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We consider the linear Lugiato–Lefever equation formulated on a finite interval
with nonzero boundary conditions. In particular, using the unified transform of
Fokas, we obtain explicit solution formulae both for the general nonperiodic
initial-boundary value problem and for the periodic Cauchy problem. These novel
solution formulae involve integrals, as opposed to the infinite series associated
with traditional solution techniques, and hence they have analytical as well as
computational advantages. Importantly, as the linear Lugiato–Lefever can be
related to the linear Schrödinger equation via a simple transformation, our results
are directly applicable also to the linear Schrödinger equation posed on a finite
interval with nonzero boundary conditions.

1. Introduction

The Lugiato–Lefever equation

ut C iˇuxx C .1 C i˛/u � i juj
2
u D F (1-1)

has recently gained significant attention within the broader applied mathematics
community. Here, u.x; t/ is a complex-valued function, ˛ and ˇ are real parameters,
and F is a positive constant. Equation (1-1) is an envelope model that originates
from the Maxwell–Bloch equations and was introduced in [Lugiato and Lefever
1987] as an example for dissipative structure and pattern formation in nonlinear
optics. Further information about the derivation and relevance of the Lugiato–
Lefever equation as an optical model in various settings, including experimental
results that illustrate its physical significance, can be found in [Chembo and Yu
2010; Chembo and Menyuk 2013; Kippenberg et al. 2011; Mandel and Reichel
2017; Qi et al. 2017; Lugiato et al. 2018; Lottes et al. 2021]. Furthermore, several

MSC2020: 35G16, 35Q55.
Keywords: linear Lugiato–Lefever equation, linear Schrödinger equation, finite interval,

initial-boundary value problem, periodic problem, nonzero boundary conditions, unified transform,
Fokas method.

© 2023 The Authors, under license to MSP (Mathematical Sciences Publishers).

http://msp.org
http://msp.org/involve/
https://doi.org/10.2140/involve.2023.16-5


784 JOSEPH WIMMERGREN AND DIONYSSIOS MANTZAVINOS

works have recently appeared in the literature on the rigorous mathematical study of
(1-1), where a direction of particular emphasis concerns the stability of the periodic
Cauchy problem — see, for example, the recent works [Delcey and Haragus 2018;
Stanislavova and Stefanov 2018; Hakkaev et al. 2019; Haragus et al. 2021; 2023].

The Lugiato–Lefever equation (1-1) arises naturally in the periodic setting and
also as a general initial-boundary value problem on a finite interval. In this work,
we are concerned with the forced linear counterpart of (1-1), namely the equation

ut C iˇuxx C .1 C i˛/u D f .x; t/; (1-2)

where f is a given forcing function, for which we derive novel, explicit solution
formulae in both the periodic and the nonperiodic case with nonzero boundary
conditions — see expressions (1-7) and (1-5) respectively. Our main motivation
behind this study is related to the task of showing well-posedness of the nonlinear
equation (1-1) via contraction mapping techniques. In particular, we note that in
recent years a new method has been introduced by one of the authors and collab-
orators for proving the local well-posedness of initial-boundary value problems
for nonlinear evolution equations — see, for example, [Fokas et al. 2016; 2017;
Himonas et al. 2019; Himonas and Mantzavinos 2020]. This method is based on a
contraction mapping argument that crucially relies on the solution formulae obtained
for the forced linear counterparts of these problems via the unified transform of
Fokas [1997; 2008] (also known as the Fokas method). In this respect, the explicit
solution formulae (1-5) and (1-7) derived in the present work for the forced linear
equation (1-2) will serve as starting points for implementing the method of [Fokas
et al. 2016; 2017; Himonas et al. 2019; Himonas and Mantzavinos 2020] in order
to establish the local well-posedness of the Lugiato–Lefever equation (1-1) on a
finite interval with nonperiodic or periodic nonzero boundary conditions.

Specifically, in this work we explicitly solve the forced linear initial-boundary
value problem

ut C iˇuxx C .1 C i˛/u D f .x; t/; 0 < x < `; t > 0; (1-3a)

u.x; 0/ D u0.x/; 0 < x < `; (1-3b)

u.0; t/ D g0.t/; u.`; t/ D h0.t/; t > 0; (1-3c)

where the initial data u0 and the boundary data g0, h0 are assumed to be sufficiently
smooth so that the various computations carried out in this work make sense. In
particular, the precise characterization of the optimal regularity of the initial and
boundary data is a task which becomes more relevant when aiming to prove the
well-posedness of the nonlinear equation (1-1) and hence it is reserved for future
work in that direction.

Observe that, in the special case f .x; t/ D F, equation (1-3a) corresponds to
the linearization of the Lugiato–Lefever equation (1-1). Furthermore, note that the
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initial-boundary value problem (1-3) for the forced linear Lugiato–Lefever equation
can be easily related to a corresponding problem for the forced linear Schrödinger
equation. Indeed, the transformation u.x; t/ D e

�.1Ci˛/t
v.x; t/ turns problem (1-3)

into

vt C iˇvxx D e
.1Ci˛/t

f .x; t/; 0 < x < `; t > 0; (1-4a)

v.x; 0/ D u0.x/; 0 < x < `; (1-4b)

v.0; t/ D e
.1Ci˛/t

g0.t/; v.`; t/ D e
.1Ci˛/t

h0.t/; t > 0; (1-4c)

which is an initial-boundary value problem for the familiar forced linear Schrödinger
equation with Dirichlet data on the finite interval. Therefore, the results obtained in
this work for the forced linear Lugiato–Lefever equation on the interval are directly
applicable also to the solution of the forced linear Schrödinger equation on the
interval. In fact, although the cubic nonlinear Schrödinger equation on the interval
has been considered in various works (e.g., [Fokas and Its 2004; Fokas et al. 2005]),
to the best of our knowledge the solution to the forced linear problem (1-4) via the
unified transform has not been explicitly provided anywhere else in the literature.
In particular, here we provide a complete derivation of the solution to this problem,
with careful justification of the complex contour deformations that form the core of
the unified transform.

It should be noted that the unified transform employed in this work is a universal
method for solving initial-boundary value problems that involve evolution equations.
The method was introduced in [Fokas 1997] and has since been advanced in multiple
settings by many researchers. Indicatively, we mention [Fokas 2001; 2002b; Fokas
and Pelloni 2005; Kalimeris and Fokas 2010; Mantzavinos and Fokas 2013], which
establish Fokas’s method as the initial-boundary value problem analogue of the
classical Fourier transform used for the solution of the initial value problem of
linear evolution equations. Moreover, the unified transform also has a nonlinear
component which is applicable to completely integrable equations such as the
cubic nonlinear Schrödinger and Korteweg–de Vries equations on the half-line
and the finite interval [Fokas and Its 2004; Fokas et al. 2005; Boutet de Monvel
et al. 2006; Boutet de Monvel and Shepelsky 2003; 2004; Fokas 2002a] or the
Davey–Stewartson and Kadomtsev–Petviashvili equations on the half-plane [Fokas
2009; Mantzavinos and Fokas 2011]. A comprehensive presentation of the unified
transform can be found in the monograph [Fokas 2008] as well as the review
articles [Fokas and Spence 2012; Deconinck et al. 2014]. Especially relevant to
the periodic problem for NLS is the recent work [Deconinck et al. 2021], while a
general framework for linear constant-coefficient evolution equations with periodic
boundary conditions via the unified transform is laid out in [Trogdon and Deconinck
2012]. Finally, as noted above, the unified transform has recently inspired a new
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approach for proving well-posedness of general nonlinear evolution equations in
the initial-boundary value problem setting; see [Fokas et al. 2016; 2017; Himonas
et al. 2019; Himonas and Mantzavinos 2020].

