spatiotemporal evolution of the density |U (x, 1)|? initiated by the
datum (2.47) with A = 0.1, xg =50, cs = 2 for the non-integrable NLS equation with power nonlinearity (1.9) in the
supercritical case p = 3 (top) and the non-integrable saturable NLS equation (1.10) (bottom). Right column: Evolution
of the norms [|A(¢)|| x with X = L2, H' or L for the power nonlinearity p =3 (top) and the saturable nonlinearity
(bottom). In both cases, v=1/2and u =y = 1.

(ii) The relatively slow growth of [|A(¢)|[z(r) indicates that the solutions are closer in the
sense of pointwise convergence than they are in the sense of convergence in the L*(R)
or H'(R) norms; a larger deviation in the latter norms hints at rather complex dynamics
on smaller scales that may contribute to the overall difference between the integrable and
non-integrable cases.

These two features are further elucidated by the study of the slow solitons collisions shown in
Fig. 2.4. There, the top row corresponds to the power nonlinearity with p = 3. The breakdown of
integrability in this case appears to be dramatic, as it is illustrated by the spatiotemporal evolution
of the density in the top left panel. Part of the energy is trapped at the collision site, a common
feature also present in other non-integrable models (e.g. the Klein-Gordon equation ¢*). This
is not the case for the saturable nonlinearity, as shown in the bottom row. Qualitatively, the
dynamics of the saturable NLS equation is almost identical to the one of the integrable NLS
equation and, in contrast to the power nonlinearity, no energy trapping effect is observed. The
vast difference between the two non-integrable models is also prominent in the corresponding
evolution of the distance norms ||A(#)|| x. For the septic power nonlinearity, the deviation of
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Fig. 2.4. Slow bright soliton collisions. Same as in Fig. 2.3 but with ¢ = 0.02.

the L norm is still moderate and compliant with an L closeness of solutions. However, the
larger growth and the behavior of the L> and H' norms (particularly after the collision) gives
further demonstration of the integrability breakdown induced by the power nonlinearity. On the
other hand, the corresponding study of the behavior of ||A(¢)|| x for all three norms in the case
of the saturable NLS equation provides additional evidence of structural stability of that model
in reference to the integrable one.

3. Nonzero boundary conditions at infinity

The main objective of this section is to prove the analogue of Theorem 1.1 — namely, Theo-
rem 3.2 below — on the proximity of solutions between the integrable and non-integrable NLS
equations (1.3) and (1.4) when these are supplemented with a broad class of nonzero boundary
conditions at infinity. For this task, we first assume (local) existence of solutions to the non-
integrable problem in H'(R) in order to derive the relevant closeness estimates. In this regard,
we note that the well-posedness results for the general non-integrable problem with nonzero
boundary conditions are quite limited when compared to the plethora of results in the case of
zero boundary conditions and, in particular, the powerful results of Theorem 2.1. Thus, en route
to establishing Theorem 3.2, we also prove local existence in H!(R) for the non-integrable NLS
equations (1.9) and (1.10) that correspond to the power and saturable nonlinearities, respectively,
and as such represent the two most prominent members of the general family of equations (1.4).
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Motivated by the physically significant description given in [11,9,28], we supplement the
integrable and non-integrable NLS equations (1.3) and (1.4) with the following general class of
nonzero boundary conditions at infinity:

lim u(x,r)= lim eM'z(x), lim Ux,)= lim ¢?F@irx), 1>0, @3.1)
|x]—00 |x]—00 |x]—00 |x]—00

where the complex-valued function ¢ (x) belongs to the Zhidkov space

X'(R) := {g eLOO(R):c/eLZ(R)} (3.2)
and satisfies
XEIEOOK(X)=Q:€<C, [+l =qo0 > 0. (3.3)

According to the above boundary conditions, the behavior of the solutions u(x, f) and U (x, t)
as |x| — oo is dictated by the function ¢ (x), which approaches a constant background of size
qo > 0 as described by the limit conditions (3.3).

The precise form of the conditions (3.1) can be motivated as follows. Let u(x, ¢) and U (x, )
be solutions of equations (1.3) and (1.4), respectively, such that

Im u(x,t) =uy(t), lim U(x,t)=Ux(1), 34
x—+o00 x—Fo0

where Uy (#) and u4 (¢) are temporal functions of constant modulus equal to go but are oth-
erwise to be determined. Then, taking the limit of (1.3) and (1.4) as x — *oo while assum-
ing that the nonlinearity function F has sufficient smoothness so that limy|—co F(|U |2) =
F(imy -0 |U )=F (qé) (note, in particular, that this is true both in the semilinear case (1.9)
and in the saturable case (1.10)), we have

i) + pgdus =0 = uw(r) =90y (0), s

i(Us) +yF@DUs =0 = Us(t) =@ U4 (0).

Therefore, if the initial data are such that limy_ 100 u(x,0) = limy_ 100 U(x,0) = ¢4, ie. if
u+(0) = U+(0) = ¢4, then for ¢ satisfying (3.3) the expressions (3.4) and (3.5) give rise to the
conditions (3.1).

A few remarks are now in place:

(i) The assumption for ¢ € X L(R) covers the standard case Z(x) = ¢o € C being a constant
with |¢o| = ¢qo > 0.
(ii) The pure step function

4 €C, x>0,

CS(X)Z{Q‘_GC, x <0,

does not belong to X! (R), since £l(x) = (¢4 — ¢=) 8(x) in the sense of distributions and so
Ll ¢ L%(R). Nevertheless, although our analysis does not cover the pure step function Zj, it
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does cover any continuous function approximating ¢, as the derivative of such a function
will belong to L2(R) (and hence that function will belong to X! (R)).

(iii) Generalizations from the pure step function s to a nontrivial { belonging to the class
(3.2)-(3.3) covered by the present work are relevant in the context of the dynamics of NLS
equations. In the case where go = 0, localized waveforms in the form of Peregrine solitons
may locally emerge on a nontrivial decaying ¢ (x) induced by the initial conditions for the
semiclassical limit of the focusing integrable NLS equation [6]. For fundamental results on
the semiclassical problem for NLS, we refer to [38,48,56]. The local emergence of local-
ized structures reminiscent of the Peregrine soliton has been observed also in experimental
setups [54,55] and is expected to be robust in the presence of damping and forcing effects
[22,23]. However, herein we will restrict ourselves to the case go > 0.

The boundary conditions (3.1) can be made time independent (i.e. constant) via the change of
variables

(e, 1) ="' q(x, 1), Ulx,1)=e?F@Q(x, 1). (3.6)

Then, equations (1.3) and (1.4) take the form
iqr +vaex + 1(191* — a3)q =0, 3.7)
i0:+v0u +y [FUOP - Fgh] 0 =0, (38)

the initial conditions remain unchanged, namely g (x, 0) = ug(x) and Q(x, 0) = Uy(x), and the
boundary conditions become

lim g¢(x,t)= lm Q(x,1)=1{s (3.9)
x— %00 x—+too

so that lim |y, 0 |q (x, )| =lim x| 50 | Q(x, 1)| = go > 0. Furthermore, the additional change of
variables

g(x,0)=¢(x, 1) +(x), O, 1) =d(x,1)+(x) (3.10)
leads to the modified NLS equations
i +v @+ O+ (16 + 17 —a) 6+ =0, (3.11)
B+ (D + )y +y [FU+ED) = Fa)] @+ =0, (3.12)
along with the initial conditions
¢(x,0) =uo(x) —¢(x) =1 do(x), P(x,0)=Uo(x)—&(x) =: Po(x) (3.13)
and zero boundary conditions at infinity, i.e.
I l‘im (,b(x,t):‘ llim d(x,1)=0, t>0. (3.14)
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The rest of this section is organized as follows. First, we establish L> and H' closeness
estimates for the modified NLS equations (3.11) and (3.12). Through the transformations (3.6)
and (3.10), these closeness results imply corresponding estimates for the difference

. 2 . 2
e M y(x, 1) — e VFUDIY (x, 1)

involving the solutions of the original integrable and non-integrable NLS equations (1.3) and
(1.4). The derivation of the closeness estimates is accomplished under the assumption of (at
least) local H'! existence for the non-integrable equation (1.4). In this connection, we empha-
size that the case of nonzero boundary conditions is substantially different from the one of zero
boundary conditions, even at the fundamental level of well-posedness. In particular, to the best
of our knowledge, the well-posedness of the non-integrable NLS equation (1.4) with general
nonlinearities is much less understood in the former case. In the focusing regime, one of the
few known results in Sobolev spaces is due to [49], where local existence was established for
the semilinear Schrodinger equation (1.9) in the case of H*(R) perturbations of the background
wave with s > 1/2. It should be noted that the proofs in [49] are given only for p = 1 correspond-
ing to the integrable cubic NLS equation, although it is remarked that the arguments should go
through also in the case of general p > 1. In this regard, below we also prove local existence in
H'(R) for the modified NLS equation (3.12) (and hence for the non-integrable NLS equation
(1.4)) in the cases of a general power nonlinearity as well as of a saturable nonlinearity, which
are respectively associated with the models (1.9) and (1.10). This local existence result is crucial
as (i) it removes the relevant assumption used for the derivation of the closeness estimates, and
(i) via a continuity argument with respect to time (since our local solutions end up in the class
C([0, T1; HL(R))), it allows us to obtain the analogue of Theorem 1.1 in the case of the nonzero
boundary conditions (3.1), namely Theorem 3.2.

Closeness estimates. As noted above, in order to investigate the proximity between the solutions
of equations (3.11) and (3.12), we first assume local existence of these solutions in H L(R). Local
estimates validating this assumption in the case of a general power nonlinearity and the saturable
nonlinearity are obtained after the proof of the closeness estimates.

