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a b s t r a c t

This paper considers a novel multi-agent linear stochastic approximation algorithm driven by Marko-
vian noise and general consensus-type interaction, in which each agent evolves according to its
local stochastic approximation process which depends on the information from its neighbors. The
interconnection structure among the agents is described by a time-varying directed graph. While the
convergence of consensus-based stochastic approximation algorithms when the interconnection among
the agents is described by doubly stochastic matrices (at least in expectation) has been studied, less
is known about the case when the interconnection matrix is simply stochastic. For any uniformly
strongly connected graph sequences whose associated interaction matrices are stochastic, the paper
derives finite-time bounds on the mean-square error, defined as the deviation of the output of the
algorithm from the unique equilibrium point of the associated ordinary differential equation. For the
case of interconnection matrices being stochastic, the equilibrium point can be any unspecified convex
combination of the local equilibria of all the agents in the absence of communication. Both the cases
with constant and time-varying step-sizes are considered. In the case when the convex combination
is required to be a straight average and interaction between any pair of neighboring agents may be
uni-directional, so that doubly stochastic matrices cannot be implemented in a distributed manner,
the paper proposes a push-sum-type distributed stochastic approximation algorithm and provides its
finite-time bound for the time-varying step-size case by leveraging the analysis for the consensus-
type algorithm with stochastic matrices and developing novel properties of the push-sum algorithm.
Distributed temporal difference learning is discussed as an illustrative application.

© 2023 Elsevier Ltd. All rights reserved.
1. Introduction

The use of reinforcement learning (RL) to obtain policies that
escribe solutions to a Markov decision process (MDP) in which
n autonomous agent interacting with an unknown environment
ims to optimize its long term reward is now standard (Sut-
on & Barto, 2018). Multi-agent RL is useful when a team of
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revised form by Associate Editor Giacomo Como under the direction of Editor
Christos G. Cassandras.

✩ The work of Y. Lin and J. Liu was supported in part by the National
cience Foundation under Grant No. 2230101 and by the Air Force Office
f Scientific Research under award number FA9550-23-1-0175. The work of
. Gupta was supported in part by ARO W911NF2310111, W911NF2310266, and
911NF-23-1-0316, AFOSR F.10052139.02.005, and ONR F.10052139.02.009.
∗ Corresponding author.

E-mail addresses: yixuan.lin.1@stonybrook.edu (Y. Lin),
upta869@purdue.edu (V. Gupta), ji.liu@stonybrook.edu (J. Liu).
ttps://doi.org/10.1016/j.automatica.2023.111368
005-1098/© 2023 Elsevier Ltd. All rights reserved.
agents interacts with an unknown environment or system and
aims to collaboratively accomplish tasks involving distributed
decision-making.

Stochastic approximation is a family of model-free stochastic
algorithms tailored for seeing the extrema of unknown functions
via noisy observations only (Robbins & Monro, 1951). It is a key
tool for designing and analyzing RL algorithms, including tem-
poral difference (TD) learning as a special case (Sutton & Barto,
2018). Convergence study of stochastic approximation based on
ordinary differential equation (ODE) methods has a long his-
tory (Borkar & Meyn, 2000). Notable examples are Dayan (1992),
Tsitsiklis and Van Roy (1997) which prove asymptotic conver-
gence of TD(λ). Recently, finite-time performance of single-agent
stochastic approximation and TD algorithms has been studied
in Bhandari, Russo, and Singal (2018), Chen, Maguluri, Shakkot-
tai, and Shanmugam (2020), Dalal, Szörényi, Thoppe, and Man-
nor (2018), Gupta, Srikant, and Ying (2019), Lakshminarayanan
and Szepesvari (2018), Ma, Zhou, and Zou (2020), Srikant and
Ying (2019), Wang, Chen, Liu, Ma, and Liu (2017), Xu, Zou, and
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iang (2019); many other works have now appeared that perform
inite-time analysis for other RL algorithms, see, e.g., Borkar and
attathil (2018), Chen, Devraj, Bušić, and Meyn (2020), Dalal,
hoppe, Szörényi, and Mannor (2018), Ma, Chen, Zhou, and Zou
2021), Qu and Wierman (2020), Wang, Li, and Giannakis (2019),
ang and Zou (2020), Weng, Gupta, He, Ying, and Srikant (2020),
u, Zhang, Xu, and Gu (2020), Xu and Gu (2020), Zou, Xu,

nd Liang (2019), just to name a few. Many distributed multi-
gent RL algorithms have been proposed in the literature (Zhang,
ang, & Başar, 2021). In this setting, each agent can receive
nformation only from its neighbors, and no single agent can
olve the problem alone or by ‘taking the lead’. Many works
ave analyzed asymptotic convergence of such RL algorithms
sing ODE methods (Lin et al., 2019; Suttle et al., 2020; Zhang,
ang, & Başar, 2018; Zhang, Yang, Liu, Zhang, & Başar, 2018;
hang & Zavlanos, 2019). This can be viewed as an application
f ideas from distributed stochastic approximation (Bianchi, Fort,
Hachem, 2013; Huang, 2012; Kushner & Yin, 1987; Stanković,

lić, & Stanković, 2016; Stanković & Stanković, 2016; Stanković,
tanković, & Stipanović, 2010). Finite-time performance guaran-
ees for distributed RL have also been provided in works, most
otably in Doan, Maguluri, and Romberg (2019, 2021), Sun, Wang,
iannakis, Yang, and Yang (2020), Wang, Lu, Giannakis, Tesauro,
nd Sun (2020), Zeng, Doan, and Romberg (2020), Zhang, Yang,
iu, Zhang, and Başar (2021).
The assumption that is the central concern of this paper and

s made in all the existing finite-time analyses for distributed RL
lgorithms is that the consensus interaction is characterized by
oubly stochastic matrices (Doan et al., 2019, 2021; Sun et al.,
020; Wang et al., 2020; Zeng et al., 2020; Zhang, Yang, Liu,
t al., 2021) at every time step, or at least in expectation (Bianchi
t al., 2013). In a realistic network, especially with mobile agents
uch as autonomous vehicles, drones, or robots, uni-directional
ommunication is inevitable due to various reasons such as asym-
etric communication and privacy constraints, non-zero com-
unication failure probability between any two agents at any
iven time, and application of resilient consensus in the presence
f adversary attacks (LeBlanc, Zhang, Koutsoukos, & Sundaram,
013; Vaidya, Tseng, & Liang, 2012), all leading to an inter-
ction among the agents characterized by a stochastic matrix,
hich may further be time-varying. The problem of design of
istributed RL algorithms with time-varying stochastic matrices
nd characterizing either their asymptotic convergence or finite
ime analysis remains open. Technical challenges in removing the
ssumption of doubly stochastic matrices are discussed in detail
n Lin, Gupta, and Liu 2021, Section 1.

We propose a novel consensus-based distributed linear sto-
hastic approximation algorithm driven by Markovian noise in
hich each agent evolves according to its local stochastic ap-
roximation process and the information from its neighbors. We
ssume only a (possibly time-varying) stochastic matrix being
sed during the consensus phase, which is a more practical as-
umption when only unidirectional communication is possible
mong agents. We establish both convergence guarantees and
inite-time bounds on the mean-square error, defined as the devi-
tion of the output of the algorithm from the unique equilibrium
oint of the associated ordinary differential equation. The equilib-
ium point can be an ‘‘uncontrollable’’ convex combination of the
ocal equilibria of all the agents in the absence of communication.
e consider both the cases of constant and time-varying step-

izes. Our results subsume the existing results on convergence
nd finite-time analysis of distributed RL algorithms that assume
oubly stochastic matrices and bi-directional communication as
pecial cases. In the case when the convex combination is re-
uired to be a straight average and interaction between any

air of neighboring agents may be uni-directional, we propose i

2

push-type distributed stochastic approximation algorithm and
stablish its finite-time performance bound. It is worth empha-
izing that it is straightforward to extend our algorithm from the
traight average point to any pre-specified convex combination.
ince it is well known that TD algorithms can be viewed as a spe-
ial case of linear stochastic approximation (Tsitsiklis & Van Roy,
997), our distributed linear stochastic approximation algorithms
nd their finite-time bounds can be applied to TD algorithms in
straightforward manner.
Notation We use Xt to represent that a variable X is time-

ependent and t ∈ {0, 1, 2, . . .} is the discrete time index. The ith
ntry of a vector x will be denoted by xi and, also, by (x)i when
onvenient. The ijth entry of a matrix A will be denoted by aij and,
lso, by (A)ij when convenient. We use 1n to denote the vectors
n Rn whose entries all equal to 1’s, and I to denote the identity
atrix, whose dimension is to be understood from the context.
iven a set S with finitely many elements, we use |S| to denote
he cardinality of S . We use ⌈·⌉ to denote the ceiling function.

A vector is called a stochastic vector if its entries are nonneg-
tive and sum to one. A square nonnegative matrix is called a
ow stochastic matrix, or simply stochastic matrix, if its row sums
ll equal one. Similarly, a square nonnegative matrix is called
column stochastic matrix if its column sums all equal one. A

quare nonnegative matrix is called a doubly stochastic matrix if
ts row sums and column sums all equal one. The graph of an
× n matrix is a direct graph with n vertices and a directed
dge from vertex i to vertex j whenever the ji-th entry of the
atrix is nonzero. A directed graph is strongly connected if it has
directed path from any vertex to any other vertex. For a strongly
onnected graph G, the distance from vertex i to another vertex j
s the length of the shortest directed path from i to j; the longest
istance among all ordered pairs of distinct vertices i and j in G
s called the diameter of G.