The explicit solution formula for problem (1-3) as derived via the unified trans-
form in Section 3 is

u.x; t/ D
1

2⇡

Z

k2R

e
ikx�i!t

Ou0.k/dkC
1

2⇡

Z

k2R

e
ikx�i!t

Z
t

⌧D0

e
i!⌧ Of .k;⌧/d⌧ dk

�
1

2⇡

Z

k2LC

e
ikx�i!t

eik`� e�ik`
Œe

ik`
Ou0.k/ � e

�ik`
Ou0.�k/ç dk

�
ˇ

⇡

Z

k2LC

e
ikx�i!t

eik`� e�ik`
kŒ Qh0.!; t/ � e

�ik`
Qg0.!; t/ç dk

�
1

2⇡

Z

k2LC

e
ikx�i!t

eik`� e�ik`

Z
t

⌧D0

e
i!⌧

Œe
ik` Of .k;⌧/ d⌧�e

�ik` Of .�k;⌧/çd⌧ dk

C
1

2⇡

Z

k2L�

e
ik.x�`/�i!t

eik`� e�ik`
Œ Ou0.k/ � Ou0.�k/ç dk

C
ˇ

⇡

Z

k2L�

e
ik.x�`/�i!t

eik`� e�ik`
kŒe

ik` Qh0.!; t/ � Qg0.!; t/ç dk

C
1

2⇡

Z

k2L�

e
ik.x�`/�i!t

eik`� e�ik`

Z
t

⌧D0

e
i!⌧

Œ Of .k;⌧/ � Of .�k;⌧/ç d⌧ dk; (1-5)

where ! is given by (2-3), Ou0 and Of denote the finite-interval Fourier transforms of
the initial data and the forcing defined by (2-1), Qg0 and Qh0 are temporal transforms
of the boundary data defined by (2-5), and the complex contours L˙ correspond to
either

(i) the positively oriented boundaries @D
˙ of the regions D

˙ defined by (2-7),
i.e., the upper and lower branches of the hyperbola 2ˇ Re.k/ Im.k/ D �1, or

(ii) the contours C˙ of Figure 1,

which are equivalent (by Cauchy’s theorem).
The general finite interval problem (1-3) is directly related to the periodic Cauchy

problem
ut C iˇuxx C .1 C i˛/u D f .x; t/; 0 < x < `; t > 0; (1-6a)

u.x; 0/ D u0.x/; 0 < x < `; (1-6b)

u.0; t/ D u.`; t/; ux.0; t/ D ux.`; t/; t > 0; (1-6c)

where the initial data u0.x/ and forcing f .x; t/ are periodic functions such that
u0.x C `/ D u0.x/ and f .x C `; t/ D f .x; t/ for all x 2 R and t > 0. Indeed,
via a similar approach to the one used for problem (1-3), our analysis yields the
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following solution formula for the periodic problem (1-6):

u.x; t/ D
1

2⇡

Z

k2R

e
ikx�i!t

Ou0.k/ dk

C
1

2⇡

Z

k2R

e
ikx�i!t

Z
t

⌧D0

e
i!⌧ Of .k; ⌧/ d⌧ dk

�
1

2⇡

Z

k2LC
e

ikx�i!t

1�e�ik`
Ou0.k/ dk

�
1

2⇡

Z

k2LC
e

ikx�i!t

1�e�ik`

Z
t

⌧D0

e
i!⌧ Of .k; ⌧/ d⌧ dk

C
1

2⇡

Z

k2L�
e

ik.x�`/�i!t

1�e�ik`
Ou0.k/ dk

C
1

2⇡

Z

k2L�
e

ik.x�`/�i!t

1�e�ik`

Z
t

⌧D0

e
i!⌧ Of .k; ⌧/ d⌧ dk; (1-7)

where, as before, ! is given by (2-3), Ou0 and Of denote the finite-interval Fourier
transforms of the initial data and the forcing defined by (2-1), and the complex
contours L˙ are the ones appearing in formula (1-5).

Structure. The solution formula (1-7) to the periodic problem (1-6) is derived in
Section 2. Interesting reductions to the traditional “separation of variables/Fourier
series” representation, as well as to the solution of the direct linearization of the
Lugiato–Lefever equation (1-1) (i.e., when the forcing f is constant and equal to
F > 0), are also provided in that section (see (2-13) and (2-11)). The analysis for
the general nonperiodic problem (1-3) requires an additional crucial idea and is
given in Section 3, leading to the solution formula (1-5). The reduction of this
formula to the direct linearization of the Lugiato–Lefever equation (1-1) is also
provided (see (3-14)).

2. The periodic problem

Our analysis is done for the linear Lugiato–Lefever equation (1-6a) with general,
nonconstant forcing f .x; t/. The motivation for this is that the resulting solution
formula can be used in the future for studying the nonlinear Lugiato–Lefever equa-
tion (1-1). Of course, setting f .x; t/ D F reduces (1-6a) to the linearization of (1-1).

2A. The global relation and an integral representation for the solution. The
Fourier transform pair for a function �.x/ on the interval 0 < x < ` is defined by

O�.k/ D

Z
`

xD0

e
�ikx

�.x/ dx; k 2 C;

�.x/ D
1

2⇡

Z

k2R

e
ikx O�.k/ dk; 0 < x < `:

(2-1)



788 JOSEPH WIMMERGREN AND DIONYSSIOS MANTZAVINOS

Applying the above Fourier transform to (1-6a) yields

@t Ou.k; t/Ciˇ
˚
e

�ik`
ux.`; t/�ux.0; t/CikŒe

�ik`
u.`; t/�u.0; t/Cik Ou.k; t/ç

 

C.1Ci˛/ Ou.k; t/ D Of .k; t/: (2-2)

In view of the initial condition (1-6b), the periodic boundary conditions (1-6c), and
the notation

!.k/ D �ˇk
2

� i C ˛;

u.0; t/ D u.`; t/ D h.t/; ux.0; t/ D ux.`; t/ D g.t/;

(2-3)

we integrate (2-2) with respect to t to obtain what is known in the unified transform
terminology as the global relation:

e
i!t

Ou.k; t/ D Ou0.k/Ciˇ
˚
Œ Qg.!; t/Cik Qh.!; t/ç�e

�ik`
Œ Qg.!; t/Cik Qh.!; t/ç

 

C

Z
t

⌧D0

e
i!⌧ Of .k;⌧/d⌧; (2-4)

where we have also introduced the notation

Q�.!; t/ D

Z
t

⌧D0

e
i!⌧

�.⌧/ d⌧: (2-5)

We remark that the global relation (2-4) is valid for all k 2 C in line with the domain
of the interval Fourier transform (2-1).

Inverting the global relation (2-4) for k 2 R by means of (2-1), we find the
following integral representation for the solution u:

u.x; t/ D
1

2⇡

Z

k2R

e
ikx�i!t

Ou0.k/ dk

C
1

2⇡

Z

k2R

e
ikx�i!t

Z
t

⌧D0

e
i!⌧ Of .k; ⌧/ d⌧ dk

C
iˇ

2⇡

Z

k2R

e
ikx�i!t

Œ Qg.!; t/ C ik Qh.!; t/ç dk

�
iˇ

2⇡

Z

k2R

e
ik.x�`/�i!t

Œ Qg.!; t/ C ik Qh.!; t/ç dk: (2-6)

The integral representation (2-6) is not an explicit solution formula since it
contains the unknown boundary values h.t/ and g.t/ through the transforms Qh.!; t/

and Qg.!; t/. However, it turns out that these unknown transforms can be eliminated
from (2-6) by exploiting the analyticity and exponential decay of the relevant
integrands in appropriate regions of the complex k-plane.
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Figure 1. The regions D
˙ defined by (2-7) along with their pos-

itively oriented boundaries @D ,̇ which correspond to the upper
and lower branches of the hyperbola 2ˇ Re.k/ Im.k/ D �1 (black),
and the contours C˙ (blue) for ˇ < 0 (top) and ˇ > 0 (bottom).
The red dots along the real axis correspond to the zeros kn D

2n⇡

`
,

n 2 Z, of the quantity 1 � e
�ik` in the periodic problem, and the

zeros kn D
n⇡

`
, n 2 Z, of the quantity e

ik` � e
�ik` in the finite

interval (nonperiodic) problem.