The difference of solutions to equations (3.11) and (3.12) is the same as the one of solutions
to equations (3.7) and (3.8), because it is unaffected by the change of variables (3.10). On the
other hand, the change of variables (3.6) does not preserve that difference, as it results in different
phase factors multiplying each of the solutions to the original equations (1.3) and (1.4). That is,

A1) =g (x, 1) — B(x, 1) = q(x,1) — O(x, 1) = e 10" u(x, 1) — eV FO U (x, 1)
with A satisfying the equation
iN 4+ VA =y Gro, 1) —uGrgx,1), (3.15)
where
Gro(r.0=|F(®+¢P) = F@)]@+¢) (3.16)
and the subscript “1” denotes the identity function, so that G 4(x, ) = (|¢ +¢> - qg) @+90).
Starting from equation (3.15), we first establish closeness estimates in L%(R) and then in H'(R),

the latter also implying the result in L°°(R) via Sobolev embedding.
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L? closeness. Taking the Fourier transform (2.11) of equation (3.15) and integrating over ¢,
we find

t

(€, 1) =e ETRE, 0) — i / ey GraE, 1) — n G g D] dr. (3.17)
0

>0

Hence, by Plancherel’s theorem, Minkowski’s integral inequality and the triangle inequality,

~ 1 =~
A0 2@y = 12O 2wy

t
1 g2 & G
N Heﬂug «-0[, G 1) —uGrgE, T ] dr
_27T0/ [¥GroG. 1) —uGig, 1)] L2R) (3.18)

t

= 1Bl o, + [ [ 1650 |2y + 11610 | ey
0

and we need to estimate the spatial L? norms of G F,o and G1 4. Note that the conditions (3.3)
and (3.14) already imply lim|y| o0 GF,0(x, 1) = limjy| 00 G1,¢(x, 1) = 0. More precisely, we
have the following estimate:

Lemma 3.1. Let F satisfy the properties (1.5). Then, for any p > 1 and each t > 0, the function
G .o defined by (3.16) admits the bound

|Gro® ||L2(R)

= 2V2K (IOl + 1 o@) +40) 7 (10O 2@ + 161 = q0] 2y ) B-19)
where K is the constant associated with F via (1.5).
Proof. By the first of the properties (1.5), we have

[FU®+¢P) = Fd)| < K(10+ P+ ") |0+ ¢ =g, p=z1.
Then, noting that

(@] +1¢D* = g2, 1D +¢1> qo,
@+ 12— 2\5{ f
‘ = g2 — el —¢l1>, 1@ +¢l < qo,

we obtain

10+ = g3| <[40l + 10> — a] + |11~ 1£1 — 3]

<2(®|+ ¢+ q0) (121 + |1¢] — q0])

(3.20)
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and, in turn,

F(®+¢P) = Fad)| =2K (19 + P07 4657 7") (01 + I¢1 +a0) (101 + 18] - 0])

<2K (|®] + 12| +g0)*P 7 (1@] + [I£] = qo) - (3.21)

Using this inequality, we find

[Fae+ed - Fap|@+o) ,

1

2
<2K /(|d>|+|c|+qo)2<2"*”(|<1>|+||;|—qo|)2<|<1>|+|;|)2dx
1
2

szﬁKsu§[<|cb|+|u+qo>2p*<|cb|+|;|>] /(|‘1>|2+||§|—610|2)dx :
Xe
R

which readily implies the claimed estimate. O

In view of the L? estimate (3.19) for general Gr ¢ as well as for Gy 4 with p =K =1,
inequality (3.18) yields

120] 2w = 18O 12w

+2v31 sup [yK (1@l oo Ry + 11 oo (r) +40)™7 (19O 2y + 161 = 0] 2w )

€(0,7]
+ 1 (19Ol ®) + 12120y +40)° (1612w + 181 = q0] 2R ) } (3.22)

which for each ¢ > 0 provides an L? estimate for Z(t) in terms of the L2 norms of Z(O), (1),
¢ (1), |¢] — qo, the L norms of ®(z), ¢(t), ¢, and the background ¢g.

H'! closeness. Starting from the definition of the Sobolev norm and using expression (3.17) along

with the unitarity of e *""* and Minkowski’s integral inequality, we have

1
2

t
~ . ~ . —~ —~ 2
1AD] g1 ) = (ﬂ{ (1 + sz) (e*’“ézfA@, 0)—i / D[, G (6. 7) — 1 G g6 T)] dt\ ds)
0 (3.23)

12
<V2 (”Z(O)”HI(R) +/[V ”GF.,<1>(T)HH1(R) tr ”Gl,tb(f)”Hl(R)}dT) :
0

Thus, for each 7 > 0, we need to estimate G r,¢(¢) and G 4(¢) in H'(R).

Lemma 3.2. Let F satisfy the properties (1.5). Then, for any p > 1 and each t > 0, the function
G .o defined by (3.16) admits the bound
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|GFa@ “H‘(R)

<2V2K (120l w) + 1€ 1l oo r) + ﬂ]O)ZP_1 |:2(||q)(t)”L°°(]R) + 121l oo () + 90)
(1O 1@y + 18| 2y + 1161 = 0l 12 gy ) + (19O Ny + 18] = G0l wy)
(10l + ||¢/||L2(R))] (3.24)

where K is the constant associated with F via (1.5).

Proof. Since |[Gr o ()| HR) = 1GFo®| rw T [0:G 0| L2(r, and we have already es-

timated the L2 norm of G F.o via (3.19), we proceed to the L? norm of the derivative 0xGF.o.
Differentiating (3.16) and applying the triangle inequality, we have

|G ro®| 2@ <2[F 2+ @+ (@ +0)s
R)

L2(R)

(3.25)
+|[Fuo+e - Fad] @+

L2R)’

For the first term on the right-hand side, by the third of the properties (1.5) we find

1
2

[Fae+ed@+ %@+,

oy =K [ [1o a0+ o ax
R

< V2K (Il o) + 18 No@)™ (1915w + 18] @) ) -

Moreover, for the second term, using inequality (3.21) we infer

[[Fao+e - Fad] @+,

LXR)
|

2
<2K /<|<I>| 12140227V (1] + [12] — qo|)* (@ + )1 [P dx
R

<2V2K (Il o) + 1 Loy +90) 7" (191l o) + 1151 = qoll o m))
(19w + 18 2w
Combining the last two estimates with (3.25), we deduce
[0:G k0™ 2 gy = 2V2K (19110 + 16 @)™ (19118 + 8] 208, )
+2V2K (|0l oory + 1€ o) +90) 7 (191 oo ) + 121 — qoll oo my)

(10l @y + €] 2m))
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which alongside (3.19) yields the desired estimate (3.24). O

In view of the H'! estimate (3.24) for general Gf, ¢ as well as for G1 4 with K = p =1,
inequality (3.23) yields

12| 1=y < V2ZIRO) | 1 g, + 41 s {VK (10l Loy + 1l Loy +0) "

: [2(||<1><r)||Loo<R) + ¢y +90) (19 ) + 16 ] oy + 111 = 20l 12 g
+ (12l o) + 1121 — qoll Lo (r)) (||<1>(r)||H1<R> + Hc’HLzam)}

+ 1 (I @l Loy + 11l Lo ) + 90) [2 (Il @l ooy + 11l oo ) + 90)

(10O +1¢ ]2+ 1= 0] 2o

+ (I (Ol ooy + 1121 = qoll LRy ) (||¢<r>||H1(R) + |}c’||L2<R>) } } (3.26)

which at each time 7 > 0 provides a spatial H ! estimate for A(¢) in terms of the H' norms
of A(0), ®(1), ¢(t), the L? norms of ¢’, |¢| — qo, the L> norms of ®(r), ¢ (), ¢, and the
background gy.

L*>® closeness. By the Sobolev embedding theorem, the bound in (3.26) is also satisfied by the
L norm of A(t), thereby extending our closeness result to that space as well.

Local existence in H!(R) for power and saturable nonlinearities. The closeness esti-
mates (3.22) and (3.26) were derived under the assumption of existence of solution to equa-
tions (3.11) and (3.12) in the function spaces involved in those estimates. In what follows, we
establish local existence in H!(R) for equation (3.12) with a general power nonlinearity (this re-
sult also covers equation (3.11)) as well as with a saturable nonlinearity. Note that, since the L*°
norm is controlled by the H' norm via the Sobolev embedding theorem, existence in H' suf-
fices for removing the aforementioned assumption from the derivation of the closeness estimates.
More precisely, we prove

Theorem 3.1 (Local existence in H'(R)). Consider the modified NLS equation (3.12) with ei-

ther the saturable nonlinearity F(x) = ﬁ or the power nonlinearity F(x) = xP, p > 1.
K X
Then, the associated Cauchy problem (3.12)-(3.14) possesses a unique solution ® € B(0, p) C

C(0,Trl; H'(R)), where for some fixed T > 0 the radius p > 0 is defined by (3.33) and the
lifespan 0 < Ty < T satisfies (3.47) in the saturable case and (3.57) in the case of the power
nonlinearity.

Proof. The proof combines linear estimates with bounds for the nonlinear terms and relies on
a contraction mapping argument. It consists of several steps, starting from the linear terms and
moving to the handling of the nonlinearities and their differences as required in order to invoke
the contraction mapping theorem in H'(R).
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Taking the spatial Fourier transform of equation (3.12) while noting that ¢’ — 0 as |x| — oo
since ¢’ € L2(R), we obtain

®, +ivE’® = —vEL'(E) +iyGro (3.27)

with G ¢ defined by (3.16). Then, integrating with respect to ¢, implementing the initial condi-
tion (3.13) and inverting the Fourier transform, we arrive at the integral equation

d(x, 1) = A[D](x, 1) (3.28)

where

Al®IGx, 1) 1= % / XV B (1) g

R
1 t e (3.29)
+o— [ iy / e TG 6, T+ ———— (@) |dE.
2w ig
R 0

This formulation motivates our notion of solution to the Cauchy problem (3.12)-(3.14), namely
we say that @ solves (3.12)-(3.14) if it satisfies the integral equation (3.28). Thus, proving local
existence of solution to (3.12)-(3.14) amounts to showing that (3.28) has a (unique) fixed point,
which in turn will be established by proving that the mapping ® > A[®] is a contraction in the
claimed solution space C([0, Tr]; H I(R)) for an appropriate choice of T > 0. The first step in
this direction is to obtain an estimate for the H' norm of A[®](¢) for each # € R. This will be
followed by a corresponding estimate for the difference A[®P](¢) — A[W](¢). These two estimates
will then be combined to deduce that A is a contraction in a subset B(0, p) of C([0, T¢]; H L(R))
for a suitably chosen radius p > 0 and (minimum) lifespan 7 > 0.
By (3.29) and the definition of the H ! horm,

¢ 2

IAIRIO 11 ) 52/(1+52> |ao(§)|2d§+4y2/(1+52) /eivnggm(g,f)dr dt
R R 0
71‘\)521‘ -1 2 .
vaf (148) || [F©Fae,
R

Concerning the integral involving ¢’, we note that ‘I_CTOS(/‘)’ <1 for all k € R and so

e*iv.{-’zt_l 2

ig

< 2|v|t for all £ € R and ¢ > 0. This inequality

1— 2 1— 2
) coésgu’;‘ 1) — 2|v|t‘ cgz(;;&‘ 1)

1—cos(vE2s 2 4
Thus, using also Minkowski’s integral inequality for the term involving G r, ¢, we infer

is useful for & near 0, while for |£| > 1 we can simply observe that 0 <
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2

t
IALRIOI: g, = 2190y + 472 | [ 1G o] 107
0

+4 / 2.2|v|t|2'(s)|2ds+4f (1+52)
Ei=1 =1

8
1+ &2

RGIKES

and, in turn, by Plancherel’s theorem we obtain

IALRIO N1y SV2 1ol g1y +4 (VIVIVE+V2) €]

t
+2y/ 1GFe@| 41 g, dr- (3.30)
0

The H'! norm of G F,o can be estimated in terms of the H I horm of @ by combining esti-
mate (3.24) with the Sobolev embedding theorem:

