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ABSTRACT
Neuromorphic hardware, designed to mimic the neural structure
of the human brain, offers an energy-efficient platform for imple-
menting machine-learning models in the form of Spiking Neural
Networks (SNNs). Achieving efficient SNN execution on this hard-
ware requires careful consideration of various objectives, such as
optimizing utilization of individual neuromorphic cores and mini-
mizing inter-core communication. Unlike previous approaches that
overlooked the architecture of the neuromorphic core when cluster-
ing the SNN into smaller networks, our approach uses architecture-
aware algorithms to ensure that the resulting clusters can be ef-
fectively mapped to the core. We base our approach on a crossbar
architecture for each neuromorphic core. We start with a basic
architecture where neurons can only be mapped to the columns
of the crossbar. Our technique partitions the SNN into clusters of
neurons and synapses, ensuring that each cluster fits within the
crossbar’s confines, and when multiple clusters are allocated to
a single crossbar, we maximize resource utilization by efficiently
reusing crossbar resources. We then expand this technique to ac-
commodate an enhanced architecture that allows neurons to be
mapped not only to the crossbar’s columns but also to its rows,
with the aim of further optimizing utilization. To evaluate the per-
formance of these techniques, assuming a multi-core neuromorphic
architecture, we assess factors such as the number of crossbars used
and the average crossbar utilization. Our evaluation includes both
synthetically generated SNNs and spiking versions of well-known
machine-learning models: LeNet, AlexNet, DenseNet, and ResNet.
We also investigate how the structure of the SNN impacts solution
quality and discuss approaches to improve it.

CCS CONCEPTS
• Software and its engineering→ Compilers; • Computer sys-
tems organization → Other architectures.
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1 INTRODUCTION
Neuromorphic systems that emulate the human brain’s neural struc-
ture can be used to implement a variety of machine-learning tasks
while achieving very high energy efficiency, thanks to their event-
driven asynchronous operation which requires no clock signal;
low-power analog/mixed-signal design of neurons; crossbar-based
arrangement of synapses; and distributed placement of neurons and
crossbars which overcomes the memory-bandwidth bottlenecks en-
demic to conventional computing systems. Several prototypes have
been developed, such as Loihi [9], DYNAP-SE [17], 𝜇Brain [24], and
FPGA-based implementations [6].

Neuromorphic architectures execute spiking neural networks
(SNNs), which are networks of spiking neurons interconnected
via synapses [11, 13]. Neurons communicate with each other by
sending short impulses called spikes via synapses. Such spiking
neurons can be organized into feed-forward layers or in a recurrent
topology as SNNs, and used to solve classification problems in
image and signal processing. The computation performed within
the SNN is based on asynchronously occurring spike trains in which
the location and frequency of spikes occurring within the network
guide the execution.

Running a neuromorphic program on dedicated hardware re-
quires several major steps: compilation, resource allocation, and
run-time mapping. While these steps are well established for tradi-
tional Von Neumann architectures, they are still being refined for
neuromorphic computing due to the distinct differences between
the two paradigms. When a developer wishes to map the SNN
onto neuromorphic hardware, they must partition the SNN into
clusters containing smaller subnetworks of neurons and synapses.
These clusters are then assigned to specific neuromorphic cores. At
first glance, clustering and allocation of SNNs may appear to be a
solved problem, and, indeed, numerous studies have tackled this
topic (as discussed in Section 6). However, most efforts do not take
into account the architecture of the target neuromorphic core onto
which the clusters will be mapped. A common approach involves
using some variation of the Kernighan-Lin (KL) graph partitioning
algorithm to cluster the SNN in a way that minimizes inter-cluster
communication, as measured by the number of spikes. This ap-
proach operates under the assumption that the formed clusters
can be readily mapped onto the neuromorphic core. But this may
be a flawed assumption. If the target architecture or topology is not
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explicitly considered during clustering, the result may be clusters that
do not make optimal use of the underlying hardware resources or,
even worse, are incompatible with the target architecture.

We develop a clustering and allocation approach that is aware
of the target neuromorphic architecture. This ensures that the clus-
ters that are generated can be efficiently mapped onto the cores.
An 𝑛 × 𝑛 crossbar capable of housing a predetermined number
of neurons and synapses acts as the computational unit within
each neuromorphic core. Spikes are communicated between cores
through a network interconnect. Crossbar-based designs are popu-
lar for neuromorphic computing [1, 12, 16, 26]. Crossbar arrays can
naturally represent synaptic connections in an SNN; by adjusting
the resistance or conductance of the crosspoints, the strength of
the connections between neurons can be emulated. Other reasons
include parallelism, since each crosspoint junction can store and
process information simultaneously, so that many neurons and
synapses can operate in parallel; low-latency operations, since the
computations are performed directly at the crosspoints without
the need for data transfer between memory and processing units;
and energy efficiency, since analog calculations can be performed
directly at the crosspoints, without needing digital-to-analog and
analog-to-digital conversions.
Our work makes the following contributions.

