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Abstract— A simply structured distributed estimator is de-
scribed for estimating the state of a continuous-time, jointly ob-
servable, input free, multi-channel linear system whose sensed
outputs are distributed across a fixed multi-agent network.
The estimator is then extended to non-stationary networks
whose neighbor graphs switch according to a switching signal
with a dwell time, or switch arbitrarily under appropriate
assumptions. The estimator is guaranteed to solve the problem,
provided a network-widely shared gain is sufficiently large.
The lower bound of the gain is derived. This is accomplished
by appealing to the “split-spectrum” approach and exploiting
several well-known properties of invariant subspace. The pro-
posed estimators are inherently resilient to abrupt changes in
the number of agents and communication links in the inter-
agent communication graph upon which the algorithms depend,
provided the network is redundantly strongly connected and
redundantly jointly observable.

I. INTRODUCTION

The problem of estimating the state of a linear system
whose measured outputs are distributed across a network has
been under active study for a long time. The so-called “split-
spectrum” observer proposed in [1] appears to be the first
provably correct distributed estimator applicable to the dis-
tributed estimations problem under reasonably non-restrictive
assumptions. This particular observer and its generalizations
[2], [3] rely on the fact that the unobservable space S of
any given matrix pair (Cp×n, An×n) is A-invariant, thereby
enabling one to split the spectrum of A into two disjoint
subsets, one the spectrum of A restricted to S and the other
the compliment of this subset in the spectrum of A. A
completely different approach to the distributed estimator
problem is articulated in [4]. This type of observer and
its generalization [5] rely on correctness proofs that exploit
concepts from classical decentralized control [6]. All of these
observers [1]–[5] have exponentially stable error systems
with controllable convergence rates; because of this, all are
able to function correctly in the presence of measurement
noise, although not necessarily optimally since noise is not
explicitly taken into account. The split-spectrum observers
described in [1]–[3] are simpler in structure and easier to

L. Wang is with School of Electrical and Computer Engineering,
Purdue University (wang6127@purdue.edu). J. Liu is with
the Department of Electrical and Computer Engineering, Stony
Brook University (ji.liu@stonybrook.edu). B.D.O.
Anderson is with School of Engineering, Australian National
University (brian.anderson@anu.edu.au). A.S. Morse
is with the Department of Electrical Engineering, Yale University
(as.morse@yale.edu). The work of Liu was supported in part
by the Air Force Office of Scientific Research under award number
FA9550-23-1-0175 and by the National Science Foundation under Grant
No. 2230101.

construct than the observers described in [4], [5]. On the
other hand the split-spectrum observers are applicable only
to continuous-time systems and cannot be easily modified to
handle discrete-time systems, whereas the observer described
in [5] can be. Nonetheless, if one is willing to introduce
switching, the idea of a split spectrum observer can in
fact extend to the discrete-time case [7]. The addition of
switching of course diminishes the main virtue of the split-
spectrum observers which is simplicity.

While all of the distributed observers just discussed are
intended primarily for problems in which the associated
communication networks are fixed and independent of time,
all are in fact also applicable to problems with time-varying
communication networks provided the time variations are
sufficiently slow. This is a direct consequence of the fact
that for each estimator, the associated error system is an
exponentially stable linear system. Just how to construct a
distributed observer to deal with faster changing networks
is a much more challenging problem. One estimator which
successfully addresses this challenge is the hybrid distributed
observer described in [8], [9]. It has been shown that when
operating synchronously, this particular observer provides
exponentially convergent state estimates at a preassigned rate
no matter how fast the communication graph changes, just so
long as it is strongly connected for all time. By expanding on
earlier work in [10], the papers [11] provide a procedure for
constructing a centralized-designed but distributed observer
for time-varying neighbor graphs. It requires the sharing of
an index which records the age of the information across the
network, and the agents are designed to act in a sequential
manner to do state estimation. The resulting algorithm, which
is tailored exclusively to discrete-time systems, requires a
network-wide initialization step that is to sort the agents in a
specific order. Thereby it can deal with state estimation under
assumptions which are weaker than strong connectivity.

