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Conway’s real closed field No of surreal numbers is a 
sweeping generalization of the real numbers and the ordinals 
to which a number of elementary functions such as log and 
exponentiation have been shown to extend. The problems 
of identifying significant classes of functions that can be 
so extended and of defining integration for them have 
proven to be formidable. In this paper we address this 
and related unresolved issues by showing that extensions to 
No, and thereby integrals, exist for most functions arising 
in practical applications. In particular, we show they exist 
for a large subclass of the resurgent functions, a subclass 
that contains the functions that at ∞ are semi-algebraic, 
semi-analytic, analytic, meromorphic, and Borel summable 
as well as solutions to nonresonant linear and nonlinear 
meromorphic systems of ODEs or of difference equations. 
By suitable changes of variables we deal with arbitrarily 
located singular points. We further establish a sufficient 
condition for the theory to carry over to ordered exponential 
subfields of No more generally and illustrate the result with 
structures familiar from the surreal literature. The extensions 
of functions and integrals that concern us are constructive in 
nature, which permits us to work in NBG less the Axiom 
of Choice (for both sets and proper classes). Following 
the completion of the positive portion of the paper, it is 
shown that the existence of such constructive extensions and 
integrals of substantially more general types of functions (e.g. 
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smooth functions) is obstructed by considerations from the 
foundations of mathematics.
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1. Introduction

In his seminal work On Numbers and Games [18,19], J. H. Conway introduced the 

system No of surreal numbers, a strikingly inclusive real closed field containing the reals 
and the ordinals. In addition to its inclusive structure as an ordered field, No has a 

rich simplicity hierarchical or s-hierarchical structure, that depends upon its structure 

as a lexicographically ordered full binary tree and arises from the fact that the sums and 

products of any two members of the tree are the simplest possible elements of the tree 

consistent with No’s structure as an ordered group and an ordered field, respectively, it 
being understood that x is simpler than y (written x <s y) just in case x is a predecessor 
of y in the tree [39,40,43].

An important subsequent advance in the theory of surreal numbers was the extension 

from the reals to No of the exponential function by Kruskal and Gonshor [19,49]. The 

Kruskal-Gonshor exponential function exp, like Conway’s field operations on No, is 
inductively defined in terms of No’s simplicity hierarchical structure making use of the 

fact that for each pair of subsets L and R of No for which every member of L precedes 
every member of R, there is a simplest member of No, denoted

{L | R},

lying between the members of L and the members of R. Conway [19, pages 27, 225, 227]
refers to such definitions as genetic definitions.1

There has been a longstanding program, initiated by Conway, Kruskal and Norton, to 

develop analysis on No, starting with a genetic definition of integration. In the case of 
Kruskal, it was motivated in large part by the broader goal of providing a new foundation 

for asymptotic analysis which would include new and more general tools for resumming 

divergent series and for solving complicated differential equations. However, the initial 
attempts at defining integration, in particular the genetic definition proposed by Norton 

[19, page 227], turned out, as Kruskal discovered, to have fundamental flaws [19, page 

228]. Despite this disappointment, the search for a theory of surreal integration has 
continued (see [46] and [67]), but has heretofore remained largely open.2 In this paper, 
using a new approach, we construct a theory of integration that is of sufficiently wide 

applicability for most practical cases, pose questions about possible extensions of the 

theory, and elucidate the nature of the obstructions to a far more general extension.

1 At present there is no universally accepted formal theory of Conway’s loosely defined conception of a 
genetic definition in the literature, though [46], [47], [67] and most recently [15] have made contributions 
toward the development of such a theory. Nevertheless, following Conway, in our informal remarks we freely 
refer to certain inductive definitions as “genetic”.

2 By contrast, work of Berarducci and Mantova [13,14], Aschenbrenner, van den Dries and van der Hoeven 
[5], Bagayoko [7], Bagayoko, van der Hoeven and Kaplan [10], Bagayoko and van der Hoeven [8,9] and others 
(e.g. [11,28,29,69]) has made significant progress toward viewing the surreals as an ordered differential field. 
This work aims to bring a robust theory of asymptotic differential algebra to all of No. Unlike the present 
work, which is concerned with derivations on surreal functions, the former work is concerned with derivations 
on surreal numbers.
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In real analysis and mathematical physics, the asymptotic expansions at ∞ of solu-
tions to nontrivial equations as well as perturbation expansions with respect to small 
parameters almost invariably have zero radius of convergence. One of the simplest ex-
amples of a divergent series is

∞∑

k=0

k!x−k−1, x → ∞,

a formal solution of the differential equation y′ + y = x−1, whose general solution is re-
lated to the antiderivatives of ex/x by y(x) = e−x

∫ x
ess−1ds. The problem of uniquely 

assigning functions to divergent expansions in a way that preserves such operations as 
addition, multiplication, differentiation, integration and composition is a very important 
and difficult one. A partial solution was provided by Borel summation; however, its do-
main of applicability is insufficient for many problems of interest in pure and applied 

analysis. Even for handling relatively common problems in analysis, a satisfactory solu-
tion had to wait until the work of Écalle (see [31,33]) which introduced (among other 
things) the notions of resurgent functions, resurgent transseries and Écalle-Borel sum-
mation for overcoming the limitations of Borel summation. In No, on the other hand, 
for all surreal x > ∞, 

∑∞
k=0 k!x−k−1 (and in fact, any formal series in powers of 1/x

with real coefficients more generally) is absolutely convergent in the sense of Conway
(see §2.2)3 and therewith by comparatively simple means defines a unique function for 
all infinite surreal x. Accordingly, the question naturally arises as to whether building 

on absolute convergence in the sense of Conway and the ideas of Écalle, we can find a 

theoretically satisfying way of extending functions and their integrals past ∞ or, more 

generally, past a singularity at which asymptotic expansions do not exist or are diver-
gent? As we alluded to above, in this paper we provide a qualified affirmative answer to 

this question.
Making real progress towards solving the above-said integration problem, and more 

generally in interpreting divergent expansions by means of surreal analysis, requires 
finding a property-preserving operator (see Definition 11) that extends the members of a 

wide body of important classical functions from R to No. In turn, the existence of such 

an extension operator provides a theoretically satisfying and widely applicable definition 

of integration: in particular, the integral of an extension from R to No of a function on 

the reals can be defined to be the extension of its integral from R to No.
Any such theory would have to keep in mind that functions whose behavior can be 

described in terms of exponentials and logarithms are remarkably ubiquitous. Indeed, as 
G. H. Hardy noted in 1910:

3 In the context of discussions of No, such references to “∞” refer to the gap in No separating the positive 
finite surreals and positive infinite surreals. Similar references to “−∞” are understood analogously. In our 
discussion, “∞” and “−∞” refer to both gaps and limits depending on context.
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No function has presented itself in analysis the laws of whose increase, in so far as they 

can be stated at all, cannot be stated, so to say, in logarithmic-exponential terms. [50, 
1st Edition, page 35; 2nd Edition, page 32]4,5

Accordingly, developing a satisfactory theory of integration on the surreals would require 

building on the exponential ordered field (No, exp) of surreal numbers.
Against this backdrop, in the pages that follow, we show that an extension operator 

E as described above, and thereby extensions of integrals from R to No, exist for a 

large subclass FR of resurgent functions, which is related via Écalle-Borel summation to 

a corresponding subclass TR of resurgent transseries, which contains all real functions 
that at ∞ are semi-algebraic, semi-analytic, analytic, and functions with divergent but 
Borel summable series (see §5), as well as solutions of nonresonant linear or nonlinear 
meromorphic systems of ODEs or of difference equations. As such, most classical special 
functions, such as Airy, Bessel, Ei, erf, Gamma, and Painlevé transcendents, are covered 

by our analysis.6

The definitions of the extension operator E and corresponding antidifferentiation and 

integral operators ANo and

y∫

x

f := ANo(f)(y) − ANo(f)(x)

given below are not genetic in Conway’s sense (see Footnote 1). However, unlike Norton’s 
aforementioned definition of integration which was found to be intensional [19, page 

228], ours are shown to depend solely on the values of the functions involved. ANo is 
defined making use of an antidifferentiation operator A on TR, which in turn is defined 

using an antidifferentiation operator AT on the exponential ordered field T of transseries 

4 Note that powers fall in this category since xa = ea ln x.
5 The work of Écalle on transseries, and resurgent transseries in particular, sheds important light on 

Hardy’s observation. The system of transseries, which consists of formal series built up from R and a variable 
x > R using powers, exponentiation, logarithms and infinite sums, is the closure of formal power series 
under a wide range of algebraic and analytical operations [4,21,37]. The subspace of resurgent transseries 
consists of those transseries which, loosely speaking, have origins in natural problems in analysis (see 
§6 as well as [31,33]). There is compelling mathematical evidence, albeit thus far no rigorous proof, that 
resurgent transseries are also closed under the known algebraic and analytical operations. Moreover, they are 
associated with resurgent functions by means of Écalle-Borel summation. These facts provide a theoretical 
basis for Hardy’s observation that, in practice, functions whose asymptotic behavior can be described in 
logarithmic-exponential terms are the only ones that arise naturally as solutions of problems in analysis. It 
should be noted, however, that unlike the asymptotic expansions used at the time of Hardy’s cited writings, 
the infinite sums of logarithmic-exponential terms occurring in Écalle’s theory include sums of countable 
transfinite length > ω.

6 Integration for functions with convergent expansions has been studied in the context of the non-
Archimedean ordered field of left-finite power series with real coefficients and rational exponents in [70]
and [71]. In addition, for the category of semi-algebraic sets and semi-algebraic functions on arbitrary real-
closed fields a full Lebesgue measure and integration theory has been developed in [53] and [54]. See also 
[55] for integration and measure theory on certain non-Archimedean ordered fields whose value groups have 
finite Archimedean rank, as well as [16] for various positive and negative results on integration in general 
non-Archimedean fields.
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(Proposition 21). A has the property: for real f the restriction to reals of Af has limit 
zero at ∞ whenever the limit exists. This can be viewed as the natural condition for an 

integral with an endpoint at ∞.
All of the members of FR are resurgent at ∞ (see Definition 81). Following our 

treatment of the just-said extension, antidifferentiation and integral operators based on 

FR or E(FR) we show by means of a simple change of variables argument that substantial 
extensions of those operators can be obtained building on a set of functions F∗

R extending 

FR that contains functions that are resurgent at arbitrary points.
More generally, the original portions of the paper consist of the following. In §3 we in-

troduce the definitions of extension, antidifferentiation and integral operators and prove a 

preliminary result about the existence of integral operators. In §4 we outline the difficul-
ties of defining extensions and integration of functions, and our strategy for overcoming 

them. Following this, to prepare the way for the proof of the main antidifferentiation 

theorem, in §7 we establish the requisite results concerned with resurgent functions, 
resurgent transseries and Écalle-Borel summability. The definitions of the extension and 

antidifferentiation operators E and ANo, together with proofs of the main antidifferen-
tiation theorem (Theorem 78) are given in §8, along with mention of the uniqueness 
of E and ANo, the proofs of which are left for a separate paper. This is followed in §9
by the above-mentioned constructions of extensions of E, ANo and the corresponding 

integral operator, and in §10 by illustrations of the antidifferentiation and/or extension 

theorems for exp, the exponential integral Ei, the imaginary error function erfi, the Airy 

functions Ai and Bi, the log-gamma function, the Gamma function and Jacobi’s elliptic 

function θ3. In §8(2), a substantially shorter and simplified version of the proof of the 

main extension theorem is provided for the proper subclass Fconv of FR consisting of 
all functions that, at ∞, have convergent series in integer or fractional powers of 1/x or 
more generally have convergent transseries. By a result of van den Dries [26], these in-
clude the semi-analytic functions at ∞. In §11 we generalize our main results by showing 

that closure under absolute convergence in the sense of Conway is a sufficient condition 

for the theory of extension, antidifferentiation and integral operators outlined above to 

carry over to ordered exponential subfields of (No, exp), and we illustrate the result with 

substructures of (No, exp) that are familiar from the literature. Following this, in §12
we raise a problem and state two open questions that naturally arise from material in 

the preceding sections.
To help keep the paper self-contained we include three preparatory sections: §2 offers 

an overview of some basic ingredients of surreal theory; and §5 offers an overview of 
transseries as well as those aspects of Borel summability theory that provide background 

for the preliminary discussion of Écalle-Borel summability in §6, which in turn provides 
background for §7 and §8.

In writings on surreal numbers it is customary to work in NBG (von Neumann-
Bernays-Gödel set theory with the Axiom of Global Choice (see, for example, [58]). 
However, in §3-§11, which constitutes the positive portion of the paper, we need only 

work in NBG− (NBG less the Axiom of Choice for both sets and proper classes), since 
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the extensions of functions and integrals that concern us there have an explicitly “con-
structive” nature.

Whereas Kruskal hoped to appeal to Conway’s notion of absolute convergence to 

construct new foundations for asymptotic analysis grounded in a robust theory of surreal 
integration and function extensions more generally, our theory is more modest in its 
potential scope, limiting its attention to a broad subclass of resurgent functions that 
arises in most applied settings. In fact, there are reasons to believe that deep hurdles 
lay in the way of realizing the lofty analytic goals of Kruskal. Indeed, in Section §13 we 

reverse course and show that the existence of extensions and integrals for substantially 

more general classes of functions (e.g. the class of smooth functions) cannot be proved in 

NBG−, and is in fact obstructed by considerations from the foundations of mathematics.7

2. Surreal numbers

This section provides an overview of the basic concepts of the theory of surreal 
numbers, including the normal forms of surreal numbers, the aforementioned notion 

of absolute convergence in the sense of Conway and exponentiation. With the exception 

of Propositions 6 and 7 and Notational Convention 1, which are concerned with absolute 

convergence in the sense of Conway (see Section 2.2), all of the material in this section 

is known from the literature.
To avoid possible confusion, we note that here and henceforth we follow the convention 

of excluding 0 from the set N of natural numbers.

2.1. The algebraico-tree-theoretic structure of No

There are a variety of constructions of the surreal numbers (e.g. [19, pages 4-5, 15-16, 
65], [2,3,42,38], [39, page 242]), each with its own virtues. For the sake of brevity, here we 

adopt the construction based on Conway’s sign-expansions [19, page 65], an approach 

which has been made popular by Gonshor [49]. In accordance with this approach, a 

surreal number is a function x : λ → {−, +} where λ is an ordinal called the length of 
x. The class No of surreal numbers so defined carries a canonical linear ordering < as 
well as a canonical partial ordering <s defined by the conditions: x < y if and only if x
is (lexicographically) less than y with respect to the linear ordering on {−, +}, it being 

understood that − < undefined < +; x <s y (read “x is simpler than y”) if and only if 
x is a proper initial segment of y.

By a tree (A, <A) we mean a partially ordered class such that for each x ∈ A, the 

class prA = {y ∈ A : y<Ax} of predecessors of x is a set well ordered by <A. The tree-
rank of x ∈ A, written ‘ρA(x)’, is the ordinal corresponding to the well-ordered set 

7 Some of the material in §3-§10 of the present paper is a revised and substantially expanded version 
of material from the positive portion of the arXiv preprint [23]. Further set-theoretic impediments to the 
realization of Kruskal’s program are contained in the negative portion of [23] and remain to be revised and 
expanded by Harvey Friedman and the first author.
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(prA(x), <s). If x, y ∈ A, then y is said to be an immediate successor of x if x <s y

and ρA(y) = ρA(x) + 1; and if (xα)α<β is a chain in A (i.e., a subclass of A totally 

ordered by <s), then y is said to be an immediate successor of the chain if xα <s y for 
all α < β and ρA(y) is the least ordinal greater than the tree-ranks of the members of 
the chain. The length of a chain (xα)α<β in A is the ordinal β. If each member of A
has two immediate successors and every chain in A of limit length (including the empty 

chain) has one immediate successor, the tree is said to be a full binary tree.

Proposition 1. (No <, <s) is a lexicographically ordered full binary tree ([40], [42, The-
orem 11]).

Central to the algebraico-tree-theoretic development of the theory of surreal numbers 
is the following consequence of Proposition 1, where a subclass B of an ordered class 
(A, <) is said to be convex, if z ∈ B whenever x, y ∈ B and x < z < y.

Proposition 2. Every nonempty convex subclass of No has a simplest member. In par-
ticular, if L and R are (possibly empty) subsets of No for which every member of L

precedes every member of R (written L < R), there is a simplest member of No lying 

between the members of L and the members of R [40, Theorem 1 and Theorem 4 (i) and 

(ii)].

Co-opting notation introduced by Conway, the simplest member of No lying between 

the members of L and the members of R is denoted by

{L|R}.

Following Conway [19, page 4], if x = {L|R}, we write xL for a typical member of 
L and xR for a typical member of R; x = {a, b, c, ...|d, e, f, ...} means that x = {L|R}
where a, b, c, ... are typical members of L and d, e, f, ... are typical members of R.

Each x ∈ No has a canonical representation as the simplest member of No lying 

between its predecessors on the left and its predecessors on the right, i.e.

x = {Ls(x)|Rs(x)},

where

Ls(x) = {a ∈ No : a <s x and a < x} and Rs(x) = {a ∈ No : a <s x and x < a} .

By now letting x = {Ls(x)|Rs(x)} and y = {Ls(y)|Rs(y)}, +, − and · are defined by 

recursion as follows, where xL, xR, yL and yR are understood to range over the members 
of Ls(x), Rs(x), Ls(y) and Rs(y), respectively.

Definition of x + y.

x + y =
{

xL + y, x + yL|xR + y, x + yR
}

.
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Definition of −x.

−x =
{

−xR| − xL
}

.

Definition of xy.

xy = {xLy + xyL − xLyL, xRy + xyR − xRyR|
xLy + xyR − xLyR, xRy + xyL − xRyL}.

Despite their cryptic appearance, the definitions of sums and products in No have 

natural interpretations that essentially assert that the sums and products of elements of 
No are the simplest elements of No consistent with No’s structure as an ordered group 

and an ordered field respectively (see, for example, [39, page 1236], [40, pages 252-253]). 
The constraint on additive inverses, which is a consequence of the definition of addition 

[40, page 1237], ensures that the portion of the surreal number tree less than 0 = {∅|∅}
is (in absolute value) a mirror image of the portion of the surreal number tree greater 
than 0, 0 being the simplest element of the surreal number tree (see Fig. 1).

