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This paper considers a novel multi-agent linear stochastic approximation algorithm driven by Marko-
vian noise and general consensus-type interaction, in which each agent evolves according to its
local stochastic approximation process which depends on the information from its neighbors. The
interconnection structure among the agents is described by a time-varying directed graph. While the
convergence of consensus-based stochastic approximation algorithms when the interconnection among
the agents is described by doubly stochastic matrices (at least in expectation) has been studied, less
is known about the case when the interconnection matrix is simply stochastic. For any uniformly
strongly connected graph sequences whose associated interaction matrices are stochastic, the paper
derives finite-time bounds on the mean-square error, defined as the deviation of the output of the
algorithm from the unique equilibrium point of the associated ordinary differential equation. For the
case of interconnection matrices being stochastic, the equilibrium point can be any unspecified convex
combination of the local equilibria of all the agents in the absence of communication. Both the cases
with constant and time-varying step-sizes are considered. In the case when the convex combination
is required to be a straight average and interaction between any pair of neighboring agents may be
uni-directional, so that doubly stochastic matrices cannot be implemented in a distributed manner,
the paper proposes a push-sum-type distributed stochastic approximation algorithm and provides its
finite-time bound for the time-varying step-size case by leveraging the analysis for the consensus-
type algorithm with stochastic matrices and developing novel properties of the push-sum algorithm.
Distributed temporal difference learning is discussed as an illustrative application.

© 2023 Elsevier Ltd. All rights reserved.

1. Introduction

agents interacts with an unknown environment or system and
aims to collaboratively accomplish tasks involving distributed

The use of reinforcement learning (RL) to obtain policies that
describe solutions to a Markov decision process (MDP) in which
an autonomous agent interacting with an unknown environment
aims to optimize its long term reward is now standard (Sut-
ton & Barto, 2018). Multi-agent RL is useful when a team of
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decision-making.

Stochastic approximation is a family of model-free stochastic
algorithms tailored for seeing the extrema of unknown functions
via noisy observations only (Robbins & Monro, 1951). It is a key
tool for designing and analyzing RL algorithms, including tem-
poral difference (TD) learning as a special case (Sutton & Barto,
2018). Convergence study of stochastic approximation based on
ordinary differential equation (ODE) methods has a long his-
tory (Borkar & Meyn, 2000). Notable examples are Dayan (1992),
Tsitsiklis and Van Roy (1997) which prove asymptotic conver-
gence of TD()). Recently, finite-time performance of single-agent
stochastic approximation and TD algorithms has been studied
in Bhandari, Russo, and Singal (2018), Chen, Maguluri, Shakkot-
tai, and Shanmugam (2020), Dalal, Szérényi, Thoppe, and Man-
nor (2018), Gupta, Srikant, and Ying (2019), Lakshminarayanan
and Szepesvari (2018), Ma, Zhou, and Zou (2020), Srikant and
Ying (2019), Wang, Chen, Liu, Ma, and Liu (2017), Xu, Zou, and
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Liang (2019); many other works have now appeared that perform
finite-time analysis for other RL algorithms, see, e.g., Borkar and
Pattathil (2018), Chen, Devraj, BuSi¢, and Meyn (2020), Dalal,
Thoppe, Szorényi, and Mannor (2018), Ma, Chen, Zhou, and Zou
(2021), Qu and Wierman (2020), Wang, Li, and Giannakis (2019),
Wang and Zou (2020), Weng, Gupta, He, Ying, and Srikant (2020),
Wu, Zhang, Xu, and Gu (2020), Xu and Gu (2020), Zou, Xu,
and Liang (2019), just to name a few. Many distributed multi-
agent RL algorithms have been proposed in the literature (Zhang,
Yang, & Basar, 2021). In this setting, each agent can receive
information only from its neighbors, and no single agent can
solve the problem alone or by ‘taking the lead’. Many works
have analyzed asymptotic convergence of such RL algorithms
using ODE methods (Lin et al., 2019; Suttle et al., 2020; Zhang,
Yang, & Basar, 2018; Zhang, Yang, Liu, Zhang, & Basar, 2018;
Zhang & Zavlanos, 2019). This can be viewed as an application
of ideas from distributed stochastic approximation (Bianchi, Fort,
& Hachem, 2013; Huang, 2012; Kushner & Yin, 1987; Stankovi¢,
[li¢, & Stankovié¢, 2016; Stankovi¢ & Stankovi¢, 2016; Stankovic,
Stankovié¢, & Stipanovi¢, 2010). Finite-time performance guaran-
tees for distributed RL have also been provided in works, most
notably in Doan, Maguluri, and Romberg (2019, 2021), Sun, Wang,
Giannakis, Yang, and Yang (2020), Wang, Lu, Giannakis, Tesauro,
and Sun (2020), Zeng, Doan, and Romberg (2020), Zhang, Yang,
Liu, Zhang, and Basar (2021).

The assumption that is the central concern of this paper and
is made in all the existing finite-time analyses for distributed RL
algorithms is that the consensus interaction is characterized by
doubly stochastic matrices (Doan et al., 2019, 2021; Sun et al,,
2020; Wang et al., 2020; Zeng et al.,, 2020; Zhang, Yang, Liu,
et al,, 2021) at every time step, or at least in expectation (Bianchi
et al., 2013). In a realistic network, especially with mobile agents
such as autonomous vehicles, drones, or robots, uni-directional
communication is inevitable due to various reasons such as asym-
metric communication and privacy constraints, non-zero com-
munication failure probability between any two agents at any
given time, and application of resilient consensus in the presence
of adversary attacks (LeBlanc, Zhang, Koutsoukos, & Sundaram,
2013; Vaidya, Tseng, & Liang, 2012), all leading to an inter-
action among the agents characterized by a stochastic matrix,
which may further be time-varying. The problem of design of
distributed RL algorithms with time-varying stochastic matrices
and characterizing either their asymptotic convergence or finite
time analysis remains open. Technical challenges in removing the
assumption of doubly stochastic matrices are discussed in detail
in Lin, Gupta, and Liu 2021, Section 1.

We propose a novel consensus-based distributed linear sto-
chastic approximation algorithm driven by Markovian noise in
which each agent evolves according to its local stochastic ap-
proximation process and the information from its neighbors. We
assume only a (possibly time-varying) stochastic matrix being
used during the consensus phase, which is a more practical as-
sumption when only unidirectional communication is possible
among agents. We establish both convergence guarantees and
finite-time bounds on the mean-square error, defined as the devi-
ation of the output of the algorithm from the unique equilibrium
point of the associated ordinary differential equation. The equilib-
rium point can be an “uncontrollable” convex combination of the
local equilibria of all the agents in the absence of communication.
We consider both the cases of constant and time-varying step-
sizes. Our results subsume the existing results on convergence
and finite-time analysis of distributed RL algorithms that assume
doubly stochastic matrices and bi-directional communication as
special cases. In the case when the convex combination is re-
quired to be a straight average and interaction between any
pair of neighboring agents may be uni-directional, we propose
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a push-type distributed stochastic approximation algorithm and
establish its finite-time performance bound. It is worth empha-
sizing that it is straightforward to extend our algorithm from the
straight average point to any pre-specified convex combination.
Since it is well known that TD algorithms can be viewed as a spe-
cial case of linear stochastic approximation (Tsitsiklis & Van Roy,
1997), our distributed linear stochastic approximation algorithms
and their finite-time bounds can be applied to TD algorithms in
a straightforward manner.

Notation We use X; to represent that a variable X is time-
dependent and t € {0, 1, 2, ...} is the discrete time index. The ith
entry of a vector x will be denoted by x' and, also, by (x)! when
convenient. The ijth entry of a matrix A will be denoted by a¥ and,
also, by (A)¥ when convenient. We use 1, to denote the vectors
in R" whose entries all equal to 1's, and I to denote the identity
matrix, whose dimension is to be understood from the context.
Given a set S with finitely many elements, we use |S| to denote
the cardinality of S. We use [-] to denote the ceiling function.

