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a b s t r a c t

This paper studies a distributed state estimation problem for both continuous- and discrete-time
linear systems. A simply structured distributed estimator {comprising interconnected local estimators}
is first described for estimating the state of a continuous and multi-channel linear system whose
sensed outputs are distributed across a fixed multi-agent network. The estimator is then extended
to non-stationary networks whose graphs switch according to a switching signal. The estimator is
guaranteed to solve the problem, provided a network-widely shared high gain condition achieving
a form of spectrum separation is satisfied. As an alternative to sharing a common gain across the
network, a fully distributed version of the estimator is also studied in which each agent adaptively
adjusts a local gain, though the practicality of this approach is subject to a robustness issue common
to adaptive control. A discrete-time version of the distributed state estimation problem is also studied,
and a corresponding estimator based again on spectrum separation, but not high gain, is proposed for
time-varying networks. For each scenario, it is explained how to construct the estimator so that the
state estimation errors in the local estimators all converge to zero exponentially fast at a fixed but
arbitrarily chosen rate, provided the network’s graph is strongly connected for all time. The proposed
estimators are inherently resilient to abrupt changes in the number of agents and communication links
in the inter-agent communication graph upon which the algorithms depend, provided the network is
redundantly strongly connected and redundantly jointly observable.

© 2023 Published by Elsevier Ltd.
1. Introduction

With the growing interest in sensor networks and multi-agent
ystems, the problem of estimating the state of a dynamical
ystem whose measured outputs are distributed across a network
as been under study in one form or another for a number of
ears (Dorfler, Pasqualetti, & Bullo, 2013; Han, Trentelman, Wang,
Shen, 2018, 2019; Khan & Jadbabaie, 2011; Kim, Shim, & Cho,
016; Li, Phillips, & Sanfelice, 2018; Mitra & Sundaram, 2018;
lfati-Reza, 2009; Olfati-Reza & Shamma, 2005; Park & Martins,

✩ This work was supported in part by the Air Force Office of Scientific
Research, United States under award number FA9550-23-1-0175 and by the
National Science Foundation, United States under Grant No. 2230101. The
material in this paper was partially presented at the 58th IEEE Conference
on Decision and Control, December 11–13, 2019, Nice, France. This paper was
recommended for publication in revised form by Associate Editor Luca Schenato
under the direction of Editor Christos G. Cassandras.
∗ Corresponding author.

E-mail addresses: wang6127@purdue.edu (L. Wang), ji.liu@stonybrook.edu
J. Liu), brian.anderson@anu.edu.au (B.D.O. Anderson), as.morse@yale.edu
(A.S. Morse).
https://doi.org/10.1016/j.automatica.2023.111421
0005-1098/© 2023 Published by Elsevier Ltd.
2017; Wang, Liu, & Morse, 2019; Wang & Morse, 2018; Wang,
Morse, Fullmer, & Liu, 2017; Xiao, Boyd, & Lall, 2005).

Depending on the nature of the system to be estimated, the
distributed estimation problem has continuous- and discrete-
time versions. In its simplest form, the continuous-time version
of the distributed state estimation problem starts with a network
of m > 1 agents labeled 1, 2, . . . ,m which are able to receive
information from their neighbors. Neighbor relations are charac-
terized by a directed graph N, which may or may not depend on
time, whose vertices correspond to agents and whose arcs depict
neighbor relations. Each agent i senses a signal yi ∈ Rsi , i ∈ m ∆

=

{1, 2, . . . ,m} generated by a continuous-time system of the form
ẋ = Ax, yi(t) = Cix, i ∈ m and x ∈ Rn. It is typically assumed that
N is strongly connected and that the system is jointly observable.
It is invariably assumed that each agent receives certain real-time
signals from its neighbors although what is received can vary
from one problem formulation to the next. In all formulations,
the goal is to devise local estimators, one for each agent, whose
outputs are all asymptotically correct estimates of x. The local
estimator dynamics for agent i are typically assumed to depend
only on the pair (Ci, A) and certain properties of N. The problem
is basically the same in discrete time, except that rather than the
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ontinuous-time model just described, the discrete-time model
(τ + 1) = Ax(τ ), yi(τ ) = Cix(τ ), i ∈ m, x ∈ Rn is considered
instead. More precise problem formulations will be given later.

1.1. Background

The study of distributed state estimation for linear systems
can be dated back to the so-called distributed Kalman filter prob-
lem (Olfati-Saber, 2005), which involves system and measure-
ment noise in the problem formulation and has been widely
studied for years (Khan & Jadbabaie, 2011; Olfati-Saber, 2007).
Most available Kalman filter based approaches (Khan & Jadbabaie,
2011; Olfati-Reza, 2009; Olfati-Reza & Shamma, 2005; Olfati-
Saber, 2005, 2007) require the agents to both share ‘‘signal infor-
mation’’, which can be measurements or local state estimates, and
fuse certain ‘‘structural information’’, which forms the covariance
or information matrix of the nominal centralized Kalman filter for
each agent. For the problem just described, the existing literature
based on only ‘‘signal information’’ sharing can be classified into
two categories, namely continuous- and discrete-time estima-
tors/observers, except for our earlier work of Wang et al. (2017),
Wang, Morse, and Liu (2022) in which a hybrid observer was
proposed for a continuous-time linear system.

Continuous-time distributed estimators have recently appe-
ared in Han et al. (2018, 2019), Kim et al. (2016), Wang, Liu,
nd Morse (2019), Wang and Morse (2017, 2018). By recast-
ng and then solving the distributed estimation problem as a
lassical decentralized control problem, the resulting estimator
ecomes capable of estimating the state at a pre-assigned expo-
entially fast rate, assuming N is a constant strongly connected
raph (Wang & Morse, 2018). The work of Kim et al. (2016)
eeks to propose a distributed estimator for a continuous-time
ystem at the expense of certain design flexibility. This is done,
n essence, by exploiting the A-invariance of the unobservable
paces of the pairs (Ci, A); this in turn enables one to ‘‘split’’
he local estimators into two parts, one based on conventional
pectrum assignment techniques applied to the observable part
f the state at each local estimator and the other based on
onsensus among the unobserved parts of the state at each local
stimator. The two parts are interacting but the use of a high
ain serves to simplify the stability issue because of a split in
he spectrum arising from the design of the estimator. The idea
as been further developed in Han et al. (2018, 2019), Kim,
ee, and Shim (2020). Specifically, these latter references start to
ove beyond a restriction in Kim et al. (2016) permitting only
onstant, undirected, connected neighbor graphs to be addressed.
he work of Han et al. (2018, 2019) extends the result of Kim
t al. (2016) to the case when the neighbor graph is constant,
irected, strongly connected, while requiring that one chooses
ains to ensure that certain LMIs hold which are difficult to grasp
ntuitively. In Lee and Shim (2020), motivated by a distributed
east squares problem, a modified algorithm is proposed to deal
ith measurement noise constant, undirected, connected neigh-
or graphs. A distributed adaptive algorithm has recently been
roposed in Kim et al. (2020) which allows agents to join or leave
he network over time, provided the resulting agent network
lways remains jointly connected and joint detectable. An evident
isadvantage of all these existing continuous-time distributed
stimators is that they require a somewhat complicated gain
omputation procedure, and partially because of this, do not, at
east not directly, admit discrete-time counterparts.

Discrete-time distributed estimators have been recently stud-
ed in Açikmeşe, Mandić, and Speyer (2014), Doostmohammadian
nd Khan (2013), Khan and Jadbabaie (2014), Mitra, Richards,
agchi, and Sundaram (2019), Mitra and Sundaram (2018), Park
nd Martins (2012a, 2012b, 2017), Rego et al. (2021), Ugri-
ovskii (2013). Notable among them is the paper (Park & Martins,
2

017). Published prior to the appearance of the early contin-
ous time paper (Wang & Morse, 2018) applying to the same
lass of distributed systems, Park and Martins (2017) solves the
iscrete-time distributed estimation problem for jointly observ-
ble, linear systems with constant, directed, strongly connected
eighbor graphs. It builds on the idea of recasting the estimation
roblem as a classical decentralized control problem. Although
he observer is limited to discrete-time systems, it has been
roved possible to make use of the ideas in Park and Martins

(2017) to obtain, as noted earlier, a distributed observer for
continuous-time systems (Wang & Morse, 2018), but still for
constant neighbor graphs. There are however other discrete-time
distributed observers/estimators which do not admit continuous-
time extensions, illustrating that passage between discrete-time
and continuous-time thinking may be harder than intuition ini-
tially suggests for distributed estimation problems. By expanding
on earlier work in Mitra and Sundaram (2018), the papers (Mitra
et al., 2019; Mitra, Richards, Bagchi, & Sundaram, 2022) provide
a procedure for constructing a centralized designed distributed
observer for time-varying neighbor graphs. It requires the sharing
of an index that records the age of the information across the net-
work, and the agents are designed to act in a sequential manner
to do state estimation. The resulting algorithm, which is tailored
exclusively to discrete-time systems, requires a network-wide
initialization step that serves to sort the agents in a specific order.
Thereby it can deal with state estimation under assumptions that
are weaker than strong connectivity.

Different approaches to the distributed state estimation prob-
lem are summarized in Table 1. It turns out that the current paper
is the first paper that can deal with both continuous-time and
discrete-time systems while ensuring exponential convergence
under time-varying neighbor graphs.

The contribution of this paper rests on the following three
distinguishing features, differentiating it and highlighting it as a
development of earlier work:

• The paper describes a simply structured, unified approach to
the distributed state estimation problem and to design and
analyze the corresponding distributed estimators for both
continuous- and discrete-time linear systems with possibly
time-varying graphs. It is termed the ‘‘split-spectrum’’ ap-
proach because it ‘‘splits’’ the system spectrum into disjoint
subsets corresponding to observable and unobservable sub-
spaces. In continuous time, this is achieved by a high gain
mechanism, but in discrete-time by a different mechanism,
viz. the adoption of two integrally related sampling rates.
Though the mechanisms are instrumentally different, their
purpose is fundamentally the same. It is termed ‘unified’
because the approach is shown to work for both continuous-
and discrete-time linear systems over both constant and
time-varying neighbor graphs.

• A fully distributed version of the estimator is separately
studied where each agent can adaptively adjust a local gain,
with simpler gain computation procedure and analysis com-
pared with Kim et al. (2020).

• Exponential convergence of the error dynamics is ensured
with an arbitrarily assigned convergence rate. A great ad-
vantage of our methodology is that the designs and algo-
rithms developed under a noiseless assumption are then
necessarily tolerant of some level of noise, simply because
we take care to ensure an exponential convergence.

It is assumed in this paper that the neighbor graph of the
network is always strongly connected. From the perspective of
the real world, requiring the underlying network to be strongly
connected ‘‘at every time step’’ is an assumption that will occur
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Table 1
Comparison of different approaches to design distributed estimators.
Nature of approach Reference Continuous-time

systems
Discrete-time
systems

Exponential
convergence

Time-varying
graphs

Kalman Filter Based
Approach

Khan and Jadbabaie (2011),
Olfati-Reza (2009), Olfati-Saber
(2005, 2007)

✗ ✓ ✗ ✗

Olfati-Reza and Shamma (2005) ✓ ✗ ✗ ✗

Observability Decomposition
Based Approach

Mitra and Sundaram (2018) ✗ ✓ ✓ ✗

Mitra et al. (2019, 2022) ✗ ✓ ✓ ✓

Decentralized Control
Based Approach

Park and Martins (2012a, 2012b,
2017)

✗ ✓ ✓ ✗

Wang and Morse (2017, 2018) ✓ ✗ ✓ ✗

Split-Spectrum Based
Approach

Han et al. (2018, 2019), Kim et al.
(2016), Wang, Liu, and Morse
(2019)

✓ ✗ ✓ ✗

Wang, Liu, Morse, and Anderson
(2019)

✗ ✓ ✓ ✗

This work ✓ ✓ ✓ ✓
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in a great many (though obviously not all) cases, and as such, is
deserving of a separate study in its own right. The extension to
more general time-varying graphs is one future direction. It may
not be conceptually difficult, however intricate the details may
be.