A subclass A of No is said to be initial if x ∈ A whenever y ∈ A and x <s y. Although 

there are many isomorphic copies of the order field of reals in No, only one is initial 
[40, page 1243]. This ordered field, which we denote R, plays the role of the reals in No. 
Similarly, while there are many subclasses A of No that are well-ordered proper classes 
in which for all x, y ∈ A, x < y if and only if x <s y, only one is initial. The latter, which 

consists of the members of the rightmost branch of (No <, <s) (see Fig. 1), is identified 

as No’s class On of ordinals.
The nonzero elements of No can be partitioned into equivalence classes, called 

Archimedean classes, each consisting of all nonzero members x, y of No that satisfy 

the condition: m|x| > |y| and n|y| > |x| for some positive integers m, n. If a and b are 

members of distinct Archimedean classes and |a| < |b|, then we write a � b and a is said 

to be infinitesimal (in absolute value) relative to b.
An element of No is said to be a leader if it is the simplest member of the positive 

elements of an Archimedean class of No. Since the class of positive elements of an 

Archimedean class of No is convex, by the first part of Proposition 2 the concept of a 

leader is well defined. There is a unique mapping–the ω-map–from No onto the ordered 

class of leaders that preserves both < and <s. The image of y under the ω-map is denoted 

ωy, and in virtue of its order preserving nature, we have: for all x, y ∈ No,

ωx � ωy if and only if x < y.

Using the ω-map along with other aspects of No’s s-hierarchical structure and its 
structure as a vector space over R, every surreal number can be assigned a canonical 
“proper name” or normal form that is a reflection of its characteristic s–hierarchical 
properties. These normal forms are expressed as sums of the form
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Fig. 1. Early stages of the recursive unfolding of No.

∑

α<β

ωyα .rα

where β is an ordinal, (yα)α<β is a strictly decreasing sequence of surreals, and (rα)α<β

is a sequence of nonzero real numbers. Every such expression is in fact the normal form 

of some surreal number, the normal form of an ordinal being just its Cantor normal form
([19, pages 31-33], [40, §3.1 and §5], [41]).

Making use of these normal forms, Fig. 1 offers a glimpse of the some of the early 

stages of the recursive unfolding of No.
When surreal numbers are represented by their normal forms, order, addition and 

multiplication in No assume more tractable forms with the order defined lexicographi-
cally and addition and multiplication defined as for polynomials with ωxωy = ωx+y for 
all x, y ∈ No.

Definition 3. An element x of an ordered field is said to be infinitesimal if |x| < 1/n for 
every positive integer n and it is said to be infinite if |x| > n · 1 for every positive integer 
n. Thus, in virtue of the lexicographical ordering on normal forms, a surreal number is 
infinite (infinitesimal) just in case the greatest exponent in its normal form is greater 
than (less than) 0. As such, each surreal number x has a canonical decomposition into 

its purely infinite part, its real part, and its infinitesimal part, consisting of the portions 
of its normal form all of whose exponents are > 0, = 0, and < 0, respectively. A surreal 
number, and a member of an ordered field more generally, will be said to be finite if it 
is not infinite.

2.2. Absolute convergence in the sense of Conway

There is a notion of convergence in No for sequences and series of surreals that can 

be conveniently expressed using normal forms supplemented with dummy terms whose 

coefficients are zero. Let x ∈ No and for each y ∈ No, let ry(x) be the coefficient of ωy
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in the normal form of x, it being understood that ry(x) = 0, if ωy does not occur. Also 

let {xn : n ∈ N ∪ {0}} be a sequence of surreals so written. Following Siegel [74, page 

432], we write

x = lim
n→∞

xn

to mean

ry (x) = lim
n→∞

ry (xn) , for all y ∈ No,

and say that {xn : n ∈ N ∪ {0}} converges to x. We also write

x =
∞∑

n=0

xn

to mean the partial sums of the series converge to x.
Among the convergent sequences and series of surreals are those whose mode of con-

vergence is quite distinctive. In particular, for each y ∈ No, there is a nonnegative integer 
m such that ry(xn) = ry(xm) for all n ≥ m. Thus, for each y ∈ No,

ry (x) = lim
n→∞

ry (xn) = ry(xm),

where m depends on y. Following Conway, we call this mode of convergence absolute 

convergence.

Notational Convention 1. We will call the normal form to which an absolutely convergent 
series {xn : n ∈ N ∪ {0}} of normal forms converges the Limit of the series and denote 

it using

Lim
n→∞

xn. (1)

We use “Limit” as opposed to “limit” and “Lim” as opposed to “lim” to distinguish the 

surreal notion from its classical counterpart.

Relying on the above and classical combinatorial results of Neumann ([62, pages 206-
209], [74, Lemma 3.2], [1, pages 260-266]), one may prove [74, pages 432-434] the following 

theorem of Conway [19, page 40], which is a straightforward application to No of a 

classical result of Neumann ([62, page 210], [1, page 267]).

Proposition 4. Let f be a formal power series with real coefficients, i.e. let

f (x) =
∞∑

n=0

rnxn (2)
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where the rn’s are reals. Then f (ζ) is absolutely convergent for all infinitesimals ζ in 

No, i.e.,

f(ζ) = Lim
n→∞

n∑

m=0

rmxm. (3)

Conway’s theorem also has the following multivariate formulation [74, page 435].

Proposition 5. Let f be a formal power series in k variables with real coefficients, i.e. let

f (x1, ..., xk) ∈ R[[x1, ..., xk]].

Then f (ε1, ..., εk) is absolutely convergent for every choice of infinitesimals ε1, ..., εk in 

No.

This can also be written in the following useful form.

Proposition 6. Let {ck : k ∈ (N ∪ {0})m} be any multisequence of real numbers and 

h1, ..., hm be infinitesimals. Also let hk = hk1
1 · · · hkm

m . Then

∑

|k|≥0

ckh
k (4)

is a well-defined element of No.

The following result, in which {xn : n ∈ N ∪ {0}} and {yn : n ∈ N ∪ {0}} are ab-
solutely convergent series of normal forms, collects together some elementary properties 
of absolute convergence in No. Several are very similar to the properties of the usual 
limits.

Proposition 7. Let Limn→∞xn = x and Limn→∞yn = y, and further let h � 1, τ > 0
and a, b ∈ No. Then

(a) Limn→∞(axn + byn) = ax + by;

(b) Limn→∞xnyn = xy;

(c) x �= 0 ⇒ Limn→∞
1

xn
=

1
x

; (5)

(d) (∃k)(∀n)(|xn| < k);

(e) Limn→∞hn = 0;

(f) (∀n)(|xn| ≤ τ) ⇒ |x| ≤ τ.
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Proof of Proposition 7. (a) and (b) are proved in [1, page 271], (d) is evident since no set 
is cofinal with No, (e) follows from Proposition 2 and (f) follows from (e). For (c), since 

Limn→∞xn �= 0, there is a greatest y ∈ No such that ry(xn) is not eventually zero. Thus, 
for sufficiently large n, xn = ryωy(1 +hn), where hn is infinitesimal, and, so, it suffices to 

establish the result for xn of the form 1/(1 + hn). Since 1/(1 + hn) − 1 = −hn(1 + hn)−1

and Limn→∞hn = 0 the coefficients of leaders in hn eventually vanish, and, as such, 
eventually vanish for −hn(1 + hn)−1. �

2.3. Surreal exponentiation

As was mentioned above, No admits an inductively defined exponential function exp. 
(No, exp) is in fact an elementary extension of the exponential ordered field (R, ex) of 
real numbers [27]. The exponential function on No was introduced by Kruskal, and 

reconstructed and substantially developed by Gonshor [49, Chapter 10]. While the defi-
nition of exp is quite complicated for the general case, it reduces to the following simpler 
and more revealing forms for the three theoretically significant cases.

Proposition 8 (Gonshor [49]).

(i) exp(x) = ex for all x ∈ R;
(ii) exp(x) =

∑∞
n=0 xn/n! for all infinitesimal x;

(iii) if x is purely infinite, then

exp(x) =
{

0, (exp xL)(x − xL)n
∣∣∣ exp xR

(xR − x)n

}
,

where xL and xR range over all the purely infinite predecessors of x with xL < x <

xR.

The significance of cases (i)–(iii) emerges from the fact that for an arbitrary surreal 
x, exp(x) = exp(xP ) · exp(xR) · exp(xI), where xP , xR and xI are the purely infinite, 
real and infinitesimal components of x, respectively.

Shedding further light on exp(x) when x is purely infinite is:

Proposition 9 (Gonshor [49]). The restriction of exp to the class of purely infinite surreal 
numbers is an isomorphism of ordered groups onto No’s class {ωx : x ∈ No} of leaders.

In subsequent sections of the paper, for the sake of simplicity, we will occasionally 

write ex in place of exp x for the surreal extension of the real function ex. Readers 
seeking additional background in the theory of surreal exponentiation may consult [49,
27,44,13,12].
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3. Extension, antidifferentiation and integral operators

To introduce the requisite conceptions of extension, antidifferentiation and integral op-
erators, we require some preliminary notions concerning intervals, extensions of functions 
from the reals to No and restrictions of surreal functions to R, where R is understood 

to be the canonical copy of the reals in No (see §2.1).
By an interval I of an ordered class A we mean a convex subclass of A. In addition 

to the more familiar types of intervals of R and No we will consider are (a, ∞) := {x ∈
R : x > a} and (a, On) := {x ∈ No : x > a}, where a ∈ R. In §8.2 a simple condition 

is specified under which the forthcoming developments of our theory also apply to the 

intervals (−∞, a) := {x ∈ R : x < a} and (−On, a) := {x ∈ No : x < a}, for a ∈ R.

3.1. Derivatives

To formulate the appropriate notions of extension and antidifferentiation operators, 
we require a generalization of the idea of a derivative of a function at a point.

Definition 10 (Derivative). Let K be an ordered field. A function f defined on an interval 
around a is differentiable at a if there is an f ′(a) ∈ K such that (∀ε > 0 ∈ K)(∃δ > 0 ∈
K) such that

(∀x ∈ K)(|x − a| < δ ⇒
∣∣∣∣
f(x) − f(a)

x − a
− f ′(a)

∣∣∣∣ < ε).

As usual, f ′(a) is said to be the derivative of f at a and f is said to be differentiable if 
the derivative of f exists at each point of its domain. The definition generalizes to higher 
order derivatives in the usual way.

It is straightforward to check that the derivative so defined on No has the same local
properties (linearity, chain rule, etc.) as its real counterpart. However, because No is 
disconnected, global properties such as Rolle’s theorem and its consequences may fail.

3.2. Extension operators

If f is a function, then by dom(f) and ran(f) we mean the domain and range of f
respectively. We define λf and f + g for functions f, g as usual, where dom(f + g) = 

dom(f)∩dom(g).

Definition 11. Let I be an interval of R and J be an interval of No that contains I.
(1) As usual, we say that g : J → No extends f : I → R if for every x ∈ I we have 

g(x) = f(x), and we denote by g|I the restriction of g to I.
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(2) Let F be a set of real-valued functions defined on intervals of R. By an extension 

operator E on F we mean a map that associates to each function f : I → R in F a 

function E f : J → No in such a manner that

i. for all f ∈ F , E f is an extension of f ;
ii. (Linearity) for all g, h ∈ F and C ∈ R, E(Cg) = CE g and E(g + h) = E g + E h;
iii. if β, λ ∈ R, n ∈ N ∪ {0}, g(x) = xβeλx and h(x) = xn log(x) for all x ∈ I, then 

(E g)(x) = xβeλx and (E h)(x) = xn log(x) for all x ∈ J .
iv. E f ′ = (E f)′.

For some important classes of problems we construct extensions that are multiplicative
or, in other words, that preserve multiplication in the following sense.

Definition 12. An extension operator E is multiplicative on an algebra of functions if for 
all f and g in the algebra we have E(fg) = (Ef)(Eg).

3.3. Antidifferentiation and integral operators

The following definition provides definitions of both real and surreal antidifferentiation 

operators.

Definition 13. Let F be a set of real-valued (surreal-valued) functions whose domains are 

intervals of R (No). An antidifferentiation operator on F1 ⊆ F is a function A : F1 → F
such that for all f, g ∈ F1:

i. A f is differentiable and (A f)′ = f ;
ii. For any λ ∈ R (λ ∈ No), A(λf) = λA f , A(f + g) = A f + A g;
iii. If y ≥ x and f ≥ 0, then (A f)(y) − (A f)(x) ≥ 0.
iv. ∀n ∈ N, A (xn) = 1

n+1xn+1 (the right side being the monomial in F).
v. A (exp) equals the real (surreal) exponential.
vi. If F ∈ F1 and F ′ = f ∈ F1, then there is a C ∈ R (C ∈ No) such that A f exists 

and equals F + C.

For suitable integrals to exist, we need the “second half” of the fundamental theorem 

of calculus to hold. This is the motivation for the following convention.

Notational Convention 2. Let A be an antidifferentiation operator on F1 ⊆ F , and let 
f ∈ F1 and x, y ∈ No. Define

y∫

x

f := A(f)(y) − A(f)(x). (6)
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The following result demonstrates that the existence of an antidifferentiation operator 
on F1 ⊆ F implies that 

∫ y

x
f is an operator on F1 whose properties make it worthy of 

the appellation “integral operator”.
In the following proposition, α, β, a, b, a1, a2, a3 ∈ No, and f, g, fg, f ◦ g, f ′, g′ are 

understood to be elements of F1 on [a, b], [a1, a2], [a2, a3] or [a1, a3] where applicable. In 

our constructions we will specify which spaces are closed under the above-said operations.

Proposition 14 (Integral operators). Let A be an antidifferentiation operator on F1 ⊆ F . 
Then 
∫ y

x
f is an integral operator on F1, meaning a function of three variables, x, y ∈ No

and f ∈ F1, with the properties:

(a)

⎛
⎝

x∫

a

f

⎞
⎠

′

= f ;

(b)

b∫

a

(αf + βg) = α

b∫

a

f + β

b∫

a

g;

(c)

b∫

a

f ′ = f(b) − f(a);

(d)

a2∫

a1

f +

a3∫

a2

f =

a3∫

a1

f ;

(e)

b∫

a

f ′g = fg|ba −
b∫

a

fg′ if f and g are differentiable on (a, b);

(f)

x∫

a

(f ◦ g)g′ =

g(x)∫

g(a)

f whenever g ∈ F1 is differentiable on (a, x).

(g) If f is a positive function and b > a, then 

b∫

a

f > 0.

Proof. All these are straightforward. (a) follows from Definition 13 i, and differentiating 

(6). (b) follows from Definition 13, ii. (e) follows similarly using the chain rule and, taking 

g = 1, it implies (c). (d) follows from Equation (6). For (f), note that since f ∈ F1 we 

have f = F ′ for some F , and hence (F ◦ g)′ = (f ◦ g)g′; the rest is a consequence of (c). 
And, finally, (g) follows from Definition 13, iii. �

As we alluded to in the introduction, in §8 we construct a wide class of functions 
defined on intervals of R of the form (a, ∞), where a may depend on the function, that 
is closed under antidifferentiation in the sense of Definition 13, and which we extend in 

the sense of Definition 11 to surreal functions defined on (a, On). By contrast, for our 
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negative result we only retain some very basic properties of antidifferentiation and work 

on a space of functions with “very good properties”. This is spelled out below in §13.

4. Difficulties of defining extensions and integration of functions, and our strategy for 

overcoming them

One of the sources of difficulty in extending more general classes of classical func-
tions to No and in defining integration for them is the fact that the topology of surreal 
numbers is totally disconnected, and as such processes other than the usual “extensions 
by continuity” must be employed. A natural class of functions on which extensions and 

integration can be naturally defined in a way that preserves the expected properties are 

the analytic functions. This is due to their unique representations as power series, which 

at ∞ take the form

f(x) =
∞∑

k=0

ck

xk
(7)

where for some positive real R and all k ∈ N ∪{0} we have |ck| ≤ Rk; of course the series 
in Equation (7) converges for all x ∈ R

+ such that x > R. We can make use of normal 
forms to define Ef(x) for all surreal numbers greater than R in a way that ensures that 
E preserves all operations that are preserved by Limits (see §2.2). For this, relying on 

Proposition 4 and the definition of “Lim” (see §2.2), we simply write

Ef(x) =
∞∑

k=0

ck

xk
= Lim

N→∞

N∑

k=0

ck

xk
. (8)

Similarly, for all x ∈ No such that x > R and f as in Equation (7), we let

ANo f(x) = c0x + c1 log x −
∞∑

k≥2

ck

(k − 1)xk−1 . (9)

Based on Proposition 7, it is an easy exercise to check that ANo so defined is an anti-
differentiation operator on the class of functions analytic at ∞. In fact, for the class of 
functions analytic at ∞ and O(x−2) for large x (c0 = c1 = 0 in (7)) this is an antide-
rivative with “zero constant at ∞” or from ∞. Integration is defined for R < a ≤ x by 

Equation (6).
With obvious adaptations, these definitions, constructions and results extend to func-

tions that are given at ∞ by convergent Puiseux fractional power series or, far more 

generally, by convergent transseries (see §5.2 and e.g. [22, page 143]).
While divergent series and transseries as formal objects can be associated in much 

the same way with actual surreal functions defined on the positive infinite elements of
No, the difficulty in these cases is to pair them with functions on the finite surreals in a 
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unique way that, additionally, is compatible with common operations in analysis. Indeed, 
while in classical analysis convergent expansions correspond to a unique function, this is 
not the case for divergent expansions. We overcome this difficulty by using techniques 
of resurgent functions and Écalle-Borel summation (§8).

The following simple example based on the exponential integral Ei illustrates the 

non-uniqueness problem in the divergent case. The function y(x) = e−xEi(x) is given by

y(x) = e−x PV

x∫

−∞

es

s
ds (10)

where PV stands for the Cauchy principal value: for x > 0 this is defined as the symmetric 

limit limε→0+

(∫ −ε

−∞
+
∫ x

ε

)
.

