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Conway’s real closed field No of surreal numbers is a
sweeping generalization of the real numbers and the ordinals
to which a number of elementary functions such as log and
exponentiation have been shown to extend. The problems
of identifying significant classes of functions that can be
so extended and of defining integration for them have
proven to be formidable. In this paper we address this
and related unresolved issues by showing that extensions to
No, and thereby integrals, exist for most functions arising
in practical applications. In particular, we show they exist
for a large subclass of the resurgent functions, a subclass
that contains the functions that at oo are semi-algebraic,
semi-analytic, analytic, meromorphic, and Borel summable
as well as solutions to nonresonant linear and nonlinear
meromorphic systems of ODEs or of difference equations.
By suitable changes of variables we deal with arbitrarily
located singular points. We further establish a sufficient
condition for the theory to carry over to ordered exponential
subfields of No more generally and illustrate the result with
structures familiar from the surreal literature. The extensions
of functions and integrals that concern us are constructive in
nature, which permits us to work in NBG less the Axiom
of Choice (for both sets and proper classes). Following
the completion of the positive portion of the paper, it is
shown that the existence of such constructive extensions and
integrals of substantially more general types of functions (e.g.

E-mail addresses: costin@math.ohio-state.edu (O. Costin), ehrlich@ohio.edu (P. Ehrlich).

https://doi.org/10.1016/j.aim.2024.109823

0001-8708/© 2024 The Authors. Published by Elsevier Inc. This is an open access article under the CC
BY-NC license (http://creativecommons.org/licenses/by-nc/4.0/).



2 O. Costin, P. Ehrlich / Advances in Mathematics 452 (2024) 109823
smooth functions) is obstructed by considerations from the
foundations of mathematics.
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1. Introduction

In his seminal work On Numbers and Games [18,19], J. H. Conway introduced the
system No of surreal numbers, a strikingly inclusive real closed field containing the reals
and the ordinals. In addition to its inclusive structure as an ordered field, No has a
rich simplicity hierarchical or s-hierarchical structure, that depends upon its structure
as a lexicographically ordered full binary tree and arises from the fact that the sums and
products of any two members of the tree are the simplest possible elements of the tree
consistent with No’s structure as an ordered group and an ordered field, respectively, it
being understood that x is simpler than y (written x <, y) just in case x is a predecessor
of y in the tree [39,40,43].

An important subsequent advance in the theory of surreal numbers was the extension
from the reals to No of the exponential function by Kruskal and Gonshor [19,49]. The
Kruskal-Gonshor exponential function exp, like Conway’s field operations on No, is
inductively defined in terms of No’s simplicity hierarchical structure making use of the
fact that for each pair of subsets L and R of No for which every member of L precedes
every member of R, there is a simplest member of No, denoted

{L| R},

lying between the members of L and the members of R. Conway [19, pages 27, 225, 227]
refers to such definitions as genetic definitions.'

There has been a longstanding program, initiated by Conway, Kruskal and Norton, to
develop analysis on No, starting with a genetic definition of integration. In the case of
Kruskal, it was motivated in large part by the broader goal of providing a new foundation
for asymptotic analysis which would include new and more general tools for resumming
divergent series and for solving complicated differential equations. However, the initial
attempts at defining integration, in particular the genetic definition proposed by Norton
[19, page 227], turned out, as Kruskal discovered, to have fundamental flaws [19, page
228]. Despite this disappointment, the search for a theory of surreal integration has
continued (see [46] and [67]), but has heretofore remained largely open.” In this paper,
using a new approach, we construct a theory of integration that is of sufficiently wide
applicability for most practical cases, pose questions about possible extensions of the
theory, and elucidate the nature of the obstructions to a far more general extension.

L At present there is no universally accepted formal theory of Conway’s loosely defined conception of a
genetic definition in the literature, though [46], [47], [67] and most recently [15] have made contributions
toward the development of such a theory. Nevertheless, following Conway, in our informal remarks we freely
refer to certain inductive definitions as “genetic”.

2 By contrast, work of Berarducci and Mantova [13,14], Aschenbrenner, van den Dries and van der Hoeven
[5], Bagayoko [7], Bagayoko, van der Hoeven and Kaplan [10], Bagayoko and van der Hoeven [8,9] and others
(e.g. [11,28,29,69]) has made significant progress toward viewing the surreals as an ordered differential field.
This work aims to bring a robust theory of asymptotic differential algebra to all of No. Unlike the present
work, which is concerned with derivations on surreal functions, the former work is concerned with derivations
on surreal numbers.
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In real analysis and mathematical physics, the asymptotic expansions at oo of solu-
tions to nontrivial equations as well as perturbation expansions with respect to small
parameters almost invariably have zero radius of convergence. One of the simplest ex-
amples of a divergent series is

oo
Zk!m_k_l, T — 00,
k=0

a formal solution of the differential equation 3’ + y = £~ !, whose general solution is re-
lated to the antiderivatives of €% /z by y(z) = e~® [* e®s~'ds. The problem of uniquely
assigning functions to divergent expansions in a way that preserves such operations as
addition, multiplication, differentiation, integration and composition is a very important
and difficult one. A partial solution was provided by Borel summation; however, its do-
main of applicability is insufficient for many problems of interest in pure and applied
analysis. Even for handling relatively common problems in analysis, a satisfactory solu-
tion had to wait until the work of Ecalle (see [31,33]) which introduced (among other
things) the notions of resurgent functions, resurgent transseries and Ecalle-Borel sum-
mation for overcoming the limitations of Borel summation. In No, on the other hand,
for all surreal x > oo, Y ;2 klz~*F~! (and in fact, any formal series in powers of 1/x
with real coefficients more generally) is absolutely convergent in the sense of Conway
(see §2.2)% and therewith by comparatively simple means defines a unique function for
all infinite surreal x. Accordingly, the question naturally arises as to whether building
on absolute convergence in the sense of Conway and the ideas of Ecalle, we can find a
theoretically satisfying way of extending functions and their integrals past oo or, more
generally, past a singularity at which asymptotic expansions do not exist or are diver-
gent? As we alluded to above, in this paper we provide a qualified affirmative answer to
this question.

Making real progress towards solving the above-said integration problem, and more
generally in interpreting divergent expansions by means of surreal analysis, requires
finding a property-preserving operator (see Definition 11) that extends the members of a
wide body of important classical functions from R to No. In turn, the existence of such
an extension operator provides a theoretically satisfying and widely applicable definition
of integration: in particular, the integral of an extension from R to No of a function on
the reals can be defined to be the extension of its integral from R to No.

Any such theory would have to keep in mind that functions whose behavior can be
described in terms of exponentials and logarithms are remarkably ubiquitous. Indeed, as
G. H. Hardy noted in 1910:

3 In the context of discussions of No, such references to “co” refer to the gap in No separating the positive
finite surreals and positive infinite surreals. Similar references to “—o00” are understood analogously. In our
discussion, “co” and “—o00” refer to both gaps and limits depending on context.
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No function has presented itself in analysis the laws of whose increase, in so far as they
can be stated at all, cannot be stated, so to say, in logarithmic-exponential terms. [50,
1st Edition, page 35; 2nd Edition, page 32]*°

Accordingly, developing a satisfactory theory of integration on the surreals would require
building on the exponential ordered field (No, exp) of surreal numbers.

Against this backdrop, in the pages that follow, we show that an extension operator
E as described above, and thereby extensions of integrals from R to No, exist for a
large subclass Fr of resurgent functions, which is related via Ecalle-Borel summation to
a corresponding subclass Tx of resurgent transseries, which contains all real functions
that at co are semi-algebraic, semi-analytic, analytic, and functions with divergent but
Borel summable series (see §5), as well as solutions of nonresonant linear or nonlinear
meromorphic systems of ODEs or of difference equations. As such, most classical special
functions, such as Airy, Bessel, Ei, erf, Gamma, and Painlevé transcendents, are covered
by our analysis.®

The definitions of the extension operator E and corresponding antidifferentiation and
integral operators Ano and

/ £ = Ano(F)(4) — Ano() (@)

given below are not genetic in Conway’s sense (see Footnote 1). However, unlike Norton’s
aforementioned definition of integration which was found to be intensional [19, page
228], ours are shown to depend solely on the values of the functions involved. Ano is
defined making use of an antidifferentiation operator A on Tg, which in turn is defined
using an antidifferentiation operator At on the exponential ordered field T of transseries

4 Note that powers fall in this category since % = %' %,

5 The work of Ecalle on transseries, and resurgent transseries in particular, sheds important light on
Hardy’s observation. The system of transseries, which consists of formal series built up from R and a variable
x > R using powers, exponentiation, logarithms and infinite sums, is the closure of formal power series
under a wide range of algebraic and analytical operations [4,21,37]. The subspace of resurgent transseries
consists of those transseries which, loosely speaking, have origins in natural problems in analysis (see
§6 as well as [31,33]). There is compelling mathematical evidence, albeit thus far no rigorous proof, that
resurgent transseries are also closed under the known algebraic and analytical operations. Moreover, they are
associated with resurgent functions by means of Ecalle-Borel summation. These facts provide a theoretical
basis for Hardy’s observation that, in practice, functions whose asymptotic behavior can be described in
logarithmic-exponential terms are the only ones that arise naturally as solutions of problems in analysis. It
should be noted, however, that unlike the asymptotic expansions used at the time of Hardy’s cited writings,
the infinite sums of logarithmic-exponential terms occurring in Ecalle’s theory include sums of countable
transfinite length > w.

6 Integration for functions with convergent expansions has been studied in the context of the non-
Archimedean ordered field of left-finite power series with real coefficients and rational exponents in [70]
and [71]. In addition, for the category of semi-algebraic sets and semi-algebraic functions on arbitrary real-
closed fields a full Lebesgue measure and integration theory has been developed in [53] and [54]. See also
[55] for integration and measure theory on certain non-Archimedean ordered fields whose value groups have
finite Archimedean rank, as well as [16] for various positive and negative results on integration in general
non-Archimedean fields.
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(Proposition 21). A has the property: for real f the restriction to reals of Af has limit
zero at co whenever the limit exists. This can be viewed as the natural condition for an
integral with an endpoint at co.

All of the members of Fr are resurgent at oo (see Definition 81). Following our
treatment of the just-said extension, antidifferentiation and integral operators based on
Fr or E(Fr) we show by means of a simple change of variables argument that substantial
extensions of those operators can be obtained building on a set of functions 7% extending
Fr that contains functions that are resurgent at arbitrary points.

More generally, the original portions of the paper consist of the following. In §3 we in-
troduce the definitions of extension, antidifferentiation and integral operators and prove a
preliminary result about the existence of integral operators. In §4 we outline the difficul-
ties of defining extensions and integration of functions, and our strategy for overcoming
them. Following this, to prepare the way for the proof of the main antidifferentiation
theorem, in §7 we establish the requisite results concerned with resurgent functions,
resurgent transseries and Ecalle-Borel summability. The definitions of the extension and
antidifferentiation operators E and AN, together with proofs of the main antidifferen-
tiation theorem (Theorem 78) are given in §8, along with mention of the uniqueness
of E and Ano, the proofs of which are left for a separate paper. This is followed in §9
by the above-mentioned constructions of extensions of E, AN, and the corresponding
integral operator, and in §10 by illustrations of the antidifferentiation and/or extension
theorems for exp, the exponential integral Ei, the imaginary error function erfi, the Airy
functions Ai and Bi, the log-gamma function, the Gamma function and Jacobi’s elliptic
function f5. In §8(2), a substantially shorter and simplified version of the proof of the
main extension theorem is provided for the proper subclass F.on, of Fr consisting of
all functions that, at oo, have convergent series in integer or fractional powers of 1/x or
more generally have convergent transseries. By a result of van den Dries [26], these in-
clude the semi-analytic functions at co. In §11 we generalize our main results by showing
that closure under absolute convergence in the sense of Conway is a sufficient condition
for the theory of extension, antidifferentiation and integral operators outlined above to
carry over to ordered exponential subfields of (No, exp), and we illustrate the result with
substructures of (No,exp) that are familiar from the literature. Following this, in §12
we raise a problem and state two open questions that naturally arise from material in
the preceding sections.

To help keep the paper self-contained we include three preparatory sections: §2 offers
an overview of some basic ingredients of surreal theory; and §5 offers an overview of
transseries as well as those aspects of Borel summability theory that provide background
for the preliminary discussion of Ecalle-Borel summability in §6, which in turn provides
background for §7 and §8.

In writings on surreal numbers it is customary to work in NBG (von Neumann-
Bernays-Godel set theory with the Axiom of Global Choice (see, for example, [58]).
However, in §3-§11, which constitutes the positive portion of the paper, we need only
work in NBG™ (NBG less the Axiom of Choice for both sets and proper classes), since
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the extensions of functions and integrals that concern us there have an explicitly “con-
structive” nature.

Whereas Kruskal hoped to appeal to Conway’s notion of absolute convergence to
construct new foundations for asymptotic analysis grounded in a robust theory of surreal
integration and function extensions more generally, our theory is more modest in its
potential scope, limiting its attention to a broad subclass of resurgent functions that
arises in most applied settings. In fact, there are reasons to believe that deep hurdles
lay in the way of realizing the lofty analytic goals of Kruskal. Indeed, in Section §13 we
reverse course and show that the existence of extensions and integrals for substantially
more general classes of functions (e.g. the class of smooth functions) cannot be proved in
NBG ™, and is in fact obstructed by considerations from the foundations of mathematics.”

2. Surreal numbers

This section provides an overview of the basic concepts of the theory of surreal
numbers, including the normal forms of surreal numbers, the aforementioned notion
of absolute convergence in the sense of Conway and exponentiation. With the exception
of Propositions 6 and 7 and Notational Convention 1, which are concerned with absolute
convergence in the sense of Conway (see Section 2.2), all of the material in this section
is known from the literature.

To avoid possible confusion, we note that here and henceforth we follow the convention
of excluding 0 from the set N of natural numbers.

2.1. The algebraico-tree-theoretic structure of No

There are a variety of constructions of the surreal numbers (e.g. [19, pages 4-5, 15-16,
65], [2,3,42,38], [39, page 242]), each with its own virtues. For the sake of brevity, here we
adopt the construction based on Conway’s sign-expansions [19, page 65], an approach
which has been made popular by Gonshor [49]. In accordance with this approach, a
surreal number is a function  : A — {—,+} where X is an ordinal called the length of
x. The class No of surreal numbers so defined carries a canonical linear ordering < as
well as a canonical partial ordering <, defined by the conditions: z < y if and only if x
is (lexicographically) less than y with respect to the linear ordering on {—, +}, it being
understood that — < undefined < +; x <, y (read “x is simpler than y”) if and only if
x is a proper initial segment of y.

By a tree (A, <4) we mean a partially ordered class such that for each x € A, the
class pry = {y € A: y<ax} of predecessors of x is a set well ordered by <4. The tree-
rank of x € A, written ‘pa(z)’, is the ordinal corresponding to the well-ordered set

7 Some of the material in §3-§10 of the present paper is a revised and substantially expanded version
of material from the positive portion of the arXiv preprint [23]. Further set-theoretic impediments to the
realization of Kruskal’s program are contained in the negative portion of [23] and remain to be revised and
expanded by Harvey Friedman and the first author.
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(pra(z),<s). If z,y € A, then y is said to be an immediate successor of x if © <, y
and pa(y) = pa(x) + 1; and if (z4)a<p is a chain in A (i.e., a subclass of A totally
ordered by <j), then y is said to be an immediate successor of the chain if x, <, y for
all @ < B and p(y) is the least ordinal greater than the tree-ranks of the members of
the chain. The length of a chain (r4)a<p in A is the ordinal 8. If each member of A
has two immediate successors and every chain in A of limit length (including the empty
chain) has one immediate successor, the tree is said to be a full binary tree.

Proposition 1. (No <, <) 4s a lezicographically ordered full binary tree ([40], [42, The-
orem 11]).

Central to the algebraico-tree-theoretic development of the theory of surreal numbers
is the following consequence of Proposition 1, where a subclass B of an ordered class
(4, <) is said to be convex, if z € B whenever z,y € B and z < z < y.

Proposition 2. Every nonempty convex subclass of No has a simplest member. In par-
ticular, if L and R are (possibly empty) subsets of No for which every member of L
precedes every member of R (written L < R), there is a simplest member of No lying
between the members of L and the members of R [}0, Theorem 1 and Theorem 4 (i) and

(ii)].

Co-opting notation introduced by Conway, the simplest member of No lying between
the members of L and the members of R is denoted by

{L|R}.

Following Conway [19, page 4], if z = {L|R}, we write 2% for a typical member of
L and z® for a typical member of R; x = {a,b,c,...|d, e, f,...} means that z = {L|R}
where a, b, ¢, ... are typical members of L and d, e, f, ... are typical members of R.

Each x € No has a canonical representation as the simplest member of No lying
between its predecessors on the left and its predecessors on the right, i.e.