The paper first describes the split-spectrum based distributed
stimator for the case when the system dynamics are continuous
ith a stationary network in Section 2.1, and with associated
ackground analysis is given in Section 2.2. The estimator is then
xtended to deal with non-stationary networks whose neighbor
raphs switch according to a switching signal with a fixed dwell
ime or a variable dwell time with prescribed average, the ideas
eing detailed in Section 2.3. In the case when the intercon-
ection among the agents can always be modeled using doubly
tochastic matrices {e.g., undirected graphs with the Metropolis
eights (Xiao et al., 2005)}, it is shown in Section 2.3 that the
stimator functions correctly even if the neighbor graph switches
rbitrarily, provided the graph is always strongly connected. The
stimators mentioned above all rely on the existence of a suf-
iciently large, network-widely shared gain. A fully distributed
ersion of the estimator is then studied in Section 2.4 where each
gent can adaptively adjust a local gain. The adaptive estimator
s subject to a robustness issue common to adaptive control. The
roposed estimators, except for the adaptive one, are inherently
esilient to abrupt changes in the number of agents and com-
unication links in the inter-agent communication graph upon
hich the algorithms depend, an issue which is discussed in
ection 2.5. Then the split-spectrum based estimator design is
xtended to the case when the system dynamics is discrete in
ection 3 for both constant and time-varying neighbor graphs.
imulation validation is provided in Section 4.
The material in this paper was partially presented in Wang,

iu, and Morse (2019), Wang, Liu, Morse, and Anderson (2019),
ut this paper presents a more comprehensive treatment of the
ork. Specifically, the paper crafts continuous-time distributed
stimators for two types of non-stationary networks in Sec-
ion 2.3 and a fully distributed adaptive estimator in Section 2.4,
hich were not included in Wang, Liu, and Morse (2019), Wang,
iu, Morse, and Anderson (2019).

. Continuous-time distributed estimator

We are interested in a network of m > 0 {possibly mobile}
autonomous agents labeled 1, 2, . . . ,m which are able to receive
information from their ‘‘neighbors’’, where by a neighbor of agent
i is meant any other agent within agent i’s reception range. We
3

write Ni(t) for the labels of agent i’s neighbors at time t ∈ [0,∞)
nd always take agent i to be a neighbor of itself. Neighbor
elations at time t are characterized by a directed graph N(t) with
vertices and a set of arcs defined so that there is an arc in

(t) from vertex j to vertex i whenever agent j is a neighbor of
gent i at time t . Since each agent i is always a neighbor of itself,
(t) has a self-arc at each of its vertices. Each agent i can sense a
ontinuous-time signal yi ∈ Rsi , i ∈ m ∆

= {1, 2, . . . ,m}, where

i = Cix, i ∈ m (1)
ẋ = Ax (2)

and x ∈ Rn. We assume throughout that Ci ̸= 0, i ∈ m,
nd that the system defined by (1) and (2) is jointly observable;
.e., with C =

[
C ′

1 C ′

2 · · · C ′
m
]′, the matrix pair (C, A) is

bservable. Joint observability is equivalent to the requirement
hat

⋂
i∈m Vi = 0, where Vi is the unobservable space of (Ci, A);

.e. Vi = ker
[
C ′

i (CiA)′ · · · (CiAn−1)′
]′. As is well known, Vi

s the largest A-invariant subspace contained in the kernel of Ci.
eneralizing the results that follow to the case when (C, A) is only
etectable is quite straightforward and can be accomplished us-
ng well-known ideas. However, the commonly made assumption
hat each pair (Ci, A), i ∈ m, is observable, or even just detectable,
s very restrictive, grossly simplifies the problem and is unneces-
ary. The assumption Ci ̸= 0 is not necessary provided the more
elaxed problem is properly formulated. The assumption is made
or the sake of simplicity. The problem of interest is to construct
suitably defined family of linear estimators in such a way so

hat no matter what the estimators’ initial states are, each agent
btains an asymptotically correct estimate xi of x in the sense
hat the estimation error xi(t)− x(t) converges to zero as fast as
xp(−λt) does, where λ is an arbitrarily chosen but fixed positive
umber.
This section proposes the estimator first, and then analyzes the

stimator beginning with the condition that the neighbor graph
(t) is constant. A time-varying neighbor graph N(t) is then con-
idered in which changes occur according to a switching signal.
ater, a fully distributed algorithm based on use of multiplicative
daptive gain control is developed.

.1. The estimator

The estimator to be considered consists of m local or private
stimators of the form for each i ∈ m,

˙i = (A+ KiCi)xi − Kiyi − gPi

(
xi −

1
mi(t)

∑
xj

)
(3)
j∈Ni(t)
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heremi(t) is the number of labels inNi(t), g is a suitably defined
positive gain common to all local estimators, each Ki is a suitably
defined matrix, and for each i ∈ m, Pi is the orthogonal projection
on the unobservable space of (Ci, A). The term (A+ KiCi)xi − Kiyi
s designed to enable each agent i to be able to recover the
bservable part of the state by itself, and the term −gPi(xi −
1

mi(t)

∑
j∈Ni(t)

xj) is for the purpose of utilizing information from
its neighbors to recover the unobservable part of the state. It
will be shown that with this design, the spectrum of the system
matrix can be split into two subsets. Details on how to design the
parameters Ki and g will be provided in the following.

2.1.1. The error dynamics
This subsection provides the error dynamics of the proposed

estimator. It will be shown that the spectrum of the error system
matrix can be split into two subsets based on the observability of
each agent with Ki defined properly.

First note from (3), that the state estimation error ei = xi − x
satisfies

ėi = (A+ KiCi)ei − gPi

⎛⎝ei −
1

mi(t)

∑
j∈Ni(t)

ej

⎞⎠ (4)

Consequently the overall error vector e =
[
e′1 . . . e′m

]′ satisfies
ė = (Ā− gP(Imn − S̄(t)))e (5)

where Ā = block diag {A + K1C1, A + K2C2, . . . , A + KmCm}, P =

lock diag {P1, P2, . . . , Pm}, S̄(t) = S(t)⊗ In with S(t) = D−1
N(t)A

′

N(t).
Here Ik is the k × k identity matrix, and AN(t) is the adjacency
matrix of N(t) and DN(t) is the diagonal matrix whose ith diagonal
entry is the in-degree of N(t)’s ith vertex. Note that N(t) is the
graph1 of S ′(t) and that the diagonal entries of S ′(t) are all positive
because each agent is a neighbor of itself. The matrix S(t) is
evidently a stochastic matrix.

Proposition 1. The spectrum of the error system matrix Ā −

gP(Imn − S̄) splits into two subsets. One subset contains the union
of certain subsets of the eigenvalues associated with the ith local
estimator, i ∈ m, these being able to be arbitrarily positioned
by choice of the Ki and independent of g. The second subset is
independent of the choice of the Ki, and depends, though not to the
extent of being able to be arbitrarily positioned, on g.

We remark that in the proof below, we will explain how to
choose the Ki to ensure that the associated set of eigenvalues has
degree of stability λ (ensuring an estimation error decay at least
as fast as exp(−λt)), while subsequently we will explain how to
choose g to ensure stability of the remaining part of the spectrum
with the same minimum exponential decay rate.

Proof of Proposition 1. The definitions of Ki and g begin with the
specification of a desired convergence rate bound λ > 0. To begin
with, each matrix Ki is defined as follows. For each fixed i ∈ m,
write Qi for any full rank matrix whose kernel is the unobservable
space of (Ci, A) and let C̄i and Āi be the unique solutions to C̄iQi =

Ci and QiA = ĀiQi respectively. Then the matrix pair (C̄i, Āi) is
observable. A matrix K̄i can be chosen to ensure that the conver-
gence of exp{(Āi + K̄iC̄i)t} to zero is as fast as the convergence of
exp(−λt) to zero is. There are several well-documented ways to
do this {e.g, spectrum assignment algorithms or Riccati equation
solvers}, since each pair (C̄i, Āi) is observable. Having chosen such

1 The graph of an n × n matrix M is that directed graph on n vertices
possessing a directed arc from vertex i to vertex j if mij ̸= 0 {p. 357, Horn
nd Johnson (1985)}.
4

K̄i, Ki is then chosen to be Ki = Q−1
i K̄i where Q−1

i is a right inverse
or Qi. The definition implies that

i(A+ KiCi) = (Āi + K̄iC̄i)Qi (6)

nd that (A + KiCi)Vi ⊂ Vi. The latter, in turn, implies that there
s a unique matrix Ai which satisfies

(A+ KiCi)Vi = ViAi (7)

where Vi is a basis matrix2 for Vi.
Next we show what defining the Ki in this way accomplishes.

Note that the subspace V = V1 ⊕ V2 ⊕ · · · ⊕ Vm is Ā - invariant
because (A + KiCi)Vi ⊂ Vi, i ∈ m. Next, let Q = block diag
{Q1,Q2, . . . ,Qm} and V = block diag {V1, V2, . . . , Vm} where Vi is
a matrix whose columns form an orthonormal basis for Vi. Then Q
is a full rank matrix whose kernel is V and V is a basis matrix for V
whose columns form an orthonormal set. It follows that P = VV ′,
that QP = 0, and that

Q Ā = ĀVQ (8)
ĀV = V Ã (9)

where Ã = block diag {A1, A2, . . . , Am} and

ĀV = block diag {Ā1 + K̄1C̄1, . . . , Ām + K̄mC̄m}. (10)

Let V−1 be any left inverse for V and let Q−1 be that right
inverse for Q for which V−1Q−1

= 0. Then

Ā− gP(Imn − S̄(t)) = T
[

ĀV 0
ÂV (t) AV (t)

]
T−1 (11)

where ÂV (t) = V−1(Ā − g(Imn − S̄(t)))Q−1 and AV (t) = Ã −

gV ′(Imn − S̄(t))V . Here T =
[
Q−1 V

]
. It is easy to check that

T−1
=

[
Q ′ V

]′.
According to (11), the spectrum of Ā−gP(Imn− S̄) is equivalent

to the union of the spectrum of ĀV and AV .

Recall that the K̄i have been already been chosen so that
ach matrix exponential exp{(Āi + K̄iC̄i)t} converges to zero as

fast as exp(−λt) does. Because of this and the fact that ÂV (t)
is a bounded matrix, to ensure that for each fixed τ , the state
transition matrix Φ(t, τ ) converges to zero as fast as exp(−λt)
oes, it is enough to choose g so that the state transition matrix
f AV (t) converges to zero at least as fast as exp(−λt) does. The
equisite condition on g is provided below for three different
eighbor graph connectivity assumptions.

.2. Constant neighbor graph

This subsection focuses on the case when the neighbor graph
(t) is a constant graph N. The following result can be obtained.

heorem 1. For any given positive number λ, if the neighbor graph
is fixed and strongly connected, and the system defined by (1) and

2) is jointly observable, there are matrices Ki, i ∈ m such that for g
ufficiently large, each estimation error xi(t)−x(t) of the distributed
stimator defined by (3), converges to zero as t → ∞ as fast as
xp(−λt) converges to zero.

The proof of the theorem involves making use of the following
esult, with all proofs being contained in Appendix A. In partic-
lar, the proof of Proposition 2 makes use of the properties of
trong connectivity of the neighbor graph and joint observability
f the system.

roposition 2. −V ′(Imn−S̄)V is a continuous-time stability matrix.

2 For simplicity, we assume that the columns of Vi constitute an orthonormal
basis for V in which case P = V V ′ .
i i i i
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.3. Switching neighbor graph

In the sequel the problem is studied under the assumption that
(t) changes according to a switching signal with a fixed dwell
ime or a variable dwell time with fixed average. To characterize
he assumed time dependence of N(t), let G = {G1,G2, . . . ,Gng }

enote the set of all directed, strongly connected graphs on m
vertices which have self-arcs at all vertices; here ng is the number
of graphs in G. In some situations, the switching signals always
have consecutive discontinuities separated by a value which is
no less than a fixed positive real number τD. It is called a dwell
time (Morse, 1993). In certain situations, the switching signals
may occasionally have consecutive discontinuities separated by
less than τD, but for which the average interval between consec-
utive discontinuities is no less than τD. This leads to the concept
of an average dwell-time. With τD and δ fixed define Savg for the
et of all piecewise-constant switching signals σ : [0,∞) →

1, 2, . . . , |G|} satisfying δσ (t0, t) ≤ δ0 +
t−t0
τD

. Here δσ (t0, t)
denotes the number of discontinuities of σ in the open interval
(t0, t). The constant τD is called the average dwell-time and δ0 the
chatter bound (Hespahna & Morse, 1999). By the set of all time-
varying neighbor graphs with average dwell-time τD is meant the
set {Gσ : σ ∈ Savg}. Note that switching according to a dwell time
is a special case of switching according to an average dwell time.
In the following, it is assumed that N ∈ {Gσ : σ ∈ Savg}.