This y(x) has the asymptotic series

y(x) ∼
∞∑

k=0

k!
xk+1 , x → ∞. (11)

Since y(x) =
∑∞

k=0
k!

xk+1 is well defined for all x ∈ No via Limits, as in (8), it would be 

tempting to define the integral PV
∫ x

−∞
es

s ds for all x > ∞ as exy(x). But here we face 

a non-uniqueness problem: for any a ∈ R, the function ya(x) = e−x PV
∫ x

a
es

s ds has the
same asymptotic series as y(x) given in Equation (11). This is because y(x) − ya(x) =
Ce−x (where the constant C is PV

∫ a

−∞
es

s ds) and the power series asymptotics of e−x

for large x is zero. In fact, classical asymptotic analysis cannot distinguish between y

and the whole family of ya’s. (Contrast this with the fact that two different analytic 

functions cannot share the same Taylor series).
As a consequence of this type of non-uniqueness, in Section §13 we are able to show 

that a linear association between functions and general divergent series requires a rel-
atively strong consequence of the Axiom of Choice (and as such cannot be instituted 

based on a specific definition, something which will be the subject of another paper). 
Accordingly, the class of divergent series needs to be restricted! With this in mind, as was 
mentioned in the introduction, we limit our analysis to a proper subclass of the resurgent 
functions, a subclass that appears to be wide enough to contain those functions which 

occur commonly in applications. As such, from a practical standpoint, our restriction 

appears to be relatively mild.
In §6 we introduce the idea of a resurgent function and the closely related idea of a 

resurgent transseries. The resurgent transseries are of particular importance to us since 

a unique association can be carried out in a constructive fashion between the class of 
resurgent divergent transseries, on the one hand, and the class of resurgent functions, 
on the other. For example, the resurgent function associated with the series in (11)
is e−xEi(x). Moreover, this association preserves all the local operations with which 

the summation of convergent Taylor series do. We will use the just-said association to 
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Transseries

Resurgent functions Surreal functions

τ

τ◦Tr

Tr:=(L◦mon◦B)−1

Fig. 2. The extension operator E restricted to the positive infinite case is the composition of two interme-
diate isomorphisms: transseriation, i.e. Tr := (L ◦ mon ◦ B)−1, from a subspace of resurgent functions to 
a subspace of transseries, where L ◦ mon ◦ B is Écalle-Borel summation, and a map τ from the just-said 
subspace of transseries to surreal functions.

define our desired integrals for the positive infinite case invoking a pair of isomorphisms–
one between a subclass of resurgent functions and a subspace of transseries, and the 

other between the just-said subspace of transseries and a class of functions on No. It 
is through this pair of isomorphisms (see Fig. 2) that we extend resurgent functions to 

infinite surreals and define their integrals. Moreover, the integrals so-defined on surreal 
extensions of resurgent functions (as well as on transseries) have the properties specified 

in Proposition 14.
We remind the reader that by convention we set the point where our functions have 

divergent expansions to be at the gap ∞ (see Footnote 3), and as such the only gap past 
which defining integration is difficult is ∞ itself.

To prepare the way for our discussion of resurgent functions and resurgent transseries, 
in the following section we will first review some classical results in the theory of Borel 
summability and the theory of transseries and then prove a new result (Proposition 47) 
concerning the existence of antiderivatives. Like Proposition 47, most of the material in 

§5 from subsection 5.5 on is new.

5. Transseries, Borel summation and Borel summable subspaces of transseries

Typically, Borel summability and Écalle-Borel summability deal with series of the 

form

f̃ :=
∞∑

k=M

ckx−kβ , β > 0; M ∈ Z (12)

where the coefficients {ck}k≥M and β are real. The Borel sum of a finite sum is by 

definition the identity. Hence, we can assume without loss of generality that M = 1.

5.1. Classical Borel summation of series

The following definition collects together some of the basic concepts and observations 
we will employ in this and subsequent sections.
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Definition 15 (Laplace transform, Borel transform, Borel sum and critical time). For 
suitable functions F for which the integral exists, the Laplace transform LF of F is 
defined as:

(LF )(x) =

∞∫

0

e−xpF (p)dp.

The (formal) inverse Laplace transform of a series f̃ =
∑∞

k=0 ckx−(k+1)β is defined as a 

term-by-term transform of the series

L−1f̃ =
∞∑

k=0

ckp−kβ−1/Γ(kβ),

where Γ is the Gamma function; if n is a positive integer, Γ(n) = (n − 1)!.
The Borel transform Bf̃ of a formal series f̃ given by Equation (12) with M = 1 (see 

the remarks following Equation (12)) is the series obtained by taking the term-by-term 

inverse Laplace transform of f̃ in normalized form. If β = 1, then Bf̃ is analytic at 
p = 0; otherwise it is ramified-analytic and Bf̃ = p−1A(pβ) where A is analytic. It is 
often relatively easy to reduce to the case β = 1, which we will assume in the following.

The Borel sum of f̃ along R+ exists if after taking the Borel transform Bf̃ of f̃ the 

following two conditions are satisfied:
(i) The series Bf̃ is convergent, and its sum (by abuse of notation also written Bf̃) is 

analytic on R+.8

(ii) Bf̃ has exponential bounds on R+, i.e., ∃ν > 0 such that supp>ν |e−νp(Bf̃)(p)| <
∞.

When this is the case, the Borel sum of f̃ is by definition LBf̃ .
For example,

LB
∞∑

k=0

k!(−1)kx−k−1 = LF = −exEi(−x); F (p) :=
1

1 + p
. (13)

The coefficients ck of asymptotic series occurring in applications have at most power-
of-factorial growth ck ∼ (k!)p for some (usually integer) p. To apply Borel summation or 
the more general Écalle-Borel summation to a series of a factorially divergent series, one 

needs to normalize the series by passing to the power of x that ensures that the growth 

of the coefficient of x−(k+1)β is, to leading order, Γ(kβ). The power of the variable with 

8 Mathematically, Bf̃ is a formal series, albeit convergent, and is distinct from its sum–a germ of an 
analytic function–which in turn is distinct from its analytic continuation on R

+. These distinctions are 
typically dropped whenever no confusion is possible. For instance, we write with a tacit license that Bf̃ is 
analytic on R+.
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respect to which this precise factorial growth is achieved is called Écalle critical time. 
An illustration is provided by the asymptotic series of ex2

erfc(x) as x → ∞,

ex2

erfc(x) ∼ 1√
πx

− 1
2
√

πx3 +
3

4
√

πx3 + · · · = x−1
∞∑

k=1

ck

x2k
, (14)

where πck = (−1)kΓ(k − 1/2). To ensure that the growth of the coefficients of the series 
matches the power of the variable as explained, we need to change the variable to t =

√
x. 

In this example the critical time is t = x1/2.

A calculation shows that

B(f̃ g̃) = (Bf̃) ∗ (Bg̃), (15)

where “∗” is the Laplace convolution

(F ∗ G)(p) =

p∫

0

F (s)G(p − s)ds. (16)

Proposition 16 (The space SB of Borel summable series). Let SB be the space of series 
which are Borel summable. Then:

(i) SB is a differential algebra (with respect to formal addition, multiplication, and 

differentiation of power series), and LB is an isomorphism of differential algebras.
(ii) If Sc ⊂ SB denotes the differential algebra of convergent power series, and we 

identify a convergent power series with its sum, then LB is the identity on Sc.
(iii) For f̃ ∈ SB and x in the open right half plane, LBf̃ is asymptotic to f̃ as |x| → ∞.
(iv) The subspace of SB consisting of series whose Borel transforms are analytic in a 

disk around the origin and in a nonempty open sector is closed under composition. More 

precisely, if f̃ and g̃ are elements of this subspace, then so is f̃ ◦ (I + g̃), I being the 

identity map.
(v) Borel summation is a proper extension of the usual summation. More precisely, if 

f̃ =
∑

k≥1 ckx−k converges to f in a neighborhood of ∞, then Bf̃ is entire, exponentially 

bounded and LBf̃ = f .

Proof. Statements (i)–(iii) and (v) are proved in ([22], p. 106); and for the proof of (iv), 
see ([60] p. 159). �

Note. Borel sums are analytic for large argument x. Standard arguments from complex 

analysis (e.g. combining Morera’s theorem with Fubini) show that LBf̃ is real analytic
for all sufficiently large x ∈ R.

Definition 17 (Borel summation). The operator of Borel summation is defined at any 

point x0 ∈ R (or C) by moving x0 to ∞, performing Borel summation at ∞ and moving 
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the point at ∞ back to x0. That is, we define (LB)x0
= M−1 ◦ LB ◦ M where M is the 

Möbius transformation x �→ x0 + x−1 (see also Definition 80).

On Borel summed series that are O(x−2), we now define an operator having some of 
the properties of an antidifferentiation operator in the sense of Definition 13.

Definition 18. Let SB;2 be the space of Borel summable series that are O(x−2). Further, 
let s ∈ SB;2, S = LBs, and ABS = − 

∫∞

0 p−1e−xp(Bs)(p)dp. Asymptotic series at infinity 

are particular cases of transseries at infinity to which AB is successively extended in §5.4, 
§5.8 and §6.

We note that by the general properties of the Laplace transform we have (ABf)′ = f

and ABf = O(x−1) for large x. Hence, ABf =
∫ x

∞
S(t)dt.

Proposition 19. AB, as defined in Definition 18, is well defined on Borel sums of real-
valued series and has Properties i–iii and vi from Definition 13.

Proof. If s = O(x−2) for large x, then by definition, (Bs)(p) = O(p) for small p. Since 

Bs is analytic at zero, we have Bs = pH(p) where H is analytic at zero, and hence, 
p−1Bs = H(p) is analytic at zero as well. Clearly, Bs has analytic continuation on R+ if 
and only if H(p) is has analytic continuation on R+. It is also straightforward to check 

that Bs is exponentially bounded for large p if and only if H is exponentially bounded 

for large p. This establishes the existence of ABS.
Using the exponential bounds and dominated convergence we see that we can differ-

entiate under the integral sign and get (ABS)′ = S, thereby establishing Property i of 
Definition 13.

Proposition 16 (iii) shows that if s is positive (meaning that the coefficient of the 

highest power of x is positive), S is a positive function for large x. The positivity of 
the coefficient of the highest power of x is equivalent to the positivity of H(0), which in 

turn shows that ABS is negative and increasing for large x, establishing Property iii of 
Definition 13. Property ii of Definition 13, i.e., linearity, follows from the linearity of B
and L, and of multiplication by p−1. Property vi follows from the fact noted above that 
ABf =

∫ x

∞
S(t)dt and the fundamental theorem of calculus. In fact, using the remark 

following Definition 18, we have C = 0. �

5.2. Transseries: an overview

As was mentioned in the introduction, a transseries over R is a formal series built 
up from R and a variable x > R using powers, exponentiation, logarithms and infinite 

sums. Écalle’s classical construction of the ordered differential field T of transseries over 
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R is inductive, beginning with log-free transseries [32].9 There have been a number of 
alternative constructions since (e.g. [4,30,69,21,51,14]). For a self-contained introduction 

to transseries, see [37]. Transseries are formal series of the following form in the variables 
μ1, μ2, ..., μn, called transmonomials:

T̃ =
∑

k>−M

ckμk :=
∑

k1,k2,...,kn>−M

ck1,k2,...,kn
μk1

1 μk2
2 · · · μkn

n , (17)

where the transmonomials are functions of x, the coefficients are members of R and 

M ∈ Z. The set of tuples of integers bounded below used as indices in (17) are well-
ordered lexicographically; this indexation, which emphasizes the nature of the generators 
(transmonomials) is preferable, in the applications we are considering, to one using the 

corresponding ordinals.
Transseries have (exponential) heights and (logarithmic) depths that emerge from 

their inductive construction, but in our discussion we will only be concerned with log-
free, height one and height one, depth one transseries, and these are characterized below 

in Definitions 24 and 30, respectively. Since context should prevent confusion, we will 
freely write exponential and logarithmic terms in transseries using e and log, respectively.

In the case of transseries over R the component terms in T̃ are descendingly well 
ordered with respect to the asymptotic order relation �; for example, for the transseries 
ex + x + log x + 1 + x−1 we have ex � x � log x � 1 � x−1, where a � b indicates that 
a is large (i.e. infinitely large) compared with b.

We say that a transseries T̃ is positive if the largest transmonomial of T̃ with respect 
to � has a positive coefficient, negative if −T̃ is positive, and T̃ = 0 if all of its coefficients 
are zero.

There is a striking similarity between transseries over the reals and surreal numbers 
written in normal form. Aschenbrenner, van den Dries and van der Hoeven [6] have exhib-
ited a canonical elementary embedding ι of the ordered differential field T of transseries 
into (No, ∂) that is the identity on R and sends x to ω, where ∂ is the derivation on No

due to Berarducci and Mantova [14]. By appealing to Berarducci and Mantova’s con-
struction of ι(T ) := R((ω))LE [14], Ehrlich and Kaplan [44] have shown that R((ω))LE

is initial. We will have more to say about R((ω))LE in §11.
The similarity between transseries over the reals and surreal numbers carries over to 

the fact that the topology generated by Conway’s notion of absolute convergence (see 

§2.2) is mutatis mutandis the same as the following “transseries topology” in the space 

of transseries.

Definition 20. The transseries topology on T (see [22, p. 131], [37]) is defined by the 

following convergence notion. Let 
∑

k>−M c
[m]
k μk be a sequence of transseries, where 

9 Motivated by a problem of Tarski on the model theory of (R, ex), Dahn and Göring [24] independently 
introduced T as an exponential ordered field.
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the superscript [m] designates the mth element of the sequence and c
[m]
k designates the 

sequences of coefficients of the mth element. Then,

lim
m→∞

∑

k>−M

c
[m]
k μk =

∑

k>−M

ckμk if and only if ∀k ∃n such that ∀m > n, c
[m]
k = ck,

(18)
i.e., if and only if all the coefficients eventually become those of the limit transseries 
(rather than merely converge to them).

5.3. Differentiation of transseries

T is closed under differentiation, where differentiation of transseries is defined by 

induction on transseries height as termwise differentiation [30,51,22,32]. It is shown in 

[22] that the termwise differentiation of a transseries is convergent in the transseries 
topology.

5.4. Integration of transseries

T is also closed under integration. More specifically, we have:

Proposition 21 (van den Dries, Macintyre and Marker [30]). There is an antidifferenti-
ation operator on T , henceforth AT , that is unique up to an additive real constant.

An independent, alternative proof (in the same spirit) of the existence portion of 
Proposition 21 was later given in [22, p. 143, Proposition 4.221].10 In the latter treatment, 
the operator AT is defined as the unique fixed point of a linear inhomogeneous equation 

whose linear part is contractive in a suitable sense (see [22, Definition 4.186, p. 132]). 
While the definition is constructive, the expression of the operator is not explicit, in 

general.

Note 22. Although antidifferentiation in AT is unique up to a real constant, there is a 

natural choice of an antidifferentiation, the one whose values are transseries with zero 

finite part. The interpretation of this choice is that of integration from ∞, the only point 
all one-point compactifications of (1, ∞) have in common. However, any other choice of 
real constant would lead to the same definite integration operator, since the integral is 
a difference of two antiderivatives, and the constants would cancel.

The following result collects together a number of simple consequences of the above 

results, taken from [22, p. 143-144, Propositions 4.224-4.225].

10 The second author wishes to thank Lou van den Dries for helpful remarks on Proposition 21 and the 
relation between its proof and that of the above-mentioned result in [22].
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Proposition 23. The antidifferentiation operator AT on T from Proposition 21 has the 

following properties for all transseries T̃ , T̃1 and T̃2: AT is an antiderivative without 
constant terms, i.e.,

AT T̃ = L + s,

where L is the purely infinite part of AT T̃ (i.e. all terms in L are � 1) and s is the small 
part of AT T̃ (i.e. 1 � s). Here AT T̃ is written as a sum as in Equation (17).

Moreover,

AT (T̃1 + T̃2) = AT T̃1 + AT T̃2,

(AT T̃ )′ = T̃ , AT T̃ ′ = T̃0,

AT (T̃1T̃ ′
2) = (T̃1T̃2)0 − AT (T̃ ′

1T̃2), (19)

if T̃1 � T̃2, then AT T̃1 � AT T̃2,

if T̃ > 0 and T̃ � 1, then AT T̃ > 0,

where T̃0 is the constant-free part of T̃ , that is,

if T̃ =
∑

k≥k0

ckμk, then T̃0 =
∑

k≥k0;k�=0

ckμk

and where (T̃1T̃2)0 is the transseries T̃1T̃2 with the constant term chosen to be zero.

“Hands-on” constructions of antiderivatives of special transseries that will concern us 
will be given in Subsection 5.5.1.

5.5. Some subspaces of transseries

In this section we introduce and analyze three spaces of transseries: T−, T	 and T+. 
Transseries in T− occur as solutions of nonlinear ODEs, difference equations and a 

variety of other nonlinear problems. Transseries in T+ arise in linear problems and T	

is a space that is generated by repeated antidifferentiation. The minus subscript stands 
for the fact that all the arguments of the exponentials in the members of the space 

are nonpositive; the subscript “�” indicates the absence of exponentials, but possible 

presence of logarithms; and the plus subscript indicates that all the arguments of the 

exponentials in the members are positive.
The space T− is actually a differential algebra. Nonlinear problems rely on the alge-

braic structure, which we analyze. For the other two spaces we are only interested in 

their linear properties. The space T	 ⊕ T− is closed under antidifferentiation.

Definition 24 (The space T− of log-free, height one transseries). Let n ∈ N, β, λ be 

vectors in Rn, with λi > 0 for i = 1, ..., n, and define
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T̃− =
∑

k≥0,l≥0

ck,lx
β·ke−k·λxx−l =

∑

k≥0

xβ·ke−k·λxỹk(x), (20)

where the ỹk are formal power series which are o(1/x) for large x. In applications in 

which ỹ0 starts with a constant, this constant can be subtracted out. To arrange that 
ỹk = o(1/x) for all k �= 0 we can simply change βi to βi + 1 (with the effect of dividing 

ỹk by x|k|). We denote the space of such T̃− by T−.11 The parameters n, λ, β depend 

on the transseries; when combining two transseries one first needs to embed all of these 

in a larger parameter space.

The condition in the above definition that the ỹk are o(1/x) for large x is a useful 
convention because it ensures that the only common element of T	 and T− is zero, 
and thereby leads to the uniqueness of decompositions expressed in Proposition 31 and 

elsewhere. To achieve the same end, o(x−m) or, equivalently, O(x−(m+1)) could have 

been used for other values of m ≥ 1. Our convention explains the choice we adopt in the 

sequel of writing expressions of the form ekx with k > 0 as (e−x)−k, as well as the fact 
that at times we have negative indices in sums (see, for example, Definition 29).

The condition λi > 0 ensures that there is no infinite ascending chain of terms with 

respect to the asymptotic order relation. The form expressed by Equation (20) is the 

most general type of log-free transseries occurring in usual applications.

Note 25. With Rn replaced by Cn, Equation (20) represents the most general transseries 
solution of generic, normalized, nonlinear systems of meromorphic ODEs. For such sys-
tems, ck,l are vectors, a generalization that can be easily dealt with. On the other hand, 
allowing for complex coefficients would pose various technical problems in our setting 

which we prefer to avoid. The term “normalized” refers to the fact that the exponentials 
are of the form e−ax, that is, the exponents are linear in x. Had we started with e−axb

, 
b �= 1, we would normalize the transseries by changing the variable to t = xb (also see 

Note 49); it can be shown that t thus defined coincides with the Écalle critical time 

introduced in Definition 15.

Proposition 26. The linear combination and multiplication of two transseries T̃ (1) and 

T̃ (2) are defined as follows:

a(1)T̃ (1) + a(2)T̃ (2) =
∑

k≥0

xβ·ke−k·λx(a(1)ỹ
(1)
k (x) + a(2)ỹ

(2)
k (x))

where a(1) and a(2) are real numbers.