”GF,tb(f)”Hl(R) <4v2K (||q>(t)||1-11(]R) + 1181l oo Ry +QO)2p (||©(f)||H1(R) + Hf/HLz(R)

+ et =0l 2y
+2V2K (100l 1 gy + 1E o) +90) " (19Ol 1Ry + 1151 = goll oo my)

(1Ol + 16l 2@)

2p+1
<6v2K (||<D(l)||H1(]R) + ¢l LRy + “(/“LZ(R) + g1 - CIOHLz(R) +QO> ’

)2p+1

’

(3.31)

<3270k oI5 + (1o + 1€ 2 + 1161 = g0 12 g, + 90
H'(R) R) (R)

where for the last step we have used the inequality (a + b)° < 2"_1(11“ +b°),a,b>0,0>1,
which follows from applying Jensen’s inequality to the convex function x?, o > 1.
By combining the bound (3.31) with inequality (3.30), we obtain

IAIPIO g1 Ry < V2110l 1wy + 4(VIVIVE +V2) ] 12w,

2p+1
+3: 2253y Kt (1o + a0 + [ ] oy + 11— 0] 2y

5 2 1
+3.22PY3yK .1 sup ||®(r)||;l—fR). (3.32)
t€[0,1]

Motivated by (3.32), for fixed T > 0 we let
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pzz.s.22P+3yK[||d>o||H1<R) + (VIVIVT +v2) 2] 2y
(3.33)
, 2p+1
+T <||§||LDO(R) +q0+ ¢ ||L2(R) + g1 _qo||L2(R)> } >0

and denote by B(0, p) the open ball of radius o centered at zero in C([0, Tr]; H IR)), 0 <
Ty < T. Then, in order for the map ® — A[®] to be a contraction in B(0, p), we must have
A[®] € B(0, p) whenever ® € B(0, p). In view of estimate (3.32), this first requirement yields
the following condition for the lifespan Tf:

1

p 2p+3 2p+1
S 32PNy KT pPT <p = Tp < —————.
2 f f 3‘22p+%pr2p

(3.34)

The second requirement which alongside (3.34) guarantees that & — A[®] is a contrac-
tion in B(O, p) is that ||A[q>] - A[\Ij]”c([o"rj]’]_]] R)) < M ”(D - \IJ”C([O,TJ],HI(R)) for all CD, v e
B(0, p) and some constant M < 1. Similarly to (3.30), we have

t
[ALDI(1) — ALV | 1 () < 2 / |GFo(@) = Gru@| 41 g, dr. (3.35)
0

In order to estimate the H'! norm on the right-hand side, we first manipulate the difference of
nonlinearities G r,¢ — G F,w so that a convenient factor of & — W can be extracted. Noting that

Gro—Gru=[F(®+¢P) — F(U+ D@+ +[FI¥+¢P) - Fad | @ —w)
(3.36)
and recalling the conditions (1.5) for F, we have

Gro—Grul < K{(104+ P00 4+ 1w+ cPO0) |04 ¢ = (w4210 +¢|
+ (1w P+ g ) 10— wl).

Thus, observing that

19+ ¢ = 194 ¢ P = (10 +¢1+ 1w+ 1)] 19+ = 1w+ |
(3.37)
<(1®+¢I+1W+c])|D— W,
we deduce
|Gro(x.1) = Grulx,1)|
< K| (104 P70 4 1w e POD) (045 + WD) [0+ <]
LA R ILEA T
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In turn, we can estimate the difference of nonlinearities in L2 as follows:
”GF»q’ - GF,‘I’” L2(R)
= K[ (10 + 1L + 19+ 17200 ) (19 + Sl + 19+ Sl o))
N0+ Ell oy + IV +C I gy + 0" | 19 = Wl o)
< K[(19 + ¢l + 1+ L) ™ +a57 |10 = Wl o)
<K (I®lzom) + IWlo®) + 218 o) + 610)2p @ — W 2R,
<K (1@l giwy + 1l g Ry + 2121 20wy + qo)zp [®— VYl 2R, (3.38)

with the last step due to Sobolev embedding.
It remains to also estimate the LZ norm of the derivative 9, (G F.& — Gp,q,). This task turns

out to be more involved due to the appearance of the difference F'(|® + §|2) — F(|V + §|2).
First, differentiating (3.36) and rearranging appropriately, we have

0 (Gr.o = Grw) = [F(0+ D) [(@+0), (®F8) + (@ +0) ($+7),]
— FU+ P [+, (TF0) + (W +0 (FF0) ] J@+0)
+[FU®+cP) = FQw+P] @+,
+F W+ [+, (VH) + W+ (T+7) ] (@ - W)

+[Fav+e) - Fad]@—w.. (3.39)

Therefore, using also the conditions (1.5), the embedding H LR) ¢ L*®(R) and inequality
(3.37), we obtain

[0 (Gro = Gru)l oy = |F/1®+ P [(@+0), (B+0) + (@ +0) (BF2), ]

—F W+ [+, (T+2) + W+ (V+7) ]

L2(R)
: (“@”HI(R) + ||§||L°0(R))

_ 2p—1
+ 227 K (1l gy + 1l Ry + 12 o)) ™"
(NPl + 1 2y ) 19 = Wl ey
2p—1 l
+2K (191 g1 gy + 1l Lo ) (||\v||H1<R> +¢ IILZ(R)) 1 — Wil 1 (g,
2
+ K (1901 gy + 12 lzo®) +q0) 7 19 — ¥l 1 ) - (3.40)

The difference [|® — W ;1 R, has conveniently appeared in the last three terms on the right-hand
side of the above inequality. In order to also extract it from the first term, we use the identity
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UIVIWT — U0 Ws = w1y (w1 — w2) + w1 W2 (v — v2) + VW (U1 — u)

to express the first of the differences involved in the first term of (3.40) as

F' 1P+ @+, (@+¢) = F/(V+¢) (¥ +0), (F+Q)
=F(12+¢) @+, (@—0)+ F(1®+¢) (V+7) (@ — W),

+ WO, (TF) [FU0 -+ = F(w+eP)].

In view of this writing and also the properties (1.5) satisfied by F, we find

=|

FIU®+) (@40, (B+E) = F/(W+ D) (W +0), (U F “Hmam

W+ [l oo (R

Flo+¢P)|

/ / 2
poogiy 195 + 8 L2y 19 = Wiy + |F/00 40P

N @ =9 2y + [+ O] 2y 19+ ooy | F10+ 22 = Frqw + )

LoO(R)
2(p—1
<K (1911 +1loe®) T (1901 ) + 1901 gy + 1] 2y + 1 200 ) ) 10 = Wl

+ (1901 6y + 16 L2y ) (1991 gy + 1 ey )| (341

Fo+e?) = Fov+eP)| g -

Furthermore, by symmetry with respect to complex conjugation, the exact same bound is also
satisfied by the L? norm of the second difference in the first term of (3.40), i.e.

[Fa@+ e @+0) (@F7), - Faw+cP) (@ +0) (T+0),

<RHS . (3.42
PR S G.an. (3.42)

Thanks to the bounds (3.41) and (3.42), it suffices to extract the H ! norm of ® — W from the
norm

[Faeeny - Favrep| (3.43)

This norm cannot be handled as easily as the L°° norm of F(]® + §|2) —F(v+ §|2) that arose
earlier in the L estimation of (3.36). Indeed, note in particular that the first of the conditions (1.5)
is not necessarily satisfied by F’. For example, in the case of power nonlinearity F(x) = x” we
have F'(x) = px?~! and, unless p > 3, it is not possible to bound the difference | F' (x) — F'(y)|
by a factor of ’f -y ‘ (let alone |x — y|), which is the minimum requirement in order to make
|® — Wl ~®) appear in the bound for (3.43). On the other hand, in the case of the saturable
nonlinearity F(x) = m we have

1 ‘ 1 1
el [(1+x)2 (1+y)?

1 1 1 2
S—(—=+—=)lx—yI=—Ix—yl. x,y=0,
S <1+x3 1+y3>|x y|_|K||x oo oxy=

and so it seems possible to control (3.43) by [|® — W|| o (R).

B 24+ x + y -
TIA+02A 2 Y

|F'(x) — F'(y)| = |

(3.44)
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Following the above observations, we revisit the estimation of || Oy (G Fo—G p,\p) || L2R) by

treating the two cases F(x) = K(lx—-l—x) (saturable nonlinearity) and F(x) = x? (power nonlinear-
ity) separately.

Contraction estimate for the saturable nonlinearity. In this case, F(x) =
1
k(1+x)?
met with K = |K| and p = 1. Thus, returning to (3.39) and using these uniform bounds along

ﬁ and F'(x) =
are umformly bounded by - Il for x > 0. In addition, the first of the conditions (1.5) is

with the embedding H'(R) ¢ L*°(R) and inequality (3.37) as appropriate, we have
“ 0 (Gr.o —Gr.u) ||L2(R)
=[Fae+ed @+, @F0) +@+0)(@+7),]

—F U+ [+, (T+0) + W +0) (P+2), ]

2® (121l 1wy + 11 Il Loo(r)y)

2

e Il + MW@ + 12l@) 19 = Pl g) (||<I>||H1(R> + ||c’||Lz(R))
2 /

- ﬁ (11 a1y + 18 Do) (10 ey + 167 ]2y ) 19 = Wi gy

+ |—| 1D — Wl 1R - (3.45)

Notice that the bound (3.44) together with inequality (3.37) imply

[0+ Py = FOwcP)] < (10 €1+ 19+ ¢1) o - .

Hence, in the saturable case, the norm (3.43) satisfies the inequality

|Fao+e - Faw+ c|2>HLOO(R)

4
—| (1PN 1wy + Wl g1 Ry + 1E 1200 Ry) 1P — Wl g1 () -

which can be combined with (3.41) and the fact that p =1 and K = ﬁ to deduce

[Fa@+e) @+, (BF7) - F(w+cD W +0), (§57)

LXR)

1
< |K—l[(||<1>||HlaR) 1y + 18 oy + 1oy ) +4 (1) + 1] 2 )

(Il gy + 12 o)) (191 1Ry + 111wy + ||;||Loo<R))] I — Wiy g)-

Moreover, by symmetry, the same estimate also holds for the left-hand side of (3.42). Therefore,
returning to (3.45), we eventually obtain
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[0:(Gr.0 = Grw)] 2ey
8 , 4 (3.46)
< o (1 190y + 190y + ¢ 2y + 16lie@) 19 = Wl

The L? estimates (3.38) and (3.46) combine to yield the H I estimate

HGFSD - GF"I’“H](R)

16 4
< el (1 + Pl g wy + Wl g1(Rr) + Hé“/HLz(R) + ¢ Lo R) +QO) 1P — Wil g )

which in turn implies, via inequality (3.35),

32y
IA[®I0) = ANIO N1y < 7 1 sup. (1 HIP@ @) + 1Yl gy + ] 2y
T s

4
+lele@ +a0) 1@ = DOl -

Therefore, a sufficient condition for the map ® +— A[®P] to be a contraction in the ball B(0, p) C
C([0, Tr]; H'(R)) is

T, < ] . (3.47)

)
32y (1420 + 18l 2wy + Il Lo (w) + 90)

Observe that (3.47) is a stronger condition than (3.34).