T = {Ls(1)|Rs(w)}7
where
Lyzy={a€No:a<;randa <z} and Ry,) ={a€No:a <;randz <a}.

By now letting # = {Ly(y)|Rs@)} and y = {Lyq)|Rsy)}, +,— and - are defined by
recursion as follows, where 2¥, %, y* and y are understood to range over the members
of Ly(a), Rs(a), Ls(y) and Ry, respectively.

Definition of = +y.

z+y= {2t +y,z+y" " +y, 2z +y"}.
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Definition of —x.
—z = {-af|—al}.
Definition of xy.

wy = {a"y + ay"” — aty" 2y + ay® — 2Ry
wly + ay® — zlyR 2Ry 4 oyt — 2Byl

Despite their cryptic appearance, the definitions of sums and products in No have
natural interpretations that essentially assert that the sums and products of elements of
No are the simplest elements of No consistent with No’s structure as an ordered group
and an ordered field respectively (see, for example, [39, page 1236], [40, pages 252-253]).
The constraint on additive inverses, which is a consequence of the definition of addition
[40, page 1237], ensures that the portion of the surreal number tree less than 0 = {&|o}
is (in absolute value) a mirror image of the portion of the surreal number tree greater
than 0, 0 being the simplest element of the surreal number tree (see Fig. 1).

A subclass A of No is said to be initial if ¢ € A whenever y € A and = <, y. Although
there are many isomorphic copies of the order field of reals in No, only one is initial
[40, page 1243]. This ordered field, which we denote R, plays the role of the reals in No.
Similarly, while there are many subclasses A of No that are well-ordered proper classes
in which for all x,y € A, x < y if and only if x <; y, only one is initial. The latter, which
consists of the members of the rightmost branch of (No <, <) (see Fig. 1), is identified
as INo’s class On of ordinals.

The nonzero elements of No can be partitioned into equivalence classes, called
Archimedean classes, each consisting of all nonzero members x,y of No that satisfy
the condition: m|x| > |y| and n|y| > |z| for some positive integers m,n. If @ and b are
members of distinct Archimedean classes and |a| < |b], then we write @ < b and «a is said
to be infinitesimal (in absolute value) relative to b.

An element of No is said to be a leader if it is the simplest member of the positive
elements of an Archimedean class of No. Since the class of positive elements of an
Archimedean class of No is convex, by the first part of Proposition 2 the concept of a
leader is well defined. There is a unique mapping—the w-map—from No onto the ordered
class of leaders that preserves both < and <. The image of y under the w-map is denoted
wY, and in virtue of its order preserving nature, we have: for all z,y € No,

w? < w¥ if and only if z < y.

Using the w-map along with other aspects of No’s s-hierarchical structure and its
structure as a vector space over R, every surreal number can be assigned a canonical
“proper name” or normal form that is a reflection of its characteristic s—hierarchical
properties. These normal forms are expressed as sums of the form
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Fig. 1. Early stages of the recursive unfolding of No.
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a<f

where 3 is an ordinal, (ya),. 4 is a strictly decreasing sequence of surreals, and (ra) 5
is a sequence of nonzero real numbers. Every such expression is in fact the normal form
of some surreal number, the normal form of an ordinal being just its Cantor normal form

([19, pages 31-33], [40, §3.1 and §5], [41]).
Making use of these normal forms, Fig. 1 offers a glimpse of the some of the early

stages of the recursive unfolding of No.
When surreal numbers are represented by their normal forms, order, addition and

multiplication in No assume more tractable forms with the order defined lexicographi-
cally and addition and multiplication defined as for polynomials with w®w¥ = w*t¥ for

all z,y € No.

Definition 3. An element x of an ordered field is said to be infinitesimal if |z| < 1/n for
every positive integer n and it is said to be infinite if |x| > n -1 for every positive integer
n. Thus, in virtue of the lexicographical ordering on normal forms, a surreal number is
infinite (infinitesimal) just in case the greatest exponent in its normal form is greater
than (less than) 0. As such, each surreal number x has a canonical decomposition into
its purely infinite part, its real part, and its infinitesimal part, consisting of the portions
of its normal form all of whose exponents are > 0, = 0, and < 0, respectively. A surreal
number, and a member of an ordered field more generally, will be said to be finite if it

is not infinite.
2.2. Absolute convergence in the sense of Conway

There is a notion of convergence in No for sequences and series of surreals that can
be conveniently expressed using normal forms supplemented with dummy terms whose
coefficients are zero. Let « € No and for each y € No, let r,(z) be the coefficient of w?
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in the normal form of z, it being understood that r,(z) = 0, if w¥ does not occur. Also
let {x, : » € N U{0}} be a sequence of surreals so written. Following Siegel [74, page
432], we write

= lim xz,
n—oo

to mean

ry () = lim ry, (z,), for all y € No,

n—oo

and say that {z,, : n € NU{0}} converges to x. We also write

0o
T = g T,
n=0

to mean the partial sums of the series converge to x.

Among the convergent sequences and series of surreals are those whose mode of con-
vergence is quite distinctive. In particular, for each y € No, there is a nonnegative integer
m such that ry(z,) = ry(2.,) for all n > m. Thus, for each y € No,

Ty (z) = nh_{go Ty (Tn) = 1y (Tm),

where m depends on y. Following Conway, we call this mode of convergence absolute
convergence.

Notational Convention 1. We will call the normal form to which an absolutely convergent
series {x,, : n € N U{0}} of normal forms converges the Limit of the series and denote
it using
Li . 1
AR o
We use “Limit” as opposed to “limit” and “Lim” as opposed to “lim” to distinguish the
surreal notion from its classical counterpart.

Relying on the above and classical combinatorial results of Neumann ([62, pages 206-
209], [74, Lemma 3.2], [1, pages 260-266]), one may prove [74, pages 432-434] the following
theorem of Conway [19, page 40], which is a straightforward application to No of a
classical result of Neumann ([62, page 210], [1, page 267]).

Proposition 4. Let f be a formal power series with real coefficients, i.e. let

fla)=7) raa" (2)
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where the r,,’s are reals. Then f (¢) is absolutely convergent for all infinitesimals ¢ in
No, i.e.,

f(Q) = Lim 3™ rpa™. (3)
m=0

Conway’s theorem also has the following multivariate formulation [74, page 435].

Proposition 5. Let f be a formal power series in k variables with real coefficients, i.e. let

f @1, m) € Rf[2, . @]

Then f (€1, ...,€x) is absolutely convergent for every choice of infinitesimals €1, ..., € in
No.

This can also be written in the following useful form.

Proposition 6. Let {cx : k € (N U{0})™} be any multisequence of real numbers and
hi, ..., hy be infinitesimals. Also let h¥ = hlfl -~ hEm  Then

D ahb* (4)

[k|>0

is a well-defined element of No.

The following result, in which {x, : n € NU{0}} and {y, : n € N U{0}} are ab-
solutely convergent series of normal forms, collects together some elementary properties
of absolute convergence in No. Several are very similar to the properties of the usual
limits.

Proposition 7. Let Lim,,,,x, = = and Lim,,_, -y, = y, and further let h < 1, 7 > 0
and a,b € No. Then

(@) Limy, o0 (axy, + byn) = ax + by;

() Limy,— oo ®nyn = y;

1 1
0= Limy, o— — —: 5
(¢) x # 0= Lim,,_, . . (5)

(d) Gk)(Yn)(|zal < k);
(e) Limy,—,0oh™ = 0;

(f) (vn)(|an| <7) = 2] < 7.
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Proof of Proposition 7. (a) and (b) are proved in [1, page 271], (d) is evident since no set
is cofinal with No, (e) follows from Proposition 2 and (f) follows from (e). For (c¢), since
Lim,,_,co®rn # 0, there is a greatest y € No such that ry(z,) is not eventually zero. Thus,
for sufficiently large n, z,, = r,w¥(1+h,,), where h,, is infinitesimal, and, so, it suffices to
establish the result for x,, of the form 1/(1+ h,,). Since 1/(1+h,) —1 = —h, (1 +h,)"?
and Lim,,_,,.h"™ = 0 the coefficients of leaders in h,, eventually vanish, and, as such,
eventually vanish for —h, (1 +h,)"1. O

2.8. Surreal exponentiation

As was mentioned above, No admits an inductively defined exponential function exp.
(No, exp) is in fact an elementary extension of the exponential ordered field (R, e*) of
real numbers [27]. The exponential function on No was introduced by Kruskal, and
reconstructed and substantially developed by Gonshor [49, Chapter 10]. While the defi-
nition of exp is quite complicated for the general case, it reduces to the following simpler
and more revealing forms for the three theoretically significant cases.

Proposition 8 (Gonshor [}9]).
(i) exp(z) = €® for all x € R;

(ii) exp(z) = >.% _oa™/n! for all infinitesimal x;
(iii) if = is purely infinite, then

exp(z) = {0, (expxl)(z — 2™)"

where x¥ and ™ range over all the purely infinite predecessors of x with x* < x <

k.

The significance of cases (i)—(iii) emerges from the fact that for an arbitrary surreal
x, exp(x) = exp(axp)-exp(xgr) - exp(zr), where xp, g and z are the purely infinite,
real and infinitesimal components of x, respectively.

Shedding further light on exp(z) when x is purely infinite is:

Proposition 9 (Gonshor [/9]). The restriction of exp to the class of purely infinite surreal
numbers is an isomorphism of ordered groups onto No’s class {w” : x € No} of leaders.

In subsequent sections of the paper, for the sake of simplicity, we will occasionally
write € in place of expx for the surreal extension of the real function e®. Readers
seeking additional background in the theory of surreal exponentiation may consult [49,
27,44,13,12].
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3. Extension, antidifferentiation and integral operators

To introduce the requisite conceptions of extension, antidifferentiation and integral op-
erators, we require some preliminary notions concerning intervals, extensions of functions
from the reals to No and restrictions of surreal functions to R, where R is understood
to be the canonical copy of the reals in No (see §2.1).

By an interval I of an ordered class A we mean a convex subclass of A. In addition
to the more familiar types of intervals of R and No we will consider are (a,00) := {z €
R :z > a} and (a,0n) := {xr € No : z > a}, where a € R. In §8.2 a simple condition
is specified under which the forthcoming developments of our theory also apply to the
intervals (—oo,a) :={z € R:z <a} and (—On,a) := {x € No: z < a}, for a € R.

3.1. Derivatives

To formulate the appropriate notions of extension and antidifferentiation operators,
we require a generalization of the idea of a derivative of a function at a point.

Definition 10 (Derivative). Let K be an ordered field. A function f defined on an interval
around a is differentiable at a if there is an f’(a) € K such that (Ve >0¢€ K)(30 >0 €
K) such that

f(z) = f(a)

K)(|lx —
Ve e K)(|Jz—a| < 0= P

= f'(a)| <e).
As usual, f’(a) is said to be the derivative of f at a and f is said to be differentiable if

the derivative of f exists at each point of its domain. The definition generalizes to higher
order derivatives in the usual way.

It is straightforward to check that the derivative so defined on No has the same local
properties (linearity, chain rule, etc.) as its real counterpart. However, because No is
disconnected, global properties such as Rolle’s theorem and its consequences may fail.

3.2. Extension operators

If f is a function, then by dom(f) and ran(f) we mean the domain and range of f
respectively. We define Af and f + g for functions f, g as usual, where dom(f + g) =
dom( f)Ndom(g).

Definition 11. Let I be an interval of R and J be an interval of No that contains I.
(1) As usual, we say that g : J — No extends f : I — R if for every x € I we have
g(x) = f(x), and we denote by g|I the restriction of g to I.
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(2) Let F be a set of real-valued functions defined on intervals of R. By an extension
operator E on F we mean a map that associates to each function f : I — R in F a
function E f : J — No in such a manner that

i. forall f € F, E f is an extension of f;
ii. (Linearity) for all g,h € F and C € R, E(Cg) = CEg and E(g+h) = Eg+ Eh;
iii. if 3,A € R, n € NU{0}, g(z) = 2%’ and h(x) = 2" log(x) for all z € I, then
(E g)(z) = 2% and (E h)(z) = 2™ log(z) for all 2 € J.
iv. Ef' = (Ef).

For some important classes of problems we construct extensions that are multiplicative
or, in other words, that preserve multiplication in the following sense.

Definition 12. An extension operator F is multiplicative on an algebra of functions if for
all f and g in the algebra we have E(fg) = (Ef)(Eqg).

3.8. Antidifferentiation and integral operators

The following definition provides definitions of both real and surreal antidifferentiation
operators.

Definition 13. Let F be a set of real-valued (surreal-valued) functions whose domains are
intervals of R (No). An antidifferentiation operator on F; C F is a function A : F; — F
such that for all f,g € Fi:

i. A f is differentiable and (A f)' = f;
ii. Forany A€ R (A€ No), AAf) =M f, A(f+g9)=Af+Ag;
iii. If y >z and f >0, then (A f)(y) — (A f)(z) > 0.
iv. Yne N, A (2") = %_Hx"“ (the right side being the monomial in F).
v. A(exp) equals the real (surreal) exponential.
vi. If F € F; and F' = f € Fy, then there is a C € R (C € No) such that A f exists
and equals F' + C.

For suitable integrals to exist, we need the “second half” of the fundamental theorem
of calculus to hold. This is the motivation for the following convention.

Notational Convention 2. Let A be an antidifferentiation operator on F; C F, and let
f € Fy and x,y € No. Define

/ /= Af)(w) — AU (). (6)
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The following result demonstrates that the existence of an antidifferentiation operator
on JF; C F implies that ff f is an operator on JF; whose properties make it worthy of
the appellation “integral operator”.

In the following proposition, «,3,a,b,a1,az2,a3 € No, and f,g,fg,f o g, [, g are
understood to be elements of F; on [a,b], [a1,az], [az, as] or [a1, as] where applicable. In
our constructions we will specify which spaces are closed under the above-said operations.

Proposition 14 (Integral operators). Let A be an antidifferentiation operator on F; C F.
Then fry f is an integral operator on F1, meaning a function of three variables, x,y € No
and f € Fi, with the properties:

/

(d) 72f+73f = 73f,

b b
(e) /f’g = fgl® - /fg' if f and g are differentiable on (a, b);

T g(z)
(f) /(f 0g)g = / f whenever g € F; is differentiable on (a, ).
a g(a)

b
(g) If f is a positive function and b > a, then /f > 0.

Proof. All these are straightforward. (a) follows from Definition 13 i, and differentiating
(6). (b) follows from Definition 13, ii. (e) follows similarly using the chain rule and, taking
g = 1, it implies (c). (d) follows from Equation (6). For (f), note that since f € F; we
have f = F’ for some F, and hence (F og)" = (f og)g’; the rest is a consequence of (c).
And, finally, (g) follows from Definition 13, iii. O

As we alluded to in the introduction, in §8 we construct a wide class of functions
defined on intervals of R of the form (a,00), where a may depend on the function, that
is closed under antidifferentiation in the sense of Definition 13, and which we extend in
the sense of Definition 11 to surreal functions defined on (a, On). By contrast, for our
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negative result we only retain some very basic properties of antidifferentiation and work
on a space of functions with “very good properties”. This is spelled out below in §13.

4. Difficulties of defining extensions and integration of functions, and our strategy for
overcoming them

One of the sources of difficulty in extending more general classes of classical func-
tions to No and in defining integration for them is the fact that the topology of surreal
numbers is totally disconnected, and as such processes other than the usual “extensions
by continuity” must be employed. A natural class of functions on which extensions and
integration can be naturally defined in a way that preserves the expected properties are
the analytic functions. This is due to their unique representations as power series, which
at oo take the form

Fa) =3 =% (7)
k=0

where for some positive real R and all k € NU{0} we have |c| < R*; of course the series
in Equation (7) converges for all z € R such that x > R. We can make use of normal
forms to define Ef(z) for all surreal numbers greater than R in a way that ensures that
E preserves all operations that are preserved by Limits (see §2.2). For this, relying on
Proposition 4 and the definition of “Lim” (see §2.2), we simply write
N

Ck

o Ck .
Efw)=) o5 = Lim > % ®)
k=0 k=

Similarly, for all z € No such that z > R and f as in Equation (7), we let

= c
ANof(sr:):cosc—i—cllogx—Zm. (9)
k>2

Based on Proposition 7, it is an easy exercise to check that Ano so defined is an anti-
differentiation operator on the class of functions analytic at co. In fact, for the class of
functions analytic at oo and O(z~2) for large = (co = ¢; = 0 in (7)) this is an antide-
rivative with “zero constant at oo” or from oco. Integration is defined for R < a < z by
Equation (6).

With obvious adaptations, these definitions, constructions and results extend to func-
tions that are given at co by convergent Puiseux fractional power series or, far more
generally, by convergent transseries (see §5.2 and e.g. [22, page 143]).