T̃ (1)T̃ (2) =
∑

k≥0

xβ·ke−k·λx
k∑

j=0

ỹ
(1)
j (x)ỹ(2)

k−j(x). (21)

11 Equation (20) depicts a simple case of a level one transseries, also referred to as a mixed series.
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With respect to these operations, T− is a commutative algebra.

Proof. Straightforward verification. �

Repeated antidifferentiation of elements in T− results in polynomials combined with 

logs which generate the space T	 below, which needs to be adjoined to our construction.

Definition 27 (The Space T	). Let T	 be the space of transseries of the form

T̃ =
n∑

k=0

ckA
k
T (1/x) + R, (22)

where n ∈ N ∪ {0}, ck ∈ R (k = 0, ..., n), A
k
T

(1/x) is the kth antiderivative without 
constant term of 1/x, and R is a polynomial of 1/x without constant term in 1/x.

Proposition 28. T	 is a space of functions that coincide with their transseries, and is 
closed under AT (see Definition 27). Moreover, each element of T	 can be written uniquely 

in the form

T̃	 = P (x) log +Q(x) + R(x)

where P, Q and R are polynomials and R has no constant term.

Proof. Straightforward: all these are elementary functions. �

Definition 29 (The Space T+). For j ∈ {−M, ..., −1}, let the λj be a descending sequence 

of positive reals and let the βj and the cj,l be arbitrary sequences of reals. Subject to 

these conditions, further let

T̃+ =
∑

−M≤j≤−1; l≥1

cj,lx
βj eλjxx−l =

−1∑

j=−M

xβj eλjxỹj(x), (23)

where the ỹj are formal power series in powers of 1/x satisfying ỹj = O(1/x) (as is 
implied by the expanded form of T̃ in the middle term in Equation (23)). We denote the 

space of all transseries of type T̃+ by T+.

Comment. In the rightmost expression in Equation (23), integer powers of x can be 

traded between ỹj and xβj , an ambiguity which is immaterial as the middle term in (23)
shows.

Definition 30 (The space T1 of height one, depth one transseries). Employing the nota-
tions from Definitions 24, 27 and 29, henceforth we denote by T1 the space T+ ⊕T	 ⊕T−.
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Proposition 31. Every T̃ ∈ T1 can be written uniquely in the form T̃ = T̃+ + T̃	 + T̃−

where T̃+ ∈ T+, T̃	 ∈ T	 and T̃− ∈ T−.

Proof. This follows from Definition 30, the descendingly well ordering of the component 
terms of a transseries, and the definitions of the three subspaces, the latter of which 

collectively imply T̃+ ∩ T̃	 = T̃	 ∩ T̃− = T̃+ ∩ T̃− = {0} and T̃+ � T̃	 � T̃− whenever 
these component transseries are nonzero. �

Differentiation. It is easy to verify that, if ỹ is a power series, then

(
xβe−λxỹ

)′
= xβe−λx

[
(βx−1 − λ)ỹ + ỹ′

]
(24)

where ỹ′ is the termwise differentiation of ỹ.

Note 32. The right side of Equation (24) is negative since ỹ is a series with positive 

coefficients and, as is the case with any asymptotic power series, ỹ′ � ỹ.

Definition 33. Differentiation for the T	 component is termwise differentiation of the 

constituent monomials; see also Proposition 28. For the other two components, it is 
defined as termwise differentiation, namely,

( −1∑

j=−M

xβj eλjxỹj(x) +
∑

k≥0

xβ·ke−k·λxỹk(x)
)′

=
−1∑

j=−M

(
xβj eλjxỹj(x)

)′
+
∑

k≥0

(
xβ·ke−k·λxỹk(x)

)′

=
−1∑

j=−M

xβj eλjx
[
(βjx−1 + λj)ỹj + ỹj

′
]

+
∑

k≥0

xβ·ke−k·λx
[
(β · kx−1 − k · λ)ỹ + ỹ′

k(x)
]

. (25)

Differentiation of an element of T1 is defined as the sum of the derivatives of its 
+, � and − components.

The infinite sums in Equation (25) converge in the transserries topology; for a proof 
see [22].

5.5.1. The definition of the operator AT on T−

We first define AT on the individual components of the transseries, namely on tk =
xβ·ke−k·λxỹk(x) and on t = xβj eλjxỹj(x), j ∈ {−M, ..., −1}. To this end, we solve, in 

transseries, the ODE ṽ′ = t. The terms tk and t are treated very similarly, and we analyze 
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only tk. If k = 0 and ỹ0 =
∑

l≥2 clx
−l, then ṽ = − 

∑
l≥2(l − 1)−1clx

−l+1. If k �= 0 then 

the substitution ṽk(x) = xβ·ke−k·λxe−k·λxw(x) in the ODE

ṽ′
k = tk (26)

brings it to the form

w′ − k · (λ − βx−1)w = y, (27)

which has the power series solution w(x) =
∑

j≥1 wjx−j , where the coefficients wj are 

uniquely determined by the recurrence relation

k · λcj+1 − (k · β − j)cj = −ỹk,j ; c1 =
ỹk,1

k · λ
. (28)

Next, we define

AT

(
xβ·ke−k·λxỹk(x)

)
= xβ·ke−k·λxw(x), (29)

where w(x) is characterized as above.

5.5.2. The definition of the operator AT on T+

To define AT

(
xβj eλj ỹj(x)

)
we proceed as in §5.5.1: we write a differential equation 

xβj eλj w̃j(x) = xβj eλj ỹj(x), and obtain

(
βj

x
+ λj

)
w̃j(x) +

d

dx
w̃j(x) − ỹj(x) = 0.

Writing ỹj =
∑∞

j=1 djx−j , the coefficients {cm}m∈N of the power series w̃j satisfy the 

recurrence relation cm = λ−1
j [dm + (m − 1 − βj)cm−1] ; m ≥ 1; c0 = 0. This shows 

existence and uniqueness of a solution with zero constant term.
Using Proposition 28 and the results in §5.5.1 and §5.5.2 we now extend antidifferen-

tiation to T1.

Definition 34 (Definition AT on T1). AT is defined by linearity on T1 = T+ ⊕ T	 ⊕ T−, 
by writing

AT T̃ :=
−1∑

j=−M

AT

(
xβj eλj ỹj(x)

)
+ AT T̃	 +

∑

k≥0

AT

(
xβ·ke−k·λxỹk(x)

)
, (30)

The infinite sum defined above in Equation (30) converges in the transserries topology; 
a general proof is provided in [22]. The derivative and the antiderivative are inverses of 
each other.
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Proposition 35. Replacing the functions with elements of T1 everywhere in Definition 13, 
the operator AT restricted to T1 satisfies the properties i–iv and vi listed there.

Proof. The proof is a straightforward verification. �

5.6. Watson’s lemma

The following classical result is essential in determining the asymptotic behavior of 
Laplace transforms.

Lemma 36 (Watson’s Lemma (see, e.g., [22], p. 31)). Assume that F is locally integrable 

and exponentially bounded on R+, a, b > 0 and F (p) ∼
∑∞

k=0 fkpka+b for small p > 0. 
Then

∞∫

0

e−xpF (p)dp ∼
∑

k≥0

fkΓ(ka + b + 1)
xka+b+1 as x → ∞. (31)

5.7. Borel summable subspaces of transseries

Definition 37 (The Borel summable subspace TB of T1). We say that a transseries is 
Borel-summable if all power series ỹk and ỹ′

j(x) in Equation (20) are Borel summable 

and there are positive constants c1, c2, c3 (which may depend on T̃ ) such that for all k
and p ∈ R

+ we have

|(Bỹk)(p)| ≤ c1c
|k|
2 ec3p and |(Bỹj)(p)| ≤ c1ec3p. (32)

In view of the summability results we rely on in the sequel, we impose the nonresonance
condition

(k − k
′)·λ+λi −λj = 0 if and only if k − k

′ = 0 and i = j for i, j ∈ {−M, ..., −1}; (33)

that is, the condition that linear combinations of the exponents with integer coefficients 
permitted by our assumptions can only vanish trivially.

Henceforth, by TB we mean the subspace of T1 whose members are Borel summable. 
We write T+,B, T−,B for the Borel summable subspaces of T+, T−. By Proposition 28
(a), we may identify T	,B with T	 and write LBT̃	 = T̃	.

For clarity of notation we do not follow the multiindex convention, but, instead, by 

|k| we mean 
√

k2
1 + · · · + k2

n.

Note 38.
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(a) The assumption that all power series ỹk in Equation (20) are Borel summable does
not hold, generically, for nonlinear systems of ODEs. Instead, these series are resur-
gent, a case we study in the next section.

(b) Using (33) we have the linear ordering k1 > k2 if and only if k1λ > k2λ. By the 

discussion at the beginning of §5.2, and assuming the formal power series below are 

nonzero, we have: if λ1 > λ2, then xβ1eλ1 ỹ1(x) � xβ2eλ2 ỹ2(x), and if k1 > k2, then 

xβ·k1e−k1·λxỹk1
(x) � xβ·k2e−k2·λxỹk2

(x).

Proposition 39.

(a) There exist positive constants c1, c2, c3 such that for all x > r > c3, all j < 0, and 

all k we have

|(LBỹk)(x)| ≤ c1c
|k|
2 (x − c3)−1 and |(LBỹj)(x)| ≤ c1(x − c3)−1 (34)

Moreover, if c �= 0 and ỹ = cx−m(1 +o(1)), then LB[eλxxβ ỹ] = cx−meλxxβ(1 +o(1)), 
for some c ∈ R

+.
(b) Let λ1, ..., λn ∈ R

+, β1, ..., βn ∈ R, λ = min{λ1, ..., λn} and β = max{β1, ..., βn}. 
Also let x0 be such that for all x > x0 we have c3e−λxxβ < 1. Then, for all x >

max{c3, x0} we have

∑

k>M

xβ·ke−k·λx |LBỹk| ≤ c1(c2xβe−λx)NM 1
(1 − c2xβe−λx)N

(x − c3)−1, (35)

where N ∈ N, M ∈ Z. In particular, the infinite sum converges uniformly and 

absolutely (in the analytic sense) for x > x0 if x0 satisfies c2xβ
0 e−λx0 < 1.

(c) If, in addition, M ′ ≤ M and β = min{β0, ..., βM ′},

−1∑

j=−M ′

xβj eλjx|LBỹj(x)| ≤ (M ′ + 1)c1e−λM′ xβ(x − c3)−1. (36)

(d) T−,B is an algebra, i.e., if T̃ (1) and T̃ (2) are elements of T−,B and a(1), a(2) ∈ R, 
then so are a(1)T̃ (1) + a(2)T̃ (2) and T̃ (1)T̃ (2).

Proof. For the first part of (a) we simply note that, by assumption, |LBỹk| ≤
c1c

|k|
2 L(ec3p) = c1c

|k|
2 (x − c3)−1, while the second part follows from Proposition 16 and 

Lemma 36. For (b), by assumption and using (a), we majorize each term in the infinite 

sum in (35) by c1(c2xβe−λ)k1+...+kN (x − c3)−1 (the terms of a geometric series) and the 

result follows. The proof of (c) is similar and, in fact, simpler: we estimate a finite sum 

in terms of its largest term.
For (d), if the constants in the bounds expressed in (32) for T̃ (i), i = 1, 2 are c

(i)
k , 

where k = 1, 2, 3 and i = 1, 2, and if by ck we denote max{c
(1)
k , c

(2)
k }, then a bound of the 
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type (32) for T̃ (1) + T̃ (2) is (c1(|a(1)| + |a(2)|)c|k|
2 ec3p. By linearity and the polarization 

identity 2ab = (a + b)2 − a2 − b2, for the product it is enough to show that TB is closed 

under squaring. If ỹ satisfies |Bỹ| ≤ ecp for p ∈ R, then (15) implies B|ỹ2| ≤ B|ỹ| ∗B|ỹ| ≤
pecp ≤ e(c+1)p. Then, using this inequality and estimating the number of terms in the 

innermost sum in Equation (21) by the rough bound |k|N and using |k|N ≤ eN |k|, we 

get

∣∣∣∣∣∣
B

k∑

j=0

ỹj(x)ỹk−j(x)

∣∣∣∣∣∣
≤ c2

1e(c3+1)p(c2
2eN )|k|,

from which the result follows. �

Definition 40. Let T̃ ∈ TB and let λ, β and x0 be as in Proposition 39. Then the Borel 
sum of T̃ is defined as

LBT̃ =
−1∑

j=−M

xβj eλjxLBỹj +
∑

k≥0

xβ·ke−k·λjxLBỹk + T̃	, (37)

(see Proposition 28 and Definition 37). We note that, by (35) and the Weierstrass M-test, 
the infinite series in Equation (37) converges uniformly and absolutely (in the analytic 

sense of convergence) on the interval [x0, ∞).

Proposition 41.

(a) If T̃ ∈ TB, then T̃ > 0 if and only if LBT̃ > 0 for sufficiently large x.
(b) The kernel of LB is zero, i.e., {T̃ ∈ TB : LBT̃ = 0} = {0}.

Proof. (a). If ỹj �= 0 for some j < 0, then we choose the most negative j with this 
property, and for ỹj to be nonzero there must exist an m ∈ N and a nonzero c ∈ C such 

that ỹj = cx−m(1 +o(1)). Using Proposition 39 (a), we see that LBT̃ = ceλjxxβj x−m(1 +
o(1)) and the result follows. The proof is very similar if instead ỹj = 0 for all j < 0 and 

P or Q is nonzero, or, if P and Q are also zero and for some k we have ỹk �= 0.
(b) follows immediately from (a). �

Definition 42. Let FB denote the function space {LBT̃ : T̃ ∈ TB}. Mimicking the notation 

in Definition 30 and Proposition 31, we write: FB = F+,B ⊕ F	 ⊕ F−,B, with F+,B, F	

and F−,B understood in the expected manner.

Note that, by Definition 28, Borel summability is the identity on F	, and as such we 

could have written equivalently F	,B in place of F	.
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Corollary 43.

(a) LB is a bijection between TB and FB.
(b) LB (restricted to T−,B) is a linear and multiplicative bijection from T−,B to F−,B.

Proof. (a) is an immediate consequence of Proposition 41 and Definition 42. For (b), 
bijectivity follows from (a) and the definition of LB; and linearity and multiplicativ-
ity follow from the fact that T−,B is closed under addition and multiplication and a 

straightforward calculation using the definition of LB and the fact that LB is linear and 

multiplicative on SB. �

Note that in virtue of Proposition 31 and Corollary 43 the decomposition in Defini-
tion 42 is unique.

5.8. Differentiation and antidifferentiation on TB

Lemma 44 (Differentiation). If ỹ is a Borel summable formal power series, then

(1)
(
e−λxxβLBỹ

)′
= e−λxxβLB ˙̃y, where

˙̃y = (βx−1 − λ)ỹ + ỹ′ and B ˙̃y = β

⎛
⎝

p∫

0

Bỹ

⎞
⎠− λBỹ − pBỹ. (38)

(2) Let ỹk be as in Definition 37. Then, for some constants c′
1, c′

2, c′
3 depending only on 

c1, c2, c3, and all p ∈ R
+ and k we have

∣∣(B ˙̃yk)(p)
∣∣ ≤ c′

1c′
2

|k|
ec′

3p. (39)

(3) The sum

∑

k≥0

xβ·ke−k·λxLB ˙̃yk (40)

converges uniformly and absolutely in the analytic sense, for large x, and with T̃ as 
in Definition 40 we have

(LBT̃ )′ =
−1∑

j=−M

xβj eλjxLB ˙̃yj +
∑

k≥0

xβ·ke−k·λxLB ˙̃yk + T̃ ′
	 = LB(T̃ )′. (41)

Proof. The fact that ˙̃y is given by the first equation in (38) follows from the isomorphisms 
induced by Borel summation (see Proposition 16), viz:
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(
e−λxxβLBỹ

)′
= e−λxxβ

[
βx−1LBỹ − λLBỹ + LB(ỹ′)

]

= e−xxβL

⎡
⎣β

⎛
⎝

p∫

0

Bỹ

⎞
⎠λBỹ − pBỹ

⎤
⎦ . (42)

For part (2), we note that 
∫ p

0 |Byk| ≤ ec3p
∫ p

0 1 = pec3p ≤ e(c3+1)p. The absolute value of 
the term −pBỹ is also bounded by p|Byk| ≤ e(c3+1)p. Next, |β||k| + |k||λ| ≤ exp[|k|(|β| +
|λ|)], and so the result follows. Using (2), uniform and absolute convergence, in the 

analytic sense, are shown as in the first sentence of the proof of Proposition 39. The 

rest follows from an elementary theorem about sequences of functions [45, p. 321]. (The 

estimates above can be improved substantially, but we do not need this here.) �

The Corollary below is an immediate consequence of Lemma 44 and Corollary 43.

Corollary 45 (Preservation of differentiation). The space TB is closed under differentia-
tion and, for T̃ ∈ TB, we have (LBT̃ )′ = LB(T̃ )′; LB is a differential space isomorphism. 
Restricted to T−,B, LB is a differential algebra isomorphism.

In the following definition we extend the operator AB of Definition 18 and Proposi-
tion 19 to include F	 and F−,B.

Definition 46. For T̃ ∈ T	 ⊕ T−,B, ATB
(LBT̃ ) := LB(AT T̃ ).

As the next proposition shows, ATB
is well-defined on the image of T	 ⊕ T−,B under 

LB, that is, on F	 ⊕ F−,B, and takes values in F	 ⊕ F−,B.

Proposition 47 (Antidifferentiation).

(a) The operator ATB
: F	 ⊕ F−,B → F	 ⊕ F−,B is well defined.

(b) ATB
satisfies Properties i–iv and vi of Definition 13.

(c) The space F	 ⊕ F−,B is closed under differentiation and antidifferentiation.

Proof. Clearly, we only need to check the statement on F−,B. For k = 0, (a) and (b) 
follow from Definition 18 and Proposition 19. Next, we show (a) for a term of the form 

xβ·ke−k·λjxLBỹk with k �= 0. Using the results in §5.5.1, we need to prove that the 

solution of the ODE (28) is Borel summable with bounds as in Definition 37. These 

bounds are needed to prove absolute and uniform convergence of the resulting infinite 

series, as in Proposition 39.
Taking the Borel transform of (27) and letting W = Bw and Y = Byk, we get

(k · λ + p)W (p) = k · β

p∫

0

W (s)ds + Y (p). (43)
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After differentiation in p, we get a first order linear ODE that can be easily solved 

by quadratures. However, the estimates we need are more difficult to obtain from the 

explicit solution, and we use a different approach here. We rewrite Equation (43) in the 

form

W (p) =
k · β

k · λ + p

p∫

0

W (s)ds +
Y (p)

k · λ + p
. (44)

Choose now

c′
3 > sup

{ |k · β|
k · λ + 1

, c3; k ≥ 0
}

. (45)

Let D be the domain of analyticity of Y . It is easy to check that Equation (44) is 
contractive in the Banach space

{f analytic in D : ‖f‖ < ∞, where ‖f‖ = sup
p∈D

e−c′

3|p|
∣∣f(p)
∣∣}.