Contraction estimate for the power nonlinearity. By the triangle inequality,

0 [0+ E127 (@ +0) = (W £ PP (w4 0|

|| dx (GF’CD o GF’\IJ) ||L2(]R) = L2(R)
+ 10l 1@ — Wl g1 g) - (3.48)

We then invoke the following widely used result, whose proof we include below for complete-
ness.

Lemma 3.3. For any p > 1 and any pair of complex numbers z, 7/,

I 1
|z|2pz—|z’|2pz’=(p+1)</|Zx|2pd)»> (Z—z')—l—p(/llez(p])Z,%d)»)(z—z’), (3.49)
0 0

where Z) =iz + (1 — A1)z, A €0, 1].

Proof of Lemma 3.3. Letting z = x + iy, x,y € R, we have [z]?’z = (x2+)%)"x +
i (x> +y%)"y. For f(x,y) = (x?+?)"x, define the function g : [0,1] - R by g() =
fOx + (1 =2)x’, Ay + (1 —1)y’). Then, by the Fundamental Theorem of Calculus,
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: d
p p g
(2 +52) 5= (¥242) ¥ = fle ) = £ ) =)~ 8(0) = / 7 dh.
0

Furthermore, by the chain rule, for each (x, y), (x’, ') € R? we have

dg_

B
o (x —x') %(Ax + A =0x Ay + (1 =1)y)

/ af / !
+(y—y)5()\x+(l—)\)x,)»y—l—(l—)»)y).

Thus, computing %(x, y)=2p (x? + yz)p_l x2+ (x2+y?)” W (x,y)=2p (x2+ yz)p—l Xy

[} 3,\)
and letting X; =Ax+ (1 —A)x", Ya=Ay+ (1 —A)y sothat X; +i¥y =Az+ (1 — 1)z =: Z;,
we obtain

1
p p
(x2+y2) x—(x’z—i—y’z) x'= /[2p|Z;L|2([’_1)X%+|Z;L|2"’]d)» (x —x')
0

1

+ /2p|Z)M|2(P7])X)LY)Ld)\ (y—y/).
0

In addition, the symmetry in x and y readily implies

1
p p B
(x2+y2) y—(X’ery/z) = /[2P|ZA|2(p D Yf+|Zx|2”]dk (y=>)
0

1
+ /‘2p|Z,\|2(P*1)XAYAdA (x —x').
0

The last two equations can be combined to yield

1 1

21?77 — |77 = (/ |Z3, 7P dx> (z—7)+ 2p/ |2, 2P [X% (x=x)+ XY (y =)
0 0

+i¥5 (v =¥) + XY (x = &) Jar,

which is the desired expression since, upon completing the square, the quantity inside the square
bracket on the right-hand side is equal to %Z)% z—2)+ % 1Z3* (z—2). O

Returning to (3.48), we employ Lemma 3.3 with z = ® + ¢ and 7/ = ¥ + ¢, which imply
Z = MP+0)+A -V H+¢)=A2P+ (1 —A)¥ 4 ¢, to obtain
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2p _ 2p
e[l + 2 @+ o -t e ol

1
<(p+1) a[(/ |ZA|2"dA> (cb—\v)}
0

1
+p |0 ( / |Z, [P~ D Z%dx)«p—_ w)}
0

L2(R)

LX(R)
1

§(p+1)/

0

o (1 @ - w)|

dx
L2(R)

1
o [1: P00 22 c1>—\1/”
o [ [zrov z@=w)|
0

o127 @ - w)]|

<(p+1) sup
2€[0,1] L2(R)
+p sw |0 [1ZP77) 22 @ =0 ||
re[0,1]

L2R)

Thus, by the product rule,

010+ S (@ +0) = [+ £ (0 )]

L2([R)

LZ(R)>

+ 1222070 22 @ =W,

0.(12:7) - (@ - )|

<(p+1) sup ( +H|Zx|2p(q>—‘lj)x

rel0.1] L2(R)

L%R)) '

(3.50)
The second and fourth norms on the right-hand side of (3.50) are easy to handle as follows:

+p sup (Hax( 1Z,20=) 22) . (@ = )
A€[0,1]

LX(R)

7 2P (b — W :”Z 20-1) 722 (o = ).
|1z @ - w), =12 ACEETN
2
< 1Zll ooy 1@ =¥ |2y (3.51)

2
< (1l g1 ) + 1l 1 Ry + 1 1 ow) 7 19 — Wil 1 ) -

In order to estimate the first and third norms on the right-hand side of (3.50), we note that

0| Zo PP = 2p|Z3 PP 8x1 Z3 ) = 2P| Z3 P72 (351 Z3 ) | Z3
A\ Zo PP =2(p — DIZu PP 381 Zo ] = 2(p — DIZo PP~ (3:1Z51) 1 Z3 ).
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Hence, it suffices to compute (9y|Zy|) |Zy|. For this, we observe that 8, |Z; |> = 2| Z;.|9x| Z;.| and
so we first compute

1Z0 2 =2 4 (1= 2 WP + g3 +1(1— 1) (BT + D)
+ A (P + PC) + (1 — 1) (Vg +W2),
which upon differentiation yields
21Z3 1051 Z3| = 27 (P ® + Py @) + A(1 — 1) (Px T + P W) + A (D1 + Dyl

(1= 2) (B + PWy) + (1 = )% (W, + Wy ) + (1 = 2) (Wl + Wig)
+ 2 (B + )+ (1 =) (U + W)+ (¢ +¢). (3.52)

Therefore,

[0.(1z227) - @ - w)|

=2p 10— W) 1222070 012,12,

L2(R) L2(R)
<plI®— Vlnm 12217 L ) [ |0+ D@ o + [T+ B o g,

+ | u + Pt gy + [ OUn + PU o) + [T + VT o

|9+ Uit | oy + [ @8+ R oy + [V + 9 oy + [T+ 8¢ ||L2<R>}
<2p 10 = Wl o) 1 Z 7% g) (19 L) + 1l o) + 12110 r)

: (I|d>x||Lz(R> + W ll 2Ry + ||§’||L2(R)) (3.53)

hence, noting that | Z; | < |®| + |W| + |¢| and using the embedding H!(R) C L*°(R), we obtain
the following bound for the first norm on the right-hand side of (3.50):

ENCARSHCER) R

RS 2p 10 — Wil g1y (191 g1y + 11 g1 w) + 1€ 1 Loo )
(1Pl + 1l ey + 1] 2wy - (3.54)
Proceeding to the third norm on the right-hand side of (3.50), we have

[o:(1Z2 P70 22) @ =W)| , <10 - Wl x,

0. (122770 23)|

L2(R) L2(R)

ST [H2<p SRR EATCRED R .

L%R)}

2(p—1
<[P — ¥l o) [(p — DIZIFL ) 121Z3] B Za D)l 2wy

+[1222070 22, 0. 2)
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2p—1
20231y 19: 2 2y |-

The first of the L2 norms on the right-hand side can be handled along the lines of (3.53). For the
second L2 norm, we have

19:Z3ll 2wy = |2 + (1 = VW + ¢ oy < NP1y + 1¥ Dy + 167 2wy -
Thus, using once again the embedding H'(R) C L>(R), we obtain the bound

[0.(1220 70 22) @ =)

L%(R)
2p—1
<2pl® = ¥lgg) (I 1wy + 1% g1 Ry + 11 LooR))

: (”CDHHI(R) + 1%l g1 Ry + ¢ L2(R)) : (3.55)

Overall, the bounds (3.51), (3.54) and (3.55) combine with inequality (3.50) to yield

010+ E127 (@ +0) = (W £ PP (w4 0|

L*(R)
2 , 2p
<@p+1) (||<1>||H1<R>+ 1l g1 gy + 18 o) + 1€ HLZ(R)) 1D — Wl 1w,

which together with inequality (3.48) implies

|| 0 (Gr.o = Gruw) ”LZ(R)
2
< @p+ 12 (1901 @) + 1901y + 1@ + 6] oy +40) 19 = B, -

(3.56)
Hence, in view of the L2 estimate (3.38), we have

[Gro=Grulmm = 27 p+Cp+ D] (101 + ¥l e
1 2p
el + 16 ] oy T 0) 1P = Vg, -
In turn, inequality (3.35) yields
IALRIN) — A0l &y <27 |22 p+ 2p+ 171

< sup [(I10@ ) + 19Ol @)
7€[0,1]

/ 2p
e @y + 1 2y +0) 1@ = WOl |

which ensures that A is a contraction in the ball B(0, p) C C([0, T¢]; H! (R)) provided that
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1
.
2y [227+ p+ 2p 4+ D] (20 + [l poew) + 181 2®) + q0) ™"

Ty < (3.57)

The proof of the local H'! existence Theorem 3.1 is complete. O

Remark 3.1. The bounds (3.47) and (3.57) for the lifespan T, get larger as the norms
1Poll g1 (r)s 1S 1200 (R)> f/” L2(R)’ | 1Z1 = qo H 12(R) and the background go get smaller. This
is consistent with the fact that, when all of these quantities are small, the problem heuristically
approximates the one with zero boundary conditions, for which global existence is ensured for all
p > 1 and sufficiently small initial data according to the known results of Theorem 2.1. Specif-
ically, when { =¢gop =0 and 1 < p < 2, the arguments of Theorem 3.1 provide the first step
towards establishing global existence of solutions satisfying the size estimate (2.2). In particular,
this first step implies local existence of solutions satisfying (2.2). This result is then extended to
global existence by employing appropriate conservation laws, which are useful in the context of
zero boundary conditions unlike the case of nonzero boundary conditions (see discussion in the
next section).

Closeness estimates for finite times. Combining the closeness estimates (3.22) and (3.26) with
the local existence result of Theorem 3.1, we arrive at the following analogue of Theorem 1.1 for
the case of nonzero boundary conditions at infinity.

Theorem 3.2 (Theorem 1.1 for the nonzero boundary conditions (3.1)). Consider the modified
NLS equations (3.11) and (3.12) with initial data ¢y, ®o € H'(R) given by (3.13) and the bound-

ary conditions (3.14), in the case of either the saturable nonlinearity F(x) = ﬁ or the
K x
power nonlinearity F(x) = x? with p > 1.