The problem to which this subsection is addressed is this. For
fixed averaged dwell-time τD and the chatter bound δ0, devise
a procedure for crafting m local estimators, one for each agent,
so that for each neighbor graph N ∈ {Gσ : σ ∈ Savg}, all m
state estimation errors converge to zero exponentially fast at a
prescribed rate.

The estimator to be considered is still the same as the es-
timator described in (3), with the exception that g is chosen
differently. The following result can be derived.

Theorem 2. For any fixed positive numbers τD and λ, there exists
a positive number g∗ with the following property. For any value
of g ≥ g∗, any neighbor graph N ∈ {Gσ : σ ∈ Savg}, if the
system defined by (1) and (2) is jointly observable, there are matrices
Ki, i ∈ m such that, each state estimation error ei = xi−x, i ∈ m of
the distributed estimator defined by (3) converges to zero as t → ∞

as fast as exp(−λt) does.

The proof of Theorem 2 depends on the following lemma.

Lemma 1. Let M1,M2, . . . ,M|G| be a set of n × n exponentially
stable real matrices associated with a set G = {G1,G2, . . . ,G|G|} of
directed strongly connected graphs with self-arcs at all vertices. Let
σ denote the switching signal with average dwell time τD governing
the selection of a graph from G. Then for any n × n real matrix N
and positive number λ there is a positive number g∗, depending on
τD for which, for each σ ∈ Savg and g ≥ g∗, all solutions to

ẋ = (N + gMσ )x (12)

converge to zero as fast as exp(−λt) does.

The proofs of Lemma 1 and Theorem 2 can be found in Ap-
pendix A.

In the sequel, the problem is studied for a certain type of
switching neighbor graphs. It turns out that if the stochastic
matrices of undirected neighbor graphs are chosen to be doubly
stochastic, there exist estimators which can deal with arbitrary
switching signals, and the notion of dwell times ceases to be
relevant. The estimator to be considered is again the same as (3),

with the exception that g is chosen differently.

5

Theorem 3. For any fixed positive number λ, there exists a positive
number g∗ with the following property. For any value of g ≥ g∗, any
time-varying neighbor graph N(t), if the system defined by (1) and
(2) is jointly observable, the neighbor graph N(t) is undirected and
connected, and the stochastic matrix S(t) of graph N(t) is doubly
stochastic, there are matrices Ki, i ∈ m such that each state
estimation error xi(t) − x(t) of the distributed observer defined by
(3), converges to zero as t → ∞ as fast as exp(−λt) converges to
zero.

The proof of Theorem 3 can be found in Appendix A.
Given that Ã has eigenvalues which are a subset of those of A,

it is seen that the effect of large g is to force the instantaneous
value of the eigenvalues of AV (t) well to the left of those of Ã,
and indeed the same for the Lyapunov exponent. This is a spectral
separation idea — consensus dynamics within the estimator are
faster than those of the original system.

2.4. Distributed estimator with adaptive gains

Obviously it may be disadvantageous to share a gain across
the whole network, and here we aim to design a simple adaptive
distributed estimator to get gains for each estimators in a dis-
tributed way. The estimator for each agent i still has the form (3)
while each agent i has its own gain gi which is obtained by

ġi =
⏐⏐⏐V ′

i

∑
j∈Ni

1
mi

(xj − xi)
⏐⏐⏐2
2
, i ∈ m (13)

here | · |2 denotes the two norm of a matrix and gi(0) is nonneg-
tive but otherwise arbitrary. Key questions arising are whether
he gi are bounded, and whether the matrices Ki can be chosen in
the same way as previously. We have in fact with Ki chosen as in
he proof of Proposition 1:

heorem 4. For any neighbor graph N ∈ {Gσ : σ ∈ Savg}, if
the system defined by (1) and (2) is jointly observable, and the gain
is defined by (13), there are matrices Ki, i ∈ m such that all the
gi are bounded, and each state estimation error ei = xi − x of the
distributed estimator defined by (3) asymptotically converges to zero
as t → ∞.

The proof of Theorem 4 can be found in Appendix A.
As with any adaptive control algorithm, we must recognize

that there are fundamental challenges that can arise in practice
and have the potential to undermine the approach (Anderson &
Gevers, 1998): these include the need to work with models of
plants that may be very accurate but are virtually never exact;
the inability to know, given an unknown plant, whether a desired
control objective is practical or impractical, and the possibility of
transient instability, or extremely large signals occurring before
convergence. Thus, for this paper, our preference is to stick with
a given g instead of using an adaptive algorithm.

2.5. Resilience

The concept of a passively resilient algorithm is proposed
in Wang et al. (2022). By a passively resilient algorithm for a
distributed process is meant an algorithm which, by exploiting
built-in network and data redundancies, is able to continue to
function correctly in the face of abrupt changes in the number of
vertices and arcs in the inter-agent communication graph upon
which the algorithm depends. All the proposed continuous-time
distributed estimators, except for the adaptive one, are inher-
ently resilient to these abrupt changes provided the network
is redundantly strongly connected and redundantly jointly ob-
servable, with a careful gain picking before the algorithm starts.
Details can be found in Section 5 of Wang et al. (2022). The
same resilience property is also possessed by the discrete-time
distributed estimators to be developed in the next section.
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. Discrete-time distributed estimator

In this section, a discrete time version of the distributed esti-
ator problem is studied. The estimator which solves this prob-

em in discrete time is described. Of central concern is the achiev-
ng of the split spectrum property, which underpins a stability
uarantee for the estimator. High gain is not the answer: in
ontinuous time, this produced a split spectrum (with some very
ast modes). The discrete-time analogy rests on having part of the
pectrum in the estimator achieved by gains Ki as in continuous-
ime and partly determined by the dynamics creating consensus
mong the components of local estimated states corresponding to
nobserved components of the underlying system state, with the
ssociated time scale significantly faster than the single time scale
ssociated with the underlying system dynamics. The second
ime scale is made possible through the introduction of a faster
ampling rate.
We are interested in the same time-varying network as used

or the continuous-time linear system and which is characterized
y the neighbor graph N(t). Each agent i can sense a discrete-time
ignal yi(τ ) ∈ Rsi at event times τT , τ = 0, 1, 2, . . . where T is a
positive constant; for i ∈ m and τ = 0, 1, 2, . . .

yi(τ ) = Cix(τ ), x(τ + 1) = Ax(τ ) (14)

and x ∈ Rn. We assume throughout that N(t) is strongly con-
nected, and the system defined by (14) is jointly observable.

Each agent i is to estimate x using a dynamical system whose
output xi(τ ) ∈ Rn is to be an asymptotically correct estimate of
x(τ ) in the sense that the estimation error xi(τ )−x(τ ) converges to
zero as τ → ∞ as fast as λτ does, where λ is an arbitrarily chosen
but fixed positive number3 less than 1. To accomplish this it is
assumed that the information agent i can receive from neighbor
at event time τT is xj(τ ). It is further assumed that agent i can

also receive certain additional information from its neighbors at
a finite number of times between each successive pair of event
times; what this information is will be specified below.

3.1. The estimator

In this section it will be assumed that each agent’s neighbors
do not change between event times. In other words, for i ∈ m,

i(t) = Ni(τT ), t ∈ [τT , (τ + 1)T ), τ = 0, 1, 2, . . .

With this assumption, the estimator to be considered consists of
m private estimators, one for each agent. The estimator for agent
i is of the form

xi(τ + 1) = (A+ KiCi)x̄i(τ )− Kiyi(τ ) (15)

where x̄i(τ ) is an ‘‘averaged state’’ computed recursively over q
steps during the real time interval [τT , (τ+1)T ) using the update
equations

zi(0, τ ) = xi(τ ) (16)
zi(k, τ ) = (I − Pi)zi(k− 1, τ )+

1
mi(τ )

Pi
∑

j∈Ni(τT )

zj(k− 1, τ ), k ∈ q (17)

x̄i(t) = zi(q, τ ) (18)

ere mi(τ ) is the number of labels in Ni(τT ), q is a suitably
efined positive integer, further detail being given below, q =

1, 2, . . . , q}, and Pi is the orthogonal projection on the unob-
ervable space of (Ci, A). Each matrix Ki is defined as explained

3 For the type of observer to be developed, finite-time convergence is not
ossible.
6

in the next paragraph. Meanwhile, we note that the estimators
incorporate two time scales. An agent’s local estimator obtains
data from its neighbors at a rate q times that at which it obtains
measurement data from the underlying system.

As described in Section 2.1, for fixed i ∈ m, write Qi for
any full rank matrix whose kernel is the unobservable space of
(Ci, A), and let C̄i and Āi be the unique solutions to C̄iQi = Ci
and QiA = ĀiQi respectively. Let λ be a positive value bounded
by 1. Then the matrix pair (C̄i, Āi) is observable. Thus by using
a standard spectrum assignment algorithm, a matrix K̄i can be
chosen to ensure that the convergence of (Āi + K̄iC̄i)τ to zero as
τ → ∞ is as fast as the convergence to zero of λτ . Having chosen
such K̄i, Ki is then defined to be Ki = Q−1

i K̄i where Q−1
i is a right

nverse for Qi. To explain what needs to be considered in choosing
, which is a rough analog of the gain g of the continuous-time
olution, it is necessary to describe the structure of the ‘‘error
odel’’ of the overall estimator. This will be done next.

.1.1. The error dynamics
For i ∈ m, write ei(τ ) for the state estimation error ei(τ ) =

i(τ )− x(τ ). In view of (15),

i(τ + 1) = (A+ KiCi)ēi(τ )

here ēi(τ ) = x̄i(τ ) − x(τ ). Moreover if ϵi(k, τ )
∆
= zi(k, τ ) −

(τ ), k ∈ {0, 1, . . . , q} then for k ∈ q,

i(0, τ ) = ei(τ )

ϵi(k, τ ) = (I − Pi)ϵi(k− 1, τ )+
1

mi(τ )
Pi
∑

j∈Ni(τT )

ϵj(k− 1, τ)

ēi(τ ) = ϵi(q, τ )

because of (16)–(18). It is possible to combine these m subsys-
ems into a single system. Paralleling Section 2.1.1 let e = col
e1, e2, . . . , em}, define Ā = block diag {A+K1C1, A+K2C2, . . . , A+
mCm}, P = block diag {P1, P2, . . . , Pm} and write S(τ ) for the
tochastic matrix S(τ ) = D−1

N(τT )A
′

N(τT ) where AN(τT ) is the adja-
ency matrix of N(τT ) and DN(τT ) is the diagonal matrix whose ith
iagonal entry is the in-degree of N(τT )’s ith vertex. Let ē(τ ) = col
ē1(τ ), ē2(τ ), . . . , ēm(τ )} and ϵ(k, τ ) = col{ϵ1(k, τ ), ϵ2(k, τ ), . . . ,
m(k, τ )}. Then e(τ + 1) = Āē(τ ) and

(0, τ ) = e(τ )
ϵ(k, τ ) = (Imn − P(Imn − S̄(τ )))ϵ(k− 1, τ ), k ∈ q

ē(τ ) = ϵ(q, τ )

here S̄(τ ) = S(τ )⊗ In. Clearly ē(τ ) = (Imn − P(Imn − S̄(τ )))qe(τ ),
o

(τ + 1) = Ā(Imn − P(Imn − S̄(τ )))qe(τ ) (19)

ur immediate aim is now to explain why for q sufficiently large,
he time-varying matrix Ā(Imn − P(Imn − S̄(τ )))q appearing in (19)
s a discrete-time stability matrix for which the product

(τ ) =
τ∏

s=1

Ā(Imn − P(Imn − S̄(s)))q (20)

onverges to zero as τ → ∞ as fast as λτ does.
To begin with, we explore the property of matrix Ā(Imn −

(Imn − S̄(τ )))q.

roposition 3. The spectrum of the error system matrix Ā(Imn −

(Imn − S̄(τ )))q splits into two subsets. One subset contains the
nion of certain subsets of the eigenvalues associated with the ith
ocal estimator, i ∈ m, these being able to be arbitrarily positioned
y choice of the Ki and independent of q. The second subset is
ndependent of the choice of the Ki and depends, though not to the
xtent of being able to be arbitrarily positioned, on q.
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roof of Proposition 3. As described in Section 2.1, note that
he subspace V = V1 ⊕ V2 ⊕ · · · ⊕ Vm is Ā - invariant because
(A+KiCi)Vi ⊂ Vi, i ∈ m. Next, let Q = block diag {Q1,Q2, . . . ,Qm}

nd V = block diag {V1, V2, . . . , Vm} It follows that P = VV ′, (8)
nd (9). Also as before, (A+ KiCi)Vi = ViAi. Moreover

Q (Imn − P(Imn − S̄(τ )))q = Q (21)
(Imn − P(Imn − S̄(τ )))qV = V (V ′S̄(τ )V )q (22)

Note that (21) holds because QP = 0. To understand why (22) is
true, note first that (Imn−P(Imn− S̄(τ )))V = V (In̄−V ′(Imn− S̄(τ ))V )
because P = VV ′; here n̄ = dim(V). But In̄ − V ′(Imn − S̄(τ ))V =

V ′S̄(τ )V because V ′V = In̄. Thus (22) holds for q = 1; it follows
by induction that (22) holds for any positive integer q.