A vector is called a stochastic vector if its entries are nonneg-
ative and sum to one. A square nonnegative matrix is called a
row stochastic matrix, or simply stochastic matrix, if its row sums
all equal one. Similarly, a square nonnegative matrix is called
a column stochastic matrix if its column sums all equal one. A
square nonnegative matrix is called a doubly stochastic matrix if
its row sums and column sums all equal one. The graph of an
n x n matrix is a direct graph with n vertices and a directed
edge from vertex i to vertex j whenever the ji-th entry of the
matrix is nonzero. A directed graph is strongly connected if it has
a directed path from any vertex to any other vertex. For a strongly
connected graph G, the distance from vertex i to another vertex j
is the length of the shortest directed path from i to j; the longest
distance among all ordered pairs of distinct vertices i and j in G
is called the diameter of G.

2. Distributed linear stochastic approximation

The stochastic approximation is a method for approximat-
ing the solution of an optimization problem when the objective
function is not known, but where only noisy observations are
available (Kushner & Yin, 1997). The linear stochastic approxima-
tion is a specific form of stochastic approximation that is used to
solve linear regression problems with stochastic noise.

Consider a network consisting of N agents. For the purpose of
presentation, we label the agents from 1 through N. The agents
are not aware of such a global labeling, but can differentiate
between their neighbors. The neighbor relations among the N
agents are characterized by a time-dependent directed graph

G: = (v, &) whose vertices correspond to agents and whose
directed edges (or arcs) depict neighbor relations, where v =
{1,..., N} is the vertex set and & = V x V is the edge set at

time t. Specifically, agent j is an in-neighbor of agent i at time ¢
if (j, i) € &, and similarly, agent k is an out-neighbor of agent i at
time t if (i, k) € &. Each agent can send information to its out-
neighbors and receive information from its in-neighbors. Thus,
the directions of edges represent the directions of information
flow. For convenience, we assume that each agent is always an
in- and out-neighbor of itself, which implies that G, has self-arcs
at all vertices for all time t. We use A7 and ;™ to denote the in-
and out-neighbor set of agent i at time ¢, respectively, i.e.,

Ni=liev:(G,ie&), N™={kev:(ik) eé&)
It is clear that Nt' and J\/ti’ are nonempty as they both contain
index i.

We propose the following distributed linear stochastic approx-
imation over a time-varying neighbor graph sequence {G;}. Each
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agent i € V has control over a random vector 9} e R for any

t €{0,1,2,...}, which is updated by
T +at( %)Y wlel + b xt> (1)
jenNi jenNi

where w{ are consensus weights, «; is the step-size at time t,
A(X;) € R™ is a random matrix and bi(X;) € R? is a random
vector, both generated based on the Markov chain {X;} with
state spaces X. It is worth noting that the update (1) of each
agent only uses its own and in-neighbors’ information and thus
is distributed.

Remark 1. The work of Kushner and Yin (1987) considers a
different consensus-based networked linear stochastic approxi-
mation foranyie v,t € {0, 1,2, ...} as follows:

O =D wit] + o (AXE! + b(X,)) . 2)
jenNi

whose state form is @, = W,0; + a:0;AX;)" + a:B(X;), and
mainly focuses on asymptotically weakly convergence for the
fixed step-size case (i.e., @ = « for all t). Under the similar set
of conditions, with its condition (C3.4’) being a stochastic analogy
for Assumption 6, Theorem 3.1 in Kushner and Yin (1987) shows
that (2) has a limit which can be verified to be the same as 6*,
the limit of (1). How to apply the finite-time analysis tools in
this paper to (2) has so far eluded us. The two updates (1) and
(2) are analogous to the “combine-then-adapt” and “adapt-then-
combine” diffusion strategies in distributed optimization (Chen &
Sayed, 2012). O

We impose the following assumption on the weights w{j which
has been widely adopted in consensus literature (Jadbabaie, Lin,
& Morse, 2003; Nedi¢ & Liu, 2017; Olfati-Saber, Fax, & Murray,
2007).

Assumption 1. There exists a constant 8 > 0 such that for all
i,j € vVandt, w{ > B whenever j € M. For alli € V and ¢,

ol —
Zje/\ftl wy = 1.

Let W, be the N x N matrix whose ijth entry equals w; if
j € Nt' and zero otherwise. From Assumption 1, each W; is a
stochastic matrix that is compliant with the neighbor graph G..
Since each agent i is always assumed to be an in-neighbor of
itself, all diagonal entries of W; are positive. Thus, if G; is strongly
connected, W, is irreducible and aperiodic. To proceed, define

CoN (b'(X:)"
O = . BX) = :

GOl (X))
Then, the N linear stochastic recursions in (1) for any t €
{0, 1,2, ...} can be combined and written as

Oy = WO + AW OAX:) " + aBX,). (3)

The goal of this section is to characterize the finite-time perfor-
mance of (1), or equivalently (3), with the following standard
assumptions, which were adopted e.g. in Doan et al. (2019),
Srikant and Ying (2019).

Assumption 2. There exists a matrix A and vectors bi, i € V,
such that

lim E[A(X,)] = A, lim E[b'(X,)] = b, iev.

t—o00 t—o00

Define byax = mMaxXicy SUPye x Ibi(x)]|2 < oo and An}ax = SUPyer
”A(X)”Z < Q. Then. ”A”Z =< Amax and ”bl”Z = bmax: reVv.
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Assumption 3. Given a positive constant «, we use t(«) to
denote the mixing time of the Markov chain {X;} for which

IE[ACX;) — AlXo = X]1ll2 =, VX, Vt=1(a),

IE[b'(X,) — b'1Xo =Xl <, VX, Vt=>7t(a), VieV.

The Markov chain {X;} mixes at a geometric rate, i.e., there exists
a constant C such that 7(«a) < —Cloga.

Assumption 4. All eigenvalues of A have strictly negative real
parts, i.e., A is a Hurwitz matrix. Then, there exists a symmet-
ric positive definite matrix P, such that ATP + PA = —I. Let
Ymax and Ymin be the maximum and minimum eigenvalues of P,
respectively.

Assumption 5. The step-size sequence {a;} is positive non-
increasing, and satisfies Y o, = oo and Y ;o a? < c0.

To state our first main result, we need the following concepts.

Definition 1. A graph sequence {G;} is uniformly strongly con-
nected if there exists a positive integer L such that for any t >
0, the union graph U\7t"'Gy is strongly connected. If such an
integer exists, we sometimes say that {G;} is uniformly strongly

connected by sub-sequences of length L.

Remark 2. Two popular joint connectivity definitions in consen-
sus literature are “B-connected” (Nedi¢, Olshevsky, Ozdaglar, &
Tsitsiklis, 2009) and “repeatedly jointly strongly connected” (Cao,
Morse, & Anderson, 2008). A graph sequence {G,} is B-connected
if there exists a positive integer B such that the union graph
UikikyB*]Gt is strongly connected for each integer k > 0. Al-
though the uniformly strongly connectedness looks more restric-
tive compared with B-connectedness at first glance, they are in
fact equivalent. To see this, first it is easy to see that if {G;} is
uniformly strongly connected, {G;} must be B-connected; now
supposing {G;} is B-connected, for any fix t, the union graph
UkﬁB_le must be strongly connected, and thus {G;} is uni-
formly strongly connected by sub-sequences of length 2B. Thus,
the two definitions are equivalent. It is also not hard to show
that the uniformly strongly connectedness is equivalent to “re
peatedly jointly strongly connectedness” provided the directed
graphs under consideration all have self-arcs at all vertices, with
“repeatedly jointly strongly connectedness” being defined upon
“graph composition” (Cao et al,, 2008). O

Definition 2. Let {W;} be a sequence of stochastic matrices.
A sequence of stochastic vectors {m;} is an absolute probability

sequence for {W,} if ntT = 77[+1Wt for all ¢.