(i) L? closeness: Given 0 < & < 1, suppose that the initial data satisfy

lpo — Poll 2g) < Ce”, (3.58)

goll 1wy < co&, 1Poll 1wy < Coe (3.59)

for some constants C, co, Co > 0. In addition, suppose that the nonzero background de-
scribed by the function ¢ € X' (R) satisfies

q0 < Be, [N~ < Bog, [¢']| 2, < B1&s 161 =do] 1o g, < Boe (3.60)
for some constants B, By, By, Bo > 0. Then, there exists a finite time T, € [0, Tf], where
Ty is the lifespan of solutions to the non-integrable NLS equation (3.12) from Theorem 3.1,
and a constant C = C(u, y, co, Co, C, B, By, B, B2, T;) such that the solutions ¢(x,t)

and ©(x, t) satisfy the closeness estimate

<Ce. (3.61)

: 2 : 2
e_ULQ()[ t _e_lVF(‘I())tU 1 ’
H u(®) ® L2(R)

sup [l¢(#) — @)l 2r) = sup
tel0,T,

tel0,T¢] ]

(i) H! and L™ closeness: If the initial data ¢o, ®q satisfy (3.59) along with the stronger con-
dition (in place of (3.58))
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o — @oll 1w < C1° (3.62)

for some constant C1 > 0 and, in addition, (3.60) holds, then there exists a constant c 1
dependin&on C1 and with a similar dependency on T, and ., vy, co, Co, By, B1, B> as the
constant C in (3.61) such that

sup [l6(6) = @Oy = sup |e M bu@) —e D U@| < e
te[0.T,] 1€[0.7.] HI®)
~ N (3.63)
Consequently, there exists a constant Cy with similar dependencies as Cy such that
sup [¢(1) = D)~y = sup e bue) — e D U@ < Coe
1€00.7,] 1€[0.7,] Lo®)
(3.64)

Proof. We only give the details for part (ii), as part (i) can be established similarly. The solutions
to the modified cubic NLS equation (3.11) exist globally in time with ¢ € C([0, c0); H!(R)).
On the other hand, thanks to Theorem 3.1, the solutions to the modified general NLS equation
exist at least locally with ® € C([0, T¢]; H I(R)). Consider both solutions on the time interval
[0, T¢] and suppose that the conditions (3.59) are met. Then, since both solutions belong to
C(0,Tr]; H 1 (R)), by continuity there exist 71, T € [0, T¢] associated with the solutions ¢, ®
of the integrable and non-integrable NLS equations, respectively, such that

16 D)l 1 ®y < Goe Vi €10, T1],

N (3.65)
1Pl 1Ry < Coe Vi €0, T2],
for some constants co, éo > 0 independent of ¢ € [0, T7] and ¢ € [0, 73], respectively. Let
T, := min{T}, T»}. Then, estimates (3.65) hold for all ¢ € [0, T,] and can be combined with
the closeness estimate (3.26) to imply

[AD ] 1 gy < MiTe P + Mo 4 My &, (3.66)

for some constants M;(u, y, C1, B, B1, B2), j =1,2,3 and all ¢ € [0, T¢] (recall that for the
saturable nonlinearity p = 1, while for the power nonlinearity p > 1). O

Remark 3.2. The fact that the NLS solutions belong to C([0, Tr]; H I(R)) is crucial, since it
allows us to establish that solutions starting from initial data that satisfy the smallness conditions
(3.59) remain small in the sense of the bounds (3.65), at least for short times. Such an argument
could not be implemented for solutions that are not continuous with respect to time, e.g. for
solutions belonging in a weaker class such as L2([0, T, H L(R)).

Moreover, estimates (3.61), (3.63) and (3.64) highlight that the rotations e_i”qgl and

e~V FED! are necessary in order to establish the closeness between the solutions of the orig-
inal NLS equations (1.3) and (1.9) or (1.10) in the case of the nonzero boundary conditions (3.1).
Indeed, these rotations are the result of converting the non-vanishing conditions (3.1) into van-
ishing ones via the changes of variables (3.6) and (3.10), which lead to the modified problems
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(3.11) and (3.12), respectively. For the importance of rotations in the context of orbital stabil-
ity of standing waves in the case of the vanishing boundary conditions, we refer the reader to
Remark 8.3.4 on page 274 of [13].

4. The case of a finite interval

In this section, we examine the proximity question for initial-boundary value problems for-
mulated on a finite interval. The impact of our results is twofold. On the one hand, they provide
analytical justification for the forthcoming numerical simulations, in which the real line is ap-
proximated by finite domains. On the other hand, they shed light on the finite domain problem,
which is interesting on its own right especially in the context of global existence of solutions.
In that direction, we identify major differences between the case of general nonzero boundary
conditions and the case of periodic conditions.

Nonzero boundary conditions on a finite interval. Consider the integrable and non-integrable
NLS equations (1.3) and (1.4) on the finite interval / = (—L, L), L > 0, supplemented with the
boundary conditions (we use the limit notation in order to illustrate the motivation of studying
this problem as a finite domain approximation to the one on R)

.9 : 2
li ) = lim ¢M0'¢(x), lim U(x,t)= lim 7F@@¢(x), >0, 4.1
Jy 0= g M@, i, Uton = g, T, 120 @D

where the function ¢ satisfies
ceXx'(), lim t(x)=¢+€C, |tx]=g0>0, lim ¢'(x)=0, (4.2)
x—>=+L x—+tL

with X! (7) denoting the Zhidkov space on the interval I, defined analogously to (3.2). In view
of (4.1)and (4.2), limy— 4 |u(x, )| =limy_ 11 |U(x, t)| = qo, t > 0. Thus, making the changes
of variables (3.6) and (3.10), we obtain the modified NLS equations (3.11) and (3.12) with zero
Dirichlet boundary conditions on /, namely

li , )= lim ®(x,t)=0, t>0. 4.3
x—1>r:I|:1L¢(x ) x—1>I:rt1L (x ) ( )

In the rest of this section, we confine our analysis to the case of the power nonlinearity

D4+ v (@40 +y(ID+21 —g") (@ +2)=0, p=>1. (4.4)

The case of the saturable nonlinearity can be handled similarly. Defining the Sobolev space
Hg(l ) as the closure of C(I) in H 2(I), which can be characterized by
H}()={feH>(I): f(xL) = (L) =0} (e.g. see [44]), we begin with the following re-
sult.

Lemma 4.1. Let ¢ satisfy (4.2) and ®g € HO2 (I). Then, there exists Tmax > 0 (possibly infinite)
such that the modified NLS equation (4.4) supplemented with the initial condition ®(x,0) =
®(x) and the zero Dirichlet boundary conditions (4.3) has a unique solution ®(t) € HOZ(I),
t € [0, Tinax)-
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The proof of Lemma 4.1 follows by adapting the proofs of the existence result given in Theo-
rem 3.1 and the regularity result given in Theorem 4.1 of [28] to the focusing regime considered
here. We remark that, in the defocusing regime with power nonlinearity considered in [28], global
existence can be proved for the problem in higher dimensional setups for general bounded or
unbounded domains 2 € RN, N > 1. In [28], Galerkin approximations are combined with an
approximative domain expansion scheme for the original domain 2. This is achieved by in-
troducing suitable extension/restriction operators and cutoff functions; for further details and
illustrative examples, we also refer the reader to [27]. The existence of global in time solutions in
the defocusing regime is proved via suitable versions of Trudinger/Gagliardo—Nirenberg inequal-
ities establishing existence for arbitrary time intervals through non-uniform in time estimates and
continuation for all # € R, while regularity of solutions is proved by estimates derived by a com-
bination of multivariate Fad di Bruno formulas and Gagliardo—Nirenberg type inequalities. On
the other hand, in the focusing regime considered here, global existence is established at a later
stage, unconditionally for 1 < p < 2 and with appropriate smallness conditions on the data and
the size of I when p =2 (see Remark 4.1 and Theorem 4.1 below).

The next result provides a conservation law involving the L norm of the solution of (3.12).

Proposition 4.1. Suppose that the hypothesis of Lemma 4.1 holds true and consider the func-
tional

1 __
Plo®] = S 1902, +Re/<l)(x,t)§(x)dx. 4.5)
1

Then, for every t € [0, Tmax), we have the conservation law
P[@(t)] = P[Pol. (4.6)

Proof. Multiplying equation (4.4) by ® + ¢ and taking the imaginary part of the resulting ex-
pression, we have

—Re (®;®) — Re (9:¢) + vIm [(® + ) 1x (@ + )] =0.
Then, integrating over / and employing integration by parts, we obtain

L d o) dR ®(t)ed
=577 19I5, = —-Re [ @0)Tdx
1

——— 1L
+uIm[(®+ ), (®+7)]7, — va/ (@ + C)x|2dx =0.
I
Thus, in view of the conditions (4.2) and the fact that ® € H02(1 ), we arrive at the desired re-
sult. O
Note that, under the assumption ¢ € X' (R), the conservation law (4.6) is also valid on I = R.
In the case of the bounded interval I = (—L, L), (4.6) provides uniform in time L? estimates. In

particular, we have
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Proposition 4.2. Suppose that the hypothesis of Lemma 4.1 holds true and let g € H02(I ). Then,
the unique local solution ®(t) € H(%(I ) of equation (4.4) with the initial condition ®(x,0) =
@ (x) and the zero boundary conditions (4.3) is uniformly bounded in L2(D) forallt € [0, Thax),
satisfying the estimate

1€[0, Tmax)

Proof. By the conservation law (4.6), for each ¢ € [0, Tnax) We have
1 E— 1 -
31001, +Re [ @0 0TGIdx = 5 1901, +Re [ @o0ZGidx.  @8)
I I

By the Cauchy-Schwarz inequality and the fact that 2ab < a® + b> for any a, b € R, the second
term of the left-hand side of (4.8) admits the estimate

f (e, NTEdx| < ¢ e / D (x, 1)] dx

1 T (4.9)
< V2L IIE oo iy 1D 27y < ||<1><t>||L2(,) 2L 112 130 ) -
Similarly,
/ Do(1)T()dx| < - ||c1>o||L2(,) 2L 112 20 ) - (4.10)

1

Combining (4.9) and (4.10) with (4.8) and the triangle inequality yields the uniform in time
estimate (4.7). O

Importantly, the proof of Proposition (4.2) given above is not valid when I = R. In the case
of the bounded domain / = (—L, L), where that proposition is valid, it can be used to infer
global existence of solutions at the level of HO1 (I). In order to prove this result, we consider

the following energy functional & : H(} (I) — R, along the lines of Section 2.2 in [28] but now
adapting the definition to the focusing regime:

E[@(N);q0,p. 8] =5 ||(<1>(t) + C)xIILz(,) G1®(): g0, p, 51, (4.11)

where the functional G : HO1 (1) — R is defined by

G[D(1); g0, p, ¢] :ZfV(|¢(x,t)+€(X)|;qo,p)dx,
1 4.12)

1 2p42
V 5 . = - 2P+2 — P .
(f;q0, p) 2p+2f f oy +2qo
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For the local in time HOZ(I ) solutions of Lemma 4.1, the energy functional £ is conserved:

Proposition 4.3. Suppose that the hypothesis of Lemma 4.1 holds true and let ®( € H02(I ). Then,
the unique local solution ®(t) € Hg(l ) of equation (4.4) supplemented with the initial condition

®(x,0) = Pg(x) and the boundary conditions (4.3) conserves the energy functional £ defined
by (4.11), i.e.