. Distributed linear stochastic approximation

The stochastic approximation is a method for approximat-
ng the solution of an optimization problem when the objective
unction is not known, but where only noisy observations are
vailable (Kushner & Yin, 1997). The linear stochastic approxima-
ion is a specific form of stochastic approximation that is used to
olve linear regression problems with stochastic noise.
Consider a network consisting of N agents. For the purpose of

resentation, we label the agents from 1 through N . The agents
re not aware of such a global labeling, but can differentiate
etween their neighbors. The neighbor relations among the N
gents are characterized by a time-dependent directed graph
t = (V, Et ) whose vertices correspond to agents and whose
irected edges (or arcs) depict neighbor relations, where V =

1, . . . ,N} is the vertex set and Et = V × V is the edge set at
ime t . Specifically, agent j is an in-neighbor of agent i at time t
f (j, i) ∈ Et , and similarly, agent k is an out-neighbor of agent i at
ime t if (i, k) ∈ Et . Each agent can send information to its out-
eighbors and receive information from its in-neighbors. Thus,
he directions of edges represent the directions of information
low. For convenience, we assume that each agent is always an
n- and out-neighbor of itself, which implies that Gt has self-arcs
t all vertices for all time t . We use N i

t and N i−
t to denote the in-

nd out-neighbor set of agent i at time t , respectively, i.e.,
i
t = {j ∈ V : (j, i) ∈ Et}, N i−

t = {k ∈ V : (i, k) ∈ Et}.

t is clear that N i
t and N i−

t are nonempty as they both contain
ndex i.

We propose the following distributed linear stochastic approx-
mation over a time-varying neighbor graph sequence {G }. Each
t
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gent i ∈ V has control over a random vector θ i
t ∈ Rd for any

∈ {0, 1, 2, . . .}, which is updated by

i
t+1 =

∑
j∈N i

t

w
ij
t θ

j
t + αt

(
A(Xt )

∑
j∈N i

t

w
ij
t θ

j
t + bi(Xt )

)
, (1)

where w
ij
t are consensus weights, αt is the step-size at time t ,

A(Xt ) ∈ Rd×d is a random matrix and bi(Xt ) ∈ Rd is a random
vector, both generated based on the Markov chain {Xt} with
state spaces X . It is worth noting that the update (1) of each
gent only uses its own and in-neighbors’ information and thus
s distributed.

emark 1. The work of Kushner and Yin (1987) considers a
ifferent consensus-based networked linear stochastic approxi-
ation for any i ∈ V, t ∈ {0, 1, 2, . . .} as follows:
i
t+1 =

∑
j∈N i

t

w
ij
t θ

j
t + αt

(
A(Xt )θ i

t + bi(Xt )
)
, (2)

hose state form is Θt+1 = WtΘt + αtΘtA(Xt )⊤ + αtB(Xt ), and
ainly focuses on asymptotically weakly convergence for the

ixed step-size case (i.e., αt = α for all t). Under the similar set
f conditions, with its condition (C3.4’) being a stochastic analogy
or Assumption 6, Theorem 3.1 in Kushner and Yin (1987) shows
hat (2) has a limit which can be verified to be the same as θ∗,
he limit of (1). How to apply the finite-time analysis tools in
his paper to (2) has so far eluded us. The two updates (1) and
2) are analogous to the ‘‘combine-then-adapt’’ and ‘‘adapt-then-
ombine’’ diffusion strategies in distributed optimization (Chen &
ayed, 2012). □

We impose the following assumption on the weights w
ij
t which

as been widely adopted in consensus literature (Jadbabaie, Lin,
Morse, 2003; Nedić & Liu, 2017; Olfati-Saber, Fax, & Murray,

007).

ssumption 1. There exists a constant β > 0 such that for all
, j ∈ V and t , w

ij
t ≥ β whenever j ∈ N i

t . For all i ∈ V and t ,

j∈N i
t
w

ij
t = 1.

Let Wt be the N × N matrix whose ijth entry equals w
ij
t if

∈ N i
t and zero otherwise. From Assumption 1, each Wt is a

tochastic matrix that is compliant with the neighbor graph Gt .
ince each agent i is always assumed to be an in-neighbor of
tself, all diagonal entries of Wt are positive. Thus, if Gt is strongly
onnected, Wt is irreducible and aperiodic. To proceed, define

t =

⎡⎢⎣ (θ1
t )

⊤

...

(θN
t )⊤

⎤⎥⎦ , B(Xt ) =

⎡⎢⎣ (b1(Xt ))⊤
...

(bN (Xt ))⊤

⎤⎥⎦ .

hen, the N linear stochastic recursions in (1) for any t ∈

0, 1, 2, . . .} can be combined and written as

t+1 = WtΘt + αtWtΘtA(Xt )⊤ + αtB(Xt ). (3)

he goal of this section is to characterize the finite-time perfor-
ance of (1), or equivalently (3), with the following standard
ssumptions, which were adopted e.g. in Doan et al. (2019),
rikant and Ying (2019).

ssumption 2. There exists a matrix A and vectors bi, i ∈ V ,
uch that

lim
→∞

E[A(Xt )] = A, lim
t→∞

E[bi(Xt )] = bi, i ∈ V.

efine bmax = maxi∈V supx∈X ∥bi(x)∥2 < ∞ and Amax = supx∈X
A(x)∥ < ∞. Then, ∥A∥ ≤ A and ∥bi∥ ≤ b , i ∈ V .
2 2 max 2 max

3

ssumption 3. Given a positive constant α, we use τ (α) to
enote the mixing time of the Markov chain {Xt} for which

∥E[A(Xt )− A|X0 = X]∥2 ≤ α, ∀X, ∀t ≥ τ (α),

∥E[bi(Xt )− bi|X0 = X]∥2 ≤ α, ∀X, ∀t ≥ τ (α), ∀i ∈ V.

he Markov chain {Xt} mixes at a geometric rate, i.e., there exists
constant C such that τ (α) ≤ −C logα.

ssumption 4. All eigenvalues of A have strictly negative real
arts, i.e., A is a Hurwitz matrix. Then, there exists a symmet-
ic positive definite matrix P , such that A⊤P + PA = −I . Let
max and γmin be the maximum and minimum eigenvalues of P ,
espectively.

ssumption 5. The step-size sequence {αt} is positive, non-
ncreasing, and satisfies

∑
∞

t=0 αt = ∞ and
∑

∞

t=0 α2
t < ∞.

To state our first main result, we need the following concepts.

efinition 1. A graph sequence {Gt} is uniformly strongly con-
ected if there exists a positive integer L such that for any t ≥

, the union graph ∪
t+L−1
k=t Gk is strongly connected. If such an

nteger exists, we sometimes say that {Gt} is uniformly strongly
onnected by sub-sequences of length L.

emark 2. Two popular joint connectivity definitions in consen-
us literature are ‘‘B-connected’’ (Nedić, Olshevsky, Ozdaglar, &
sitsiklis, 2009) and ‘‘repeatedly jointly strongly connected’’ (Cao,
orse, & Anderson, 2008). A graph sequence {Gt} is B-connected

f there exists a positive integer B such that the union graph
(k+1)B−1
t=kB Gt is strongly connected for each integer k ≥ 0. Al-
hough the uniformly strongly connectedness looks more restric-
ive compared with B-connectedness at first glance, they are in
act equivalent. To see this, first it is easy to see that if {Gt} is
niformly strongly connected, {Gt} must be B-connected; now
upposing {Gt} is B-connected, for any fix t , the union graph
t+2B−1
k=t Gk must be strongly connected, and thus {Gt} is uni-
ormly strongly connected by sub-sequences of length 2B. Thus,
he two definitions are equivalent. It is also not hard to show
hat the uniformly strongly connectedness is equivalent to ‘‘re-
eatedly jointly strongly connectedness’’ provided the directed
raphs under consideration all have self-arcs at all vertices, with
‘repeatedly jointly strongly connectedness’’ being defined upon
‘graph composition’’ (Cao et al., 2008). □

efinition 2. Let {Wt} be a sequence of stochastic matrices.
sequence of stochastic vectors {πt} is an absolute probability

equence for {Wt} if π⊤
t = π⊤

t+1Wt for all t .

This definition was first introduced by Kolmogorov who proved
hat every sequence of stochastic matrices has an absolute prob-
bility sequence (Kolmogoroff, 1936). An alternative proof of this
act was given by Blackwell (1945). In general, a sequence of
tochastic matrices may have more than one absolute probability
equence; when the sequence of stochastic matrices is ‘‘ergodic’’,
t has a unique absolute probability sequence (Nedić & Liu, 2017).
t is easy to see that when Wt is a fixed irreducible stochastic
atrix W , πt is simply the normalized left eigenvector of W for
igenvalue one. More can be said.

emma 1 (Lemma 5.8 in Touri (2012)). Suppose that Assumption 1
olds. If {Gt} is uniformly strongly connected, then there exists a
nique absolute probability sequence {πt} for the matrix sequence
Wt} and a constant πmin ∈ (0, 1) such that π i

t ≥ πmin for all i
nd t.
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Let ⟨θ⟩t =
∑N

i=1 π i
tθ

i
t , which is a column vector and convex

combination of all θ i
t . It is easy to see that ⟨θ⟩t = (π⊤

t Θt )⊤ =

Θ⊤
t πt . From Definition 2 and (3), we have π⊤

t+1Θt+1 = π⊤

t+1WtΘt+

αtπ
⊤

t+1WtΘtA(Xt )⊤ + αtπ
⊤

t+1B(Xt ) = π⊤
t Θt + αtπ

⊤
t ΘtA(Xt )⊤ +

tπ
⊤

t+1B(Xt ), which implies that

θ⟩t+1 = ⟨θ⟩t + αtA(Xt )⟨θ⟩t + αtB(Xt )⊤πt+1. (4)

Asymptotic performance of (1) with any uniformly strongly
onnected neighbor graph sequence is characterized by the fol-
owing two theorems.

heorem 1. Suppose that Assumption 1, 2 and 5 hold. Let {θ i
t },

∈ V , be generated by (1). If {Gt} is uniformly strongly connected,
hen limt→∞ ∥θ i

t − ⟨θ⟩t∥2 = 0 for all i ∈ V .