Another approach to the distributed estimation problem
when time varying communication graphs are to be dealt
with, is inspired by the split-spectrum observers described
in [1]–[3]. In this case, for a given upper bound on how fast
the communication graph changes, it is possible to construct
several different types of distributed observers which delivers
exponential convergence provided that in each case, the time
varying communication graph is always strongly connected.
The aim of this paper is to describe these observers.

The remainder of this paper is organized as follows.
Section III proposes the estimator, and discusses the error
dynamics based on the split-spectrum idea. The associated
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background analysis is provided in Section III-B when the
neighbor graph N(t) is constant. Section III-C discusses the
case when the neighbor graph is switching according to
a switching signal. Section III-D provides analysis on the
convergence of the estimator when the switching signal of
the neighbor graph is arbitrary. Section IV provides simula-
tion evidence to validate the estimators. Finally, Section V
concludes the paper.

II. PROBLEM FORMULATION

We are interested in a network of m > 0 {possibly
mobile} autonomous agents labeled 1, 2, . . . ,m which are
able to receive information from their “neighbors”, where
by a neighbor of agent i is meant any agent within agent i’s
reception range. We write Ni(t) for the labels of agent i’s
neighbors at time t ∈ [0,∞) and always take agent i to
be a neighbor of itself. Neighbor relations at time t are
characterized by a directed graph N(t) with m vertices and
a set of arcs defined so that there is an arc in N(t) from
vertex j to vertex i whenever agent j is a neighbor of agent
i at time t. Since each agent i is always a neighbor of itself,
N(t) has a self-arc at each of its vertices. Each agent i can
sense a continuous-time signal yi ∈ IRsi where

yi = Cix, i ∈ m
∆
= {1, 2, . . . ,m} (1)

ẋ = Ax (2)

and x ∈ IRn. We assume throughout that Ci ̸= 0, i ∈ m, and
that the system defined by (1) and (2) is jointly observable;
i.e., with C =

[
C ′

1 C ′
2 · · · C ′

m

]′
, the matrix pair (C,A)

is observable. Joint observability is equivalent to the require-
ment that

⋂
i∈m Vi = 0where Vi is the unobservable space

of (Ci, A); i.e. Vi = ker
[
C ′

i (CiA)
′ · · · (CiA

n−1)′
]′

.
As is well known, Vi is the largest A-invariant subspace
contained in the kernel of Ci. Generalizing the results that
follow to the case when (C,A) is only detectable is quite
straightforward and can be accomplished using well-known
ideas. However, the commonly made assumption that each
pair (Ci, A), i ∈ m, is observable, or even just detectable,
is very restrictive, grossly simplifies the problem and is
unnecessary. The assumption Ci ̸= 0 is not necessary
provided the more relaxed problem is properly formulated,
but the assumption is made for the sake of simplicity.

The problem of interest is to construct a suitably defined
family of linear estimators in such a way so that no matter
what the estimators’ initial states are, each agent obtains an
asymptotically correct estimate xi of x in the sense that
the estimation error xi(t) − x(t) converges to zero as fast
as e−λt does, where λ is an arbitrarily chosen but fixed
positive number.

III. THE ESTIMATOR

The estimator to be considered consists of m private
estimators of the form for i ∈ m

ẋi = (A+KiCi)xi−Kiyi−gPi

(
xi−

1

mi(t)

∑
j∈Ni(t)

xj

)
(3)

where mi(t) is the number of labels in Ni(t), g is a suitably
defined scalar positive gain, each Ki is a suitably defined
matrix, and for each i ∈ m, Pi is the orthogonal projection
on the unobservable space of (Ci, A).

The definitions of Ki and g begin with the specification
of a desired convergence rate bound λ > 0. To begin
with, each matrix Ki is defined as follows. For each fixed
i ∈ m, write Qi for any full rank matrix whose kernel
is the unobservable space of (Ci, A) and let C̄i and Āi

be the unique solutions to C̄iQi = Ci and QiA = ĀiQi

respectively. Then the matrix pair (C̄i, Āi) is observable.
A matrix K̄i can be chosen to ensure that e(Āi+K̄iC̄i)t

converges to zero at least as fast as e−λt converges to zero.
There are several well-documented ways to do this {e.g,
spectrum assignment algorithms or Riccati equation solvers},
since each pair (C̄i, Āi) is observable. Having chosen such
K̄i, Ki is then chosen to be Ki = Q−1

i K̄i where Q−1
i is a

right inverse for Qi. The definition implies that

Qi(A+KiCi) = (Āi + K̄iC̄i)Qi (4)

and that (A+KiCi)Vi ⊂ Vi. The latter, in turn, implies that
there is a unique matrix Ai which satisfies (A+KiCi)Vi =
ViAi where Vi is a basis matrix1 for Vi. Prior to explaining
how to choose g, it will be helpful to explain what defining
the Ki in this way accomplishes.