Using (8), (9), (21), and (22), one obtains the equations

Q Ā(Imn − P(Imn − S̄(τ )))q = ĀVQ (23)
Ā(Imn − P(Imn − S̄(τ )))qV = VAV (τ ) (24)

where

AV (τ ) = Ã(V ′S̄(τ )V )q (25)

ith Ã = block diag {A1, A2, . . . , Am}. These equations imply
hat4

¯ (Imn − P(Imn − S̄(τ )))q = T
[

ĀV 0
ÂV (τ ) AV (τ )

]
T−1 (26)

with T =
[
Q−1 V

]
and ÂV (τ ) = V−1Ā(Imn− P(Imn− S̄(τ )))qQ−1.

According to (26), the spectrum of Ā(Imn − P(Imn − S̄(τ )))q is
equivalent to the union of the spectrum of ĀV and AV (τ ).

3.2. Time-varying neighbor graph

The following result can be obtained when the neighbor graph
s time-varying but strongly connected.

heorem 5. For any given λ with |λ| < 1, if the neighbor graph
(τ ) is strongly connected, and the system defined by (14) is jointly

observable, there are matrices Ki, i ∈ m such that for sufficiently
large q, each estimation error xi(τ )−x(τ ) of the distributed estimator
defined by (15)–(18), converges to zero as τ → ∞ as fast as λτ

converges to zero.

The proof of the theorem involves studying the transition
matrix and making use of the following results, with all proofs
being contained in Appendix B.

Lemma 2. Let M be an m × m row stochastic matrix which has a
strongly connected graph. There exists a diagonal matrix ΠM whose
diagonal entries are positive for which the matrix LM = ΠM −

M ′ΠMM is positive semi-definite; moreover LM1 = 0 where 1 is
the m-vector of 1s. If, in addition, the diagonal entries of M are all
positive, then the kernel of LM is one-dimensional.

Proposition 4. For each fixed value of τ ,

(V ′S̄(τ )V )′R(τ )(V ′S̄(τ )V )− R(τ ) < 0 (27)

where R(τ ) is the positive definite matrix, R(τ ) = V ′(ΠS(τ ) ⊗ In)V .

Remark 1. It should be noticed that the computation of certain
gains (g for the continuous-time case, and q for the discrete-time
case) requires a centralized design. Besides this, all other design
steps are distributed. Even though the computation of certain
gains requires going over all possible strongly connected directed
graphs on m vertices, which is a computationally intensive step,
a clear distinction needs to be drawn between the computations
required for designing the algorithm, and those required to run
it. In design, we can afford to do more computations.

4 The notation Â and A are different from the two defined in Section 2.
V V
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Fig. 1. The neighbor graph.

4. Simulations

This section provides simulations to illustrate the state estima-
tion performance for both continuous and discrete time systems.
The neighbor graph in some simulations will switch back and
forth between Figs. 1(a) and 1(b). On occasion, it can serve to
model a connection failure happening between agent 1 and agent
3 randomly.

4.1. Continuous dynamics

Consider the three channel, four-dimensional, continuous-
time system described by the equations ẋ = Ax, yi = Cix, i ∈
{1, 2, 3}, where

A =

⎡⎢⎣ 0 1 0 0
−1 0 0 0
0 0 0 1
0 0 −2 0

⎤⎥⎦
and Ci is the ith unit row vector in R1×4. Note that A is a matrix
with eigenvalues at ±1j, and ±1.4142j. While the system is
jointly observable, no single pair (Ci, A) is observable. The local
observer convergence rate is designed to be at least with rate
λ = 1. The first step is to design Ki as stated in Section 2.1. This
is to control the spectrum of the matrix ĀV as defined in (11).

For agent 1:

A1 =

[
0 −1
1 0

]
, Q1 =

[
0 1 0 0
1 0 0 0

]
, V1 =

[
0 0 1 0
0 0 0 1

]′

,

K1 =
[
−5 −5 0 0

]′
For agent 2:

A2 =

[
0 −1
1 0

]
, Q2 =

[
−1 0 0 0
0 1 0 0

]
, V2 =

[
0 0 1 0
0 0 0 1

]′

,

K2 =
[
5 −5 0 0

]′
For agent 3:

A3 =

[
0 −2
1 0

]
, Q3 =

[
0 0 0 1
0 0 1 0

]
, V3 =

[
1 0 0 0
0 1 0 0

]′

,

K3 =
[
0 0 −5 −4

]′
Two cases are considered. First, suppose the neighbor graph

N(t) is fixed as shown in Fig. 1(a). The system considered includes
input white noise with zero mean, that is ẋ = Ax + v where
E[v(t)] = 0, E[v(t)v′(s)] = 0.52δ(t − s). With g = 10 obtained
using (30), the real part of the right most eigenvalue of AV is less
than −1. With randomly chosen initial state values, traces of this
simulation are shown in Fig. 2(a) where x1i and x1 denote the first
components of xi and x respectively. Moreover, the norm of the
estimation error is plotted in Fig. 2(b) from which we can see that
t is exponentially convergent with the approximate rate λ = 1.

Second, suppose the neighbor graph N(t) is time-varying and
witching back and forth between Figs. 1(a) and 1(b) according
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Fig. 2. The trajectory under time-varying neighbor graphs.

Fig. 3. The indicator function.

Fig. 4. The trajectory under time-varying neighbor graphs.

to the indicator function in Fig. 3. That is, when the function
alue is 1, the neighbor graph is Fig. 1(a), and when the function
alue is 0, the neighbor graph is Fig. 1(b). It is arranged that the
verage dwell time is τD = 0.0369 for this simulation. With zero

measurement noise the corresponding solution trajectories for x3i
and x1 are shown in Fig. 4(a) and the norm of the estimation error
is shown in Fig. 4(b).

4.2. Discrete dynamics

The following simulations are intended to illustrate how to
pick the integer parameter q of the observer. Consider the three
channel, four-dimensional, discrete-time system described by the
equations x(τ + 1) = Ax(τ ), yi = Cix, i ∈ {1, 2, 3}, where

and Ci are the same as described in Section 4.1. The observer
onvergence rate is designed to be λ = 0.5. The first step is also
o design Ki as stated in Section 3.1. For each agent i, matrices Ai,
i, and Vi remain the same as stated in Section 4.1.
For agent 1: K1 =

[
0.5 0.94 0 0

]′
For agent 2: K2 =

[
−0.94 0.5 0 0

]′
For agent 3: K3 =

[
0 0 0.5 1.94

]′
Consider the case when the neighbor graph N is constant

as in Fig. 1(a). With randomly chosen initial state values and
8

Fig. 5. The indicator function.

Fig. 6. The trajectory of the norm of the estimation error for systems.

q = 6 obtained using (59), which leads to a spectral radius
of Ã(V ′S̄V )6 less than 0.5, the norm of the estimation error is
plotted in Fig. 6(a) from which we can see that it is exponentially
convergent with the rate λ = 0.5. The error traces are bounded
by the curve 50× 0.5τ .

Consider the case when the neighbor graph is switching be-
tween Fig. 1(a) and (b) according to Fig. 5. The system considered
as input white noise v which satisfies v ∼ N (0, 0.12), that is
(τ + 1) = Ax(τ )+ v. The norm of the estimation error is shown
n Fig. 6(b) with the same value of q.

. Concluding remarks

The distributed state estimation problem is studied when
he neighbor graph is time-varying. It has been shown that,
ach agent can estimate the state exponentially fast with a pre-
ssigned convergence rate for both continuous-time and discrete-
ime systems.

The distributed state estimators developed in both Sections 2
nd 3 rely on an especially useful observation about distributed
stimator structure first noted in Kim et al. (2016) and sub-
equently exploited in Han et al. (2018) and Wang, Liu, and
Morse (2019). That is to split the system spectrum into disjoint
subsets corresponding to unobservable and observable subspaces.
Just how much further this idea can be advanced remains to
be seen. Generalization on the constraint of strong connectivity
for the neighbor graph can be studied in future work. Certainly
the synchronous switching upon which the local estimators in
Section 3 depend can be relaxed by judicious application of the
mixed matrix norm discussed here. This generalization will be
addressed in future work.
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ppendix A. Proofs for continuous-time distributed estimator

roof of Proposition 2. Recall S̄ = S ⊗ In. Since S is a stochastic
atrix, S ′ must have a spectral radius of 1 and an eigenvalue
t 1. Moreover, since N is the graph of S ′ and N is strongly

connected by assumption, S ′ is irreducible {Theorem 6.2.24, Horn
and Johnson (1985)}. Thus by the Perron–Frobenius Theorem
there must be a positive vector π such that S ′π = π . Without
loss of generality, assume π is normalized so that the sum of
its entries equals 1; i.e., π is a Perron vector (Horn & Johnson,
1985). Let Π be that diagonal matrix whose diagonal entries are
the entries of π . Then Π1 = π where 1 is the m-vector of all
1s. Let L = 2Π − ΠS − S ′Π . Clearly L is a symmetric matrix and
1 = 0.
We claim that the geometric multiplicity of L’s eigenvalue at 0

s one. To establish this claim, note first that every nonzero entry
f S ′ is a nonzero entry of ΠS + S ′Π because S ′ is a nonnegative
atrix and Π is a diagonal matrix whose diagonal entries are all
ositive. Moreover since 2(Im−Π ) is a nonnegative matrix, every
onzero entry of S ′ is also a nonzero entry of 2Im − L = 2(Im −

Π )+ΠS+S ′Π . Thus the graph of S ′ must be a spanning subgraph
of the graph of 2Im − L so the graph of 2Im − L must be strongly
connected. Therefore 2Im − L must be irreducible. Note that the
row sums of 2Im − L all equal 2. Since 2Im − L is nonnegative,
its infinity norm is 2 so its spectral radius is no greater than
2 {Theorem 5.6.9, Horn and Johnson (1985)}. Moreover 2 is an
eigenvalue of 2Im−L. Thus by the Perron–Frobenius Theorem, the
geometric multiplicity of this eigenvalue is one. It follows that the
geometric multiplicity of the eigenvalue of L at 0 is also one.

We claim that L is positive semi-definite. To establish this
claim, note that L can also be written as L = D − Â where D is a
diagonal matrix whose entries are the diagonal entries of L and Â
is the nonnegative matrix Â = D− L. As such, L is the generalized
Laplacian (Godsil & Royle, 2001) of that simple undirected graph
G whose adjacency matrix is the matrix that results when the
nonzero entries aij in Â are replaced by ones. Since L can also be
written as

L =
∑
(i,j)∈E

aij(ui − uj)(ui − uj)′

where ui is the ith unit vector and E is the edge set of G, L is
positive semi-definite as claimed.

To proceed, set

H = block diag {π1In1 , π2In2 , . . . , πmInm} (28)

where ni = dimVi and note that VH = (Π ⊗ In)V . Since
((S − Im)′ ⊗ In)(Π ⊗ In) = ((S − Im)′Π ) ⊗ In it must be true that
(V ′((S − Im)⊗ In)V )′H = V ′(((S − Im)′Π )⊗ In)V and thus that

H(V ′(Imn − S̄)V )+ (V ′(Imn − S̄)V )′H

= V ′(L⊗ In)V (29)

Observe that this is a Lyapunov equation for the positive definite
function z ′Hz. Therefore to show that −V ′(Imn − S̄)V is a stability
matrix, it is enough to show that V ′(L⊗ In)V is positive definite.

