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ABSTRACT

This paper studies a distributed state estimation problem for both continuous- and discrete-time
linear systems. A simply structured distributed estimator {comprising interconnected local estimators}
is first described for estimating the state of a continuous and multi-channel linear system whose
sensed outputs are distributed across a fixed multi-agent network. The estimator is then extended
to non-stationary networks whose graphs switch according to a switching signal. The estimator is
guaranteed to solve the problem, provided a network-widely shared high gain condition achieving
a form of spectrum separation is satisfied. As an alternative to sharing a common gain across the
network, a fully distributed version of the estimator is also studied in which each agent adaptively
adjusts a local gain, though the practicality of this approach is subject to a robustness issue common
to adaptive control. A discrete-time version of the distributed state estimation problem is also studied,
and a corresponding estimator based again on spectrum separation, but not high gain, is proposed for
time-varying networks. For each scenario, it is explained how to construct the estimator so that the
state estimation errors in the local estimators all converge to zero exponentially fast at a fixed but
arbitrarily chosen rate, provided the network’s graph is strongly connected for all time. The proposed
estimators are inherently resilient to abrupt changes in the number of agents and communication links
in the inter-agent communication graph upon which the algorithms depend, provided the network is

redundantly strongly connected and redundantly jointly observable.

© 2023 Published by Elsevier Ltd.

1. Introduction

With the growing interest in sensor networks and multi-agent
systems, the problem of estimating the state of a dynamical
system whose measured outputs are distributed across a network
has been under study in one form or another for a number of
years (Dorfler, Pasqualetti, & Bullo, 2013; Han, Trentelman, Wang,
& Shen, 2018, 2019; Khan & Jadbabaie, 2011; Kim, Shim, & Cho,
2016; Li, Phillips, & Sanfelice, 2018; Mitra & Sundaram, 2018;
Olfati-Reza, 2009; Olfati-Reza & Shamma, 2005; Park & Martins,
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2017; Wang, Liu, & Morse, 2019; Wang & Morse, 2018; Wang,
Morse, Fullmer, & Liu, 2017; Xiao, Boyd, & Lall, 2005).
Depending on the nature of the system to be estimated, the
distributed estimation problem has continuous- and discrete-
time versions. In its simplest form, the continuous-time version
of the distributed state estimation problem starts with a network
of m > 1 agents labeled 1, 2, ..., m which are able to receive
information from their neighbors. Neighbor relations are charac-
terized by a directed graph N, which may or may not depend on
time, whose vertices correspond to agents and whose arcs depict

neighbor relations. Each agent i senses a signal y; € R, i € m 2
{1, 2, ..., m} generated by a continuous-time system of the form
X = Ax, yi(t) = Cix, i € mand x € R". It is typically assumed that
N is strongly connected and that the system is jointly observable.
It is invariably assumed that each agent receives certain real-time
signals from its neighbors although what is received can vary
from one problem formulation to the next. In all formulations,
the goal is to devise local estimators, one for each agent, whose
outputs are all asymptotically correct estimates of x. The local
estimator dynamics for agent i are typically assumed to depend
only on the pair (G, A) and certain properties of N. The problem
is basically the same in discrete time, except that rather than the
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continuous-time model just described, the discrete-time model
x(t + 1) = Ax(t), yi(r) = Gix(t), i € m, x € R" is considered
instead. More precise problem formulations will be given later.

1.1. Background

The study of distributed state estimation for linear systems
can be dated back to the so-called distributed Kalman filter prob-
lem (Olfati-Saber, 2005), which involves system and measure-
ment noise in the problem formulation and has been widely
studied for years (Khan & Jadbabaie, 2011; Olfati-Saber, 2007).
Most available Kalman filter based approaches (Khan & Jadbabaie,
2011; Olfati-Reza, 2009; Olfati-Reza & Shamma, 2005; Olfati-
Saber, 2005, 2007) require the agents to both share “signal infor-
mation”, which can be measurements or local state estimates, and
fuse certain “structural information”, which forms the covariance
or information matrix of the nominal centralized Kalman filter for
each agent. For the problem just described, the existing literature
based on only “signal information” sharing can be classified into
two categories, namely continuous- and discrete-time estima-
tors/observers, except for our earlier work of Wang et al. (2017),
Wang, Morse, and Liu (2022) in which a hybrid observer was
proposed for a continuous-time linear system.

Continuous-time distributed estimators have recently appe-
ared in Han et al. (2018, 2019), Kim et al. (2016), Wang, Liu,
and Morse (2019), Wang and Morse (2017, 2018). By recast-
ing and then solving the distributed estimation problem as a
classical decentralized control problem, the resulting estimator
becomes capable of estimating the state at a pre-assigned expo-
nentially fast rate, assuming N is a constant strongly connected
graph (Wang & Morse, 2018). The work of Kim et al. (2016)
seeks to propose a distributed estimator for a continuous-time
system at the expense of certain design flexibility. This is done,
in essence, by exploiting the A-invariance of the unobservable
spaces of the pairs (G, A); this in turn enables one to “split”
the local estimators into two parts, one based on conventional
spectrum assignment techniques applied to the observable part
of the state at each local estimator and the other based on
consensus among the unobserved parts of the state at each local
estimator. The two parts are interacting but the use of a high
gain serves to simplify the stability issue because of a split in
the spectrum arising from the design of the estimator. The idea
has been further developed in Han et al. (2018, 2019), Kim,
Lee, and Shim (2020). Specifically, these latter references start to
move beyond a restriction in Kim et al. (2016) permitting only
constant, undirected, connected neighbor graphs to be addressed.
The work of Han et al. (2018, 2019) extends the result of Kim
et al. (2016) to the case when the neighbor graph is constant,
directed, strongly connected, while requiring that one chooses
gains to ensure that certain LMIs hold which are difficult to grasp
intuitively. In Lee and Shim (2020), motivated by a distributed
least squares problem, a modified algorithm is proposed to deal
with measurement noise constant, undirected, connected neigh-
bor graphs. A distributed adaptive algorithm has recently been
proposed in Kim et al. (2020) which allows agents to join or leave
the network over time, provided the resulting agent network
always remains jointly connected and joint detectable. An evident
disadvantage of all these existing continuous-time distributed
estimators is that they require a somewhat complicated gain
computation procedure, and partially because of this, do not, at
least not directly, admit discrete-time counterparts.

Discrete-time distributed estimators have been recently stud-
ied in Acikmese, Mandi¢, and Speyer (2014), Doostmohammadian
and Khan (2013), Khan and Jadbabaie (2014), Mitra, Richards,
Bagchi, and Sundaram (2019), Mitra and Sundaram (2018), Park
and Martins (2012a, 2012b, 2017), Rego et al. (2021), Ugri-
novskii (2013). Notable among them is the paper (Park & Martins,
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2017). Published prior to the appearance of the early contin-
uous time paper (Wang & Morse, 2018) applying to the same
class of distributed systems, Park and Martins (2017) solves the
discrete-time distributed estimation problem for jointly observ-
able, linear systems with constant, directed, strongly connected
neighbor graphs. It builds on the idea of recasting the estimation
problem as a classical decentralized control problem. Although
the observer is limited to discrete-time systems, it has been
proved possible to make use of the ideas in Park and Martins
(2017) to obtain, as noted earlier, a distributed observer for
continuous-time systems (Wang & Morse, 2018), but still for
constant neighbor graphs. There are however other discrete-time
distributed observers/estimators which do not admit continuous-
time extensions, illustrating that passage between discrete-time
and continuous-time thinking may be harder than intuition ini-
tially suggests for distributed estimation problems. By expanding
on earlier work in Mitra and Sundaram (2018), the papers (Mitra
et al,, 2019; Mitra, Richards, Bagchi, & Sundaram, 2022) provide
a procedure for constructing a centralized designed distributed
observer for time-varying neighbor graphs. It requires the sharing
of an index that records the age of the information across the net-
work, and the agents are designed to act in a sequential manner
to do state estimation. The resulting algorithm, which is tailored
exclusively to discrete-time systems, requires a network-wide
initialization step that serves to sort the agents in a specific order.
Thereby it can deal with state estimation under assumptions that
are weaker than strong connectivity.

Different approaches to the distributed state estimation prob-
lem are summarized in Table 1. It turns out that the current paper
is the first paper that can deal with both continuous-time and
discrete-time systems while ensuring exponential convergence
under time-varying neighbor graphs.