A. The Error Dynamics

First note from (3), that the state estimation error ei =
xi − x satisfies

ėi = (A+KiCi)ei − gPi

(
ei −

1

mi(t)

∑
j∈Ni(t)

ej

)
(5)

Consequently the overall error vector e =
[
e′1 . . . e′m

]′
satisfies

ė =
(
Ā− gP (Imn − S̄(t))

)
e (6)

where Ā = block diag {A + K1C1, A + K2C2, . . . , A +
KmCm}, P = block diag {P1, P2, . . . , Pm}, S̄(t) = S(t)⊗
In with S(t) = D−1

N(t)A
′
N(t). Here Ik is the k × k identity

matrix, AN(t) is the adjacency matrix of N(t) and DN(t) is
the diagonal matrix whose ith diagonal entry is the in-degree
of N(t)’s ith vertex. Note that N(t) is the graph2 of S′(t) and
that the diagonal entries of S′(t) are all positive because each
agent is a neighbor of itself. The matrix S(t) is evidently a
stochastic matrix.

Note that the subspace V = V1 ⊕ V2 ⊕ · · · ⊕ Vm is
Ā-invariant because (A + KiCi)Vi ⊂ Vi, i ∈ m. Next,
let Q = block diag {Q1, Q2, . . . , Qm} and V = block
diag {V1, V2, . . . , Vm} where, recall, Vi is a matrix whose
columns form an orthonormal basis for Vi. Then Q is a full
rank matrix whose kernel is V and V is a basis matrix for

1For simplicity, we assume that the columns of Vi constitute an orthonor-
mal basis for Vi in which case Pi = ViV

′
i .

2The graph of an n × n matrix M is that directed graph on n vertices
possessing an arc from vertex i to vertex j if mij ̸= 0 [12, p. 357].

6476



V whose columns form an orthonormal set. It follows that
P = V V ′, that QP = 0, and that

QĀ = ĀV Q (7)
ĀV = V Ã (8)

where

ĀV = block diag {Ā1 + K̄1C̄1, . . . , Ām + K̄mC̄m} (9)

Ã = block diag {A1, A2, . . . , Am}

Let V ′ be any left inverse for V and let Q−1 be that right
inverse for Q for which V ′Q−1 = 0. Then

Ā− gP (Imn − S̄(t)) = T

[
ĀV 0

ÂV (t) AV (t)

]
T−1 (10)

where ÂV (t) = V −1(Ā− g(Imn− S̄(t)))Q−1 and AV (t) =
Ã− gV ′(Imn − S̄(t))V. Here T =

[
Q−1 V

]
. It is easy to

check that T−1 =
[
Q′ V

]′
.

Recall that K̄i have been already been chosen so that each
matrix exponential e(Āi+K̄iC̄i)t converges to zero at least as
fast as e−λt. Because of this and the fact that ÂV (t) is a
bounded matrix, to ensure that for each fixed τ , the state
transition matrix Φ(t, τ) converges to zero as fast as e−λt ,
it is enough to choose g so that the state transition matrix
of AV (t) converges to zero at least as fast as e−λt. The
requisite condition on g is provided below for three different
neighbor graph connectivity assumptions.

B. Constant Neighbor Graph

This subsection focuses on the case when the neighbor
graph N(t) is a constant graph N. According to (10), the
spectrum of Ā − gP (Imn − S̄) is equivalent to the union
of the spectrum of ĀV and AV . Since the spectrum of
Āi + K̄iC̄i, i ∈ m, is assignable with K̄i, to show for g
sufficiently large that Ā − gP (Imn − S̄) is a continuous-
time stability matrix with a prescribed convergence rate as
large as λ, it is enough to show that for g sufficiently large,
the matrix AV = Ã − gV ′(Imn − S̄)V is a continuous-
time stability matrix with a prescribed convergence rate as
large as λ. This proves to be a simple consequence of the
following proposition whose proof can be found in the proof
of Proposition 1 in [3].

