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Abstract— The locomotion of snakes is unique as it allows
snakes to efficiently navigate complex and uneven terrains with-
out articulated limbs. This movement pattern is attractive in the
field of robotics exactly for its hyper redundancy, versatility, and
lack of requirement for relatively complex locomotive systems.
Snake-like robots that imitate these movement patterns are
uniquely suited for use in extreme and hostile environments
like deep sea exploration and outer space. Controlling robots
in environments like these requires lots of training and intense
concentration during operation. Voice User Interfaces (VUIs)
can be used to bypass much of the need for this training
and attention to operation by abstracting the direct control
of a robotic system into the domain of speech. The design and
implementation of a VUI demonstrating this idea is discussed
here. The basic structure of a VUI is described and the
implementation of a VUI in conjunction with a snake robot
is shown. In experimentation the performance of the VUIs
components were evaluated and the navigation of an obstacle
course via the developed VUI and a remote controller were
compared. The command recognition capability of the VUI was
found to be 96% and the ability of the VUI to enable navigation
of the obstacle course was found to be comparable considering
the differences of the control formats.

I. INTRODUCTION

Snake-like robots present a unique challenge in the domain
of robotic control due to the many degrees of freedom
that they possess. These degrees of freedom enable many
modes of locomotion as well as many ways to interact
with the environment as a manipulator. It is unreasonable to
expect a human to be able to competently take advantage
of this ability through a direct control interface, so it is
especially relevant to the development of snake-like robots
to implement systems that make their control less demanding
on the skill of the user.

One way to reduce the complexity of control for a snake-
like robot is the implementation of a Voice User Interface
(VUI). VUIs are interfaces that allow users to interact with
systems using only their voice. They combine several tech-
niques like automatic speech recognition (ASR) and natural
language processing (NLP) to convert spoken language into
computer processes. Some common examples of VUIs are
Amazon’s Alexa, Google’s Smart Home, Android Auto,
Windows’ Cortana, and even Microsoft Word’s dictation tool.

*This work was partially supported by the NSF REU Site grant in
Biomimetics and Soft Robotics with Award Number EEC #1852578.

1Sean Casement and Mengjun Zhang are with the Me-
chanical Engineering Department, University of Nevada, Reno,
NV, 89557 USA scasement@nevada.unr.edu,
mzhang@nevada.unr.edu

2Yantao Shen is with the Electrical and Biomedical Engineering &
Mechanical Engineering Departments, University of Nevada, Reno, NV
89557 USA ytshen@unr.edu

Another common implementation of VUIs are voice con-
trolled robots. VUIs are used in robotic control for their
relatively low time investment to train new users. Training
time is a common problem to be addressed when integrating
a new control scheme into any workflow and delivering
instruction by voice is a far more intuitive method of control
that requires much less training to become proficient with
than a remote controller. When used to direct robots a VUI’s
role is to translate human commands into robot intelligible
instructions or goals. This can take many forms which
range widely in complexity and scope depending on the
capabilities and limitations of the systems. This can range
from grammar-based systems that interpret the syntactic
and semantic content of commands and extract command
parameters that the robot can interpret to systems that can
learn how to interpret commands using data sets that map
between grounded actions a robot can take to language and
other context clues in the environment [1][2][3].

Human-robot-interaction (HRI) is the field of NLP that is
applicable to this project. It has a variety of uses from per-
sonal assistants like Amazon’s Alexa and Google’s Cortana
to Microsoft Word’s Dictate function. In the field of robotics,
it is mostly used to facilitate the control of autonomous
robots and provide a control scheme that is more intuitive
to a user than a remote controller. When HRI is extended to
robotic control it is used to translate natural language to robot
understandable format like system parameters or instructions.
One way to achieve that is by grounding tokens to the
robot’s systems and its environment directly. For example,
when the word “move” is recognized in a sentence by the
robot it can begin using NLP methods that translate the
speech into valid parameters that can then be used by its
locomotive systems. These direct connections enable NLP
methods like regular expression analysis, syntactical analysis,
and semantic analysis to be used to monitor incoming text
for these tokens to trigger behavior or set goals depending
on their presence.