The contribution of this paper rests on the following three
distinguishing features, differentiating it and highlighting it as a
development of earlier work:

e The paper describes a simply structured, unified approach to
the distributed state estimation problem and to design and
analyze the corresponding distributed estimators for both
continuous- and discrete-time linear systems with possibly
time-varying graphs. It is termed the “split-spectrum” ap-
proach because it “splits” the system spectrum into disjoint
subsets corresponding to observable and unobservable sub-
spaces. In continuous time, this is achieved by a high gain
mechanism, but in discrete-time by a different mechanism,
viz. the adoption of two integrally related sampling rates.
Though the mechanisms are instrumentally different, their
purpose is fundamentally the same. It is termed ‘unified’
because the approach is shown to work for both continuous-
and discrete-time linear systems over both constant and
time-varying neighbor graphs.

e A fully distributed version of the estimator is separately
studied where each agent can adaptively adjust a local gain,
with simpler gain computation procedure and analysis com-
pared with Kim et al. (2020).

e Exponential convergence of the error dynamics is ensured
with an arbitrarily assigned convergence rate. A great ad-
vantage of our methodology is that the designs and algo-
rithms developed under a noiseless assumption are then
necessarily tolerant of some level of noise, simply because
we take care to ensure an exponential convergence.

It is assumed in this paper that the neighbor graph of the
network is always strongly connected. From the perspective of
the real world, requiring the underlying network to be strongly
connected “at every time step” is an assumption that will occur
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Table 1
Comparison of different approaches to design distributed estimators.
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Nature of approach Reference Continuous-time Discrete-time Exponential Time-varying
systems systems convergence graphs
Kalman Filter Based Khan and Jadbabaie (2011), X v X X
Approach Olfati-Reza (2009), Olfati-Saber
(2005, 2007)
Olfati-Reza and Shamma (2005) v X X X
Observability Decomposition Mitra and Sundaram (2018) X v v X
Based Approach Mitra et al. (2019, 2022) x v v v
Decentralized Control Park and Martins (2012a, 2012b, X v v X
Based Approach 2017)
Wang and Morse (2017, 2018) v v X
. Han et al. (2018, 2019), Kim et al. v X v X
Zplltr—osiehctrum Based (2016), Wang, Liu, and Morse
PP (2019)
Wang, Liu, Morse, and Anderson X v v X
(2019)
This work v v v v

in a great many (though obviously not all) cases, and as such, is
deserving of a separate study in its own right. The extension to
more general time-varying graphs is one future direction. It may
not be conceptually difficult, however intricate the details may
be.

The paper first describes the split-spectrum based distributed
estimator for the case when the system dynamics are continuous
with a stationary network in Section 2.1, and with associated
background analysis is given in Section 2.2. The estimator is then
extended to deal with non-stationary networks whose neighbor
graphs switch according to a switching signal with a fixed dwell
time or a variable dwell time with prescribed average, the ideas
being detailed in Section 2.3. In the case when the intercon-
nection among the agents can always be modeled using doubly
stochastic matrices {e.g., undirected graphs with the Metropolis
weights (Xiao et al.,, 2005)}, it is shown in Section 2.3 that the
estimator functions correctly even if the neighbor graph switches
arbitrarily, provided the graph is always strongly connected. The
estimators mentioned above all rely on the existence of a suf-
ficiently large, network-widely shared gain. A fully distributed
version of the estimator is then studied in Section 2.4 where each
agent can adaptively adjust a local gain. The adaptive estimator
is subject to a robustness issue common to adaptive control. The
proposed estimators, except for the adaptive one, are inherently
resilient to abrupt changes in the number of agents and com-
munication links in the inter-agent communication graph upon
which the algorithms depend, an issue which is discussed in
Section 2.5. Then the split-spectrum based estimator design is
extended to the case when the system dynamics is discrete in
Section 3 for both constant and time-varying neighbor graphs.
Simulation validation is provided in Section 4.

The material in this paper was partially presented in Wang,
Liu, and Morse (2019), Wang, Liu, Morse, and Anderson (2019),
but this paper presents a more comprehensive treatment of the
work. Specifically, the paper crafts continuous-time distributed
estimators for two types of non-stationary networks in Sec-
tion 2.3 and a fully distributed adaptive estimator in Section 2.4,
which were not included in Wang, Liu, and Morse (2019), Wang,
Liu, Morse, and Anderson (2019).

2. Continuous-time distributed estimator

We are interested in a network of m > 0 {possibly mobile}
autonomous agents labeled 1, 2, ..., m which are able to receive
information from their “neighbors”, where by a neighbor of agent
i is meant any other agent within agent i's reception range. We

write N;(t) for the labels of agent i’s neighbors at time t € [0, 00)
and always take agent i to be a neighbor of itself. Neighbor
relations at time t are characterized by a directed graph N(t) with
m vertices and a set of arcs defined so that there is an arc in
N(t) from vertex j to vertex i whenever agent j is a neighbor of
agent i at time t. Since each agent i is always a neighbor of itself,
N(t) has a self-arc at each of its vertices. Each agent i can sense a

continuous-time signal y; € R%, i € m 2 {1,2, ..., m}, where
yi=GCx, iem (1)
X = Ax (2)

and x € R". We assume throughout that GG # 0, i € m,
and that the system defined by (1) and (2) is jointly observable;
ie, with C = [C] G Cp,]’. the matrix pair (C,A) is
observable. Joint observability is equivalent to the requirement
that (;cm Vi = 0, where V; is the unobservable space of (C;, A);
ie. v = ker[C] (GAY (C,-A””)/]/. As is well known, V;
is the largest A-invariant subspace contained in the kernel of C.
Generalizing the results that follow to the case when (C, A) is only
detectable is quite straightforward and can be accomplished us-
ing well-known ideas. However, the commonly made assumption
that each pair (C;, A), i € m, is observable, or even just detectable,
is very restrictive, grossly simplifies the problem and is unneces-
sary. The assumption C; # 0 is not necessary provided the more
relaxed problem is properly formulated. The assumption is made
for the sake of simplicity. The problem of interest is to construct
a suitably defined family of linear estimators in such a way so
that no matter what the estimators’ initial states are, each agent
obtains an asymptotically correct estimate x; of x in the sense
that the estimation error x;(t) — x(t) converges to zero as fast as
exp(—At) does, where A is an arbitrarily chosen but fixed positive
number.

This section proposes the estimator first, and then analyzes the
estimator beginning with the condition that the neighbor graph
N(t) is constant. A time-varying neighbor graph N(t) is then con-
sidered in which changes occur according to a switching signal.
Later, a fully distributed algorithm based on use of multiplicative
adaptive gain control is developed.

2.1. The estimator

The estimator to be considered consists of m local or private
estimators of the form for each i € m,

)
mi(t}e;,'(t)j

X = (A + KiG)x; — Kiyi — gP; 6‘1’ -
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where m;(t) is the number of labels in Nj(t), g is a suitably defined
positive gain common to all local estimators, each K; is a suitably
defined matrix, and for each i € m, P; is the orthogonal projection
on the unobservable space of (C;, A). The term (A + KiG)x; — Kiy;
is designed to enable each agent i to be able to recover the
observable part of the state by itself, and the term —gP;(x; —
% ZjeM(r)Xf) is for the purpose of utilizing information from
its neighbors to recover the unobservable part of the state. It
will be shown that with this design, the spectrum of the system
matrix can be split into two subsets. Details on how to design the
parameters K; and g will be provided in the following.

2.1.1. The error dynamics

This subsection provides the error dynamics of the proposed
estimator. It will be shown that the spectrum of the error system
matrix can be split into two subsets based on the observability of
each agent with K; defined properly.

First note from (3), that the state estimation error e; = x; — x
satisfies

. 1
e =(A+KGe —gPi|ei — —— Z e (4)
mi(t) =

JeNi(t)

Consequently the overall error vector e = [e’l . ej,,]/ satisfies

& = (A — gP(Im — S(t)))e (5)

where A = block diag {A + KiC1,A + K2Ca, ..., A+ KyCp), P =
block diag {Py, Py, ..., P}, S(t) = S(t) ® I, with S(t) = Dy Afy.
Here I; is the k x k identity matrix, and Ay is the adjacency
matrix of N(t) and Dy is the diagonal matrix whose ith diagonal
entry is the in-degree of N(t)'s ith vertex. Note that N(t) is the
graph! of '(t) and that the diagonal entries of S'(t) are all positive
because each agent is a neighbor of itself. The matrix S(t) is
evidently a stochastic matrix.

Proposition 1. The spectrum of the error system matrix A-—
gP(I,,, — S) splits into two subsets. One subset contains the union
of certain subsets of the eigenvalues associated with the ith local
estimator, i € m, these being able to be arbitrarily positioned
by choice of the K; and independent of g. The second subset is
independent of the choice of the K;, and depends, though not to the
extent of being able to be arbitrarily positioned, on g.