E[®®); g0, p, C1=E[Po: q0, P, ¢, 1 €10, Tinax)- (4.13)

Proof. The proof is similar to the one of Proposition 4.1. In particular, thanks to the regularity
of the local solution, (4.13) can be derived by multiplying (4.4) by (¥ + ¢), and integrating over
I, now keeping the real parts of the resulting expression. O

Remark 4.1. In the defocusing regime, the negative sign in front of G in (4.11) changes to a
positive one and hence, since V : [0, 00) — [0, co) (this can be shown via calculus techniques),
thanks to the conservation law (4.13), the first term in (4.11) can be controlled by the value of
& at t = 0. Then, by continuation in time, Ty« can be extended to infinity for all initial data
in HOZ(I ) with the improvement in comparison to [28], that the estimates are uniform in time.
On the other hand, due to the negative sign in (4.11), this argument cannot be employed in the
focusing case considered here. Instead, we also need the uniform bounds of Proposition 4.2 at
the L? level.

We remark that, as shown in [28], Proposition (4.3) is also valid when / =R and ¢ is in the
general Zhidkov space X" (R) := {¢ € L*(R):3/¢ € L>(R), j=1,...,m} for some m > 1.
For simplicity, we shall hereafter denote the functionals £ [®(?); qo, p, ¢] and G [P (¢); g0, p, ]
by £ [®] and G [P] respectively. The next result can be proved via estimates that are very similar
to those involved in the proof of Theorem 3.1 (see also Proposition 2.3 in [28]).

Lemma 4.2. Let ¢, € Hé (I) and p € N. Then, there exist a constant C1(||§||Loo(1)) =
(9( Iz ||i€c+5) ) such that the functional G given by (4.12) satisfies the inequality

|g[¢]—g[w]|501/(|<p|2p“+|wp“+||r;|—qo|)|¢—wdx. (4.14)

1

We are now ready to proceed to the proof of global existence of solutions at the level of the
H& (1) norm.

Theorem 4.1. Suppose that the hypothesis of Lemma 4.1 holds true and let ®q € Hg(l ). Then,
under appropriate smallness conditions when p =2 (see (4.15) below), the unique local solution
d(r) € H02(I) of equation (4.4) supplemented with the initial condition ®(x,0) = ®y(x) and the
boundary conditions (4.3) exists globally in HO1 (I). In particular,

(1) If1 < p <2, then ®(¢) is uniformly bounded in HO1 (I), unconditionally with respect to the
size of the L*>(I) norm of the initial data.
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(i) If p =2, then there exists a constant C(p, 151 Loo(ry ) ( 1< ||LOQ(I) ) such that if

L 1 ( 1 ) P-2¢—2 1o ”2 ( 1 ) /7-2+—2 Lzl wis)
< v\ i~ , 0 < | — — o _
151 Loy \4C LX(D) 4C Loo(I)

then ®(t) is uniformly bounded in H& D).

Proof. If T;,,x in Lemma 4.1 is infinite, then we are done. Otherwise, if Ty« is finite, then in
order for the solution to exist only locally in H (1) it must be that lim;— 7, ., [P ()] g1 =
However, below we show that sup,co 7, ) ||<I>(t)||H1(,) < C(%o,¢,q0, p, L) < 00, reachlng a
contradiction. Of course, it could be that lim;, 7, | Pxx ()|l L2(1) = 09, which is why we do not
claim global existence in Hg([ ), i.e. we do not claim that Tiyax = 0o in Lemma 4.1 but only at
the level of the HO1 (I) norm.

We begin by noting that the norm || ®(#)|| .2/, is uniformly bounded in 7 thanks to (4.7). Thus,
we only need to consider ||, (7)]| L2(1)- Suppressing the dependence on ¢, by the conservation
law (4.13)

1 1
) ” by + §/H2L2<1) ) H Pox + g/Him) +G[P] = G[Po].

Then, employing inequality (4.14) with ¢ = ® and ¢ = ®(, we obtain

5 ||q> +¢ ||L2(I) ” oy +¢ ||L2(1)

+CI/(|<I>|2P+‘ + 1907+ 4 {11 = go]) 10 = Boldx. (4.16)
I

By the triangle inequality, the second term on the right-hand side of (4.16) can be bounded by

/|d>|2p+2dx+/|<I>|2”+1|<bo|dx+/|CI>o|2p+1|<b|dx

“4.17)
+/|<1>0|2”+2dx+/||C|—40||q>|dX+/||C|—QO||<1>o|dX~
1 1

1

For the first term in (4.17), we employ the Gagliardo-Nirenberg inequality (2.26) with 2p + 2
in place of p, j =0,g =r =2andm =1 (so that § = ﬁ)toinfer

(4.18)

LX(D)

2
C1 [ 108 2dx < o073 el

where the constant C, depends only on ¢ and p. Note that the constant in the Gagliardo-

Nirenberg inequality is independent of the domain /7, i.e. it is independent of L. For the second

term in (4.17), we first apply Holder’s inequality with p’ = M > 1and ¢’ =2p + 2 (so that

p, + q/ = 1) and then Young’s product inequality for the same ch01ce of p’ and ¢’ to obtain
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2p+1
/ B2+ | oldx < |15, 1ol 2y

2+l 10202 2p42

—2 +2 L2P+2(]) m ||q)0”L2p+2([)

so that via (4.18) we find

+ Call Dol 252 (4.19)

2
o / PP [ @oldx < C3 N7, 1D Lor2 ()

L2(I) L2(I)

We note that C3, C4 = O(||¢ ”i];j(%)) similarly to C. For the third term in (4.17), the Cauchy-
Schwarz inequality yields

2p+1
[ @00t < 0l 190l - (420)

The fourth term in (4.17) is analogous to the first one. For the fifth term we recall that according
to (4.2) we have lim,_, 17 (|¢] —qo) =0 and |¢| — qo € LZ(I) and so by the Cauchy-Schwarz
inequality

/ 121 = qol|@ldx < 121 = qo]| 2y, 191201, - @21)
1

with the sixth and final term in (4.17) admitting an analogous estimate.
In view of (4.17) and of the estimates (4.18)-(4.21), inequality (4.16) becomes

1 2 1 2 2p+2 2p+1
5 1@x+ ¢y = 5 [®@ox + 810y + Calloll 205 + Crll @l IR0l g

2
+ C2 100135 I1@0c 152 )+ Cs I @ILTS 10l

+C1 121 —610||Lz(1)||q>||L2(1) +Cilz] —6]0||Lz(,)||¢o||L2(1) (4.22)

L2(I)

where Cs = O(¢]|7%!7,) similarly to Ci.

At this point, the uniform in time estimate (4.7) comes into play (recall that this estimate is
not valid on R, which is why we only claim global existence on the finite interval 7). Letting

R? = R*(I1%oll 21y s 18 oo ry s L) == 190l 72y + LIE Hooiry »

we combine (4.7) with (4.22) to deduce

2p+2 2p+1
[gup ) ||CD (l) + ; HLZ(I) = || q)()x + g ||L2(I) + 2C4 ”q)O”LIZ)p+2(1) + 2C1R ”chHLZerz(I)

+2
+2C2 1B 190z, +2CR™2 swp 1900,

+2C1 |||§| _6]0||L2(1)(R + ”cDO“LZ(I))
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Thus, in view of the inequality || ®, ||i2(1) <2|®x+ ;/”12(1) +2¢’ ”iz(”’

2 2p+2 2p+1
(S)up ||q)x (t) ”iZ(I) <2 || qDOx + é-/ ||L2(1) + 4C4 ||¢O||L[27p+2(1) + 4C1R ”(DOHLZerZ([)
1€[0, Tmax)

2
+4C2 POl P01 ) +4C1 181 = g0l 2y (R + 190ll 2y )

+2¢' [0y +4CSRP? sup @, (0)] (4.23)

P

t€[0, Tmax) L
Note that the various Lebesgue norms on the right-hand side can be controlled by the L°°(I)
norm (and hence by the H(} (1) norm) due to the crucial fact that we are working on the finite
domain /.

In the subcritical case 1 < p < 2, dividing (4.23) by sup,[o.7,,,.) | Px @)l we obtain

p
LX)

2—
sup (| D201},

t€[0, Timax)
1 2
< 4CsRPF? + [2 @, + |
SUD; [0, Tinax) ||<I>x(l)||Zz(1) |ox IL O
2p+42 2p+1 2
+4Cy |I®0||le):+2(,) +4CiR ||<1>0||L’i;r+z(1) +4C, IIQOIIZZF(,) 1P0x 1172,
2
+4C1 161 = qo] 12y (R + 190l 2¢1y) +2 (6] 12, ] (4.24)

which shows that sup,co 7, ) | Px (1) 12(;) < 00 and hence implies global existence in HO1 ).
Indeed, if sup;c(o, 7;,,.) | Px ()l 2() = 00 then, due to the fact that 2 — p > 0 and p > 0, (4.24)

leads to the contradiction co < 4CsRP2. Thus, part (i) of the theorem has been proved.
In the critical case p =2, (4.23) can be rearranged to yield the uniform bound

(1 —4C5R4) sup “q)x(t)“iZ(])
1€[0, Tinax)

2
<2 @y + &' 12) +4Ca 190l 1y +4CIR 1IP0I 10,y +4C2 [P0l 72y, 1 Pox 72,

+4C1 151 = qol| 12y (R + 1ol 21y ) +2 ||;’|}iz(,) (4.25)

and so we once again deduce sup,c 7, IPx () 2y < 0o, but now provided that 1 —
4CsRP +2 > 0, which is precisely the second condition in (4.15) (note that this condition is real-
izable thanks to the first condition in (4.15)). This implies global well-posedness in H& (I) and
hence completes the proof of part (ii) of the theorem with C = C5 (which depends only on p and
IlLoery). O

We remark that if p > 2 then neither of the two arguments used in the proof of Theorem 4.1
works. Theorem 4.1 has the following implication concerning the proximity of solutions to the

integrable and non-integrable NLS equations in the case of a finite domain.
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Theorem 4.2 (Theorem 1.1 for the finite interval). Given 0 < ¢ < 1, suppose that the hypothesis
of Theorem 3.2 with the relevant norms over R replaced with their counterparts over the finite
interval I = (—L, L) holds true. If L = O (%), then the closeness estimates of Theorem 3.2 are
valid on I for arbitrary 0 < Ty < o0.

