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The Likely Maximum Size of Twin Subtrees
in a Large Random Tree

Miklós Bóna , Ovidiu Costin and Boris Pittel

Abstract. We call a pair of vertex-disjoint, induced subtrees of a rooted
tree twins if they have the same counts of vertices by out-degrees. The
likely maximum size of twins in a uniformly random, rooted Cayley tree
of size n → ∞ is studied. It is shown that the expected number of twins of
size (2 + δ)

√
logn · log log n approaches zero, while the expected number

of twins of size (2 − δ)
√
logn · log log n approaches infinity.

1. Introduction and the Main Result

For a given combinatorial structure S, there is intrinsic interest in finding the
largest substructure of a given kind that is contained in S, or a set of two or
more identical substructures of maximum size that are contained in S, or the
size of the largest common substructure in two random structures S1 and S2.
For instance, finding the length of a longest increasing subsequence of a random
permutation is the famous Ulam problem (Sect. 6.5 of [4] is a basic survey of
this subject). An early collection of problems featuring the largest common
substructures in two combinatorial objects can be found in [1]. In a pioneering
paper [5], Bryant, McKenzie, and Steel proved that the maximum size of a
common subtree for two independent copies of a uniformly random binary tree
with n leaves is likely to be of order O(n1/2). Interestingly, the proof is based
on a classic result that the length of the increasing subsequence of a uniformly
random permutation is likely to be of order O(n1/2). And a recent result of
Aldous [2] is that the maximum size of this largest common subtree (maximum
agreement subtree) of two independent uniform random binary trees on n

leaves is likely to be of order at least nβ , where β = (
√

3−1)/2 ≈ 0.366. Pittel
[9] proved the bound O(n1/2) for the maximum size of a subtree common to
two independent copies of a random rooted tree, namely the terminal tree of
a critical Galton–Watson branching process conditioned on the total number
of leaves being n.
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In [3], Bóna and Flajolet used a bivariate generating function approach
to compute the probability that two randomly selected phylogenetic trees are
isomorphic as unlabeled trees. The requested probability was found to be as-
ymptotic to a decreasing exponential modulated by a polynomial factor. This
line of research involved the study of the expected number of symmetries in
such trees, which was initiated by McKeon in [8]; in [3], this number in large
phylogenetic trees was found to obey a limiting Gaussian distribution.

Motivated by the cited work, we study the likely maximum size of two,
almost identical, rooted (fringe) subtrees of a random rooted tree, rather than
a pair of random trees. (A subtree rooted at a vertex v is defined as a subtree
induced by v and the set of all the descendants of v.) Formally, we call two
rooted trees almost identical, twins, if they have the same counts of vertices
by their out-degrees. The twin subtrees are automatically vertex-disjoint. In
this paper, the tree in question is the uniformly random (Cayley) rooted tree
on vertex set [n]. Our main result is

Theorem 1.1. Let mn(k) denote the expected number of twin pairs of subtrees,
with k vertices each. (a) If δ > 0 and

Kn =
⌊
exp

(
(2 + δ)

√
log n · log(log n)

)⌋
,

then
∑

k≥Kn
mn(k) → 0. Consequently, with high probability, the largest size

of a pair of twins is below Kn. (b) If δ ∈ (0, 2) and

kn =
⌊
exp

(
(2 − δ)

√
log n · log(log n)

)⌋
,

then mn(kn) → ∞.

Note. (i) In fact, our proof of (b) consists of showing that even a smaller
expected number of twins of maximum degree �2 log kn/ log log kn� grows in-
definitely as n → ∞. (ii) Going out on a limb, we conjecture that the logarithm
of the maximum twin size scaled by

√
log n · log(log n) converges, in probabil-

ity, to 2.
In conclusion, a reviewer indicated to us that the our problem is reminis-

cent of the study of distinct rooted subtrees in Flajolet, Sipala, and Steyaert
[7] and the study of repeated subtrees in Ralaivaosaona and Wagner [10].

2. The Proof of Theorem 1.1

Given k, r = (r0, r1, . . . ) is a sequence of counts of vertices by out-degree of a
rooted tree on [k] if and only if

∑

i

ri = k,
∑

i

iri = k − 1, (2.1)

and M(r), the number of such trees, is given by

M(r) =
(k − 1)!
∏

j≥0

(j!)rj

(
k

r0, r1, . . .

)
, (2.2)
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Stanley [11]. It follows that the total number of pairs of rooted subtrees, on
two respective vertex-disjoint vertex sets, each of cardinality k, that have the
same counts of vertices by out-degrees, is

N(k) =
∑

r meets (2.1)
M2(r). (2.3)

Note. If we consider only subtrees of maximum out-degree (strictly) below
d (≥ 2) then the index i in the condition (2.1) ranges from 0 to d − 1.