Since L is positive semi-definite, so must be L ⊗ In. Therefore
V ′(L ⊗ In)V is at least positive semi-definite. Suppose z ′V ′(L ⊗

In)Vz = 0 where z = col {z1, z2, . . . , zm} and zi ∈ Rdim(Vi).
To show that V ′(L ⊗ In)V is positive definite, it is enough to
show that z = 0. Since L’s eigenvalue at 0 has multiplicity one,
ker L = span {1}; therefore ker(L ⊗ In) = column span 1 ⊗ In.
The hypothesis z ′V ′(L⊗ In)Vz = 0 implies that (L⊗ In)Vz = 0 so
Vz ∈ ker(L ⊗ In). Therefore Vizi = Vjzj, i, j ∈ m. But because of
joint observability,

⋂
i∈m Vi = 0 so Vizi = 0, i ∈ m. Thus zi =

0, i ∈ m so z = 0 implying that V ′(L ⊗ In)V is positive definite.
Therefore −V ′(Imn − S̄)V is a continuous-time stability matrix as
claimed.
9

Proof of Theorem 1. Recall that the state estimation error
satisfied (4). The overall error dynamic is defined as (5). According
to (11), the spectrum of Ā − gP(Imn − S̄) is equivalent to the
nion of the spectrum of ĀV and AV . Since the spectrum of Āi +
¯iC̄i, i ∈ m, is assignable with K̄i, to show for g sufficiently large
hat Ā− gP(Imn − S̄) is a continuous-time stability matrix with a
rescribed convergence rate as large as λ, it is enough to show
hat for g sufficiently large, the matrix AV = Ã− gV ′(Imn − S̄)V is
continuous-time stability matrix with a prescribed convergence
ate as large as λ.

To show that exp{(Ã − gV ′((Im − S) ⊗ In)V )t} can be made
o converge to zero as fast as exp(−λt) does by choosing g
ufficiently large, we exploit (29). Note in particular that

H(λI + AV )+ (λI + AV )′H
H(λI + Ã)+ (λI + Ã)′H − gV ′(L⊗ In)V

ince V ′(L ⊗ In)V is positive definite, by picking g sufficiently
arge, H(λI + Ã) + (λI + Ã)′H − gV ′(L ⊗ In)V will be negative
efinite implying that λI + AV is a stability matrix and thus that
˜ −gV ′(Imn− S̄)V is a stability matrix for which exp{(Ã−gV ′(Imn−
¯)V )t} converges to zero as fast as exp(−λt) does. In other words,
ny value of g will have the desired property provided

≥

λmax

(
H(λI + Ã)+ (λI + Ã)′H

)
λmin (V ′(L⊗ In)V )

(30)

here λmax(.) and λmin(.) are the largest eigenvalue and the
mallest eigenvalue of a symmetric matrix respectively.

Proof of Lemma 1. 5 By hypothesis, each Mi is exponentially
stable. Thus there are positive constants ci > 1 and λi such that

∥exp(Mit)∥ ≤ ciexp(−λit) (31)

for any i ∈ {1, 2, . . . , |G|}. Here ∥·∥ is any given submultiplicative
norm on Rn×n. Let

c = max
i∈{1,2,...,|G|}

ci, and λ∗
= min

i∈{1,2,...,|G|}
λi.

Fix λ > 0 and let g be any gain satisfying

g ≥
τD(λ + ∥N∥c)+ ln c

τDλ∗
(32)

We claim that for any number τ , and any switching signal σ ∈

Savg, the transition matrix of gMσ , namely Φσ (t, τ ), converges to
ero as fast as exp(−αt) does where

α = λ + ∥N∥c (33)

To understand why this is so, by (31),

∥Φσ (t, τ )∥ ≤ cδσ (τ ,t)exp(−gλ∗(t − τ )) (34)

where δσ (τ , t) is the number of switching between (τ , t). By (32),
exp(gλ∗) ≥ c

1
τD exp(α). From this and the fact that δσ (τ , t) ≤

δ0 +
t−τ
τD

,

Φσ (t, τ )∥ ≤ cδ0c
t−τ
τD exp(−gλ∗(t − τ ))

≤ cδ0−
τ
τD exp(−α(t − τ )).

Thus, the claim is true.
In view of (12) and the variation of constants formula,

x(t) = Φσ (t, 0)x(0)+
∫ t

0
Φσ (t, µ)Nx(µ)dµ (35)

5 The symbols used in this proof such as g , c and λ∗ are generic and do not
have the same meanings as the same symbols do when used elsewhere in this
paper.
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s ∥Φσ (t, τ )∥ ≤ c exp(−αt) for all τ and σ ∈ Savg,

x(t)∥ ≤ c exp(−αt)∥x(0)∥ +∫ t

0
c exp(−α(t − µ))∥N∥∥x(µ)∥dµ

y multiplying by exp(αt) on both sides, one obtains exp(αt)
∥x(t)∥ ≤ c∥x(0)∥+

∫ t
0 ∥N∥c exp(αµ)∥x(µ)∥dµ. From this and the

Bellman–Gronwall Lemma there follows

exp(αt)∥x(t)∥ ≤ c∥x(0)∥ exp(
∫ t

0
∥N∥cdµ)

Since
∫ t
0 ∥N∥cdµ = ∥N∥ct , it follows that exp(αt)∥x(t)∥ ≤

c∥x(0)∥exp(∥N∥ct) and thus that

∥x(t)∥ ≤ c∥x(0)∥exp((∥N∥c − α)t)

From this and (33) it follows that

∥x(t)∥ ≤ c∥x(0)∥exp(−λt)

This completes the proof.

Proof of Theorem 2. Recall that AV (t) = Ã− gV ′(Imn − S̄(t))V . By
Proposition 2, for any fixed time τ , −V ′(Imn − S̄(τ ))V is exponen-
tially stable if the graph of S(τ )′ is strongly connected. Note Ã is
fixed and bounded. According to Lemma 1, for each σ ∈ Savg there
is a positive number g , depending on τD so that the transition
matrix of AV (t) converges to zero at least as fast as exp(−λt) does.
This is accomplished by choosing g sufficiently large. Based on the
proof of Lemma 1, it is sufficient to pick g to satisfy

g ≥
ln c + (λ + ∥Ã∥c)τD

λ∗τD
(36)

where c and λ∗ are two positive numbers chosen so that for any
fixed τ , ∥exp{−V ′(Imn− S̄(τ ))Vt}∥ ≤ c exp(−λ∗t), and c > 1. This
completes the proof.

Proof of Theorem 3. Recall ΦV (t, τ ) is the transition matrix of
AV (t) for any t ≥ τ ≥ 0. If we can show that there exist a constant
c so that

∥ΦV (t, τ )∥ ≤ c exp(−λ(t − τ )), ∀t ≥ τ ≥ 0

the remaining proof is exactly the same as the proof of Theorem 1
which is omitted here.

It is left to show that ∥ΦV (t, τ )∥ ≤ c exp(−λ(t − τ )) for all
t ≥ τ ≥ 0 by choosing g sufficiently large. We explore the matrix
AV (t). Recall that AV (t) = Ã− gV ′((Im − S(t))⊗ In)V . In particular,

(λI + AV (t))+ (λI + AV (t))′

= (λI + Ã)+ (λI + Ã)′

−gV ′((2Im − S(t)− S ′(t))⊗ In)V

Since each S(t) is doubly stochastic, 2Im−S(t)−S ′(t) has row sum
0, all its off-diagonal entries are non-positive, and all its diagonal
entries are positive. That is, this matrix can be seen as a gener-
alized Laplacian matrix of a connected graph. By Proposition 2,
for any t , −V ′((2Im − S(t) − S ′(t)) ⊗ In)V = −V ′(Imn − S̄(t))V −

V ′(Imn− S̄ ′(t))V is negative definite. Thus by picking g sufficiently
large, (λI + AV (t))+ (λI + AV (t))′ will be negative definite for any
time t .

Consider system

˙̄z = AV (t)z̄

Let V = z̄ ′z̄. Then

V̇ = z̄ ′(A (t)′ + A (t))z̄ ≤ −2λz̄ ′z̄
V V

10
Therefore, ΦV (t, τ ) converges to zero as fast as exp(−λ(t − τ ))
does, i.e.,

∥ΦV (t, τ )∥ ≤ c exp(−λ(t − τ )), ∀t ≥ τ ≥ 0

his completes the proof.

Proof of Theorem 4. Eq. (13) can be rewritten as

ġi = |V ′

i Wie|
2
2, i ∈ m (37)

where Wi =
[
Wi1 . . . Wim

]
∈ Rn×nm. Here Wij ∈ Rn×n is 1

mi
In

if j ̸= i and j ∈ Ni, and Wij is −In if j = i. Otherwise Wij is a 0
matrix. Let column{W1,W2, . . . ,Wm} = W .

Different from (5), the error model turns to

ė = Ā− G(t)P(Imn − S̄(t))e (38)

where G(t) = block diag {g1(t)In, . . . , gm(t)In}. Let
[
(Qe)′ z ′

]′
=

T−1e where T =
[
Q−1 V

]
as defined earlier. Here z = [z ′1, . . . ,

z ′m]
′ iwth zi = V ′

i ei.
Based on (11) and (38), the dynamic of zi can be written in the

ollowing form

˙i = Ãizi − gi(t)V ′

i Mie+ ÂiQiei, i ∈ m (39)

here Ãi = V ′

i (A+ KiCi)Vi, and Âi = V ′

i (A+ KiCi)Q ′

i .
First, we want to show that all gi(t) are bounded. We prove

his by contradiction. Without generality, suppose that gi for i ∈
u = {1, 2, . . . ,m1} are unbounded, and gi for i ∈ Vb = {m1 +

,m1+2, . . . ,m} are bounded where Vu∩Vb = 0 and Vu∪Vb = m.
Let R = R1 + R2 + R3 + R4 where the individual Ri involve new

ositive parameters p, α0, αm1+1, . . . , αm.

1 =
1
2

m1∑
i=1

πi
p

gi(t)
|zi|22, R2 =

1
2

m∑
i=m1+1

πi
gi(0)
gi(t)

|zi|22

3 = −

m∑
i=m1+1

αigi(t), and R4 = −α0

∫ t

0
|Qe|22dt.

The way to pick positive parameters p, α0, and αi for i ∈ Vb is
specified as follows.

Picking p ≥ 1:
Let W1 be a positive matrix chosen such that

′W1z =
m∑
i=1

πi|Ãi|2|zi|
2
2 (40)

According to (29),

F =
1
2
(HV ′(S̄ − Imn)V + V ′(S̄ − Imn)′VH) > 0 (41)

ick p so that W2 = pF −W1 > 0
Picking α0, and αi, i ∈ Vb:
Using the Cauchy–Schwarz inequality, the following three in-

equalities can be derived. For β1 > 0, β2 > 0 and λi >

0 for i ∈ Vb, all for the moment otherwise arbitrary, write Â =

block diag {Â1, . . . , Âm}

z ′HÂQe ≤
β1

2
|Â′Hz|

2
2 +

1
2β1

|Qe|22, (42)

pz ′HV ′(S̄ − Imn)Q ′Qe ≤
β2

2
|Q (S̄ − Imn)′VHz|

2
2 +

1
2β2

|Qe|22 (43)

−πi(gi(0)− p)z ′iV
′

i Wie ≤
λi
|πi(gi(0)− p)zi|22 +

1
|V ′

i Wie|
2
2. (44)
2 2λi
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Let W3 be a symmetric matrix chosen such that

z ′W3z = z ′W2z −
β1

2
|Â′Hz|

2
2 −

β2

2
|Q (S̄ − Imn)′VHz|

2
2

−

m∑
i=m1+1

λi

2
|πi(gi(0)− p)zi|22 (45)

Pick positive β1, β2, and λi for i ∈ Vb to be small enough so
hat W3 is positive definite. Pick α0 and αi, i ∈ Vb according to
he following two equations:

0 =
1

2β1
+

1
2β2

and αi =
1
2λi

i ∈ Vb (46)

ow we consider the derivative of R, i.e., Ṙ = Ṙ1 + Ṙ2 + Ṙ3 + Ṙ4.