2B. Elimination of the unknowns and an explicit solution formula. Noting that
jeikxjDe

� Im.k/x and recalling that x >0, we see that e
ikx is bounded for Im.k/>0

and decays to zero as jkj ! 1 whenever Im.k/ > 0. Similarly, the exponential
e

�i!.t�⌧/ with 0 < ⌧ < t decays to zero in the region C n DC [ D�, where the
regions D

˙ are defined by

D
˙

WD fk 2 C W Im.k/ ? 0 and Re.i!/ < 0g: (2-7)

More precisely, D
˙ D fIm.k/ ? 0 and 2ˇ Re.k/ Im.k/C1 < 0g and D

C [D
� cor-

responds to the region outside the branches of the hyperbola 2ˇ Re.k/ Im.k/ D �1

(see Figure 1).
Therefore, e

ikx�i!.t�⌧/ decays to zero as jkj!1 inside the region fIm.k/>0gn

DC and is bounded on the closure of that region. Thus, thanks to analyticity in k,
Cauchy’s integral theorem allows us to deform the path of integration of the third
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k-integral in (2-6) from R to the contour CC in the upper half of the complex
k-plane (see Figure 1). Similarly, since jeik.x�`/j D e

� Im.k/.x�`/ and x < `,
e

ik.x�`/�i!.t�⌧/ decays to zero as jkj ! 1 inside the region fIm.k/ < 0g n D�
and is bounded on the closure of that region. Hence, we can deform the contour
of integration of the fourth k-integral in (2-6) from R to the contour C� in the
lower half of the complex k-plane (see again Figure 1). We remark that both
deformations can be rigorously justified along the lines of Proposition 2.1 proved
later. Implementing them, we write the integral representation (2-6) as

u.x; t/ D
1

2⇡

Z

k2R

e
ikx�i!t

Ou0.k/ dk

C
1

2⇡

Z

k2R

e
ikx�i!t

Z
t

⌧D0

e
i!⌧ Of .k; ⌧/ d⌧ dk

C
iˇ

2⇡

Z

k2CC
e

ikx�i!t
Œ Qg.!; t/ C ik Qh.!; t/ç dk

�
iˇ

2⇡

Z

k2C�
e

ik.x�`/�i!t
Œ Qg.!; t/ C ik Qh.!; t/ç dk: (2-8)

Then, substituting for the unknown quantity Qg.!; t/ C ik Qh.!; t/ via the global
relation (2-4), which is valid for all k 2 C and, in particular, for k 2 C ,̇ turns (2-8)
into the explicit solution formula (1-7) with L˙ D C ,̇ where we have made crucial
use of the following result, which is proved at the end of this section.

Proposition 2.1. For any 0 < x < ` and any t > 0,
Z

k2CC

e
ikx

1 � e�ik`
Ou.k; t/ dk D

Z

k2C�

e
ik.x�`/

1 � e�ik`
Ou.k; t/ dk D 0: (2-9)

Remark 2.2 (need for deformation). Substituting for the unknown Qg.!; t/ C

ik Qh.!; t/ via (2-4) without first deforming the relevant contours to C ,̇ i.e., at
the level of (2-6), yields the tautology u.x; t/ D u.x; t/. Hence, the deformation to
C˙ is needed in order to eliminate the unknown.

Remark 2.3 (deformation to the contours @D
˙). The zeros of 1 � e

�ik` occur at
k D kn D

2⇡n

`
, n 2 Z, thus they do not introduce any singularities in formula (1-7)

since they are avoided by C˙ (see Figure 1).
Furthermore, instead of C ,̇ it is possible to deform the contours of integration of

the boundary-value integrals in (2-6) from R to the positively oriented boundaries
@D

˙ of the regions D ,̇ i.e., to the upper and lower branches of the hyperbola
2ˇ Re.k/ Im.k/ D �1 depicted in Figure 1. See Section 3B for a justification of this
alternative deformation in the case of the nonperiodic problem and, in particular,
for the analogue of Proposition 2.1 in the case of @D .̇ Therefore, formula (1-7)
provides the explicit solution to the periodic problem (1-6) for the forced linear
Lugiato–Lefever equation with either of the choices L˙ D @D

˙ and L˙ D C .̇
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In the special case f .x; t/ D F, which corresponds to the linearization of the
Lugiato–Lefever equation (1-1), formula (1-7) becomes

u.x; t/ D
1

2⇡

Z

k2R

e
ikx�i!t

Ou0.k/ dk �
F

2⇡

Z

k2R

e
ikx

.1 � e
�ik`

/.1 � e
�i!t

/

k!
dk

�
1

2⇡

Z

k2LC

e
ikx�i!t

1 � e�ik`
Ou0.k/ dk C

F

2⇡

Z

k2LC
e

ikx
1 � e

�i!t

k!
dk

C
1

2⇡

Z

k2L�

e
ik.x�`/�i!t

1 � e�ik`
Ou0.k/ dk �

F

2⇡

Z

k2L�
e

ik.x�`/
1 � e

�i!t

k!
dk:

(2-10)
This formula can be further simplified by observing that the singularities arising
from the zeros of ! are all removable apart from k D 0, which is a simple pole due
to the presence of k in the denominator of the relevant integrands. Thus, denoting
by C";Œ0;⇡ç.0/ and C";Œ⇡;2⇡ç.0/ the semicircles of radius " > 0 centered at the origin
and oriented counterclockwise from 0 to ⇡ and from ⇡ to 2⇡ respectively, we
employ Cauchy’s integral theorem to write
Z

k2LC
e

ikx
1 � e

�i!t

k!
dk D

✓Z

k2RnŒ�";"ç

�

Z

k2C";Œ0;⇡ç.0/

◆
e

ikx
1 � e

�i!t

k!
dk

and
Z

k2L�
e

ik.x�`/
1�e

�i!t

k!
dkD

✓Z

k2RnŒ�";"ç

C

Z

k2C";Œ⇡;2⇡ç.0/

◆
e

ik.x�`/
1�e

�i!t

k!
dk:

In turn, we have
Z

k2LC
e

ikx
1 � e

�i!t

k!
dk �

Z

k2L�
e

ik.x�`/
1 � e

�i!t

k!
dk

D

Z

k2RnŒ�";"ç

e
ikx

.1�e
�ik`

/
1 � e

�i!t

k!
dk�

Z

k2C";Œ0;⇡ç.0/

e
ikx

1 � e
�i!t

k!
dk

�

Z

k2C";Œ⇡;2⇡ç.0/

e
ik.x�`/

1 � e
�i!t

k!
dk;

and so taking the limit " ! 0
C and then using Cauchy’s residue theorem for

the second and third integrals, as well as the fact that the singularity at k D 0 is
removable in the first integral, we find
Z

k2LC
e

ikx
1 � e

�i!t

k!
dk �

Z

k2L�
e

ik.x�`/
1 � e

�i!t

k!
dk

D

Z

k2R

e
ikx

.1 � e
�ik`

/.1 � e
�i!t

/

k!
dk C 2⇡

1 � e
�.1Ci˛/t

1 C i˛
:
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Via the above calculations, expression (2-10) yields the following solution formula
for the linearization of the Lugiato–Lefever equation (1-1) with periodic boundary
conditions:

u.x; t/ D
1

2⇡

Z

k2R

e
ikx�i!t

Ou0.k/ dk �
1

2⇡

Z

k2LC

e
ikx�i!t

1 � e�ik`
Ou0.k/ dk

C
1

2⇡

Z

k2L�

e
ik.x�`/�i!t

1 � e�ik`
Ou0.k/ dk C

1 � e
�.1Ci˛/t

1 C i˛
F: (2-11)

2C. Reduction to the traditional separation of variables/Fourier series repre-
sentation. We emphasize that the solution formula (2-11) could not have been
obtained without deforming from R to the contours L .̇ This is because if one
were to employ the global relation (2-4) without making these deformations (i.e.,
directly at the level of (2-6) instead of (2-8)) then one would obtain the tautology
u.x; t/ D u.x; t/. Indeed, without the deformations, the three terms involving the
initial datum in (1-7) would cancel one another, and so would the forcing terms,
while the last two terms that involve Ou.k; t/ would combine to yield u.x; t/ via the
inverse Fourier transform.