We remark that in the proof below, we will explain how to
choose the K; to ensure that the associated set of eigenvalues has
degree of stability A (ensuring an estimation error decay at least
as fast as exp(—At)), while subsequently we will explain how to
choose g to ensure stability of the remaining part of the spectrum
with the same minimum exponential decay rate.

Proof of Proposition 1. The definitions of K; and g begin with the
specification of a desired convergence rate bound A > 0. To begin
with, each matrix K; is defined as follows. For each fixed i € m,
write Q; for any full rank matrix whose kernel is the unobservable
space of (G;, A) and let C; and A; be the unique solutions to G;Q; =
G and QA = A;Q; respectively. Then the matrix pair (G, A;) is
observable. A matrix K; can be chosen to ensure that the conver-
gence of exp{(A; + K;C;)t} to zero is as fast as the convergence of
exp(—At) to zero is. There are several well-documented ways to
do this {e.g, spectrum assignment algorithms or Riccati equation

solvers}, since each pair (C;, A;) is observable. Having chosen such

1 The graph of an n x n matrix M is that directed graph on n vertices
possessing a directed arc from vertex i to vertex j if my # 0 {p. 357, Horn
and Johnson (1985)}.
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Ki, K; is then chosen to be K; = Q;"'K; where Q' is a right inverse
for Q;. The definition implies that

QA+ KiG) = (A + KiG)Q; (6)

and that (A + K;G;)Vv; C V. The latter, in turn, implies that there
is a unique matrix A; which satisfies

(A+KG)V; = ViA; (7)

where V; is a basis matrix? for V..

Next we show what defining the K; in this way accomplishes.
Note that the subspace V = V; @V, @ --- @ V, is A - invariant
because (A + KiG)V; C V;, i € m. Next, let Q = block diag
{Q1,Q2, ..., Qn} and V = block diag {V;, V>, ..., V;y} where V; is
a matrix whose columns form an orthonormal basis for V;. Then Q
is a full rank matrix whose kernel is V and V is a basis matrix for v
whose columns form an orthonormal set. It follows that P = VV’,
that QP = 0, and that

QA = AQ (8)
AV = VA (9)
where A = block diag {A{,A,, ..., Ay} and

Ay = block diag {A; + KiC1, . .., Am + KnCp}. (10)

Let V~! be any left inverse for V and let Q! be that right
inverse for Q for which V=1Q~! = 0. Then

A—gP(lyn —S(t) =T [ Av 0 ] T-!

At A0) (an

where Ay(t) = V(A — g(lpn — S(t)))Q " and Ay(t) = A —
8V'(Imn — S(t))V. Here T = [Q™" V]. It is easy to check that
T'=[Q V].

According to (11), the spectrum of A—gP(I,, —S) is equivalent
to the union of the spectrum of Ay and Ay. W

Recall that the K; have been already been chosen so that
each matrix exponential exp{(A; + K;G;)t} converges to zero as
fast as exp(—At) does. Because of this and the fact that Ay(t)
is a bounded matrix, to ensure that for each fixed 7, the state
transition matrix ®(t, r) converges to zero as fast as exp(—At)
does, it is enough to choose g so that the state transition matrix
of Ay(t) converges to zero at least as fast as exp(—At) does. The
requisite condition on g is provided below for three different
neighbor graph connectivity assumptions.

2.2. Constant neighbor graph

This subsection focuses on the case when the neighbor graph
N(t) is a constant graph N. The following result can be obtained.

Theorem 1. For any given positive number A, if the neighbor graph
N is fixed and strongly connected, and the system defined by (1) and
(2) is jointly observable, there are matrices K;, i € m such that for g
sufficiently large, each estimation error x;(t) — x(t) of the distributed
estimator defined by (3), converges to zero as t — oo as fast as
exp(—At) converges to zero.

The proof of the theorem involves making use of the following
result, with all proofs being contained in Appendix A. In partic-
ular, the proof of Proposition 2 makes use of the properties of
strong connectivity of the neighbor graph and joint observability
of the system.

Proposition 2. —V'(I,,,—S)V is a continuous-time stability matrix.

2 for simplicity, we assume that the columns of V; constitute an orthonormal
basis for V; in which case P; = V;V/.
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2.3. Switching neighbor graph

In the sequel the problem is studied under the assumption that
N(t) changes according to a switching signal with a fixed dwell
time or a variable dwell time with fixed average. To characterize
the assumed time dependence of N(t), let G = {G1, Ga, ..., Gn, }
denote the set of all directed, strongly connected graphs on m
vertices which have self-arcs at all vertices; here n, is the number
of graphs in G. In some situations, the switching signals always
have consecutive discontinuities separated by a value which is
no less than a fixed positive real number tp. It is called a dwell
time (Morse, 1993). In certain situations, the switching signals
may occasionally have consecutive discontinuities separated by
less than tp, but for which the average interval between consec-
utive discontinuities is no less than zp. This leads to the concept
of an average dwell-time. With 1p and § fixed define S, for the
set of all piecewise-constant switching signals o : [0, 00) —
{1,2,...,|G]} satisfying 8., (to,t) < & + %. Here 8,(to, t)
denotes the number of discontinuities of o in the open interval
(to, t). The constant p is called the average dwell-time and §, the
chatter bound (Hespahna & Morse, 1999). By the set of all time-
varying neighbor graphs with average dwell-time tp is meant the
set {G, : 0 € Savg). Note that switching according to a dwell time
is a special case of switching according to an average dwell time.
In the following, it is assumed that N € {G, : 0 € Sy}

The problem to which this subsection is addressed is this. For
fixed averaged dwell-time tp and the chatter bound &y, devise
a procedure for crafting m local estimators, one for each agent,
so that for each neighbor graph N € {G, : 0 € Syg}, all m
state estimation errors converge to zero exponentially fast at a
prescribed rate.

The estimator to be considered is still the same as the es-
timator described in (3), with the exception that g is chosen
differently. The following result can be derived.

Theorem 2. For any fixed positive numbers tp and X, there exists
a positive number g* with the following property. For any value
of g > g* any neighbor graph N € {G, : 0 € Sag), if the
system defined by (1) and (2) is jointly observable, there are matrices
K;, i € m such that, each state estimation error e; = x;—x, i € m of
the distributed estimator defined by (3) converges to zero as t — oo
as fast as exp(—At) does.

The proof of Theorem 2 depends on the following lemma.

Lemma 1. Let My, My, ..., Mg be a set of n x n exponentially
stable real matrices associated with a set G = {G1, Go, ..., G|g|} of
directed strongly connected graphs with self-arcs at all vertices. Let
o denote the switching signal with average dwell time tp governing
the selection of a graph from G. Then for any n x n real matrix N
and positive number XA there is a positive number g*, depending on
7p for which, for each o € Sy, and g > g*, all solutions to

x = (N + gM, x (12)
converge to zero as fast as exp(—At) does.

The proofs of Lemma 1 and Theorem 2 can be found in Ap-
pendix A.

In the sequel, the problem is studied for a certain type of
switching neighbor graphs. It turns out that if the stochastic
matrices of undirected neighbor graphs are chosen to be doubly
stochastic, there exist estimators which can deal with arbitrary
switching signals, and the notion of dwell times ceases to be
relevant. The estimator to be considered is again the same as (3),
with the exception that g is chosen differently.
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Theorem 3. For any fixed positive number ), there exists a positive
number g* with the following property. For any value of g > g*, any
time-varying neighbor graph N(t), if the system defined by (1) and
(2) is jointly observable, the neighbor graph N(t) is undirected and
connected, and the stochastic matrix S(t) of graph N(t) is doubly
stochastic, there are matrices K;, i € m such that each state
estimation error x;(t) — x(t) of the distributed observer defined by
(3), converges to zero as t — oo as fast as exp(—At) converges to
zero.

The proof of Theorem 3 can be found in Appendix A.

Given that A has eigenvalues which are a subset of those of A,
it is seen that the effect of large g is to force the instantaneous
value of the eigenvalues of Ay (t) well to the left of those of A,
and indeed the same for the Lyapunov exponent. This is a spectral
separation idea — consensus dynamics within the estimator are
faster than those of the original system.