˙1 = −
1
2

m1∑
i=1

πi
p
g2
i
|zi|22|V

′

i Wie|
2
2 +

m1∑
i=1

πi
p
gi
z ′i Ãizi

+

m1∑
i=1

πi
p
gi
z ′i ÂiQiei −

m1∑
i=1

πipz ′iV
′

i Wie

ince for i ∈ Vu each gi(t) is unbounded, there is a time T for
≥ T , p ≤ gi(t) for all i ∈ Vu. That is p

gi(t)
≤ 1. Hence

˙1 ≤

m1∑
i=1

πiz ′i Ãizi +
m1∑
i=1

πiz ′i ÂiQiei −
m1∑
i=1

πipz ′iV
′

i Wie (47)

According to (37), gi(t) is a non-decreasing function. As a result,
gi(0)
gi(t)

≤ 1. Similar to the derivation of the inequality for Ṙ1, it can
be shown that

Ṙ2≤

m∑
i=m1+1

πiz ′i Ãizi +
m∑

i=m1+1

πiz ′i ÂiQiei −
m∑

i=m1+1

πigi(0)z ′iV
′

i Wie (48)

y the submultiplicity of the matrix two norm, z ′i Ãiz ′i ≤ |Ãi|2|zi|
2
2.

From this, (47), (48), (40) and (28),

Ṙ1 + Ṙ2 ≤ z ′W1z +
m∑
i=1

πiz ′i ÂiQiei −
m∑
i=1

πipz ′iV
′

i Wie

−

m∑
i=m1+1

πi(gi(0)− p)z ′iV
′

i Wie

= z ′W1z + z ′HÂQe− pz ′HV ′(S̄ − Imn)e

−

m∑
i=m1+1

πi(gi(0)− p)z ′iV
′

i Wie

It can be observed that z ′HV ′(S̄ − Imn)e = z ′HV ′(S̄ − Imn)(VV ′e +
Q ′Qe) = z ′HV ′(S̄ − Imn)Vz + z ′HV ′(S̄ − Imn)Q ′Qe. From this and
(41), z ′HV ′((S − Im)⊗ In)e = z ′Fz + z ′HV ′((S − Im)⊗ In)Q ′Qe. Thus

Ṙ1 + Ṙ2 ≤ z ′(W1 − pF )z + z ′HÂQe− pz ′HV ′

(S̄ − Imn)Q ′Qe−
m∑

i=m1+1

πi(gi(0)− p)z ′iV
′

i Wie

= −z ′W2z + z ′HÂQe− pz ′HV ′

(S̄−Imn)Q ′Qe−
m∑

i=m1+1

πi(gi(0)− p)z ′iV
′

i Wie

From this, (42), (43), and (44),

Ṙ1 + Ṙ2 ≤ −z ′W2z +
β1

2
|Â′Hz|

2
2 +

β2

2
|Q (S̄ − Imn)′VHz|

2
2

+

m∑ λi

2
|πi(gi(0)− p)zi|22 +

1
2β1

|Qe|22

i=m1+1

11
+
1

2β2
|Qe|22 +

m∑
i=m1+1

1
2λi

|V ′

i Wie|
2
2 (49)

t is direct to get that

˙3 + Ṙ4 = −

m∑
i=m1+1

αi|V ′

i Wie|
2
2 − α0|Qe|22 (50)

rom (49), (50), and (46),

˙ ≤ −z ′W2z +
β1

2
|Â′Hz|

2
2 +

β2

2
|Q ((S − I)⊗ I)′VHz|22

+

m∑
i=m1+1

λi

2
|πi(gi(0)− p)zi|22

ccording to (45),

˙ ≤ −z ′W3z < 0 (51)

Since Qe is exponentially convergent, the limit of R4(t) as t goes
o infinity exists. Due to the assumption that for i ∈ Vb, the gi
re bounded. Thus R3 is bounded. Therefore, R is lower bounded.
rom this and (51) it follows that z ∈ L2. From this and the fact
hat Qe ∈ L2, we conclude e ∈ L2. This with the definition of ġi
mply that all gi for i ∈ m are bounded. Thus by contradiction all
gi are bounded.

Next, we want to show that e converges to zero. According
to Theorem 1, let G1 = g1I be a matrix chosen so that Ā −

G1P(Imn − S̄(t)) is a stable matrix. From (38), the dynamic of e
can be rewritten as

ė = (Ā− G1P(Imn − S̄(t)))e+ (G1 − G)P(Imn − S̄(t))e (52)

Since (Imn− S̄(t))e ∈ L2, G1−G is bounded, and Ā−G1P(Imn− S̄(t))
is stable, thus ė ∈ L2. Thus (52) is input-to-state stable which
implies that e must converge to zero asymptotically.

Appendix B. Proofs for discrete-time distributed estimator

Proof of Lemma 2. Since M is an m × m row stochastic matrix
which ahs a strongly connected graph, M is irreducible {Theorem
6.2.24, Horn and Johnson (1985)}. Thus by the Perron–Frobenius
Theorem there must be a positive vector π such that M ′π = π .

ithout loss of generality, assume π is normalized so that the
um of its entries equals 1; i.e., π is a probability vector. Let ΠM
e that diagonal matrix whose diagonal entries are the entries of
. Then ΠM1 = π . Since M1 = 1, ΠM1 = π , and M ′π = π , it

must be true that M ′ΠMM1 = π and thus that LM1 = 0. Thus LM
can also be written as LM = D − Â where D is a diagonal matrix
whose diagonal entries are the diagonal entries of LM and Â is
the nonnegative matrix Â = D − LM . Arguing as in the proof of
Proposition 2, it can be shown that LM is positive-semidefinite.

Now suppose that the diagonal entries of M are all positive.
Then the diagonal entries of M ′ΠM must also all be positive.
It follows that every arc in the graph of M ′ must be an arc in
the graph of M ′ΠMM so the graph of M ′ΠMM must be strongly
connected. Since I − ΠM is a nonnegative matrix, the graph of
M ′ΠMM must be a spanning subgraph of the graph of I − ΠM +

M ′ΠMM . Since I − LM = I − ΠM + M ′ΠMM and the graph of
M ′ΠM is strongly connected, the graph of I−LM must be strongly
connected as well. But I − LM is a nonnegative matrix so it must
be irreducible. In addition, since (I − LM )1 = 1, the row sums of
(I − LM ) all equal one. Therefore the infinity norm of I − LM is
one so its spectral radius is no greater than 1. Moreover 1 is an
eigenvalue of I− LM . Thus by the Perron–Frobenius Theorem, the
geometric multiplicity of this eigenvalue is one. It follows that the
geometric multiplicity of the eigenvalue of LM at 0 is also one; ie,
the dimension of the kernel of L is one as claimed.
M
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roof of Proposition 4. Fix τ and write S for S(τ ) and S̄ for S̄(τ ).
ote that the graph of S ′, namely N, is strongly connected. In view
f Lemma 2, the matrix L = ΠS − S ′ΠSS is positive semi-definite

and L1 = 0. Moreover, since the diagonal entries of S and thus S ′
are all positive, the kernel of L is one-dimensional.

Write R for R(τ ). To prove the proposition it is enough to show
that the matrix

Q = R− (V ′S̄ ′V )R(V ′S̄V ) (53)

is positive definite.
To proceed, set L̄ = L ⊗ In in which case L̄ is positive semi-

efinite because L is. Moreover, L̄ = Π̄−S̄ ′Π̄ S̄ where Π̄ = ΠS⊗In.
ote that VRV ′

= PΠ̄P where P is the orthogonal projection
atrix P = VV ′. Clearly VRV ′

= PΠ̄
1
2 Π̄

1
2 P . Note that both P

and Π̄
1
2 are block diagonal matrices with corresponding diagonal

locks of the same size. Because of this and the fact that each
iagonal block in Π̄

1
2 is a scalar times the identity matrix, it must

e true that P and Π̄
1
2 commute; thus PΠ̄

1
2 = Π̄

1
2 P . From this

nd the fact that P is idempotent, it follows that VRV ′
= Π̄

1
2 PΠ̄

1
2 .

learly Π̄
1
2 PΠ̄

1
2 ≤ Π̄

1
2 Π̄

1
2 so VRV ′

≤ Π̄ . It follows using (53)
hat Q ≥ R− V ′S̄ ′Π̄ S̄V = R+ V ′L̄V − V ′Π̄V . Therefore

≥ V ′L̄V (54)

n view of this, to complete the proof it is enough to show that
′L̄V is positive definite. This can be shown by the same proof of
roposition 2.
Therefore Q is positive definite because of (54). From this and

53) it follows that (27) is true.

Proof of Theorem 5. First it will be assumed that each K̄i has
een selected so that the matrix ĀV defined by (10), is such that
¯ τ
V converges to zero as τ → ∞ as fast as λτ does. This can be
one using standard spectrum assignment techniques to make
he spectral radius of ĀV at least as small as λ. In view of (26), it
s clear that to assign the convergence rate of the state transition
atrix of Ā(Imn − P(Imn − S̄(τ )))q it is necessary and sufficient

o control the convergence rate of the state transition matrix
f AV (τ ). This, as we will now show, can be accomplished by
hoosing q sufficiently large. We will actually detail two different
ays to do this, each utilizing a different matrix norm. Both
pproaches will be explained next using the abbreviated notation
(τ ) = V ′S̄(τ )V ; note that with this simplification, AV (τ ) =

˜Bq(τ ) because of (25).

eighted Two-Norm: For each fixed τ and each appropriately-
ized matrix M , write ∥M∥R(τ ) for the matrix norm induced by the
ector norm ∥x∥R(τ )

∆
=

√
x′R(τ )x. Note that ∥M∥R(τ ) is the largest

ingular value of R
1
2 (τ )MR−

1
2 (τ ). Note in addition that

(R
1
2 (τ )B(τ )R−

1
2 (τ ))′(R

1
2 (τ )B(τ )R−

1
2 (τ )) < I

because of (27). This shows that the largest singular value of
R

1
2 (τ )B(τ )R−

1
2 (τ ) is less than one. Therefore

∥B(τ )∥R(τ ) < 1 (55)

(a) N is constant
In this case both B(τ ) and R(τ ) are constant, so it is suffi-

ient so choose q so that ∥ÃBq(τ )∥R(τ ) ≤ λ. Since ∥ · ∥R(τ ) is
ubmultiplicative, this can be done by choosing q so that

B(τ )∥qR(τ ) ≤
λ

∥Ã∥R(τ )
(56)

This can always be accomplished because of (55).
(b) N changes with time
In this case it is not possible to use the weighted two-norm

· ∥ because it is time-dependent. A simple fix, but perhaps
R(τ )

12
not the most efficient one, would be to use the standard two-
norm | · |2 instead since it does not depend on time. Using this
approach, the first step would be to first choose, for each fixed
τ , an integer p1(τ ) large enough so that |Bp1(τ )(τ )|2 < 1. Such
values of p1(τ ) must exist because each B(τ ) is a discrete-time
stability matrix or equivalently, a matrix with a spectral radius
less than 1. Computing such a value amounts to looking at the
largest singular value of Bp1(τ )(τ ) for successively largest values of
p1(τ ) until that singular value is less than 1. Having accomplished
this, a number p can easily be computed so that |Bp(τ )|2 < 1 ∀τ

since there are only a finite number of distinct strongly connected
graphs on m vertices and consequently only a finite number of
distinct matrices B(τ ) in the set B = {B(τ ) : τ ≥ 0}. Choosing p
o be the maximum of the p1(τ ) with respect to τ is thus a finite
omputation. The next step would be to compute an integer p̄
arge enough so that each |Ã(Bp(τ ))p̄|2 ≤ λ. A value of q with the
equired property would then be q = pp̄.

ixed Matrix Norm: There is a different way to choose q which
does not make use of either Lemma 2 or Proposition 4. The
approach exploits the ‘‘mixed matrix norm’’ introduced in Mou,
Liu, and Morse (2015). To define this norm requires several steps.
To begin, let | · |∞ denote the standard induced infinity norm and
write Rmn×mn for the vector space of all m × m block matrices
M = [Mij] whose ijth entry is a matrix Mij ∈ Rn×n. With ni =

dimVi, i ∈ m, and n̄ = n1 + n2 + · · · nm, write Rmn×n̄ for the
vector space of all m × m block matrices M = [Mij] whose ijth
entry is a matrix Mij ∈ Rn×nj . Similarly write Rn̄×mn for the vector
space of all m × m block matrices M = [Mij] whose ijth entry is
a matrix Mij ∈ Rni×n. Finally write Rn̄×n̄ for the vector space of
all m × m block matrices M = [Mij] whose ijth entry is a matrix
Mij ∈ Rni×nj .

Note that B ∈ Rmn×mn, Ã ∈ Rn̄×n̄, V ∈ Rmn×n̄, and V ′
∈ Rn̄×mn.