• Beginningwith a foundational architecture in which neurons
can only be mapped to the crossbar’s columns, we develop
a method that partitions the SNN into clusters while en-
suring that each cluster fits within the parameters of the
crossbar. When several clusters are assigned to one crossbar,
we maximize resource utilization by strategically reusing
the available crossbar resources.

• Our initial technique is then augmented to adapt to a more
advanced crossbar design that permits neurons to be mapped
to both columns and rows. This adaptation aims to further
improve the utilization of crossbar resources.

• The efficacy of these techniques is assessed using both syn-
thetically constructed SNNs and spiking versions of well-
known machine learning models: LeNet, DenseNet, and
ResNet. Evaluation metrics include the number of crossbars
used and the average crossbar utilization. Our architecture-
aware clustering algorithms significantly improve average
crossbar utilization compared to the baseline case which uses
the KL method. We also study the influence of the SNN’s
inherent structure on the quality of the clustering results
and explore strategies to improve the outcomes generated
by our techniques.

The remainder of the paper is organized as follows. Section 2
provides the necessary background on neuromorphic computing.
Sections [? ] and 4 develop the proposed clustering and allocation
techniques, and the evaluation results are presented in Section 5.
Related work is discussed in Section 6 and we conclude the paper
in Section 7. The figures in this paper are best viewed in color.

2 PRELIMINARIES
This section familiarizes the reader with the basic concepts that
underpin neuromorphic computing.

2.1 Spiking Neural Network Model
An SNN can be represented as a graph 𝐺 = (𝑉 , 𝐸), where the ver-
tices𝑉 = {𝑣1, 𝑣2, . . . , 𝑣𝑛} represent neurons and the edges 𝐸 = {𝑒𝑖 𝑗 |
𝑣𝑖 , 𝑣 𝑗 ∈ 𝑉 } represent the synapses between neurons. If neurons 𝑖
and 𝑗 are connected, an edge 𝑒𝑖 𝑗 connects 𝑣𝑖 and 𝑣 𝑗 . Since synapses
have a direction,𝐺 is a digraph. Thus, 𝑒𝑖 𝑗 and 𝑒 𝑗𝑖 are distinct edges
and can potentially both exist. The weight𝑤 (𝑒𝑖 𝑗 ) along each edge
represents the strength of the synaptic connection between neurons
𝑖 and 𝑗 .

Leaky integrate-and-fire is a simple model for a spiking neu-
ron [5]. Here, the neuron’s membrane potential integrates the in-
coming synaptic currents. This potential is modeled as a capacitor
that is charged by incoming synaptic currents and discharges over
time due to a leak current that represents the gradual loss of charge
across the membrane. When the membrane potential reaches a
certain threshold, the neuron fires a spike and the potential is reset.
After firing a spike, the neuron enters a refractory period during
which it cannot fire another spike. Figure 1(a) illustrates the con-
nection of presynaptic and postsynaptic neurons through synapses.

2.2 Neuromorphic Architecture
Though neuromorphic platforms differ in their operation, crossbar-
based architectures are common. For example, Loihi simulates spik-
ing neurons using a digital architecture, whereas DYNAP uses ana-
log circuits for the same purpose. A crossbar is a two-dimensional
arrangement of synapses, with 𝑛2 synapses for 𝑛 input neurons.
Figure 2 shows the organization of a crossbar in more detail. The
top electrodes (TEs) and bottom electrodes (BEs) constitute the
rows and columns, respectively, of the crossbar. A synaptic cell is
connected at a crosspoint via an access transistor. Synaptic weights
are specified in terms of the conductivity of nonvolatile memory
cells (NVM), which allows these cells to act as computational units
through analog summation of the current flowing through them [4].
The NVM is shown as a resistive element in Fig. 2. Presynaptic neu-
rons are mapped along the TEs and postsynaptic neurons along the
BEs. The weight between a presynaptic neuron and a postsynaptic
neuron is programmed as the conductance of the corresponding
synaptic cell at the crosspoint. The voltage of a presynaptic neuron
𝑣 , applied on the TE, is multiplied by the conductance to generate
a current according to Ohm’s law. Current summation occurs on
each BE according to Kirchoff’s Current Law, when integrating
excitation from other pre-synaptic neurons. The figure shows the
integration of the input excitation of two presynaptic neurons into
one postsynaptic neuron via synaptic weights𝑤1 and𝑤2, respec-
tively. Following Kirchhoff’s law, the current summation along
the column implements the sum𝑤1𝑣1 +𝑤2𝑣2 needed for forward
propagation of neuron activation. These current summations are
performed along each column in parallel.