At the same time, if desired, it is possible to collapse the contours L˙ involved
in formula (2-11) to the real axis. However, in doing so, one must take into account
the residue contributions from the poles at kn D

2⇡n

`
, n 2 Z, arising from the term

1�e
�ik`. In particular, using analyticity (Cauchy’s theorem) and exponential decay,

we can write the solution formula (2-11) as

u.x; t/ D
1

2⇡

Z

k2R

e
ikx�i!t

Ou0.k/ dk �
1

2⇡

Z

k2LC
"

e
ikx�i!t

1 � e�ik`
Ou0.k/ dk

C
1

2⇡

Z

k2L�
"

e
ik.x�`/�i!t

1 � e�ik`
Ou0.k/ dk C

1 � e
�.1Ci˛/t

1 C i˛
F;

with
LC

"
D R" [

[

n2Z

�C";Œ0;⇡ç.kn/; L�
"

D R" [

[

n2Z

C";Œ⇡;2⇡ç.kn/;

where for 0 < " 6 1

3
jknC1 � knj D

2⇡

3`
we define

R" D

[

n2Z

Œkn C "; knC1 � "ç;

C";Œa;bç.kn/ D fjk � knj D "; a 6 arg.k/ 6 bg;

with positive orientation. In fact, breaking down the contours L˙
"

into their individ-
ual components and noting that the integrals along R" combine to a single integral
that does not involve a singular integrand, we take the limit " ! 0

C to obtain
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u.x; t/ D
1

2⇡
lim

"!0C

Z

k2Sn2Z C";Œ0;⇡ç.kn/

e
ikx�i!t

1�e�ik`
Ou0.k/dk

C
1

2⇡
lim

"!0C

Z

k2Sn2Z C";Œ⇡;2⇡ç.kn/

e
ik.x�`/�i!t

1�e�ik`
Ou0.k/dk

C
1�e

�.1Ci˛/t

1Ci˛
F: (2-12)

Finally, using Cauchy’s residue theorem we compute

lim
"!0C

Z

k2C";Œ0;⇡ç.kn/

e
ikx�i!t

1 � e�ik`
Ou0.k/ dk D i⇡ lim

k!kn


e

ikx�i!t

1 � e�ik`
.k � kn/ Ou0.k/

�

D
⇡

`
e

iknx�i!.kn/t
Ou0.kn/

and, similarly,

lim
"!0C

Z

k2C";Œ⇡;2⇡ç.kn/

e
ik.x�`/�i!t

1 � e�ik`
Ou0.k/ dk D

⇡

`
e

iknx�i!.kn/t
Ou0.kn/:

Therefore, (2-12) becomes

u.x; t/ D
1

`

X

n2Z

e
iknx�i!.kn/t

Ou0.kn/ C
1 � e

�.1Ci˛/t

1 C i˛
F; kn D

2⇡n

`
; (2-13)

which is the formula one can expect to obtain via separation of variables and the
traditional Fourier series method.

2D. Proof of Proposition 2.1. We only provide the proof for the integral along CC,
as the argument for the integral along C� is entirely analogous. Integrating twice
by parts and rearranging, we have
Z

k2CC

e
ikx

1 � e�ik`
Ou.k; t/ dk

D

Z

k2CC
e

ikx
1

1 � e�ik`

Z
`

yD0

e
�iky

u.y; t/ dy dk

D u.0; t/

Z

k2CC
e

ikx
1

ik
dk � uy.0; t/

Z

k2CC
e

ikx
1

k2
dk

�

Z
`

yD0

uyy.y; t/

Z

k2CC
e

ikx
1

k2

e
�iky

1 � e�ik`
dk dy: (2-14)

Note that we have used Fubini’s theorem in order to interchange the order of
integration in the double integral since
ˇ̌
ˇ̌
Z

`

yD0

uyy.y; t/

Z

k2CC
e

ikx
1

k2

e
�iky

1 � e�ik`
dk dy

ˇ̌
ˇ̌

6
Z

`

yD0

juyy.y; t/j

Z

k2CC

1

jkj2

e
� Im.k/.xC`�y/

jeik` � 1j
dk dy < 1

via steps similar to those in the estimation of IR and JR below.
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For the first k-integral on the right-hand side of (2-14), by Cauchy’s theorem we
have Z

k2CC
e

ikx
1

ik
dk D � lim

R!1

Z

k2CR;✓0
.0/

e
ikx

1

ik
dk;

where CR;✓0
.0/ denotes the circular arc

CR;✓0
.0/ D

( ˚
Rei✓

W ✓0 6 ✓ 6 ⇡

2

 
; ˇ < 0;

˚
Rei✓

W
⇡

2
6 ✓ 6 ⇡ � ✓0

 
; ˇ > 0;

with ✓0 D 0 if kR � knj > 2⇡

3`
for all n 2 Z, and ✓0 2

�
0; sin�1

�
2⇡

3`R

�⇤
if there

exists n 2 Z such that jR � knj <
2⇡

3`
. Since sin ✓ D sin.⇡ � ✓/, the cases ˇ < 0

and ˇ > 0 can be handled in the same way to yield
ˇ̌
ˇ̌
Z

k2CR;✓0
.0/

e
ikx 1

ik
dk

ˇ̌
ˇ̌6

Z ⇡

2

✓D0

e
�xR sin ✓

d✓:

Thus, using the well-known inequality

sin ✓ > 2

⇡
✓; ✓ 2

h
0;

⇡

2

i
; (2-15)

we find
ˇ̌
ˇ̌
Z

k2CR;✓0
.0/

e
ikx 1

ik
dk

ˇ̌
ˇ̌6

Z ⇡

2

✓D0

e
�xR� 2

⇡
✓

d✓ D
⇡

2xR
.1�e

�xR
/ ! 0; R ! 1;

and hence we conclude that
Z

k2CC
e

ikx 1

ik
dk D 0: (2-16)

Similarly, it follows that the second integral on the right-hand side of (2-14) also
equals zero: Z

k2CC
e

ikx 1

k2
dk D 0: (2-17)

Concerning the k-integral inside the double integral of (2-14), Cauchy’s theorem
implies
Z

k2CC
e

ikx
1

k2

e
�iky

1 � e�ik`
dk D� lim

R!1

Z

k2CR;✓0
.0/

e
ikx

1

k2

e
�iky

1 � e�ik`
dk; (2-18)

with CR;✓0
.0/ defined as above. We will estimate this integral by decomposing it

into two pieces which we handle separately:
Z

k2CR;✓0
.0/

e
ikx

1

k2

e
�iky

1 � e�ik`
dk D IR C JR; (2-19)
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where

IR D

Z

k2CR;✓0
.0/;Im.k/> 2⇡

3`

e
ikx

1

k2

e
�iky

1 � e�ik`
dk; (2-20)

JR D

Z

k2CR;✓0
.0/;Im.k/6 2⇡

3`

e
ikx

1

k2

e
�iky

1 � e�ik`
dk: (2-21)

Estimation of IR. This term is the easiest of the two. First, observe that, since
y 6 ` and Im.k/ > 0,

ˇ̌
ˇ̌ e

�iky

1 � e�ik`

ˇ̌
ˇ̌D

e
� Im.k/.`�y/

jeik` � 1j
6 1

jeik` � 1j
(2-22)

and so

jIRj 6
Z

k2CR;✓0
.0/;Im.k/> 2⇡

3`

ˇ̌
ˇ̌eikx

1

k2

ˇ̌
ˇ̌ 1

jeik` � 1j
jdkj: (2-23)