Proposition 1: −V ′(Imn− S̄)V is a continuous-time sta-
bility matrix.

Next, we show that e(Ã−gV ′((Im−S)⊗In)V )t can be made
to converge to zero as fast as e−λt does by choosing g
sufficiently large. Let π =

[
π1 π2 . . . πm

]′
be a a

positive vector such that S′π = π. Without loss of generality,
assume π is normalized so that the sum of its entries equals
1. Let Π be the diagonal matrix whose diagonal entries are
the entries of π. Then Π1 = π where 1 is the m-vector of
all 1s. Let L = 2Π−ΠS − S′Π.

To proceed, set

H = block diag {π1In1
, π2In2

, . . . , πmInm
} (11)

where ni = dimVi and note that V H = (Π ⊗ In)V . Since
((S−Im)′⊗In)(Π⊗In) = ((S−Im)′Π)⊗In it must be true
that (V ′((S − Im)⊗ In)V )′H = V ′(((S − Im)′Π)⊗ In)V
and thus that

H(V ′(Imn − S̄)V ) + (V ′(Imn − S̄)V )′H = V ′(L⊗ In)V (12)

We exploit (12). Note in particular that

H(λI +AV ) + (λI +AV )
′H

= H(λI + Ã) + (λI + Ã)′H − gV ′(L⊗ In)V

Since V ′(L⊗ In)V is positive definite according to Propo-
sition 1, by picking g sufficiently large, H(λI + Ã)+ (λI +
Ã)′H−gV ′(L⊗In)V will be negative definite implying that
λI+AV is a stability matrix and thus that Ã−gV ′(Imn−S̄)V

is a stability matrix for which e(Ã−gV ′(Imn−S̄)V )t converges
to zero as fast as e−λt does. In other words, any value of g
will have the desired property provided

g ≥
λmax

(
H(λI + Ã) + (λI + Ã)′H

)
λmin (V ′(L⊗ In)V )

(13)

where λmax(·) and λmin(·) are the largest eigenvalue and the
smallest eigenvalue of a symmetric matrix respectively. We
summarize:

Theorem 1: For any given positive number λ, if the neigh-
bor graph N is fixed and strongly connected, and the system
defined by (1) and (2) is jointly observable, then there are
matrices Ki, i ∈ m such that for g sufficiently large, each
estimation error xi(t) − x(t) of the distributed estimator
defined by (3), converges to zero as t → ∞ as fast as e−λt

converges to zero.

C. Switching Neighbor Graph with Dwell Time Constraint

In the sequel the problem is studied under the assumption
that N(t) changes according to a switching signal with a
fixed dwell time, or a variable but with fixed average dwell
time. To characterize the assumed time dependence of N(t),
let G = {G1,G2, . . . ,G|G|} denote the set of all directed,
strongly connected graphs on m vertices which have self-
arcs at all vertices; here |G| is the number of graphs in
G. In some situations, the switching signals always have
consecutive discontinuities separated by a value which is no
less than a fixed positive real number τD, which is the dwell
time [13]. In certain situations, the switching signals may
occasionally have consecutive discontinuities separated by
less than τD, but for which the average interval between
consecutive discontinuities is no less than τD. This leads
to the concept of average dwell time. With τD and δ fixed
and positive define Savg as the set of all piecewise-constant
switching signals σ : [0,∞) → {1, 2, . . . , |G|} satisfying
δσ(t0, t) ≤ δ0 + t−t0

τD
. Here δσ(t0, t) denotes the number

of discontinuities of σ in the open interval (t0, t). The
constant τD is called the average dwell-time and δ0 the
chatter bound [14]. By the set of all time-varying neighbor
graphs with average dwell-time τD is meant the set {Gσ :
σ ∈ Savg}. Fig. 1 is used to better explain the concept of
switching signals. Suppose τD is a fixed positive number.