Theorem 1 only shows that all the sequences {θ i
t }, i ∈ V ,

generated by (1) will finally reach a consensus, but not necessarily
onvergent or bounded. To guarantee the convergence of the
equences, we further need the following assumption, whose
alidity is discussed in Remark 3.

ssumption 6. The absolute probability sequence {πt} for the
tochastic matrix sequence {Wt} has a limit, i.e., there exists a
tochastic vector π∞ such that limt→∞ πt = π∞.

heorem 2. Suppose that Assumptions 1–6 hold. Let {θ i
t }, i ∈ V ,

e generated by (1) and θ∗ be the unique equilibrium point of the
DE

˙ = Aθ + b, b =

N∑
i=1

π i
∞
bi, (5)

here A and bi are defined in Assumption 2 and π∞ is defined in
ssumption 6. If {Gt} is uniformly strongly connected, then all θ i

t
ill converge to θ∗ both with probability 1 and in mean square.

emark 3. Though Assumption 6 may look restrictive at first
lance, simple simulations show that the sequences {θ i

t }, i ∈

, do not converge if the assumption does not hold (e.g., even
hen Wt changes periodically). It is worth emphasizing that the
xistence of π∞ does not imply the existence of limt→∞ Wt ,
hough the converse is true. Indeed, the assumption subsumes
arious cases including (a) all Wt are doubly stochastic matrices,
nd (b) all Wt share the same left eigenvector for eigenvalue
, which may arise from the scenario when the number of in-
eighbors of each agent does not change over time (Olshevsky
Tsitsiklis, 2013). An important implication of Assumption 6

s when the consensus interaction among the agents, charac-
erized by {Wt}, is replaced by resilient consensus algorithms
uch as LeBlanc et al. (2013), Vaidya et al. (2012) in order to
ttenuate the effect of unknown malicious agents, the resulting
ynamics of non-malicious agents, in general, will not converge,
ecause the resulting interaction stochastic matrices among the
on-malicious agents depend on the state values transmitted
y the malicious agents, which can be arbitrary, and thus the
esulting stochastic matrix sequence, in general, does not have a
onvergent absolute probability sequence; of course, in this case,
he trajectories of all the non-malicious agents will still reach a
onsensus as long as the step-size is diminishing, as implied by
heorem 1. Further discussion on Assumption 6 can be found in
ppendix B. □

We now study the finite-time performance of the proposed
istributed linear stochastic approximation (1) for both fixed
nd time-varying step-size cases. Its finite-time performance is
haracterized by the following theorem.
Let ηt = ∥πt − π∞∥2 for all t ≥ 0. From Assumption 6, ηt
onverges to zero as t → ∞.

4

heorem 3. Let the sequences {θ i
t }, i ∈ V , be generated by (1).

uppose that Assumptions 1–4, 6 hold and {Gt} is uniformly strongly
onnected by sub-sequences of length L. Let qt and mt be the unique
nteger quotient and remainder of t divided by L, respectively. Let δt
e the diameter of ∪t+L−1

k=t Gk, δmax = maxt≥0 δt , and

=

(
1+

2bmax

Amax
−

πminβ
2L

2δmax

)
(1+ αAmax)2L

−
2bmax

Amax
(1+ αAmax)L, (6)

where 0 < α < min{K1,
log 2

Amaxτ (α)
, 0.1

K2γmax
}.

(1) Fixed step-size: Let αt = α for all t ≥ 0. For all t ≥ T1,
N∑
i=1

π i
tE

[θ i
t − θ∗

2
2

]
≤ 2ϵqt

N∑
i=1

π i
mt
E
[θ i

mt
− ⟨θ⟩mt

2
2

]
+ C1

(
1−

0.9α
γmax

)t−T1

+ C2 +
γmax

γmin
2αζ4

t−T1∑
k=0

ηt+1−k

(
1−

0.9α
γmax

)k

. (7)

(2) Time-varying step-size: Let αt =
α0
t+1 with α0 ≥

γmax
0.9 . For

all t ≥ LT2,
N∑
i=1

π i
tE

[θ i
t − θ∗

2
2

]
≤ 2ϵqt−T2

N∑
i=1

π i
LT2+mt

E
[θ i

LT2+mt
− ⟨θ⟩LT2+mt

2

2

]
+ C3

(
α0ϵ

qt−1
2 + α

⌈
qt−1
2 ⌉L

)
+

1
t

(
C4 log2

( t
α0

)
+ C5

t∑
k=LT2

ηk + C6

)
. (8)

Here T1, T2, K1, K2, C1−C6 are finite constants whose definitions
re given in Appendix A.1.

Since π i
t is uniformly bounded below by πmin ∈ (0, 1) from

emma 1, it is easy to see that the above bound holds for each
ndividual E[∥θ i

t − θ∗
∥
2
2]. To better understand the theorem, we

rovide the following remark.

emark 4. In Appendix D.2.1, we show that both ϵ and (1− 0.9α
γmax

)
lie in the interval (0, 1). It is easy to show that ϵ is monotonically
increasing for δmax and L, monotonically decreasing for β and
πmin. Also,

lim
t→∞

t−T1∑
k=0

ηt+1−k

(
1−

0.9α
γmax

)k

= lim
t→∞

⌊
t−T1
2 ⌋∑

l=0

ηT1+1+l

(
1−

0.9α
γmax

)t−T1−l

+

t−T1∑
l=⌈

t−T1
2 ⌉

ηT1+1+l

(
1−

0.9α
γmax

)t−T1−l

≤ lim
t→∞

γmax

0.9α

((
1−

0.9α
γmax

) t−T1
2

max
l=0,...,⌈ t−T1

2 ⌉

ηT1+1+l

+ max
l=⌈

t−T1
2 ⌉,...,t−T1+1

ηl

)
= 0.
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Therefore, the summands in the finite-time bound (7) for
he fixed step-size case are exponentially decaying except for
he constant C2, which implies that lim supt→∞

∑N
i=1 π i

tE[∥θ i
t −

θ∗
∥
2
2] ≤ C2, providing a constant limiting bound. From

Appendix A, C2 is monotonically increasing for γmax, δmax, bmax
and L, and monotonically decreasing for γmin, πmin and β . In
Appendix D.2.2, we show that limt→∞

1
t

∑t
k=1 ηk = 0, which

mplies that the finite-time bound (8) for the time-varying step-
ize case converges to zero as t → ∞. We next comment on
.1 in the inequality defining α. Actually, we can replace 0.1
ith any constant c ∈ (0, 1), which will affect the value of ϵ
nd the feasible set of α, with the latter becoming 0 < α <
in{K1,

log 2
Amaxτ (α)

, c
K2γmax

}. Thus, the smaller the value of c is, the
smaller is the feasible set of α, though the feasible set is always
nonempty. For convenience, we simply pick c = 0.1 in this paper;
that is why we also have 0.9 in (7). Lastly, we comment on α0
in the time-varying step-size case. We set α0 ≥

γmax
0.9 for the

purpose of getting a cleaner expression of the finite-time bound.
For α0 <

γmax
0.9 , our approach still works, but will yield a more

omplicated expression. The same is true for Theorem 5. □

echnical Challenge and Proof Sketch As described in the
ntroduction, the key challenge of analyzing the finite-time per-
ormance of the distributed stochastic approximation (1) lies
in the condition that the consensus-based interaction matrix is
time-varying and stochastic (not necessarily doubly stochastic).
To tackle this, we appeal to the absolute probability sequence
πt of the time-varying interaction matrix sequence and intro-
duce the quadratic Lyapunov comparison function

∑N
i=1 π i

tE[∥θ i
t−

∗
∥
2
2]. Then, using the inequality

∑N
i=1 π i

tE[∥θ i
t − θ∗

∥
2
2] ≤ 2

∑N
i=1

i
tE[∥θ i

t − ⟨θ⟩t∥
2
2] + 2E[∥⟨θ⟩t − θ∗

∥
2
2], the next step is to find

he finite-time bounds of
∑N

i=1 π i
tE[∥θ i

t − ⟨θ⟩t∥
2
2] (Lemmas 4, 7)

nd E[∥⟨θ⟩t − θ∗
∥
2
2] (Lemmas 5, 8), respectively. The latter term

s essentially the ‘‘single-agent’’ mean-square error. Our main
nalysis contribution here is to bound the former term for both
ixed and time-varying step-size cases.

. Push-SA

The preceding section shows that the limiting state of
onsensus-based distributed stochastic approximation depends
n π∞, which leads to a convex combination of the local equi-
ibria of all the agents in the absence of communication, but
he convex combination is in general ‘‘uncontrollable’’. Note that
his convex combination will correspond to a convex combina-
ion of the network-wise accumulative rewards in applications
uch as distributed TD learning. In an important case when the
onvex combination is desired to be the straight average, the
xisting literature e.g. Doan et al. (2019, 2021) relies on doubly
tochastic matrices whose corresponding π∞ = (1/N)1N . As
entioned in the introduction, doubly stochastic matrices im-
licitly require bi-directional communication between any pair of
eighboring agents; see e.g. gossiping (Boyd, Ghosh, Prabhakar,
Shah, 2006; Liu, Mou, Morse, Anderson, & Yu, 2011) and

he Metropolis algorithm (Xiao, Boyd, & Lall, 2005). A popular
ethod to achieve the straight average target while allowing uni-
irectional communication between neighboring agents is to ap-
eal to the idea so-called ‘‘push-sum’’ (Kempe, Dobra, & Gehrke,
003), which was tailored for solving the distributed averaging
roblem over directed graphs and has been applied to distributed
ptimization (Nedić & Olshevsky, 2015). In this section, we will
ropose a push-based distributed stochastic approximation algo-
ithm tailored for uni-directional communication and establish its
inite-time error bound.