In our previous work [4][5][6][7] the design and creation
of the snake-like robot discussed in this paper were shown.
Related to the work in this paper, Zinchenko et al. created a
VUI for a minimally invasive surgical robot that utilized the
ASR CMUsphinx to modify the duration of voice commands
depending on the duration that the syllables in keyword
commands were spoken for [8]. Contreras et al. also created
a system that uses a similar technique to the one utilized
here where the Levenshtein Distance is used in a VUI for a
simulated UAV [9].

In our research we design and implement a VUI that
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grounds a dictionary of natural language commands to pre-
constructed actions that the snake-like robot or other robots
can execute. Syntactic similarity as well as regular expression
recognition are then used to parse between behavior and
time duration clauses in commands recognized via wake-
word recognition. To the best of our knowledge, this method
of control for a snake-like robot has not been implemented
previously though similar methods of control have been
experimented with for other kinds of robots in simulation
[9].

This paper is structured to describe the technical imple-
mentation of the VUI in Section 2. The decisions made
concerning the techniques and tools used are described as
well as the structure of the VUI. How the snake-like robot
interprets the command parameters handed to it from the VUI
is also described. Section 3 presents experimental setup and
discusses the results found during experimentation. Section 4
offers our conclusions and some suggestions for future work
on this project.

II. TECHNICAL METHODS AND
IMPLEMENTATION

A. Operating Platform

Due to the computational requirements of the chosen ASR
the VUI was developed and is implemented on a Raspberry
Pi 4 B using the Aarch64 distribution of the Linux OS. The
VUI was developed using Python for its rapid prototyping
capabilities. A Raspberry Pi was chosen for its powerful
computing power and support from the manufacturer and
3rd parties. The Linux OS was chosen due to its modularity
and customizability for future optimization.

B. Vosk ASR

Several ASRs were considered for this project including
Google Speech-to-Text, IFLYTEK short-form ASR, CMUs-
phinx, and Vosk. Google Speech-to-Text and IFLYTEK
short-form ASR were discarded as options due to being
closed source cloud-based ASRs. Investigation and exper-
imentation with both ASRs found that the response time
of cloud-based ASRs vary greatly depending on the quality
of the internet connection to the servers. During exper-
imentation with the IFLYTEK short-form ASR response
times of the IFLYTEK servers were as low as 2 seconds
and reported response times on the IFLYTEK website are
as long as 1 minute [10]. Similar response times to our
experimentation were reported by Google Speech-to-Text
users in the Google forums ranging from 2 to 5 seconds.
This much delay between the transmission and response from
the cloud servers was not acceptable is why the cloud-based
ASRs were eliminated from consideration. Vosk was chosen
over CMUsphinx as the development team of CMUsphinx
had discontinued development at the time to move onto more
state-of-the-art ASR research while Vosk is still actively
developed and supported by the creators [11][12].

The Vosk ASR was chosen for its preconstructed models
designed for low power systems like single board computers
and mobile applications and its open-source nature. The Vosk

ASR is built on the Kaldi SDK which is an open source
ASR development tool developed by a team at John Hopkins
University [13]. In this project the Vosk ASR is implemented
with the vosk-model-small-en-us-0.15 language model which
is a preconstructed model intended for use on single board
computers and in mobile applications.

C. Command Recognition via NLP

Regular expression analysis and syntactical similarity anal-
ysis are used in the VUI to scan incoming speech for wake-
words and command clauses that are then parameterized
into robot understandable commands. Regular expression
analysis is used to search for root words that signify
multiple command clauses. In the case of a relevant root
word, the command clauses are separated and converted
into command parameters. Syntactical similarity analysis is
performed using the Normalized Generalized Levenshtein
Distance (NGLD) defined in [14]. The Generalized Lev-
enshtein Distance (GLD) is defined as the minimum edit
cost required to transform string S into string T [15][16].
The GLD qualifies elementary edit operations as insertions,
deletions, or the substitutions of a character for another in a
string of characters where a character is any character in the
alphabet Σ as well as the null string λ which is an empty
string of length zero.