It follows that the LBwk exist and satisfy the same estimates as the LBỹk with the 

triple (c1, c2, c3) replaced by (c1, c2, c′
3) with c′

3 as in (45), and (a) follows. Part (b) 
is a consequence of Corollary 45 and of the bounds in terms of (c1, c2, c′

3) (obtained 

in (a)) which imply uniform and absolute convergence of the infinite series. And Part 
(c) is immediate, since F	 is closed under differentiation and antidifferentiation and, by 

the analysis above, so is F	 ⊕ F−,B where differentiation and antidifferentiation require 

switching a term of the form a/xm between these two spaces.
We now turn to (b) for general k. For Property i, first note that we have already 

shown that, for T̃ ∈ T	 ⊕ T−,B the series through which we defined ATB
T̃ is uniformly 

and absolutely convergent (in the analytic sense). On the other hand, the series whose 

terms are the derivatives of the terms of ATB
T̃ converges uniformly and absolutely to 

LBT̃ , simply because these terms are, by construction, the terms of LBT̃ . The rest follows 
from the elementary theorem about sequences of functions [45, p. 321] referred to before. 
Property ii (i.e. linearity) is immediate. For Property iii (positivity), to understand the 

monotonicity of ATB
T̃ , we appeal to Proposition 41 and Lemma 44 to conclude that we 

only have to examine the dominant term of the transseries of the derivative of ATB
T̃ . 

Since by assumption T̃ > 0, by the definition of positivity in §5.2, this dominant term is 
positive and the property follows. Property iv follows from Equation (37) by setting all 
ỹk = 0 if k �=0, choosing β0 = n + 1 and ỹ0 = 1/x, and from the definitions of ATB

and 

of AT . Finally, for Property vi, let F = LBT̃ and f = LBt̃. Since f = (LBT̃ )′, the rest 
follows from Definition 46 and Proposition 47. �

Combining the content of the preceding results in this section, we get:
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Theorem 48. LB is an isomorphism of commutative differential algebras between T−,B

and F−,B. The space F	 ⊕ F−,B is closed under differentiation and antidifferentiation.

Note 49. As we mentioned already, to cover generic solutions of nonlinear ODEs we 

have to allow for more general than Borel summable series, namely resurgent ones. 
Furthermore, T+,B is not closed under antidifferentiation; resurgence tools are required 

to deal with this space.

6. Resurgent functions, resurgent transseries and Écalle-Borel summability: 
background

6.1. Background: Borel plane singularities along the Laplace transform path and the 

need to extend Borel summation

So far, antidifferentiation of a transseries T̃ ∈ TB has been defined under the assump-
tion T̃+,B = 0 (cf. Definition 46). This assumption is needed to ensure Borel summability, 
as it is manifest in the integral in Equation (56) below, involved in the Borel transform 

of the terms in T̃+,B. This condition excludes some very common functions encountered 

in applications such as Eia(x) =
∫ x

a
es

s ds (where the integral is understood as a Cauchy 

principal value if a ∈ [−∞, 0)). Indeed, the transseries of Eia(x) is exỹ(x) +Ca where Ca

is a constant depending on the endpoint of integration; clearly, in this case, λ = 1 (see 

Definition 24), and classical Borel summation does not apply.
Furthermore, in transseries arising in applications, the points k · λ are singularities of 

the Borel transforms of yk. Hence, if λj ∈ R
+, then a generalization of Borel summability 

is needed. The condition λj /∈ R
+ may appear to be generic; however, equations arising in 

applications typically have real coefficients in which case the numbers λi come in complex 

conjugate pairs and, more often than not, are purely real. For instance, for the tronquée 

solutions of all Painlevé equations PI − PV in normalized (Boutroux) coordinates, the 

values of λ are λ1,2 = ±1.
Écalle introduced significant improvements over Borel summation to address such 

limitations. Among them are the concepts of critical times (see Definition 15) and accel-
eration/deceleration to deal with mixed powers of the factorial divergence. Last but not 
least, and the only additional ingredient we will need, is that of averaging.

In linear problems, to avoid the singularities of the integrand on R+ (when present), 
one can take the half-half average of the Laplace transforms above and below R+. On the 

other hand, in nonlinear equations such as nonlinear ODEs, the average of two solutions 
is not a solution. Écalle found constructive, universal averages which successfully replace 

the naive half-half averages mentioned above; however, it is altogether nontrivial to 

construct them and show that they work. Of these, we use the so-called organic average,
mon [36,34], which is well suited for our general construction. Invoking Borel transforms 
followed by analytic continuation along paths avoiding singularities, followed by taking 
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the organic average of these continuations, and finally applying the Laplace transforms, 
yields a differential field algebra [34,59].

In the remainder of this section we provide an overview of the concepts of averaging 

and resurgence relevant to the discussion of resurgent functions, resurgent transseries 
and Écalle-Borel summability below.

6.2. Averages of Borel transforms (and more general functions in the Borel plane)

Assume that one of the singular directions of the Borel transform Y = Bỹ of a 

normalized series ỹ is R+ with a discrete set of singularity locations ωn, n ∈ N.
Since in our discussion the only integration axis that comes into play is R+, henceforth 

we assume that one of the singular directions of the Borel transform of ỹ is R+, that 
ω0 := 0, and that for each n ∈ N, ωn is the nth singularity on R+, where ωn increases 
with increasing n.

Now consider the class of all curves going forward (towards ∞) that circumvent the 

just-said singularities. One associates with each such curve a unique series ε1, ε2, ..., εn, ...

such that for each n ∈ N, εn ∈ {+, −} where εn = + (resp. −) indicates that the curve is 
in the lower (resp. upper) half plane between ωn−1 and ωn. For instance, + + + − − − ...

describes a curve starting out in the lower half plane and crossing into and remaining in 

the upper half plane after the third singularity, ω3.12 For a point ζ in the open interval 
(ωn, ωn+1) along such a curve, the position vector (ε1, ..., εn) is called the address of the 

point ζ on the curve.
A uniformizing average or, more simply, an average m : Y �→ mY of a function Y

with singularities at ωi as described above is defined using a system of weights m which, 
in turn, is defined via the ωns and the εns by the following:

mY (ζ) =
∑

ε1,...,εn∈{+,−}n

m
( ε1,...,εn

ω1,...,ωn
)Y ( ε1,...,εn

ω1,...,ωn
)(ζ) if ωn < ζ < ωn+1, (46)

where Y ( ε1,...,εn
ω1,...,ωn

)(ζ) denotes the determination of Y (ζ) on the open interval (ωn, ωn+1)
along a curve circumventing the singularities as specified by the position vector (ε1, ..., εn)

described above, and m
( ε1,...,εn

ω1,...,ωn
) is its corresponding weight, the definition of which 

depends on the choice of average in question.
There are many types of averages of Borel transforms to chose from. However, for an 

average13
m to be well-behaved with respect to the goals of Écalle-Borel resummation, 

following Écalle and Menous ([36], [34, page 256]) there are four conditions it should 

satisfy:

12 Here we follow Écalle’s convention from [34], rather than the convention employed by the first author 
in [20].
13 Here we refer to continuous averages as opposed to the subclass of discrete ones that assume a fixed 
(for instance periodic) lattice of singularities. Fixed lattice settings simplify the analysis when this analysis 
is restricted to one particular equation.
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A1. m must respect convolution, i.e. m(Y ∗ G) = (mY )(mG);
A2. m must respect real-valuedness;
A3. m must respect lateral growth;
A4. m should be scale invariant.

A1 ensures that m is an algebra homomorphism; A2 ensures that mY is real when-
ever Y is real; A3 ensures that exponential bounds, which are needed for the Laplace 

transform to apply, are maintained by averaging; and A4, which ensures invariance under 
homothetic rescalings ζ �→ const.ζ of R+, while natural, is not an essential condition. 
On the other hand, we note that while the functions satisfying A4 form an algebra, and 

functions of “natural origin” possess it, such a condition relies on resurgence in some 

broad sense to hold,14 and we refer the reader to [34] for an in-depth discussion of these 

issues.

6.3. Resurgent series and resurgent functions: definitions

Definition 50 (Resurgent series and resurgent functions).

(1) In this paper, a normalized series ỹ will be said to be resurgent if its Borel transform 

Y = Bỹ is:
(a) analytic or ramified analytic at p = 0;
(b) endlessly continuable (in the sense that the singularities encountered by analytic 

continuation along any compact curve segment form a discrete set);
(c) exponentially bounded in every nonsingular direction, while in singular directions 

Y is in the domain of a well-behaved average.
(2) Sharing the appellation, Y = Bỹ is called resurgent in the Borel plane or simply 

resurgent, and y = LY is called resurgent in the physical plane or simply resurgent, 
if ỹ is resurgent.

(3) A transseries in T+ ⊕ T	 ⊕ T− is resurgent if: (a) all component series ỹk(x) and 

ỹj(x) (see (20) and (23)) are resurgent; (b) their Borel transforms are exponentially 

bounded in every nonsingular direction in a k, j-independent way; and, (c) in singular 
directions, these Borel transforms are in the domain of a well-behaved average.

(4) We denote by TR the space of resurgent transseries in T+ ⊕ T	 ⊕ T−. Accordingly, 
TR = T+,R ⊕ T	 ⊕ T−,R, where T+,R denotes the space of resurgent transseries 
in T+ and T−,R denotes the space of resurgent transseries in T−. (In virtue of 
Proposition 28, the members of T	 are necessarily resurgent, and so it would be 

superfluous to write T	,R in the decomposition of TR.)

14 Indeed, one can use the uniformization theorem to see that bounds on the “first” Riemann sheet do not 
constrain growth on other sheets.
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6.4. The well-behaved average mon

Condition (1)(c) of Definition 50 appeals to the notion of a well-behaved average. 
There is in fact an entire continuum of such averages [34]. As we mentioned above, for 
our treatment we adopt the average Écalle has dubbed the “organic average”, i.e. the 

average mon, given by

mon
( ε1,...,εn

ω1,...,ωn
) := 2−n

n∏

i=2

(
|εi−1 + εi| − εi−1εiωi

ω1 + · · · + ωi

)
,

where, on the right side of the equation, it is understood that |εi−1 + εi| = 2 (resp. 0) if 
εi−1 = εi (resp. εi−1 �= εi)15 and the ωi’s are the members of R+ defined as above [34, 
page 272].

Alternatively, mon can be defined by recursion ([36, pages 86-87], [34, page 272]), 

where mon
(ε1

ω1
) := 1

2 , and for each n > 1,

mon
( ε1,...,εn

ω1,...,ωn
) := mon

( ε1,...,εn−1
ω1,...,ωn−1

)
Pn,

with

Pn := 1 − 1
2

ωn

ω1 + · · · + ωn
if εn−1 = εn

and

Pn :=
1
2

ωn

ω1 + · · · + ωn
if εn−1 �= εn.

In addition to being arguably the simplest of the well-behaved averages, mon is 
distinguished by being the lower limit of such averages [34, page 272] (also see [59]). It 
is important to note, however, that when restricted to the class of functions that we are 

concerned with in this paper, because of nonresonance16 all the well-behaved averages 
coincide (see Section 8.4).

7. Resurgent functions, resurgent transseries and Écalle-Borel summability

In this section we establish results that we need in §8 to determine the correspondence 

between the class FR of resurgent functions that we referred to in the introduction and 

their corresponding classes of transseries and surreal functions.

15 In other words, each + (resp. −) from the left side of the equation may be regarded as being replaced 
on the right side of the equation by a +1 (resp. −1) or alternatively by a −1 (resp. +1).
16 Nonresonance (see Equation (33)) is generic: it holds except for a zero measure set in the space of all 
parameters. As a result of nonresonance there is one active alien derivative per singular direction [34]. We 
also note that resonance can lead to multiple Écalle critical times and for resummation Écalle acceleration
is needed. For further details see ([20], §1.1.2).
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7.1. The resurgent subspace TR

The definitions and propositions in the remainder of this subsection, along with some 

of the proofs, largely mimic their counterparts in the section on ordinary Borel summa-
bility.

The operator mon ◦ B is a proper extension of B. Henceforth, for brevity, we adopt 
the following conventions.

Definition 51.

B̂ := mon ◦ B and L̂B := L◦ mon ◦ B. (47)

L̂B is the Écalle-Borel summation, a wide generalization of LB.17

Recalling that well-behaved averages preserve lateral growth, sufficient growth condi-
tions for a transseries to be Écalle-Borel summable are similar to those for usual Borel 
summability (see Definition 37): in particular, for any small ε > 0 there are positive 

constants c1, c2, c3 such that for all k

∣∣∣(B̂ỹk)(p)
∣∣∣ ≤ c1c

|k|
2 ec3p and

∣∣∣(B̂ỹk)(p)
∣∣∣ ≤ c1c

|k|
2 ec3|p| if | arg p| ∈ (ε, 2ε). (48)

Definition 52. The Écalle-Borel sum of T̃ ∈ TR is defined as

L̂BT̃ =
∑

k≥0

xβ·k+1e−k·λxL̂Bỹk + T̃	 +
−1∑

j=−M

xβj eλjxL̂Bỹj(x). (49)

Using the fact that mon preserves lateral growth it is easy to extend the results 
obtained in §5.7 to resurgent transseries. For example, note that in virtue of Definition 52
we have

L̂B(xβ+neλxx−n) = xneλxxβx−n = xβeλx, (50)

which implies L̂B(xβeλx) = xβeλx.

Proposition 53. Acting on TB, L̂B = LB.

Proof. For any average, the sum of the weights is 1. Hence, if F is real-analytic, then 

mon F = F . �

17 Strictly speaking, there is a different Écalle-Borel summation for each distinct well-behaved average. 
The summation we employ is based on mon. However, as the uniqueness result referred to above and in §8.4
implies, all Écalle-Borel summations coincide for the restricted class of functions we are concerned with in 
this paper.
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In the statement of the following proposition, the positive constants c1, c2 and c3 are 

the bounds in (48).

Proposition 54. Let T̃ ∈ TR. Also, let λ = min{λ1, ..., λn} and β = max{β1, ..., βn}. 
Further, let x0 be such that for all x > x0 we have c3e−λxxβ < 1. Then:

(a) For all x > max{c3, x0} we have

∑

k>M

xβ·ke−k·λx
∣∣∣L̂Bỹk

∣∣∣ ≤ c1(c2xβe−λx)NM 1
(1 − c2xβe−λx)N

(x − c3)−1, (51)

where N is the dimension of the vector k.
(b) The infinite sum in Equation (49) converges uniformly and absolutely on the interval 

[r, ∞) for any r ∈ R
+ satisfying the condition νr − |β| log r > | log c2|, as well as in 

the complex strip {x : �x ∈ [r, ∞)}.
(c) If M ′ ≤ M and β = min{β0, ..., βM ′}, then

−1∑

j=−M ′

xβj eλjx|L̂Bỹj(x)| ≤ (M ′ + 1)c1e−λM′ xβ(x − c3)−1. (52)

(d) T−,R is an algebra, i.e., if T̃ (1) and T̃ (2) are elements of T−,R and a(1), a(2) ∈ R, 
then a(1)T̃ (1) + a(2)T̃ (2) and T̃ (1)T̃ (2) are elements of T−,R.

(e) If T̃ ∈ TR, then T̃ > 0 if and only if L̂BT̃ > 0 for large enough x.
(f) The kernel of L̂B is zero, i.e., {T̃ ∈ TR : L̂BT̃ = 0} = {0}.

Proof. The proof closely follows the proofs of Proposition 39, Proposition 41 and Corol-
lary 43. �

Definition 55. Let FR = {y : ỹ ∈ TR}. Further let F+,R⊕F	⊕F−,R be the decomposition 

of FR induced by the decomposition T+,R ⊕ T	 ⊕ T−,R of TR from Definition 50(4).

If in Propositions 41 through 47 we uniformly replace the subscript B with the sub-
script R and uniformly replace the operator LB with the operator L̂B, the resulting 

propositions remain valid, and the changes in their respective proofs are minor. Indeed, 
the lateral growth conditions on Borel plane functions and their convolutions are at the 

crux of the proofs, and they are all respected by well-behaved averages. An important 
such example is the following analog of Lemma 44(3).

Proposition 56 (Differentiation on TR). Let T̃ ∈ TR.

(L̂BT̃ )′ =
−1∑

j=−M

xβj eλjxL̂B ˙̃yj +
∑

k≥0

xβ·ke−k·λxL̂B ˙̃yk + T̃ ′
	 = L̂B(T̃ )′. (53)
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Moreover, 
∑

k≥0

xβ·ke−k·λxL̂B ˙̃yk converges uniformly and absolutely for large x.

Proof. As indicated above, the proof closely follows the proof of Lemma 44(3). �

Theorem 57. (a) L̂B is an isomorphism between the spaces TR and FR that preserves 
differentiation and antidifferentiation.

(b) L̂B restricted to T−,R is an isomorphism between the algebras T−,R and F−,R

that preserves differentiation and antidifferentiation.

Proof. The proof of Part (a) follows the same steps as those Corollary 43 through The-
orem 48 together with the aforementioned fact established by Écalle and Menous [36]
(also see [34]) that mon respects lateral growth and convolution (and is clearly linear).

In the same fashion, the proof of the isomorphism of algebras in (b) mirrors, with 

obvious adaptations, the proof of Proposition 47.
Since the antidifferentiation properties in (b) are important for us, we provide more 

detail. To begin with,

T̃+ =
∑

−M≤j≤−1; l≥1

cj,lx
βj eλjxx−l =

−1∑

j=−M

xβj eλjxỹj(x). (54)

For each of the terms xβj eλjxỹj we follow the same calculations as in the proof of 
Proposition 47 to obtain the integral equation (43). Now the integral operator is not 
contractive because of the pole of the denominator. Instead, since the sum in T̃+ is 
finite, and there are no convergence concerns, rougher estimates suffice. We analyze each 

term in T̃+ separately. Differentiating now Equation (54) and proceeding as in the proof 
of Proposition 47, we get for each term of the sum (setting λ = λj and β = βj),

(λ − p)W ′ + (β − 1)W − Y = 0, (55)

with the solution (after integration by parts) being

W (p) = −
p∫

0

(−λ + p)β−1

(−λ + s)−β−1 Y (s)ds − (−λ + p)−1Y (p) − (−λ)−β(−λ + p)−1Y (0). (56)

Analyticity of W away from the zeros of the denominators follows from dominated 

convergence. Preservation of lateral growth is established as in the case of ordinary 

Borel summability (see Proposition 47 and its proof). The transformations involved 

in obtaining W from Y are multiplication by (λ − p)α, where α± = ±β − 1 and 

f �→
∫ p

0 f(s)ds = f ∗ 1. By A1, convolution preserves growth, while multiplication by 

(λ − p)α preserves growth along any smooth curve. �
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Note 58. It is worth noting that (as follows from Definition 52 and the just-proved 

isomorphism theorem), the transseries of the Écalle-Borel sum of a series is the series 
itself.