2.4. Distributed estimator with adaptive gains

Obviously it may be disadvantageous to share a gain across
the whole network, and here we aim to design a simple adaptive
distributed estimator to get gains for each estimators in a dis-
tributed way. The estimator for each agent i still has the form (3)
while each agent i has its own gain g; which is obtained by

. 1 2
& = ‘Vl/ Z —(x — x,»)’ , iem (13)
e m; 2

where | - |, denotes the two norm of a matrix and g;(0) is nonneg-
ative but otherwise arbitrary. Key questions arising are whether
the g; are bounded, and whether the matrices K; can be chosen in
the same way as previously. We have in fact with K; chosen as in
the proof of Proposition 1:

Theorem 4. For any neighbor graph N € (G, : 0 € Suyg), if
the system defined by (1) and (2) is jointly observable, and the gain
is defined by (13), there are matrices K;, i € m such that all the
g; are bounded, and each state estimation error e; = x; — x of the
distributed estimator defined by (3) asymptotically converges to zero
ast — oo.

The proof of Theorem 4 can be found in Appendix A.

As with any adaptive control algorithm, we must recognize
that there are fundamental challenges that can arise in practice
and have the potential to undermine the approach (Anderson &
Gevers, 1998): these include the need to work with models of
plants that may be very accurate but are virtually never exact;
the inability to know, given an unknown plant, whether a desired
control objective is practical or impractical, and the possibility of
transient instability, or extremely large signals occurring before
convergence. Thus, for this paper, our preference is to stick with
a given g instead of using an adaptive algorithm.

2.5. Resilience

The concept of a passively resilient algorithm is proposed
in Wang et al. (2022). By a passively resilient algorithm for a
distributed process is meant an algorithm which, by exploiting
built-in network and data redundancies, is able to continue to
function correctly in the face of abrupt changes in the number of
vertices and arcs in the inter-agent communication graph upon
which the algorithm depends. All the proposed continuous-time
distributed estimators, except for the adaptive one, are inher-
ently resilient to these abrupt changes provided the network
is redundantly strongly connected and redundantly jointly ob-
servable, with a careful gain picking before the algorithm starts.
Details can be found in Section 5 of Wang et al. (2022). The
same resilience property is also possessed by the discrete-time
distributed estimators to be developed in the next section.
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3. Discrete-time distributed estimator

In this section, a discrete time version of the distributed esti-
mator problem is studied. The estimator which solves this prob-
lem in discrete time is described. Of central concern is the achiev-
ing of the split spectrum property, which underpins a stability
guarantee for the estimator. High gain is not the answer: in
continuous time, this produced a split spectrum (with some very
fast modes). The discrete-time analogy rests on having part of the
spectrum in the estimator achieved by gains K; as in continuous-
time and partly determined by the dynamics creating consensus
among the components of local estimated states corresponding to
unobserved components of the underlying system state, with the
associated time scale significantly faster than the single time scale
associated with the underlying system dynamics. The second
time scale is made possible through the introduction of a faster
sampling rate.

We are interested in the same time-varying network as used
for the continuous-time linear system and which is characterized
by the neighbor graph N(t). Each agent i can sense a discrete-time
signal y;(t) € R% at event times tT, T = 0,1,2,... where T is a
positive constant; forie mand r =0, 1,2, ...

yi(t) = Cx(tr), x(t +1)=Ax(t) (14)

and x € R". We assume throughout that N(t) is strongly con-
nected, and the system defined by (14) is jointly observable.

Each agent i is to estimate x using a dynamical system whose
output x;(r) € R" is to be an asymptotically correct estimate of
x(7) in the sense that the estimation error x;(t)—x(t) converges to
zero as T — oo as fast as A* does, where A is an arbitrarily chosen
but fixed positive number? less than 1. To accomplish this it is
assumed that the information agent i can receive from neighbor
j at event time tT is xj(7). It is further assumed that agent i can
also receive certain additional information from its neighbors at
a finite number of times between each successive pair of event
times; what this information is will be specified below.

3.1. The estimator

In this section it will be assumed that each agent’s neighbors
do not change between event times. In other words, for i € m,

Ni(t) =Ni(zT), te[T,(++1T), ©=0,1,2,...

With this assumption, the estimator to be considered consists of
m private estimators, one for each agent. The estimator for agent
i is of the form

Xi(t + 1) = (A+ KGxi(r) — Kiyi(r) (15)

where X;(t) is an “averaged state” computed recursively over q
steps during the real time interval [t T, (t+1)T) using the update
equations

(0, 7) = xi(1) (16)
zi(k, T) =( P)zi(k—1,7)+
P,Zz} —1,7), keq (17)
l( JEN;(T)
xi(t) = z(q, ) (18)

Here m;(t) is the number of labels in Aj(zT), q is a suitably
defined positive integer, further detail being given below, q =
{1,2,...,q}, and P; is the orthogonal projection on the unob-
servable space of (C;, A). Each matrix K; is defined as explained

3 For the type of observer to be developed, finite-time convergence is not
possible.
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in the next paragraph. Meanwhile, we note that the estimators
incorporate two time scales. An agent’s local estimator obtains
data from its neighbors at a rate q times that at which it obtains
measurement data from the underlying system.

As described in Section 2.1, for fixed i € m, write Q; for
any full rank matrix whose kernel is the unobservable space of
(G, A), and let G; and A; be the unique solutions to GQ; = G
and QA = A;Q; respectively. Let A be a positive value bounded
by 1. Then the matrix pair (G, A;) is observable. Thus by using
a standard spectrum assignment algorithm, a matrix K; can be
chosen to ensure that the convergence of (A; + K;C;)" to zero as
T — oo is as fast as the convergence to zero of A*. Having chosen
such K;, K; is then defined to be K; = Qi’lK; where Q,-’l is a right
inverse for Q;. To explain what needs to be considered in choosing
g, which is a rough analog of the gain g of the continuous-time
solution, it is necessary to describe the structure of the “error
model” of the overall estimator. This will be done next.

3.1.1. The error dynamics
For i € m, write ej(t) for the state estimation error e(t) =
xi(t) — x(7). In view of (15),

et + 1) = (A+ KGei(t)

where ej(t) = Xi(t) — x(t). Moreover if €j(k, 7) £
x(t), ke {0,1,...,q} then for k € q,

€(0,7) = ei(r)
€i(k, t) = (I — Pyei(k —

zi(k, t) —

-1, T)+

P,Zej 1,

jEN(TT
ei(t) = «i(q, 7)

because of (16)—(18). It is possible to combine these m subsys-
tems into a single system. Paralleling Section 2.1.1 let e = col
{e1, ea, ..., en}, define A = block diag {A+KC1, A+KGo, ..., A+
KnCn}, P = block diag {P1,P2, ..., Py} and write S(t) for the
stochastic matrix S(t) = Dj! ey Aneery Where Axer) is the adja-
cency matrix of N(rT) and DN(TT) is the diagonal matrix whose ith
diagonal entry is the in-degree of N(zT)’s ith vertex. Let e(t) = col
{ei(7), ex(t), ..., en(7)} and €(k, ) = col{ei(k, 7), e2(k, T), ...,

€m(k, T)}. Then e(t + 1) = Ae(t) and
€(0,7) = e(7)
ek, ) = (Imn — P(mn — S(x)))e(k — 1, 7), k € q
e(r) = e(q, 7)
where S(t) = $(t) ® I,. Clearly &(t) = (Iyn — Py — S(7)))%e(7),
o)
e(t + 1) = Allynn — P(Imn — S(7)))%e(t) (19)

Our immediate aim is now to explain why for g sufficiently large,

the time-varying matrix A(Imn — P(Imn — S(t)))? appearing in (19)
is a discrete-time stability matrix for which the product

7) = [ [ Allnn = Pln — S(s)))° (20)

converges to zero as T — oo as fast as A" does. _
To begin with, we explore the property of matrix A(ly, —
P(Inn — S(T))).