Therefore, noting that for k 2 CR;✓0
.0/ with Im.k/ > 2⇡

3`
we have arg.✓/ 2⇥

sin�1
�

2⇡

3`R

�
;

⇡

2

⇤
when ˇ<0 and arg.✓/ 2

⇥
⇡

2
;⇡�sin�1

�
2⇡

3`R

�⇤
when ˇ > 0, we

employ the triangle inequality twice to get

jIRj 6

8
ˆ̂̂
<̂

ˆ̂̂
:̂

1

R

Z ⇡

2

✓Dsin�1. 2⇡

3`R
/

e
�xR sin ✓

jeiRei✓ `�1j
d✓; ˇ < 0;

1

R

Z
⇡�sin�1. 2⇡

3`R
/

✓D ⇡

2

e
�xR sin ✓

jeiRei✓ `�1j
d✓; ˇ > 0

6 1

R

Z ⇡

2

✓Dsin�1. 2⇡

3`R
/

e
�xR sin ✓

1�e�`R sin ✓
d✓;

where we have made the change of variable ✓ 7! ⇡ � ✓ in the case ˇ > 0. Thus,
noting in addition that R sin ✓ > 2⇡

3`
and so 1 � e

�`R sin ✓ > 1 � e
�2⇡=3, we find

jIRj 6 1

R
.1 � e

� 2⇡

3 /
�1

Z ⇡

2

✓D✓0

e
�xR sin ✓

d✓;

and using inequality (2-15) we conclude that limR!1 IR D 0, x; y 2 .0; `/.

Estimation of JR . This term is trickier only because it is harder to obtain a positive
lower bound for jeik` � 1j. First, like for IR, using the triangle inequality and the
bound (2-22) we find

jJRj 6
Z

k2CR;✓0
.0/;Im.k/6 2⇡

3`

ˇ̌
ˇ̌eikx

1

k2

ˇ̌
ˇ̌ 1

jeik` � 1j
jdkj: (2-24)

Next, we use the following result.
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... ...

k
Im.k/ D

2⇡

3`

kn knC1

Figure 2. The upper bound for the radius ⇢ used in the proof of Lemma 2.4.

Lemma 2.4. For any

k 2
˚
0 6 Im.k/ 6 2⇡

3`

 
n

[

n2Z

D 2⇡

3`

.kn/;

we have jeik` � 1j > 1 � e
�2⇡=3.

Before proving this lemma, we use it to complete the estimation of JR. From
(2-24), we have

jJRj 6 1

R
.1 � e

� 2⇡

3 /
�1

Z sin�1 . 2⇡

3`R
/

✓D✓0

e
�xR sin ✓

d✓:

Hence, employing once again inequality (2-15), we obtain

jJRj6 .1�e
� 2⇡

3 /
�1

⇡

2xR2
.e

� 2xR

⇡
✓0 �e

� 2xR

⇡
sin�1 . 2⇡

3`R
/
/

R!1
����!0; x; y 2 .0; `/:

Altogether, combining the above with (2-18) and (2-19) we conclude that
Z

k2CC
e

ikx
1

k2

e
�iky

1 � e�ik`
dk D 0; x; y 2 .0; `/;

and so, in view of (2-14), (2-16) and (2-17),
Z

k2CC
e

ikx�i!t
e

i!t

1 � e�ik`
Ou.k; t/ dk D 0; x; y 2 .0; `/;

as desired. It remains to establish Lemma 2.4.

Proof of Lemma 2.4. We minimize jeik` � 1j as a function of two variables simply
by using calculus techniques. For any

k 2
˚
0 6 Im.k/ 6 2⇡

3`

 
n

[

n2Z

D 2⇡

3`

.kn/;

there exists n 2 Z such that k D kn C ⇢e
i�, with 2⇡

3`
6 ⇢ 6

p
13⇡

3`
and 0 6 � 6 ⇡

(see Figure 2 for the bounds on ⇢). Then,

je
ik`

� 1j
2

D e
�2⇢` sin �

� 2e
�⇢` sin � cos.⇢` cos �/ C 1 DW f .⇢; �/:
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First, we look for critical points of f .⇢; �/ inside .⇢; �/ 2
⇥

2⇡

3`
;

p
13⇡

3`

⇤
⇥Œ0; ⇡ç by

solving the system f⇢.⇢; �/ D 0 and f�.⇢; �/ D 0. We note that if cos � D 0 then
sin � D 1 and f⇢ D 2e

�⇢`
.1 � e

�⇢`
/ ¤ 0, while if sin � D 0 then cos � D ˙1 and

f� D ⌥2⇢`Œ1�cos.⇢`/ç ¤ 0. Hence, no critical points arise inside our domain when
cos � sin � D 0. Therefore, assuming cos � sin � ¤ 0, we multiply the equation
f⇢.⇢; �/D0 by cos � and the equation f�.⇢; �/D0 by sin �=.⇢`/ and then subtract
the resulting equations to obtain

sin.⇢` cos �/ D 0 () ⇢` cos � D ⇡;  2 Z:

Since 2⇡

3`
6 ⇢ 6

p
13⇡

3`
, it follows that  D 0; ˙1. However, none of these values

corresponds to critical points inside our domain since either f⇢ ¤ 0 (when  D 0)
or f� ¤ 0 (when  D ˙1).

Since f is continuous and there are no critical points inside
⇥

2⇡

3`
;

p
13⇡

3`

⇤
⇥ Œ0; ⇡ç,

the minimum will be attained at the boundary of the domain. If ⇢ D
2⇡

3`
, then

f
�

2⇡

3`
; �

�
D e

� 4⇡

3
sin �

� 2e
� 2⇡

3
sin � cos

�
2⇡

3
cos �

�
C 1 DW g.�/; � 2 Œ0; ⇡ç:

We compute

g
0
.�/ D �

4⇡

3
e

� 2⇡

3
sin �

⇥
cos �e

� 2⇡

3
sin �

� cos
�
� C

2⇡

3
cos �

�⇤

and observe that g
0�⇡

2

�
D0. To show that � D

⇡

2
is the unique zero of g

0, we consider
the intervals

⇥
0;

⇡

2

⇤
and

⇥
⇡

2
; ⇡

⇤
separately.

If � 2
⇥
0;

⇡

2

⇤
, then the function h.�/ WD � C

2⇡

3
cos � has derivative h

0
.�/ D

1�
2⇡

3
sin �. Thus, the only critical point occurs at � D sin�1

�
3

2⇡

�
with correspond-

ing value
sin�1

�
3

2⇡

�
C

2⇡

3

q
1 �

9

4⇡2
' 2:34:

Moreover, h.0/ D
2⇡

3
and h

�
⇡

2

�
D

⇡

2
. Thus, ⇡

2
6 h.�/ <

3⇡

2
and so

cos
�
� C

2⇡

3
cos �

�
6 0

for � 2
⇥
0;

⇡

2

⇤
. In turn,

cos �e
� 2⇡

3
sin �

� cos
�
� C

2⇡

3
cos �

�
> e

� 2⇡

3

⇥
cos � � cos

�
� C

2⇡

3
cos �

�⇤
> 0:

Moreover, for this nonnegative lower bound to vanish we must have

cos � D 3 or cos � C
3

⇡
� C 3 D 0;  2 Z:

The first of these equations has unique solution � D
⇡

2
. The second equation has

no solution since cos � C
3

⇡
� has global maximum equal to

q
1 �

9

⇡2
C

3

⇡
sin�1

�
3

⇡

�
' 1:51
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�
via its unique critical point on

⇥
0;

⇡

2

⇤
at � D sin�1

�
3

⇡

��
and global minimum equal

to 1 (via the end point � D 0). Thus, we conclude that for � 2
⇥
0;

⇡

2

⇤
the only zero

of g
0 is at � D

⇡

2
.