GLDs,t(i, j) =


max(i, j) if min(i, j) = 0

min


GLDs,t(i− 1, j) + γ(λ → a)

GLDs,t(i, j − 1) + γ(a → λ)

GLDs,t(i− 1, j − 1) + γ(a → b)

if min(i, j) ̸= 0
(1)

Where i is equal to the length of string S and j is equal
to the length of string T. Three edit operation costs are
considered when calculating the Generalized Levenshtein
Distance: insertions of characters denoted γ(λ → a), dele-
tions of characters denoted γ(a → λ), and substitutions of
characters denoted γ(a → b). These edit costs are minimized
each time a new edit operation is performed. The edit costs
used in the implementation are a cost of 1 for deletions and
insertions and a cost of 2 for substitutions. In the case of a
substitution where the ith and jth characters in strings S and
T are equal the edit cost of substitution is 0. The Generalized
Levenshtein Distance can be normalized using (2) provided
(3) and (4) are held true.

NGLDs,t = 1− 2 ·GLDs,t

α · (|S|+ |T |) +GLDs,t
(2)

GLSs,t =
α · (|S|+ |T |)−GLDs,t

2
(3)

∀a ∈ Σ, γ(λ → a) = γ(a → λ) = α (4)

The NGLD returns a value in the range of [0, 1] where
a value of zero represents no syntactical similarity between
the compared string and a value of 1 representing perfect
syntactical similarity.
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Fig. 1. Implemented Voice User Interface command recognition structure (a), command recognition and parameterization substructure (b)

D. VUI Structure

Figure 1 illustrates the structure of the VUI and how
it handles the parameterization of new commands. The
VUI uses wake-word recognition to pay attention for new
commands from the ASR transcription. The wake word
recognizer tokenizes the first two words of a transcription
to check if they match a root wake-word. If a wake-word is
recognized the transcription is handed to the VUI’s command
recognition methods.

Regular expression recognition is then used to separate
the command phrase into two clauses. The VUI uses regular
expression recognition to search for the root word “second”
within the command phrase and if the root word is found then
the command phrase is split into two strings with a rule-based
grammar. The first string contains the behavior clause and the
second string contains the time duration clause. If the root
word “second” is not present in the command phrase then
the VUI assumes that there is no time duration clause and
moves on to the behavior clause recognition. In the case of
a detected time duration clause the numeric word indicating
the number of seconds the behavior should be executed for is
converted to an integer and stored as a command parameter.
Once the time duration command parameter has been stored
the string containing the behavior clause is compared to
a list of predefined commands using the NGLD. The list
of predefined commands are grounded to parameters that
indicate preprogrammed behavior on the snake-like robot.
The predefined command that has the greatest similarity
and is also over 75% similar to the behavior command
clause is converted to the corresponding behavior command
parameter. Both command parameters are then sent to the
snake robot for interpretation and execution.

The VUI is connected to the snake-like robot via an XBee
wireless radio frequency module through which the VUI
sends command parameters to the snake-like robot. Upon
receiving new command parameters, the snake-like robot
ceases any behavior that it is current exhibiting and begins
executing the behavior called for by the newly received

command parameters. When a new command parameter is
received by the snake-like robot it checks for a new behavior
parameter and a new time duration parameter. The command
parameter is parsed, and the corresponding behavior is exe-
cuted. In the case of a time duration parameter, it is applied
to the behavior being executed. If there is no time duration
parameter, then the behavior is executed until new command
parameters are received.

III. EXPERIMENTAL SETUP AND VALIDATIONS
Three tests are performed for this project. The first test is

navigation of an obstacle course to reach a goal, the second
determines the response times of the VUI and compares
them to the remote controller, and the third examines the
VUI controller’s robustness to noise using Additive Gaussian
White Noise (AGWN).

A. Obstacle Course Navigation

Experiment 1 tests the capability of the VUI controller
to navigate the snake-like robot through an obstacle course
to reach a goal. The course imitates a cluttered environment
that could be found in a common operation area like a house.
There are two mild turns and an about face leading to a
straight path ending at the goal, a blue star, shown in Figure
2. Figure 3 and Figure 4 show the routes taken using the VUI
and the remote controller from previous work respectively.