This definition was first introduced by Kolmogorov who proved
that every sequence of stochastic matrices has an absolute prob-
ability sequence (Kolmogoroff, 1936). An alternative proof of this
fact was given by Blackwell (1945). In general, a sequence of
stochastic matrices may have more than one absolute probability
sequence; when the sequence of stochastic matrices is “ergodic”,
it has a unique absolute probability sequence (Nedi¢ & Liu, 2017).
It is easy to see that when W; is a fixed irreducible stochastic
matrix W, m; is simply the normalized left eigenvector of W for
eigenvalue one. More can be said.

Lemma 1 (Lemma 5.8 in Touri (2012)). Suppose that Assumption 1
holds. If {G;} is uniformly strongly connected, then there exists a
unique absolute probability sequence {m;} for the matrix sequence
{W;} and a constant myni, € (0, 1) such that nti > Tmin for all i
and t.
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Let (8); = Y., w6}, which is a column vector and convex
combination of all 6. It is easy to see that (9), = (7, 0,)T =
@[Tm. From Definition 2 and (3), we have ”r+10t+1 =7, WO+
am W OAX)T + ot BX) = 7O + ar ©OAX)T +
arm, (B(X;), which implies that

(0)er1 = ()¢ + ot AXe)(O)e + e BXe) " 71 (4)

Asymptotic performance of (1) with any uniformly strongly
connected neighbor graph sequence is characterized by the fol-
lowing two theorems.

Theorem 1. Suppose that Assumption 1, 2 and 5 hold. Let {0'}
i € V, be generated by (1). If {G,} is uniformly strongly connected,
then lim;_, o [16; — (6)¢ll2 =0 for all i € V.

Theorem 1 only shows that all the sequences {95}, i e
generated by (1) will finally reach a consensus, but not necessarily
convergent or bounded. To guarantee the convergence of the
sequences, we further need the following assumption, whose
validity is discussed in Remark 3.

Assumption 6. The absolute probability sequence {rx;} for the
stochastic matrix sequence {W;} has a limit, i.e., there exists a
stochastic vector 7, such that lim¢_, o 7t = 7.

Theorem 2. Suppose that Assumptions 1-6 hold. Let {Gti}, iev,
be generated by (1) and 6* be the unique equilibrium point of the
ODE

N
§=A0+b, b= mib (5)

i=1

where A and b are defined in Assumption 2 and 7., is defined in
Assumption 6. If {G;} is uniformly strongly connected, then all 6|
will converge to 6* both with probability 1 and in mean square.

Remark 3. Though Assumption 6 may look restrictive at first
glance, simple simulations show that the sequences {0}, i €
V, do not converge if the assumption does not hold (e.g., even
when W; changes periodically). It is worth emphasizing that the
existence of m,, does not imply the existence of lim;_ o W;,
though the converse is true. Indeed, the assumption subsumes
various cases including (a) all W, are doubly stochastic matrices,
and (b) all W; share the same left eigenvector for eigenvalue
1, which may arise from the scenario when the number of in-
neighbors of each agent does not change over time (Olshevsky
& Tsitsiklis, 2013). An important implication of Assumption 6
is when the consensus interaction among the agents, charac-
terized by {W,}, is replaced by resilient consensus algorithms
such as LeBlanc et al. (2013), Vaidya et al. (2012) in order to
attenuate the effect of unknown malicious agents, the resulting
dynamics of non-malicious agents, in general, will not converge,
because the resulting interaction stochastic matrices among the
non-malicious agents depend on the state values transmitted
by the malicious agents, which can be arbitrary, and thus the
resulting stochastic matrix sequence, in general, does not have a
convergent absolute probability sequence; of course, in this case,
the trajectories of all the non-malicious agents will still reach a
consensus as long as the step-size is diminishing, as implied by
Theorem 1. Further discussion on Assumption 6 can be found in
Appendix B. O

We now study the finite-time performance of the proposed
distributed linear stochastic approximation (1) for both fixed
and time-varying step-size cases. Its finite-time performance is
characterized by the following theorem.

Let n; = |lm: — ool for all t > 0. From Assumption 6, n;
converges to zero as t — o<.
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Theorem 3. Let the sequences {9}}, i € v, be generated by (1).
Suppose that Assumptions 1-4, 6 hold and {G,} is uniformly strongly
connected by sub-sequences of length L. Let q; and m; be the unique
integer quotient and remainder of t divided by L, respectively. Let §;

be the diameter of U;"- "Gy, Smax = max»o &, and

2bmax ﬂmin/gu 2L
=11 - 1 A
( * Amax 28 max (1 + @)
2b
- max(] + OlAmax)Lv (6)

max

log2 0.1 }
Amaxt()” Kyymax '

(1) Fixed step-size: Let «; = « forallt > 0. Forall t > Ty,
! 2
> [ -0 [;]
i=1
N
< 2% Zn,’ntE [Hér’nt
i=1

where 0 < a < min{Kj,

2 0.9\ "
9>mt || + Cl 1-—
2 Ymax

g 0.9a ¥
+ G 208 Y e k(l— ' ) : (7)
Ymin —o Ymax
(2) Time-varying step-size: Let o, = ; +1 with ag > 0%, For
all t > LT,
N
i i |2
Z”tE [”9t -0 ”2]
i=1
N

_T i i 2
< 2etT ZﬂlT2+m[E |:||GZT2+m[ - <9)LT2+mt ”2]
i=1

=1
+C3<O{()E 2 +0{’.M )

+ - <C4 log? ( )+C5 Z 771<+C6> (8)

k=LT,

Here Tq, T, K1, Ky, C; — Cg are finite constants whose definitions
are given in Appendix A.1.

Since ! is uniformly bounded below by 7y, € (0, 1) from

Lemma 1, it is easy to see that the above bound holds for each
individual E[||6] — 6*|3]. To better understand the theorem, we
provide the following remark.
Remark 4. In Appendix D.2.1, we show that both € and (1—23%)
lie in the interval (0, 1). It is easy to show that € is monotomcaily
increasing for dmax and L, monotonically decreasing for 8 and
T min- AlSO,

t—T

0.9«
llm Z’I[H k(1 - )

aX

Lt TlJ

. 0.9a\t-T1—!
E 77T1+1+l<1 - )
t—o0

= lim
Ymax

I‘T]

0.9a\ t-T1—!
+ Z 77T1+1+l<1_ )

ymax
=111

. ¥max ( 0-9&') [}TI
< 1-— max
t—o00 0.9« Ymax _ t-Tq

A
3

Ty +1+

+ max m) =0.
t—T1+1
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Therefore, the summands in the finite-time bound (7) for
the fixed step-size case are exponentially decaying except for
the constant C,, which implies that limsup,_, . > , 7/E[||6] —
9*||§] < (,, providing a constant limiting bound. From
Appendix A, C, is monotonically increasing for ymax, Smax»> Pmax
and L, and monotonically decreasing for ymm,nmm and 8. In
Appendix D.2.2, we show that lim,_ o : Zk 1Mk = 0, which
implies that the finite-time bound (8) for the time-varying step-
size case converges to zero as t — oo. We next comment on
0.1 in the inequality defining «. Actually, we can replace 0.1
with any constant ¢ € (0, 1), which will affect the value of €
and the feasible set of o, with the latter becoming 0 < a<
min{Kj, An:jxgrz(
smaller is the fea51bfe set of «, though the feasible set is always
nonempty. For convenience, we simply pick ¢ = 0.1 in this paper;
that is why we also have 0.9 in (7). Lastly, we comment on «g
in the time-varying step-size case. We set ag > Vg‘“ for the
purpose of getting a cleaner expression of the finite-time bound.
For oy < y’“ax , our approach still works, but will yield a more
compllcated expressmn The same is true for Theorem 5. O

Technical Challenge and Proof Sketch As described in the
introduction, the key challenge of analyzing the finite-time per-
formance of the distributed stochastic approximation (1) lies
in the condition that the consensus-based interaction matrix is
time-varying and stochastic (not necessarily doubly stochastic).
To tackle this, we appeal to the absolute probability sequence
7, of the time-varying interaction matrix sequence and intro-
duce the quadratic Lyapunov comparlson function Z 1 ntE[||91
0*|| ]. Then, usmg the inequality Z, 1mE[llG’ 0*)13] < 22,=

E[||9’ 0)¢ || 1+ 2E[||(6 ) — 9*|| ], the next step is to find
the finite-time bounds of Zl L EL|6] — (0)¢13] (Lemmas 4, 7)
and E[||(0) — 49*|| ] (Lemmas 5, 8), respectively. The latter term
is essentially the “single—agent" mean-square error. Our main
analysis contribution here is to bound the former term for both
fixed and time-varying step-size cases.