Similarly, if � 2
⇥

⇡

2
; ⇡

⇤
then cos

�
� C

2⇡

3
cos �

�
> 0 and so

cos �e
� 2⇡

3
sin �

� cos
�
� C

2⇡

3
cos �

�
6 e

� 2⇡

3

⇥
cos � � cos

�
� C

2⇡

3
cos �

�⇤
6 0:

As before, we can show that the nonpositive upper bound vanishes only at � D
⇡

2
and

is otherwise negative. Thus, for � 2
⇥

⇡

2
; ⇡

⇤
the only zero of g

0 is at � D
⇡

2
. Overall,

since the only critical point of g on Œ0; ⇡ç is at � D
⇡

2
, comparing the values g

�
⇡

2

�
D

.1�e
�2⇡=3

/
2 and g.0/Dg.⇡/D3, we conclude that g.�/Df

�
2⇡

3`
;�

�
is minimized

at � D
⇡

2
with corresponding value

f
�

2⇡

3`
;

⇡

2

�
D .1 � e

� 2⇡

3 /
2
:

Along the same lines, if ⇢ D

p
13⇡

3`
then we find

f
�p

13⇡

3`
; �

�
> f

�p
13⇡

3`
;

⇡

2

�
D .1 � e

�
p

13⇡

3 /
2
:

Finally, if � D 0 or � D ⇡ , then recalling that ⇢` 2
⇥

2⇡

3
;

p
13⇡

3

⇤
we have

f .⇢; 0/ D f .⇢; ⇡/ D 2Œ1 � cos.⇢`/ç > 2
⇥
1 � cos

�
2⇡

3

�⇤
D 3:

Therefore, the global minimum of f is equal to .1�e
�2⇡=3

/
2 as desired, completing

the proof of Lemma 2.4. ⇤

3. The finite interval problem

We now consider the initial-boundary value problem (1-3) for the linear Lugiato–
Lefever equation with general forcing. While the first part of our derivation is
essentially the same as the one for the periodic problem, the elimination of the
unknown terms from the integral representation now requires an additional idea,
namely the use of a symmetry transformation for the quantity !. In addition, we
provide a justification of the deformation from R to the contours @D

˙ and establish
Proposition 3.1, which is crucial behind this deformation.

3A. The global relation and an integral representation for the solution. As in
the periodic case, taking the Fourier transform (2-1) of (1-3a), we obtain (2-2).
Then, using the boundary conditions (1-3c) and the notation ux.0; t/ D g1.t/,
ux.`; t/ D h1.t/ for the (unknown) Neumann values, we have

@t Ou.k; t/ C i!.k/ Ou.k; t/

D iˇ
˚
g1.t/ � e

�ik`
h1.t/ C ikŒg0.t/ � e

�ik`
h0.t/ç

 
C Of .k; t/; (3-1)
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where ! is defined by (2-3). Hence, integrating with respect to t and using the
initial condition (1-6b), as well as the notation (2-5), we obtain the global relation

e
i!t

Ou.k; t/ D Ou0.k/C iˇ
˚
Œ Qg1.!; t/C ik Qg0.!; t/ç�e

�ik`
Œ Qh1.!; t/C ik Qh0.!; t/ç

 

C

Z
t

⌧D0

e
i!⌧ Of .k; ⌧/ d⌧; (3-2)

where k 2 C and the time transform Q�.!; t/ of a function �.t/ is defined by (2-5).
Using the global relation (3-2) for k 2 R together with the inverse Fourier

transform (2-1), we obtain the integral representation

u.x; t/ D
1

2⇡

Z

k2R

e
ikx�i!t

Ou0.k/ dk

C
1

2⇡

Z

k2R

e
ikx�i!t

Z
t

⌧D0

e
i!⌧ Of .k; ⌧/ d⌧ dk

C
iˇ

2⇡

Z

k2R

e
ikx�i!t

Œ Qg1.!; t/ C ik Qg0.!; t/ç dk

�
iˇ

2⇡

Z

k2R

e
ik.x�`/�i!t

Œ Qh1.!; t/ C ik Qh0.!; t/ç dk: (3-3)

The integral representation (3-3) is not an explicit solution formula as it involves
the unknown Neumann boundary values ux.0; t/, ux.`; t/ through the transforms
Qg1.!; t/, Qh1.!; t/. Fortunately, as in the periodic case, these unknowns can be
eliminated. However, unlike the periodic case, where it sufficed to simply reemploy
the global relation after deforming the paths of integration from R to the complex
contours L˙ (see Figure 1 and the deformed representation (2-8)), here we must
additionally exploit a certain symmetry of !.

3B. Elimination of the unknowns and an explicit solution formula. First, using
analyticity in k and Cauchy’s theorem from complex analysis, we claim that the
integral representation (3-3) can be written in the form

u.x; t/ D
1

2⇡

Z

k2R

e
ikx�i!t

Ou0.k/ dk

C
1

2⇡

Z

k2R

e
ikx�i!t

Z
t

⌧D0

e
i!⌧ Of .k; ⌧/ d⌧ dk

C
iˇ

2⇡

Z

k2LC
e

ikx�i!t
Œ Qg1.!; t/ C ik Qg0.!; t/ç dk

�
iˇ

2⇡

Z

k2L�
e

ik.x�`/�i!t
Œ Qh1.!; t/ C ik Qh0.!; t/ç dk; (3-4)

where the contours L˙ can be chosen to be either @D
˙ or C˙ (see Figure 1). For

L˙ D C ,̇ the deformation leading to (3-4) can be established similarly to the
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periodic case (see Section 2B). Thus, below we justify (3-4) for L˙ D @D
˙ and,

more precisely, for LC D @D
C and the third integral in (3-3)-(3-4) since the fourth

integral in (3-3)-(3-4) can be handled in the same way, namely we prove that
Z

k2R

e
ikx�i!t

Œ Qg1.!; t/ C ik Qg0.!; t/ç dk

D

Z

k2@DC
e

ikx�i!t
Œ Qg1.!; t/ C ik Qg0.!; t/ç dk: (3-5)

The exponential e
ikx�i!.t�⌧/ decays to zero as jkj!1 inside fIm.k/>0gnDC

and is bounded on the closure of that region; hence by Cauchy’s theorem
Z

k2R

e
ikx�i!t

Œ Qg1.!; t/ C ik Qg0.!; t/ç dk

D lim
n!1

Z n⇡

`
C ⇡

2`

kD� n⇡

`
� ⇡

2`

e
ikx�i!t

Œ Qg1.!; t/ C ik Qg0.!; t/ç dk

D lim
n!1

✓Z

k2 zC C
n

C

Z
i0

kDi. n⇡

`
C ⇡

2`
/

C

Z n⇡

`
C ⇡

2`

kD0

◆

⇥ e
ikx�i!t

Œ Qg1.!; t/ C ik Qg0.!; t/ç dk; ˇ < 0; (3-6)
andZ

k2R

e
ikx�i!t

Œ Qg1.!; t/ C ik Qg0.!; t/ç dk

D lim
n!1

Z n⇡

`
C ⇡

2`

kD� n⇡

`
� ⇡

2`

e
ikx�i!t

Œ Qg1.!; t/ C ik Qg0.!; t/ç dk

D lim
n!1

✓Z
0

kD� n⇡

`
� ⇡

2`

C

Z
i. n⇡

`
C ⇡

2`
/

kDi0

C

Z

k2 zC C
n

◆

⇥ e
ikx�i!t

Œ Qg1.!; t/ C ik Qg0.!; t/ç dk; ˇ > 0; (3-7)

where zC C
n

denotes the circular arc

zC
C
n

D

( ˚
⇢ne

i✓ W
⇡

2
6 ✓ 6 ⇡

 
; ˇ < 0;

˚
⇢ne

i✓ W 0 6 ✓ 6 ⇡

2

 
; ˇ > 0;

⇢n WD
n⇡

`
C

⇡

2`
; (3-8)

and is depicted in Figure 3. Note that the first equality in (3-6) and (3-7) is justified
by the assumption that the improper integral on the left-hand side exists as a double
limit, i.e.,

R
k2R D limM;N !1

R
N

kD�M
, and hence as a sequential limit for any

choice of sequences M D M.n/ and N D N.n/ that tend to 1.