The NVM device of a synaptic cell can be implemented using
phase-change memory, oxide-based memory, or spin-based mag-
netic memory [4]. To read or program a cell, its peripheral circuit
drives current through it using a bias voltage generated by on-chip
charge pumps built using CMOS devices.

Scaling the size of a crossbar increases the number of synapses
per neuron, which exponentially increases the dynamic and leakage
energy. Therefore, the size is limited to accommodate only a fixed
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Figure 1: (a) connection of presynaptic and postsynaptic neurons via synapses in an SNN; (b) crossbar organization with fully
connected presynaptic and postsynaptic neurons; and (c) multi-core neuromorphic architecture.

Figure 2: Crossbar organization showing the top and bottom
electrodes. Each synaptic cell consists of an NVM device (re-
sistive element) and an access transistor.

number of synapses per neuron. Therefore, to build a large system,
multiple crossbars are integrated using a shared interconnect, as
shown in Fig. 1(c). Each neuromorphic core includes neuron and
synapse circuits, peripheral logic to encode and decode spikes into
Address Event Representation (AER), and a network interface to
send and receive AER packets over the interconnect. Switches are
placed on the interconnect to route AER packets to their destination
cores. The AER communication protocol is used to transmit the
addresses of neurons that spike within the SNN. When a neuron
spikes, it generates a packet with its unique address, which is trans-
mitted in real time on the interconnect. At the receiver, this address
is used to convey the spike to the target neuron, thus stimulating it.
Since only addresses of active neurons are transmitted, this sparse
representation enables very efficient intercore communication, es-
pecially in SNNs where only a small fraction of neurons might
be active at any given time. This hardware abstraction fits most
neuromorphic systems, and therefore will be used in this work.

Given an SNN, a mapping of the synapses to crossbars and cross-
bars to charge pumps is generated for the specific neuromorphic
hardware, which maximizes crossbar utilization while minimizing
the maximum latency incurred by spikes transmitted over the in-
terconnect. Performance is verified in terms of the spike rate and
inter-spike interval at the output neurons using a cycle-accurate
simulator with a detailed hardware model [7]. Figure 3a shows the
portion of an SNN whose neurons are mapped to the 4 × 4 crossbar
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(a) An SNN consisting of four neurons.

N
1

I
4

I
3

I
2

I
1

N
4

N
3

N
2

(b) Neurons mapped to a 4 × 4 crossbar.

(c) Inputs spikes from presynaptic neurons and
the resulting postsynaptic spikes.

Figure 3: Simulating a small SNN mapped to a 4 × 4 crossbar.

in Fig. 3b, where neuron 𝑁1 is mapped to column 1, 𝑁2 to column
2, etc. Figure 3c shows a simulation result for this SNN obtained
using CARLsim [18], which is an SNN simulator. The plot shows
spikes from presynaptic neurons supplied to the crossbar’s rows
and the resulting spikes along the columns that propagate to any
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Figure 4: Comparison of mapping solutions obtained for the
CROSS and CROSS+ architectures.

postsynaptic neurons. Each output spike is color coded to indicate
the neuron that generates it.

3 ASSUMED CROSSBAR ARCHITECTURES
We will develop clustering algorithms for two types of crossbar
architectures.

The first model is called CROSS which implements neurons only
along the crossbar’s columns. The implication is that each layer
within the SNN is mapped onto a crossbar. Figure 4 (left) shows the
mapping solution that decomposes the SNN into three subnetworks.
Spikes generated by postsynaptic neurons within a subnetwork are
transmitted over the interconnect to the appropriate crossbar using
AER, where they become inputs. This architecture is simple, but
requires more crossbars since each neuron must be duplicated — it
acts as a postsynaptic neuron in one crossbar and as a presynaptic
neuron in the other.