Proof. Since |||y =O(e) and L = O (%) by hypothesis, the second condition in (4.15) is
satisfied for sufficiently small initial data such that ||®gl|;2;) = O(e) and thus we can invoke
the global existence result of Theorem 4.1. In particular, we may assume that || Pgl| Ly = O(e)
so that the form of the right-hand side of estimates (4.24) and (4.25) guarantees (at least)
||CI>(t)||H(} = O(e). Then, assuming also the condition (3.62) on the H(I) distance between
the initial data of the integrable and non-integrable models, we can derive the closeness estimates
exactly as in the proof of Theorem 3.2. Now, however, thanks to the global existence result of
Theorem 4.1, we can replace T, by any arbitrary finite time 0 < Ty <00. O

The periodic problem. We turn our attention to the periodic Cauchy problem, namely to the
case where the integrable and non-integrable NLS equations (1.3) and (1.4) are supplemented
with the periodic boundary conditions

u(—L,t)y=u(L,t), U(-L,t)=U(L,t), t=>0. (4.26)

Importantly, the counterpart of Theorem 2.1 for the periodic conditions (4.26), which guaran-
tees global solutions at the level of the H! norm with the same estimate as (2.2), is proved in
Theorem 2.1 of [42]. With this global existence result in hand, the analogue of Theorem 1.1 on
the proximity of solutions to the integrable and non-integrable NLS equations in the case of the
periodic boundary conditions (4.26) can be stated as follows.

Theorem 4.3 (Theorem 1.1 for the periodic Cauchy problem). For p > 1 and v, u,y > 0, con-
sider the integrable and non-integrable focusing NLS equations (1.3) and (1.4) with x € I =
(=L, L), the initial conditions u(x,0) = ug(x), U(x,0) = Uyp(x), and the periodic boundary
conditions (4.26).

() L? closeness: Let 0 < & < 1 and suppose that the initial data satisfy

luo — Uoll 2y < Ce, 4.27)

||140||1-11(1) <cpé, ||U0||Hl(1) <Cpe, (4.28)

for some constants ¢, Co, C > 0. Then, for arbitrary finite 0 < Ty < 00, there exists a
constant C = C(u, y, co, Co, C, Ty) such that

sup ||”(t)_U(t)||L2(1) 5583. (4.29)
Z‘E[O,Tf]

(i) H! and L™ closeness: Suppose that the initial data satisfy (4.28) and the stronger condi-
tion (instead of (4.27))

lluo — Uoll gy = Ce’ (4.30)
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for some constant Cy. Then, there exists a constant Cy with similar dependencies as C in
(2.5) such that

sup [u(t) = Ul ) < Cre’, 4.31)
1€[0,T¢]
and, in turn,
sup Nu(r) — U@l () < Cag’. (4.32)
t€[0,7y]

Proof. The argument is entirely analogous to the one used for the proof of Theorem 2.2 in
the non-periodic case. In particular, expressing periodic functions ¢ € L?(I) in the form of the

L
. T ~ —~ 1 i
Fourier series ¢ (x) = ) ¢'T5* §i(§) where now §(§) = - / e €% (x)dx, we find that the
EEZ —L

difference of solutions A =u — U to the integrable and non-integrable NLS equations satisfies

t
AE = EDAE 0)—i / e E DN (e 1ydr, (4.33)
0

where N (§,1) denotes the spatial Fourier series of the nonlinearity function N(x, ) defined
by (2.9). Thus, since | A(1) || 2y = V2L | A1) ”eZ(Z) by Parseval’s theorem, using Minkowski’s

. 2
integral inequality and the fact that V(T8 g unitary, we have

||A(t)||L2(1) =< ||A(0)||L2(1) +1t sup ||N(T)||L2([)- (4.34)
[0,7]

Tell,

Then, similarly to the steps that led to estimate (2.16), we employ (1.5) and the analogue of the
embedding (2.15) on I for ¢ = 6 and also for ¢ = 2(p + 1) to obtain

1
IN@IZ2, =262 1u @86, + 272K U500

L2(I) = LO(I) L2Cp+D (1)
2(2p+1
<22 w1y + 27 K> NV

from which we infer

2p+1
18Ol < 12Ol + 4 sup (@1, + WU @IGR )8

with A = v/2max{u, y K} as before. Therefore, for initial data ug, Uy satisfying (4.27)
and (4.28), using the periodic analogue of Theorem 2.1 and the solution size estimate (2.2) (see
Theorem 2.1 on page 662 of [42]), we deduce the desired L? bound (4.29), namely

IAD Il 2y < Ce> + A(MPe) e + M2 CpP 20t < Ce, 1 €0, Ty,
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with C = max {C, AM?c} Ty, AM?PH CoPH T ).
In order to prove (4.31), we combine the definition of the H L(I) norm with (4.33) to infer

(el e

t 2
IAOR, <2 (1 +s2) A0 +23 (1 +§2) (/ |ﬁ(§,r)|dr> .
0

Hence, by Minkowski’s integral inequality,
IA@y < 21AO ] gy1(p) + 22 sup Ny
el0,¢

and proceeding as for (2.16) and (2.21) we eventually obtain the analogue of (2.7). Finally,
the L™ estimate (4.32) follows from the H' estimate (4.31) via the Sobolev embedding theo-
rem. O

Numerical studies for the case of nonzero boundary conditions. We now present the results
of numerical studies in the case of nonzero boundary conditions in order to illustrate (i) our
theoretical results of Section 3 on the nonzero boundary conditions on the whole line and (ii) the
preceding theoretical results of the current section concerning the approximations of the problem
on the infinite line by finite intervals. The numerical studies are motivated by the numerical
investigations of [11] and [9]. We consider the simplest case where ¢ (x) = go > 0. We will treat
two examples of initial conditions decaying on the nonzero background, namely exponentially
and algebraically decaying ones, the latter stemming from the Peregrine soliton.

1. Exponentially decaying initial data on the top of the nonzero background qg. We study the
dynamics of the NLS equations emerging from the initial condition of the form

u(x,0) =go(1 4+isechx) =U(x,0). (4.35)

In all the numerical results we set i = y = 1 for the nonlinearity parameters of the integrable and
non-integrable NLS equations, and v = 1, for the linear dispersion parameter. For the amplitude
of the background we set go = 0.25 in order to comply with the smallness conditions on the
initial data of Theorem 3.2. Based on the analysis presented in Section 3 and Theorem 3.2, we
may expect closeness between the solutions of the integrable and the non-integrable NLS for
short times. Thus, we start with the presentation of the numerical results for a short time interval
t €10, 10]. Fig. 4.1 depicts contour plots of the spatiotemporal evolution of the density of the
NLS equations. The left panel depicts the dynamics for the integrable NLS, the central panel for
the non-integrable NLS with the subcritical power nonlinearity (1.9) with p = 3/2 (quartic case),
and the right panel for the non-integrable NLS (1.10) with saturable nonlinearity. The patterns
look almost indistinguishable and we expect this to be verified by the evolution of norms of the
distance function. This is indeed the case, as it is shown in Fig. 4.2. Due to estimate (3.61) of
Theorem 3.2, we examine the evolution of the norm

1AMz =

e—iqutu(t) _ e—iVF(qg)lU(t) ” . (4.36)
X

For all norms we observe an excellent agreement with the predictions of Theorem 3.2 regarding
their linear growth. On the other hand, we find again the moderate increase of ||A(#)| L~ and the
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Fig. 4.1. Contour plots of the spatiotemporal evolution of the initial condition (4.35) with gg = 0.25. Left: Integrable NLS
p = 1. Center: Non-integrable NLS (1.9) with power nonlinearity in the subcritical case p = 3/2. Right: Non-integrable
NLS (1.10) with saturable nonlinearity.
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Fig. 4.2. Evolution of the distance norm (4.36) for the dynamics shown in Fig. 4.1. Left: || Z(t)I\Loo. Center: ||Z(t) 2
Right: | (1)l 1.
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Fig. 4.3. Contour plots of the spatiotemporal evolution of the initial condition (4.35) with gy = 0.25 for longer times
t € [0,400]. Left: Integrable NLS p = 1. Center: Non-integrable NLS (1.9) with power nonlinearity in the subcritical
case p = 3/2. Right: Non-integrable NLS (1.10) with saturable nonlinearity.

larger growth of ||Z(t)|| 72 and ||Z(t) || 1. Again the saturable model exhibits dynamics which
are closer to the integrable one than the quartic NLS, while both non-integrable systems are closer
to the integrable one in the sense of the pointwise topology. The larger, although still mediocre
deviation in the L? and H' norms, is a first indication that in the non-integrable dynamics there
may be smaller, finer structures or oscillations present in the solutions that are not captured by the
large-scale pattern. These smaller scales could be associated with faster oscillations or sharper
gradients in the solutions of the non-integrable NLS. The existence of such scales can become
more eminent over longer time intervals.

To investigate further these issues, we extended considerably the time-horizon of the above nu-
merical investigations. Fig. 4.3 extends the study presented in Fig. 4.1 to a time span ¢ € [0, 400].
The results of Fig. 4.3 verify that the evolution observed for ¢ € [0, 10] is the initial stage of the
modulational instability dynamics discussed in detail in [11] and [9]. In each panel, the bounding
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Fig. 4.4. Evolution of the distance norm (4.36) for the dynamics of Fig. 4.3 over ¢ € [0, 400]. Left: ||Z(t) [z,00. Center:
IA@) 2. Right: [A@)] 1.
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Fig. 4.5. Evolution of the distance norm (4.36) for the dynamics of Fig. 4.3 over ¢ € [0, 400], but with the norm eval-
uated over a spatial interval of length O(1/¢), namely x € (—1/¢e, 1/e) = (—4,4). Left: IA@) oo (—4,4)- Center:
”A(Z)HLZ(,4,4)- Right: ”A(I)”Hl (—4,4)"

0.4
1l

0.2

Fig. 4.6. Contour plots of the spatiotemporal evolution of the initial condition (4.39) withd =v =1,y =u=1,¢99=0.3
and 7 = —25 for t € [—50, 100]. Left: Integrable NLS p = 1. Center: Non-integrable NLS (1.9) with power nonlinearity
in the subcritical case p = 3/2. Right: Non-integrable NLS (1.10) with saturable nonlinearity.

lines represent the linear caustics separating the x¢-plane into two types of regions: a left far-field
region and a right far-field region, where the solution meets the condition at infinity (up to a phase
shift), and a central region in which the asymptotic behavior is described by slowly modulated
periodic oscillations. Although at the level of the nonlinear stage of modulational instability the
non-integrable dynamics shares to a great extent the basic features of the ones of the integrable
counterpart, there are still some important findings revealed. Comparing the pattern of the inte-
grable NLS (shown in the left panel) and the corresponding one for the saturable nonlinearity
(right panel), we observe that they have more in common than the pattern for the quartic non-
linearity and the integrable one (central panel). The long-time behavior of the saturable model
confirms that, in the case of nonzero boundary conditions too, this is the more structurally stable
model in reference to the integrable one when compared to its power nonlinearity counterpart.
For the quartic NLS, the oscillatory pattern within the caustics region is markedly different as it
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Fig. 4.7. Snapshots of the evolution of the initial condition (4.39) withd =v =1,y =u =1, go =0.3 and Ty = —25,
portraying the comparison between the profiles of the solutions of the integrable NLS with p = 1, the non-integrable
NLS with power nonlinearity p = 3/2, and the non-integrable NLS with saturable nonlinearity. The bottom right panel
depicts the comparison of the profiles of the first event in each of the panels of Fig. 4.6, which occurs at f = 25 for the
integrable case p = 1, f ~ 30 for the power nonlinearity p = 3/2, and f ~ 25 for the saturable case.

exhibits a considerably longer period of the internal modulated wave (i.e. longer times between
the peak events) than in the other systems. On the other hand, the maximum amplitude of the
internal oscillations seems to be similar in all systems indicating that the similarity of all pat-
terns at large amplitudes should be manifested in the L closeness while the differences of the
patterns in their finer structures should be reflected in more pronounced deviations in the L? and
H' norms.