Definition 59. For T̃ ∈ TR, let A(L̂BT̃ ) := L̂B(AT T̃ ).

The following Corollary is an immediate consequence of Definition 59 and Theorem 57.

Corollary 60 (Antidifferentiation). A so defined is an antidifferentiation operator (see 

Definition 13) on FR and

(AT̃ )′ = A(T̃ ′) = L̂BT̃ .

8. Correspondence between resurgent functions, transseries in T1 and surreal 
functions: surreal antidifferentiation

In §4 we mentioned that to define integrals on No we would invoke a pair 
of isomorphisms–one between a subclass of resurgent functions and a subspace of 
transseries, and the other between the just-said subspace of transseries and a class 
of functions on No. These are the maps Tr and τ respectively. We now consider them in 

turn.

Proposition 61. For each f ∈ FR (see Definition 55) there exists a c such that f is 
real-analytic on (c, ∞).

Proof. Definition 50 and Theorem 57 imply that, for some positive x0, the series of 
analytic functions on the right side of (37) converges uniformly on compact sets in a 

domain D = {x : |x| > x0, | arg x| < c < π/2}. Hence, L◦ mon◦ Bf̃ is analytic in D. In 

particular it is real-analytic. �

Definition 62. Based on the isomorphism in Theorem 57, we define the operator of 
transseriation Tr to be the inverse of L̂B.

Example E2: The Écalle-Borel summed transseries of xβeλx. In virtue of Definition 52
and the fact that L̂B 1 = 1, we have Tr(xβeλx) = xβeλx. The equality is also an imme-
diate consequence of Equation (50).

Proposition 63. If f ∈ FR, then there is an a ∈ R
+ such that f(x) > 0 on (a, ∞) if and 

only if Trf > 0.

Proof. Since well-behaved averages respect lateral growth, the proof mirrors that of 
Proposition 41. �
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8.1. Differentiation of series that are absolutely convergent in the sense of Conway

In this subsection, we establish a result that will be needed in the sequel about differ-
entiation of series of surreal functions that converge absolutely in the sense of Conway 

for any value of the variable belonging to some open interval.

Theorem 64. Let f1, ..., fm be twice differentiable infinitesimal functions defined on the 

positive infinite surreals. For n ∈ Z, define the function g on each positive infinite surreal 
x by

g(x) =
∑

|k|≥0

ckf(x)k, (57)

where {ck}ki≥n;i≤m is a sequence of reals. Then g is differentiable for each such x and 

its derivative is given as follows by termwise differentiation:

g′(x) =
∑

|k|≥0

ck

(
m∑

i=1

ki
f ′

i(x)
fi(x)

)
f(x)k, (58)

whereby convention we set f ′
i(x)/fi(x) = 0 if fi(x) = 0.

Proof. We begin with the following simple observation.

Observation 65. Suppose f is a function such that f(a + ε) − f(a) = g(a)ε + h(a, ε)ε2

where, for some c > 0 and sufficiently small ε we have |h(a, ε)| ≤ c. Then f is dif-
ferentiable at a and f ′(a) = g(a). Based on the binomial formula, it is easy to check 

that, if f is twice differentiable, ε is infinitesimal and k ∈ N, then f(x + ε)k − f(x)k =
kf(x)k−1f ′(x)ε + k2f(x)k−2F (x, k; ε)ε2 where F is bounded for k ∈ N and infinitesimal 
ε. (Uniform boundedness in k follows from the fact that 0 ≤ mj |ε| ≤ 2 for all m, j ∈ N).

First note that the sum is absolutely convergent in the sense of Conway by Proposi-
tion 6 and the assumption that the fi are infinitesimals. We will prove the result for m =
1; once having done so, the general result follows by induction and the usual decomposi-
tion f1(x +a)f2(x +a) −f1(x)f2(x) = f2(x +a)[f1(x +a) −f1(x)] +f1(x)[f2(x +a) −f2(x)].

For m = 1, using Observation 65 and straightforward calculations, it follows that

g(x + ε) − g(x) = ε
∑

k≥0

ckkf(x)k−1f ′(x) + ε2h(x, ε) (59)

where, using another application of Observation 65, we see that h(x, ε) is an absolutely 

convergent series which is bounded if ε � 1. �

For the second isomorphism, τ , we require the following definition that trades on the 

intimate relationship between the members of T1 and certain surreal functions.
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Definition 66. In accordance with Definition 30 and Proposition 28, each element T̃ of 
T1 is a transseries of the form

T̃ =
∑

−M≤j≤−1; l≥1

cj,lx
βj eλj x−l+

P (x) log(x) + Q(x) + R(x)+
∑

k≥0,l≥0

ck,lx
β·ke−k·λxx−l, (60)

where the first sum is in T+, the second sum, in which P and Q are polynomials and R

is a polynomial without constant term, is in T	, and the last sum belongs to T−.
With each such T̃ we associate the function T̃ f consisting of all ordered pairs 

(ν, T̃ f (ν)), where ν is a positive infinite member of No and T̃ f (ν) is the expression 

that results from first replacing all occurrences of x on the right side of (60) with occur-
rences of ν, and then replacing (in the resulting expression) the absolutely convergent 
sum (with bounds k ≥ 0, l ≥ 0) with the Lim sum to which it absolutely converges. That 
is:

T̃ f (ν) :=
∑

−M≤j≤−1; l≥1

cj,lν
βj eλjνν−l+

P (ν) log(ν) + Q(ν) + R(ν)+

Lim
m→∞

∑

|k|≤m,|l|≤m

ck,lν
β·ke−k·λνν−l. (61)

Let τ := {(T̃ , T̃ f ) : T̃ ∈ T1}, No
τ := {T̃ f : T̃ ∈ T1} (i.e. the range of the map τ) and 

let RNo := {T̃ f : T̃ ∈ TR}. Finally, let No
τ
− := {T̃ f : T̃ ∈ T−}.

Theorem 67. The map τ in Definition 66 is an isomorphism of vector spaces endowed 

with differentiation between T1 and No
τ and, when restricted to T−, an isomorphism 

of differential algebras between T− and No
τ
−.

Proof. This follows from the fact that the transseries topology

T̃ = lim
m→∞

∑

|k|≤m,|l|≤m

ck,lν
β·ke−k·λνν−l

preserves the differential algebra operations (see §5.2 and, for proofs, [21]), as does Lim
(see Proposition 7 and the preceding material in this section). �

To complete the main part of our construction, we need an extension operator E in the 

sense of Definition 11, and, on restricted domains, a multiplicative extension operator in 

the sense of Definition 12. It is this to which we now turn.
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8.2. The extension operator E

In the following we introduce an extension operator E acting on real-valued functions 
f on the reals to functions on the finite and positive infinite surreals. Assuming the 

function f+ defined by f+(x) = f(−x) is in FR, the extension of f to negative infinite 

surreal x is simply defined by (Ef)(x) := (Ef+)(−x), the subscript + indicting that 
f+ is defined for x > 0. In view of this elementary correspondence and to simplify the 

exposition we will solely focus on finite and positive infinite surreals.

Definition 68. Let f ∈ FR, and let c ∈ R be such that f is real-analytic on (c, ∞) as is 
assured by Proposition 61. We extend f to (c, On) as follows, whereby a finite surreal 
we mean the leading exponent in its normal form is ≤ 0.

(1) For positive infinite x ∈ No we define (Ef)(x) = (τ ◦ Tr f)(x).
(2) For finite x ∈ No, where x0 is the real part of x and ζ is the infinitesimal part of x

(see Definition 3), we define (Ef)(x) by

f(x0 + ζ) = f(x0) +
∑

k≥1

(k!)−1f (k)(x0)ζk, (62)

where the infinite sum is absolutely convergent in the sense of Conway.

Before proceeding further, we offer a couple of observations on the second part of the 

above definition. To begin with, as above let f ∈ FR and let c ∈ R be such that f is 
real-analytic on (c, ∞) as in Proposition 61. Also let ε be the local radius of convergence 

of the Taylor series of f at x0 ∈ R. For real |ζ| < ε we have

f(x0 + ζ) = f(x0) +
∑

k≥1

(k!)−1f (k)(x0)ζk. (63)

Substituting x = 1/ζ for the two occurrences of ζ in Equation (63), the right side of 
the resulting equation is the convergent (a fortiori Borel and Écalle-Borel summable) 
transseries of the left side of the resulting equation about x = ∞. In particular f(x0+x−1)
is resurgent, and Definition 68 (2) is a special case of (1). In addition, alternatively and 

more formally, we can reduce case (2) of the above definition to case (1) by resorting to 

M , the Möbius transformation x �→ x0 + x−1 (see also Definition 80) by defining E by 

(Ef)(x0 + x−1) = [M−1 ◦ τ ◦ Tr ◦ Mf ](x−1).

Theorem 69. E : FR → RNo is an isomorphism of linear spaces endowed with differen-
tiation and antidifferentiation. Its restriction to F−,R is an isomorphism of differential 
algebras.

Proof. In virtue of the preceding remark, the formula for E at an arbitrary point is 
obtained from the one at ∞, hence it is enough to prove the result in the latter case. But 
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at ∞ the result follows immediately from Theorems 67 and 57, since E is a composition 

of isomorphisms. �

Some special cases of extensions are given below.

Corollary 70. In the following, real functions are assumed to be defined on some interval 
(c, ∞) ⊂ R

+.

(1) If a, b ∈ R and f : R
+ → R is given by f(x) = xaebx, then Ef = xaebx for all 

positive x ∈ No.
(2) If P is a polynomial and f : R

+ → R is given by f = P (x) log x, then Ef = P (x) log x

for all positive x ∈ No.
(3) If f ∈ FR and f > 0 on (c, ∞), then (Ef)(x) > 0 for all x ∈ No such that x > c.

Proof. (1) and (2) follow immediately from Definitions 52 and 68.
For (3), note that if f(x) > 0 for all real x ∈ (c, ∞), then, by Proposition 63 we have 

Trf > 0 and, plainly, τ ◦ Trf > 0 for all positive infinite x ∈ No. �

The following result is an immediate consequence of Theorem 69 and of Corollary 70.

Theorem 71. E is an extension operator in the sense of Definition 11. Moreover, E re-
stricted to F−,R is a multiplicative extension operator in the sense of Definition 12.

Example: the special case of functions with convergent transseries at ∞.
First note that, if a convergent transseries is of the type expressed in Equation (60) and 

its sum is f , then f ∈ FR. Indeed, in this case the Borel transform of a convergent series ∑
l≥0 ck,lx

−l is an entire function, and Écalle-Borel summation coincides with Borel 
summation (since in the Borel plane there are no singularities), and by Proposition 16
(ii) Borel summation is simply the identity. We denote by FR,conv the space of the sums 
(same as Borel sums) of the transseries in Tconv. Observe that for f ∈ FR,conv we have

f = lim
L→∞

∑

L>k>−M

ckμk. (64)

Definition 72. Let f ∈ FR,conv. Then (Ef)(x) is defined for positive infinite surreal x
as an absolutely convergent series in the sense of Conway, by replacing the exponentials 
and logarithms in the transseries of f by their surreal counterparts and lim by Lim.

Proposition 73. The operator E|FR,conv (i.e. E restricted to FR,conv) is an isomor-
phism of algebras between the algebra of convergent transseries FR,conv and its image 

FNo,conv := EFR,conv.

Proof. This is straightforward since the algebras FR,conv and FNo,conv consist of limits 
and Limits, respectively, of finite sums. �
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The following result is an immediate consequence of Corollary 70 and Proposition 73.

Proposition 74. The operator E|FR,conv is an extension operator in the sense of Defini-
tion 11, and E| (F−,R ∩ FR,conv) is multiplicative in the sense of Definition 12.

8.3. The main theorem on antidifferentiation: the operator ANo

Definition 75. Let E(FR) := {Ef : f ∈ FR}.

Since E : FR → RNo (from Theorem 69) is a surjection, henceforth we write E(FR)
in place of RNo.

Definition 76. By ANo we mean the operator defined by the following conditions:

(1) for members of E(FR), ANo = EAE
−1, where E and A, defined on FR, are the 

extension and antidifferentiation operators from Definition 68 and Definition 59;
(2) for f ∈ E(FR) and λ ∈ No, ANo(λf) = λANo f .

Example E3: ANo(ex). Since AT ex = ex, we obtain, for positive infinite surreal x

ANo(ex) = ex. (65)

It is easy to check that, for any λ ∈ No and f, g ∈ E(FR) we have ANo[λ(f + g)] =
λANo f + λANo g.

We prove in Theorem 78 below that ANo is an antidifferentiation operator in the sense 

of Definition 13. To prepare the way, we first prove:

Proposition 77. In the following we assume that c ∈ R and f is defined on {x ∈ No :
x > c}.

(1) If f ∈ E(FR), then (ANof)′ = f .
(2) If x, y ∈ (c, ∞) ∩ R and f ∈ FR, then (ANof)(y) − (ANof)(x) =

∫ y

x
f(s)ds.

(3) If f ∈ E(FR) is nonnegative and y > x > c, then (ANof)(y) − (ANof)(x) ≥ 0.

Proof. Assume f ∈ E(FR) and let fR := E
−1f . By the definition of E, f(x) = fR(x) for 

any real x ∈ (c, ∞).
(1) By Theorem 71 and using the construction of ANo, we have

(ANof)′ = (EAfR)′ = E(AfR)′ = EfR = f.

(2) The function g(x, y) =
∫ y

x
fR − [(AfR)(y) − (AfR)(x)] is real-analytic in (x, y) and 

dg
dy = 0. Hence g(x, ·) is a constant. Since g(x, x) = 0, g is the zero function.
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(3) Since, as noted, fR coincides with f on (c, ∞) ⊂ R, we see that fR is nonnegative. 
Let FR = AfR. By elementary calculus, for y > x in (c, ∞) we have FR(y) ≥ FR(x). 
Hence, fixing x ∈ (c, ∞) with y being the variable, and using the properties of E and 

the definition of ANo we obtain sign(y − x)[AfR(y) − AfR(x)] ≥ 0 for all y ∈ No. For 
finite y1 ≤ y2 ∈ No for which there is an x ∈ (c, ∞) such that y1 ≤ x ≤ y2, we insert 
an intermediate term to obtain AfR(y2) − AfR(x) + AfR(x) − AfR(y1) ≥ 0. If instead 

y1 ≤ y2 ∈ No are finite but there is no such real x satisfying the just-said condition, 
then the standard parts of y1 and y2 coincide with some x and the property follows from 

the Taylor expansions of AfR(x + [y1,2 − x]) around x.
We are left with the analysis of the case when y1 ≤ y2 are both positive infinite. 

Let fR = L̂BT̃ . We only analyze the case where the component of T̃ in T+ is nonzero, 
say Cxβ−leλx, as the case where T̃ ∈ T− ⊕ T	 is similar. The property that needs to 

be established is that, if T̃ ≥ 0, then F = AL̂BT̃ is an increasing function. From the 

construction of A, for positive infinite ν, F (ν) is an absolutely convergent Conway power 
series with dominant term λ−1Cνβ−leλν . We distinguish two cases. If 0 < y2−y1 = ε � 1, 
then each term in the Conway expansion of F can be reexpanded in ε. By this we mean 

the following. Letting y1 = ν and ε1 = εν−1 we have

eλj(ν+ε)(ν + ε)βj−l = eλjννβj−lLimm→∞

m∑

r=0

m∑

k=0

λr
jεr

r!

(
β − l

k

)
εk

1 , (66)

which we insert in the Lim term above in the first sum in Equation (61), and we 

similarly reexpand the other terms to obtain the Lim as m → ∞ of an N + 2-
dimensional truncated power series. This expansion shows that the dominant term of 
F (ν + ε) − F (ν) is Cνβ−leλνε > 0. If instead, 0 < y2 − ν = a is finite, then, with 

s being some infinitesimal function and a◦ being the standard part of a, we have 

F (ν + a)/F (ν) = (1 + a/ν)β−leλa(1 + s(ν + a))/(1 + s(ν)) > eλa◦

> 1, as it is easy 

to check. �

It is worth noting that, in virtue of the construction of ANo = EAE
−1 we have obtained 

more than just antidifferentiation; in particular, we have obtained the operator E, which 

in turn is used in the construction of ANo. ANo provides the solutions of equations 
of the form f ′ = g, whereas, by virtue of the fact that E preserves the operations of 
differential algebra, E can be used to solve classes of nonlinear equations, such as ODEs, 
and difference equations. This brings us to the main theorem on antidifferentiation.

Theorem 78. ANo is an antidifferentiation operator in the sense of Definition 13.

Proof. The satisfaction of condition i of Definition 13 follows from Proposition 77 (1); 
the satisfaction of ii follows from Definition 76 (1) and (2) and the linearity of L̂B; the 

satisfaction of iii follows from Proposition 77 (2); and the satisfaction of iv and v follows 
from Proposition 70 (1). For the satisfaction of vi, let f = EfR, and note that f ′ = 0
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means (EfR)′ = 0, thereby implying f ′
R

= 0. Hence there is a C ∈ R such that fR = C, 
implying f = C. �

In virtue of Equation (6), Proposition 14 and Theorem 78, we now have:

Corollary 79. 
∫ y

x
f = ANo(f)(y) − ANo(f)(x) is an integral operator on the domain of 

ANo.

8.4. Uniqueness

The existence of a continuum of nonequivalent well-behaved averages induces an ap-
parent nonuniqueness of the operators E and ANo. However, as we mentioned above, 
when restricted to the class of functions with which we are concerned with in this pa-
per (see the introduction as well as Footnote 16 on nonresonance and the remark it is 
appended to) all such averages coincide, thereby resulting in unique operators when E

and ANo are thus restricted. A detailed analysis of this will be the subject of a different 
paper.