Figure 4 (right) shows the second model called CROSS+ which
accommodates neurons along both rows and columns of a crossbar.
To accommodate this setup, each neuromorphic core maintains
local memory (SRAM) to store synaptic weights (in addition to
weights programmed into the crossbar). Neurons are either placed
on the crossbar’s columns (and receive inputs from the crossbar
itself) or placed on the crossbar’s rows (and receive inputs and
weights from the interconnect and scratch memory, respectively).

The clustering and allocation methodology presented in the
subsequent section yields solutions tailored for both CROSS and
CROSS+ architectures. In particular, it uses the solution derived for
CROSS as the foundation for the solution for CROSS+.1

4 CLUSTERING AND ALLOCATION
Many existing studies on the mapping of SNNs onto neuromorphic
hardware neglect to consider the inherent topological constraints
of the target crossbar architecture. The presumption is that the
generated clusters can be seamlessly deployed onto the target. Mere
restrictions on neuron counts fall short when striving for viable
mappings. The limitation lies in the emphasis on only clustering
neurons, even though the essence of crossbar functionality lies
in the synapses or edges mapped onto it. We explain this issue

1The main focus of this paper is to develop clustering and allocation algorithms for
SNNs. As such, a detailed development of the hardware circuitry needed to realize the
CROSS and CROSS+ architectures is beyond its scope.

using the example shown in Fig. 5. Suppose that we wish to map
the SNN onto a set of 3 × 3 crossbars (this capacity is based on
the maximum fan-in of the SNN). We use the clustering technique
developed by Song et al. [21], which falls in the category of work
using the KL algorithm to minimize inter-cluster traffic, to obtain
the solution shown in Fig. 5b. However, simply grouping neurons
𝑁 3, 𝑁 5, and 𝑁 8 does not provide a feasible mapping solution. The
first problem is the totality of their inputs (B, C, D, E) exceeds
the assumed crossbar capacity. Also, since the crossbar operation is
determined by edges rather than by nodes, a neuron-centric clustering
approach can result in infeasible solutions.

Our approach explicitly takes into account synaptic connections
during SNN clustering. By clustering neurons and their associated
synapses into subgraphs, we ensure that these subgraphs align
with the topological requirements of the target crossbar architec-
ture. Figure 5c shows the solution obtained that also highlights
the synaptic inputs for each cluster. The subsequent mapping to
crossbars is shown in Fig. 5d. Emphasis on synapses ensures that our
clustering method consistently produces mappable clusters. Multiple
such clusters can also be merged in a way that maximizes reuse of
crossbar resources and, thereby maximizes utilization.

4.1 Overview
We assume the availability of 𝑛 × 𝑛 crossbars. Major steps in our
methodology, shown in Fig. 6, are summarized as follows:

• Given a trained SNN graph𝐺 = (𝑉 , 𝐸), we use CARLsim [19]
to extract the following details needed for our clustering
method: spike-traffic information, timestamps per spike, and
total spike count.

• The SNN is partitioned into minimal sub-graphs guaranteed
to be mappable onto the target (Algorithm 1).

S = {𝑆1, 𝑆2, 𝑆3, ..., 𝑆𝑖 | 𝑆𝑖 ⊆ 𝐺}
• Subgraphs are merged together to maximize available over-
laps in their inputs until crossbar capacity is reached (Al-
gorithm 3). By maximizing overlap in inputs, we can reuse
inputs along the crossbar’s rows for multiple neurons, im-
proving crossbar utilization

• Combinations of subgraphs that would satisfy the crossbar
capacity are packed into the clusters obtained from the previ-
ous step; these subgraphs are not required to be overlapping
and sharing neurons (Algorithm 2). This step aims to further
improve crossbar utilization.

• The above steps generate a feasible solution for the CROSS
architecture. Given this initial solution, we place the avail-
able candidates pairs as input and output neurons in the
CROSS+ architecture.

4.2 Generating Solution for CROSS Architecture
Algorithm 1 partitions the SNN into subgraphs. For each neuron 𝑣 ,
it considers all incoming edges and generates the induced subgraph
(line 3). This step ensures that this subgraph — provided the number
of incoming edges into it is less than𝑛— can bemapped to the target
crossbar. We term these subgraphs as fundamental blocks, which
are provided as input to Algorithm 2. It merges blocks together to
generate every possible pair that is still mappable onto the target
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Figure 5: Comparison of clustering techniques to motivate the need for an architecture-aware approach.
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Figure 6: Key steps in our clustering and allocation method.