Proposition 3. The spectrum of the error system matrix A(ly, —
P(I,, — S(1)))? splits into two subsets. One subset contains the
union of certain subsets of the eigenvalues associated with the ith
local estimator, i € m, these being able to be arbitrarily positioned
by choice of the K; and independent of q. The second subset is
independent of the choice of the K; and depends, though not to the
extent of being able to be arbitrarily positioned, on q.
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Proof of Proposition 3. As described in Section 2.1, note that
the subspace V = v @V, & --- @ V,, is A - invariant because
(A+K;G)v; C v;, i € m. Next, let Q = block diag {Q;, Q2, ..., Qn}
and V = block diag {Vi, V,, ..., V,} It follows that P = VV’, (8)
and (9). Also as before, (A + K;C;)V; = V;A;. Moreover

Q(Imn - P(Imn - S('L')))q Q
(Inn — P(n — S(2)))IV = V(V'S(z)V)

(
(
Note that (21) holds because QP = 0. To understand why (22) i
true, note first that (I — P(In — S(T)))V = V(I5 —V'(Iyn —S())V
because P = VV’; here n = dim(V). But Iz — V'(I;yn — S(r))V
V’S(t)V because V'V = I. Thus (22) holds for ¢ = 1; it follows
by induction that (22) holds for any positive integer q.
Using (8), (9), (21), and (22), one obtains the equations

21)
22)
1S
)

QA(Imn - P(Imn - 5(7)))‘) = AVQ (23)
Almn = P(In — S(2)))V = VAy(7) (24)
where

Av(t) = A(V'S()V)! (25)
with A = block diag {A1, A3, ..., An}. These equations imply
that*

. - [ A 0 7.4

Allin — P(I;pn — S(T)))q T |:Av(t) AV(‘L’)] T (26)
with T =[Q~" V] and Ay(r) = V~"Alln — Pllmn — S(1)))9Q .

T
According to (26), the spectrum of A(ljpn — P(Imn — S(T))) is
equivalent to the union of the spectrum of Ay and Ay (7).

/—\

3.2. Time-varying neighbor graph

The following result can be obtained when the neighbor graph
is time-varying but strongly connected.

Theorem 5. For any given A with |A| < 1, if the neighbor graph
N(t) is strongly connected, and the system defined by (14) is jointly
observable, there are matrices K;, i € m such that for sufficiently
large q, each estimation error x;(t)—x(t ) of the distributed estimator
defined by (15)-(18), converges to zero as T — oo as fast as A"
converges to zero.

The proof of the theorem involves studying the transition
matrix and making use of the following results, with all proofs
being contained in Appendix B.

Lemma 2. Let M be an m x m row stochastic matrix which has a
strongly connected graph. There exists a diagonal matrix ITy; whose
diagonal entries are positive for which the matrix Ly = ITy —
M'ITyM is positive semi-definite; moreover Ly1 = 0 where 1 is
the m-vector of 1s. If, in addition, the diagonal entries of M are all
positive, then the kernel of Ly is one-dimensional.

Proposition 4. For each fixed value of t,
(V'S(z)VYR(z)(V'S(t)V)—R(t) < 0 (27)
where R(t) is the positive definite matrix, R(t) = V'(ITsz) @ In)V.

Remark 1. It should be noticed that the computation of certain
gains (g for the continuous-time case, and q for the discrete-time
case) requires a centralized design. Besides this, all other design
steps are distributed. Even though the computation of certain
gains requires going over all possible strongly connected directed
graphs on m vertices, which is a computationally intensive step,
a clear distinction needs to be drawn between the computations
required for designing the algorithm, and those required to run
it. In design, we can afford to do more computations.

4 The notation AV and Ay are different from the two defined in Section 2.
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1 1

(a) (b)

Fig. 1. The neighbor graph.

4. Simulations

This section provides simulations to illustrate the state estima-
tion performance for both continuous and discrete time systems.
The neighbor graph in some simulations will switch back and
forth between Figs. 1(a) and 1(b). On occasion, it can serve to
model a connection failure happening between agent 1 and agent
3 randomly.

4.1. Continuous dynamics
Consider the three channel, four-dimensional, continuous-

time system described by the equations x = Ax, y; = Cix, i €
{1, 2, 3}, where

01 0 0
10 0 0
A=19 0 o0 1
0 0 -2 0

and G; is the ith unit row vector in R'“. Note that A is a matrix

with eigenvalues at +1j, and +£1.4142j. While the system is

jointly observable, no single pair (C;, A) is observable. The local

observer convergence rate is designed to be at least with rate

A = 1. The first step is to design K; as stated in Section 2.1. This

is to control the spectrum of the matrix Ay as defined in (11).
For agent 1:

!/
0 —1 0100 0 010
Al:[l o]’ Ql:[1 00 o]’ V]:[O 0 0 1]’
Ki=[-5 -5 0 0]
For agent 2:

0 -1 -1 0 0 O o o 1 o]
A2=[1 0]’ Ql:[o 10 0]’ VZ:[O 00 1]’
Ky=[5 -5 0 0]

For agent 3:

0 -2 0 0 0 1 1.0 0 of
A3:[1 0]’ Q3:[0 0 1 0}’ V3:[0 10 0]’
Ks=[0 0 -5 —4]

Two cases are considered. First, suppose the neighbor graph
N(t) is fixed as shown in Fig. 1(a). The system considered includes
input white noise with zero mean, that is x = Ax + v where
E[v(t)] = 0, E[v(t)v'(s)] = 0.5%8(t — s). With g = 10 obtained
using (30), the real part of the right most eigenvalue of Ay is less
than —1. With randomly chosen initial state values, traces of this
simulation are shown in Fig. 2(a) where x] and x! denote the first
components of x; and x respectively. Moreover, the norm of the
estimation error is plotted in Fig. 2(b) from which we can see that
it is exponentially convergent with the approximate rate A = 1.

Second, suppose the neighbor graph N(t) is time-varying and
switching back and forth between Figs. 1(a) and 1(b) according
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(b) The trajectory of the
norm of the estimation
error

(a) Trajectory of the per-
formance

Fig. 2. The trajectory under time-varying neighbor graphs.
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Fig. 3. The indicator function.

(a) The state value

(b) The estimation error

Fig. 4. The trajectory under time-varying neighbor graphs.

to the indicator function in Fig. 3. That is, when the function
value is 1, the neighbor graph is Fig. 1(a), and when the function
value is 0, the neighbor graph is Fig. 1(b). It is arranged that the
average dwell time is tp = 0.0369 for this simulation. With zero
measurement noise the corresponding solution trajectories for x,.3
and x! are shown in Fig. 4(a) and the norm of the estimation error
is shown in Fig. 4(b).

4.2. Discrete dynamics

The following simulations are intended to illustrate how to
pick the integer parameter q of the observer. Consider the three
channel, four-dimensional, discrete-time system described by the
equations x(t + 1) = Ax(t), yi = Gx, i € {1, 2, 3}, where
A and C; are the same as described in Section 4.1. The observer
convergence rate is designed to be A = 0.5. The first step is also
to design K; as stated in Section 3.1. For each agent i, matrices A;,
Q;, and V; remain the same as stated in Section 4.1.

For agent 1: K; = [0.5 0.94 0 0]'

For agent 2: K, = [-0.94 05 0 0]

Foragent3: K3 =[0 0 05 1.94]
Consider the case when the neighbor graph N is constant
as in Fig. 1(a). With randomly chosen initial state values and
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Fig. 5. The indicator function.

(a) Without noise (b) With noise

Fig. 6. The trajectory of the norm of the estimation error for systems.

q = 6 obtained using (59), which leads to a spectral radius
of A(V'SV)® less than 0.5, the norm of the estimation error is
plotted in Fig. 6(a) from which we can see that it is exponentially
convergent with the rate A = 0.5. The error traces are bounded
by the curve 50 x 0.57.

Consider the case when the neighbor graph is switching be-
tween Fig. 1(a) and (b) according to Fig. 5. The system considered
has input white noise v which satisfies v ~ A/(0, 0.12), that is
x(t + 1) = Ax(t) 4+ v. The norm of the estimation error is shown
in Fig. 6(b) with the same value of g.

5. Concluding remarks

The distributed state estimation problem is studied when
the neighbor graph is time-varying. It has been shown that,
each agent can estimate the state exponentially fast with a pre-
assigned convergence rate for both continuous-time and discrete-
time systems.

The distributed state estimators developed in both Sections 2
and 3 rely on an especially useful observation about distributed
estimator structure first noted in Kim et al. (2016) and sub-
sequently exploited in Han et al. (2018) and Wang, Liu, and
Morse (2019). That is to split the system spectrum into disjoint
subsets corresponding to unobservable and observable subspaces.
Just how much further this idea can be advanced remains to
be seen. Generalization on the constraint of strong connectivity
for the neighbor graph can be studied in future work. Certainly
the synchronous switching upon which the local estimators in
Section 3 depend can be relaxed by judicious application of the
mixed matrix norm discussed here. This generalization will be
addressed in future work.
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Appendix A. Proofs for continuous-time distributed estimator

Proof of Proposition 2. Recall S =S ® I,,. Since S is a stochastic
matrix, S’ must have a spectral radius of 1 and an eigenvalue
at 1. Moreover, since N is the graph of S’ and N is strongly
connected by assumption, S’ is irreducible {Theorem 6.2.24, Horn
and Johnson (1985)}. Thus by the Perron-Frobenius Theorem
there must be a positive vector 7 such that S’z = 7. Without
loss of generality, assume 7 is normalized so that the sum of
its entries equals 1; i.e., 7 is a Perron vector (Horn & Johnson,
1985). Let IT be that diagonal matrix whose diagonal entries are
the entries of #. Then I71 = m where 1 is the m-vector of all
1s. Let L = 21T — I1S — S'I1. Clearly L is a symmetric matrix and
[1=0.