Each agent i has control over three variables, namely yit , θ̃ i
t

nd θ i, in which yi is scalar-valued with initial value 1, θ̃ i can be
t t t

5

rbitrarily initialized, and θ i
0 = θ̃ i

0. At each time t ≥ 0, each agent
sends its weighted current values ŵ

ji
t yit and ŵ

ji
t (θ̃ i

t + αtA(Xt )θt +
tbi(Xt )) to each of its current out-neighbors j ∈ N i−

t , and updates
its variables as follows:⎧⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎩

yit+1 =
∑
j∈N i

t

ŵ
ij
t y

j
t , yi0 = 1,

θ̃ i
t+1 =

∑
j∈N i

t

ŵ
ij
t

[
θ̃
j
t + αt

(
A(Xt )θ

j
t + bj(Xt )

)]
,

θ i
t+1 =

θ̃ it+1
yit+1

, θ i
0 = θ̃ i

0,

(9)

where ŵ
ij
t = 1/|N j−

t |. It is worth noting that the algorithm is
distributed yet requires that each agent be aware of the number
of its out-neighbors.

Asymptotic performance of (9) with any uniformly strongly
connected neighbor graph sequence is characterized by the fol-
lowing theorem.

Theorem 4. Suppose that Assumptions 2–5 hold. Let {θ i
t }, i ∈ V ,

be generated by (9) and θ∗
∈ Rd be the unique equilibrium point

of the ODE

θ̇ = Aθ +
1
N

N∑
i=1

bi, (10)

where A and bi are defined in Assumption 2. If {Gt} is uniformly
strongly connected, then θ i

t will converge to θ∗ in mean square for
all i ∈ V .

In this section, we define ⟨θ̃⟩t =
1
N

∑N
i=1 θ̃ i

t and ⟨θ⟩t =

1
N

∑N
i=1 θ i

t . To help understand these definitions, let Ŵt be the
× N matrix whose ij-th entry equals ŵ

ij
t if j ∈ N i

t , otherwise
quals zero. It is easy to see that each Ŵt is a column stochastic
atrix whose diagonal entries are all positive. Then, πt =

1
N 1N

or all t ≥ 0 can be regarded as an absolute probability sequence
f {Ŵt}. Thus, the above two definitions are intuitively consistent
ith ⟨θ⟩t in the previous section.
Finite-time performance of (9) with any uniformly strongly

connected neighbor graph sequence is characterized by the fol-
lowing theorem.

Let µt = ∥A(Xt )(⟨θ⟩t −⟨θ̃⟩t )∥2. In Appendix D.3, we show that
∥⟨θ⟩t − ⟨θ̃⟩t∥2 converges to zero as t → ∞, so does µt .

Theorem 5. Suppose that Assumptions 2–4 hold and {Gt} is uni-
formly strongly connected by sub-sequences of length L. Let {θ i

t },
i ∈ V , be generated by (9) with αt =

α0
t+1 and α0 ≥

γmax
0.9 . Then,

here exists a nonnegative ϵ̄ ≤ (1− 1
NNL )

1
L such that for all t ≥ T̄ ,

N∑
i=1

E
[θ i

t+1 − θ∗
2
2

]
≤ C7ϵ̄

t
+ C8

(
α0ϵ̄

t
2 + α

⌈
t
2 ⌉

)
+ C9αt

+
1
t

(
C10 log2

( t
α0

)
+ C11

t∑
k=T̄

µk + C12

)
, (11)

here T̄ and C7−C12 are finite constants whose definitions are given
n Appendix A.2.

In Appendix D.3, we show that limt→∞
1
t

∑t
k=1 µk = 0, which

implies that the finite-time bound (11) converges to zero as t →
∞. It is worth mentioning that the theorem does not consider the
fixed step-size case, as our current analysis approach cannot be
directly applied for this case.
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roof Sketch and Technical Challenge Using the inequality for
ny i

[∥θ i
t+1 − θ∗

∥
2
2] ≤ 2E[∥θ i

t+1 − ⟨θ̃⟩t∥
2
2] + 2E[∥⟨θ̃⟩t − θ∗

∥
2
2],

our goal is to derive the finite-time bounds of E[∥θ i
t+1 − ⟨θ̃⟩t∥

2
2]

(Lemma 12) and E[∥⟨θ̃⟩t − θ∗
∥
2
2] (Lemma 14), respectively.

Although this looks similar to the proof of Theorem 3, the deriva-
tion is quite different. First, the iteration of ⟨θ̃⟩t is a single-agent
stochastic approximation (SA) plus a disturbance term ⟨θ⟩t−⟨θ̃⟩t ,
so we cannot directly apply the existing single-agent SA finite-
time analyses to bound E[∥⟨θ̃⟩t − θ∗

∥
2
2]; instead, we have to

show that ⟨θ⟩t − ⟨θ̃⟩t will diminish and quantify the diminishing
‘‘speed’’. Second, both the proof of showing diminishing ⟨θ⟩t−⟨θ̃⟩t
and derivation of bounding

∑N
i=1 E[∥θ

i
t+1 − ⟨θ̃⟩t∥

2
2] involve a key

challenge: to prove the sequence {θ i
t } generated from the Push-

SA (9) is bounded almost surely (Lemma 11). To tackle this, we
introduce a novel way to constructing an absolute probability se-
quence for the Push-SA as follows. From (9), θ i

t+1 =
∑N

j=1 w̃
ij
t [θ

j
t+

αtA(Xt )
θ
j
t

yjt
+ αt

bj(Xt )
yjt

], where w̃
ij
t = (ŵij

t y
j
t )/(

∑N
k=1 ŵik

t y
k
t ). We show

hat each matrix W̃t = [w̃
ij
t ] is stochastic, and there exists

unique absolute probability sequence {π̃t} for the matrix se-
uence {W̃t} such that π̃ i

t ≥ π̃min for all i ∈ V and t ≥ 0,
ith the constant π̃min ∈ (0, 1). Most importantly, we show
wo critical properties of {W̃t} and {π̃t} in Lemma 10, namely
limt→∞(Π t

s=0W̃s) =
1
N 1N1⊤N and π̃ i

t
yit

=
1
N for all i, j ∈ V and

≥ 0, which have never been reported in the literature though
ush-sum-based distributed algorithms have been extensively
tudied.

emark 5. It is worth mentioning that the approach for analyzing
ush-SA here can be leveraged to establish a better convergence
ate for the subgradient-push algorithm proposed in Nedić and
lshevsky (2015); see a much more comprehensive development
f the novel push-sum based analysis tool and its application in
nalyzing subgradient-push in Lin and Liu (2022). □

. Concluding remarks

In this paper, we have established both asymptotic and non-
symptotic analyses for a consensus-based distributed linear
tochastic approximation algorithm over uniformly strongly con-
ected graphs, and proposed a push-based variant for coping
ith uni-directional communication. Both algorithms and their
nalyses can be directly applied to TD learning. One limitation of
ur finite-time bounds is that they involve quite a few constants
hich are well defined and characterized but whose values are
ot easy to compute. Future directions include leveraging the
nalyses for resilience in the presence of malicious agents and
xtending the tools to more complicated RL.

ppendix A. List of constants

In this appendix, we list all the constants used in our main
esults, Theorems 3 and 5. They are finite and their expressions
o not affect the understanding of the theorems. Since their
xpressions are quite long and complicated, we begin with the
ollowing set of constants, based on which we will be able to
resent the constants used in the theorems and the proofs of
he theorems in an easier way. We hope that this way can also
elp the readers to better understand and follow our results and
nalyses.
The first constant ζ1 is defined as follows. Recall that ϵ is given

n (6) as

=

(
1+

2bmax
−

πminβ
2L)

(1+ αAmax)2L
Amax 2δmax

6

−
2bmax

Amax
(1+ αAmax)L.

ζ1 is defined as the unique solution for which ϵ = 1 if α = ζ1.
he following remark shows why ζ1 uniquely exists.

emark 6. From (6), it is easy to see that ϵ is monotonically in-
creasing for α > 0. Define the corresponding monotonic function
as

f (α) =
(
1+

2bmax

Amax
−

πminβ
2L

2δmax

)
(1+ αAmax)2L

−
2bmax

Amax
(1+ αAmax)L.

ote that 0 < f (0) < 1 and f (+∞) = +∞. Thus, f (α) = 1 has a
nique solution ζ1. □

The other constants are defined as follows:

2 =
4b2max

A2
max

[
(1+ αAmax)L − 1

]2
+2bmax

(1+ αAmax)L − 1
Amax

(1+αAmax)L

(A.1)

ζ3 =
(
144+ 4A2

max + 912τ (α)A2
max + 168τ (α)Amaxbmax

)
∥θ∗

∥
2
2

+ 2+ 2b2max + 4∥θ∗
∥
2
2 +

48b2max

A2
max

+ τ (α)A2
max

[
152

(
bmax

Amax
+ ∥θ∗

∥2

)2

+
48bmax

Amax

(
bmax

Amax
+ 1

)2

+
87b2max

A2
max

+
12bmax

Amax

]
(A.2)

ζ4 =
√
Nbmax

(
2+

12b2max

A2
max

+ 38∥θ∗
∥
2
2

)
(A.3)

ζ5 = 144+ 916A2
max + 168Amaxbmax (A.4)

ζ6 = 4b2maxαL
2(1+ αAmax)2L−2

+ 2bmaxL(1+ αAmax)2L−1 (A.5)

7 = (148+ 916A2
max + 168Amaxbmax)∥θ∗

∥
2
2 + 2+

48b2max

A2
max

+ 152
(
bmax + Amax∥θ

∗
∥2

)2

+ 12Amaxbmax

+ 89b2max + 48Amaxbmax

(
bmax

Amax
+ 1

)2

(A.6)

ζ8 = 144+ 916A2
max + 168Amaxbmax + 144Amaxµmax (A.7)

ζ9 = 2+ (4+ ζ8)∥θ∗
∥
2
2 + 48

(bmax + µmax)2

A2
max

+ 152
(
bmax + µmax + Amax∥θ

∗
∥2
)2

+ 12Amaxbmax

+ 48Amax(bmax + µmax)
(
bmax + µmax

Amax
+ 1

)2

+ 89(bmax + µmax)2 (A.8)

ere µmax = (N + 1)AmaxCθ , where Cθ is a finite number defined
in Lemma 11 which can be regarded as an upper bound of 2-norm
of each agent i’s state θ i

t generated by the Push-SA algorithm (9).