3. Push-SA

The preceding section shows that the limiting state of
consensus-based distributed stochastic approximation depends
on 74, Which leads to a convex combination of the local equi-
libria of all the agents in the absence of communication, but
the convex combination is in general “uncontrollable”. Note that
this convex combination will correspond to a convex combina-
tion of the network-wise accumulative rewards in applications
such as distributed TD learning. In an important case when the
convex combination is desired to be the straight average, the
existing literature e.g. Doan et al. (2019, 2021) relies on doubly
stochastic matrices whose corresponding ., (1/N)1y. As
mentioned in the introduction, doubly stochastic matrices im-
plicitly require bi-directional communication between any pair of
neighboring agents; see e.g. gossiping (Boyd, Ghosh, Prabhakar,
& Shah, 2006; Liu, Mou, Morse, Anderson, & Yu, 2011) and
the Metropolis algorithm (Xiao, Boyd, & Lall, 2005). A popular
method to achieve the straight average target while allowing uni-
directional communication between neighboring agents is to ap-
peal to the idea so-called “push-sum” (Kempe, Dobra, & Gehrke,
2003), which was tailored for solving the distributed averaging
problem over directed graphs and has been applied to distributed
optimization (Nedi¢ & Olshevsky, 2015). In this section, we will
propose a push-based distributed stochastic approximation algo-
rithm tailored for uni-directional communication and establish its
finite-time error bound.

Each agent i has control over three variables, namely yi 0‘
and 6}, in which y! is scalar-valued with initial value 1, 6] can be
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arbitrarily initialized, and 6] = 6}. At each time t > 0, each agent
i sends its weighted current values @]y! and @} (6] + . AX; ); +
a;b'(X;)) to each of its current out-neighbors j € A, and updates
its variables as follows:

Yi+1 = Z ﬁ);jylt’ YB =1,
jenNi
iy = D of [B+ e (AL + H0x0) ] (9)
jeni
91 _ 9;4—1 91‘ _ éi
t+1 — y[ 1 0o— Yo

where ﬁ)? = 1/|N{‘|. It is worth noting that the algorithm is

distributed yet requires that each agent be aware of the number
of its out-neighbors.

Asymptotic performance of (9) with any uniformly strongly
connected neighbor graph sequence is characterized by the fol-
lowing theorem.

Theorem 4. Suppose that Assumptions 2-5 hold. Let {Oti}, iev,
be generated by (9) and 6* € RY be the unique equilibrium point
of the ODE

N
. 1 ;

where A and b' are defined in Assumption 2. If {G;} is uniformly
strongly connected, then 6; will converge to 6* in mean square for
alliev.

In this section, we define (§), = 1YV 6§ and (9), =
%ZL 6. To help understand these definitions, let W, be the
N x N matrix whose ij-th entry equals w; if j € N}, otherwise
equals zero. It is easy to see that each W, is a column stochastic
matrix whose diagonal entries are all positive. Then, 7; = %IN
for all ¢ > 0 can be regarded as an absolute probability sequence
of {W;}. Thus, the above two definitions are intuitively consistent
with (@), in the previous section.

Finite-time performance of (9) with any uniformly strongly
connected neighbor graph sequence is characterized by the fol-
lowing theorem. _

Let = [JA(X:)({0)¢ — (6)¢)ll2. In Appendix D.3, we show that
1{8): — (B)¢]l2 converges to zero as t — o0, so does ;.

Theorem 5. Suppose that Assumptions 2-4 hold and {G;} is uni-

formly strongly connected by sub-sequences of length L. Let {95},

i €V, be generated by (9) with a; = 2% and ag > &, Then,
there exists a nonnegative € < (1 — ﬁ)% such that forall t > T,

S et -]
<GE +G (aoé% +Ot(g]) + Coarg

+ 1<C1010g< )+C11ZMI<+C12> (11)

where T and C; —Cy, are finite constants whose definitions are given
in Appendix A.2.

In Appendix D.3, we show that lim;_, » % Zizl k= 0, which
implies that the finite-time bound (11) converges to zero as t —
oo. It is worth mentioning that the theorem does not consider the
fixed step-size case, as our current analysis approach cannot be
directly applied for this case.
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Proof Sketch and Technical Challenge Using the inequality for
any i

EL6; 1 — 6*113] < 2E[116{,; — (6)c[15] + 2E[I|(6): — 6*[13],

our goal is to derive the finite-time bounds of E[||(9[Jr1 — (é)t”%]
(Lemma 12) and E[||(§); — 9*||2] (Lemma 14), respectively.
Although this looks similar to the proof of Theorem 3, the deriva-
tion is quite different. First, the iteration of (6), is a single-agent
stochastic approximation (SA) plus a disturbance term (6); — (0)¢,
so we cannot directly apply the ex1st1ng single-agent SA finite-
time analyses to bound E[||(0); — 9*|| ]; instead, we have to
show that (9); — (9); will diminish and quantify the diminishing
“speed”. Second, both the proof of showing diminishing (6);—(0):
and derivation of bounding Zl , E[||9t+] G )[||§] involve a key
challenge: to prove the sequence {6;} generated from the Push-
SA (9) is bounded almost surely (Lemma 11). To tackle this, we
introduce a novel way to constructing an absolute probablllty se-
quence for the Push-SA as follows. From (9), 6, ; = Z wle +

OltA(Xt)y, Zk L WEYE).
t

that each matrix Wt = [w ] is stochastic, and there exists
a unique absolute probability sequence {7} for the matrix se-
quence {W;} such that ﬁt’ > fTmin for alli € vandt > 0,
with the constant 7y, € (0, 1). Most importantly, we show
two critical properties of {W,;} and {7;} in Lemma 10, namely

limoo([T_Ws) = A1y1) and % = 1 forall i,j € v and
t > 0, which have never been repotrted in the literature though

push-sum-based distributed algorithms have been extensively
studied.

% +at%], where &! = (@y))/( ). We show
t

Remark 5. It is worth mentioning that the approach for analyzing
push-SA here can be leveraged to establish a better convergence
rate for the subgradient-push algorithm proposed in Nedi¢ and
Olshevsky (2015); see a much more comprehensive development
of the novel push-sum based analysis tool and its application in
analyzing subgradient-push in Lin and Liu (2022). O

4. Concluding remarks

In this paper, we have established both asymptotic and non-
asymptotic analyses for a consensus-based distributed linear
stochastic approximation algorithm over uniformly strongly con-
nected graphs, and proposed a push-based variant for coping
with uni-directional communication. Both algorithms and their
analyses can be directly applied to TD learning. One limitation of
our finite-time bounds is that they involve quite a few constants
which are well defined and characterized but whose values are
not easy to compute. Future directions include leveraging the
analyses for resilience in the presence of malicious agents and
extending the tools to more complicated RL.

Appendix A. List of constants

In this appendix, we list all the constants used in our main
results, Theorems 3 and 5. They are finite and their expressions
do not affect the understanding of the theorems. Since their
expressions are quite long and complicated, we begin with the
following set of constants, based on which we will be able to
present the constants used in the theorems and the proofs of
the theorems in an easier way. We hope that this way can also
help the readers to better understand and follow our results and
analyses.