6477



For the switching signal σ1, the consecutive discontinuities
are separated by an interval larger than τD, so the switching
signal σ1 is consistent with a dwell time of at least τD. For
the switching signal σ2, the consecutive discontinuities are
separated occasionally less than τD, but the average interval
between consecutive discontinuities is no less than τD. So
the switching signal σ2 has an average dwell time of at least
τD. Note that switching according to a dwell time is a special
case of switching according to an average dwell time. In the
following, it is assumed that N ∈ {Gσ : σ ∈ Savg}.

τD

t0 t

tt0

G1 G2 G1 G2

G1 G2 G1 G2

σ1 :

σ2 :

Fig. 1. Examples of switching signals

The problem to which this subsection is addressed is this.
For fixed averaged dwell-time τD and the chatter bound δ0,
devise a procedure for crafting m local estimators, one for
each agent, so that for each neighbor graph N ∈ {Gσ :
σ ∈ Savg}, all m state estimation errors converge to zero
exponentially fast at a prescribed rate.

The estimator to be considered is the same as the estimator
described in (3), with the exception that g is chosen differ-
ently. According to the argument at the start of the section, it
remains to be shown that with g sufficiently large, the state
transition matrix of AV (t) converges to zero as fast as e−λt

does. To accomplish this, the following result will be used.
Lemma 1: Let M1,M2, . . . ,M|G| be a set of n × n ex-

ponentially stable real matrices associated with a set G =
{G1,G2, . . . ,G|G|} of directed strongly connected graphs
with self-arcs at all vertices. Let σ denote the switching
signal with avverage dwell time τD governing selection of a
graph from G. Then for any n×n real matrix N and positive
number λ there is a positive number g∗, depending on τD
for which, for each σ ∈ Savg and g ≥ g∗, all solutions to

ẋ = (N + gMσ)x (14)

converge to zero as fast as exp(−λt) does.
Proof of Lemma 1:3 By hypothesis, each Mi is exponen-

tially stable. Thus there are positive constants ci > 1 and λi

such that
∥eMit∥ ≤ cie

−λit (15)

for any i ∈ {1, 2, . . . , |G|}. Here ∥ · ∥ is any given submul-
tiplic ative norm on Rn×n. Let c = maxi∈{1,2,...,|G|} ci, and
λ∗ = min

i∈{1,2,...,|G|}
λi.

Fix λ > 0 and let g be any gain satisfying

g ≥ τD(λ+ ∥N∥c) + ln c

τDλ∗ (16)

3The symbols used in this proof such as g, c and λ∗ are generic and do
not have the same meanings as the same symbols do when used elsewhere
in this paper.

We claim that for any number τ , and any switching signal
σ ∈ Savg, the transition matrix of gMσ , namely Φσ(t, τ),
converges to zero as fast as e−αt does where

α = λ+ ∥N∥c (17)

To understand why this is so, by (15),

∥Φσ(t, τ)∥ ≤ cδσ(τ,t)e−gλ∗(t−τ) (18)

where δσ(τ, t) is the number of switching between (τ, t). By
(16), egλ

∗ ≥ c
1

τD eα. From this and the fact that δσ(τ, t) ≤
δ0 +

t−τ
τD

,

∥Φσ(t, τ)∥ ≤ cδ0c
t−τ
τD e−gλ∗(t−τ) ≤ c

δ0− τ
τD e−α(t−τ).

Thus, the claim is true.
In view of (14) and the variation of constants formula,

x(t) = Φσ(t, 0)x(0) +

∫ t

0

Φσ(t, µ)Nx(µ)dµ (19)