A.1. Constants used in Theorem 3

K1 = min
{
ζ1,

γmax

0.9

}
K = 144+ 4A2

+ 912τ (α)A2
+ 168τ (α)A b (A.9)
2 max max max max



Y. Lin, V. Gupta and J. Liu Automatica 159 (2024) 111368

T
t

L
t
t
i

α

R
i
−

a

t

T
τ

C

C1 =
γmax

γmin
(8 exp {2αAmaxT1} + 4) E

[
∥⟨θ⟩0 − θ∗

∥
2
2

]
+ 8

γmax

γmin
exp {2αAmaxT1}

(
∥θ∗

∥2 +
bmax

Amax

)2

C2 =
2ζ2
1− ϵ

+
γmax

γmin
·
2αζ3γmax

0.9

C3 =
2ζ6
1− ϵ

C4 = 2ζ7α0C
γmax

γmin

C5 = 2α0ζ4
γmax

γmin

C6 = 2LT2
γmax

γmin
E
[
∥⟨θ⟩LT2 − θ∗

∥
2
2

]
1 is any positive integer such that for all t ≥ T1, there hold
≥ τ (α) and 36

√
Nbmaxηt+1γmax + K2αγmax ≤ 0.1.

Remark 7. We show that T1 must exist. From 0 < α <

min{K1,
log 2

Amaxτ (α)
, 0.1

K2γmax
}, it is easy to see that the feasible set

of α is nonempty and K2αγmax < 0.1. Since limt→∞ ηt = 0 by
emma 6 and τ (α) ≤ −C logα by Assumption 3, there exists a
ime instant T ≥ −C logα such that for any t ≥ T , there hold
≥ τ (α) and ηt+1 ≤ (0.1 − K2αγmax)/(36

√
Nbmaxγmax), which

mplies that T1 must exist. □

T2 is any positive integer such that for all t ≥ LT2, there hold
t ≤ α, 2τ (αt ) ≤ t , τ (αt )αt−τ (αt ) ≤ min{ log 2

Amax
, 0.1

ζ5γmax
} and

ζ5αt−τ (αt )τ (αt )γmax + 36
√
Nbmaxηt+1γmax ≤ 0.1.

emark 8. We explain why T2 must exist. Since αt =
α0
t+1

s monotonically decreasing for t and τ (αt ) ≤ −C logαt =

C logα0+C log(t+1) from Assumption 3, there exists a positive
S1 such that for any t ≥ S1, we have αt ≤ α and t ≥ 2τ (αt ) for
ny constant 0 < α < min{K1,

log 2
Amaxτ (α)

, 0.1
K2γmax

}. Moreover, it is
easy to show that

lim
t→∞

t − τ (αt ) ≥ lim
t→∞

t + C logα0 − C log(t + 1)

= +∞,

lim
→∞

τ (αt )αt−τ (αt ) ≤ lim
t→∞

−Cα0 logα0 + Cα0 log(t + 1)
t − τ (αt )+ 1

= 0.

hen, there exists a positive S2 such that for any t ≥ S2, we have
(αt )αt−τ (αt ) ≤ min{ log 2

Amax
, 0.1

ζ5γmax
}. In addition, since limt→∞ ηt =

0 from Lemma 6, when τ (αt )αt−τ (αt ) ≤
0.1

ζ5γmax
, there exists a

positive S3 such that for any t ≥ S3, we have ηt+1 ≤ (0.1 −

ζ5αt−τ (αt )τ (αt )γmax)/(36
√
Nbmaxγmax). Thus, T2 must exist as we

can set T2 = max{S1, S2, S3}. □

A.2. Constants used in Theorem 5

C7 =
16
ϵ1

E
[ N∑

i=1

θ̃ i
0 + α0A(X0)θ̃ i

0 + α0bi(X0)

2

]
C8 =

16
ϵ1

·
AmaxCθ + bmax

1− ϵ̄

C9 = 2AmaxCθ + 2bmax

C10 = 2Nζ9α0C
γmax

γmin

11 = 2α0N
γmax

C12 = 2T̄N
γmax

γmin
E
[
∥⟨θ̃⟩T̄ − θ∗

∥
2
2

]
Here ϵ1 is a positive constant defi

ϵ1 = inf
t≥0

min
i∈V

(Ŵt · · · Ŵ01N )i.

From Corollary 2 (b) in Nedić and
that each Ŵt is column stochasti
for more details.

T̄ is any positive integer such
2τ (αt ) ≤ t , µt + τ (αt )αt−τ (αt )ζ

min{ log 2
Amax

, 0.1
ζ8γmax

}.

Remark 9. From Lemma 13, lim
similar arguments as in Remark
of T̄ . □

Appendix B. Discussion on Assu

We contend that Assumption 6
than the previously known case.

First, as mentioned in Remark
which satisfy Assumption 6, yet
the existing analysis tool, which
stochastic matrices. Case 1 is wh
of agents is unchanged over tim
behavioral interpretation in fish b
bio-inspired distributed algorithm
Case 2 is when the interaction m
time during an initial period, after
As we describe below, Case 2 oc
agent systems.

Case 1 is mathematically equiv
stochastic matrices share the sa
which subsumes doubly stochastic
it could be analyzed by carefully
may be different choices: one cho
quadratic Lyapunov comparison fu
the time-invariant case (i.e., π i

t do
leads to the weighted Frobenius n

The extension to Case 1 just de
but Case 2 is not. As we proved i
interaction matrix arbitrarily chan
riod, say of length T , and finally b
Case 1, all agents’ trajectories det
mean square. Also, recall that the
bounds in this case were derived
sequence’’ technique. Note that th
be applied to analyze (1) after tim
an analysis is undesirable, since th
for ‘‘finite’’ time.

It is important to note that Ca
for certain systems. Consider sc
do not function stably and thus
neighbors sporadically for a cert
varying stochastic matrix. Such s
there is unstable communication
or movement of agents (e.g., robo
into a new formation while cont
unstable period, which could be
enters a stable operation status.
finite-time analysis can be appl
matter how long the unstable pe
finite. In addition to this example
applied to certain scenarios in th
Suppose the system is aware tha
γmin

7

ned as

Olshevsky (2015) and the fact
c, ϵ1 ∈ [

1
NNL , 1]. See Lemma 12

that for all t ≥ T̄ , there hold
8 ≤

0.1
γmax

and τ (αt )αt−τ (αt ) ≤

t→∞ µt = 0. Then, using the
8, we can show the existence

mption 6

has more general applications

3, there are at least two cases
cannot be directly handled by
was developed only for doubly
en the number of in-neighbors
e. This case has an interesting
iology, and has been adopted in
design (Abaid & Porfiri, 2010).
atrix changes arbitrarily over
which it finally becomes fixed.

curs naturally in certain multi-

alent to the situation when all
me left dominant eigenvector,
matrices as a special case; thus
choosing a fixed norm. There

ice is to apply our time-varying
nction

∑N
i=1 π i

tE[∥θ i
t −θ∗

∥
2
2] to

es not change over time), which
orm defined in the appendix.
scribed may be straightforward,
n Theorems 2 and 3, when the
ges over time for an initial pe-
ecomes a fixed matrix or enters
ermined by (1) will converge in
corresponding finite-time error
using the ‘‘absolute probability
e existing techniques can only
e T ; when T is very large, such
e focus and challenge here are

se 2 provides a realistic model
enarios in which some agents
they communicate with their
ain period, leading to a time-
cenarios occur naturally when
due to environmental changes
ts or UAVs may need to move
inuing computation). After this
long, the whole system then
This satisfies Case 2 and our
ied to the whole process, no
riod could be, as long as it is
, Case 2 and our analysis can be
e presence of malicious agents.
t a small subset of agents have
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p
p
c
e

otentially been attacked and are thus behaving maliciously. To
rotect the system, the consensus interaction among the agents
an switch to resilient consensus algorithms such as LeBlanc
t al. (2013), Vaidya et al. (2012) in order to attenuate the effect

of malicious agents. In this situation, the resulting dynamics
of the non-malicious agents are in general characterized by a
time-varying stochastic matrix. After identifying and/or fixing the
malicious agents, which could be a very slow process, the system
can switch back to normal operation status. This example again
satisfies Case 2, and our analysis can be applied to the whole
procedure. As we mentioned in Remark 3, if some malicious
agents always exist, the non-malicious agents in general will not
converge, and thus a finite-time analysis is probably meaningless.
The non-convergence issue will be further explained in the next
subsection.

Appendix C. Distributed TD learning

In this section, we apply our distributed stochastic approxima-
tion finite-time analyses to distributed TD learning, as TD(λ) is a
special cases of stochastic approximation. To this end, we first
introduce the following multi-agent MDP tailored for distributed
TD.