The first constant ¢; is defined as follows. Recall that € is given
in (6) as

— (1 + meax _

Amax

2L
TminB
28 max

) (1 + cAmax )2L
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2bmax

14 Amax)"-

A (14 oAmax)

g1 is defined as the unique solution for which e = 1 if ¢ = ¢;.
The following remark shows why ¢; uniquely exists.

Remark 6. From (6), it is easy to see that ¢ is monotonically in-
creasing for o« > 0. Define the corresponding monotonic function
as

2bmax nminﬂﬂ 2L
fla) ( + A 28, (1 + oAmax)
2bmax

(1 + aAmax )L-

max

Note that 0 < f(0) < 1 and f(+o00) =
unique solution ¢;. O

~4o00. Thus, f(e) = 1 has a

The other constants are defined as follows:

4b? 1 A L1
M2 (1 + otAmax)" — 1]2+2bmaxM

2
Amax Amax

L= (1+0oAmax )L

(A1)

3= (144 + 4A%,, + 9127(0)AZ , + 1687()Amaxbmax) 116* 113
48b2
+ 4”0*”% Azmax

max

binax ’
+7(e )A?nax[wz(A =+ 16" ||2>

max

+ 2 +2b?

max

48bmax <bmax + 1)2

Amax Amax

ML ubrn} (A2)
Alznax Amax
12b?
= VN bm<z+ o 380" ||2) (A3)
max
ts = 144 + 916A%, + 168Amaxbmax (A4)

fo = 4bhp@L’(1 + 0Amax 272 + 2bmax (1 + A~ (A5)
max
4812
7 = (148 4 916A% | + 168Amaxbma) 10713 + 2 + AZ“‘”

max

2
+ 1Sz(bmax +Amax||0*”2> + 12Amaxbmax

b 2
+ 89b?nax + 48Amaxbmax< =+ 1) (A.6)
Amax
g = 144 + 916A?nax + 168Amaxbmax + 144Amax hmax (A7)
bmax + 2
(9 =2 + (4+ ;.8)”9*”3 +48( max - ,U«max)
Amax
+ 152 (bmax + Mmax + Amax 16 ||2) + 12Amaxbmax
bmax + 1 2
+ 48Amax(bmax + lleax)<M + 1)
Amax
+ 89(bmax + N«max)z (A.8)

Here ftmax = (N + 1)AmaxCy, Where Cy is a finite number defined
in Lemma 11 which can be regarded as an upper bound of 2-norm
of each agent i's state 6; generated by the Push-SA algorithm (9).

A.1. Constants used in Theorem 3

. Ymax
K; = min s
1 i{l 09 }

Ky = 144 + 4A%  + 9127()A2 ., + 1687(0)Amaxbmax (A.9)
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ymax

Ci = == (8 exp {20AmaxT1} + 4 E[11(0)0 — 67|5]
Ymin
Ymax % bmax 2
+38 exp {2aAmaxT1} | 167112 +
Vmin Amax
G = 28 + Ymax ) 2083 Ymax
1—€  Vmin 0.9
286
Cy =
’T 1€
Ca= 2§7aoc7/max
Ymin
Cs = 200%a Ymax
Ymin
Vi *
Co = 2LT, = E[[1(6)ir, — 07113]
Ymin

T; is any positive integer such that for all t > Tj, there hold
t > (o) and 36‘mbmax7h+1)’max + Kyaymax < 0.1.

Remark 7. We show that T; must exist. From 0 < o <
min{K;, A"::’ff(a), Kz?/}lax}‘ it is easy to see that the feasible set
of o is nonempty and Kyaymax < 0.1. Since lim; n: = 0 by
Lemma 6 and t(e¢) < —Cloga by Assumption 3, there exists a
time instant T > —Cloga such that for any t > T, there hold
t > () and niq1 < (0.1 — Ko0¥max)/(364/Nbmax Vmax), Which
implies that T; must exist. O

T, is any positive integer such that for all ¢ > LT, there hold

. log2 0.1
ar <o, 2t(a) <t T(o )ot—r(ar) < mln{A':ngaX, {5Vmax} and

Csatfr(ozt)f(at)ymax + 36\/ﬁbmaxnt+1 Ymax < 0.1.

Remark 8. We explain why T, must exist. Since o, = t(f’TOl
is monotonically decreasing for t and 7(a;) < —Cloga; =
—Clogag+Clog(t+1) from Assumption 3, there exists a positive
S1 such that for any t > S;, we have oy < @ and t > 27(«;) for
any constant 0 < o < min{Kj, A,-,::thz(a)’ K;;r:)ax}' Moreover, it is
easy to show that

lim t — t(o;) > tlim t +Clogag — Clog(t + 1)
—00

t—o00

= +o0,

—Cay lOgO{O + Cay log(t + ])

lim t () < lim
(@ )ee—rta) = t—t(ar)+ 1

t—o00 t—o00

=0.

Then, there exists a positive S, such that for any t > S,, we have

(e )X —r(ar) < min{}%ﬂi, {S?/ﬁ}. In addition, since lim;_, o 1; =
0 from Lemma 6, when 7(a)ot—c(a) oy, there exists a
positive S3 such that for any t > S3, we have 7,47 < (0.1 —
C50t—(a)T(0 )Vmax )/ (36+/Nbmax Ymax)- Thus, T, must exist as we

can set T, = max{Sy, Sp,S3}. O

A.2. Constants used in Theorem 5

N
16 ~ 5 :
C, = 61-:[” ) " 0 + 0A(Xo)0g +“0b'(X0)H2]
1 i=1

E . AmaxC9 + bmax

Ce =
T 1—¢
G = 2AmaxC9 + 2bmax
Cio = 2N§9010Cymax
Ymin
Vmax

Cll = 20{0N7

Ymin
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- )/ ~
Cip = 2TN"2E[1140)5 — 0%113]
Ymin

Here ¢, is a positive constant defined as
€1 = infmin(W; - - - Wo1y)'.

t>0 ieV
From Corollary 2 (b) in Nedic and Olshevsky (2015) and the fact
that each W, is column stochastic, €; € [ﬁ, 1]. See Lemma 12
for more details. _

T is any positive integer such that for all t > T, there hold

2t(ar) <t e + T(o)ot—r(ands < ﬁ and (o )ott—r(e) <

log2 0.1 }

min{ ;==
{Amax’ {8 ¥max

Remark 9. From Lemma 13, lim;_ u; = 0. Then, using the
similar arguments as in Remark 8, we can show the existence
of . O

Appendix B. Discussion on Assumption 6

We contend that Assumption 6 has more general applications
than the previously known case.

First, as mentioned in Remark 3, there are at least two cases
which satisfy Assumption 6, yet cannot be directly handled by
the existing analysis tool, which was developed only for doubly
stochastic matrices. Case 1 is when the number of in-neighbors
of agents is unchanged over time. This case has an interesting
behavioral interpretation in fish biology, and has been adopted in
bio-inspired distributed algorithm design (Abaid & Porfiri, 2010).
Case 2 is when the interaction matrix changes arbitrarily over
time during an initial period, after which it finally becomes fixed.
As we describe below, Case 2 occurs naturally in certain multi-
agent systems.

Case 1 is mathematically equivalent to the situation when all
stochastic matrices share the same left dominant eigenvector,
which subsumes doubly stochastic matrices as a special case; thus
it could be analyzed by carefully choosing a fixed norm. There
may be different choices: one choice is to apply our time-varying
quadratic Lyapunov comparison function Y | 7/E[[|6; — 6*||2] to
the time-invariant case (i.e., 7/ does not change over time), which
leads to the weighted Frobenius norm defined in the appendix.

The extension to Case 1 just described may be straightforward,
but Case 2 is not. As we proved in Theorems 2 and 3, when the
interaction matrix arbitrarily changes over time for an initial pe-
riod, say of length T, and finally becomes a fixed matrix or enters
Case 1, all agents’ trajectories determined by (1) will converge in
mean square. Also, recall that the corresponding finite-time error
bounds in this case were derived using the “absolute probability
sequence” technique. Note that the existing techniques can only
be applied to analyze (1) after time T; when T is very large, such
an analysis is undesirable, since the focus and challenge here are
for “finite” time.