Algorithm 1: Basic Block Generation
Input:𝐺 (𝑉 , 𝐸 )
Output: 𝑠𝑡𝑎𝑟𝑡𝑒𝑟𝑆𝑢𝑏𝑔𝑟𝑎𝑝ℎ𝑠

1 𝑠𝑡𝑎𝑟𝑡𝑒𝑟𝑆𝑢𝑏𝑔𝑟𝑎𝑝ℎ𝑠 = ∅
2 for v ∈ 𝑉 do
3 𝑠𝑢𝑏𝑔𝑟𝑎𝑝ℎ = 𝐷𝑖𝐺𝑟𝑎𝑝ℎ (𝐼𝑛𝑐𝑜𝑚𝑖𝑛𝑔𝐸𝑑𝑔𝑒𝑠 (𝑣) )
4 𝑠𝑡𝑎𝑟𝑡𝑒𝑟𝐵𝑙𝑜𝑐𝑘𝑠.𝑎𝑑𝑑 (𝑠𝑢𝑏𝑔𝑟𝑎𝑝ℎ)
5 end
6 return 𝑠𝑡𝑎𝑟𝑡𝑒𝑟𝑆𝑢𝑏𝑔𝑟𝑎𝑝ℎ𝑠

Algorithm 2: Candidate Solution Generation
Input: 𝑐𝑢𝑟𝑟𝑒𝑛𝑡𝑆𝑢𝑏𝑔𝑟𝑎𝑝ℎ𝑠
Output: 𝑛𝑒𝑥𝑡𝑆𝑜𝑙𝑢𝑡𝑖𝑜𝑛𝑠

1 𝑛𝑒𝑥𝑡𝑆𝑜𝑙𝑢𝑡𝑖𝑜𝑛𝑠 = ∅
2 𝑓 𝑖𝑛𝑎𝑙𝐺𝑟𝑎𝑝ℎ𝑠 = ∅
3 for 𝑡ℎ𝑖𝑠_𝑠𝑔 ∈ 𝑐𝑢𝑟𝑟𝑒𝑛𝑡𝑆𝑢𝑏𝑔𝑟𝑎𝑝ℎ𝑠 do
4 for 𝑜𝑡ℎ𝑒𝑟_𝑠𝑔 ∈ 𝑛𝑒𝑖𝑔ℎ𝑏𝑜𝑢𝑟𝑠 (𝑐𝑢𝑟𝑟𝑒𝑛𝑡𝑆𝑢𝑏𝑔𝑟𝑎𝑝ℎ𝑠 ) do
5 if𝑚𝑎𝑝𝑝𝑎𝑏𝑙𝑒 (𝑡ℎ𝑖𝑠_𝑠𝑔, 𝑜𝑡ℎ𝑒𝑟_𝑠𝑔) then
6 𝑛𝑒𝑥𝑡𝑆𝑜𝑙𝑢𝑡𝑖𝑜𝑛𝑠.𝑎𝑑𝑑 (𝑆𝑜𝑙𝑢𝑡𝑖𝑜𝑛 (𝑡ℎ𝑖𝑠_𝑠𝑔, 𝑜𝑡ℎ𝑒𝑟_𝑠𝑔) )
7 end
8 end
9 if 𝑛𝑜𝑡𝑀𝑎𝑡𝑐ℎ𝑒𝑑 (𝑠𝑢𝑏𝑔𝑟𝑎𝑝ℎ) then
10 𝑓 𝑖𝑛𝑎𝑙𝐺𝑟𝑎𝑝ℎ𝑠.𝑎𝑑𝑑 (𝑠𝑢𝑏𝑔𝑟𝑎𝑝ℎ)
11 end
12 end
13 return 𝑛𝑒𝑥𝑡𝑆𝑜𝑙𝑢𝑡𝑖𝑜𝑛𝑠

(lines 3–12). Figure 7 illustrates this merging process. If a subgraph
cannot be merged with any other subgraph due to crossbar-capacity
limits, it is considered a finalized cluster of nodes and edges.

Algorithm 3 iterates over these combinations, evaluating them
in terms of the percentage of neurons on a crossbar that are shared,