In connection with these predictions, we illustrate in Fig. 4.4 the evolution of the distance
||Z(t)|| x associated with the dynamics shown in Fig. 4.3. From the central panel, showing the
evolution of ||Z(t) || it is evident that the non-integrable modulational instability dynamics
are remarkably close to the integrable ones in the sense of the pointwise topology, as || A(t) [l oo
initially grows linearly but then becomes bounded and at most of order ~ @ (10~!). Concerning
||Z(t)|| 12 (central panel) and ||Z(t)|| gt (right panel), we observe an almost linear growth for
t € [0, 100] and a large deviation in compliance with the differences of the oscillatory behavior
seen in Fig. 4.3. Revisiting the latter in the saturable and integrable cases, there are important
differences between their oscillations close to the bounding caustics. These differences explain
the deviation of the systems in the L> and H'! topology. On the other hand, the patterns of the
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Fig. 4.8. Contour plots of the spatiotemporal evolution of the initial condition (4.39) with § =2, v=1,y =pn =1,
go = 0.25 and Ty = 50 for ¢ € [-50, 200]. Left: Integrable NLS p = 1. Center: Non-integrable NLS (1.9) with power
nonlinearity in the subcritical case p = 3/2. Right: Non-integrable NLS (1.10) with saturable nonlinearity.
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Fig. 4.9. Evolution of the distance norm || Z(t) |l x defined in (4.36) for the dynamics of the initial condition (4.39) with
the parameters of Fig. 4.8, x € [—4,4] and ¢ € [-50, 250]. Left: [|A(#) [ Loo. Center: [|A@) |l 2. Right: [A@)] 41

integrable and the saturable NLS look very similar in the core, close to x = 0. This observation
suggests an agreement with the theoretical claim of Theorem 4.1 for the bounded domain approx-
imation, that the dynamics should be more similar when considered on finite intervals of length

L~0O ( %) (cf. Theorem 4.2). The fact that, when restricted to an interval of length ~ O (l),

the similarity is significantly more noticeable than on the full length interval L, is conﬁrmedgin
Fig. 4.5.

With our choice of ||{ ||, = go = 0.25 we monitor the behavior of the distances in the re-
stricted interval for x € [—4, 4] in accordance with Theorems 4.1 and 4.2. The plots feature the
remarkable decrease of the deviation from the integrable dynamics particularly for the || Z(t) Il2
and || A1) | 71 norms; in contrast with the plots of Fig. 4.4, the deviation in these norms seems is
bounded and at most of order O(1), suggesting that on large spatial scales, most of the deviation
stems from the finer oscillating structures far from the core of the pattern.

1I. Algebraically decaying initial data on top of the nonzero background qo. We conclude with
the presentation of a numerical study concerning the dynamics emerging from a quadratically
decaying initial condition on top of the finite background go > 0. For this purpose, we will use
initial conditions defined by the Peregrine soliton solution-the famous rational solution of the

integrable NLS

8
ity + St + wlu)Pu =0, (4.37)

given by the formula
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Fig. 4.10. Simulation of the spatiotemporal evolution of the density of the solutions to the integrable and non-integrable
NLS equations with the nonzero boundary conditions (3.1) over the non-constant background ¢ (x) of the form (4.40)
and the initial conditions (4.41) (corresponding to the modified NLS equations (3.11) and (3.12)). Parameters A} = 0.3,
B =0.01, go =0.1, Ap =0.1. Top left panel: Integrable (cubic) NLS. Top right panel: Quartic NLS (p = 3/2). Bottom
left panel: Saturable NLS. Bottom right panel: Evolution of the L norm of the distance function A for x € [—200, 200]
and ¢ € [0, 400]. More details in the text.

4[1+ —2i(l+T°)] i(+Tp)
A
4(z+To)2 :

ups(x,t;8; w; To; go) =qoy 1 — (4.33)

1+K2+

The parameters in (4.38) are A = d 2, Ko =+/8 A, and Tp is a time-translation. Comparing the
dispersion coefficients of the NLS equatlons (1.9) and (4.37), we see that they coincide when
6 = 2v. With this observation we distinguish between two examples.

(a) § # 2v. We consider the parameters § =v =1,y =u =1, go = 0.3 and Ty = —25, in order
to be compliant with the smallness conditions on the initial data when considering the initial
condition

u(x,0) =ups(x, 0; 8; u; To; qo), (4.39)

for the above set of parameters. This is an example where (4.38) is not an analytical solution of
the NLS (1.9) for its integrable case p = 1.

The theoretical results of [11] and [9] establish very similar spatiotemporal behavior of the
integrable NLS as in the case I, and this fact is confirmed in the left panel of Fig. 4.6. Comparing
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this panel with the central one which corresponds to the case p = 3/2 and the right one which
corresponds to the saturable NLS, we again observe that the saturable dynamics is closer to
the integrable one than its power nonlinearity counterpart. The first events of large amplitude
occurring in all contour plots suggest also the presence of features reminiscent of Peregrine rogue
waves (PRWs) governed by the specific type of the initial condition. To highlight this feature,
as well as the similarities and differences of the solutions, we present in Fig. 4.7 snapshots of
the profiles of the solutions for specific times. The similarities to PRWs can be observed for
times around ¢ = 25 where the function (4.38) attains its maximum as shown in the fourth panel
(t =1 ~ 30 for the quartic and ¢ = 7 ~ 25 for the saturable). For larger times (t = 50, third
panel), the differences of the profiles are reflected in the larger deviation of the norms of the
distance function between the solutions. The proximity around the center xo = 0 predicted by
Theorem 4.2 is also illustrated by the snapshots exhibiting the similarity of the central spikes.

(b) § =2v. For u =y =1, we choose § =2, go = 0.25 and Tp = 50 in the formula (4.38) and
v =1 for the NLS (1.9). Now, the formula (4.38) defines an analytical solution of the NLS (1.9)
for its integrable case p = 1. Using the initial condition (4.39) for this choice of parameters
we observe crucial differences in comparison with the dynamics of the case (a), as it can be
seen in Fig. 4.8, for long times. In the left panel, which shows the dynamics for the integrable
case p = 1, the PRW attains it maximum at ¢ = 0, since we have triggered initially, the exact
analytical PRW solution and the MI effects predicted by [11,9] should occur much later. This is
not the case for the non-integrable models whose dynamics are represented in the central panel
(power nonlinearity with p = 3/2) and the right panel (saturable), respectively. Fig. 4.9, showing
the time evolution of the norms of the distances for x € [—4, 4], further confirms for the initial
condition (4.39), that when considering sufficiently small spatial scales and small time intervals,
one observes diminished deviations between non-integrable and integrable dynamics in all of the
distances || Z(t)|| x - Particularly, for ¢ € [—50, 50], the behavior of the norms for the saturable
NLS suggests the proximity of the first RW occurring close to + = 0, as in the integrable case
p = 1. For the quartic nonlinearity, the first RW appears much later at  ~ 50, in compliance with
the larger deviation of norms. However, both patterns and norms show that for ¢ € [—50, 50], the
dynamics of all systems are similar. This is an illustration that Theorems 3.2 and 4.2 may capture
important nonlinear effects, particularly when these occur within short time scales.

IIl. Dynamics for non-constant {(x). We conclude with a brief presentation of numerical
results concerning the case of the nonzero boundary conditions (4.1), now with a non-constant
¢ (x). We consider a simple example of a non-constant background

£(x) = Arexp(—px%) +qo, A1, B, q0 >0, (4.40)

so that £ (x) — go > 0 at an exponential rate as |x| — oo. For ¢(x) given by (4.40), we solve nu-
merically the finite interval problems approximating the ones on the infinite line for the modified
NLS equations (3.11) and (3.12) supplemented with the nonzero boundary conditions (4.1). The
corresponding initial conditions are

¢(x,0) =D(x,0) =iAzsechx, Ay >0, (4.41)
which approximately satisfy the zero Dirichlet boundary conditions (4.3) for large L. We return
to the solutions u and U of the original equations (1.3) and (1.4) with the nonzero boundary con-

ditions (3.1) via the transformations (3.6) and (3.10). The top left panel of Fig. 4.10 shows the
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spatiotemporal evolution of the density |u(x, #)|? for the cubic NLS equation, and the top right
and bottom left panels for the quartic (p = 3/2) and the saturable nonlinearities respectively.
The bottom right panel depicts the evolution of the norm ||Z(t)|| 1 for x € [—200, 200] and
t € [0,400]. The parameters are A1 = 0.3, 8 = 0.01 for the non-constant background (4.40)
and A; = 0.1 for the initial condition (4.41); ¢(x) decays slowly to gg. For this example,
1 —qoll L2R) = 1.06 (so we are in the limit of the theoretical assumption for the smallness
condition for || — go| Lz(R)) and ||D0)|| L2R) = 0.16. Although the long-time asymptotics are
covered by the results of [11] (recall that the initial conditions of the original problems are of the
form u(x,0) = ¢ (x,0)+¢(x)), interesting dynamics are generated, as we observe the emergence
of waveforms reminiscent to Kuznetzov-Ma breathers. For the emergence of such waveforms in
the case of vanishing boundary conditions with Gaussian initial data, we refer to [16]. As it is
expected by the analysis of the previous cases, the corresponding waveforms for the cubic and
saturable NLS equations are very similar. They resemble a two-period Kuznetzov-Ma breather
alike waveform, with the peak of the larger amplitude reminiscent of the form of a second-order
rogue wave. In the quartic case, after their initial stage, the dynamics stabilize to a single period
Kuznetzov-Ma breather alike waveform. Despite the differences of the waveforms, this example
still shows that the proximity analysis may justify consequently the proximity of the dynamics
between the integrable and the non-integrable models (as it is also shown by the evolution of
Il Z(t) ||z in the bottom right panel of Fig. 4.10). This is showcased by the stronger localization
of the centered oscillations, similar to the one exhibited by Kuznetzov-Ma breathers.
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