We claim that the geometric multiplicity of L's eigenvalue at 0
is one. To establish this claim, note first that every nonzero entry
of S’ is a nonzero entry of I71S + S’IT because S’ is a nonnegative
matrix and I7 is a diagonal matrix whose diagonal entries are all
positive. Moreover since 2(I,, — IT) is a nonnegative matrix, every
nonzero entry of S” is also a nonzero entry of 2I,;, — L = 2(I,, —
IT)+I1S+S'I1. Thus the graph of S’ must be a spanning subgraph
of the graph of 2I,, — L so the graph of 2I,, — L must be strongly
connected. Therefore 2I,, — L must be irreducible. Note that the
row sums of 2I,, — L all equal 2. Since 2I,, — L is nonnegative,
its infinity norm is 2 so its spectral radius is no greater than
2 {Theorem 5.6.9, Horn and Johnson (1985)}. Moreover 2 is an
eigenvalue of 2I;, —L. Thus by the Perron-Frobenius Theorem, the
geometric multiplicity of this eigenvalue is one. It follows that the
geometric multiplicity of the eigenvalue of L at 0 is also one.

We claim that L is positive semi-definite. To_establish this
claim, note that L can also be written as L =D — A where D is a
diagonal matrix whose entries are the diagonal entries of L and A
is the nonnegative matrix A = D — L. As such, L is the generalized
Laplacian (Godsil & Royle, 2001) of that simple undirected graph
G whose adjacency matrix is the matrix that results when the
nonzero entries a; in A are replaced by ones. Since L can also be
written as

L= Z ai(u; — uj)(u; — ;)

(ij)e€

where u; is the ith unit vector and £ is the edge set of G, L is
positive semi-definite as claimed.
To proceed, set

H = block diag {m11ly,, m2ly,, - . ., Tl } (28)

where n; = dimV; and note that VH = (IT ® I,)V. Since
(=1 L) ®I,) = ((S — I,)I[T) ® I, it must be true that
V(S —Im)QI;)VYH = V'(((S — I,) IT) ® I,)V and thus that

H(V/(Imp = SV) + (V/(Imn — S)VYH
=V(L® L)V (29)

Observe that this is a Lyapunov equation for the positive definite
function z’Hz. Therefore to show that —V’(I;;, — S)V is a stability
matrix, it is enough to show that V(L ® I,)V is positive definite.

Since L is positive semi-definite, so must be L ® I,. Therefore
V(L ® I,)V is at least positive semi-definite. Suppose z'V'(L ®
I,)Vz = 0 where z = col {z1,2,...,2n) and z; € RIMVD),
To show that V'(L ® I,)V is positive definite, it is enough to
show that z = 0. Since L's eigenvalue at 0 has multiplicity one,
ker L = span {1}; therefore ker(L ® I,) = column span 1 ® I,.
The hypothesis z'V'(L ® I,)Vz = 0 implies that (L ® I,)Vz = 0 so
Vz e ker(L ® I,,). Therefore Viz; = Vjz;, i,j € m. But because of
joint observability, ();c, Vi = 050 Vizi = 0, i € m. Thus z; =
0, i € m so z = 0 implying that V'(L ® I,,)V is positive definite.
Therefore —V'(I,, — S)V is a continuous-time stability matrix as
claimed. W
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Proof of Theorem 1. Recall that the state estimation error
satisfied (4). The overall error dynamic is defined as (5). According
o (11), the spectrum of A — gP(I;;y — S) is equivalent to_the
union of the spectrum of Ay and Ay. Since the spectrum of A; +
KiG;, i € m, is assignable with K;, to show for g sufficiently large
that A — gP(I,,, — S) is a continuous-time stability matrix with a
prescribed convergence rate as large as A, it is enough to show
that for g sufficiently large, the matrix Ay = A — gV'(Ip;, — S)V is
a continuous-time stability matrix with a prescribed convergence
rate as large as . _

To show that exp{(A — gV'((I, — S) ® I,)V)t} can be made
to converge to zero as fast as exp(—At) does by choosing g
sufficiently large, we exploit (29). Note in particular that

H(M + Ay) + (M + Ay)H

= HM +A)+ (M +AYH —gV'(L® I,V

Since V'(L ® I,)V is positive definite, by picking g sufficiently
large, H(AI + A) + (M + AYH — gV'(L ® I,)V will be negative
definite implying that Al 4 Ay is a stability matrix and thus that
A—gV'(Imy —S)V s a stability matrix for which exp{(A—gV’(Im, —
S)V)t} converges to zero as fast as exp(—At) does. In other words,
any value of g will have the desired property provided

Domax (H(u +A)+ (M + Z\)’H)

)‘«min (V/(L ® In)v)

where Amax(.) and Apin(.) are the largest eigenvalue and the
smallest eigenvalue of a symmetric matrix respectively. H

g> (30)

Proof of Lemma 1. > By hypothesis, each M; is exponentially
stable. Thus there are positive constants ¢; > 1 and A; such that

llexp(M;t)|l < ciexp(—A;t) (31)
foranyi e {1,2,...,|G|}. Here |- || is any given submultiplicative
norm on R™", Let
c= max ¢, andA*= min ;.

ie{1,2,....|G|} i€{1,2,...,|G|}

Fix A > 0 and let g be any gain satisfying
_ (A +[N]lc) +Inc
- TpA*
We claim that for any number 7, and any switching signal o €

Savg, the transition matrix of gM,, namely @, (t, t), converges to
zero as fast as exp(—at) does where

a=A+|N|c (33)

(32)

To understand why this is so, by (31),
1@ (¢, )l < c*exp(—gh*(t — 1)) (34)

where 6,(7, t) ils the number of switching between (z, t). By (32),
exp(gAr*) > c™exp(wa). From this and the fact that §,(z,t) <

t—t
8o + o
t—1
@4 (t, T)Il < c®c D exp(—gA*(t — 1))
< céof%exp(—oz(t —1)).

Thus, the claim is true.
In view of (12) and the variation of constants formula,

X(t) = B, (t, OX(0) + f 4 (¢, ONK()dpt (35)
0

5 The symbols used in this proof such as g, ¢ and A* are generic and do not
have the same meanings as the same symbols do when used elsewhere in this

paper.
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As ||@4(t, T)]l < c exp(—at) for all T and o € Sy,

X < ¢ exp(—at)|xO)] +
f ¢ exp(—a(t — w)INIIX()ldps
0

By multiplying by ei(p(at) on both sides, one obtains exp(at)
IX(t)]l < c[lx(0)| + [y IINllc exp(as)|X(14)|dpe. From this and the
Bellman-Gronwall Lemma there follows

exp(at)[[x(t)]| < cllx(0)]| eXP(/ INllcdp)
0

Since fot IN|lcdu [IN]ict, it follows that exp(ct)||x(t)]|
c||x(0)|lexp(||N||ct) and thus that

<

IX(O)Nl < clix(0)]lexp(([IN]lc — a)t)
From this and (33) it follows that
IX(E)II < cllx(0)[lexp(—At)

[ |

This completes the proof.
Proof of Theorem 2. Recall that Ay(t) = A — 8V (I — S(t))V. By
Proposition 2, for any fixed time t, —V’(I;;; — S(7))V is exponen-
tially stable if the graph of S(t) is strongly connected. Note A is
fixed and bounded. According to Lemma 1, for each o € S,y there
is a positive number g, depending on tp so that the transition
matrix of Ay(t) converges to zero at least as fast as exp(—At) does.
This is accomplished by choosing g sufficiently large. Based on the
proof of Lemma 1, it is sufficient to pick g to satisfy

_ Inc+ (i + Al
- )\.*‘ED

where ¢ and 1* are two positive numbers chosen so that for any

fixed 7, |lexp{—V'(In, — S(7))Vt}|| < c exp(—A*t), and ¢ > 1. This
completes the proof. W

(36)

Proof of Theorem 3. Recall ®y(t, t) is the transition matrix of
Ay(t) forany t > t > 0. If we can show that there exist a constant
¢ so that

[@v(t, o)l < cexp(—=A(t—7)), VE>=7>0

the remaining proof is exactly the same as the proof of Theorem 1
which is omitted here.