Algorithm 3: Generation of Best Solutions
Input: 𝑠𝑜𝑙𝑢𝑡𝑖𝑜𝑛𝑠
Output: 𝑔𝑟𝑎𝑝ℎ𝑠

1 𝑔𝑟𝑎𝑝ℎ𝑠 = ∅
2 while 𝑠𝑜𝑙𝑢𝑡𝑖𝑜𝑛𝑠 ≠ ∅ do
3 𝑠𝑜𝑙𝑢𝑡𝑖𝑜𝑛 =𝑚𝑎𝑥 (𝑠𝑜𝑙𝑢𝑡𝑖𝑜𝑛𝑠 )
4 if 𝑣𝑎𝑙𝑖𝑑 (𝑠𝑜𝑙𝑢𝑡𝑖𝑜𝑛) then
5 𝑔𝑟𝑎𝑝ℎ𝑠.𝑎𝑑𝑑 (𝑠𝑢𝑏𝑔𝑟𝑎𝑝ℎ (𝑠𝑜𝑙𝑢𝑡𝑖𝑜𝑛) )
6 end
7 end
8 return 𝑔𝑟𝑎𝑝ℎ𝑠

and in greedy fashion combines them to obtain even larger solutions.
If a subgraph is already part of another solution, it is invalidated
to ensure no overlaps between solutions. Lines 2–7 are repeated
until no more new solutions can be generated. Figure 8 illustrates
how shared synaptic inputs between neurons in the SNN affect the
mapping solution.

We then repeat a similar step to pack any clusters that may fit
in the same crossbar, regardless of connectivity. This means that if
a crossbar can house the subgraph candidates while meeting the
constraint requirements, then we can pack these two candidates
into the same crossbar 11b.

These two steps conclude the mapping procedure for CROSS,
with neurons mapped to the crossbar’s columns.

4.3 Adapting Solution to CROSS+ Architecture
Using neuronal clusters generated for CROSS, we obtain the solu-
tion for CROSS+ by systematically mapping them to either rows or
to columns. The following rules apply when deciding on the place-
ment: if a cluster is placed on the rows, inputs to its presynaptic
neurons must be placed in SRAM so that the generated outputs can
be fed into the crossbar; and if a cluster is placed on the columns,
its inputs must be from the crossbar, so that the outputs can be
placed on the interconnect.

The mapping process starts by prioritizing clusters with the
highest in-degree for placement on crossbars to optimize utiliza-
tion. However, situations arise where two intercommunicating
groups both land on crossbars, which is an infeasible configuration
(Fig. 9a). To solve this, we adopt a two-step strategy. When crossbar-
to-crossbar connections emerge, we transition the neurons from
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Figure 8: Examples of reuse of row inputs between neurons.
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Figure 9: Resolving crossbar-to-crossbar communication.
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Figure 10: Resolving SRAM-to-SRAM communication.

the incoming crossbar’s domain to the SRAM associated with the
current crossbar. Subsequently, the crossbar linked with the incom-
ing cluster is configured with an identity matrix. This arrangement
ensures forward propagation of values from the SRAM (Fig. 9b).
Conversely, when two communicating clusters both inhabit the
SRAM of different crossbars, we instantiate a new node. In this sce-
nario, source neurons are positioned on the SRAM, complemented
by identity matrix connections on the crossbar. This configura-
tion permits neurons values to be placed at the crossbar’s output,
facilitating routing to the SRAM of the target neurons (Fig. 10).

The complexity of generating the candidate solutions is O(𝑁 2),
as we compare each pair of candidates. The complexity of greedily
finding the best solution: is O(𝑁 log𝑁 ) to insert solutions into max
priority queue, O(𝑁 ) to loop through all solutions, and O(1) to get
the next best solution. So in total, our algorithm is of O(𝑁 2) time
complexity.

Table 1: Number of 1024 × 1024 crossbars used by our method
compared to baseline for various machine learning models.
The architecture of each crossbar assumes the CROSS model.

Model SpineMap (KL) Ours Utilization ratio
LeNet 316 211 1.49x
AlexNet 5276 5208 1.43x
ResNet 968 327 2.82x
DenseNet8 1074 703 1.83x

5 RESULTS
SNNs used to obtain the results reported in this section are gen-
erated as follows. The machine learning model of interest, imple-
mented in Tensorflow, is converted to its SNN variant using snn-
toolbox. This SNN is simulated using PyCARL [3], which consists
of a PyNN-based [10] frontend along with a CARLsim backend [19],
to generate statistics related to spike traffic along the SNN’s edges.
These files are then processed by our mapping routines which are
written in Python.

5.1 Comparison to KL-based Methods
Table 1 summarizes and compares the performance of the pro-
posed clustering method with the baseline that uses KL clustering.
Performance is quantified in terms of the number of 1024 × 1024
crossbars used by the competing methods under the CROSS model.
The architecture-aware clustering algorithm significantly reduces the
number of required crossbars by an average of 1.9x.