Proposition 3.1. For x > 0, t > 0 and ˇ 2 R n f0g,

lim
n!1

Z

k2 zC C
n

e
ikx�i!t

Œ Qg1.!; t/ C ik Qg0.!; t/ç dk D 0: (3-9)

Proof. The argument relies on integrating by parts with respect to ⌧ inside the
integrals that define the transforms Qg0; Qg1 and then using the well-known inequality
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k

0

D
C
n

D
�
n

✏ ✏ ✏ ✏✏✏✏

L
C
V

L
�
V

L
C
H

L
�
H

zC C
n

C
C
n

zC �
n

C
�
n

k

0

D
C
n

D
�
n

✏ ✏ ✏ ✏✏✏✏

L
�
V

L
C
V

L
�
H

L
C
H

zC C
n

C
C
n

zC �
n

C
�
n

Figure 3. The hyperbola 2ˇ Re.k/ Im.k/ D �1, whose branches
correspond to the contours @D ,̇ and the circular arcs zC ˙

n
, C

˙
n

,
L

˙
H

, L
˙
V

for ˇ < 0 (left) and ˇ > 0 (right). The dots along the real
axis denote the zeros kn D

n⇡

`
, n 2 Z, of e

ik` � e
�ik`.

(2-15). For this, we assume that g0; g1 are locally bounded functions with locally
bounded derivatives. We take ˇ < 0, as the case ˇ > 0 is entirely analogous.
Integrating by parts, we have

I zC C
n

.x; t/ WD

Z

k2 zC C
n

e
ikx�i!t

Z
t

⌧D0

e
i!⌧

Œg1.⌧/ C ikg0.⌧/ç d⌧ dk

D

Z

k2 zC C
n

e
ikx

J.k; t/ dk; (3-10)

where

J.k; t/ WD
1

i!

✓
g1.t/ C ikg0.t/ � e

�i!t
Œg1.0/ C ikg0.0/ç

�

Z
t

⌧D0

e
�i!.t�⌧/

Œg
0
1
.⌧/ C ikg

0
0
.⌧/ç d⌧

◆
:

For k 2 zC C
n

and n large enough, j!j > jˇjjkj2 �
p

1 C ˛2 > 0. Thus, parametrizing
k D ⇢ne

i✓ with ⇡

2
6 ✓ 6 ⇡ , which implies sin.2✓/ 6 0, we find

jJ.⇢ne
i✓

; t /j

6 1

jˇj⇢2
n
�

p
1C˛2

✓
jg1.t/jC⇢njg0.t/jCe

�.1Cˇ⇢
2
n sin.2✓//t

.jg1.0/jC⇢njg0.0/j/

C

Z
t

⌧D0

e
�.1Cˇ⇢

2
n sin.2✓//.t�⌧/

.jg
0
1
.⌧/jC⇢njg

0
0
.⌧/j/d⌧

◆

6 ⇢n

jˇj⇢2
n
�

p
1C˛2

✓
jg1.t/jCjg0.t/jCjg1.0/jCjg0.0/j

C

Z
t

⌧D0

.jg
0
1
.⌧/jCjg

0
0
.⌧/j/d⌧

◆
:
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Thus, J.⇢ne
i✓

; t / decays uniformly in ✓ as ⇢n ! 1 according to the bound

jJ.⇢ne
i✓

; t /j 6 cg0;g1;t

⇢n

jˇj⇢2
n

�
p

1 C ˛2
;

where

cg0;g1;t D 2.kg0kL1.0;t/ C kg1kL1.0;t// C T .kg
0
0
kL1.0;t/ C kg

0
1
kL1.0;t// < 1:

Back to (3-10), using this bound together with inequality (2-15) and the fact that
x > 0, we obtain

jI zC C
n

.x; t/j 6 cg0;g1;t⇢
2
n

jˇj⇢2
n

�
p

1 C ˛2

Z ⇡

2

✓D0

e
� 2⇢nx

⇡
✓

d✓

D
cg0;g1;t⇢

2
n

jˇj⇢2
n

�
p

1 C ˛2
�

⇡

2⇢nx
.1 � e

�⇢nx
/

n!1
���! 0: ⇤

In view of (3-9), equations (3-6) and (3-7) simplify to
Z

k2R

e
ikx�i!t

Œ Qg1.!; t/ C ik Qg0.!; t/ç dk

D lim
n!1

✓Z
i0

kDi⇢n

C

Z
⇢n

kD0

◆
e

ikx�i!t
Œ Qg1.!; t/ C ik Qg0.!; t/ç dk;

Z

k2R

e
ikx�i!t

Œ Qg1.!; t/ C ik Qg0.!; t/ç dk

D lim
n!1

✓Z
0

kD�⇢n

C

Z
i⇢n

kDi0

◆
e

ikx�i!t
Œ Qg1.!; t/ C ik Qg0.!; t/ç dk:

Appealing to Cauchy’s theorem once again, we can deform the union of the contours
on the right-hand side to the union of the circular arcs

L
C
H

D

( ˚
⇢ne

i✓ W
⇡

2
� ✓n 6 ✓ 6 ⇡

2

 
; ˇ < 0;

˚
⇢ne

i✓ W
⇡

2
6 ✓ 6 ⇡

2
C ✓n

 
; ˇ > 0;

L
C
V

D

( ˚
⇢ne

i✓ W 0 6 ✓ 6 ✓n

 
; ˇ < 0;

˚
⇢ne

i✓ W ⇡ � ✓n 6 ✓ 6 ⇡
 
; ˇ > 0;

where
✓n WD

1

2
sin�1

✓
�

1

ˇ⇢2
n

◆
;

with the contour @D
C
n

, which denotes the portion of @D
C delimited by L

C
H

and L
C
V

(see Figure 3). Combining this last deformation with the fact that, similarly to (3-9),

lim
n!1

Z

k2L
C
H

e
ikx�i!t

Œ Qg1.!; t/ C ik Qg0.!; t/ç dk

D 0 D lim
n!1

Z

k2L
C
V

e
ikx�i!t

Œ Qg1.!; t/ C ik Qg0.!; t/ç dk;
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we obtain
Z

k2R

e
ikx�i!t

Œ Qg1.!; t/ C ik Qg0.!; t/ç dk

D lim
n!1

Z

k2@D
C
n

e
ikx�i!t

Œ Qg1.!; t/ C ik Qg0.!; t/ç dk;

which, after defining
R

k2@DC WD limn!1
R

k2@D
C
n

, amounts to the desired equality
(3-5).

Having established (3-4), we proceed to the elimination of the transforms Qg1, Qh1

of the unknown Neumann boundary values. For this step, we must use an idea which
was not needed in the periodic case, namely we must exploit the symmetries of !.
In particular, solving the equation !.⌫/ D !.k/, we find that the only nontrivial
symmetry of ! is k 7! �k. In turn, since the unknown transforms Qg1.!; t/, Qh1.!; t/

depend on k only through !, they are invariant under the transformation k 7! �k,
and the global relation (3-2) yields the additional identity

e
i!t

Ou.�k; t/ D Ou0.�k/Ciˇ
˚
Œ Qg1.!; t/�ik Qg0.!; t/ç�e

ik`
Œ Qh1.!; t/�ik Qh0.!; t/ç

 

C

Z
t

⌧D0

e
i!⌧ Of .�k;⌧/d⌧; k 2 C: (3-11)

Equations (3-2) and (3-11) form a 2 ⇥ 2 system for the unknowns Qg1.!; t/ and
Qh1.!; t/. Solving this system for these two quantities and then substituting the
resulting expressions into (3-4), we obtain the explicit solution formula (1-5), where
we have made use of the following analogue of Proposition 2.1.