It is important to note that Case 2 provides a realistic model
for certain systems. Consider scenarios in which some agents
do not function stably and thus they communicate with their
neighbors sporadically for a certain period, leading to a time-
varying stochastic matrix. Such scenarios occur naturally when
there is unstable communication due to environmental changes
or movement of agents (e.g., robots or UAVs may need to move
into a new formation while continuing computation). After this
unstable period, which could be long, the whole system then
enters a stable operation status. This satisfies Case 2 and our
finite-time analysis can be applied to the whole process, no
matter how long the unstable period could be, as long as it is
finite. In addition to this example, Case 2 and our analysis can be
applied to certain scenarios in the presence of malicious agents.
Suppose the system is aware that a small subset of agents have
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potentially been attacked and are thus behaving maliciously. To
protect the system, the consensus interaction among the agents
can switch to resilient consensus algorithms such as LeBlanc
et al. (2013), Vaidya et al. (2012) in order to attenuate the effect
of malicious agents. In this situation, the resulting dynamics
of the non-malicious agents are in general characterized by a
time-varying stochastic matrix. After identifying and/or fixing the
malicious agents, which could be a very slow process, the system
can switch back to normal operation status. This example again
satisfies Case 2, and our analysis can be applied to the whole
procedure. As we mentioned in Remark 3, if some malicious
agents always exist, the non-malicious agents in general will not
converge, and thus a finite-time analysis is probably meaningless.
The non-convergence issue will be further explained in the next
subsection.

Appendix C. Distributed TD learning

In this section, we apply our distributed stochastic approxima-
tion finite-time analyses to distributed TD learning, as TD(A) is a
special cases of stochastic approximation. To this end, we first
introduce the following multi-agent MDP tailored for distributed
TD.

The multi-agent MDP can be defined by a tuple (S, {U}iey,
{R}icv, P, v, {G¢}r=0). Here S = {1,..., S} is the finite set of S
states and ' is the set of control actions for agent i. For each
agent i, R' : S x Y x & — R is the local reward function,
where U = [TY, ¢ is the joint control action space. In addition,
P:S xU xS — [0,1] denotes the state transition probability
matrix of the MDP, and y € (0, 1) is the discount factor. Given a
fixed policy, let P be of size S x S for convenience, and thus its
ij-th entry p¥ equals the probability from state i to state j under
the given policy. The multi-agent MDP then evolves as follows.
At each time t > 0, each agent i observes the current state
s¢ € S, takes action ul = pi(s;) € U/, and receive a corresponding
reward Ri(s;, u;, s;+1), where ! : S — ' is a function mapping
a state to a control action in ¢ and u, = [[L,u' € u. It
is worth emphasizing that in such a multi-agent setting, each
agent’s rewards and reward function are private information, and
thus cannot be shared with any other agents.

The discounted accumulative reward | : & — R associated
with the above multi-agent MDP is defined for each s € S as

J5) = E[ 3y 3 Rt sean) S0 = 5],
t=0

iey

(C.1)

which satisfies the Bellman equation (Sutton & Barto, 2018), i.e.,

s
J5)= Y[ Y cRs. )+ 7)) ses,
s'=1 iey

where ¢! > 0,i € V, is a set of convex combination weights. The
existing distributed RL algorithms all set ¢! = 1/N for alli € V
(e.g., Doan et al. 2019, Zhang, Yang, Liu, et al. 2018), and this is
why they require interaction matrices all be doubly stochastic.
We will show that ¢! = r/_ for alli € V for general stochastic ma-
trix sequences. Since for any doubly stochastic matrix sequence,
its absolute probability sequence is 7; = (1/N)1y, i.e,, nc’;c =1/N
for all i € V, our results generalize the existing results, e.g. Doan
et al. (2019, 2021). In Section 3, we will show how to achieve
the straight average reward, i.e.,, ¢’ = 1/N for all i € V, without
requiring doubly stochastic matrices.

When the number of the states is very large, the computation
of exact ] may be intractable. To get around this, as did in Tsitsik-
lis and Van Roy (1997), we use a low-dimensional linear function

J to approximate J. Specifically, the linear function approximator
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j takes the form j(s, 0) = Zl,le 9"¢f<, s € S, where each ¢; is a
fixed scalar function defined on the state space S, each 0k is the
associated weight, and K <« S. In other words, J is parameterized
by 6 € RX, with % being the kth entry of 6. To proceed, let
¢, € RS be the vector whose jth entry is ¢;, for all k € {1, ..., K},
let ¢(s) € RX be the vector whose jth entry is ‘f’f forall s € S, and
let @ € RS*K be the matrix whose ith row is the row vector ¢(i)"
and whose jth column is the vector ¢;, i.e, @ = [¢1,...,¢x] =
[¢(1), ..., (ST € RSK which implies ] = 6. The goal for
the multi-agent network is to find an optimal 6* with which
the distance between J and J is minimized, under the following
standard assumptions adopted in e.g. Doan et al. (2019), Srikant
and Ying (2019).

Assumption 7. All the rewards are uniformly bounded, i.e., there
exists a positive constant R such that |R'(s,s’)] < Rforalli € V
ands, s’ € S.

Assumption 8. The vectors ¢1, ..., ¢k are linearly independent,
i.e., @ has full column rank, and ||¢(s)|l, < 1for all s € S.

Assumption 9. The Markov chain that evolves according to the
transition probability matrix P is irreducible and aperiodic.

Under Assumption 9, let d € ]Rs_be the unique stationary
distribution associated with P, i.e, d"P =d'.

C.1. Distributed TD())

In this subsection, we make use of TD(A) to estimate 6* in a
distributed manner. Note that TD(0) can be applied in a similar
manner. Each agent i € V updates its own estimator of %, 6/, for
all time t € {0, 1, 2, ...} as follows:

6l =3 wiol +a (A(Xt) > wlel +6x)), (C2)
jenNi jeni
where X, = (s, St+1,2¢) is the Markov chain, with z; =

S heo(y ) K(se), and
AXe) = zey Plsern) — ¢(se) T, B'(Xe) =iz,

with r; being the reward for agent i at time t. It is worth empha-
sizing that the proposed TD()) algorithm is different from that
in Doan et al. (2021).

In the sequel, we will show that the update (C.2) with (C.3)
is a special case of (1) so that our analysis for (1) can be applied
here. To this end, let D = diag(d) € R>*S, where d is given right
after Assumption 9,

(C.3)

o0
A=@DU-D®, U=(1-2)) A(yP)*,
t=0
(o]
b'=®'DY (yAP)T, i€V,
t=0

(C.4)

where 1 € RS whose kth entry is r'* = Y°°_ pRi(k, s), and set
Amax = 1]—+Tyx and bpay = ﬁ, where R is given in Assumption 7.

Lemma 2. Let the sequences {0}}, i € V, be generated by (C.2) with
(C.3). If Assumptions 7-9 hold, so do Assumptions 2-4.

Lemma 2 implies that our analysis for (1) can be applied here.
From the proof of Theorem 1 in Tsitsiklis and Van Roy (1997), A in
(C.4) is a negative definite matrix, which implies that A+ AT is a
symmetric negative definite matrix. From Theorem 7.11 in Rugh
(1996), A is a Hurwitz matrix. Let omi, > 0 be the smallest
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eigenvalue of _E(A + A"). Thus, we can also choose P = [ in
Assumptlon 4 and use the Lyapunov function V((8);) = [|(0); —
9*||2 in the analysis, where 6* here is the limiting point of (C.2).
Using the same argument as in Theorem 2, we can show that 6*
is the unique equilibrium point of the ODE (5) with A and b being
defined in (C.4).

C.2. Push-TD().)