It is left to show that ||®y(t, )| < c exp(—A(t — 7)) for all
t > T > 0 by choosing g sufficiently large. We explore the matrix
Ay(t). Recall that Ay(t) = A —gV'((I, — S(t)) ® I,)V. In particular,

(M 4+ Ay (t)) + (A + Ay(t)Y
= (M +A) + (A +AY
—gV'((2ln — S(t) — S'()) ® [)V

Since each S(t) is doubly stochastic, 2I,,, —S(t)—S’(t) has row sum
0, all its off-diagonal entries are non-positive, and all its diagonal
entries are positive. That is, this matrix can be seen as a gener-
alized Laplacian matrix of a connected graph. By Proposition 2,
for any t, —=V'((2I, — S(t) = S'(t)) @ L)V = =V (I;y — S(£))V —
V/(Im, — S'(t))V is negative definite. Thus by picking g sufficiently
large, (A + Ay (t)) + (M + Ay(t)) will be negative definite for any
time t.
Consider system

7 =Ay(t)
Let V = Z'z. Then

V =Z(Ay(t) +Av(0)Z < —227'Z
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Therefore, @y (t, t) converges to zero as fast as exp(—A(t — 1))
does, i.e.,

@v(t, T)Il < c exp(—A(t — 7)),
|

Vti>1>0

This completes the proof.

Proof of Theorem 4. Eq. (13) can be rewritten as
g =IV/Wel;, iem (37)

where W; = [Wi Win| € R™"™ Here Wy € R™" is LI,
ifj #iandj e A, and Wy is —I, if j = i. Otherwise Wj; is ao
matrix. Let column{Wi, W,, ..., W,} = W.

Different from (5), the error model turns to

e =A— G(t)P(Imn — S(t))e

(38)

,gn(Ola). Let [(Qey 2] =
V] as defined earlier. Here z = [Z], ...,

where G(t) = block diag {g(t)I,, ...
T~'e where T = [Q !
z},]" iwth z; = V/e;.

Based on (11) and (38), the dynamic of z; can be written in the
following form
Zi = AiZi — gl-(t)Vi’Mie + Aine,-, iem (39)
where ;\i = Vi/(A + K;G;)V;, and A,‘ = Vi/(A + K,‘C,‘)Qi/.

First, we want to show that all g;(t) are bounded. We prove
this by contradiction. Without generality, suppose that g; for i €
V, = {1,2,...,my} are unbounded, and g; fori € Vv, = {m; +
1, my+2, ..., m} are bounded where v,NV, = 0 and V,UV, = m.

Let R = Ry + R, + R3 + R4 where the individual R; involve new

positive parameters p, o, @m;+41, - - - » Am-
my m
1 p 2 1 gi(o) 2
Ri == Z”i7|zi|z’ Ry = Z Ti——1Zil5
2= s&t) 2 oy &)
m t
Ri=— 3 agt),and Ry = —ao / Qef2dt.
i=mq+1 0

The way to pick positive parameters p, «p, and «; for i € Vj is
specified as follows.

Picking p > 1:

Let W; be a positive matrix chosen such that

m

Wiz = Z”i|Ai|2|Zi|§
i=1

According to (29),

(40)

F= %(HV’(S —Inn)V + V(S = Iyp)VH) > 0 (41)
Pick p so that W, = pF — W; > 0

Picking «g, and «;, i € Vy:

Using the Cauchy-Schwarz inequality, the following three in-
equalities can be derived. For 87 > 0, B, > 0 and Ai >
0 fori € W, all for the moment otherwise arbitrary, write A =
block diag {A1, ..., An}

Z’HAQe < &M/Hzli + L|Qe|§, (42)
2 21

—pZ’HV'(S — I;n)Q’ Qe <

22106 — ) vial + 2—;2|Qe|§ (43)

—i(gi(0) — p)z{V{Wie <

2 r(5(0) — pyei + Zikiw;wfe@. (a)
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Let W3 be a symmetric matrix chosen such that

Wiz = 2 Wz — ém Hz|, — @|Q( — L) VHz|;
- ) 5 Im(E(0) — pal; (45)
i=mq+1

Pick positive 81, B2, and A; for i € V, to be small enough so
that Wjs is positive definite. Pick «p and «;, i € V} according to
the following two equations:

1 n 1
R S 1
°T 28 " 28, 2%

Now we consider the derivative of R, i.e., R= Rl + Rz + Rg + R4.

1 mq p mq p .
1= Z”i;|zi|§|vi/wie|§ + ZﬂiEZ{Aizi
. i . 1

and o; = i€V (46)

+Zm zAQlel ZmszWe

Since for i € v, each g,-(t) is unbounded, there is a time T for

t >T,p <gft)foralli € V,. That is ‘(’t < 1. Hence

my my
Ry < E JT,'Z{A,'Zi + E ﬂiZ{Aine,' — E JT,'pZi/Vl-,WE‘
i=1 i=1 i=1

According to (37), gi(t) is a non-decreasing function. As a result,

gi((?)) < 1. Similar to the derivation of the inequality for Ry, it can

be shown that

(47)

m m m
szzﬂiZ{AiZi +Z7Ti2,-/;\in€i _Z”igi(o)zi,vi/wie

i=my+1 i=mq+1 i=mq+1

(48)

By the submultiplicity of the matrix two norm, z/Az, < |Ail,|zi3.
From this, (47), (48), (40) and (28),

R1+R2 <zwlz+ZmzAQ,e, ZmszWe
i=1 i=1
m

— Y m(&(0) - p)zV{ Wie

i=mq+1
= 2'Wiz 4+ 2’HAQe — pz’HV'(S — Imn)e
m
— Y m(&(0) - p)zV{Wie
i=mq1+1

It can be observed that ZHV'(S — Imn)e = Z’HV’ (S = Lm)(VV'e +
Q'Qe) = Z’HV’ (S — Iyn)Vz + Z’HV'(S — Im,,)Q Qe. From this and
(41),ZHV'((S — I,) @ Iy)e = Z’Fz + Z/HV'((S — Iz) ® I,)Q’Qe. Thus

Ri + R, <2/ (Wy — pF)z + 2HAQe — pz’HV'

m

(S —In)Q'Qe — Y mi(8i(0) — p)zViWie

i=mi+1
= —2z'W,z + Z/HAQe — pz’HV'
m
(S—In)Q'Qe — Y mi(gi(0) — p)zjViWie
i=mq+1
From this, (42), (43), and (44),
Rit+ Ry < —2waz 4 B0 S A Hels + 22 QS — b VH,
0) — p)zil? e
+ Z |7ng1( )1|2+2/3 |Q¢ |2
i= m1+1
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ﬂ —1Qel} + Z —|v Wiel, (49)
i= m1+l
It is direct to get that
m
Rs+Ra=— ) ailV/Wiel; — | Qel} (50)
i=mi+1
From (49), (50), and (46),
R < —zwez+ D |A Hzl, + &lQ(( —1)®1I)VHz[;
+ Z |7Tl(gl p)z,-lﬁ
i= m1+1
According to (45),
R<—-2ZWwWsz<0 (51)

Since Qe is exponentially convergent, the limit of R4(t) as t goes
to infinity exists. Due to the assumption that for i € Vj, the g;
are bounded. Thus R3 is bounded. Therefore, R is lower bounded.
From this and (51) it follows that z € £2. From this and the fact
that Qe € £2, we conclude e € £2. This with the definition of &;
imply that all g; for i € m are bounded. Thus by contradiction all
g; are bounded.

Next, we want to show that e converges to zero. According
to Theorem 1, let Gy = g;I be a matrix chosen so that A —
G1P(I;n, — S(t)) is a stable matrix. From (38), the dynamic of e
can be rewritten as

& = (A — GiP(Imn — S(t)))e + (G1 — G)P(Iy — S(£))e (52)

Since (Iyn —S(t))e € £2, G; — G is bounded, and A — Gy P(I, — S(t))
is stable, thus é € £2. Thus (52) is input-to-state stable which
implies that e must converge to zero asymptotically. W

Appendix B. Proofs for discrete-time distributed estimator

Proof of Lemma 2. Since M is an m x m row stochastic matrix
which ahs a strongly connected graph, M is irreducible {Theorem
6.2.24, Horn and Johnson (1985)}. Thus by the Perron-Frobenius
Theorem there must be a positive vector 7 such that M'w = 7.
Without loss of generality, assume 7 is normalized so that the
sum of its entries equals 1; i.e., v is a probability vector. Let ITy
be that diagonal matrix whose diagonal entries are the entries of
. Then ITy1 = 7. Since M1 = 1, IIy1 = &, and M'w = 7, it
must be true that M'ITyM1 = 7 and thus that Ly1 = 0. Thus Ly
can also be written as Ly = D — A where D is a diagonal matrix
whose diagonal entries are the diagonal entries of Ly and A is
the nonnegative matrix A = D — Ly. Arguing as in the proof of
Proposition 2, it can be shown that Ly, is positive-semidefinite.