Proposition 3.2. For any 0 < x < ` and any t > 0,
Z

k2LC

e
ikx

eik` � e�ik`
Œe

ik`
Ou.k; t/ � e

�ik`
Ou.�k; t/ç dk

D

Z

k2L�

e
ik.x�`/

eik` � e�ik`
Œ Ou.k; t/ � Ou.�k; t/ç dk D 0:

For L˙ D C ,̇ Proposition 3.2 follows like Proposition 2.1, while for LC D @D
C

its proof is analogous to Proposition 3.1 with zC C
n

replaced by the arc C
C
n

shown
in Figure 3 (and with the obvious adjustments in the case of @D

�), provided that
the following crucial analogue of Lemma 2.4 is established (in order to have an
appropriate lower bound for e

ik` � e
�ik` along C

C
n

).

Lemma 3.3. For k 2 C
C
n

with n 2 N sufficiently large, we have

je
ik`

� e
�ik`

j > M` WD min
˚p

1 C e�2`; e
`

� e
�`

 
> 0: (3-12)

Therefore, we conclude with some final remarks on the solution formula (1-5)
and a proof of Lemma 3.3.
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Remark 3.4. The zeros of e
ik` � e

�ik` do not introduce any singularities in
formula (1-5) since they occur at k D kn D

n⇡

`
, n 2 Z, and hence are avoided by

the contours L˙ (see Figure 1).

In the special case f .x; t/ D F that corresponds to the linearization of the
Lugiato–Lefever equation (1-1), formula (1-5) reduces to

u.x; t/ D
1

2⇡

Z

k2R

e
ikx�i!t

Ou0.k/ dk�
F

2⇡

Z

k2R

e
ikx

.1�e
�ik`

/.1�e
�i!t

/

k!
dk

�
1

2⇡

Z

k2LC

e
ikx�i!t

eik`�e�ik`
Œe

ik`
Ou0.k/�e

�ik`
Ou0.�k/ç dk

�
ˇ

⇡

Z

k2LC

e
ikx�i!t

eik`�e�ik`
kŒ Qh0.!; t/�e

�ik`
Qg0.!; t/ç dk

C
F

2⇡

Z

k2LC

e
ikx

.1�e
�ik`

/.1�e
�i!t

/

.1Ce�ik`/k!
dk

C
1

2⇡

Z

k2L�

e
ik.x�`/�i!t

eik`�e�ik`
Œ Ou0.k/� Ou0.�k/ç dk

C
ˇ

⇡

Z

k2L�

e
ik.x�`/�i!t

eik`�e�ik`
kŒe

ik` Qh0.!; t/� Qg0.!; t/ç dk

C
F

2⇡

Z

k2L�

e
ik.x�`/

.1�e
�ik`

/.1�e
�i!t

/

.1Ce�ik`/k!
dk: (3-13)

This formula can be further simplified by evaluating the integrals multiplied by F

via Cauchy’s residue theorem. In particular, we note that k D 0, as well as the
zeros of ! in the integrals multiplied by F in (3-13), correspond to removable
singularities due to the presence of 1 � e

�ik` and 1 � e
�i!t respectively. That

is, recalling that in the nonperiodic case kn D
n⇡

`
, n 2 Z, we see that the only

singularities in these integrals arise at k D k2nC1, n 2 Z, due to the term 1 C e
�ik`.

Hence, introducing the notation zR" D
S

n2ZŒk2nC1 C "; k2nC3 � "ç, and using
Cauchy’s residue theorem, we find
Z

k2L�

e
ik.x�`/

.1�e
�ik`

/.1�e
�i!t

/

.1Ce�ik`/k!
dk

D lim
"!0

Z

k2zR"

e
ik.x�`/

.1�e
�ik`

/.1�e
�i!t

/

.1Ce�ik`/k!
dk�

2⇡

`

X

n2Z

e
ik2nC1x

.1�e
�i!.k2nC1/t

/

k2nC1!.k2nC1/

and
Z

k2LC

e
ikx

.1�e
�ik`

/.1�e
�i!t

/

.1Ce�ik`/k!
dk

D lim
"!0

Z

k2zR"

e
ikx

.1�e
�ik`

/.1�e
�i!t

/

.1Ce�ik`/k!
dk�

2⇡

`

X

n2Z

e
ik2nC1x

.1�e
�i!.k2nC1/t

/

k2nC1!.k2nC1/
:
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Therefore, adding these two expressions and noting that the resulting integral
along zR" no longer contains singularities and hence can be replaced to one along R,
we obtain a simplified, final form of formula (3-13) as

u.x; t/ D
1

2⇡

Z

k2R

e
ikx�i!t

Ou0.k/ dk

�
1

2⇡

Z

k2LC

e
ikx�i!t

eik` � e�ik`
Œe

ik`
Ou0.k/ � e

�ik`
Ou0.�k/ç dk

C
1

2⇡

Z

k2L�

e
ik.x�`/�i!t

eik` � e�ik`
Œ Ou0.k/ � Ou0.�k/ç dk

�
2F

`

X

n2Z

e
ik2nC1x

.1 � e
�i!.k2nC1/t

/

k2nC1!.k2nC1/

�
ˇ

⇡

Z

k2LC

e
ikx�i!t

eik` � e�ik`
kŒ Qh0.!; t/ � e

�ik`
Qg0.!; t/ç dk

C
ˇ

⇡

Z

k2L�

e
ik.x�`/�i!t

eik` � e�ik`
kŒe

ik` Qh0.!; t/ � Qg0.!; t/ç dk: (3-14)

Proof of Lemma 3.3. If Im.k/ > 1, then by the reverse triangle inequality we get
jeik` � e

�ik`j > e
Im.k/` � e

� Im.k/` > e
` � e

�`.
If Im.k/ < 1, then instead of using the triangle inequality (which will yield a

vanishing lower bound as n ! 1), we proceed as follows. Reparametrizing C
C
n

by letting (see also Figure 4) k D kn C re
i�, we have

r D

p
⇢

2

n
� 2⇢nkn cos ✓ C k

2

n
; cot � D

⇢n cos ✓ � kn

⇢n sin ✓
; sin � D

⇢n sin ✓

r
:

Note that rn 6 r 6 Rn, with

rn D j⇢ne
i✓n � knj D

r
⇢

2

n
C k

2

n
� kn⇢n

✓r
1 �

1

ˇ2⇢4
n

C 1

◆
;

Rn D j

p
⇢

2

n
� 1 C i � knj D

q
⇢

2

n
C k

2

n
� 2kn

p
⇢

2

n
� 1;

where we have used the fact that

cos ✓n D
1

2

✓r
1 �

1

ˇ2⇢4
n

C 1

◆
:

Observe that, as n!1, rn !
⇡`

2
and Rn !

q
1 C

�
⇡`

2

�2 as suggested by geometric
intuition. Also, for n 2 N large enough we have (see Figure 4)

p
⇢

2

n
� 1 � kn 6 r cos � <

⇡

2`
; 0 < r sin � 6 1: (3-15)
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k

0

✏ ✏ ✏ ✏

C
C
n

D
C
n

kn knC1

r
�

1

⇢n
⇢ne

i✓n

⇢ne
i. ⇡

2
�✓n/

Figure 4. The local parametrization k D kn C re
i� used when

Im.k/ 6 1.

Since e
2ikn` D 1 and kn 2 R, jeik` � e

�ik`j D jei`re
i�

� e
�i`re

i�

j and so

je
ik`

� e
�ik`

j
2

D e
�2`r sin �

� 2 cos.2`r cos �/ C e
2`r sin �

: (3-16)

Note, however, that

p
⇢

2

n
� 1 � kn D

⇡

2`
�

1

2
�

n⇡

`
C

⇡

2`

� � O

 
1

2
�

n⇡

`
C

⇡

2`

�3

!
%

⇡

2`
; n ! 1;

which along with inequality (3-15) implies, for n large enough, cos.2`r cos �/ 6 0.
In turn, using again (3-15), (3-16) yields

je
ik`

� e
�ik`

j
2 > e

�2`r sin �
C e

2`r sin � > 1 C e
�2`

: ⇤
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