While divergent series and transseries as formal objects can be associated in much
the same way with actual surreal functions defined on the positive infinite elements of
No, the difficulty in these cases is to pair them with functions on the finite surreals in a
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unique way that, additionally, is compatible with common operations in analysis. Indeed,
while in classical analysis convergent expansions correspond to a unique function, this is
not the case for divergent expansions. We overcome this difficulty by using techniques
of resurgent functions and Ecalle-Borel summation (§8).

The following simple example based on the exponential integral Ei illustrates the
non-uniqueness problem in the divergent case. The function y(z) = e~ *Ei(x) is given by

y(x) = e *PV / € ds (10)
s

where PV stands for the Cauchy principal value: for x > 0 this is defined as the symmetric
limit lim,_,+ ( o+ ff).
This y(«) has the asymptotic series

— k!
y(x)NZW’ T — 00. (11)
k=0

Since y(z) = Y 7o, w,f% is well defined for all € No via Limits, as in (8), it would be

tempting to define the integral Pfooo %ds for all z > oo as e®y(z). But here we face
a non-uniqueness problem: for any a € R, the function y,(z) = e~* PV [ %ds has the
same asymptotic series as y(z) given in Equation (11). This is because y(z) — yq.(z) =
Ce™? (where the constant C' is PV ffoo %ds) and the power series asymptotics of e™*
for large x is zero. In fact, classical asymptotic analysis cannot distinguish between y
and the whole family of y,’s. (Contrast this with the fact that two different analytic
functions cannot share the same Taylor series).

As a consequence of this type of non-uniqueness, in Section §13 we are able to show
that a linear association between functions and general divergent series requires a rel-
atively strong consequence of the Axiom of Choice (and as such cannot be instituted
based on a specific definition, something which will be the subject of another paper).
Accordingly, the class of divergent series needs to be restricted! With this in mind, as was
mentioned in the introduction, we limit our analysis to a proper subclass of the resurgent
functions, a subclass that appears to be wide enough to contain those functions which
occur commonly in applications. As such, from a practical standpoint, our restriction
appears to be relatively mild.

In §6 we introduce the idea of a resurgent function and the closely related idea of a
resurgent transseries. The resurgent transseries are of particular importance to us since
a unique association can be carried out in a constructive fashion between the class of
resurgent divergent transseries, on the one hand, and the class of resurgent functions,
on the other. For example, the resurgent function associated with the series in (11)
is e *Ei(x). Moreover, this association preserves all the local operations with which
the summation of convergent Taylor series do. We will use the just-said association to
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Transseries

’I‘r::(LomonoV \

ToTr

Resurgent functions Surreal functions

Fig. 2. The extension operator E restricted to the positive infinite case is the composition of two interme-
diate isomorphisms: transseriation, i.e. Tr := (£ o mon o B)_l, from a subspace of resurgent functions to
a subspace of transseries, where £ o mon o B is Ecalle-Borel summation, and a map 7 from the just-said
subspace of transseries to surreal functions.

define our desired integrals for the positive infinite case invoking a pair of isomorphisms—
one between a subclass of resurgent functions and a subspace of transseries, and the
other between the just-said subspace of transseries and a class of functions on No. It
is through this pair of isomorphisms (see Fig. 2) that we extend resurgent functions to
infinite surreals and define their integrals. Moreover, the integrals so-defined on surreal
extensions of resurgent functions (as well as on transseries) have the properties specified
in Proposition 14.

We remind the reader that by convention we set the point where our functions have
divergent expansions to be at the gap co (see Footnote 3), and as such the only gap past
which defining integration is difficult is oo itself.

To prepare the way for our discussion of resurgent functions and resurgent transseries,
in the following section we will first review some classical results in the theory of Borel
summability and the theory of transseries and then prove a new result (Proposition 47)
concerning the existence of antiderivatives. Like Proposition 47, most of the material in
§5 from subsection 5.5 on is new.

5. Transseries, Borel summation and Borel summable subspaces of transseries

Typically, Borel summability and Ecalle-Borel summability deal with series of the
form

fi= Z P B>0; MeZ (12)
k=M

where the coefficients {ci}r>n and S are real. The Borel sum of a finite sum is by
definition the identity. Hence, we can assume without loss of generality that M = 1.

5.1. Classical Borel summation of series

The following definition collects together some of the basic concepts and observations
we will employ in this and subsequent sections.
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Definition 15 (Laplace transform, Borel transform, Borel sum and critical time). For
suitable functions F' for which the integral exists, the Laplace transform LF of F is

defined as:
/ e "PF(p
0

The (formal) inverse Laplace transform of a series f = S ey ek~ *+DP is defined as a
term-by-term transform of the series

L= a5 rg),

k=0

where T' is the Gamma function; if n is a positive integer, T'(n) = (n — 1)!.

The Borel transform Bf of a formal series f given by Equation (12) with M =1 (see
the remarks following Equation (12)) is the series obtained by taking the term-by-term
inverse Laplace transform of f in normalized form. If # = 1, then Bf is analytic at
p = 0; otherwise it is ramified-analytic and Bf = p~'A(p?) where A is analytic. It is
often relatively easy to reduce to the case = 1, which we will assume in the following.

The Borel sum of f along RT exists if after taking the Borel transform Bf of f the
following two conditions are satisfied:

(i) The series Bf is convergent, and its sum (by abuse of notation also written Bf) is
analytic on R*.5

(ii) Bf has exponential bounds on R*, i.e., 3v > 0 such that SUp,s, le=?(Bf)(p)| <
0.

When this is the case, the Borel sum of f is by definition LBf.

For example,

EBf:k!(—l)kx_k_l = LF = —€¢"Ei(—z); F(p) = ——. (13)

The coeflicients ¢, of asymptotic series occurring in applications have at most power-
of-factorial growth ¢; ~ (k!)P for some (usually integer) p. To apply Borel summation or
the more general Ecalle-Borel summation to a series of a factorially divergent series, one
needs to normalize the series by passing to the power of x that ensures that the growth
of the coefficient of = **t18 is, to leading order, I'(kp). The power of the variable with

8 Mathematically, Bf is a formal series, albeit convergent, and is distinct from its sum-a germ of an
analytic function-which in turn is distinct from its analytic continuation on RT. These distinctions are
typically dropped whenever no confusion is possible. For instance, we write with a tacit license that Bf is
analytic on Rt.
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respect to which this precise factorial growth is achieved is called Ecalle critical time.
An illustration is provided by the asymptotic series of ewzerfc(x) as T — 00,

2 1 1 3 LI G
B f ~ — - cre = 1 a7 14
e" erfe(z) NS AL S + 4y/mad + v kz_l x2k’ (14)

where 7c, = (—1)*T'(k — 1/2). To ensure that the growth of the coefficients of the series
matches the power of the variable as explained, we need to change the variable to t = /.
In this example the critical time is ¢t = z/2.

A calculation shows that

B(fg) = (Bf) * (Bg), (15)

where “x” is the Laplace convolution

(F+G)(p) = / F(s)G(p — s)ds. (16)
0

Proposition 16 (The space S of Borel summable series). Let Sp be the space of series
which are Borel summable. Then:

(i) Sp is a differential algebra (with respect to formal addition, multiplication, and
differentiation of power series), and LB is an isomorphism of differential algebras.

(ii) If S. C Sp denotes the differential algebra of convergent power series, and we
identify a convergent power series with its sum, then £B is the identity on S..

(iii) For f € Sp and z in the open right half plane, LB is asymptotic to f as || — oco.

(iv) The subspace of Sp consisting of series whose Borel transforms are analytic in a
disk around the origin and in a nonempty open sector is closed under composition. More
precisely, if f and § are elements of this subspace, then so is f o (I +g), I being the
identity map.

(v) Borel summation is a proper extension of the usual summation. More precisely, if
f= Dok crxz ™k converges to f in a neighborhood of oo, then Bf is entire, exponentially
bounded and LBf = f.

Proof. Statements (i)—(iii) and (v) are proved in ([22], p. 106); and for the proof of (iv),
see ([60] p. 159). O

Note. Borel sums are analytic for large argument x. Standard arguments from complex
analysis (e.g. combining Morera’s theorem with Fubini) show that LBf is real analytic
for all sufficiently large z € R.

Definition 17 (Borel summation). The operator of Borel summation is defined at any
point zg € R (or C) by moving xq to oo, performing Borel summation at co and moving
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the point at oo back to xo. That is, we define (LB),, = M ! o LBo M where M is the
Moébius transformation z + xg + =1 (see also Definition 80).

On Borel summed series that are O(z~2), we now define an operator having some of
the properties of an antidifferentiation operator in the sense of Definition 13.

Definition 18. Let Sp.2 be the space of Borel summable series that are O(z~2). Further,
let s € Sp.2, S = LBs, and AgS = — fooo p~Le=*P(Bs)(p)dp. Asymptotic series at infinity
are particular cases of transseries at infinity to which Ag is successively extended in §5.4,
§5.8 and §6.

We note that by the general properties of the Laplace transform we have (Agf) = f
and Agf = O(x~') for large z. Hence, Agf = [ S(t)dt.

Proposition 19. Ag, as defined in Definition 18, is well defined on Borel sums of real-
valued series and has Properties i—iii and vi from Definition 13.

Proof. If s = O(z~2) for large x, then by definition, (Bs)(p) = O(p) for small p. Since
Bs is analytic at zero, we have Bs = pH(p) where H is analytic at zero, and hence,
p~1Bs = H(p) is analytic at zero as well. Clearly, Bs has analytic continuation on R* if
and only if H(p) is has analytic continuation on R*. It is also straightforward to check
that Bs is exponentially bounded for large p if and only if H is exponentially bounded
for large p. This establishes the existence of AgS.

Using the exponential bounds and dominated convergence we see that we can differ-
entiate under the integral sign and get (AgS)’ = S, thereby establishing Property i of
Definition 13.

Proposition 16 (iii) shows that if s is positive (meaning that the coefficient of the
highest power of x is positive), S is a positive function for large x. The positivity of
the coefficient of the highest power of z is equivalent to the positivity of H(0), which in
turn shows that AgS is negative and increasing for large x, establishing Property iii of
Definition 13. Property ii of Definition 13, i.e., linearity, follows from the linearity of B
and £, and of multiplication by p~!. Property vi follows from the fact noted above that
Agf = f:o S(t)dt and the fundamental theorem of calculus. In fact, using the remark
following Definition 18, we have C =0. O

5.2. Transseries: an overview

As was mentioned in the introduction, a transseries over R is a formal series built
up from R and a variable x > R using powers, exponentiation, logarithms and infinite
sums. Ecalle’s classical construction of the ordered differential field T of transseries over
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R is inductive, beginning with log-free transseries [32].” There have been a number of
alternative constructions since (e.g. [4,30,69,21,51,14]). For a self-contained introduction
to transseries, see [37]. Transseries are formal series of the following form in the variables
L1y 42, .-y fn, called transmonomials:

~ k ki, k En
T = E Ck = E Ck17k27,,_,k7LH11H22 c g (17)
k>—M k1,k2,....kn>—M

where the transmonomials are functions of x, the coefficients are members of R and
M € Z. The set of tuples of integers bounded below used as indices in (17) are well-
ordered lexicographically; this indexation, which emphasizes the nature of the generators
(transmonomials) is preferable, in the applications we are considering, to one using the
corresponding ordinals.

Transseries have (exponential) heights and (logarithmic) depths that emerge from
their inductive construction, but in our discussion we will only be concerned with log-
free, height one and height one, depth one transseries, and these are characterized below
in Definitions 24 and 30, respectively. Since context should prevent confusion, we will
freely write exponential and logarithmic terms in transseries using e and log, respectively.

In the case of transseries over R the component terms in T are descendingly well
ordered with respect to the asymptotic order relation >>; for example, for the transseries
e’ +x+logr+1+2~! we have e® > x> logxz > 1 > 27!, where a > b indicates that
a is large (i.e. infinitely large) compared with b.

We say that a transseries 7" is positive if the largest transmonomial of T' with respect
to >> has a positive coefficient, negative if —7"is positive, and T = 0 if all of its coefficients
are zero.

There is a striking similarity between transseries over the reals and surreal numbers
written in normal form. Aschenbrenner, van den Dries and van der Hoeven [6] have exhib-
ited a canonical elementary embedding ¢ of the ordered differential field T of transseries
into (No, 9) that is the identity on R and sends x to w, where 9 is the derivation on No
due to Berarducci and Mantova [14]. By appealing to Berarducci and Mantova’s con-
struction of ¢(T) := R((w))*¥ [14], Ehrlich and Kaplan [44] have shown that R((w))¥
is initial. We will have more to say about R((w))L¥ in §11.

The similarity between transseries over the reals and surreal numbers carries over to
the fact that the topology generated by Conway’s notion of absolute convergence (see
§2.2) is mutatis mutandis the same as the following “transseries topology” in the space
of transseries.

Definition 20. The transseries topology on T (see [22, p. 131], [37]) is defined by the
following convergence notion. Let ) .., cl[(m ] ¥ be a sequence of transseries, where

9 Motivated by a problem of Tarski on the model theory of (R, e®), Dahn and Géring [24] independently
introduced T as an exponential ordered field.
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the superscript [m] designates the mth element of the sequence and c{ln ] designates the

sequences of coefficients of the mth element. Then,

lim c{(m]uk = g aep if and only if Yk 3n such that Vm > n, ch] = Ck,
m—0o0
k>—M k>—M

(18)
i.e., if and only if all the coefficients eventually become those of the limit transseries
(rather than merely converge to them).

5.3. Differentiation of transseries

T is closed under differentiation, where differentiation of transseries is defined by
induction on transseries height as termwise differentiation [30,51,22,32]. Tt is shown in
[22] that the termwise differentiation of a transseries is convergent in the transseries
topology.

5.4. Integration of transseries

T is also closed under integration. More specifically, we have:

Proposition 21 (van den Dries, Macintyre and Marker [30]). There is an antidifferenti-
ation operator on T, henceforth Ar, that is unique up to an additive real constant.

An independent, alternative proof (in the same spirit) of the existence portion of
Proposition 21 was later given in [22, p. 143, Proposition 4.221].!" In the latter treatment,
the operator At is defined as the unique fixed point of a linear inhomogeneous equation
whose linear part is contractive in a suitable sense (see [22, Definition 4.186, p. 132]).
While the definition is constructive, the expression of the operator is not explicit, in
general.

Note 22. Although antidifferentiation in At is unique up to a real constant, there is a
natural choice of an antidifferentiation, the one whose values are transseries with zero
finite part. The interpretation of this choice is that of integration from oo, the only point
all one-point compactifications of (1,00) have in common. However, any other choice of
real constant would lead to the same definite integration operator, since the integral is
a difference of two antiderivatives, and the constants would cancel.

The following result collects together a number of simple consequences of the above
results, taken from [22, p. 143-144, Propositions 4.224-4.225].

10 The second author wishes to thank Lou van den Dries for helpful remarks on Proposition 21 and the
relation between its proof and that of the above-mentioned result in [22].
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Proposition 23. The antidifferentiation operator At on T from Proposition 21 has the
following properties for all transseries T, Ty and Th: Ar is an antiderivative without
constant terms, i.e.,

ATTZL—FS,

where L is the purely infinite part of ApT (i.e. all terms in L are > 1) and s is the small
part of ApT (i.e. 1> s). Here ApT is written as a sum as in Equation (17).
Moreover,

Ar(Ty +To) = ArTy + Ar Ty,
(ArT) =T, ArT' = Ty,

Ar(T1T3) = (T T)g — At (T1T3), (19)
if Ty > Tb, then ApT) > ApTh,
if T >0and T > 1,then ApT > 0,

where Tg is the constant-free part of T', that is,

if T = Z e, then ng Z i
k>kg k>ko;k#0

and where (Tlfg)ﬁ is the transseries T} T, with the constant term chosen to be zero.

“Hands-on” constructions of antiderivatives of special transseries that will concern us
will be given in Subsection 5.5.1.

5.5. Some subspaces of transseries

In this section we introduce and analyze three spaces of transseries: T_, Ty and T.
Transseries in T_ occur as solutions of nonlinear ODEs, difference equations and a
variety of other nonlinear problems. Transseries in T, arise in linear problems and T,
is a space that is generated by repeated antidifferentiation. The minus subscript stands
for the fact that all the arguments of the exponentials in the members of the space
are nonpositive; the subscript “¢” indicates the absence of exponentials, but possible
presence of logarithms; and the plus subscript indicates that all the arguments of the
exponentials in the members are positive.

The space T_ is actually a differential algebra. Nonlinear problems rely on the alge-
braic structure, which we analyze. For the other two spaces we are only interested in
their linear properties. The space T, @ T_ is closed under antidifferentiation.