The multi-agent MDP can be defined by a tuple (S, {U i
}i∈V ,

{Ri
}i∈V , P̄, γ , {Gt}t≥0). Here S = {1, . . . , S} is the finite set of S

states and U i is the set of control actions for agent i. For each
agent i, Ri

: S × U × S → R is the local reward function,
where U =

∏N
i=1 U

i is the joint control action space. In addition,
P̄ : S × U × S → [0, 1] denotes the state transition probability
matrix of the MDP, and γ ∈ (0, 1) is the discount factor. Given a
fixed policy, let P̄ be of size S × S for convenience, and thus its
ij-th entry p̄ij equals the probability from state i to state j under
the given policy. The multi-agent MDP then evolves as follows.
At each time t ≥ 0, each agent i observes the current state
st ∈ S , takes action ui

t = µi(st ) ∈ U i, and receive a corresponding
reward Ri(st , ut , st+1), where µi

: S → U i is a function mapping
a state to a control action in U i and ut =

∏N
i=1 u

i
∈ U . It

is worth emphasizing that in such a multi-agent setting, each
agent’s rewards and reward function are private information, and
thus cannot be shared with any other agents.

The discounted accumulative reward J : S → R associated
with the above multi-agent MDP is defined for each s ∈ S as

J(s) = E
[ ∞∑
t=0

γ t
∑
i∈V

c iRi(st , ut , st+1) | s0 = s
]
, (C.1)

which satisfies the Bellman equation (Sutton & Barto, 2018), i.e.,

J(s) =
S∑

s′=1

p̄ss
′
[∑
i∈V

c iRi(s, s′)+ γ J(s′)
]
, s ∈ S,

where c i > 0, i ∈ V , is a set of convex combination weights. The
existing distributed RL algorithms all set c i = 1/N for all i ∈ V
(e.g., Doan et al. 2019, Zhang, Yang, Liu, et al. 2018), and this is
why they require interaction matrices all be doubly stochastic.
We will show that c i = π i

∞
for all i ∈ V for general stochastic ma-

trix sequences. Since for any doubly stochastic matrix sequence,
its absolute probability sequence is πt = (1/N)1N , i.e., π i

∞
= 1/N

for all i ∈ V , our results generalize the existing results, e.g. Doan
et al. (2019, 2021). In Section 3, we will show how to achieve
the straight average reward, i.e., c i = 1/N for all i ∈ V , without
requiring doubly stochastic matrices.

When the number of the states is very large, the computation
of exact J may be intractable. To get around this, as did in Tsitsik-
lis and Van Roy (1997), we use a low-dimensional linear function
Ĵ to approximate J . Specifically, the linear function approximator
8

Ĵ takes the form Ĵ(s, θ ) =
∑K

k=1 θ kφs
k, s ∈ S , where each φs

k is a
fixed scalar function defined on the state space S , each θ k is the
associated weight, and K ≪ S. In other words, Ĵ is parameterized
by θ ∈ RK , with θ k being the kth entry of θ . To proceed, let
φk ∈ RS be the vector whose jth entry is φ

j
k for all k ∈ {1, . . . , K },

let φ(s) ∈ RK be the vector whose jth entry is φs
j for all s ∈ S , and

let Φ ∈ RS×K be the matrix whose ith row is the row vector φ(i)⊤
and whose jth column is the vector φj, i.e., Φ = [φ1, . . . , φK ] =

[φ(1), . . . , φ(S)]⊤ ∈ RS×K , which implies Ĵ = Φθ . The goal for
the multi-agent network is to find an optimal θ∗ with which
the distance between Ĵ and J is minimized, under the following
standard assumptions adopted in e.g. Doan et al. (2019), Srikant
and Ying (2019).

Assumption 7. All the rewards are uniformly bounded, i.e., there
exists a positive constant R such that |Ri(s, s′)| ≤ R for all i ∈ V
and s, s′ ∈ S .

Assumption 8. The vectors φ1, . . . , φK are linearly independent,
i.e., Φ has full column rank, and ∥φ(s)∥2 ≤ 1 for all s ∈ S .

Assumption 9. The Markov chain that evolves according to the
transition probability matrix P̄ is irreducible and aperiodic.

Under Assumption 9, let d ∈ RS be the unique stationary
distribution associated with P̄ , i.e., d⊤P̄ = d⊤.

C.1. Distributed TD(λ)

In this subsection, we make use of TD(λ) to estimate θ∗ in a
distributed manner. Note that TD(0) can be applied in a similar
manner. Each agent i ∈ V updates its own estimator of θ∗, θ i

t , for
all time t ∈ {0, 1, 2, . . .} as follows:

θ i
t+1 =

∑
j∈N i

t

w
ij
t θ

j
t + αt

(
A(Xt )

∑
j∈N i

t

w
ij
t θ

j
t + bi(Xt )

)
, (C.2)

where Xt = (st , st+1, zt ) is the Markov chain, with zt =∑t
k=0(γ λ)t−kφ(sk), and

A(Xt ) = zt (γφ(st+1)− φ(st ))⊤, bi(Xt ) = r itzt , (C.3)

with r it being the reward for agent i at time t . It is worth empha-
sizing that the proposed TD(λ) algorithm is different from that
in Doan et al. (2021).

In the sequel, we will show that the update (C.2) with (C.3)
is a special case of (1) so that our analysis for (1) can be applied
here. To this end, let D = diag(d) ∈ RS×S , where d is given right
after Assumption 9,

A = Φ⊤D(U − I)Φ, U = (1− λ)
∞∑
t=0

λt (γ P̄)t+1,

bi = Φ⊤D
∞∑
t=0

(γ λP̄)t r i, i ∈ V, (C.4)

where r i ∈ RS whose kth entry is r ik =
∑S

s=1 p̄
ksRi(k, s), and set

Amax =
1+γ

1−γ λ
and bmax =

R
1−γ λ

, where R is given in Assumption 7.

Lemma 2. Let the sequences {θ i
t }, i ∈ V , be generated by (C.2) with

(C.3). If Assumptions 7–9 hold, so do Assumptions 2–4.

Lemma 2 implies that our analysis for (1) can be applied here.
From the proof of Theorem 1 in Tsitsiklis and Van Roy (1997), A in
(C.4) is a negative definite matrix, which implies that A+ A⊤ is a
symmetric negative definite matrix. From Theorem 7.11 in Rugh
(1996), A is a Hurwitz matrix. Let σ > 0 be the smallest
min
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igenvalue of − 1
2 (A + A⊤). Thus, we can also choose P = I in

Assumption 4 and use the Lyapunov function V (⟨θ⟩t ) = ∥⟨θ⟩t −

θ∗
∥
2
2 in the analysis, where θ∗ here is the limiting point of (C.2).

Using the same argument as in Theorem 2, we can show that θ∗

is the unique equilibrium point of the ODE (5) with A and bi being
defined in (C.4).

C.2. Push-TD(λ)

In this subsection, we propose a push-based distributed TD(λ)
algorithm and provide its finite-time error bounds. Note that
push-based distributed TD(0) can be applied in the similar man-
ner. Each agent i ∈ V updates its variables at each time t ≥ 0 as
follows:⎧⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎩

yit+1 =
∑
j∈N i

t

ŵ
ij
t y

j
t , yi0 = 1,

θ̂ i
t+1 =

∑
j∈N i

t

ŵ
ij
t θ̂

j
t + αt

(
A(Xt )ŵ

ij
t θ

j
t + bj(Xt )

)
,

θ i
t+1 =

θ̂ it+1
yit+1

,

here ŵ
ij
t = 1/|N j−

t |, Xt = (st , st+1, zt ) is the Markov chain, with
t =

∑t
k=0(γ λ)t−kφ(sk), A(Xt ) and bi(Xt ) are given in (C.3). Using

he same argument as in Theorem 4, we can show that θ∗ is the
nique equilibrium point of the ODE (10) with A and bi being
efined in (C.4).
It is not hard to verify that Theorems 3 and 5 can be applied

o Distributed TD(λ) and Push-TD(λ) to obtain their finite-time
erformance bounds, respectively.

ppendix D. Analysis and some proofs

In this appendix, we provide the analysis of our two algo-
ithms, (1) and (9), and the proofs of all the assertions in the
paper. We begin with some notation used in the analysis.

D.1. Notation

We use 0n to denote the vector in Rn whose entries all equal
to 0’s. For any vector x ∈ Rn, we use diag(x) to denote the n× n
diagonal matrix whose ith diagonal entry equals xi. We use ∥ · ∥F
to denote the Frobenius norm. For any positive diagonal matrix
W ∈ Rn×n, we use ∥A∥W to denote the weighted Frobenius norm
for A ∈ Rn×m, defined as ∥A∥W = ∥W

1
2 A∥F . It is easy to see that

∥ · ∥W is a matrix norm. We use P(·) to denote the probability
of an event and E(X) to denote the expected value of a random
variable X .

D.2. Distributed stochastic approximation

In this subsection, we analyze the distributed stochastic ap-
proximation algorithm (1) and provide the proofs of the results
in Section 2. We begin with the asymptotic performance.