9. The extension and antidifferentiation operators E∗ and A∗

No

Often singular behavior occurs in other limits than x → ∞. For instance, for a modular 
form such as the elliptic theta function θ3, the unit circle in C is a natural boundary, and 

the limits of interest on the real line are ±1 (see §10.2). Here, by changes of variable, we 

expand the domain of our extension and antidifferentiation operators to handle arbitrary 

points.
The extension operator E

∗ is constructed in two stages. We begin by defining E∞

acting on functions that are resurgent at x0 = ∞, with values in surreal functions 
defined for positive infinite surreals, namely we define (E∞f)(x) = (τ ◦ Tr f)(x). For 
functions that are resurgent at finite x0, or x0 = −∞ we simply change variables to 

bring the case to x0 = ∞. For example, the function t �→ exp(−1/t) is real-analytic on 

(0, 1) but not at zero; extending it to positive infinitesimal t is done by writing t = 1/x

and extending the new function e−x to positive infinite values of x using E∞. That is, 
(Ef)(1/t) := (E∞f)(x) with x = 1/t. For the sake of completeness we formalize this 
process in the paragraphs below.

Definition 80. Let x0 ∈ R, a ∈ R
+ and f : D(f) → R be a real-analytic function. 

If D(f) = (a, ∞), then we let m(x) = x, the identity. If D(f) = (−∞, −a), we let 
m(x) = −x; if D(f) = (x0, x0+a), then we let m(x) = x0+1/x, and if D(f) = (x0−a, x0), 
then m(x) = x0 − 1/x. We then define Mf = f ◦ m. The domain of Mf is (a−1, ∞) in 

the first two cases and (a, ∞) in the last two.
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The class of functions we have heretofore been concerned with that we call “resurgent” 

are the members of FR; see Definition 55. The following definition expands the class of 
functions we subsume under this appellation.

Definition 81. If Mf ∈ FR with M and f as in Definition 80, we say f is resurgent. Let 
F∗

R be the set of all resurgent functions in the just-said sense. If y ∈ F∗
R, we say y is 

resurgent at x0 = ∞ (resp. −∞) if x �→ y(x) (resp. x �→ y(−x) ∈ F∗
R, and we say y is 

resurgent to the right (resp. left) of x0 ∈ R if x �→ y(x0 + 1/x) (resp. x �→ y(x0 − 1/x) ∈
F∗

R.

Definition 82. Suppose f is resurgent (in the sense of Definition 81). If M is the identity 

(i.e. if f is resurgent at ∞) we define E
∗
∞f for ∞ < x ∈ No by (E∗

∞f)(x) := (τ ◦
Tr f)(x) and let E

∗ = E
∗
∞. More generally, in all four cases of Definition 80, we set 

E
∗ := M−1

E
∗
∞M . Also set E∗(F∗

R) := {E
∗f : f ∈ F∗

R}.

Notice that FR ⊂ F∗
R and, hence, E(FR) ⊂ E

∗(F∗
R).

Theorem 83. E∗ is an extension operator in the sense of Definition 11. Moreover, E
∗

restricted to {f : Mf ∈ F∗
−,R} is a multiplicative extension operator in the sense of 

Definition 12.

Proof. Proposition 71 shows that E∗
∞ has the properties stated in the theorem. Conjuga-

tion through M , M−1(·)M is an obvious structural isomorphism, ensuring preservation 

of the required properties. �

9.1. Definition of A∗
No

We now make use of Definition 80 to define integration by changes of variable via M . 
Recall that ANo has the intuitive interpretation (ANof)(x) =

∫ x

∞
f . To extend ANo to 

other points x0 ∈ R (or −∞), we change the variable of integration to map x0 ∈ R (resp. 
−∞) to ∞. In the change of variable Mf = f ◦ m, m is a one-to-one rational function 

which coincides with its surreal extension.
For example, if D(f) = (0, ε) we have m(s) = 1/s and we note that, heuristically,

s∫

0

f(u)du =

1/s∫

∞

(
− 1

v2

)
f

(
1
v

)
dv.

More generally, we obtain (still heuristically) (A∗
Nof)m(x) = (ANom′f ◦ m)(x), which 

motivates the following definition.

Definition 84. For Mf ∈ FR, let (A∗
Nof) ◦ m := ANo(m′Mf).
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Theorem 85. A∗
No is an antidifferentiation operator on E∗(F∗

R).

Proof. Using the properties of ANo and of differentiation it is straightforward to check 

that the properties listed in Definition 13 hold. We check only i.; the others being similar 
and in fact simpler.

We rewrite the definition as [(A∗
Nof)](s) = [ANo(m′ f ◦ m)](m−1(s)) and, using the 

chain rule together with the fact that ANo is an antidifferentiation operator, we get

[(A∗
Nof)]′ =

[ANo(m′ f ◦ m)]′(m−1(s))
m′(m−1(s))

=
m′(m−1(s)) (f ◦ m)(m−1(s))

m′(m−1(s))

= f(s). � (67)

Note 86. The reader can see that A
∗
No is obtained from ANo simply by changes of 

variables, in the same way E
∗ was obtained from E, with the consequence that the 

antiderivative of the extension of f ∈ F∗
R is the extension of the antiderivative of f .

Corollary 87. 
∫ y

x
f = A

∗
No(f)(y) − A

∗
No(f)(x) is an integral operator on E∗(F∗

R).

10. Illustrations of extensions and antidifferentiations

Many of the familiar functions have convergent expansions at points on the real line, 
where the actions of the extension and antidifferentiation operators are easy to obtain, 
as in Equation (62) and the cases mentioned in the comments following Definition 68. 
Accordingly, in the first subsection, we focus on calculating functions for positive infinite 

surreal values when these functions have a singularity at ∞. In illustrations (i) and (ii), 
we go over all details of the analysis.

10.1. Functions having a singularity at ∞

(i) First consider the exponential function x �→ ex. Using Example E3, we have 

ANo(ex) = ex. Hence, by Equation (6), we have

x∫

0

esds = ex − 1, (68)

as expected. This stands in contrast to Norton’s aforementioned proposed definition of 
integration which was shown by Kruskal to integrate ex over the range [0, ω] to the wrong 

value eω [19, p. 228]. We note that [67] also obtains Equation (68).

(ii) Next consider t−1et. Its antiderivative is the exponential integral Ei.
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By changes of variables, we have

Ei(x) := PV

x∫

−∞

t−1etdt = exPV

∞∫

0

e−xp

1 − p
dp = exPVL 1

1 − p
. (69)

We have L̂Bỹ = PVL(1 −p)−1. Hence, Tr(Ei(x)) = exỹ = AT [t−1et]. Using Definition 76, 
this gives, for all positive infinite surreal x,

(ANo[t−1et])(x) = ex
∞∑

k=0

k!
xk+1 . (70)

The values of Ei for positive finite surreal x are obtained simply from the local Taylor 
series at the real part of x (see Definition 3), as explained in Equation (62) contained in 

Definition 68.
The fact that Equation (70) should hold up to an additive constant was known to 

Conway and Kruskal but the value of this constant resisted their years long effort.18 As 
(70) shows, this constant is zero.

(iii) The imaginary error function erfi. To calculate

f(x) =

x∫

0

es2

ds =
√

π

2
erfi(x) (71)

for positive infinite surreal x, we first find the Écalle-Borel summed transseries of f . In 

this example, the Écalle critical time is not the original variable. By applying integration 

by parts to the integral in Equation (71) we obtain:

x∫

0

es2

ds ∼ es2

(
1

2x
+

1
4x2 + · · ·

)
. (72)

We notice here that the exponent is t = s2, which is the Écalle critical time (see Defini-
tion 15), and therefore we have to pass to the variable t. We then observe that f ′(x) = ex2

, 
where f(0) = 0. With the substitution f(x) = x exp(x2)g(x2) with x2 = t we get

g′ +
(

1 +
1
2t

)
g =

1
2t

. (73)

The transseries of g is simply a power series whose Borel transform G satisfies, in accor-
dance with (73),

18 Oral communication by Martin Kruskal to the first author.
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(p − 1)G′ +
1
2

G = 0, (74)

where G(0) = 1/2. In this case mon gives

1
4

⎛
⎝

∞−0i∫

0

+

∞+0i∫

0

⎞
⎠ e−tp

√
1 − p

dp =
1
2

1∫

0

e−tp

√
1 − p

dp, (75)

which leads to

f(x) =
1
2

xex2

1∫

0

e−x2p

√
1 − p

dp. (76)

We note that f(0) = 0, and so this expression satisfies both the differential equation and 

the initial condition. The transseries of f is easily obtained from (75) and Lemma 36
combined with the binomial formula. Ultimately, we arrive at

Tr(f)(x) =
1√
π

ex2
∞∑

n=0

Γ(n + 1
2)

x2n+1 (77)

and, hence,

x∫

0

es2

ds =
1√
π

ex2
∞∑

n=0

Γ(n + 1
2 )

x2n+1 for all surreal x > ∞. (78)

We note that the expression above is not valid for x < ∞, let alone at x = 0, and we 

don’t expect it to satisfy f(0) = 0. As is indicated above, for finite x the values of f for 
Ei are obtained from the local Taylor series.

(iv) The Airy functions Ai and Bi. These are two special solutions of the Airy equation

y′′ = zy.

Their asymptotic expansions for large z ∈ R
+ are

Ai(z) ∼ e−ζ

2
√

πz1/4

∞∑

k=0

(−1)k uk

ζk
; ζ :=

2
3

z3/2 (79)

and

Bi(z) ∼ eζ

√
πz1/4

∞∑

k=0

uk

ζk
, (80)

respectively (see [25]). We note that the asymptotic expansions are given in [25] in terms 
of ζ, which is precisely the Écalle critical time (see Definition 15).
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Changing the variable z to ζ, the inverse Laplace transform of exp(−ζ)Ai(ζ)ζ−1/6 is 
the hypergeometric function 2F1

(
7
6 , 11

6 ; 2; −p
2

)
which is analytic on R+, and hence usual 

Borel summabilty applies.
In the case of Bi, there is just one singularity on R+ at p = 2. A simple calculation, 

using mon for the last case, shows that Ai(z) and Bi(z) are simply given by these 

asymptotic series, now interpreted as absolutely convergent series in the sense of Conway.
(v) The Gamma and log-gamma functions. The Borel summed transseries of the log-

gamma function, log Γ(x), is19

log Γ(x) = x(log(x) − 1) − 1
2

log
x

2π
+

∞∫

0

e−xp p coth(p/2) − 2
2p2 dp. (81)

Using the generating function of the Bernoulli numbers we get, for small p,

p coth(p/2) − 2
2p2 =

∞∑

n=0

B2n

(2n)!
pn. (82)

Hence, the transseries of log Γ(x) is given by

log Γ(x) = x(log(x) − 1) − 1
2

log
x

2π
+

∞∑

n=0

B2nn!
(2n)!xn+1 . (83)

Then, for positive infinite surreal x, log Γ(x) is given by the right side of Equation (83)
where the infinite series are now interpreted as absolutely convergent series in the sense 

of Conway.
The Gamma function is simply obtained from the log-gamma function by exponenti-

ation.

10.2. An example of a function whose singularities are at finite points: Jacobi’s elliptic 

function θ3

Jacobi’s elliptic function θ3 is defined by

θ3(q) =
∑

n∈Z

qn2

= 1 + 2
∑

n∈N

qn2

; |q| < 1 (84)

(see e.g. [65]). Clearly θ3 is analytic in the complex unit disk, in particular, it is real-
analytic on (−1, 1). Since the series 

∑
n∈N

qn2

is lacunary, the unit circle is a natural 
boundary (see e.g. [57]). In particular, the points ±1 are singular. However, as we will 
now see θ3 ∈ F∗

R and therefore it extends to a left (resp. right) surreal neighborhood of 

19 This is a simplification of the form given in [22, p. 96].
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1 (resp. −1). Define t by q = e−t and let q1 = e−π2/t. We note that q → 1 is equivalent 
to t → 0. Jacobi’s modular transformations applied to θ3 give:

θ3(q) =

√
π

t
θ3(q1) =

√
π

t

(
1 + 2
∑

n∈N

e−n2π2/t

)
. (85)

This is a convergent transseries, and applying the definition of E∗ we obtain, for positive 

infinitesimal ζ,

(E∗θ3)(e−ζ) =
√

π

ζ

(
1 + 2
∑

n∈N

e−n2π2/ζ

)
. (86)

For q → −1 we have similar formulas, and we omit the intermediate steps. Indeed, 
θ3(q) = θ4(−q) =

√
π
t θ2(−q1) = 2q

1/4
1

∑
n≥0 q

n(n+1)
1 (see [65]), which implies for q

infinitesimally greater than −1,

(E∗θ3)(−e−ζ) = 2
√

π

ζ
e− 1

4 π2/ζ
∑

n≥0

e−n(n+1)π2/ζ . (87)

11. The theory of surreal integration: a generalization

It is natural to inquire in which ordered exponential subfields (K, expK) of (No, exp)
the above theory of surreal integration restricted to K continues to be applicable. In this 
section we show that a sufficient condition is that K is closed under absolute convergence 

in the sense of Conway, that is, for each formal power series f in n ≥ 0 variables with 

coefficients in R, f (a1, ..., an) is absolutely convergent in the sense of Conway in K for 
every choice of infinitesimals a1, ..., an in K. After having demonstrated this, we will 
exhibit ordered exponential subfields of (No, exp) that are closed in this sense.

Note that, for n = 0 the ring of power series in n variables with coefficients in R is 
R itself, and so henceforth we may assume that all references to reals are references to 

members of R ⊆ K ⊆ No and furthermore that (R, ex) ⊆ (K, expK) ⊆ (No, exp).

Lemma 88. If (K, expK) is an ordered exponential subfield of (No, exp) that is closed 

under absolute convergence in the sense of Conway, then for each f ∈ E
∗(F∗

R) (see 

Definition 82) and each x ∈ dom(f) ∩ K, f(x) ∈ K.

Proof. Suppose the hypothesis holds and further suppose f ∈ E
∗(F∗

R) and x ∈ dom(f) ∩
K.

Case 1. f ∈ E(FR) and, hence, E−1f is resurgent at ∞.
If x = x0 +ζ, where x0 is in the real-analyticity domain of E−1f and ζ is infinitesimal, 

then in virtue of Definitions 80 and 68 and Corollary 70(4),20

20 Since f is an extension of E−1f , (E−1f)(x0) = f(x0) and (E−1f)(k)(x0) = f(k)(x0).
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Ef(x) = Ef(x0 + ζ) = (E−1f)(x0) +
∑

k≥1

(k!)−1(E−1f)(k)(x0)ζk.

As such, since K is closed under absolute convergence in the sense of Conway, (Ef)(x) ∈
K.

If x is positive infinite, then in virtue of Definitions 66 and the first part of Defini-
tion 68, (Ef)(x) assumes the form

∑

−M≤j≤−1; l≥1

cj,lx
βj eλj x−l + P (x) log(x) + Q(x) + R(x) +

∑

k≥0,l≥0

ck,lx
β·ke−k·λxx−l,

where P , Q and R are polynomials, R being without constant term, M is a natural 
number, the coefficients and powers are real numbers, and the terms of the form xβ′

j , 
etc., (or their multiplicative inverses), can be written as exponentials (or multiplicative 

inverses of exponentials) using the identity xa = ea log x. Accordingly, since P (x) log(x) +
Q(x) +R(x) and the finite sum over M are clearly both in K, to show the entity denoted 

by the full expression is in K it remains to note that the Lim term is in K in virtue of 
K’s closure under absolute convergence in the sense of Conway.

Case 2. f /∈ E(FR). The extension operator E∗ is defined as E∗ := M−1
E

∗
∞M where 

(Mf)(x) = f(m(x)). This clearly preserves the range of f : the values of Mf are in K if 
and only if the values of f are in K. �

For each f ∈ F∗
R, let E

∗
K(f) := E

∗(f)|K, i.e. E
∗(f) restricted to K, and for each 

f ∈ E
∗(F∗

R), let A∗K
No(f) := A

∗
No(f)|K. Also, let E∗(F∗

R)|K := {f |K : f ∈ E
∗(F∗

R)}.

Theorem 89. Let (K, expK) be an ordered exponential subfield of (No, exp) that is closed 

under absolute convergence in the sense of Conway, and let x, y ∈ K. Then:

(1) E
∗
K is an extension operator on F∗

R in the sense of Definition 11;
(2) A

∗K
No is an antidifferentiation operator on E∗(F∗

R)|K in the sense of Definition 13;
(3)
∫ y

x
f = A

∗K
No(f)(y) − A

∗K
No(f)(x) is an integral operator on E∗(F∗

R)|K in the sense of 
Proposition 14.

Proof. (1) follows from Lemma 88 and Theorem 83. In addition, since the antiderivative 

of the extension of f ∈ F∗
R is the extension of the antiderivative of f , to establish (2) 

we need only further appeal to (1) and Theorem 85. (3) follows from (2) together with 

Equation (6) and Proposition 14. �

Our first example of a structure that satisfies the hypothesis of Theorem 89 is given 

by:

Theorem 90. The ordered exponential subfield R((ω))LE of (No, exp) is closed under 
absolute convergence in the sense of Conway.
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Proof. As was mentioned in §5.2, R((ω))LE is an ordered exponential subfield of No

that is isomorphic to the ordered exponential field T of transseries. Moreover, T is equal 
to the union 

⋃
i∈I Hi of a family {Hi : i ∈ I} of Hahn fields having the property: for 

all i, j ∈ I there is a k ∈ I such that Hi, Hj ⊆ Hk (see [4, Appendix A]). Plainly 

then, for each finite set a1, ..., an of infinitesimals in 
⋃

i∈I Hi, there is an m ∈ I such 

that a1, ..., an ∈ Hm. Moreover, since Hm is a Hahn field, by a classical result of B. H. 
Neumann [62], for each f(x1, ..., xn) ∈ R[[X1, . . . , Xn]], f(a1, ..., an) ∈ Hm. But then 

f(a1, ..., an) ∈
⋃

i∈I Hi, which proves the proposition. �

Our next group of examples of structures that satisfy the hypothesis of Theorem 89
comes from work of van den Dries and the second author [27]. The demonstration that 
these structures do indeed satisfy the said hypothesis rests largely on Propositions 91, 
92 and 93 below, the formulations of which require the following definitions.

If Γ is a subgroup of No whose universe is a set, then there is a canonical isomorphism 

f of the Hahn field R((τΓ )) into No for which

f(
∑

α<β

τyα .rα) =
∑

α<β

ωyα .rα.

The image of f , denoted R((ωΓ )), is the Hahn field in No generated by Γ . By R((ωΓ ))λ

we mean the set consisting of all elements of R((ωΓ )) having supports (yα)α<β<λ, where 

λ is a fixed ordinal. Moreover, for each ordinal λ, let No(λ) := {x ∈ No : tree rank of x <

λ} (see §2.1). Finally, as the reader will recall, an additively indecomposable ordinal is 
an ordinal of the form ωα for some α ∈ On, and an ε-number is an ordinal λ such that 
ωλ = λ.

Proposition 91. ([27, Corollary 3.1]) No(λ) (with sums and order inherited from No) is 
an ordered abelian group whenever λ is an additively indecomposable ordinal.