In this subsection, we propose a push-based distributed TD(})
algorithm and provide its finite-time error bounds. Note that
push-based distributed TD(0) can be applied in the similar man-
ner. Each agent i € V updates its variables at each time t > 0 as
follows:

yiﬂ = Z ﬁ)g}”ta yé) =1,
je./\fi
t+1 = Z w?@l +at( Xt)wJOJ +b’(X[)),
je,'\/"
i b
QH] N Yesr

where pY = 1/INM7|, X; = (5¢, Seq1, 2¢) is the Markov chain, with
Zkzo(yk Y=ke(si), A(X;) and bi(X;) are given in (C.3). Using
the same argument as in Theorem 4, we can show that 6* is the
unique equilibrium point of the ODE (10) with A and b’ being
defined in (C.4).
It is not hard to verify that Theorems 3 and 5 can be applied
to Distributed TD(A) and Push-TD(A) to obtain their finite-time
performance bounds, respectively.

Appendix D. Analysis and some proofs

In this appendix, we provide the analysis of our two algo-
rithms, (1) and (9), and the proofs of all the assertions in the
paper. We begin with some notation used in the analysis.

D.1. Notation

We use 0, to denote the vector in R" whose entries all equal
to 0’s. For any vector x € R", we use diag(x) to denote the n x n
diagonal matrix whose ith diagonal entry equals x'. We use || - ||
to denote the Frobenius norm. For any positive diagonal matrix
W e R™" we use ||A|lw to denote the weighted Frobenius norm
for A € R™"™, defined as ||Allw = ||W%A||F. It is easy to see that
Il - llw is a matrix norm. We use P(-) to denote the probability
of an event and E(X) to denote the expected value of a random
variable X.

D.2. Distributed stochastic approximation

In this subsection, we analyze the distributed stochastic ap-
proximation algorithm (1) and provide the proofs of the results
in Section 2. We begin with the asymptotic performance.
Proof of Theorem 1. Without loss of generality, let {G;} be

uniformly strongly connected by sub-sequences of length L. Note
that for any i € V,

0< 7Tmin||9tl

0):ll3 < nmmz 16! — (©):113

N
J
Z 16 — ()13,
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where 7, is defined in Lemma 1. From Lemma 7,

3 i
Jim Zn 16 = {0):3

i 29Ty 2
< lim &~ anm,nemmt — (O)rziim 13
56 a1
+ lim (aoe g ) —o. (D.2)
t-o0 1 —¢€ [*5—1L
Combining (D.1) and (D.2), it follows that for all i € V,
iMoo Tminl|0] — (0)¢ll3> = 0. Since mmin > 0 by Lemma 1,

lime o0 |10] — ()¢l =0foralliev. m

Proof of Theorem 2. From Theorem 1, all §}, i € V, will reach a
consensus with (), and the update of (0), is given in (4), which
can be treated as a single-agent linear stochastic approximation
whose corresponding ODE is (5). From Kushner (1983), Kushner
and Yin (1987)," we know that (8); will converge to 6* w.p.1,
which implies that 9" will converge to 6* w.p.1. In addition, from
Theorem 3-(2) and Lemma 6, lim_, o Z, 17r[E[||9‘ 9*||§] = 0.
Since nt" is uniformly bounded below by 7y, > 0, as shown in
Lemma 1, it follows that 9{ will converge to 6* in mean square
foralliev. =

We now analyze the finite-time performance of (1). In the
sequel, we use K to denote the dimension of each 6/, i.e., 6] € RX
forallie V.

D.2.1. Fixed step-size

We first consider the fixed step-size case and begin with
validation of two “convergence rates” in Theorem 3.
Lemma 3. Both e and (1 — % ) lie in the interval (0, 1).
Lemma 4. Suppose that Assumptions 1 and 2 hold and {G;} is

uniformly strongly connected by sub-sequences of length L. Then,
when a € (0, ¢1), we have for all t > (),

N
PREA R
i=1

where ¢, is defined in Appendlx A, € and ¢, are defined in (6) and
(A.1), respectively.

&
qt —
||2 <€ § ”mt |9 m[”z 1—¢

Lemma 5. Sup?ose that Assumptzons 2-4 and 6 hold. Then, when
0 < @ < min{ }, we have for any t > Ty,

Amaxt(@)’ KZVmax
E[[|(6)c1 — 67 3]

0.9 2
< (1= 22T g ) g3 4 2
Ymax Ymin 0.9%min
Ty
Y 0.9«
+ maxaQZ')tﬂ k(] — )
ymll'l Vmax
(1o Oy o
- Ymax 0~9ymin
t—Tq
% 0.9«
+ maxaQZﬂrﬂ k(l— )
Ymin Ymax

where Cq, {3, {4 and K, are defined in Appendix A.1, (A.2), (A.3) and
(A.9), respectively.

1 on page 1289 of Kushner and Yin (1987), it says that the idea in Kushner
(1983) can be adapted to get the w.p.1 convergence result.
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We are now in a position to prove the fixed step-size case in
Theorem 3.

Proof of Case (1) in Theorem 3. From Lemmas 4 and 5, we have
for any t > Ty,

N
> wE6; — 6713

i=1
< 2Zn E[|6] —

< 2e Zn,;tﬁ[ne:',.t — (O)mI13]

i=1

0)cl121+ 2E[)1(6); — 6* 2]

20 | 20i3vk, N (] 3 0-90!)”1 ¢
1—¢ O-gymin Ymax
t—Tq
Y, 0.9\ k
+ 2208 Z 77r+1—l<<1 - )
Ymin k=0 Ymax
N
. : 0.9a\t-T
<26 Bk, — O 131+ G (1 - )
i=1 lelaX
=Ty
0.9\ k
+ G+ Vimax 2084 Z ﬂt+17k(] - ) ,
¥Ymin k=0 Ymax

where C; and C; are defined in Appendix A.1. This completes the
proof. W

D.2.2. Time-varying step-size
In this subsection, we consider the time-varying step-size case
and begin with a property of ;.

Lemma 6. Suppose that Assumption 6 holds. Then, lim;_, o, n; =0
and im0 735 Y 4o Mk = 0.

To prove the theorem, we need the following lemmas.

Lemma 7. Suppose that Assumptions 1 and 2 hold and {G;} is
uniformly strongly connected by sub-sequences of length L. Given «;
and T, defined in Theorem 3, for all t > T,L,

Zn[H@'
N

qc=T, i i _
te § oLy 1010 m
i=1

which implies that

6 a1
Z”f“@l Ol = 7 (e0e™T +apun,)
N

qc—T, i i _
+e€ § Ty L+me ||9T2L+mt
i=1

where € and g are defined in (6) and (A.5), respectively.

165

qe—1

(6 ’ amt—i_aF(hZ;IMert)

IIZ_]

2
(9)T2L+m[ ” 29

2
() 1ym I35

Lemma 8. Under Assumptions 1-6, when the
0.1
' {5¥Vmax

. log2
T(Qt )0l —7(e) < MIN{

)
AlTlaX

we have for any t > T,L,

T,L
E[l1(0) — 67|2] < 2= Y

t me

ZE((0) 7,0 — 071151
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C7(¥0C10g( ) pR—
+ Ymax + aols Ymax ZaI=T,L ,

t Ymin Ymin t
where T, is defined in Appendix A.1, and &4, {5, {7 are defined in
(A.3), (A4), (A.6), respectively.

We are now in a position to prove the time-varying step-size
case in Theorem 3.