As ∥Φσ(t, τ)∥ ≤ ce−αt for all τ and σ ∈ Savg,

∥x(t)∥ ≤ ce−αt∥x(0)∥+
∫ t

0

ce−α(t−µ)∥N∥∥x(µ)∥dµ

By multiplying by eαt on both sides, one obtains
eαt∥x(t)∥ ≤ c∥x(0)∥ +

∫ t

0
||N ||ceαµ∥x(µ)∥dµ. From this

and the Bellman-Gronwall Lemma there follows

eαt∥x(t)∥ ≤ c∥x(0)∥e
∫ t
0
∥N∥cdµ

Since
∫ t

0
∥N∥cdµ = ∥N∥ct, it follows that eαt∥x(t)∥ ≤

c∥x(0)∥e∥N∥ct and thus that

∥x(t)∥ ≤ c∥x(0)∥e(∥N∥c−α)t

From this and (17) it follows that

∥x(t)∥ ≤ c∥x(0)∥e−λt

This completes the proof.
Recall that AV (t) = Ã − gV ′(Imn − S̄(t))V . By Propo-

sition 1, for any fixed time τ , −V ′(Imn − S̄(τ))V is expo-
nentially stable if the graph of S(τ)′ is strongly connected.
Note Ã is fixed and bounded. According to Lemma 1, for
each σ ∈ Savg there is a positive number g, depending on τD
so that the transition matrix of AV (t) converges to zero at
least as fast as e−λt does. This is accomplished by choosing
g sufficiently large. Based on the proof of Lemma 1, it is
sufficient to pick g to satisfy

g ≥ ln c+ (λ+ ∥Ã∥c)τD
λ∗τD

(20)

where c and λ∗ are two positive numbers chosen so that for
any fixed τ , ∥e−V ′(Imn−S̄(τ))V t∥ ≤ ce−λ∗t, and c > 1. We
summarize:

Theorem 2: For any fixed positive numbers τD and λ,
there exists a positive number g∗ with the following property.
For any value of g ≥ g∗, any neighbor graph N ∈ {Gσ :
σ ∈ Savg}, if the system defined by (1) and (2) is jointly
observable, then there are matrices Ki, i ∈ m such that, each
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state estimation error ei = xi − x, i ∈ m of the distributed
estimator defined by (3) converges to zero as t → ∞ as fast
as e−λt does.

It is worth mentioning that when the neighbor graph is
fixed, the dwell time τD or the average dwell time τD is
infinity. Then the condition (20) in Theorem 2 degenerates to
the condition (13) for exponential stability with the ensured
convergence rate λ under a fixed topology.

D. Arbitrary Switching Neighbor Graph

In the sequel the problem is studied under arbitrary
switching, but with a more restrictive graph assumption.
The estimator to be considered is the same as (3), with the
exception that g is chosen differently.

Theorem 3: For any fixed positive number λ, there exists
a positive number g∗ with the following property. For any
value of g ≥ g∗, any time-varying neighbor graph N(t), if
the system defined by (1) and (2) is jointly observable, the
neighbor graph N(t) is undirected and connected, and the
stochastic matrix S(t) of graph N(t) is doubly stochastic,
then there are matrices Ki, i ∈ m such that each state
estimation error xi(t) − x(t) of the distributed observer
defined by (3), converges to zero as t → ∞ as fast as e−λt

converges to zero.
Proof of Theorem 3: Recall ΦV (t, τ) is the transition

matrix of AV (t) for any t ≥ τ ≥ 0. If we can show that
there exist a constant c so that

∥ΦV (t, τ)∥ ≤ ce−λ(t−τ), ∀t ≥ τ ≥ 0

the remaining proof is the same as the proof of Theorem 1
which is omitted here.

It is left to show that ∥ΦV (t, τ)∥ ≤ ce−λ(t−τ), ∀t ≥
τ ≥ 0 by choosing g sufficiently large. We explore matrix
AV (t). Recall that AV (t) = Ã− gV ′((Im − S(t))⊗ In)V .
In particular,

(λI +AV (t)) + (λI +AV (t))
′ = (λI + Ã) + (λI + Ã)′

− gV ′((2Im − S(t)− S′(t))⊗ In)V

Since each S(t) is doubly stochastic, 2Im−S(t)−S′(t) has
row sum 0, all its off-diagonal entries are non-positive, and
all its diagonal entries are positive. That is this matrix can be
seen as a generalized Laplacian matrix of a connected graph.
By Proposition 1, for any t, −V ′((2Im−S(t)−S′(t))⊗In)V
is negative definite. Thus by picking g sufficiently large,
(λI +AV (t)) + (λI +AV (t))

′ will be negative definite for
any time t.