Definition 24 (The space T_ of log-free, height one transseries). Let n € N, B, be
vectors in R™, with A\; > 0 for ¢ = 1,...,n, and define
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To= Y e Al = Y Bk kA (). (20)

k>0,0>0 k>0

where the g are formal power series which are o(1/x) for large z. In applications in
which ¢ starts with a constant, this constant can be subtracted out. To arrange that
Jx = o(1/z) for all k # 0 we can simply change 3; to 8; + 1 (with the effect of dividing
Yk by w‘k‘). We denote the space of such 7_ by T_.'"! The parameters n, X, 8 depend
on the transseries; when combining two transseries one first needs to embed all of these
in a larger parameter space.

The condition in the above definition that the gy are o(1/z) for large z is a useful
convention because it ensures that the only common element of T, and T_ is zero,
and thereby leads to the uniqueness of decompositions expressed in Proposition 31 and
elsewhere. To achieve the same end, o(z~™) or, equivalently, O(z~(™*+1) could have
been used for other values of m > 1. Our convention explains the choice we adopt in the
sequel of writing expressions of the form e¥* with k > 0 as (e™*)~F, as well as the fact
that at times we have negative indices in sums (see, for example, Definition 29).

The condition A; > 0 ensures that there is no infinite ascending chain of terms with
respect to the asymptotic order relation. The form expressed by Equation (20) is the

most general type of log-free transseries occurring in usual applications.

Note 25. With R™ replaced by C", Equation (20) represents the most general transseries
solution of generic, normalized, nonlinear systems of meromorphic ODEs. For such sys-
tems, ck  are vectors, a generalization that can be easily dealt with. On the other hand,
allowing for complex coefficients would pose various technical problems in our setting
which we prefer to avoid. The term “normalized” refers to the fact that the exponentials
are of the form e™%*, that is, the exponents are linear in x. Had we started with e_‘“”b,
b # 1, we would normalize the transseries by changing the variable to t = x° (also see
Note 49); it can be shown that t thus defined coincides with the Ecalle critical time

introduced in Definition 15.

Proposition 26. The linear combination and multiplication of two transseries TV and
T®@ are defined as follows:

aWFM) 4 @F@) = ngk k)\m o (1)( )+ (z)gl(f)(x))
k>0

where a and a® are real numbers.

T(l T(?) _ Z Jfﬁ k_—k-Azx ZyJ yk s ) (21)

k>0

11 Equation (20) depicts a simple case of a level one transseries, also referred to as a mized series.
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With respect to these operations, T_ is a commutative algebra.
Proof. Straightforward verification. 0O

Repeated antidifferentiation of elements in T_ results in polynomials combined with
logs which generate the space T, below, which needs to be adjoined to our construction.

Definition 27 (The Space T;). Let Ty be the space of transseries of the form
T =Y cAk(1/2)+ R, (22)
k=0

where n € NU {0}, ¢ € R (k = 0,...,n), A% (1/2) is the kth antiderivative without
constant term of 1/x, and R is a polynomial of 1/x without constant term in 1/z.

Proposition 28. T, is a space of functions that coincide with their transseries, and is
closed under At (see Definition 27). Moreover, each element of Ty can be written uniquely
in the form

Ty = P(z)log +Q(z) + R(x)
where P, and R are polynomials and R has no constant term.
Proof. Straightforward: all these are elementary functions. O

Definition 29 (The Space T ). For j € {—M, ...,—1}, let the \; be a descending sequence
of positive reals and let the 5; and the c¢;; be arbitrary sequences of reals. Subject to
these conditions, further let

1
T, = Z cj,m:ﬁje’\”ﬂc’l = Z xﬁje’\ﬂﬂj(x), (23)
_M<j<—1; I>1 j=—M

where the §; are formal power series in powers of 1/x satisfying §; = O(1/z) (as is
implied by the expanded form of 7' in the middle term in Equation (23)). We denote the
space of all transseries of type T by T..

Comment. In the rightmost expression in Equation (23), integer powers of x can be
traded between y; and 2% an ambiguity which is immaterial as the middle term in (23)
shows.

Definition 30 (The space Ty of height one, depth one transseries). Employing the nota-
tions from Definitions 24, 27 and 29, henceforth we denote by T; the space T, & T, T_.
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Proposition 31. Every T € T; can be written uniquely in the form 7' = T+ + Ty +T-
where T, € T, Ty € T;and T_ € T_.

Proof. This follows from Definition 30, the descendingly well ordering of the component
terms of a transseries, and the definitions of the three subspaces, the latter of which
collectively imply Ty NTy = Ty NT_ = T, NT_ = {0} and T, > T; > T_ whenever
these component transseries are nonzero. 0O

Differentiation. It is easy to verify that, if § is a power series, then
(%) = aPe [ (Bt = N7 + 7| (24)
where g’ is the termwise differentiation of 7.

Note 32. The right side of Equation (24) is negative since § is a series with positive
coefficients and, as is the case with any asymptotic power series, §’ < 7.

Definition 33. Differentiation for the T, component is termwise differentiation of the
constituent monomials; see also Proposition 28. For the other two components, it is
defined as termwise differentiation, namely,

( > fﬂﬁjex’“@j(w)+Zxﬁ'k6_k'”§k($))
=M

k>0
-1

= Z (xﬁje)‘jmﬂj(x)), + Z (xﬂ‘ke‘k‘*””gk(x))'

j=—M k>0

-1
= Y PN [(BaTt + A + 3]
j=—M

+ 3 PR (B ket — k- N)j + G(@)] . (25)
k>0

Differentiation of an element of T; is defined as the sum of the derivatives of its
+,¢ and — components.

The infinite sums in Equation (25) converge in the transserries topology; for a proof
see [22].

5.5.1. The definition of the operator At on T_
We first define A on the individual components of the transseries, namely on ty, =
pPke KAz (1) and on t = afieri%g;(x),j € {—M,...,—1}. To this end, we solve, in

transseries, the ODE ¢’ = t. The terms ¢y and t are treated very similarly, and we analyze
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only ti. If k =0 and §p = Y5, iz, then ¥ = — Dol — D)7 ler™ 1 If k # 0 then

the substitution oy (7) = 2P Ke K ATe=kATy) (1) in the ODE
Uy = ti (26)
brings it to the form
w —k-(A= Bz Hw =1y, (27)

which has the power series solution w(z) = 3,5, w;jxz ™I, where the coefficients w; are
uniquely determined by the recurrence relation

k-Xcjr1 —(k-B—j)ej = —lkj; 1= fik;\ (28)

Next, we define
A (zﬂ'kefk'mgjk(x)) = zﬁ'kefk')‘zw(z), (29)
where w(z) is characterized as above.

5.5.2. The definition of the operator At on T4
To define A (2% e*i;(z)) we proceed as in §5.5.1: we write a differential equation

xPieriw;(z) = xPie)if;(z), and obtain

B; - d . -

— 4+ X\ | w;(x —w;(z) —y;i(x) =0.

(x"‘a J()"‘dxj()yj()

Writing g; = >277, djz 7, the coefficients {c;,}men of the power series w; satisfy the
recurrence relation c,, = )\j_l [dm +(m—1—j)cm-1]; m > 1;¢o = 0. This shows
existence and uniqueness of a solution with zero constant term.

Using Proposition 28 and the results in §5.5.1 and §5.5.2 we now extend antidifferen-
tiation to T;.

Definition 34 (Definition A on Ty ). At is defined by linearity on Ty =T, @ T, T_,
by writing

-1
ArT = 3 Ar (2%eVg;(2)) + ArTy+ Y Ar (o7 e ™ (@), (30)
j=—M k>0

The infinite sum defined above in Equation (30) converges in the transserries topology;
a general proof is provided in [22]. The derivative and the antiderivative are inverses of
each other.
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Proposition 35. Replacing the functions with elements of Ty everywhere in Definition 13,
the operator At restricted to T; satisfies the properties i—iv and vi listed there.

Proof. The proof is a straightforward verification. 0O
5.6. Watson’s lemma

The following classical result is essential in determining the asymptotic behavior of
Laplace transforms.

Lemma 36 (Watson’s Lemma (see, e.g., [22], p. 31)). Assume that F is locally integrable
and exponentially bounded on R*, a,b > 0 and F(p) ~ Z:O:o frp*et? for small p > 0.
Then

o0
Ika+b+1
/e‘”’F Z fil( ]:(Llj;ﬂ—i— ) as r — o0. (31)
0 k>0

5.7. Borel summable subspaces of transseries

Definition 37 (The Borel summable subspace T of Ti). We say that a transseries is
Borel-summable if all power series §i and §}(z) in Equation (20) are Borel summable
and there are positive constants ¢1, ¢a, ¢ (which may depend on T') such that for all k
and p € RT we have

|(Biji) (p)| < credl e and |(Bij;)(p)| < cre?. (32)

In view of the summability results we rely on in the sequel, we impose the nonresonance
condition

(k—K)-XA+X—)\;=0ifand only if k — k' =0and i = j fori,j € {—M,...,—1}; (33)

that is, the condition that linear combinations of the exponents with integer coefficients
permitted by our assumptions can only vanish trivially.

Henceforth, by T we mean the subspace of T; whose members are Borel summable.
We write T g, T_ 5 for the Borel summable subspaces of T, T_. By Proposition 28
(a), we may identify T, g with T, and write LBT, =

For clarity of notation we do not follow the multiindex convention, but, instead, by

k| we mean \/k? + -+ k2.

Note 38.
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(a) The assumption that all power series gy in Equation (20) are Borel summable does
not hold, generically, for nonlinear systems of ODEs. Instead, these series are resur-
gent, a case we study in the next section.

(b) Using (33) we have the linear ordering k; > ks if and only if k;A > koA. By the
discussion at the beginning of §5.2, and assuming the formal power series below are
nonzero, we have: if \; > Ay, then z%1e* 7§ (z) > 272e 2§ (2), and if k; > ko, then
pPliegmkidrg, (7)) < ghleekedeg, (7).

Proposition 39.

(a) There exist positive constants c1,ca,cg such that for all x > r > c3, all j < 0, and
all k we have

(LB) (2)] < erch (x — e3)™! and |[(LBg;)(z)| < er(x — e3) ™" (34)

Moreover, if c # 0 and § = cx~™(1+o0(1)), then LB[e*zP§] = cx~™me 2P (1+0(1)),
for some c € RT.

(b) Let Ai,..;\p € RT, By, ..., 3, € R, A = min{\y, ..., \,} and B = max{Bi, ..., Bn}-
Also let zo be such that for all x > xo we have cze 2P < 1. Then, for all x >
max{cs, xg} we have

1

(1 — szﬁe*Az)N (Qj - 03)_17 (35)

Z PkekAr |LBg| < Cl(CQ(I}ﬁe—)\x)NM
k>M

where N € N, M € Z. In particular, the infinite sum converges uniformly and
absolutely (in the analytic sense) for x > xq if xo satisfies 02:17567)‘9”O < 1.
(¢) If, in addition, M' < M and 8 = min{py, ..., Brr+},

-1
Y P eNTILBg; () < (M + Dere P (z — )" (36)
j==M

(d) T_ g is an algebra, i.e., if T and TP are elements of T_ 5 and a® 0@ e R,
then so are aVTW) + ¢ TR gng TOTE) .

Proof. For the first part of (a) we simply note that, by assumption, |[LBjk| <
clclzk‘ﬁ(ec?’p) = c1c|2k‘ (r — c3)~1, while the second part follows from Proposition 16 and
Lemma 36. For (b), by assumption and using (a), we majorize each term in the infinite
sum in (35) by ¢1(corPe )Pt +En (1 — c3)~! (the terms of a geometric series) and the
result follows. The proof of (c) is similar and, in fact, simpler: we estimate a finite sum
in terms of its largest term.

For (d), if the constants in the bounds expressed in (32) for T(),i = 1,2 are cg),
where k = 1,2,3 and i = 1,2, and if by ¢, we denote max{c,(cl), c,(f)}, then a bound of the
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type (32) for T + T3 is (¢1(Jla™M| + |a(2)|)c|2k|e°'3p. By linearity and the polarization
identity 2ab = (a + b)? — a® — b2, for the product it is enough to show that Tg is closed
under squaring. If § satisfies |Bg| < e“? for p € R, then (15) implies B|§?| < B|g|* B|j| <
pe® < eletDP Then, using this inequality and estimating the number of terms in the
innermost sum in Equation (21) by the rough bound [k|V¥ and using [k|V < eV/*l we
get

BY f5(@)iij(@)| < GelstP(czeN ),

from which the result follows. O

Definition 40. Let 7' € Ty and let A, 8 and z( be as in Proposition 39. Then the Borel
sum of T is defined as

-1
LBT = N a®eNerBy; + Y af ke N LBy + T, (37)

j=—M k>0

(see Proposition 28 and Definition 37). We note that, by (35) and the Weierstrass M-test,
the infinite series in Equation (37) converges uniformly and absolutely (in the analytic
sense of convergence) on the interval [zg, 00).

Proposition 41.

(a) If T € Ty, then T > 0 if and only if LBT > 0 for sufficiently large z.
(b) The kernel of LB is zero, i.e., {T € Tp : LBT = 0} = {0}.

Proof. (a). If §; # O for some j < 0, then we choose the most negative j with this
property, and for §; to be nonzero there must exist an m € N and a nonzero ¢ € C such
that j; = cz~™(1+0(1)). Using Proposition 39 (a), we see that LBT = ce®xfiz=™ (14
o(1)) and the result follows. The proof is very similar if instead §; = 0 for all j < 0 and
P or @ is nonzero, or, if P and @ are also zero and for some k we have g # 0.

(b) follows immediately from (a). O

Definition 42. Let Fp denote the function space { LBT : T € Tp}. Mimicking the notation
in Definition 30 and Proposition 31, we write: Fg = Fy g ® F; ® F_ g, with F, 5, F¢
and F_ 5 understood in the expected manner.

Note that, by Definition 28, Borel summability is the identity on Fy, and as such we
could have written equivalently Fp 5 in place of F.
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Corollary 43.

(a) LB is a bijection between Tp and Fp.
(b) LB (restricted to T_ g) is a linear and multiplicative bijection from T_ g to F_ g.

Proof. (a) is an immediate consequence of Proposition 41 and Definition 42. For (b),
bijectivity follows from (a) and the definition of £B; and linearity and multiplicativ-
ity follow from the fact that T_ g is closed under addition and multiplication and a
straightforward calculation using the definition of £B and the fact that £B is linear and
multiplicative on Sz. O

Note that in virtue of Proposition 31 and Corollary 43 the decomposition in Defini-
tion 42 is unique.

5.8. Differentiation and antidifferentiation on Tpg

Lemma 44 (Differentiation). If § is a Borel summable formal power series, then
(1) (efmxﬁﬁsz)/ = e P LBY, where

p
§= 8z~ =N+ and Bj =5 | [ B3 | = By - 5. (38)
0

(2) Let gk be as in Definition 37. Then, for some constants cy,ch, s depending only on
c1,¢2,c3, and all p € RT and k we have

|(Bijw) (p)| < ¢y Mlecs. (39)
(3) The sum
Z xﬂ'ke‘k')‘rLByLk (40)
k>0

converges uniformly and absolutely in the analytic sense, for large z, and with T as
in Definition 40 we have

-1
(LBT) = Y a%eNmLBj; + Y aP e ™ A LB + Ty = LB(T)'. (41)
j=—M k>0

Proof. The fact that 7 is given by the first equation in (38) follows from the isomorphisms
induced by Borel summation (see Proposition 16), viz:
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(ea?LBg) = ™2 [pa~ LB — MCBj + LB(7)]
p
=e 2L B /Bﬂ ABy —pBy | - (42)
0

For part (2), we note that [ [Byx| < e? ['1 = pe“sP < e(©T1P. The absolute value of
the term —pBj is also bounded by p|Byy| < e(¢s+1P, Next, | 8|[k|+|k||A| < exp[|k|(|B]+
|IAD)], and so the result follows. Using (2), uniform and absolute convergence, in the
analytic sense, are shown as in the first sentence of the proof of Proposition 39. The
rest follows from an elementary theorem about sequences of functions [45, p. 321]. (The
estimates above can be improved substantially, but we do not need this here.) O

The Corollary below is an immediate consequence of Lemma 44 and Corollary 43.

Corollary 45 (Preservation of differentiation). The space Tp is closed under differentia-
tion and, for T' € Tg, we have (LBT) = LB(T)'; LB is a differential space isomorphism.
Restricted to T_ g, LB is a differential algebra isomorphism.

In the following definition we extend the operator Ag of Definition 18 and Proposi-
tion 19 to include F, and F_ g.

Definition 46. For T' € T, ® T_ g, A, (LBT) := LB(ATT).

As the next proposition shows, A, is well-defined on the image of T, @ T_ p under
LB, that is, on F; ® F_ g, and takes values in F, ® F_ g.

Proposition 47 (Antidifferentiation).

(a) The operator Aty : Fy & F_ g — Fi & F_ p is well defined.
(b) Ar, satisfies Properties i-iv and vi of Definition 13.
(c) The space Fp @ F_ p is closed under differentiation and antidifferentiation.