5.2 Detailed Evaluation of Proposed Method
The following metrics are used to measure quality of the solutions
generated by our method:

• Output-to-Input Ratio (OIR) is the ratio, 𝑁output/𝑁input, of
the number of input and output neurons in the crossbar. This
metric captures balanced usage of input and output ports in
the crossbars. A low OIR indicates higher input-layer occu-
pancy whereas a larger OIR indicates higher output-layer
occupancy, A well-balanced crossbar increases the chances
of merging it with other crossbars, while maintaining high
utilization.

• Average Pair-wise Jaccard Similarity measures similarity in
SRAM contents across all crossbars. When generating map-
ping for CROSS+, clusters placed on the input rowsmay have
to be duplicated across multiple crossbars (Section 4.3). The
Jaccard similarity between the SRAM contents of crossbars
𝐶𝑖 and 𝐶 𝑗 can be calculated as

JSim(𝑆 (𝐶𝑖 ), 𝑆 (𝐶 𝑗 )) =
|𝑆 (𝐶𝑖 ) ∩ 𝑆 (𝐶 𝑗 ) |
|𝑆 (𝐶𝑖 ) ∪ 𝑆 (𝐶 𝑗 ) | ,

where 𝑆 (𝐶𝑖 ) represents the SRAM contents of Cluster 𝑖 . The
average Jaccard Similarity between the SRAM contents of
all pairs of crossbars is calculated as

AJS =
1

𝑛 (𝑛−1)
2

𝑛−1∑︁
𝑖=1

𝑛∑︁
𝑗=𝑖+1

JSim(𝑆 (𝐶𝑖 ), 𝑆 (𝐶 𝑗 )) .

• Crossbar Utilization is the ratio of used neurons to total neu-
rons in a crossbar, 𝑁used (𝐶𝑖 )/𝑁total (𝐶𝑖 ).
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Table 2: Results for various machine-learning models.

Model Information # Clusters after each operation

Name Neurons Synapses Merging CROSS CROSS+

MLP-MNIST 894 79,400 2 1 1

LeNet 23,477 275,110 218 211 80

ResNet-8 126,056 5,155,078 366 128 116

AlexNet 256,570 3,843,103 5289 5208 2443

DenseNet 280,414 13,856,615 1007 703 274

• With Jaccard Similarity we also measure overlap between
two subgraphs by checking the similarity in nodes. We use
this cost function to promote solutions with large overlap,
so that number of clusters can be minimized. The overlap
can be calculated as

Graph_Overlap(𝐺1,𝐺2) = |𝑉 (𝐺1) ∩𝑉 (𝐺2) |
|𝑉 (𝐺1) ∪𝑉 (𝐺2) | ,

where 𝑉 (𝐺𝑖 ) represents the set of vertices in graph 𝐺𝑖 , and
|𝐴| denotes the cardinality (size) of set 𝐴.

Table 2 summarizes the performance of our mapper for well-
known SNNs when the capacity of each crossbar is fixed at 1024 ×
1024. Number of crossbars needed to accommodate these SNNs on
the CROSS and CROSS+ architectures is a function of network size,
and the fan-in and fan-out degrees of individual neurons.

As a fundamental requirement, all presynaptic inputs incident
on a neuron must be mapped onto a single crossbar. Given the
nonlinear nature of a spiking neuron’s activation function, we
cannot simply accumulate activation values for a neuron if these
inputs are provided by different clusters. Effective merging requires
neighbouring neurons with a substantial overlap in their presynap-
tic inputs. When neighbouring neurons source their inputs from
an large layer, the probability of overlapping input neurons is di-
minished due to the increased dimensionality of the input space.
Consider a scenario with a crossbar designed to accommodate up
to 256 neurons. Assume a fully connected SNN comprised of two
layers, one with 512 neurons and the subsequent layer with 256
neurons. At first glance, a one-to-one mapping seems plausible.
However, for each neuron in the second layer, we are dealing with
256 distinct input neurons. Selecting 256 neurons from a set of 512
equates to a total of

(512
256

)
possible combinations, thus reducing the

likelihood of obtaining precise neuron matches. Even when partial
overlaps are feasible, the constraints of the crossbar may prevent
their co-location since the combined input count may exceed the
capacity of 256. This illustrates an intrinsic limitation of crossbars
when addressing neurons with vast input arrays. The most favor-
able scenario for SNN-to-hardware mapping arises when a crossbar
has sufficient inputs and outputs, to house the entirety of the net-
work (Fig. 11b). Nonetheless, many scenarios might culminate in
crossbars operating at sub-optimal utilization levels (Fig. 11a).