For M in any one of these four spaces, the mixed matrix norm
(Mou et al., 2015) of M , written ∥M∥, is

∥M∥ = ∥⟨M⟩∥∞ (57)

where ⟨M⟩ is the matrix in Rm×m whose ijth entry is ∥Mij∥2. It
is very easy to verify that ∥ · ∥ is in fact a norm. It is even sub-
multiplicative whenever matrix multiplication is defined. Note in
addition that ∥V∥ = 1 and ∥V ′

∥ = 1 because the columns of each
Vi form an orthonormal set.

Recall that P = VV ′ is an orthogonal projection matrix. Using
this, the definition of B(τ ) and the fact that PV = V , it is easy
to see that for any integer p > 0, Bp(τ ) = V ′(PS̄(τ )P)pV . Thus
∥Bp(τ )∥ ≤ ∥(PS̄(τ )P)p∥. Using this and the fact that the graph of
S ′ is strongly connected, one can conclude that for p ≥ (m− 1)2,
∥(PS̄(τ )P)p∥ < 1. This is a direct consequence of Proposition 2
of Mou et al. (2015). Thus

∥Bp(τ )∥ < 1, p ≥ (m− 1)2 (58)

(a) N is constant
In this case B(τ ) is constant so it is sufficient to choose q so

that ∥ÃBq(τ )∥ ≤ λ. This can be done by choosing q = pp̄ where
p ≥ (m− 1)2 and p̄ is such that

∥Bp(τ )∥p̄ ≤
λ

∥Ã∥
(59)

This can always be accomplished because of (58).
(b) N changes with time
Note that (58) holds for all τ . Assuming p is chosen so that

p ≥ (m − 1)2 it is thus possible to find, for each τ , a positive
integer p̄(τ ), for which

∥Bp(τ )∥p̄(τ ) ≤
λ

(60)

∥Ã∥
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aving accomplished this, a number p̄ can easily be computed so
that

∥Bp(τ )∥p̄ ≤
λ

∥Ã∥
(61)

olds for all τ , since there are only a finite number of distinct
strongly connected graphs on m vertices and consequently only a
finite number of distinct matrices B(τ ) in the set B defined earlier.
hoosing p̄ to be the maximum of p̄(τ ) with respect to τ is thus a
inite computation. A value of q with the required property would
hen be q = pp̄.

References

Açikmeşe, B., Mandić, M., & Speyer, J. L. (2014). Decentralized observers with
consensus filters for distributed discrete-time linear systems. Automatica,
50(4), 1037–1052.

nderson, B. D. O., & Gevers, M. (1998). Fundamental problems in adaptive
control. In Perspectives in control: theory and applications (pp. 9–21). London:
Springer London.

oostmohammadian, M., & Khan, U. A. (2013). On the genericity properties in
distributed estimation: Topology design and sensor placement. IEEE Journal
of Selected Topics in Signal Processing, 7(2), 195–204.

Dorfler, F., Pasqualetti, F., & Bullo, F. (2013). Continuous-time distributed ob-
servers with discrete communication. IEEE Journal of Selected Topics in Signal
Processing, 7(2), 296–304.

Godsil, C., & Royle, G. (2001). Algebraic graph theory. Springer.
Han, W., Trentelman, H. L., Wang, Z., & Shen, Y. (2018). Towards a minimal order

distributed observer for linear systems. Systems & Control Letters, 59–65.
an, W., Trentelman, H. L., Wang, Z., & Shen, Y. (2019). A simple approach to

distributed observer design for linear systems. IEEE Transactions on Automatic
Control, 64(1), 329–336.

Hespahna, J. P., & Morse, A. S. (1999). Switched systems with average dwell time.
In Proceedings of the IEEE conference on decision and control (pp. 2655–2660).

orn, R. A., & Johnson, C. R. (1985). Matrix analysis. Cambridge, England:
Cambridge University Press.

han, U. A., & Jadbabaie, A. (2011). On the stability and optimality of distributed
Kalman filters with finite-time data fusion. In Proceedings of the 2011
American control conference (pp. 3405–3410).

han, U. A., & Jadbabaie, A. (2014). Collaborative scalar-gain estimators for po-
tentially unstable social dynamics with limited communication. Automatica,
50, 1909–1914.

im, T., Lee, C., & Shim, H. (2020). Completely decentralized design of distributed
observer for linear systems. IEEE Transactions on Automatic Control, 65(11),
4664–4678.

im, T., Shim, H., & Cho, D. D. (2016). Distributed Luenberger observer design.
In 2016 IEEE 55th conference on decision and control (pp. 6928–6933).

Lee, J. G., & Shim, H. (2020). A distributed algorithm that finds almost best
possible estimate under non-vanishing and time-varying measurement noise.
IEEE Control Systems Letters, 4(1), 229–234.

Li, Y., Phillips, S., & Sanfelice, R. G. (2018). Robust distributed estimationfor
linear systems under intermittent information. IEEE Transactions on Automatic
Control, 63(4), 973–988.

Mitra, A., Richards, J. A., Bagchi, S., & Sundaram, S. (2019). Finite-time distributed
state estimation over time-varying graphs: Exploiting the age-of-information.
In 2019 American control conference (pp. 4006–4011).

Mitra, A., Richards, J. A., Bagchi, S., & Sundaram, S. (2022). Distributed state
estimation over time-varying graphs: Exploiting the age-of-information. IEEE
Transactions on Automatic Control, 67(12), 6349–6365.

Mitra, A., & Sundaram, S. (2018). Distributed observers for LTI systems. IEEE
Transactions on Automatic Control, 63(11), 3689–3704.

Morse, A. (1993). Dwell-time switching. In Proceedings of the 2nd European
control conference (pp. 176–181).

Mou, S., Liu, J., & Morse, A. S. (2015). A distributed algorithm for solving a
linear algebraic equation. IEEE Transactions on Automatic Control, 60(11),
2863–2878.

Olfati-Reza, R. (2009). Kalman-consensus filter: Optimality, stability, and
performance. In Proc IEEE CDC (pp. 7036–7042).

Olfati-Reza, R., & Shamma, J. S. (2005). Consensus filters for sensor networks
and distributed sensor fusion. In Proc IEEE CDC (pp. 6698–6703).

Olfati-Saber, R. (2005). Distributed Kalman filter with embedded consensus
filters. In Proceedings of the 44th IEEE Conference on decision and control, and
the european control conference (pp. 8179–8184).

Olfati-Saber, R. (2007). Distributed Kalman filtering for sensor networks.
In Proceedings of the 46th IEEE conference on decision and control (pp.
5492–5498).

Park, S., & Martins, N. C. (2012a). An augmented observer for the distributed
estimation problem for LTI systems. In Proceedings the 2012 American control
conference (pp. 6775–6780).
13
Park, S., & Martins, N. C. (2012b). Necessary and sufficient conditions for the
stabilizability of a class of LTI distributed observers. In Proceedings of the
51st IEEE conference on decision and control (pp. 7431–7436).

Park, S., & Martins, N. C. (2017). Design of distributed LTI observers for state
omniscience. IEEE Transactions on Automatic Control, 561–576.

Rego, F. C., Pu, Y., Alessandretti, A., Aguiar, A. P., Pascoal, A. M., & Jones, C.
N. (2021). A distributed Luenberger observer for linear state feedback
systems with quantized and rate-limited communications. IEEE Transactions
on Automatic Control, 66(9), 3922–3937.

grinovskii, V. A. (2013). Distributed robust estimation over randomly switching
networks using H∞ consensus. Automatica, 49, 160–168.

ang, L., Liu, J., & Morse, A. S. (2019). A distributed observer for a continuous-
time linear system. In Proceedings of 2019 American control conference (pp.
86–89). Philadelphia, PA, USA.

ang, L., Liu, J., Morse, A. S., & Anderson, B. D. O. (2019). A distributed observer
for a discrete-time linear system. In Control and decision conference.

ang, L., & Morse, A. S. (2017). A distributed observer for a time-invariant
linear system. In Proceedings of the 2017 American control conference (pp.
2020–2025).

ang, L., & Morse, A. S. (2018). A distributed observer for an time-invariant
linear system. IEEE Transactions on Automatic Control, 63(7), 2123–2130.

ang, L., Morse, A. S., Fullmer, D., & Liu, J. (2017). A hybrid observer for a
distributed linear system with a changing neighbor graph. In Proceedings of
the 2017 IEEE conference on decision and control (pp. 1024–1029).

ang, L., Morse, A. S., & Liu, J. (2022). A hybrid observer for estimating the state
of a distributed linear system. Automatica, 146, Article 110633.

iao, L., Boyd, S., & Lall, S. (2005). A scheme for robust distributed sensor fusion
based on average consensus. In Proceedings of the 4th international conference
on information processing in sensor networks (pp. 63–70).

Lili Wang received the B.E. and M.S. degrees in elec-
trical engineering from Zhejiang University, Zhejiang,
China, in 2011 and 2014, respectively, and the Ph.D.
degree in electrical engineering from Yale University,
New Haven, CT, USA, in 2020. She is currently a Post
Doctoral Research Assistant with Lilian Gilbreth fellow-
ship in the College of Engineering, Purdue University,
West Lafayette, IN, USA. Her research interests include
the topic of cooperative multiagent systems, distributed
computation and estimation, distributed control, and
social networks.

Ji Liu received the B.S. degree in information engi-
neering from Shanghai Jiao Tong University, Shanghai,
China, in 2006 and the Ph.D. degree in electrical engi-
neering from Yale University, New Haven, CT, USA, in
2013. He is currently an Assistant Professor with the
Department of Electrical and Computer Engineering,
Stony Brook University, Stony Brook, NY, USA. His
current research interests include distributed control
and optimization, distributed reinforcement learning,
and resiliency of distributed algorithms.

Brian D.O. Anderson was born in Sydney, Australia,
and educated at Sydney University in mathematics and
electrical engineering, with Ph.D. in electrical engineer-
ing from Stanford University. Following graduation, he
joined the faculty at Stanford University and worked
in Vidar Corporation of Mountain View, California, as
a staff consultant. He then returned to Australia to
become a department chair in electrical engineering at
the University of Newcastle. From there, he moved to
the Australian National University in 1982, as the first
engineering professor at that university where he is

ow Emeritus Professor. During his period in academia, he spent significant time
orking for the Australian Government, with this service including membership
f the Prime Minister’s Science Council under the chairmanship of three prime
inisters. He also served on advisory boards or boards of various companies,

ncluding the board of the world’s major supplier of cochlear implants, Cochlear
orporation, where he was a director for ten years. His awards include the
uazza Medal of the International Federation of Automatic Control (IFAC) in
999, IEEE Control Systems Award of 1997, the 2001 IEEE James H. Mulligan,
r. Education Medal, and the Bode Prize of the IEEE Control System Society
n 1992, as well as IEEE and other best paper prizes. He is a Fellow of the
ustralian Academy of Science, the Australian Academy of Technological Sciences
nd Engineering, the Royal Society (London), and a foreign member of the
S National Academy of Engineering. He holds honorary doctorates from a
umber of universities, including Université Catholique de Louvain, Belgium,
nd ETH, Zürich. He served as IFAC President from 1990 to 1993, having had
arlier periods in various IFAC roles, including editor of Automatica. He was also
resident of the Australian Academy of Science from 1998 to 2002. His current
esearch interests are in distributed control, social networks and econometric
odeling.