Proof. Clearly, we only need to check the statement on F_ 5. For k = 0, (a) and (b)
follow from Definition 18 and Proposition 19. Next, we show (a) for a term of the form
zPke kX LB with k # 0. Using the results in §5.5.1, we need to prove that the
solution of the ODE (28) is Borel summable with bounds as in Definition 37. These
bounds are needed to prove absolute and uniform convergence of the resulting infinite
series, as in Proposition 39.

Taking the Borel transform of (27) and letting W = Bw and Y = By, we get

(k- A+ p)W(p) = k-ﬂ/W(s)ds—i—Y(p). (43)
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After differentiation in p, we get a first order linear ODE that can be easily solved
by quadratures. However, the estimates we need are more difficult to obtain from the
explicit solution, and we use a different approach here. We rewrite Equation (43) in the
form

Y(p )
W(p) = T /\+ /W d8+ S (44)
Choose now
k-
c§>sup{k|-)"i|1,03;k20}. (45)

Let D be the domain of analyticity of Y. It is easy to check that Equation (44) is
contractive in the Banach space

{f analytic in D : || f|| < oo, where ||f|| = sup e_cé‘p|’f(p)|}.
peD

It follows that the LBwy exist and satisfy the same estimates as the LBgy with the
triple (c1,ce,c3) replaced by (c1,ce,c4) with ¢4 as in (45), and (a) follows. Part (b)
is a consequence of Corollary 45 and of the bounds in terms of (ci,ca,c5) (obtained
in (a)) which imply uniform and absolute convergence of the infinite series. And Part
(c) is immediate, since Fy is closed under differentiation and antidifferentiation and, by
the analysis above, so is F, @ F_ g where differentiation and antidifferentiation require
switching a term of the form a/x™ between these two spaces.

We now turn to (b) for general k. For Property i, first note that we have already
shown that, for T € T, @ T_ 5 the series through which we defined Aq,7 is uniformly
and absolutely convergent (in the analytic sense). On the other hand, the series whose
terms are the derivatives of the terms of ATBT converges uniformly and absolutely to
LBT, simply because these terms are, by construction, the terms of LBT'. The rest follows
from the elementary theorem about sequences of functions [45, p. 321] referred to before.
Property ii (i.e. linearity) is immediate. For Property iii (positivity), to understand the
monotonicity of ATBT, we appeal to Proposition 41 and Lemma 44 to conclude that we
only have to examine the dominant term of the transseries of the derivative of Ar, T.
Since by assumption 7' > 0, by the definition of positivity in §5.2, this dominant term is
positive and the property follows. Property iv follows from Equation (37) by setting all
Pk = 0 if k #0, choosing By = n+ 1 and gp = 1/z, and from the definitions of Ar, and
of Ar. Finally, for Property vi, let F = LBT and f = LBt. Since f = (LBT)’, the rest
follows from Definition 46 and Proposition 47. O

Combining the content of the preceding results in this section, we get:
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Theorem 48. LB is an isomorphism of commutative differential algebras between T_ 5
and F_ . The space F; @ F_ g is closed under differentiation and antidifferentiation.

Note 49. As we mentioned already, to cover generic solutions of nonlinear ODEs we
have to allow for more general than Borel summable series, namely resurgent ones.
Furthermore, T4 5 is not closed under antidifferentiation; resurgence tools are required
to deal with this space.

6. Resurgent functions, resurgent transseries and Ecalle-Borel summability:
background

6.1. Background: Borel plane singularities along the Laplace transform path and the
need to extend Borel summation

So far, antidifferentiation of a transseries T' € Ty has been defined under the assump-
tion 117 g = 0 (cf. Definition 46). This assumption is needed to ensure Borel summability,
as it is manifest in the integral in Equation (56) below, involved in the Borel transform
of the terms in T_h g- This condition excludes some very common functions encountered
in applications such as Ei,(z) = fax %ds (where the integral is understood as a Cauchy
principal value if a € [—00,0)). Indeed, the transseries of Ei,(x) is e*§(x) 4+ C, where C,
is a constant depending on the endpoint of integration; clearly, in this case, A = 1 (see
Definition 24), and classical Borel summation does not apply.

Furthermore, in transseries arising in applications, the points k - A are singularities of
the Borel transforms of yi. Hence, if A\; € R, then a generalization of Borel summability
is needed. The condition \; ¢ R™ may appear to be generic; however, equations arising in
applications typically have real coefficients in which case the numbers \; come in complex
conjugate pairs and, more often than not, are purely real. For instance, for the tronquée
solutions of all Painlevé equations P; — Py in normalized (Boutroux) coordinates, the
values of A are A\; o = +1.

Ecalle introduced significant improvements over Borel summation to address such
limitations. Among them are the concepts of critical times (see Definition 15) and accel-
eration/deceleration to deal with mixed powers of the factorial divergence. Last but not
least, and the only additional ingredient we will need, is that of averaging.

In linear problems, to avoid the singularities of the integrand on R* (when present),
one can take the half-half average of the Laplace transforms above and below R*. On the
other hand, in nonlinear equations such as nonlinear ODEs, the average of two solutions
is not a solution. Ecalle found constructive, universal averages which successfully replace
the naive half-half averages mentioned above; however, it is altogether nontrivial to
construct them and show that they work. Of these, we use the so-called organic average,
mon [36,34], which is well suited for our general construction. Invoking Borel transforms
followed by analytic continuation along paths avoiding singularities, followed by taking
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the organic average of these continuations, and finally applying the Laplace transforms,
yields a differential field algebra [34,59].

In the remainder of this section we provide an overview of the concepts of averaging
and resurgence relevant to the discussion of resurgent functions, resurgent transseries
and Ecalle-Borel summability below.

6.2. Averages of Borel transforms (and more general functions in the Borel plane)

Assume that one of the singular directions of the Borel transform Y = Bj of a
normalized series 4 is Rt with a discrete set of singularity locations w,, n € N.

Since in our discussion the only integration axis that comes into play is R*, henceforth
we assume that one of the singular directions of the Borel transform of §j is RT, that
wo := 0, and that for each n € N, w, is the nth singularity on RT, where w,, increases
with increasing n.

Now consider the class of all curves going forward (towards oc) that circumvent the
just-said singularities. One associates with each such curve a unique series €1, €, ..., €, ...
such that for each n € N ¢, € {4, —} where €, = + (resp. —) indicates that the curve is
in the lower (resp. upper) half plane between w,_; and w,. For instance, + ++ — — — ...
describes a curve starting out in the lower half plane and crossing into and remaining in
the upper half plane after the third singularity, ws.'? For a point ¢ in the open interval
(Wn, wnt1) along such a curve, the position vector (e, ..., €,) is called the address of the
point ¢ on the curve.

A uniformizing average or, more simply, an average m : Y — mY of a function Y
with singularities at w; as described above is defined using a system of weights m which,
in turn, is defined via the w,s and the ¢,s by the following:

my(Q= > mlEyEEE)e) if we<C<wun, (46)

€1,...,en€{+,—}"

......

along a curve circumventing the singularities as specified by the position vector (€1, ..., €, )

described above, and m(;i ----- o) is its corresponding weight, the definition of which
depends on the choice of average in question.

There are many types of averages of Borel transforms to chose from. However, for an
average'® m to be well-behaved with respect to the goals of Ecalle-Borel resummation,
following Ecalle and Menous ([36], [34, page 256]) there are four conditions it should
satisfy:

12 Here we follow Ecalle’s convention from [34], rather than the convention employed by the first author
in [20].

13 Here we refer to continuous averages as opposed to the subclass of discrete ones that assume a fixed
(for instance periodic) lattice of singularities. Fixed lattice settings simplify the analysis when this analysis
is restricted to one particular equation.
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A1l. m must respect convolution, i.e. m(Y * G) = (mY)(mQG);
A2. m must respect real-valuedness;

A3. m must respect lateral growth;

A4. m should be scale invariant.

A1 ensures that m is an algebra homomorphism; A2 ensures that mY is real when-
ever Y is real; A3 ensures that exponential bounds, which are needed for the Laplace
transform to apply, are maintained by averaging; and A4, which ensures invariance under
homothetic rescalings ¢ + const.C of R*, while natural, is not an essential condition.
On the other hand, we note that while the functions satisfying A4 form an algebra, and
functions of “natural origin” possess it, such a condition relies on resurgence in some
broad sense to hold,'* and we refer the reader to [34] for an in-depth discussion of these

issues.

6.3. Resurgent series and resurgent functions: definitions

Definition 50 (Resurgent series and resurgent functions).

(1) In this paper, a normalized series § will be said to be resurgent if its Borel transform

Y = By is:

(a) analytic or ramified analytic at p = 0;

(b) endlessly continuable (in the sense that the singularities encountered by analytic
continuation along any compact curve segment form a discrete set);

(¢) exponentially bounded in every nonsingular direction, while in singular directions
Y is in the domain of a well-behaved average.

(2) Sharing the appellation, Y = By is called resurgent in the Borel plane or simply
resurgent, and y = LY is called resurgent in the physical plane or simply resurgent,
if § is resurgent.

(3) A transseries in T4 @ Ty @ T_ is resurgent if: (a) all component series g (x) and
g;(z) (see (20) and (23)) are resurgent; (b) their Borel transforms are exponentially
bounded in every nonsingular direction in a k, j-independent way; and, (c) in singular
directions, these Borel transforms are in the domain of a well-behaved average.

(4) We denote by Tg the space of resurgent transseries in T4 & Ty @ T_. Accordingly,
Tr = Ty r ® Ty ® T_ r, where T z denotes the space of resurgent transseries
in T4 and T_ g denotes the space of resurgent transseries in T_. (In virtue of
Proposition 28, the members of T, are necessarily resurgent, and so it would be
superfluous to write T,z in the decomposition of Tx.)

14 Indeed, one can use the uniformization theorem to see that bounds on the “first” Riemann sheet do not
constrain growth on other sheets.
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6.4. The well-behaved average mon

Condition (1)(c) of Definition 50 appeals to the notion of a well-behaved average.
There is in fact an entire continuum of such averages [34]. As we mentioned above, for
our treatment we adopt the average Ecalle has dubbed the “organic average”, i.e. the
average mon, given by

n
mon 1770 = 9n H <|€i_1 + €] — _ et ) ,

» w1+t ws
1=2

where, on the right side of the equation, it is understood that |e;—1 + €;| = 2 (resp. 0) if
€1 = € (resp. €;_1 # €;)'° and the w;’s are the members of R™ defined as above [34,
page 272].

Alternatively, mon can be defined by recursion ([36, pages 86-87], [34, page 272]),

€1
where mon(w) = %, and for each n > 1,

moni5) — mon(EH ST p |
with
1 Wn
PR=1--— =
n Qw1+ -+, if en_1=¢n
and
1 Wn
Pi=——"
n 2w1_|_ +wn fﬁn 17éEn

In addition to being arguably the simplest of the well-behaved averages, mon is
distinguished by being the lower limit of such averages [34, page 272] (also see [59]). It
is important to note, however, that when restricted to the class of functions that we are

16

concerned with in this paper, because of nonresonance'® all the well-behaved averages

coincide (see Section 8.4).
7. Resurgent functions, resurgent transseries and Ecalle-Borel summability

In this section we establish results that we need in §8 to determine the correspondence
between the class Fr of resurgent functions that we referred to in the introduction and
their corresponding classes of transseries and surreal functions.

5 In other words, each + (resp. —) from the left side of the equation may be regarded as being replaced
on the right side of the equation by a +1 (resp. —1) or alternatively by a —1 (resp. +1).

16 Nonresonance (see Equation (33)) is generic: it holds except for a zero measure set in the space of all
parameters. As a result of nonresonance there is one active alien derivative per singular direction [34]. We
also note that resonance can lead to multiple Ecalle critical times and for resummation Ecalle acceleration
is needed. For further details see ([20], §1.1.2).
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7.1. The resurgent subspace Tr

The definitions and propositions in the remainder of this subsection, along with some
of the proofs, largely mimic their counterparts in the section on ordinary Borel summa-
bility.

The operator mon o B is a proper extension of B. Henceforth, for brevity, we adopt
the following conventions.

Definition 51.
B:=mono Band LB := Lomono B. (47)
LB is the Ecalle-Borel summation, a wide generalization of £B.'7

Recalling that well-behaved averages preserve lateral growth, sufficient growth condi-
tions for a transseries to be Ecalle-Borel summable are similar to those for usual Borel
summability (see Definition 37): in particular, for any small ¢ > 0 there are positive
constants c¢q, ca, c3 such that for all k

(Bi)(p)| < crele™” and | (Bi)(p)] < crelle 7 if |argpl € (e,2).  (48)

Definition 52. The Ecalle-Borel sum of T € Tx is defined as
—~ o~ —~ -~ 71 —~
LBT =Y aP ke MLy + Ty + > afie"LBj;(). (49)
k>0 j=—M

Using the fact that mon preserves lateral growth it is easy to extend the results
obtained in §5.7 to resurgent transseries. For example, note that in virtue of Definition 52
we have

ZB(xf“"eMx—") ="M P = Pl (50)
which implies LB(zPe*®) = zfe e,
Proposition 53. Acting on Tg, LB = LB.

Proof. For any average, the sum of the weights is 1. Hence, if F is real-analytic, then
monF =F. 0O

17 Strictly speaking, there is a different Ecalle-Borel summation for each distinct well-behaved average.
The summation we employ is based on mon. However, as the uniqueness result referred to above and in §8.4
implies, all Ecalle-Borel summations coincide for the restricted class of functions we are concerned with in
this paper.
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In the statement of the following proposition, the positive constants ¢, cs and c3 are
the bounds in (48).

Proposition 54. Let T € Tr. Also, let A = min{\i, ..., \,} and § = max{pi,..., Bn}.
Further, let xg be such that for all x > xo we have cse=Mxh < 1. Then:

(a) For all x > max{cs,xo} we have

Z pBKo—kAz

k>M

1 -1
(1—021‘56_)‘9”)N(x_63) ’

ﬁigk‘ < Cl(ngﬂe_)\z)NM (51)

where N is the dimension of the vector k.

(b) The infinite sum in Equation (49) converges uniformly and absolutely on the interval
[r,00) for any r € RT satisfying the condition vr — |B|logr > |logca|, as well as in
the complex strip {x : Rz € [r,00)}.

(¢) If M' < M and = min{p, ..., Ba }, then

—1
3 eheNT|LB ()] < (M + Dere ™o (@ — ¢5) 7 (52)
j=—M'

(d) T_ x is an algebra, i.c., if T and T? are elements of T_ r and aV,a® € R,
then aMTW + TR and TWOT®) gre elements of T .

(e) If T € Tr, then T > 0 if and only if LBT >0 for large enough x.

(f) The kernel of LB is zero, i.e., {TeTx: LBT = 0} = {0}.

Proof. The proof closely follows the proofs of Proposition 39, Proposition 41 and Corol-
lary 43. O

Definition 55. Let Fr = {y : § € Tr}. Further let F4 @ Fe®F_ r be the decomposition
of Fr induced by the decomposition T r @ Ty @ T_ r of Tr from Definition 50(4).

If in Propositions 41 through 47 we uniformly replace the subscript B with the sub-
script R and uniformly replace the operator £B with the operator EB, the resulting
propositions remain valid, and the changes in their respective proofs are minor. Indeed,
the lateral growth conditions on Borel plane functions and their convolutions are at the
crux of the proofs, and they are all respected by well-behaved averages. An important
such example is the following analog of Lemma 44(3).

Proposition 56 (Differentiation on Tr). Let T € Tg.

-1
(LBTY = Y 2PN LBy, + Y aP*e ™ N LBy + T} = LB(T) . (53)
j=—M k>0
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Moreover, Z P 'ke_k')‘xﬁ%gjk converges uniformly and absolutely for large x.
k>0

Proof. As indicated above, the proof closely follows the proof of Lemma 44(3). O

Theorem 57. (a) LB is an isomorphism between the spaces Tr and Fr that preserves
differentiation and antidifferentiation.

(b) LB restricted to T_  is an isomorphism between the algebras T_ z and F_ »
that preserves differentiation and antidifferentiation.