The route taken through the obstacle course begins at
the position indicated by the yellow measuring tape seen
in the top right of Figure 2 to the goal at the bottom. The
course is divided into four sections marked by the blue
lines. Table 1 details how much time the snake-like robot
spends in each section using both control methods. The
path that the snake-like robot follows was tracked using the
Tracker image tracking software by tracing the first joint
of the snake-like robot [17]. In Figure 3 each locomotion
pattern change caused by the VUI is represented by a color
shift in the curve. This clear demarcation of behavior is not
indicated in Figure 4 due to the continuous nature of the
input and configuration of the remote controller. The obstacle
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Fig. 2. Photo of the obstacle course with the snake-like robot place in
starting position

course was completed in 25.833 seconds with the VUI and
70.004 seconds using the remote controller. The differences
between the two paths taken are significant in two ways. The
path taken over the first two sections is significantly more
pronounced for the VUI. While the remote controller offers
an easily variable turning radius with fine control it is limited
in severity. the VUI, on the other hand, has been created such
that as the snake-like robot turns the turning offset increases
additively. These differences arise from the advantages and
disadvantages of the respective control formats and enable
the snake-like robot to make tighter but more pronounced
turns when using the VUI.

TABLE I
TIME SPENT IN EACH SECTION OF THE OBSTACLE COURSE

VUI Controller
Left turn 5.833 sec (22.58%) 6.106 sec (8.72%)

Right turn 2.433 sec (9.42%) 5.506 sec (7.87%)
Left turn 15.267 sec (59.10%) 55.789 sec (79.69%)

Straight forward 2.300 sec (8.90%) 2.603 sec (3.72%)

Fig. 3. Path of the snake robot through the obstacle course, controlled by
the VUI system. Red: Turn left, Blue: Turn right, Green Turn left, Yellow:
move forward, Magenta: Straighten up

The limited turning radius of the remote controller is the
source of the other major difference between the two paths.
It necessitated a multi-point turn which is the cause of the
much longer navigation time as shown in Table 1.

Fig. 4. Path of the snake robot through the obstacle course, controlled by
the remote controller. The continuous path of the snake robot is represented
by the blue line. Breaks in the line are due to the tracked feature on the
snake leaving the camera frame.

B. VUI Response Time

In experiment 2 commands were issued to the VUI by the
tester and the ASR transcription, command recognized, and
NGLD between the transcription and recognized command
are recorded. The response time of the snake robot is
determined by timing the difference between the end of the
spoken command and the beginning of the snake-like robot’s
reaction.

Figure 5 shows a whisker plot that details the distribution
of the response times of commands with no time limit and
commands with a time limit. Figure 6 shows the distribution
of snake-like robot response times when using a remote
controller.

Fig. 5. Whisker Plot of the response times of the snake robot when
controlled by the VUI system. The distributions are split between the
commands with no time limit and commands with time limits.

The distribution of response times in Figure 5 varies
significantly depending on type. The distribution of duration
command response times is significantly different from the
continuous commands and the average response time is
0.326 seconds shorter which is somewhat counter intuitive.
The number of command parameters to process when ex-
ecuting a continuous command is less than the number
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Fig. 6. Whisker plot of the response times of the snake-like robot when
controlled by a remote controller.

for a duration command however, the construction of the
snake-like robot control system causes the looping behavior
function to check for new commands less frequently when
continuously executing behavior. This is why the distribution
of continuous command response times is larger than the
duration commands and the continuous command response
times are generally longer.

Figure 6 shows the snake-like robot response time distribu-
tion when operated with a remote controller. The distribution
of response times is of much smaller scale in comparison
to the VUI response time distributions and the average
response time of 0.336 is much shorter as well. The duration
commands fall short by 0.827 seconds on average and the
continuous commands falls short by 1.153 seconds. This
is a significant time difference and necessitates delivering
a command via VUI further in advance than the remote
controller to account for this response delay and the time
required to deliver the command vocally. The smaller dis-
tribution of response times for the remote controller is also
significant as it indicates the number of interpretive steps
between remote controller input and behavior in comparison
to the VUI distributions.

C. Reliability and Noise Robustness

Experiment 3 examines the Word Error Rate (WER) of
the ASR, its ability to account for background noise, and
the improvement over exact command recognition that the
NGLD enables. AGWN is introduced to the audio input
signal at several signal to noise ratios (SNR) and the WER
of the transcriptions at these SNRs are compared. The SNR
of a signal indicates the signal strength in comparison to the
noise as shown in (5).

SNR = S −N (5)

Where S is the signal strength and N is the strength of
the noise, all in decibels. The SNRs used in this experiment
are 40 decibels and 20 decibels respectively. The WERs of

data sets at those SNRs are calculated and compared to the
WER of a control data set. WER is the rate at which an ASR
misstranscribes inputs as defined in (6). Where I is insertions,
D is deletions, S is substitution, and N is the number of words
in the data set.