Now suppose that the diagonal entries of M are all positive.
Then the diagonal entries of M’ITy must also all be positive.
It follows that every arc in the graph of M’ must be an arc in
the graph of M'ITyM so the graph of M'ITyM must be strongly
connected. Since I — ITy is a nonnegative matrix, the graph of
M’ ITyM must be a spanning subgraph of the graph of I — ITy, +
M'ITyM. Since I — Ly = I — ITy + M'ITyM and the graph of
M'ITM is strongly connected, the graph of I —Ly; must be strongly
connected as well. But I — Ly is a nonnegative matrix so it must
be irreducible. In addition, since (I — Ly)1 = 1, the row sums of
(I — Ly) all equal one. Therefore the infinity norm of I — Ly is
one so its spectral radius is no greater than 1. Moreover 1 is an
eigenvalue of I — L. Thus by the Perron-Frobenius Theorem, the
geometric multiplicity of this eigenvalue is one. It follows that the
geometric multiplicity of the eigenvalue of Ly, at O is also one; ie,
the dimension of the kernel of Ly is one as claimed. W
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Proof of Proposition 4. Fix v and write S for S(r) and S for S(z).
Note that the graph of S, namely N, is strongly connected. In view
of Lemma 2, the matrix L = ITs — S'I1sS is positive semi-definite
and L1 = 0. Moreover, since the diagonal entries of S and thus S’
are all positive, the kernel of L is one-dimensional.

Write R for R(t). To prove the proposition it is enough to show
that the matrix

Q =R— (V'S'V)R(V'SV)
is positive definite.

To proceed, set L = L ® I, in Wthh case L is positive semi-
definite because L is. Moreover, L = I7—S'I1S where [T = ITs®I,.
Note that VRV’ = PITP where P is the orthogonal projection
matrile = VV'. Clearly VRV’ = PIT 2[T2P. Note that both P
and I72 are block diagonal matrices with corresponding diagonal
blocks of the same size. Because of this and the fact that each
diagonal block in /T z i1s a scalar times the i_dﬁntity_rrllatrix, it must
be true that P and I72 commute; thus PI72 = [12P. Fgolm t_h}s
and the fact that P is idempotent, it follows that VRV’ = [T2PIT1z.
Clearly IZI%PI_Y%_ < _1_7%1_7% so VRV’ < 1. It follows using (53)
that Q > R— V'S'TISV =R+ V'LV — V'I[TV. Therefore

Q > V'LV

(53)

(54)

In view of this, to complete the proof it is enough to show that
V'LV is positive definite. This can be shown by the same proof of
Proposition 2.

Therefore Q is positive definite because of (54). From this and
(53) it follows that (27) is true. W

Proof of Theorem 5. First it will be assumed that each K; has
been selected so that the matrix Ay defined by (10), is such that
A}, converges to zero as T — oo as fast as A7 does. This can be
done using standard spectrum assignment techniques to make
the spectral radius of Ay at least as small as A. In view of (26), it
is clear that to assign the convergence rate of the state transition
matrix of A(lny, — P(Imn — S(7)))? it is necessary and sufficient
to control the convergence rate of the state transition matrix
of Ay(t). This, as we will now show, can be accomplished by
choosing q sufficiently large. We will actually detail two different
ways to do this, each utilizing a different matrix norm. Both
approaches will be explained next using the abbreviated notation
B(r) = V'S(r)V; note that with this simplification, Ay(7)
ABI(t) because of (25).

Weighted Two-Norm: For each fixed t and each appropriately-
sized matrix M, write ||[M||g.) for the matrix norm induced by the

vector norm [|x|r) e +/X'R(7)x. Note that [|[M||g) is the largest
singular value of R%(T)MR_%(‘L'). Note in addition that
(R2 (T)B(OR™2(2) (R2 (1)B(OR™ 2 (v

b?cause of (127). This shows that the largest singular value of
R2(t)B(t)R™2(t) is less than one. Therefore

IB(t)lIrr) < 1

(a) N is constant
In this case both B(r) and R(z) are constant, so it is suffi-

) <1

(55)

cient so choose q so that ||ABY(t)||gry < A. Since || - ||ge) is
submultiplicative, this can be done by choosing g so that
A
IB(O)lIgey < ——=—— (56)
DT Al

This can always be accomplished because of (55).

(b) N changes with time

In this case it is not possible to use the weighted two-norm
| - llr) because it is time-dependent. A simple fix, but perhaps
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not the most efficient one, would be to use the standard two-
norm | - |, instead since it does not depend on time. Using this
approach, the first step would be to first choose, for each fixed
7, an integer p;(t) large enough so that [BP**)(z)|, < 1. Such
values of p;(t) must exist because each B(t) is a discrete-time
stability matrix or equivalently, a matrix with a spectral radius
less than 1. Computing such a value amounts to looking at the
largest singular value of BP1(")(t) for successively largest values of
p1(7) until that singular value is less than 1. Having accomplished
this, a number p can easily be computed so that [B?(t)|, < 1Vt
since there are only a finite number of distinct strongly connected
graphs on m vertices and consequently only a finite number of
distinct matrices B(t) in the set B = {B(t) : t > 0}. Choosing p
to be the maximum of the p;(t) with respect to t is thus a finite
computation. The next step would be to compute an integer p
large enough so that each |A(BP(t))’|, < A. A value of g with the
required property would then be g = pp.

Mixed Matrix Norm: There is a different way to choose g which
does not make use of either Lemma 2 or Proposition 4. The
approach exploits the “mixed matrix norm” introduced in Mou,
Liu, and Morse (2015). To define this norm requires several steps.
To begin, let | - |, denote the standard induced infinity norm and
write R™>™" for the vector space of all m x m block matrices
M = [M;] whose ijth entry is a matrix My € R™". With n;
dimVy;, i € m, and n ny + ny + ---ny, write R™*" for the
vector space of all m x m block matrices M = [M;] whose ijth
entry is a matrix M € R™". Similarly write R™*™" for the vector
space of all m x m block matrices M = [M;;] whose ijth entry is
a matrix M;; € R™*". Finally write R™" for the vector space of
all m x m block matrices M = [M;] whose ijth entry is a matrix
My € R,

Note that B € R™Xmn A ¢ RM*1 y ¢ RMX and V' €
For M in any one of these four spaces, the mixed matrix norm
(Mou et al., 2015) of M, written |[M||, is

IMI[ = I{M)]leo

where (M) is the matrix in R™™ whose ijth entry is |[Mll>. It
is very easy to verify that || - || is in fact a norm. It is even sub-
multiplicative whenever matrix multiplication is defined. Note in
addition that ||V|| = 1 and ||V’|| = 1 because the columns of each
V; form an orthonormal set.

Recall that P = VV’ is an orthogonal projection matrix. Using
this, the definition of B(7) and the fact that PV = V, it is easy
to see that for any integer p > 0, BP(r) = V/(PS(t)P)PV. Thus
IIBP(7)|l < |[(PS(t)P)P||. Using this and the fact that the graph of
S’ is strongly connected, one can conclude that for p > (m — 12,
I(PS(t)P)|| < 1. This is a direct consequence of Proposition 2
of Mou et al. (2015). Thus

IBP(o)ll <1, p=(m—1y

(a) N is constant

In this case B(z) is constant so it is sufficient to choose g so
that |ABI(t)|| < A. This can be done by choosing ¢ = pp where
p > (m — 1) and p is such that

Rﬁxmn

(57)

(58)

IB°(o)IIP < (59)

Al
This can always be accomplished because of (58).
(b) N changes with time
Note that (58) holds for all t. Assuming p is chosen so that
p > (m — 1)? it is thus possible to find, for each r, a positive
integer p(t), for which

IIBP (7)) <

60
Al (€0
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Having accomplished this, a number p can easily be computed so
that

IBP(0)IP < — (61)

holds for all 7, since there are only a finite number of distinct
strongly connected graphs on m vertices and consequently only a
finite number of distinct matrices B(t) in the set B defined earlier.
Choosing p to be the maximum of p(z) with respect to 7 is thus a
finite computation. A value of g with the required property would
then be g =pp. M
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