Proof. The proof of Part (a) follows the same steps as those Corollary 43 through The-
orem 48 together with the aforementioned fact established by Ecalle and Menous [36]
(also see [34]) that mon respects lateral growth and convolution (and is clearly linear).
In the same fashion, the proof of the isomorphism of algebras in (b) mirrors, with
obvious adaptations, the proof of Proposition 47.
Since the antidifferentiation properties in (b) are important for us, we provide more
detail. To begin with,

—1
T, = > cualiermaTt = " afiehity;(a). (54)
—M<j<—1; 121 j=—M

For each of the terms x% e)‘ﬂ“'gjj we follow the same calculations as in the proof of
Proposition 47 to obtain the integral equation (43). Now the integral operator is not
contractive because of the pole of the denominator. Instead, since the sum in T L is
finite, and there are no convergence concerns, rougher estimates suffice. We analyze each
term in T+ separately. Differentiating now Equation (54) and proceeding as in the proof
of Proposition 47, we get for each term of the sum (setting A = A; and 8 = §;),

A=pW'+(B-1)W-Y =0, (55)

with the solution (after integration by parts) being

B 51
W) = [ SEEEE v (s - (A9 Y () = (N A+ )Y 0. (56)
0

Analyticity of W away from the zeros of the denominators follows from dominated
convergence. Preservation of lateral growth is established as in the case of ordinary
Borel summability (see Proposition 47 and its proof). The transformations involved
in obtaining W from Y are multiplication by (A — p)®, where ax = +8 — 1 and
f— fop f(s)ds = f 1. By Al, convolution preserves growth, while multiplication by
(A — p)* preserves growth along any smooth curve. 0O



O. Costin, P. Ehrlich / Advances in Mathematics 452 (2024) 109823 43

Note 58. It is worth noting that (as follows from Definition 52 and the just-proved
isomorphism theorem), the transseries of the Ecalle-Borel sum of a series is the series
itself.

Definition 59. For T’ € Tx, let A(LBT) := LB(ArT).
The following Corollary is an immediate consequence of Definition 59 and Theorem 57.

Corollary 60 (Antidifferentiation). A so defined is an antidifferentiation operator (see
Definition 13) on Fr and

(AT) = A(T") = LBT.

8. Correspondence between resurgent functions, transseries in Ty and surreal
functions: surreal antidifferentiation

In §4 we mentioned that to define integrals on No we would invoke a pair
of isomorphisms—one between a subclass of resurgent functions and a subspace of
transseries, and the other between the just-said subspace of transseries and a class
of functions on No. These are the maps Tr and 7 respectively. We now consider them in
turn.

Proposition 61. For each f € Fgr (see Definition 55) there exists a ¢ such that f is
real-analytic on (¢, 00).

Proof. Definition 50 and Theorem 57 imply that, for some positive xg, the series of
analytic functions on the right side of (37) converges uniformly on compact sets in a
domain D = {z : |z| > x¢, |argz| < ¢ < 7/2}. Hence, Lo mono Bf is analytic in D. In
particular it is real-analytic. O

Definition 62. Based on the isomorphism in Theorem 57, we define the operator of
transseriation Tr to be the inverse of LB.

Example E2: The Ecalle-Borel summed transseries of 2°¢**. In virtue of Definition 52
and the fact that LB1 = 1, we have Tr(z%e**) = 27e**. The equality is also an imme-
diate consequence of Equation (50).

Proposition 63. If f € Fr, then there is an a € R™ such that f(z) > 0 on (a,o00) if and
only if Trf > 0.

Proof. Since well-behaved averages respect lateral growth, the proof mirrors that of
Proposition 41. O
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8.1. Differentiation of series that are absolutely convergent in the sense of Conway

In this subsection, we establish a result that will be needed in the sequel about differ-
entiation of series of surreal functions that converge absolutely in the sense of Conway
for any value of the variable belonging to some open interval.

Theorem 64. Let f1,..., [, be twice differentiable infinitesimal functions defined on the
positive infinite surreals. For n € Z, define the function g on each positive infinite surreal
x by

gl@) = Y ad(x), (57)

[k|=0

where {ck}k;>ni<m 5 a sequence of reals. Then g is differentiable for each such x and
its derivative is given as follows by termwise differentiation:

g@)=> a (Z k; ?8) f(x)k, (58)

K=o \i=1

whereby convention we set f!(x)/fi(x) =0 if fi(z) =0.
Proof. We begin with the following simple observation.

Observation 65. Suppose f is a function such that f(a +¢€) — f(a) = g(a)e + h(a, €)€>
where, for some ¢ > 0 and sufficiently small € we have |h(a,€)] < ¢. Then f is dif-
ferentiable at a and f'(a) = g(a). Based on the binomial formula, it is easy to check
that, if f is twice differentiable, € is infinitesimal and k € N, then f(x + €)% — f(z)* =
kf(x)F=1f"(z)e + k2 f(2)*2F(z, k; €)e? where F is bounded for k € N and infinitesimal
¢. (Uniform boundedness in k follows from the fact that 0 < m7|e| < 2 for all m, j € N).

First note that the sum is absolutely convergent in the sense of Conway by Proposi-
tion 6 and the assumption that the f; are infinitesimals. We will prove the result for m =
1; once having done so, the general result follows by induction and the usual decomposi-

tion fi(z-+a)fo(z+a) = f1(2) fo(z) = fo(z+a)[fi(z+a) = (@) + fr(2) [f2(2+a) - f2(2)].

For m = 1, using Observation 65 and straightforward calculations, it follows that

g(x+€) —g(@) =Y cxkf(@)F () + h(x, €) (59)

k>0

where, using another application of Observation 65, we see that h(x,¢€) is an absolutely
convergent series which is bounded if e < 1. O

For the second isomorphism, 7, we require the following definition that trades on the
intimate relationship between the members of T and certain surreal functions.
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Definition 66. In accordance with Definition 30 and Proposition 28, each element 7' of
T, is a transseries of the form

T = E chxﬁje/\jx*lJr
—M<j<-1; I>1

P(x)log(z) + Q(x) + R(x)+

E P Ee kA=l (60)
k>0,1>0

where the first sum is in T, the second sum, in which P and @ are polynomials and R
is a polynomial without constant term, is in Ty, and the last sum belongs to T_.

With each such T we associate the function T/ consisting of all ordered pairs
(v, Tf(v)), where v is a positive infinite member of No and 77 (v) is the expression
that results from first replacing all occurrences of = on the right side of (60) with occur-
rences of v, and then replacing (in the resulting expression) the absolutely convergent
sum (with bounds k > 0,1 > 0) with the Lim sum to which it absolutely converges. That
is:

T/ (v) = E eyl
—M<G<-1; 121

P(v)log(v) + Q(v) + R(v)+
Lim Z ag P e A=l (61)

— 00
[k|<m,|l|<m

Let 7:= {(T,T/) : T € T,}, No” := {T/ : T € T;} (i.e. the range of the map 7) and
let Rno := {Tf T € Tr}. Finally, let No” := {Tf T e T_}.

Theorem 67. The map 7 in Definition 66 is an isomorphism of vector spaces endowed
with differentiation between T; and No” and, when restricted to T_, an isomorphism
of differential algebras between T_ and No” .

Proof. This follows from the fact that the transseries topology

T = lim E clejﬁ'ke*k')‘”V*l

m—oo
[k|<m,[l]<m

preserves the differential algebra operations (see §5.2 and, for proofs, [21]), as does Lim
(see Proposition 7 and the preceding material in this section). O

To complete the main part of our construction, we need an extension operator E in the
sense of Definition 11, and, on restricted domains, a multiplicative extension operator in
the sense of Definition 12. It is this to which we now turn.
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8.2. The extension operator E

In the following we introduce an extension operator E acting on real-valued functions
f on the reals to functions on the finite and positive infinite surreals. Assuming the
function fy defined by f(x) = f(—x) is in Fg, the extension of f to negative infinite
surreal z is simply defined by (Ef)(x) := (Efy)(—z), the subscript + indicting that
f+ is defined for x > 0. In view of this elementary correspondence and to simplify the
exposition we will solely focus on finite and positive infinite surreals.

Definition 68. Let f € Fgr, and let ¢ € R be such that f is real-analytic on (¢, c0) as is
assured by Proposition 61. We extend f to (¢, On) as follows, whereby a finite surreal
we mean the leading exponent in its normal form is < 0.

(1) For positive infinite z € No we define (Ef)(z) = (7 o Tr f)(x).
(2) For finite x € No, where xg is the real part of z and ( is the infinitesimal part of x
(see Definition 3), we define (Ef)(z) by

fl@o +¢) = flao) + > _(KY) F*) (o) ¢k, (62)

E>1

where the infinite sum is absolutely convergent in the sense of Conway.

Before proceeding further, we offer a couple of observations on the second part of the
above definition. To begin with, as above let f € Fr and let ¢ € R be such that f is
real-analytic on (¢, c0) as in Proposition 61. Also let € be the local radius of convergence
of the Taylor series of f at z¢ € R. For real || < e we have

Flwo+ Q) = flwo) + Y (k)™ f ¥ (wo)¢*. (63)

k>1

Substituting x = 1/¢ for the two occurrences of ¢ in Equation (63), the right side of
the resulting equation is the convergent (a fortiori Borel and Ecalle-Borel summable)
transseries of the left side of the resulting equation about x = oo. In particular f(zo+z1)
is resurgent, and Definition 68 (2) is a special case of (1). In addition, alternatively and
more formally, we can reduce case (2) of the above definition to case (1) by resorting to
M, the Mébius transformation x + x¢ + 21 (see also Definition 80) by defining E by
(Ef)(@o+a™t)=[M"toroTroMf|(z").

Theorem 69. E : Fr — RNo s an isomorphism of linear spaces endowed with differen-
tiation and antidifferentiation. Its restriction to F_ g is an isomorphism of differential
algebras.

Proof. In virtue of the preceding remark, the formula for E at an arbitrary point is
obtained from the one at oo, hence it is enough to prove the result in the latter case. But
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at oo the result follows immediately from Theorems 67 and 57, since E is a composition
of isomorphisms. O

Some special cases of extensions are given below.

Corollary 70. In the following, real functions are assumed to be defined on some interval
(c,00) CRT.

(1) If a,b € R and f : RY — R is given by f(x) = 2%, then Ef = x%"* for all
positive x € No.

(2) If P is a polynomial and f : RY — R is given by f = P(x)logx, then Ef = P(x)logx
for all positive x € No.

(3) If f € Fr and f >0 on (¢,0), then (Ef)(x) > 0 for all x € No such that x > c.

Proof. (1) and (2) follow immediately from Definitions 52 and 68.
For (3), note that if f(z) > 0 for all real = € (¢, 00), then, by Proposition 63 we have
Trf > 0 and, plainly, 7 o Trf > 0 for all positive infinite x € No. O

The following result is an immediate consequence of Theorem 69 and of Corollary 70.

Theorem 71. E is an extension operator in the sense of Definition 11. Moreover, E re-
stricted to F_ r is a multiplicative extension operator in the sense of Definition 12.

Example: the special case of functions with convergent transseries at co.

First note that, if a convergent transseries is of the type expressed in Equation (60) and
its sum is f, then f € Fr. Indeed, in this case the Borel transform of a convergent series
Zl>0 ckJ:c*l is an entire function, and Ecalle-Borel summation coincides with Borel
summation (since in the Borel plane there are no singularities), and by Proposition 16
(ii) Borel summation is simply the identity. We denote by Fr cony the space of the sums
(same as Borel sums) of the transseries in Tcep,. Observe that for f € Fr cony Wwe have

f= lim Z . (64)

L—oo
L>k>-M

Definition 72. Let f € Fgr cony- Then (Ef)(z) is defined for positive infinite surreal z
as an absolutely convergent series in the sense of Conway, by replacing the exponentials
and logarithms in the transseries of f by their surreal counterparts and lim by Lim.

Proposition 73. The operator E|Fr conv (i.e. E restricted to Fr conv) 15 an isomor-
phism of algebras between the algebra of convergent transseries Fr cony and its image

fNo,conv = E]:”R,,conzw

Proof. This is straightforward since the algebras Fr conv and Fno,conv consist of limits
and Limits, respectively, of finite sums. 0O
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The following result is an immediate consequence of Corollary 70 and Proposition 73.

Proposition 74. The operator E|Fg conv iS an extension operator in the sense of Defini-
tion 11, and E| (F_ g N FRr,conv) is multiplicative in the sense of Definition 12.

8.3. The main theorem on antidifferentiation: the operator Ano
Definition 75. Let E(Fr) :={Ef : f € Fr}.

Since E : Fr = Rno (from Theorem 69) is a surjection, henceforth we write E(Fg)
in place of Ryo.-

Definition 76. By Ano we mean the operator defined by the following conditions:

(1) for members of E(Fr), ANo = EAE™!, where E and A, defined on Fg, are the
extension and antidifferentiation operators from Definition 68 and Definition 59;
(2) for f € E(Fr) and X € No, ANo(Af) = Mo f-

Example E3: Ano(e”). Since Are® = e®, we obtain, for positive infinite surreal z
ANo(€e”) = e”. (65)

It is easy to check that, for any A € No and f,g € E(Fr) we have Ano[A(f + g)] =
Mo f + Mo g

We prove in Theorem 78 below that Ano is an antidifferentiation operator in the sense
of Definition 13. To prepare the way, we first prove:

Proposition 77. In the following we assume that ¢ € R and f is defined on {x € No :
x> c}.

(1) If f € E(Fr), then (Anof) = f.
(2) If 2,y € (¢c,00) NR and f € Fr, then (Anof)(y) — (Anof)(z) = [ f(s)ds.
(3) If f € E(FRr) is nonnegative and y > x > ¢, then (Anof)(y) — (ANof)(x) > 0.

Proof. Assume f € E(Fr) and let fg := E~!f. By the definition of E, f(z) = fr(z) for

any real = € (¢, 00).
(1) By Theorem 71 and using the construction of Ane, we have

(Anof) = (EAfr) = E(Afr) =Efr = .

(2) The function g(x,y) fy R — [(Afr)(y) — (Afr)(z)] is real-analytic in (x,y) and
dg = 0. Hence g(z, ) is a constant. Since g(x,x) = 0, g is the zero function.
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(3) Since, as noted, fgr coincides with f on (c,00) C R, we see that fr is nonnegative.
Let Fr = Afr. By elementary calculus, for y > = in (¢,00) we have Fr(y) > Fr(z).
Hence, fixing x € (¢,00) with y being the variable, and using the properties of E and
the definition of AN, we obtain sign(y — )[Afr(y) — Afr(z)] > 0 for all y € No. For
finite y; < y2 € No for which there is an z € (¢,00) such that y; < z < yo, we insert
an intermediate term to obtain Afgr(y2) — Afr(z) + Afr(z) — Afr(y1) > 0. If instead
y1 < y2 € No are finite but there is no such real x satisfying the just-said condition,
then the standard parts of y; and y» coincide with some x and the property follows from
the Taylor expansions of Afgr(z + [y1,2 — z]) around z.

We are left with the analysis of the case when y; < yo are both positive infinite.
Let fr = LBT. We only analyze the case where the component of 7" in T is nonzero,
say CzP~ler  as the case where T € T_ @ T, is similar. The property that needs to
be established is that, if 7 > 0, then F = ALBT is an increasing function. From the
construction of A, for positive infinite v, F'(v) is an absolutely convergent Conway power
series with dominant term A\~1CvA~te?. We distinguish two cases. If 0 < ya—1y; = € < 1,
then each term in the Conway expansion of F' can be reexpanded in e. By this we mean

1

the following. Letting y; = v and ¢; = ev~* we have

TN (B -
e/\j(u—&-e)(y + E)ﬁj—l = NP im,, e Z Z J' (6 k )EIf, (66)
7!
r=0 k=0

which we insert in the Lim term above in the first sum in Equation (61), and we
similarly reexpand the other terms to obtain the Lim as m — oo of an N + 2-
dimensional truncated power series. This expansion shows that the dominant term of
F(v+¢) — F(v) is CvP7leMe > 0. If instead, 0 < yo — v = a is finite, then, with
s being some infinitesimal function and a° being the standard part of a, we have
F(v+a)/F(v) = (1+a/v)? 1?1 + s(v +a))/(1 + s(v)) > e} > 1, as it is easy
to check. O

It is worth noting that, in virtue of the construction of Ano = EAE—! we have obtained
more than just antidifferentiation; in particular, we have obtained the operator E, which
in turn is used in the construction of Ano. ANo provides the solutions of equations
of the form f’ = g, whereas, by virtue of the fact that E preserves the operations of
differential algebra, E can be used to solve classes of nonlinear equations, such as ODEs,
and difference equations. This brings us to the main theorem on antidifferentiation.

Theorem 78. Ano is an antidifferentiation operator in the sense of Definition 15.