Proof of Theorem 1. Without loss of generality, let {Gt} be
uniformly strongly connected by sub-sequences of length L. Note
that for any i ∈ V ,

0 ≤ πmin∥θ
i
t − ⟨θ⟩t∥

2
2 ≤ πmin

N∑
j=1

∥θ
j
t − ⟨θ⟩t∥

2
2

≤

N∑
j=1

π
j
t∥θ

j
t − ⟨θ⟩t∥

2
2, (D.1)
(

9

where πmin is defined in Lemma 1. From Lemma 7,

lim
t→∞

N∑
i=1

π i
t∥θ

i
t − ⟨θ⟩t∥

2
2

≤ lim
t→∞

ϵ̂qt−T∗4

N∑
i=1

π i
T∗4 L+mt

∥θ i
T∗4 L+mt

− ⟨θ⟩T∗4 L+mt ∥
2
2

+ lim
t→∞

ζ6

1− ϵ̂

(
α0ϵ̂

qt−1
2 + α

⌈
qt−1
2 ⌉L

)
= 0. (D.2)

Combining (D.1) and (D.2), it follows that for all i ∈ V ,
imt→∞ πmin∥θ

i
t − ⟨θ⟩t∥

2
2 = 0. Since πmin > 0 by Lemma 1,

imt→∞ ∥θ i
t − ⟨θ⟩t∥2 = 0 for all i ∈ V . ■

roof of Theorem 2. From Theorem 1, all θ i
t , i ∈ V , will reach a

onsensus with ⟨θ⟩t and the update of ⟨θ⟩t is given in (4), which
an be treated as a single-agent linear stochastic approximation
hose corresponding ODE is (5). From Kushner (1983), Kushner
nd Yin (1987),1 we know that ⟨θ⟩t will converge to θ∗ w.p.1,
hich implies that θ i

t will converge to θ∗ w.p.1. In addition, from
heorem 3-(2) and Lemma 6, lim→∞

∑N
i=1 π i

tE[∥θ i
t − θ∗

∥
2
2] = 0.

ince π i
t is uniformly bounded below by πmin > 0, as shown in

emma 1, it follows that θ i
t will converge to θ∗ in mean square

or all i ∈ V . ■

We now analyze the finite-time performance of (1). In the
equel, we use K to denote the dimension of each θ i

t , i.e., θ
i
t ∈ RK

or all i ∈ V .

.2.1. Fixed step-size
We first consider the fixed step-size case and begin with

alidation of two ‘‘convergence rates’’ in Theorem 3.

emma 3. Both ϵ and (1− 0.9α
γmax

) lie in the interval (0, 1).

emma 4. Suppose that Assumptions 1 and 2 hold and {Gt} is
niformly strongly connected by sub-sequences of length L. Then,
hen α ∈ (0, ζ1), we have for all t ≥ τ (α),
N

i=1

π i
t∥θ

i
t − ⟨θ⟩t∥

2
2 ≤ ϵqt

N∑
i=1

π i
mt
∥θ i

mt
− ⟨θ⟩mt ∥

2
2 +

ζ2

1− ϵ
,

where ζ1 is defined in Appendix A, ϵ and ζ2 are defined in (6) and
(A.1), respectively.

Lemma 5. Suppose that Assumptions 2–4 and 6 hold. Then, when
0 < α < min{ log 2

Amaxτ (α)
, 0.1

K2γmax
}, we have for any t ≥ T1,

E[∥⟨θ⟩t+1 − θ∗
∥
2
2]

≤

(
1−

0.9α
γmax

)t−T1 γmax

γmin
E
[
∥⟨θ⟩T1 − θ∗

∥
2
2

]
+

αζ3γ
2
max

0.9γmin

+
γmax

γmin
αζ4

t−T1∑
k=0

ηt+1−k

(
1−

0.9α
γmax

)k

≤

(
1−

0.9α
γmax

)t+1−T1 C1

2
+

αζ3γ
2
max

0.9γmin

+
γmax

γmin
αζ4

t−T1∑
k=0

ηt+1−k

(
1−

0.9α
γmax

)k
.

where C1, ζ3, ζ4 and K2 are defined in Appendix A.1, (A.2), (A.3) and
(A.9), respectively.

1 On page 1289 of Kushner and Yin (1987), it says that the idea in Kushner
1983) can be adapted to get the w.p.1 convergence result.
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We are now in a position to prove the fixed step-size case in
Theorem 3.

Proof of Case (1) in Theorem 3. From Lemmas 4 and 5, we have
for any t ≥ T1,

N∑
i=1

π i
tE[∥θ

i
t − θ∗

∥
2
2]

≤ 2
N∑
i=1

π i
tE[∥θ

i
t − ⟨θ⟩t∥

2
2] + 2E[∥⟨θ⟩t − θ∗

∥
2
2]

≤ 2ϵqt
N∑
i=1

π i
mt
E[∥θ i

mt
− ⟨θ⟩mt ∥

2
2]

+
2ζ2
1− ϵ

+
2αζ3γ

2
max

0.9γmin
+

(
1−

0.9α
γmax

)t−T1
C1

+
γmax

γmin
2αζ4

t−T1∑
k=0

ηt+1−k

(
1−

0.9α
γmax

)k

≤ 2ϵqt
N∑
i=1

π i
mt
E[∥θ i

mt
− ⟨θ⟩mt ∥

2
2] + C1

(
1−

0.9α
γmax

)t−T1

+ C2 +
γmax

γmin
2αζ4

t−T1∑
k=0

ηt+1−k

(
1−

0.9α
γmax

)k
,

where C1 and C2 are defined in Appendix A.1. This completes the
proof. ■

D.2.2. Time-varying step-size
In this subsection, we consider the time-varying step-size case

and begin with a property of ηt .

Lemma 6. Suppose that Assumption 6 holds. Then, limt→∞ ηt = 0
and limt→∞

1
t+1

∑t
k=0 ηk = 0.

To prove the theorem, we need the following lemmas.

emma 7. Suppose that Assumptions 1 and 2 hold and {Gt} is
uniformly strongly connected by sub-sequences of length L. Given αt
nd T2 defined in Theorem 3, for all t ≥ T2L,
N∑
i=1

π i
t∥θ

i
t − ⟨θ⟩t∥

2
2 ≤

ζ6

1− ϵ

(
ϵ

qt−1
2 αmt + α

⌈
qt−1
2 ⌉L+mt

)
+ ϵqt−T2

N∑
i=1

π i
T2L+mt

∥θ i
T2L+mt

− ⟨θ⟩T2L+mt ∥
2
2,

which implies that
N∑
i=1

π i
t∥θ

i
t − ⟨θ⟩t∥

2
2 ≤

ζ6

1− ϵ

(
α0ϵ

qt−1
2 + α

⌈
qt−1
2 ⌉L

)
+ ϵqt−T2

N∑
i=1

π i
T2L+mt

∥θ i
T2L+mt

− ⟨θ⟩T2L+mt ∥
2
2,

where ϵ and ζ6 are defined in (6) and (A.5), respectively.

Lemma 8. Under Assumptions 1–6, when the

τ (αt )αt−τ (αt ) ≤ min{
log 2
Amax

,
0.1

ζ5γmax
},

we have for any t ≥ T2L,

E
[
∥⟨θ⟩t − θ∗

∥
2
2

]
≤

T2L γmax E[∥⟨θ⟩T2L − θ∗
∥
2
2]
t γmin

10
+

ζ7α0C log2( t
α0

)

t
γmax

γmin
+ α0ζ4

γmax

γmin

∑t
l=T2L

ηl

t
,

where T2 is defined in Appendix A.1, and ζ4, ζ5, ζ7 are defined in
(A.3), (A.4), (A.6), respectively.

We are now in a position to prove the time-varying step-size
case in Theorem 3.

Proof of Case (2) in Theorem 3. From Lemmas 7 and 8, for any
t ≥ T2L, we have

N∑
i=1

π i
tE[∥θ

i
t − θ∗

∥
2
2]

≤ 2
N∑
i=1

π i
tE[∥θ

i
t − ⟨θ⟩t∥

2
2] + 2E[∥⟨θ⟩t − θ∗

∥
2
2]

≤ 2ϵqt−T2
N∑
i=1

π i
T2L+mt

E[∥θ i
T2L+mt

− ⟨θ⟩T2L+mt ∥
2
2]

+
2T2L
t

γmax

γmin
E[∥⟨θ⟩T2L − θ∗

∥
2
2] + 2α0ζ4

γmax

γmin

∑t
l=T2L

ηl

t

+

2ζ7α0C log2( t
α0

)

t
γmax

γmin
+

2ζ6
1− ϵ

(α0ϵ
qt−1
2 + α

⌈
qt−1
2 ⌉L)

≤ 2ϵqt−T2
N∑
i=1

π i
LT2+mt

E
[θ i

LT2+mt
− ⟨θ⟩LT2+mt

2

2

]
+ C3

(
α0ϵ

qt−1
2 + α

⌈
qt−1
2 ⌉L

)
+

1
t

(
C4 log2

( t
α0

)
+ C5

t∑
k=LT2

ηk + C6

)
,

where C3 − C6 are defined in Appendix A.1. This completes the
proof. ■

Remark 10. For distributed SA algorithms, finite-time perfor-
mance analysis essentially boils down to two parts, namely bo-
unding the consensus error and bounding the ‘‘single-agent’’
mean-square error. For the case when consensus interaction
matrices are all doubly stochastic, the consensus error bound
can be derived by analyzing the square of the 2-norm of the
deviation of the current state of each agent from the average
of the states of the agents. With consensus in the presence
of doubly stochastic matrices, the average of the states of the
agents remains invariant. Thus, it is possible to treat the average
value as the state of a fictitious agent to derive the mean-
square consensus error bound with respect to the limiting point.
More formally, this process relies on two properties of a doubly
stochastic matrix W , namely that (1) 1⊤W = 1⊤, and (2) if
t+1 = Wxt , then ∥xt+1 − (1⊤xt+1)1∥2 ≤ σ2(W )∥xt − (1⊤xt )1∥2
here σ2(W ) denotes the second largest singular value of W
which is strictly less than one if W is irreducible). Even if
he doubly stochastic matrix is time-varying (denoted by Wt ),
roperty (1) still holds and property (2) can be generalized as
n Nedić, Olshevsky, and Rabbat (2018). Thus, the square of the
-norm ∥xt − (1⊤xt )1∥22 is a quadratic Lyapunov function for
he average consensus processes. Doubly stochastic matrices in
xpectation can be treated in the same way by looking at the
xpectation. This is the core on which all the existing finite-time
nalyses of distributed RL algorithms are based. However, if each
onsensus interaction matrix is stochastic, and not necessarily
oubly stochastic, the above two properties may not hold. In fact,
t is well known that quadratic Lyapunov functions for general
onsensus processes x = S x , with S being stochastic, do not
t+1 t t t
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xist (Olshevsky & Tsitsiklis, 2008). Here we appeal to the idea of
uadratic comparison functions for general consensus processes.
his was first proposed in Touri (2012) and makes use of the
oncept of absolute probability sequences. We provide a general
nalysis method and results that subsume the existing finite-
ime analyses for single-timescale distributed linear stochastic
pproximation (Lemmas 4, 5, 7 and 8) and TD learning as special
ases. □

.3. Push-SA

In this subsection, we analyze the push-based distributed
tochastic approximation algorithm (9) and provide the proofs of
he results in Section 3.