WER =
I +D + S

N
· 100% (6)

This experiment focuses on the command recognition
ability of the VUI for the first command parameter which
dictates behavior. This is due to the use of the NGLD
to recognize commands for the first parameter and not
the second. The second parameter uses regular expression
analysis to detect when a time limit is specified as well
as natural grammar constraints. During experimentation 288
data points were collected from the VUI. The distribution of
the command recognition status of the data points are shown
below in Figure 6.

Fig. 7. The distribution of accepted commands based on an exact match
with the dictionary of preconstructed commands and the NGLD.

Using the NGLD the rate of successful command recog-
nition is 96%. A minimum NGLD of 0.75 was chosen for
acceptance. 24 commands fell in between an NGLD of 1.00
and 0.75 and 11 commands fell below 0.75. The use of the
NGLD increased the reliability of the behavior command
recognition function by 8%. There are several factors that
have a major effect on the WER of an ASR like the models
and methods used by the decoder or external effects like
pronunciation, positioning and number of microphones used,
and background noise. The VUI implemented in this project
uses the default offline Vosk ASR with the vosk-model-
small-en-us-0.15 language model. The reported WER from
the creators is 9.85%, found by testing with the Librispeech
database [11]. Table 2 shows the WER found at different
artificial SNRs using the commands from the list of known
commands as well as the number of data points collected.

The control data is taken from the same data used in
experiments 1 and 2 while the 20 and 40 decibel data were
recorded in a quiet environment with minimal background
noise. AGWN was added to the audio signal such that the
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TABLE II
WER AT DIFFERENT SNRS

SNR Data points (words) WER
Control 1187 1.77%
20 dB 945 4.66%
40 dB 954 3.25%

desired noise level in the audio signal was achieved before
it was handed to the ASR for transcription. The background
noise for the control data originates from the lab that the
experiment was performed in as well as from the snake robot
during the experiment. The background noise of the control
data set is the expected background noise to be present
under normal operating conditions. The WER found from
the testing data in this project is 1.77% which is significantly
lower than the WER found via the Librispeech testing data
listed on the Vosk ASR website. This can likely be attributed
to the repetitive nature of the testing data and constrained
vocabulary in the list of commands. There are several words
and phrases that the ASR often mistranscribes. It tended to
mistake the homophones “role” and “roll” as well as having
difficulty transcribing words that undergo elision or reduction
in speech like “straighten”, “wiggly”, and “winding”. These
kinds of problems are common to ASRs and are the main
source of issues with the VUI and NGLD methods used.
The WER of both SNR data sets are greater than the control
data set which indicates that the SNR of the control data
is greater than 40 decibels. This is a positive result as an
SNR over 40 decibels is considered a relatively clear, noise
free signal. A WER of 4.66% for a 20 decibel SNR is also
a positive result as signals as that SNR level or below are
considered relatively noisy. A possible source of error in
this experiment is the nature of the noise present in the
control data set in comparison to the others. The control data
was collected in the lab under normal operating conditions
where noise amplitude and frequency can vary freely and
naturally with respect to the useful signal. This kind of
noise is ordered in the sense that it originates from natural
causes which can create a more continuous waveform. This
ordered behavior is not how the AGWN in this experiment
behaves; it is a generated randomly signal using a Gaussian
distribution where the signal strength is manipulated to keep
a constant SNR. This difference could influence how the
feature extractor and acoustic model interpret the audio
signal, changing the predicted senones.

IV. CONCLUSION
The development and validation of a VUI for use with

a snake-like robot was demonstrated in this paper. The
structure of the VUI, the techniques and tools used to
develop it, and the performance of the VUI with respect to a
remote controller where the advantages and disadvantages
of both systems were discussed. The ability of the VUI
to recognize commands that did not match the predesigned
list of grounded commands was demonstrated as well as its
robustness to noise.

The VUI developed for this project is a simple foundation
that functions to replace the robots’ control method with the
feature that is more intuitively understandable. It offers an
advantage in ease of use in exchange for greater response
time to commands and less fine control over movement. In
future projects the methods used in the VUI will be expanded
to include semantic similarity analysis, rule-based clause
segmentation, increased command parameter granularity as
well as more commands, and intermediate task intuition.
Efforts will also be made to address the robot response time
delay in order to bring it more inline with the voice controlled
robot responses.
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