Proof of Case (2) in Theorem 3. From Lemmas 7 and 8, for any
t > T,L, we have

N
anE[ne; —6*|13]
<2 Z TiE[6] —

N

qe—T,
=2et7? ZﬂTzL+me[||9T2L+m[ -
i=1

01131+ 2E[[1(6): — 61121

(O)7y10m 131

2L y, Vinax it M
+ SN (0)yn — 67 2] + 200 La o =L
ymm min t
2¢700C log”(£ 5) 2
+ ymax + §6 (0506%2 +a Qr ; )
t ¥min 1—¢ r L

N
qc—T: i i 2
<260y ml g [Il%m — Oy me ||2]
i=1

a1
+ G5 (O[()E 2 +Q(D]L)

+ - <C410€ ( )+C5 Z 771<+C6)

k=LT,

where C3 — Cg are defined in Appendix A.1. This completes the
proof. H

Remark 10. For distributed SA algorithms, finite-time perfor-
mance analysis essentially boils down to two parts, namely bo-
unding the consensus error and bounding the “single-agent”
mean-square error. For the case when consensus interaction
matrices are all doubly stochastic, the consensus error bound
can be derived by analyzing the square of the 2-norm of the
deviation of the current state of each agent from the average
of the states of the agents. With consensus in the presence
of doubly stochastic matrices, the average of the states of the
agents remains invariant. Thus, it is possible to treat the average
value as the state of a fictitious agent to derive the mean-
square consensus error bound with respect to the limiting point.
More formally, this process relies on two properties of a doubly
stochastic matrix W, namely that (1) 1TW = 1T, and (2) if
Xer1 = Wxq, then X1 — (1Txe1)1l2 < o2(W)llxe — (17x0)1]I2
where o,(W) denotes the second largest singular value of W
(which is strictly less than one if W is irreducible). Even if
the doubly stochastic matrix is time-varying (denoted by W;),
property (1) still holds and property (2) can be generalized as
in Nedi¢, Olshevsky, and Rabbat (2018). Thus, the square of the
2-norm |[x, — (17x,)1]l3 is a quadratic Lyapunov function for
the average consensus processes. Doubly stochastic matrices in
expectation can be treated in the same way by looking at the
expectation. This is the core on which all the existing finite-time
analyses of distributed RL algorithms are based. However, if each
consensus interaction matrix is stochastic, and not necessarily
doubly stochastic, the above two properties may not hold. In fact,
it is well known that quadratic Lyapunov functions for general
consensus processes X,y = S;x;, with S; being stochastic, do not
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exist (Olshevsky & Tsitsiklis, 2008). Here we appeal to the idea of
quadratic comparison functions for general consensus processes.
This was first proposed in Touri (2012) and makes use of the
concept of absolute probability sequences. We provide a general
analysis method and results that subsume the existing finite-
time analyses for single-timescale distributed linear stochastic
approximation (Lemmas 4, 5, 7 and 8) and TD learning as special
cases. O

D.3. Push-SA

In this subsection, we analyze the push-based distributed
stochastic approximation algorithm (9) and provide the proofs of
the results in Section 3.

Let W, be the matrix whose ij-th entry is w

Zj 1 W (‘9, + OltA(Xt)@j + o b (X;))

Y. Then, from (9),

o;

91 | = f+1 —
o (41 Yesr
N & o b
= Z }ilt,k +atA(Xt) +a[ ([)
j=1 —1 Wt Yt ylt yl[ y]t
N i :
6! b’ X
Z 0 + a AX,) - + (x:) (D.3)
= Y
where @) = > w‘y)‘,ky,( and W, = [@}] is a row stochastic matrix,
k= wt [
e, Y @ = ZZ,JV “f’;;/% =1, forall i
Let ©; = [0}, ...,6N]". Then (D.3) can be written as
B 07 /!
Or = Wi |:@[ + o e AXe)"
COWIA
(LX) /¥t
+a o } (D.4)
(BNX)T /v

Since each matrix VV[ = [17);]] is stochastic, from Lemma 1,
there exists a unique absolute probability sequence {77;} for the
matrix sequence {W;} such that fr[" > fTmin forallie Vandt > 0,
with the constant 7, € (0, 1).

Lemma9. Suppose that {G.} is uniformly strongly connected. Then,
Ht W will converge to the set {vlT : v € RN} exponentially fast
ast —> Q.

Lemma 10. Suppose that {G;} is uniformly strongly connected.
Then, (1T \Wy)! = y,i(n,; Wi and % = L time o (LW =
t+1 s S

L foralli,jevands> 0.

Lemma 11. The sequence {®,} generated by (D.4) is bounded
almost surely, i.e., Co = sup, ||@,||r < oo almost surely.

From (9), by using the definition of (§), = N Z, 19' and

Ve = ﬁ Zi:] 9;, we have

o N
(e = (B + nAXO) + le b'(X:)
o N

= (0) + AX)(O)c + ﬁ;bl(xf)wtm, (D.5)
where p; = AX:)(0): — A(X;)(0);. From Lemma 11, we have

1{0)¢ll2 < maxey ||9§||2 < (y for all t > 0, which implies that
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1@)ell < NGy and e = lipdla = [ACK)®
Mmax> Where pmax = (N + 1)AnaxCo.

O, =

Lemma 12. Suppose that Assumptions 2 and 5 hold and {G;}
is umformly strongly connected by sub-sequences of length L. Let
= infi>o mm,ev(Wt WOIN) Forallt >0andie v,

O)ell

N

8 _ ~ . .
= — €10 + c0AlXo)g + ob (Xo)ll2 + tbimax
L

E AmaxC9 + bmax

1641 —

(OlOEt/2 + a"é") + (xtAmaxC(?s

€1 1—¢€
where €, > 0 and € € (0, 1) satisfy €; > ﬁ and € < (1— ﬁ)m.
Letmma 13. limHOC we = limes o loellz = 0 and lim_, o
Dk Mk _ 1 Z ok ll2
Lot — jim,_.o, Zisglt2 — 0
Lemma 14.  Suppose that Assumptions 2-4 hold and o« =
t+1 When Mt + (o )or—r(ar) 88 § % and (o )o—r(q) =<
min{ 122 }, we have fort > T,

Amax’ §8 Vmax

E[[[(6)r41 — 65]

T - oaroC log (H])
< Gy — 073+ e S
t + 1 Ymin t+1 Ymin
1
Ymax Z[[:T Hi
+ag e ==L
Ymin t+1

where T is defined in Appendix A.2, g and ¢q are defined in (A.7)
and (A.8), respectively.

We are now in a position to prove Theorem 5.

Proof of Theorem 5. Note that SN EN6L, -6t 15 <23
E[||9t+1 6): 12 ]+21_VE[||( )¢ — 0*|12]. From Lemmas 12 and 14,
we have for any t > T,

ZE[nem o3

16
< ¢ Z B + 0t0A(X0)0 + erob'(Xo)l2]
1 i=1

2TN
+ 20tAmaxCo + 20 bpax + —— Vimax

E[[(6); — 0% 3]
¥Ymin

gt/?
( +ope ])

Vmax th:T M
Ymin t

EAmaxCG + bmax
€1 1—¢€
2N Zo0oC logz(é)

ymax

+ 2010N

t Vmin
< Gt + Co (w02 +apg ) + Cot

1
+ - <C1010g ( >+Cn ZM1+C12>

This completes the proof. W

We next show the asymptotic performance of (9).

Proof of Theorem 4. From Lemma 12, since € € (0, 1) and
o = “0 , it follows that lim,_, o, ||0t+] ()¢ ll2 = 0, which implies

that all 9t'+1, i € v, will reach a consensus with (9),. The update of

(6), is given in (D.5), which can be treated as a single-agent linear
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stochastic approximation whose corresponding ODE is (10). In
addition, from Theorem 5 and Lemma 13, lim_, Zf’zl E[||9t"+1 —
9*||§] =0, it follows that Oti 1 will converge to 6* in mean square
foralliev. m

Remark 11. Finite-time analysis for such a push-based dis-
tributed algorithm is challenging. Almost all, if not all, the existing
push-based distributed optimization works build on the analysis
in Nedi¢ and Olshevsky (2015); however, that analysis assumes
that a convex combination of the entire history of the states of
each agent (and not merely the current state of the agent) is
being calculated. This assumption no longer holds in our case. To
obtain a direct finite-time error bound without this assumption,
we appeal to a new approach to analyze our push-based SA
algorithm by leveraging our consensus-based analyses to estab-
lish direct finite-time error bounds for stochastic approximation.
Specifically, we tailor an absolute probability sequence for the
push-based stochastic approximation algorithm and exploit its
properties (Lemma 10). W
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