Proposition 92. ([27, Lemma 4.6]) Let λ be an ε-number and let Γ be a subgroup of No. 
Then R((ωΓ ))λ (with sums, products and order inherited from No) is an ordered field 

closed under absolute convergence in the sense of Conway.

It should be noted that of the portion of the above result concerned with closure 

under absolute convergence in the sense of Conway is not explicitly stated as a result in 

[27], but rather is proved (without the current terminology) in the course of proving the 

weaker condition of closure under restricted analytic functions (see [27, page 11]21).

Proposition 93. ([27, Proposition 4.7 (1) and (2)]) Let λ be an ε-number. Then:

21 More specifically, the authors write: “Finally, let F (X1, . . . , Xn) ∈ R[[X1, . . . , Xn]] be a formal power 
series in the indeterminates X1, . . . , Xn with real coefficients. Let ε1, . . . , εn be infinitesimals in R((τΓ ))λ. 
Since F is not assumed to be a convergent power series, we actually prove more than closure under restricted 
analytic functions by showing that F (ε1, . . . , εn) ∈ R((τΓ ))λ.”.
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(1) No(λ) (with sums, products and order inherited from No) is a real-closed field closed 

under exponentiation and under taking logarithms of positive elements. Indeed, 
No(λ) equipped with restricted analytic functions (defined via Taylor expansions) 
and exponentiation induced by No is an elementary substructure of (Noan, exp) and 

an elementary extension of (Ran, ex).
(2) No(λ) =

⋃
μ R((ωNo(μ)))λ, where μ ranges over all additively indecomposable ordi-

nals less than λ.

It follows from much the same argument employed in the proof of Theorem 90 that 
the union of a chain of ordered fields that are closed under absolute convergence in the 

sense of Conway is itself closed under absolute convergence in the sense of Conway. In 

virtue of this and Propositions 91, 92 and 93, we now have:

Theorem 94. For each ε-number λ, the ordered exponential subfield No(λ) of (No, exp)
is closed under absolute convergence in the sense of Conway.

Like No and the extension theory developed in the earlier sections of the paper, 
Lemma 88 and Theorem 89 as well as the existence of R((ω))LE and the No(λ) are 

provable in NBG−, and are therefore constructive in this sense.22

12. Some open questions and a remaining problem

We draw the positive portion of the paper to a close by stating a problem and two 

open questions that naturally arise from the material in preceding sections.
The mathematical theory of resurgent functions for height one transseries has long 

been worked out in great detail. In a far ranging recent work [35], however, Écalle has 
provided what he describes as an “exploratory rather than systematic” presentation of 
an extension of his theory of resurgent functions, including Écalle-Borel summability, 
beyond height one transseries to transseries having arbitrary heights and depths. This 
naturally suggests:

Problem 1. Based on a rigorous theory of arbitrary height and depth transseries, gen-
eralize our “constructive” treatment of extension and antidifferentiation operators to all 
resurgent functions.

A related and perhaps much deeper issue is broached by:

Question 1. Do well-behaved extension operators exist for broad classes of functions that 
cannot be obtained from the inductive construction yielding transseries? More specifi-

22 The second author wishes to thank Elliot Kaplan for helpful comments on an earlier version of this 
section of the paper, and especially for his observation that the proofs of Lemma 88 and Theorem 89 given 
above continue to hold without the previously stated additional assumption that (K, expK) is initial.
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cally, do well-behaved extension operators exist for broad classes of functions defined on 

surreals of arbitrary length (or at least having lengths larger than ωω).

The answer to this question would shed light on the very important but much less 
understood subject of formalizability of functions.23 We note that Jean Écalle offered 

the following very interesting observation in response to this question.

... under the (reasonable) assumption that the limits for extending operations such as 
integration on functions of No to No roughly coincide with the limits for the effective 

(bi-constructive) formalization for real germs at ∞, one falls back on a subject on 

which much thought has already been spent, and I think one can confidently predict 
the broad outline of the answer. The ultimate constructive extensions would:

1. include all formal transfinite iterates of order α < ωω of the exponential, together 
with a coherent system of incarnations as real germs (and while the search for one
privileged system of incarnations is hopeless, comfort may be taken from the fact that 
all coherent incarnations are isomorphic).

2. exclude the full set of so-called nested expansions (even well-nested ones), for there 

mutual compatibility conditions would have to be met, which could not possibly be 

ensured constructively, i.e. without massive recourse to AC.

The answer to the following question will shed more light on the deeper structure of 
the surreal universe.

Question 2. Can the theory of extension, antidifferentiation and integral operators pre-
sented in the previous sections of the paper be given a genetic (simplicity-hierarchical) 
formulation in the inductive sense (mentioned in the introduction) that was sort after 
by Conway, Kruskal and Norton?

The authors do in fact know how to provide a simplicity-hierarchical account for 
much of the theory in terms of Conway’s {L|R} notation and hope to present it in a 

future paper. However, the definitions in terms of Conway’s {L|R} notation employed 

in the account are not inductive, and therefore are not genetic in Conway’s sense (see 

Footnote 1).

13. Negative and independence results

With our positive results now at hand, we switch directions by showing that a con-
structive proof of the existence of analogous extensions and integrals of substantially 

more general types of functions than those treated above is obstructed by considerations 

23 “[Reducibility] to a properly structured set of real coefficients” [33, p. 75].
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from the foundations of mathematics. These considerations apply not only to the sur-
reals, but to any non-Archimedean ordered field F that extends R and whose existence 

can be proved in NBG−. To establish the result, we will direct our attention to a list of 
very basic properties of antidifferentiation and a space H of functions with “very good 

properties”.
By a classical result of Mostowski [61], Wang [75], Novack [63], Rosser and Wang [66]

and Schoenfield [73], NBG− is a conservative extension of ZF; that is, every theorem of 
ZF is a theorem of NBG−, and every theorem of NBG− that can be expressed in ZF 

(i.e. in the language of sets) is itself a theorem of ZF. Consequently, NBG− is not only 

equiconsistent with ZF, but if T is a theory obtained from ZF by supplementing it with a 

set of axioms A which involve only sets, and T ′ is obtained from NBG− by supplementing 

it with the same set of axioms A, then T is consistent if and only if T ′ is consistent (see, 
for example, [48, p. 132]). As a result, the above said relations holding between NBG−

and ZF also hold between NBG−+ C (the Axiom of Choice for sets) and ZFC as well 
as between NBG−+DC and ZF+DC, where DC is the Axiom of Dependent Choice 

([73], [61], [63], [66]). Accordingly, though the main result in this section is concerned 

with arbitrary non-Archimedean ordered fields that extend R whose existence can be 

proved in NBG−, including No itself, the preliminary results are about subsets of these 

structures and as such, when appropriate, to prove these results we freely make use of 
techniques and results established about or in ZFC, ZF+DC or ZF+DC supplemented 

with other assertions about sets.
As usual, let �∞ denote the space of all bounded real-valued sequences, whose members 

we write as {sn} in place of {sn}n∈N . As the reader will recall, φ : �∞ → R is said to be a 

Banach limit if it is a continuous linear functional satisfying the following conditions: (a) 
(positivity) if {sn} is a nonnegative sequence, then φ({sn}) ≥ 0; (b) (shift-invariance) 
for any sequence {sn} ∈ �∞, we have φ({sn}) = φ({sn+1}); and (c) (φ is a limit) if {sn}
is convergent with limit l, then φ({sn}) = l.

To establish our negative result we will make use of one direction of the following 

metamathematical result concerning the existence of Banach limits (EBL) which is a 

simple consequence of results from the literature.24

Proposition 95. EBL is independent of NBG−+DC (if NBG− is consistent).

Proof. Since NBG−+DC is a conservative extension of ZF+DC, it suffices to prove the 

proposition for ZF+DC. EBL is consistent with ZF+DC, if ZF is consistent, since HB 

(the Hahn-Banach theorem) implies EBL (e.g. [17, Theorem III.7.1]) and ZF+DC+HB 

is consistent, if ZF is consistent ([64], [68, p. 516]). Moreover, -EBL is consistent with 

ZF+DC, if ZF is consistent, since BP (the assertion every set of reals has the Baire 

24 The second author greatfully acknowledges helpful discussions of this matter with Emil Jer̆ábek [52], 
Wojowu (Wojtek Wawrów) [76] and others on MathOverflow.
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Property) implies -EBL [56, Theorem 44], and there is a model of ZF+DC+BP, if ZF is 
consistent ([72], [68, p. 516]). �

As we shall see, the following concept is closely related to a Banach limit.

Definition 96. We call L a sublimit on �∞ if:

(1) L is linear, i.e., if s, t ∈ �∞ and a, b ∈ R, then L(as + bt) = aL(s) + bL(t);
(2) for every {sn} ∈ �∞, L({sn}) ≤ lim supn→∞ sn.

Using linearity and the fact that lim infn→∞ sn = − lim supn→∞(−sn), we see that 
condition (2) of Definition 96 is equivalent to

lim inf
n→∞

sn ≤ L({sn}) ≤ lim sup
n→∞

sn. (88)

Lemma 97. ZF proves that a Banach limit exists if and only if a sublimit exists.

Proof. Let B be a Banach limit. We show that B is a sublimit. Indeed, by definition, 
B is linear. Now assume lim supn→∞ sn = l. Let ε > 0 and let N ∈ N be such that 
for all m ≥ N we have sm ≤ l + ε. Let S be the shift operator, S({sn}) = {sn+1}. We 

have, using positivity, B({sn}) = BSN ({sn}) ≤ l + ε where, as usual, SN is S applied 

N times. Since ε > 0 is arbitrarily chosen, B({sn}) ≤ l.
Now let L be a sublimit. We define the Cesàro summation operator by C({sn}) =

{n−1∑n
j=1 sn}. Note that C is a continuous operator on �∞ of norm 1, and so is L, 

by (88). We claim that LC is a Banach limit. We just showed that LC is continu-
ous. Moreover, clearly C is a positive operator and so is L by (88). Since 

[
C({sn}) −

CS({sn})
]

m
= m−1(s1 − sm+1), we have lim infn→∞

[
LC({sn}) − LCS({sn})

]
= 0 and 

lim supn→∞

[
LC({sn}) −LCS({sn})

]
= 0, and hence, LC = LCS, thereby proving shift-

invariance. Finally, if {sn} is convergent with limit l, then plainly C({sn}) is convergent 
with limit l, and then (88) shows that LC({sn}) is convergent with limit l, completing 

the proof. �

The extension and antidifferentiation operators introduced in §3 are linear, positive 

and satisfy a number of other desirable properties. However, the proto-antidifferentiation
and proto-extension operators defined below are only assumed to be linear, positive 

and satisfy a compatibility condition. By showing that the existence of these proto-
operators can neither be proved nor disproved in NBG−+DC, we show that the existence 

of any extension and antidifferentiation operators having even these minimal properties 
can neither be proved nor disproved in NBG−+DC, let alone in NBG−. As such, any 

such operators whose existence can be established in NBG would necessarily be less 
constructive in nature than E and ANo.

Henceforth, let F be a non-Archimedean ordered field that extends R whose existence 

can be proved in NBG−, and let ρ be an arbitrarily selected and fixed positive infinite 
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element of F . Also let H be the space of functions which are real-analytic, that extend 

to entire functions (holomorphic in C), and decay at least as rapidly as x−2 in the sense 

that f ∈ H if and only if supx∈R+ x2|f(x)| < ∞.

Definition 98. Let Aρ := {(x, y) ∈ (R+ ∪ {ρ, ρ2})2 : x < y}. A proto-antidifferentiation 

operator on H × Aρ is an operator λ having the following properties for all f, g ∈ H, all 
(x, y) ∈ Aρ, and all α, β ∈ R

+.

(1) Linearity: λ(αf + βg, x, y) = αλ(f, x, y) + βλ(g, x, y).
(2) Positivity: If for some c ∈ R

+ and all x ∈ (c, ∞) we have f(x) ≥ 0, then for all 
(x, y) ∈ Aρ with x ∈ (c, ∞) we have λ(f, x, y) ≥ 0.

(3) Compatibility with the weight of H: λ(x−2, x, y) = x−1 − y−1.

It is easy to see that the operator (f, x, y) �→
∫ y

x
f(s)ds satisfies the above properties 

for all real x > 0.

Definition 99. Let Eρ := R
+ ∪ {ρ}. A proto-extension operator on H × Eρ is an operator 

Λ having the following properties for all f ∈ H, all x ∈ Eρ and all α, β ∈ R
+.

(1) Linearity: Λ(αf + βg, x) = αΛ(f, x) + βΛ(g, x).
(2) Positivity: If for some c ∈ R

+ and all x ∈ (c, ∞) we have f(x) ≥ 0, then for all 
x ∈ (c, ∞), we have Λ(f, x) ≥ 0.

(3) Compatibility with the weight of H: Λ(x−2, x) = x−2.

Henceforth, let EPA and EPE be the following statements with F and ρ understood as 
above: “There exists a proto-anti-differentiation operator as in Definition 98, and “There 

exists a proto-extension operator as in Definition 99”, respectively. Moreover, henceforth 

by x◦ we mean the standard part of a finite member x of an ordered field. When x is a 

finite surreal number, x◦ is the real part of x (see Definition 3).

Lemma 100. EPA implies EBL and EPE implies EBL in NBG−

Proof. Let F be an ordered field extending R that exists in NBG−, ρ be a positive 

infinite member of F and Λ be a proto-extension operator.
For each s = {sn} ∈ �∞ define fs : R → R by fs(x) = s1 for x ≤ 1, and for 

x = (1 − t)n + t(n + 1), where t ∈ [0, 1] and n ∈ N, by fs(x) = (1 − t)sn + tsn+1. Now 

let m ∈ N and suppose x > m. It is easy to check that

x−2 inf
n≥m

sn ≤ x−2fs(x) ≤ x−2 sup
n≥m

sn. (89)

We are now going to approximate fs by entire functions. For ε > 0 let

νε := ν = 2‖s‖∞π− 1
2 ε−1 (90)
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and consider the mollification fs;ε(x) := π− 1
2 ν
∫∞

−∞
e−ν2(x−t)2

fs(t)dt. By standard com-
plex analysis, fs;ε is entire, and straightforward estimates show that
supz∈C |e−ν2|z|2

fs;ε(z)| < ∞. Note that, by construction, |fs(t) − fs(x)| ≤ 2‖s‖∞|t − x|. 
Thus, (90) implies

|fs;ε(x) − fs(x)| = π− 1
2 ν

∣∣∣∣∣∣

∞∫

−∞

e−ν2(x−t)2

(fs(t) − fs(x))dt

∣∣∣∣∣∣

≤ 2‖s‖∞π− 1
2 ν

∣∣∣∣∣∣

∞∫

−∞

e−ν2v2 |v|dv

∣∣∣∣∣∣
= 2‖s‖∞π− 1

2 ν−1 ≤ ε. (91)

Conditions (2) and (3) of Definition 99 imply that for any x ∈ R
+ and ε, ε′ > 0 we have

|x−2fs;ε(x) − x−2fs;ε′(x)| ≤ x−2(ε + ε′), (92)

and hence,

|ρ2Λ(ρ−2fs;ε, ρ) − ρ2Λ(ρ−2fs;ε′ , ρ)| ≤ (ε + ε′). (93)

Since Equation (91) and the triangle inequality imply that |ρ2Λ(ρ−2fs;ε, ρ)| ≤ ε + ‖s‖∞, (
ρ2Λ(ρ−2fs;ε, ρ)

)◦
exists, and, by the same argument, so does 

(
ρ2Λ(ρ−2fs;ε′ , ρ)

)◦
. Hence, 

by taking standard parts in (93), we get

∣∣∣
(
ρ2Λ(ρ−2fs;ε, ρ)

)◦ −
(
ρ2Λ(ρ−2fs;ε′ , ρ)

)◦∣∣∣ ≤ ε + ε′, (94)

which in turn implies that

BL(s) := lim
ε→0

(
ρ2Λ(ρ−2fs;ε, ρ)

)◦
(95)

exists. Moreover, it follows from Equation (91) that for any n ∈ N and x ≥ n + 1, we 

have

x−2fs,ε(x) ≤ x−2( sup
n≥m

sn + ε). (96)

Hence, since ρ ≥ n for any n ∈ N, we have

ρ2Λ(ρ−2fs,ε, ρ) ≤ lim sup
n→∞

sn + ε, (97)

which implies

BL(s) ≤ lim sup
n→∞

sn. (98)
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And so a sublimit exists, and hence, by Lemma 97, a Banach limit exists.
For the portion of the theorem concerned with proto-antidifferentiations (in place 

of proto-extensions) we change Λ(ρ−2fs;ε, ρ) to λ(ρ−2fs;ε, ρ, ρ2) and the prefactor ρ2 in 

front of Λ to a prefactor ρ in front of λ. Since for a ∈ R, ρ(aρ−1 − ρ−2)◦= ρ(aρ−1)◦ = a, 
the proof is, mutatis mutandis, the same. �

Lemma 101. EBL implies EPA and EPE in NBG−.

Proof. Let BL be a Banach limit. To show EPA, define λ(f, x, y) =
∫ y

x
f(s)ds if (x, y) ∈

(R+)2, λ(f, x, ρ) = x2f(x)(x−1 − ρ−1) for x ∈ R
+, and λ(f, ρ, ρ2) = BL[n2f(n)](ρ−1 −

ρ−2). It is clear that λ is linear and, if f ≥ 0 is positive and (x, y) ∈ Aρ, then λ(f, x, y) ≥
0. For condition (3), we note that if f(x) = x−2 then limn→∞ n2f(n) = 1 = BL(n2f(n))
by the definition of a Banach limit, and the property follows.

To show EPE, define Λ(f, x) = f(x) if x ∈ R
+ and Λ(f, ρ) = BL[n2f(n)]ρ−2. It is 

clear that Λ is linear and, if f ≥ 0 is positive and x ∈ Eρ, then Λ(f, x) ≥ 0. For condition 

(3), we note that if f(x) = x−2 then limn→∞ n2f(n) = 1 = BL(n2f(n)) by the definition 

of a Banach limit, and the property follows. �

Theorem 102.

(1) NBG− proves that proto-antidifferentiation operators exist if and only if Banach 

limits exist.
(2) NBG− proves that proto-extension operators exist if and only if Banach limits exist.
(3) EPA and EPE are independent of NBG−+DC (if NBG−+DC is consistent).

Proof. (1) and (2) follow from Lemmas 100 and 101, and (3) is an immediate consequence 

of (1), (2) and Proposition 95. �

Note 103. Other types of negative results can be obtained via Pettis’ theorem of auto-
matic continuity, whereby the existence of various other types of desirable extensions 
would imply the existence of Baire non-measurable sets. This will be explored further in 

the future paper referred to at the end of the introduction.
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