One strategy to improve OIR involves systematic pruning of
neurons exhibiting minimal outgoing traffic from the SNN, while
balancing classification accuracy.2 To ascertain the influence of
pruning on the OIR of the resultant clusters, we perform a series of
experiments. First, we compute the mean count of incoming edges
for each neuron. For neurons surpassing this average, a specified
2In-depth exploration of this strategy is beyond the purview of this paper.
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Figure 11: Favorable and unfavorable mapping scenarios.

Figure 12: Effect of pruning on the performance metrics. X-
axis shows the % of nodes removed from the original SNN.

percentage of their incoming connections are pruned. Notably,
networks with higher input occupancy, such as LeNet or AlexNet,
are more susceptible to this procedure compared to more evenly
balanced networks like ResNet. The rationale behind this approach
is to provide crossbars with more merging flexibility; reduced input
connections naturally increase the potential for neuron merging.

Figure 12 (top left) shows the effect of pruning on the total num-
ber of generated clusters for each of the models (shown by solid
lines). This includes the identity nodes as well (displayed separately
using dashed lines). The reason behind the large number of iden-
tity nodes lies in the degree of outward communication for each
cluster. Whenever a cluster placed in SRAM needs to communicate
with another cluster, also in SRAM, an intermediary crossbar is
needed to host the source cluster with an identity matrix so that the
SRAM’s contents can be passed through to the interconnect to the
destination crossbar. Pruning leads to significant savings for LeNet.
If SNN layers are comparable in size, it is likely to result in highly
utilized crossbars. If utilization is initially low, pruning the fan-in
of neurons may improve it. For a model like ResNet, however, with
high crossbar utilization and OIR, pruning may actually decrease
solution quality. So, careful analysis is needed before clustering to
employ correct pruning techniques. The OIR also depends on the
ratio of the neurons per each layer and pruning improves this met-
ric. Finally, our mapping methodology is greedy in that it discards
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sub-optimal local solutions in favor of optimal ones. However, sub-
optimal local solutions may in fact lead to better global solutions.
This explains the non-monotonic changes seen in our metrics, as
final solutions may differ vastly based on the initial state.

6 RELATEDWORK
Efforts dedicated to mapping SNNs to hardware predominantly use
algorithms such as KL, particle swarm optimization, or other pack-
ing techniques. The primary objective of these methodologies is to
cluster neurons cohesively, aiming to alleviate traffic congestion on
the interconnect [2, 8, 21, 22]. However, these studies do not check
to ensure that the resulting clusters can be effectively mapped onto
the designated neuromorphic cores or crossbars. Li et al. develop
an approach to progressively aggregate neurons within a core, but
without considering the underlying topology of intra-cluster con-
nections [15]. Xiao et al. further this line of research, accentuating
interconnect mapping, but don’t rectify the aforementioned lim-
itation of ensuring mappable clusters [25]. Jin et al. focus their
efforts on the placement and mapping of SNNs which are already
partitioned onto network-on-chip systems, but not the basic task
of mapping neurons to crossbars [14].

Sugiarto et al. develop amapping framework for general-purpose
applications represented as task graphs onto the SpiNNaker hard-
ware [23]. Individual tasks are allocated to SpiNNaker chips with
the goal of reducing inter-chip data traffic. To bolster fault tolerance,
replicas of a task are executed across multiple SpiNNaker chips. An
evolutionary algorithm aims to balance system load with minimized
inter-chip data communication. The inherent limitation of these
specialized methodologies is their tailoring to a particular hardware
device. Dedicated compilers for specific platforms, which pursue
hardware-tailored optimization routes, also exist. One example is
NxTF for Intel’s Loihi which uses a greedy, layer-wise optimiza-
tion for its partitioning strategy, recognizing the impracticality
of partitioning the vast combinatorial space [20]. NxTF improves
hardware-resource efficiency by incorporating mechanisms like
synapse and axon sharing, along with synapse compression. Con-
trarily, our pursuit is the development of a generalized algorithm
adaptable to any crossbar-centric platform.

7 CONCLUSION
We developed an architecture-aware mapping methodology for
SNNs which ensures that the generated clusters can be feasibly
and effectively mapped onto crossbars. Our algorithms accommo-
date both a basic architecture, CROSS, where neurons can only be
mapped to the crossbar’s columns as well as CROSS+ that allows
neurons to be mapped to both columns and rows. We evaluate
performance using well-known machine-learning models, and dis-
cuss how the SNN’s structure impacts solution quality along with
approaches to improve it.
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