Let Ŵt be the matrix whose ij-th entry is ŵ
ij
t . Then, from (9),

i
t+1 =

θ̃ i
t+1

yit+1
=

∑N
j=1 ŵ

ij
t (θ̃

j
t + αtA(Xt )θ

j
t + αtbj(Xt ))

yit+1

=

N∑
j=1

ŵ
ij
t y

j
t∑N

k=1 ŵik
t ykt

[
θ̃
j
t

yjt
+ αtA(Xt )

θ
j
t

yjt
+ αt

bj(Xt )

yjt

]

=

N∑
j=1

w̃
ij
t

[
θ
j
t + αtA(Xt )

θ
j
t

yjt
+ αt

bj(Xt )

yjt

]
, (D.3)

here w̃
ij
t =

ŵ
ij
t y

j
t∑N

k=1 ŵik
t ykt

and W̃t = [w̃
ij
t ] is a row stochastic matrix,

.e.,
∑N

j=1 w̃
ij
t =

∑N
j=1 ŵ

ij
t y

j
t∑N

k=1 ŵik
t ykt

= 1, for all i.

Let Θt = [θ1
t , . . . , θN

t ]
⊤. Then (D.3) can be written as

Θt+1 = W̃t

[
Θt + αt

⎡⎣ (θ1
t )

⊤/y1t
· · ·

(θN
t )⊤/yNt

⎤⎦ A(Xt )⊤

+ αt

⎡⎣ (b1(Xt ))⊤/y1t
· · ·

(bN (Xt ))⊤/yNt

⎤⎦]. (D.4)

Since each matrix W̃t = [w̃
ij
t ] is stochastic, from Lemma 1,

there exists a unique absolute probability sequence {π̃t} for the
matrix sequence {W̃t} such that π̃ i

t ≥ π̃min for all i ∈ V and t ≥ 0,
with the constant π̃min ∈ (0, 1).

Lemma 9. Suppose that {Gt} is uniformly strongly connected. Then,
Π t

s=0Ŵs will converge to the set {v1⊤N : v ∈ RN
} exponentially fast

as t → ∞.

Lemma 10. Suppose that {Gt} is uniformly strongly connected.
Then, (Π t

l=sW̃l)ij =
yjs

yit+1
(Π t

l=sŴl)ij and
π̃ i
s

yis
=

1
yis

limt→∞(Π t
l=sW̃l)ji =

1
N for all i, j ∈ V and s ≥ 0.

Lemma 11. The sequence {Θn} generated by (D.4) is bounded
lmost surely, i.e., Cθ = supn ∥Θn∥F < ∞ almost surely.

From (9), by using the definition of ⟨θ̃⟩t =
1
N

∑N
i=1 θ̃ i

t and
θ⟩t =

1
N

∑N
i=1 θ i

t , we have

⟨θ̃⟩t+1 = ⟨θ̃⟩t + αtA(Xt )⟨θ⟩t +
αt

N

N∑
i=1

bi(Xt )

= ⟨θ̃⟩t + αtA(Xt )⟨θ̃⟩t +
αt

N

N∑
i=1

bi(Xt )+ αtρt , (D.5)

where ρt = A(Xt )⟨θ⟩t − A(Xt )⟨θ̃⟩t . From Lemma 11, we have
∥⟨θ⟩ ∥ ≤ max ∥θ i

∥ ≤ C for all t ≥ 0, which implies that
t 2 i∈V t 2 θ

11
∥⟨θ̃⟩t∥2 ≤ NCθ and µt = ∥ρt∥2 =
A(Xt )⟨θ⟩t − A(Xt )⟨θ̃⟩t


2 ≤

µmax, where µmax = (N + 1)AmaxCθ .

Lemma 12. Suppose that Assumptions 2 and 5 hold and {Gt}

is uniformly strongly connected by sub-sequences of length L. Let
ϵ1 = inft≥0 mini∈V (Ŵt · · · Ŵ01N )i. For all t ≥ 0 and i ∈ V ,

∥θ i
t+1 − ⟨θ̃⟩t∥2

≤
8
ϵ1

ϵ̄t
∥

N∑
i=1

θ̃ i
0 + α0A(X0)θ i

0 + α0bi(X0)∥2 + αtbmax

+
8
ϵ1

AmaxCθ + bmax

1− ϵ̄

(
α0ϵ̄

t/2
+ α

⌈
t
2 ⌉

)
+ αtAmaxCθ ,

here ϵ1 > 0 and ϵ̄ ∈ (0, 1) satisfy ϵ1 ≥
1

NNL and ϵ̄ ≤ (1− 1
NNL )1/L.

Lemma 13. limt→∞ µt = limt→∞ ∥ρt∥2 = 0 and limt→∞∑t
k=0 µk
t+1 = limt→∞

∑t
k=0 ∥ρk∥2
t+1 = 0.

Lemma 14. Suppose that Assumptions 2–4 hold and αt =
α0
t+1 . When µt + τ (αt )αt−τ (αt )ζ8 ≤

0.1
γmax

and τ (αt )αt−τ (αt ) ≤

in{ log 2
Amax

, 0.1
ζ8γmax

}, we have for t ≥ T̄ ,

E[∥⟨θ̃⟩t+1 − θ∗
∥
2
2]

≤
T̄

t + 1
γmax

γmin
E[∥⟨θ̃⟩T̄ − θ∗

∥
2
2] +

ζ9α0C log2( t+1
α0

)

t + 1
γmax

γmin

+ α0
γmax

γmin

∑t+1
l=T̄ µl

t + 1
,

where T̄ is defined in Appendix A.2, ζ8 and ζ9 are defined in (A.7)
and (A.8), respectively.

We are now in a position to prove Theorem 5.

Proof of Theorem 5. Note that
∑N

i=1 E[∥θ
i
t+1 − θ∗

∥
2
2] ≤ 2

∑N
i=1

[∥θ i
t+1 − ⟨θ̃⟩t∥

2
2] + 2NE[∥⟨θ̃⟩t − θ∗

∥
2
2]. From Lemmas 12 and 14,

e have for any t ≥ T̄ ,
N∑
i=1

E
[θ i

t+1 − θ∗
2
2

]
≤

16
ϵ1

ϵ̄tE[∥
N∑
i=1

θ̃ i
0 + α0A(X0)θ i

0 + α0bi(X0)∥2]

+ 2αtAmaxCθ + 2αtbmax +
2T̄N
t

γmax

γmin
E[∥⟨θ̃⟩T̄ − θ∗

∥
2
2]

+
16
ϵ1

AmaxCθ + bmax

1− ϵ̄

(
α0ϵ̄

t/2
+ α

⌈
t
2 ⌉

)
+

2Nζ9α0C log2( t
α0

)

t
γmax

γmin
+ 2α0N

γmax

γmin

∑t
l=T̄ µl

t

≤ C7ϵ̄
t
+ C8

(
α0ϵ̄

t
2 + α

⌈
t
2 ⌉

)
+ C9αt

+
1
t

(
C10 log2

( t
α0

)
+ C11

t∑
l=T̄

µl + C12

)
.

This completes the proof. ■

We next show the asymptotic performance of (9).

Proof of Theorem 4. From Lemma 12, since ϵ̄ ∈ (0, 1) and
t =

α0
t , it follows that limt→∞ ∥θ i

t+1−⟨θ̃⟩t∥2 = 0, which implies
that all θ i

t+1, i ∈ V , will reach a consensus with ⟨θ̃⟩t . The update of
⟨θ̃⟩ is given in (D.5), which can be treated as a single-agent linear
t
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tochastic approximation whose corresponding ODE is (10). In
ddition, from Theorem 5 and Lemma 13, lim→∞

∑N
i=1 E[∥θ

i
t+1 −

∗
∥
2
2] = 0, it follows that θ i

t+1 will converge to θ∗ in mean square
or all i ∈ V . ■

emark 11. Finite-time analysis for such a push-based dis-
ributed algorithm is challenging. Almost all, if not all, the existing
ush-based distributed optimization works build on the analysis
n Nedić and Olshevsky (2015); however, that analysis assumes
hat a convex combination of the entire history of the states of
ach agent (and not merely the current state of the agent) is
eing calculated. This assumption no longer holds in our case. To
btain a direct finite-time error bound without this assumption,
e appeal to a new approach to analyze our push-based SA
lgorithm by leveraging our consensus-based analyses to estab-
ish direct finite-time error bounds for stochastic approximation.
pecifically, we tailor an absolute probability sequence for the
ush-based stochastic approximation algorithm and exploit its
roperties (Lemma 10). ■
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