Proof. The satisfaction of condition i of Definition 13 follows from Proposition 77 (1);
the satisfaction of ii follows from Definition 76 (1) and (2) and the linearity of LB; the
satisfaction of iii follows from Proposition 77 (2); and the satisfaction of iv and v follows
from Proposition 70 (1). For the satisfaction of vi, let f = Efg, and note that f' =0
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means (Efg)’ = 0, thereby implying fg = 0. Hence there is a C' € R such that fg = C,
implying f =C. O

In virtue of Equation (6), Proposition 14 and Theorem 78, we now have:

Corollary 79. [V f = Ano(f)(y) — Ano(f)(z) is an integral operator on the domain of
AnNo-

8.4. Uniqueness

The existence of a continuum of nonequivalent well-behaved averages induces an ap-
parent nonuniqueness of the operators E and Ano. However, as we mentioned above,
when restricted to the class of functions with which we are concerned with in this pa-
per (see the introduction as well as Footnote 16 on nonresonance and the remark it is
appended to) all such averages coincide, thereby resulting in unique operators when E
and Ano are thus restricted. A detailed analysis of this will be the subject of a different

paper.
9. The extension and antidifferentiation operators E* and AY,

Often singular behavior occurs in other limits than z — oo. For instance, for a modular
form such as the elliptic theta function €3, the unit circle in C is a natural boundary, and
the limits of interest on the real line are 1 (see §10.2). Here, by changes of variable, we
expand the domain of our extension and antidifferentiation operators to handle arbitrary
points.

The extension operator E* is constructed in two stages. We begin by defining E,
acting on functions that are resurgent at zg = oo, with values in surreal functions
defined for positive infinite surreals, namely we define (Eo f)(x) = (7 o Tr f)(z). For
functions that are resurgent at finite xg, or £y = —oo we simply change variables to
bring the case to o = co. For example, the function ¢ — exp(—1/t) is real-analytic on
(0,1) but not at zero; extending it to positive infinitesimal ¢ is done by writing ¢t = 1/x
and extending the new function e™* to positive infinite values of x using E.,. That is,
(Ef)(1/t) :== (Exf)(x) with x = 1/¢. For the sake of completeness we formalize this
process in the paragraphs below.

Definition 80. Let zg € R,a € R* and f : D(f) — R be a real-analytic function.
If D(f) = (a,00), then we let m(x) = z, the identity. If D(f) = (—o0, —a), we let
m(z) = —x;if D(f) = (zg, x0+a), then we let m(x) = zo+1/x, and if D(f) = (xo—a, zo),
then m(z) = zo — 1/x. We then define M f = f o m. The domain of M f is (a™!,00) in
the first two cases and (a, 00) in the last two.
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The class of functions we have heretofore been concerned with that we call “resurgent”
are the members of Fg; see Definition 55. The following definition expands the class of
functions we subsume under this appellation.

Definition 81. If M f € Fr with M and f as in Definition 80, we say f is resurgent. Let
F% be the set of all resurgent functions in the just-said sense. If y € F5, we say y is
resurgent at o = oo (resp. —oo) if  — y(x) (resp. z — y(—x) € F5, and we say y is
resurgent to the right (resp. left) of zg € R if © — y(xg+ 1/x) (resp. z — y(xo — 1/x) €
F5.

Definition 82. Suppose f is resurgent (in the sense of Definition 81). If M is the identity
(i.e. if f is resurgent at co) we define EX_f for oo < z € No by (EX f)(z) := (70
Tr f)(z) and let E* = EX . More generally, in all four cases of Definition 80, we set
E* := M~'E: M. Also set E*(Fg) :={E*f: fe Fi}

Notice that Fr C Fp and, hence, E(Fgr) C E*(F}).

Theorem 83. E* is an extension operator in the sense of Definition 11. Moreover, E*
restricted to {f : Mf € fj’R} is a multiplicative extension operator in the sense of
Definition 12.

Proof. Proposition 71 shows that E’_ has the properties stated in the theorem. Conjuga-
tion through M, M~1(-)M is an obvious structural isomorphism, ensuring preservation
of the required properties. 0O

9.1. Definition of AN

We now make use of Definition 80 to define integration by changes of variable via M.
Recall that Ano has the intuitive interpretation (Anof)(x) = f; f. To extend Ano to
other points zg € R (or —c0), we change the variable of integration to map zo € R (resp.
—00) to co. In the change of variable M f = f om, m is a one-to-one rational function
which coincides with its surreal extension.

For example, if D(f) = (0,€) we have m(s) = 1/s and we note that, heuristically,

1/s

Jrom- [(2)s(3)

oo

More generally, we obtain (still heuristically) (Akof)m(z) = (Anom'f o m)(x), which
motivates the following definition.

Definition 84. For M f € Fg, let (ANof) o m := Ano(m/ M f).
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Theorem 85. Ay, is an antidifferentiation operator on E*(Fj).

Proof. Using the properties of Ano and of differentiation it is straightforward to check
that the properties listed in Definition 13 hold. We check only i.; the others being similar
and in fact simpler.

We rewrite the definition as [(A%of)](s) = [ANo(m’ f om)](m™1(s)) and, using the
chain rule together with the fact that Ao is an antidifferentiation operator, we get

Ano(m fom)]'(m~!(s)) _ m/(m~'(s)) (f om)(m~'(s))

(e D = n1(9) /(1)
=f(s). O (67)

Note 86. The reader can see that Ay, is obtained from An, simply by changes of
variables, in the same way E* was obtained from E, with the consequence that the
antiderivative of the extension of f € F; is the extension of the antiderivative of f.

Corollary 87. [V f = Ao (f)(y) — Ako(f)(2) is an integral operator on E*(F%).
10. Illustrations of extensions and antidifferentiations

Many of the familiar functions have convergent expansions at points on the real line,
where the actions of the extension and antidifferentiation operators are easy to obtain,
as in Equation (62) and the cases mentioned in the comments following Definition 68.
Accordingly, in the first subsection, we focus on calculating functions for positive infinite
surreal values when these functions have a singularity at co. In illustrations (i) and (ii),
we go over all details of the analysis.

10.1. Functions having a singularity at oo

(i) First consider the exponential function x — e*. Using Example E3, we have
Ano(e”) = e*. Hence, by Equation (6), we have

xT

/esds =e¥ — 1, (68)

0

as expected. This stands in contrast to Norton’s aforementioned proposed definition of
integration which was shown by Kruskal to integrate e® over the range [0, w] to the wrong
value e* [19, p. 228]. We note that [67] also obtains Equation (68).

(ii) Next consider t~te’. Its antiderivative is the exponential integral Ei.
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By changes of variables, we have

T o0
e~ TP

1
Ei(z) := PV / t’letdt:e"”PV/l pdp:eZPVLl—. (69)
0

— 00

We have LBjj = PVL(1—p)~L. Hence, Tr(Ei(z)) = e*§ = At [t 'e’]. Using Definition 76,
this gives, for all positive infinite surreal x,

(Anolt ) (@) = Y % (70)

The values of Ei for positive finite surreal = are obtained simply from the local Taylor
series at the real part of z (see Definition 3), as explained in Equation (62) contained in
Definition 68.

The fact that Equation (70) should hold up to an additive constant was known to
Conway and Kruskal but the value of this constant resisted their years long effort.'® As
(70) shows, this constant is zero.

(iii) The imaginary error function erfi. To calculate

xT

fz) = /es2ds = gerﬁ(x) (71)

0

for positive infinite surreal z, we first find the Ecalle-Borel summed transseries of f. In
this example, the Ecalle critical time is not the original variable. By applying integration
by parts to the integral in Equation (71) we obtain:

[ 2 2 (1 1
/e ds ~e <%+@+> (72)
0

We notice here that the exponent is ¢ = s2, which is the Ecalle critical time (see Defini-
tion 15), and therefore we have to pass to the variable t. We then observe that f’(z) = e®”,
where f(0) = 0. With the substitution f(z) = xexp(z?)g(2?) with 22 =t we get

1 1
v 1+ = )g=—.
g +< +2t>g of (73)

The transseries of g is simply a power series whose Borel transform G satisfies, in accor-
dance with (73),

'8 Oral communication by Martin Kruskal to the first author.
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1
(p=1G" + 3G =0, (74)

where G(0) = 1/2. In this case mon gives

oco—01 o0o+40

1
1 e tp 1 e tp
- ———dp = — d 75
1 /+/ T 2/ =% (75)
0 0

0

which leads to

1
1 2 e TP
= —zxe® dp. 76
fla) = 5o [ = (76)
0

We note that f(0) = 0, and so this expression satisfies both the differential equation and
the initial condition. The transseries of f is easily obtained from (75) and Lemma 36
combined with the binomial formula. Ultimately, we arrive at

(7)) = 5= > T2 (77)

and, hence,

\/7_T r2n+1

n=0

[ 1 =T+ g
/632 ds = —e” Z Lln+3) for all surreal z > co. (78)
0

We note that the expression above is not valid for x < oo, let alone at z = 0, and we
don’t expect it to satisfy f(0) = 0. As is indicated above, for finite = the values of f for
Ei are obtained from the local Taylor series.

(iv) The Airy functions Ai and Bi. These are two special solutions of the Airy equation

"

Their asymptotic expansions for large z € RT are

e ¢ > U 2
(—1)FE; (= 37 (79)

Ai(z) ~ oo &
2y/mat/t ¢

and

< o0
. € Uk
Bi(z) ~ ——— Z - (80)
1/4 ko
Tz P ¢
respectively (see [25]). We note that the asymptotic expansions are given in [25] in terms
of ¢, which is precisely the Ecalle critical time (see Definition 15).
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Changing the variable z to ¢, the inverse Laplace transform of exp(—¢)Ai(¢)¢~/6 is

the hypergeometric function o F} (7, il.9. ——) which is analytic on R*, and hence usual
Borel summabilty applies.

In the case of Bi, there is just one singularity on R™ at p = 2. A simple calculation,
using mon for the last case, shows that Ai(z) and Bi(z) are simply given by these
asymptotic series, now interpreted as absolutely convergent series in the sense of Conway.

(v) The Gamma and log-gamma functions. The Borel summed transseries of the log-

gamma function, logI'(z), is'”

_pPcoth(p/2) —2
2p? P

log () = a(log(z) 1) - log -+ [ ¢

2T
0

Using the generating function of the Bernoulli numbers we get, for small p,

th 2 -2 _ <
Hence, the transseries of log I'(x) is given by
Bgnn'
logT'(z) = z(log(z) — 1) — = 1og + Z @)l 1 (83)

Then, for positive infinite surreal z, logT'(x) is given by the right side of Equation (83)
where the infinite series are now interpreted as absolutely convergent series in the sense
of Conway.

The Gamma function is simply obtained from the log-gamma function by exponenti-
ation.

10.2. An example of a function whose singularities are at finite points: Jacobi’s elliptic
function 63

Jacobi’s elliptic function 63 is defined by

=3¢ =142 ¢ gl <1 (84)

nez neN

(see e.g. [65]). Clearly 05 is analytic in the complex unit disk, in particular, it is real-
analytic on (—1,1). Since the series ) q”2 is lacunary, the unit circle is a natural
boundary (see e.g. [57]). In particular, the points 1 are singular. However, as we will
now see 03 € F5 and therefore it extends to a left (resp. right) surreal neighborhood of

19 This is a simplification of the form given in [22, p. 96].
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-2/t

1 (resp. —1). Define t by g =e ' and let ¢; = ¢ . We note that ¢ — 1 is equivalent

to t — 0. Jacobi’s modular transformations applied to 3 give:

03(q) = ﬁeg(ql) = \/§ (1 +2) en%a/t) , (85)

neN

This is a convergent transseries, and applying the definition of E* we obtain, for positive

(E*03)(e™¢) = \/? (1 +2)° e_"2”2/c> . (86)

neN

infinitesimal (,

For ¢ — —1 we have similar formulas, and we omit the intermediate steps. Indeed,

05(q) = 04(—q) = ﬁ@g(—ql) = 2q}/4 ano q?(nﬂ) (see [65]), which implies for ¢
infinitesimally greater than —1,

(E"03)(—e~¢) = 2\/?‘“2“ Do e, (87)

n>0

11. The theory of surreal integration: a generalization

It is natural to inquire in which ordered exponential subfields (K, expg) of (No, exp)
the above theory of surreal integration restricted to K continues to be applicable. In this
section we show that a sufficient condition is that K is closed under absolute convergence
in the sense of Conway, that is, for each formal power series f in n > 0 variables with
coefficients in R, f (ay,...,ay) is absolutely convergent in the sense of Conway in K for
every choice of infinitesimals ai,...,a, in K. After having demonstrated this, we will
exhibit ordered exponential subfields of (No, exp) that are closed in this sense.

Note that, for n = 0 the ring of power series in n variables with coefficients in R is
R itself, and so henceforth we may assume that all references to reals are references to
members of R C K C No and furthermore that (R, e*) C (K, expy) C (No, exp).

Lemma 88. If (K, expy) is an ordered exponential subfield of (No,exp) that is closed
under absolute convergence in the sense of Conway, then for each f € E*(Fj%) (see
Definition 82) and each z € dom(f) N K, f(z) € K.

Proof. Suppose the hypothesis holds and further suppose f € E*(F%) and = € dom(f)N
K.

Case 1. f € E(Fr) and, hence, E7!f is resurgent at oc.

If x = 20+ ¢, where zq is in the real-analyticity domain of E~! f and ( is infinitesimal,
then in virtue of Definitions 80 and 68 and Corollary 70(4),

20 Since f is an extension of E~1f, (E71f)(z0) = f(xo) and (E~1£) ) (z) = £ (z0).
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Ef(z) = Ef(xo +¢) = (E7 ) (wo) + > _ (k)T ET )P ()¢ .

k>1

As such, since K is closed under absolute convergence in the sense of Conway, (Ef)(z) €
K.

If x is positive infinite, then in virtue of Definitions 66 and the first part of Defini-
tion 68, (Ef)(z) assumes the form

Z cjirPeNz + P(z)log(x) + Q(z) + R(z) + Z P ke ATyl
—M<j<—1; I>1 k>0,0>0

where P, (Q and R are polynomials, R being without constant term, M is a natural
number, the coefficients and powers are real numbers, and the terms of the form :Eﬂﬂl',
etc., (or their multiplicative inverses), can be written as exponentials (or multiplicative
inverses of exponentials) using the identity @ = e1°8®. Accordingly, since P(x)log(z)+
Q(x)+ R(x) and the finite sum over M are clearly both in K, to show the entity denoted
by the full expression is in K it remains to note that the Lim term is in K in virtue of
K’s closure under absolute convergence in the sense of Conway.

Case 2. f ¢ E(Fr). The extension operator E* is defined as E* := M ~'EX M where
(M f)(z) = f(m(x)). This clearly preserves the range of f: the values of M f are in K if
and only if the values of f arein K. O

For each f € F5, let EX(f) := E*(f)|K, i.e. E*(f) restricted to K, and for each
f € EX(Fg), let ARE(f) := Ao (f)| K. Also, let E*(Fi)|K := {f|K : f € E*(Fp)}-

Theorem 89. Let (K, expy) be an ordered exponential subfield of (No, exp) that is closed
under absolute convergence in the sense of Conway, and let x,y € K. Then:

(1) Ej) is an extension operator on Fyp in the sense of Definition 11;

(2) AE is an antidifferentiation operator on E*(Fj)|K in the sense of Definition 13;

(3) [V f=AE)(y) — AE(f)(@) is an integral operator on E*(Fy)|K in the sense of
Proposition 14.

Proof. (1) follows from Lemma 88 and Theorem 83. In addition, since the antiderivative
of the extension of f € F3 is the extension of the antiderivative of f, to establish (2)
we need only further appeal to (1) and Theorem 85. (3) follows from (2) together with
Equation (6) and Proposition 14. O

Our first example of a structure that satisfies the hypothesis of Theorem 89 is given
by:

Theorem 90. The ordered exponential subfield R((w))X¥ of (No,exp) is closed under
absolute convergence in the sense of Conway.
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Proof. As was mentioned in §5.2, R((w))*¥ is an ordered exponential subfield of No
that is isomorphic to the ordered exponential field T of transseries. Moreover, T is equal
to the union J,.; H; of a family {H; : i € I} of Hahn fields having the property: for
all 4,5 € I there is a k € I such that H;, H; C Hj (see [4, Appendix A]). Plainly

then, for each finite set aq, ..., a, of infinitesimals in |J,.; H;, there is an m € I such

i€l
that ay,...,a, € H,,. Moreover, since H,, is a Hahn field, by a classical result of B. H.
Neumann [62], for each f(x1,...,2z,) € R[[X1,...,X,]], f(a1,...,an) € H,,. But then

flay,...,an) € U;c; Hi, which proves the proposition. O

Our next group of examples of structures that satisfy the hypothesis of Theorem 89
comes from work of van den Dries and the second author [27]. The demonstration that
these structures do indeed satisfy the said hypothesis rests largely on Propositions 91,
92 and 93 below, the formulations of which require the following definitions.

If I' is a subgroup of No whose universe is a set, then there is a canonical isomorphism
f of the Hahn field R((71)) into No for which

f(z TV ry) = Z WY r .

a<f a<p

The image of f, denoted R((w')), is the Hahn field in No generated by I'. By R((w!))
we mean the set consisting of all elements of R((w!")) having supports (ya)a<g<x, where
A is a fixed ordinal. Moreover, for each ordinal A, let No(A) := {x € No : tree rank of x <
A} (see §2.1). Finally, as the reader will recall, an additively indecomposable ordinal is

an ordinal of the form w® for some o« € On, and an e-number is an ordinal A such that
A
wt = A

Proposition 91. ([27, Corollary 3.1]) No(A) (with sums and order inherited from No) is
an ordered abelian group whenever A is an additively indecomposable ordinal.