http://refhub.elsevier.com/S0005-1098(23)00588-5/sb1
http://refhub.elsevier.com/S0005-1098(23)00588-5/sb1
http://refhub.elsevier.com/S0005-1098(23)00588-5/sb1
http://refhub.elsevier.com/S0005-1098(23)00588-5/sb1
http://refhub.elsevier.com/S0005-1098(23)00588-5/sb1
http://refhub.elsevier.com/S0005-1098(23)00588-5/sb2
http://refhub.elsevier.com/S0005-1098(23)00588-5/sb2
http://refhub.elsevier.com/S0005-1098(23)00588-5/sb2
http://refhub.elsevier.com/S0005-1098(23)00588-5/sb2
http://refhub.elsevier.com/S0005-1098(23)00588-5/sb2
http://refhub.elsevier.com/S0005-1098(23)00588-5/sb3
http://refhub.elsevier.com/S0005-1098(23)00588-5/sb3
http://refhub.elsevier.com/S0005-1098(23)00588-5/sb3
http://refhub.elsevier.com/S0005-1098(23)00588-5/sb3
http://refhub.elsevier.com/S0005-1098(23)00588-5/sb3
http://refhub.elsevier.com/S0005-1098(23)00588-5/sb4
http://refhub.elsevier.com/S0005-1098(23)00588-5/sb4
http://refhub.elsevier.com/S0005-1098(23)00588-5/sb4
http://refhub.elsevier.com/S0005-1098(23)00588-5/sb4
http://refhub.elsevier.com/S0005-1098(23)00588-5/sb4
http://refhub.elsevier.com/S0005-1098(23)00588-5/sb5
http://refhub.elsevier.com/S0005-1098(23)00588-5/sb6
http://refhub.elsevier.com/S0005-1098(23)00588-5/sb6
http://refhub.elsevier.com/S0005-1098(23)00588-5/sb6
http://refhub.elsevier.com/S0005-1098(23)00588-5/sb7
http://refhub.elsevier.com/S0005-1098(23)00588-5/sb7
http://refhub.elsevier.com/S0005-1098(23)00588-5/sb7
http://refhub.elsevier.com/S0005-1098(23)00588-5/sb7
http://refhub.elsevier.com/S0005-1098(23)00588-5/sb7
http://refhub.elsevier.com/S0005-1098(23)00588-5/sb8
http://refhub.elsevier.com/S0005-1098(23)00588-5/sb8
http://refhub.elsevier.com/S0005-1098(23)00588-5/sb8
http://refhub.elsevier.com/S0005-1098(23)00588-5/sb9
http://refhub.elsevier.com/S0005-1098(23)00588-5/sb9
http://refhub.elsevier.com/S0005-1098(23)00588-5/sb9
http://refhub.elsevier.com/S0005-1098(23)00588-5/sb10
http://refhub.elsevier.com/S0005-1098(23)00588-5/sb10
http://refhub.elsevier.com/S0005-1098(23)00588-5/sb10
http://refhub.elsevier.com/S0005-1098(23)00588-5/sb10
http://refhub.elsevier.com/S0005-1098(23)00588-5/sb10
http://refhub.elsevier.com/S0005-1098(23)00588-5/sb11
http://refhub.elsevier.com/S0005-1098(23)00588-5/sb11
http://refhub.elsevier.com/S0005-1098(23)00588-5/sb11
http://refhub.elsevier.com/S0005-1098(23)00588-5/sb11
http://refhub.elsevier.com/S0005-1098(23)00588-5/sb11
http://refhub.elsevier.com/S0005-1098(23)00588-5/sb12
http://refhub.elsevier.com/S0005-1098(23)00588-5/sb12
http://refhub.elsevier.com/S0005-1098(23)00588-5/sb12
http://refhub.elsevier.com/S0005-1098(23)00588-5/sb12
http://refhub.elsevier.com/S0005-1098(23)00588-5/sb12
http://refhub.elsevier.com/S0005-1098(23)00588-5/sb13
http://refhub.elsevier.com/S0005-1098(23)00588-5/sb13
http://refhub.elsevier.com/S0005-1098(23)00588-5/sb13
http://refhub.elsevier.com/S0005-1098(23)00588-5/sb14
http://refhub.elsevier.com/S0005-1098(23)00588-5/sb14
http://refhub.elsevier.com/S0005-1098(23)00588-5/sb14
http://refhub.elsevier.com/S0005-1098(23)00588-5/sb14
http://refhub.elsevier.com/S0005-1098(23)00588-5/sb14
http://refhub.elsevier.com/S0005-1098(23)00588-5/sb15
http://refhub.elsevier.com/S0005-1098(23)00588-5/sb15
http://refhub.elsevier.com/S0005-1098(23)00588-5/sb15
http://refhub.elsevier.com/S0005-1098(23)00588-5/sb15
http://refhub.elsevier.com/S0005-1098(23)00588-5/sb15
http://refhub.elsevier.com/S0005-1098(23)00588-5/sb16
http://refhub.elsevier.com/S0005-1098(23)00588-5/sb16
http://refhub.elsevier.com/S0005-1098(23)00588-5/sb16
http://refhub.elsevier.com/S0005-1098(23)00588-5/sb16
http://refhub.elsevier.com/S0005-1098(23)00588-5/sb16
http://refhub.elsevier.com/S0005-1098(23)00588-5/sb17
http://refhub.elsevier.com/S0005-1098(23)00588-5/sb17
http://refhub.elsevier.com/S0005-1098(23)00588-5/sb17
http://refhub.elsevier.com/S0005-1098(23)00588-5/sb17
http://refhub.elsevier.com/S0005-1098(23)00588-5/sb17
http://refhub.elsevier.com/S0005-1098(23)00588-5/sb18
http://refhub.elsevier.com/S0005-1098(23)00588-5/sb18
http://refhub.elsevier.com/S0005-1098(23)00588-5/sb18
http://refhub.elsevier.com/S0005-1098(23)00588-5/sb19
http://refhub.elsevier.com/S0005-1098(23)00588-5/sb19
http://refhub.elsevier.com/S0005-1098(23)00588-5/sb19
http://refhub.elsevier.com/S0005-1098(23)00588-5/sb20
http://refhub.elsevier.com/S0005-1098(23)00588-5/sb20
http://refhub.elsevier.com/S0005-1098(23)00588-5/sb20
http://refhub.elsevier.com/S0005-1098(23)00588-5/sb20
http://refhub.elsevier.com/S0005-1098(23)00588-5/sb20
http://refhub.elsevier.com/S0005-1098(23)00588-5/sb21
http://refhub.elsevier.com/S0005-1098(23)00588-5/sb21
http://refhub.elsevier.com/S0005-1098(23)00588-5/sb21
http://refhub.elsevier.com/S0005-1098(23)00588-5/sb22
http://refhub.elsevier.com/S0005-1098(23)00588-5/sb22
http://refhub.elsevier.com/S0005-1098(23)00588-5/sb22
http://refhub.elsevier.com/S0005-1098(23)00588-5/sb23
http://refhub.elsevier.com/S0005-1098(23)00588-5/sb23
http://refhub.elsevier.com/S0005-1098(23)00588-5/sb23
http://refhub.elsevier.com/S0005-1098(23)00588-5/sb23
http://refhub.elsevier.com/S0005-1098(23)00588-5/sb23
http://refhub.elsevier.com/S0005-1098(23)00588-5/sb24
http://refhub.elsevier.com/S0005-1098(23)00588-5/sb24
http://refhub.elsevier.com/S0005-1098(23)00588-5/sb24
http://refhub.elsevier.com/S0005-1098(23)00588-5/sb24
http://refhub.elsevier.com/S0005-1098(23)00588-5/sb24
http://refhub.elsevier.com/S0005-1098(23)00588-5/sb25
http://refhub.elsevier.com/S0005-1098(23)00588-5/sb25
http://refhub.elsevier.com/S0005-1098(23)00588-5/sb25
http://refhub.elsevier.com/S0005-1098(23)00588-5/sb25
http://refhub.elsevier.com/S0005-1098(23)00588-5/sb25
http://refhub.elsevier.com/S0005-1098(23)00588-5/sb26
http://refhub.elsevier.com/S0005-1098(23)00588-5/sb26
http://refhub.elsevier.com/S0005-1098(23)00588-5/sb26
http://refhub.elsevier.com/S0005-1098(23)00588-5/sb26
http://refhub.elsevier.com/S0005-1098(23)00588-5/sb26
http://refhub.elsevier.com/S0005-1098(23)00588-5/sb27
http://refhub.elsevier.com/S0005-1098(23)00588-5/sb27
http://refhub.elsevier.com/S0005-1098(23)00588-5/sb27
http://refhub.elsevier.com/S0005-1098(23)00588-5/sb28
http://refhub.elsevier.com/S0005-1098(23)00588-5/sb28
http://refhub.elsevier.com/S0005-1098(23)00588-5/sb28
http://refhub.elsevier.com/S0005-1098(23)00588-5/sb28
http://refhub.elsevier.com/S0005-1098(23)00588-5/sb28
http://refhub.elsevier.com/S0005-1098(23)00588-5/sb28
http://refhub.elsevier.com/S0005-1098(23)00588-5/sb28
http://refhub.elsevier.com/S0005-1098(23)00588-5/sb29
http://refhub.elsevier.com/S0005-1098(23)00588-5/sb29
http://refhub.elsevier.com/S0005-1098(23)00588-5/sb29
http://refhub.elsevier.com/S0005-1098(23)00588-5/sb30
http://refhub.elsevier.com/S0005-1098(23)00588-5/sb30
http://refhub.elsevier.com/S0005-1098(23)00588-5/sb30
http://refhub.elsevier.com/S0005-1098(23)00588-5/sb30
http://refhub.elsevier.com/S0005-1098(23)00588-5/sb30
http://refhub.elsevier.com/S0005-1098(23)00588-5/sb31
http://refhub.elsevier.com/S0005-1098(23)00588-5/sb31
http://refhub.elsevier.com/S0005-1098(23)00588-5/sb31
http://refhub.elsevier.com/S0005-1098(23)00588-5/sb32
http://refhub.elsevier.com/S0005-1098(23)00588-5/sb32
http://refhub.elsevier.com/S0005-1098(23)00588-5/sb32
http://refhub.elsevier.com/S0005-1098(23)00588-5/sb32
http://refhub.elsevier.com/S0005-1098(23)00588-5/sb32
http://refhub.elsevier.com/S0005-1098(23)00588-5/sb33
http://refhub.elsevier.com/S0005-1098(23)00588-5/sb33
http://refhub.elsevier.com/S0005-1098(23)00588-5/sb33
http://refhub.elsevier.com/S0005-1098(23)00588-5/sb34
http://refhub.elsevier.com/S0005-1098(23)00588-5/sb34
http://refhub.elsevier.com/S0005-1098(23)00588-5/sb34
http://refhub.elsevier.com/S0005-1098(23)00588-5/sb34
http://refhub.elsevier.com/S0005-1098(23)00588-5/sb34
http://refhub.elsevier.com/S0005-1098(23)00588-5/sb35
http://refhub.elsevier.com/S0005-1098(23)00588-5/sb35
http://refhub.elsevier.com/S0005-1098(23)00588-5/sb35
http://refhub.elsevier.com/S0005-1098(23)00588-5/sb36
http://refhub.elsevier.com/S0005-1098(23)00588-5/sb36
http://refhub.elsevier.com/S0005-1098(23)00588-5/sb36
http://refhub.elsevier.com/S0005-1098(23)00588-5/sb36
http://refhub.elsevier.com/S0005-1098(23)00588-5/sb36


L. Wang, J. Liu, B.D.O. Anderson et al. Automatica 161 (2024) 111421
A. Stephen Morse was born in Mt. Vernon, New York.
He received a BSEE degree from Cornell University,
a MS degree from the University of Arizona, and a
Ph.D. degree from Purdue University. For three years he
was associated with the Office of Control Theory and
Application {OCTA} at the NASA Electronics Research
Center in Cambridge, Mass. Since 1970 he has been
with Yale University where he is presently the Dudley
Professor of Engineering. His main interest is in system
theory and he has done research in network synthesis,
optimal control, multivariable control, adaptive con-
14
trol, urban transportation, vision-based control, hybrid and nonlinear systems,
sensor networks, and coordination and control of large grouping of mobile
autonomous agents. He is the recipient or co-recipient of several awards
including the IEEE Control Systems Society’s 1993 and 2005 George S. Axelby
Best Paper Awards, the Automatica Theory/Methodology Prize, the 1999 IEEE
Technical Field Award for Control Systems, the American Automatic Control
Council’s 2013 Richard E. Bellman Control Heritage Award, and the IFAC’s 2023
Giorgio Quazza Medal. He is a Life Fellow of the IEEE, an IFAC Fellow, and a
past Distinguished Lecturer of the IEEE Control System Society. He is a member
of the US National Academy of Engineering and the Connecticut Academy of
Science and Engineering.


	Split-spectrum based distributed state estimation for linear systems
	Introduction
	Background

	Continuous-Time Distributed Estimator
	The Estimator
	The Error Dynamics

	Constant Neighbor Graph
	Switching Neighbor Graph
	Distributed Estimator with Adaptive Gains
	Resilience 

	Discrete-Time Distributed Estimator
	The Estimator
	The Error Dynamics

	Time-varying Neighbor Graph

	Simulations
	Continuous dynamics
	Discrete dynamics

	Concluding Remarks
	Appendix A. Proofs for Continuous-Time Distributed Estimator
	Appendix B. Proofs for Discrete-Time Distributed Estimator
	References