Consider system ˙̄z = AV (t)z̄.
Let V = z̄′z̄. Then

V̇ = z̄′(AV (t)
′ +AV (t))z̄ ≤ −2λz̄′z̄

Therefore, ΦV (t, τ) converges to zero as fast as e−λ(t−τ)

does, i.e.,

∥ΦV (t, τ)∥ ≤ ce−λ(t−τ), ∀t ≥ τ ≥ 0

This completes the proof.

E. Resilience

The concept of a passively resilient algorithm is proposed
in [9]. By a passively resilient algorithm for a distributed
process is meant an algorithm which, by exploiting built-
in network and data redundancies, can continue to function
correctly in the face of abrupt changes in the number of ver-
tices and arcs in the inter-agent communication graph upon
which the algorithm depends. All the proposed continuous-
time distributed estimators are inherently resilient to these
abrupt changes provided the network is redundantly strongly
connected and redundantly jointly observable, with a careful
gain picking before the algorithm starts. Details can be found
in Section 5 of [9].

IV. SIMULATIONS

This section provides simulations to illustrate the state
estimation performance. The neighbor graph will switch back
and forth between Fig. 2 (a) and Fig. 2 (b), which can be
seen as modeling a connection failure happening between
agent 1 and agent 3 randomly.

Consider the three-channel, four-dimensional, continuous-
time system described by the equations ẋ = Ax, yi =
Cix, i ∈ {1, 2, 3}, where

A =


0 1 0 0
−1 0 0 0
0 0 0 1
0 0 −2 0


and Ci is the ith unit row vector in IR1×4. Note that A
is a matrix with eigenvalues at ±1j, and ±1.4142j. While
the system is jointly observable, no single pair (Ci, A) is
observable. The observer convergence rate is designed to
be λ = 1. The first step is to design Ki as stated in Section
III. This is to control the spectrum of the matrix ĀV (the
local observer dynamics) as defined in (10).

Fig. 2. The neighbor graph

For agent 1:

A1 =

[
0 −1
1 0

]
, Q1 =

[
0 1 0 0
1 0 0 0

]
, V1 =

[
0 0 1 0
0 0 0 1

]′
K1 =

[
−5 −5 0 0

]′
For agent 2:

A2=

[
0 −1
1 0

]
, Q2=

[
−1 0 0 0
0 1 0 0

]
, V2=

[
0 0 1 0
0 0 0 1

]′
K2 =

[
5 −5 0 0

]′
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For agent 3:

A3 =

[
0 −2
1 0

]
, Q3 =

[
0 0 0 1
0 0 1 0

]
, V3 =

[
1 0 0 0
0 1 0 0

]′
K3 =

[
0 0 −5 −4

]′
Two cases are considered. First, suppose the neighbor N(t)

is fixed as shown in Figure 2(a). With g = 10 obtained using
(13), the real part of the right most eigenvalue of AV is less
than −1. With randomly chosen initial state values, traces of
this simulation are shown in Fig. 3 where x1

i and x1 denote
the first components of xi and x respectively. .Moreover,
the norm of the estimation error is plotted in Fig. 4 from
which we can see that it is exponentially convergent with
the approximate rate λ = 1.
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Fig. 3. Trajectory of the performance
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Fig. 4. The trajectory of the norm of the error

Second, suppose the neighbor N(t) is time-varying and
switching back and forth between Figure 2(a) and Figure
2(b) according to the indicator function in Fig. 5. That is
when the function value is 1, the neighbor graph is Figure
2(a), and when the function value is 0, the neighbor graph
is Figure 2(b). It is arranged that the average dwell time is
τD = 0.0369 for this simulation. With random chosen initial
state values and g = 10, the norm of the estimation error is
shown in Fig. 6.

V. CONCLUSION

This paper studies the distributed estimation problem when
the neighbor graph is time-varying but always strongly
connected. It has been shown that for any switching signal
with appropriate constraints, each agent can estimate the
state exponentially fast with a pre-assigned convergence
rate. Studying the distributed observer problem when the

0 1 2 3 4 5 6 7 8 9 10

t

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

In
d

ic
a

to
r 

V
a

lu
e

Fig. 5. The indicator function
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Fig. 6. The trajectory of the norm of the error

neighbor graph is not always strongly connected, but strongly
connected over an interval would be future work.
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