Proposition 92. ([27, Lemma 4.6]) Let A be an e-number and let I" be a subgroup of No.
Then R((w!))x (with sums, products and order inherited from No) is an ordered field
closed under absolute convergence in the sense of Conway.

It should be noted that of the portion of the above result concerned with closure
under absolute convergence in the sense of Conway is not explicitly stated as a result in
[27], but rather is proved (without the current terminology) in the course of proving the
weaker condition of closure under restricted analytic functions (see [27, page 11]°1).

Proposition 93. ([27, Proposition 4.7 (1) and (2)]) Let A be an e-number. Then:

21 More specifically, the authors write: “Finally, let F(X1,..., X,) € R[[X1,..., X,]] be a formal power
series in the indeterminates X1, ..., X, with real coefficients. Let €1, ..., ¢, be infinitesimals in R((TF)),\.
Since F is not assumed to be a convergent power series, we actually prove more than closure under restricted
analytic functions by showing that F(e1,...,€,) € R((TF))A.”.
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(1) No(A) (with sums, products and order inherited from No) is a real-closed field closed
under exponentiation and under taking logarithms of positive elements. Indeed,
No(A) equipped with restricted analytic functions (defined via Taylor expansions)
and exponentiation induced by No is an elementary substructure of (No,,, exp) and
an elementary extension of (R, e*).

(2) No(A) =U, R((wNe))y, where p ranges over all additively indecomposable ordi-
nals less than .

It follows from much the same argument employed in the proof of Theorem 90 that
the union of a chain of ordered fields that are closed under absolute convergence in the
sense of Conway is itself closed under absolute convergence in the sense of Conway. In
virtue of this and Propositions 91, 92 and 93, we now have:

Theorem 94. For each e-number A, the ordered exponential subfield No()) of (No, exp)
is closed under absolute convergence in the sense of Conway.

Like No and the extension theory developed in the earlier sections of the paper,
Lemma 88 and Theorem 89 as well as the existence of R((w))Lf and the No()) are

provable in NBG ™, and are therefore constructive in this sense.??

12. Some open questions and a remaining problem

We draw the positive portion of the paper to a close by stating a problem and two
open questions that naturally arise from the material in preceding sections.

The mathematical theory of resurgent functions for height one transseries has long
been worked out in great detail. In a far ranging recent work [35], however, Ecalle has
provided what he describes as an “exploratory rather than systematic” presentation of
an extension of his theory of resurgent functions, including Ecalle-Borel summability,
beyond height one transseries to transseries having arbitrary heights and depths. This
naturally suggests:

Problem 1. Based on a rigorous theory of arbitrary height and depth transseries, gen-
eralize our “constructive” treatment of extension and antidifferentiation operators to all
resurgent functions.

A related and perhaps much deeper issue is broached by:

Question 1. Do well-behaved extension operators exist for broad classes of functions that
cannot be obtained from the inductive construction yielding transseries? More specifi-

22 The second author wishes to thank Elliot Kaplan for helpful comments on an earlier version of this
section of the paper, and especially for his observation that the proofs of Lemma 88 and Theorem 89 given
above continue to hold without the previously stated additional assumption that (K, expy ) is initial.
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cally, do well-behaved extension operators exist for broad classes of functions defined on
surreals of arbitrary length (or at least having lengths larger than w®).

The answer to this question would shed light on the very important but much less
understood subject of formalizability of functions.?> We note that Jean Ecalle offered
the following very interesting observation in response to this question.

... under the (reasonable) assumption that the limits for extending operations such as
integration on functions of No to No roughly coincide with the limits for the effective
(bi-constructive) formalization for real germs at oo, one falls back on a subject on
which much thought has already been spent, and I think one can confidently predict
the broad outline of the answer. The ultimate constructive extensions would:

1. include all formal transfinite iterates of order a < w* of the exponential, together
with a coherent system of incarnations as real germs (and while the search for one
privileged system of incarnations is hopeless, comfort may be taken from the fact that
all coherent incarnations are isomorphic).

2. exclude the full set of so-called nested expansions (even well-nested ones), for there
mutual compatibility conditions would have to be met, which could not possibly be
ensured constructively, i.e. without massive recourse to AC.

The answer to the following question will shed more light on the deeper structure of
the surreal universe.

Question 2. Can the theory of extension, antidifferentiation and integral operators pre-
sented in the previous sections of the paper be given a genetic (simplicity-hierarchical)
formulation in the inductive sense (mentioned in the introduction) that was sort after
by Conway, Kruskal and Norton?

The authors do in fact know how to provide a simplicity-hierarchical account for
much of the theory in terms of Conway’s {L|R} notation and hope to present it in a
future paper. However, the definitions in terms of Conway’s {L|R} notation employed
in the account are not inductive, and therefore are not genetic in Conway’s sense (see
Footnote 1).

13. Negative and independence results
With our positive results now at hand, we switch directions by showing that a con-

structive proof of the existence of analogous extensions and integrals of substantially
more general types of functions than those treated above is obstructed by considerations

23 “[Reducibility] to a properly structured set of real coefficients” [33, p. 75].
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from the foundations of mathematics. These considerations apply not only to the sur-
reals, but to any non-Archimedean ordered field ' that extends R and whose existence
can be proved in NBG™. To establish the result, we will direct our attention to a list of
very basic properties of antidifferentiation and a space H of functions with “very good
properties”.

By a classical result of Mostowski [61], Wang [75], Novack [63], Rosser and Wang [66]
and Schoenfield [73], NBG™ is a conservative extension of ZF; that is, every theorem of
ZF is a theorem of NBG™, and every theorem of NBG™ that can be expressed in ZF
(i.e. in the language of sets) is itself a theorem of ZF. Consequently, NBG™~ is not only
equiconsistent with ZF, but if T is a theory obtained from ZF by supplementing it with a
set of axioms A which involve only sets, and T” is obtained from NBG~ by supplementing
it with the same set of axioms A, then T is consistent if and only if 77 is consistent (see,
for example, [48, p. 132]). As a result, the above said relations holding between NBG™
and ZF also hold between NBG™ + C (the Axiom of Choice for sets) and ZFC as well
as between NBG~+DC and ZF+DC, where DC is the Axiom of Dependent Choice
([73], [61], [63], [66]). Accordingly, though the main result in this section is concerned
with arbitrary non-Archimedean ordered fields that extend R whose existence can be
proved in NBG™, including No itself, the preliminary results are about subsets of these
structures and as such, when appropriate, to prove these results we freely make use of
techniques and results established about or in ZFC, ZF+DC or ZF+DC supplemented
with other assertions about sets.

As usual, let £*° denote the space of all bounded real-valued sequences, whose members
we write as {s, } in place of {s, }nen. As the reader will recall, ¢ : £° — R is said to be a
Banach limit if it is a continuous linear functional satisfying the following conditions: (a)
(positivity) if {s,} is a nonnegative sequence, then ¢({s,}) > 0; (b) (shift-invariance)
for any sequence {s,, } € ¢>°, we have ¢({sn}) = ¢({sn+1}); and (c) (¢ is a limit) if {s,}
is convergent with limit [, then ¢({s,}) = I.

To establish our negative result we will make use of one direction of the following
metamathematical result concerning the existence of Banach limits (EBL) which is a

simple consequence of results from the literature.?*

Proposition 95. EBL is independent of NBG~+DC (if NBG™ is consistent).

Proof. Since NBG™ +DC is a conservative extension of ZF+DC, it suffices to prove the
proposition for ZF+DC. EBL is consistent with ZF+DC, if ZF is consistent, since HB
(the Hahn-Banach theorem) implies EBL (e.g. [17, Theorem I11.7.1]) and ZF+DC+HB
is consistent, if ZF is consistent ([64], [68, p. 516]). Moreover, -EBL is consistent with
ZF+DC, if ZF is consistent, since BP (the assertion every set of reals has the Baire

24 The second author greatfully acknowledges helpful discussions of this matter with Emil Jefdbek [52],
Wojowu (Wojtek Wawréw) [76] and others on MathOverflow.
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Property) implies -EBL [56, Theorem 44|, and there is a model of ZF+DC+BP, if ZF is
consistent ([72], [68, p. 516]). O

As we shall see, the following concept is closely related to a Banach limit.

Definition 96. We call L a sublimit on £°° if:

(1) L is linear, i.e., if s, € £>° and a,b € R, then L(as + bt) = aL(s) + bL(t);
(2) for every {s,} € £*°, L({s,}) < limsup,,_, - Sn-

Using linearity and the fact that liminf, . s, = —limsup,,_, .. (—$»), we see that
condition (2) of Definition 96 is equivalent to

liminf s, < L({s,}) < limsup s,. (88)

n—oo n—oo

Lemma 97. ZF proves that a Banach limit exists if and only if a sublimit exists.

Proof. Let B be a Banach limit. We show that B is a sublimit. Indeed, by definition,
B is linear. Now assume limsup,, ,., S, = [. Let ¢ > 0 and let N € N be such that
for all m > N we have s, <+ €. Let S be the shift operator, S({s,}) = {sn+1}. We
have, using positivity, B({s,}) = BS™({s,}) < | + ¢ where, as usual, SV is S applied
N times. Since € > 0 is arbitrarily chosen, B({s,}) <.

Now let L be a sublimit. We define the Cesaro summation operator by C({s,}) =
{n=t > j—15n}. Note that C' is a continuous operator on (> of norm 1, and so is L,
by (88). We claim that LC is a Banach limit. We just showed that LC is continu-
ous. Moreover, clearly C' is a positive operator and so is L by (88). Since [C({s,}) —
CS({sn})]m =m~!(s1 — Su41), we have liminf, o [LC({s,}) — LCS({s,})] = 0 and
limsup,,_, . [LC({sn})—LCS({sn})] =0, and hence, LC = LC'S, thereby proving shift-
invariance. Finally, if {s,,} is convergent with limit [, then plainly C'({s,}) is convergent
with limit /, and then (88) shows that LC({s,}) is convergent with limit /, completing
the proof. O

The extension and antidifferentiation operators introduced in §3 are linear, positive
and satisfy a number of other desirable properties. However, the proto-antidifferentiation
and proto-extension operators defined below are only assumed to be linear, positive
and satisfy a compatibility condition. By showing that the existence of these proto-
operators can neither be proved nor disproved in NBG™+DC, we show that the existence
of any extension and antidifferentiation operators having even these minimal properties
can neither be proved nor disproved in NBG™+DC, let alone in NBG™. As such, any
such operators whose existence can be established in NBG would necessarily be less
constructive in nature than E and Ane.

Henceforth, let IF be a non-Archimedean ordered field that extends R whose existence
can be proved in NBG™, and let p be an arbitrarily selected and fixed positive infinite
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element of F. Also let H be the space of functions which are real-analytic, that extend
to entire functions (holomorphic in C), and decay at least as rapidly as =2 in the sense
that f € H if and only if sup,cgp+ 22| f(x)| < oo.

Definition 98. Let A, := {(z,y) € (RT U {p,p?})? : © < y}. A proto-antidifferentiation
operator on ‘H x A, is an operator A having the following properties for all f,g € H, all
(z,y) € A,, and all o, 8 € RT.

(1) Linearity: Aaf + Bg,7,y) = a\(f,z,y) + BA(g, , ).
(2) Positivity: If for some ¢ € RT and all z € (¢,00) we have f(z) > 0, then for all
(x,y) € A, with z € (¢, 00) we have A\(f,z,y) >0
Y

(3) Compatibility with the weight of H: (272, z, I T

)=z —y
It is easy to see that the operator (f,x,y) — ff f(s)ds satisfies the above properties
for all real > 0.

Definition 99. Let E, := RT U{p}. A proto-extension operator on H x E, is an operator
A having the following properties for all f € H, all z € E, and all o, 8 € R™.

(1) Linearity: A(af + Bg,z) = aA(f,z) + BA(g, x).

(2) Positivity: If for some ¢ € RT and all x € (¢,00) we have f(z) > 0, then for all
x € (¢,00), we have A(f,z) > 0.

(3) Compatibility with the weight of H: A(z~2,2) = 272,

Henceforth, let EPA and EPE be the following statements with F and p understood as
above: “There exists a proto-anti-differentiation operator as in Definition 98, and “There
exists a proto-extension operator as in Definition 997, respectively. Moreover, henceforth
by x° we mean the standard part of a finite member = of an ordered field. When z is a
finite surreal number, z° is the real part of  (see Definition 3).

Lemma 100. EPA implies EBL and EPE implies EBL in NBG™

Proof. Let F be an ordered field extending R that exists in NBG™, p be a positive
infinite member of F and A be a proto-extension operator.

For each s = {s,} € £ define f; : R — R by fs(z) = s1 for x < 1, and for
x=(1—-t)n+t(n+1), where t € [0,1] and n € N, by fi(x) = (1 —t)s, + tsp+1. Now
let m € N and suppose x > m. It is easy to check that

272 inf s, <z 2f(x) < 272 sup s,. (89)

n>m n>m

We are now going to approximate fs; by entire functions. For € > 0 let

Ve = v =2||s||sem 2! (90)
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and consider the mollification fs.(z) := 7~ 2 Vf e~ @0 f, (t)dt. By standard com-
plex analysis, fs. is entlre, and stralghtforward estimates show that
SUp,cc |e‘”2|z|2f5;5(z)| < 00. Note that, by construction, |fs(t) — fs(x)] < 2||s||co|t — |-
Thus, (90) implies

oo

facle) = £u@)] =7 bw| [0 (1)~ f(o)
< 9sl|acr v /e_”2”2|v|dv —oflsfer il <6 (91)

Conditions (2) and (3) of Definition 99 imply that for any 2 € R* and €, € > 0 we have

12 &) — 2= fe (2)] < 2~2(e ), (92)

and hence,
10?A(p™2 fsies p) = PPA(p™* fer, p)| < (e +€). (93)
Since Equation (91) and the triangle inequality imply that [p?A(p™2 fs.c, p)| < €+ |5 s0s

(p2A(p*2fs;6, p))O exists, and, by the same argument, so does (p2A(p*2fS;6/, p))o. Hence,
by taking standard parts in (93), we get

(A0 Fuer ) = (PAG Lo )| < et € (04)

which in turn implies that

By(s) := lim (p*A(p™* fuie, )" (95)
exists. Moreover, it follows from Equation (91) that for any n € N and > n + 1, we
have

2% fs(z) <z 2(sup s, +€). (96)

n>m

Hence, since p > n for any n € N, we have

A foer p) < limsup sn + 6, (o7)
n—oo
which implies
Bpr(s) < limsup s,. (98)

n—oo
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And so a sublimit exists, and hence, by Lemma 97, a Banach limit exists.

For the portion of the theorem concerned with proto-antidifferentiations (in place
of proto-extensions) we change A(p~2fs.e, p) to M(p™2fs.c, p, p°) and the prefactor p? in
front of A to a prefactor p in front of \. Since for a € R, p(ap™ — p=2)°= p(ap~1)° = a,
the proof is, mutatis mutandis, the same. 0O

Lemma 101. EBL implies EPA and EPE in NBG™.

Proof. Let By, be a Banach hmlt To show EPA, define A(f, z,y) fy s)ds if (z,y) €
(RT)2, A(f 2, p) = 2 f(z)(a™! — p7?) for 2 € RF, and A(f, p, p?) = BL[ 2f( Np™t =
p~2). It is clear that A is linear and, if f > 0 is positive and (z,y) € A,, then A\(f,z,y) >
0. For condition (3), we note that if f(z) = 272 then lim,, o, n?f(n) = 1 = Br(n?f(n))
by the definition of a Banach limit, and the property follows.

To show EPE, define A(f,z) = f(z) if z € RT and A(f,p) = Br[n?f(n)]p~2 It is
clear that A is linear and, if f > 0 is positive and « € E,, then A(f, z) > 0. For condition
(3), we note that if f(x) = 272 then lim,,_,, n?f(n) = 1 = Br(n?f(n)) by the definition
of a Banach limit, and the property follows. O

Theorem 102.

(1) NBG™ proves that proto-antidifferentiation operators exist if and only if Banach
limits exist.

(2) NBG™ proves that proto-extension operators exist if and only if Banach limits exist.
(3) EPA and EPE are independent of NBG™ +DC (if NBG™ +DC is consistent).

Proof. (1) and (2) follow from Lemmas 100 and 101, and (3) is an immediate consequence
of (1), (2) and Proposition 95. O

Note 103. Other types of negative results can be obtained via Pettis’ theorem of auto-
matic continuity, whereby the existence of various other types of desirable extensions
would imply the existence of Baire non-measurable sets. This will be explored further in
the future paper referred to at the end of the introduction.
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