Let Sn(k) stand for the total number of pairs of vertex-disjoint rooted
subtrees, each with k vertices, in all the rooted trees on [n] that share the
counts of vertices by out-degree. Then

Sn(k) =
(

n

k

)(
n − k

k

)
N(k)(n − 2k)n−2k−1(n − 2k)2. (2.4)

And the expected number of the pairs of twins of size k each is given by
mn(k) = Sn(k)

nn−1 .
The challenge is to sharply estimate N(k) given by (2.3).

Lemma 2.1. Let H(z) :=
∑

r≥0
zr

(r!)2 . Then for all xs > 0, we have

N(k) ≤
(
k!(k−1)!

)2

(2π)2xk
1xk−1

2

∫

ξs∈(−π,π)

∏

j≥0

∣
∣
∣H

(
z1zj

2
(j!)2

)∣
∣
∣ dξ1dξ2, zs = xse

iξs . (2.5)

Proof. Using (2.2) for M(r), and a generating function H(z) :=
∑

r≥0
zr

(r!)2 ,
we evaluate

N(k) =
∑

r meets (2.1)
M2(r) =

(
k!(k − 1)!

)2 ∑

r meets (2.1)

(∏

j≥0

1
(j!)rj rj !

)2

=
(
k!(k − 1)!

)2[xk
1x

k−1
2 ]

∑

r≥0

x
∑

α rα

1 x
∑

β β·rβ

2

(∏

j≥0

1
(j!)rj rj !

)2

=
(
k!(k − 1)!

)2[xk
1x

k−1
2 ]

∑

r≥0

∏

j≥0

(x1xj
2)

rj
(
(j!)rj rj !

)2

=
(
k!(k − 1)!

)2[xk
1x

k−1
2 ]

∏

j≥0

∑

rj≥0

(x1xj
2)

rj
(
(j!)rj rj !

)2

=
(
k!(k − 1)!

)2[xk
1x

k−1
2 ]

∏

j≥0

H
(x1xj

2
(j!)2

)
. (2.6)

If we count only the twins of maximum out-degree below d, then in the above
product j ranges from 0 to d − 1.

What can we get from (2.6) with a bare-minimum analytical work? One
possibility is to use a Chernoff-type inequality implied by (2.6). Note that for
a power series p(x, y) =

∑
i,j ai,jx

iyj with nonnegative real coefficients, the
inequality ai,jx

iyj ≤ p(x, y) holds for all (i, j) and all (x, y) where x > 0 and
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y > 0. Dividing by xiyj and taking the infimum on the right-hand side, we get
that

ai,j ≤ inf
x>0,y>0

p(x, y)
xiyj

.

Applying this inequality for the power series defined by the last line of (2.6),
we get

N(k) ≤ inf
x1>0,x2>0

(k!(k−1)!)2

xk
1xk−1

2

∏

j≥0

H
(x1xj

2
(j!)2

)
. (2.7)

Observe that by the elementary inequality
(
2r
r

) ≤ 22r, for x > 0

H(x) ≤
∑

r≥0

xr22r

(2r)! ≤
∑

�≥0

(2x1/2)�

�! = exp(2x1/2). (2.8)

So, (2.7) yields

N(k) ≤ inf
x1>0,x2>0

(k!(k−1)!)2

xk
1xk−1

2
exp

(
2
∑

j≥0

(x1xj
2)

1/2

j!

)

= inf
x1>0,x2>0

(k!(k−1)!)2

xk
1xk−1

2
exp

(
2x

1/2
1 ex

1/2
2

)
.

A straightforward computation shows that the k-dependent factor in the RHS
function attains its minimum at x1 = k2 exp

(− 2(k−1)
k

)
, x2 =

(
k−1

k

)2, and
consequently

N(k) = O
( (k!)4e4k

k2(k+1)

)
. (2.9)

The last estimate is too crude, but the above values of x1 and x2 will be
used when we switch from Chernoff’s bound to a bivariate Cauchy integral,
taken on the Cartesian product of two cycles, i.e. counterclock-wise oriented
boundaries of two circles, of radii x1 and x2, respectively. Essentially we will
use a bivariate version of the saddle point method, with the above discussion
allowing us to guess that (x1, x2) is a promising approximation of the saddle
point itself.

Here is the switch. By (2.6) and the Cauchy formula we have

N(k) =
(
k!(k−1)!

)2

(2πi)2

∮

C1×C2

1

zk+1
1 zk

2

∏

j≥0

H
(

z1zj
2

(j!)2

)
dz1dz2, (2.10)

Cs =
{
zs ∈ C : zs = xse

iξs , ξs ∈ (−π, π)
}
, s = 1, 2. It follows that for all

xs > 0, the claim of the lemma holds. �

Let z be a complex number so that arg(z) ∈ (−π, π], and set z1/2 :=
|z|1/2 exp

(
1
2arg(z)

)
.

Lemma 2.2. For H(z) =
∑

r≥0
zr

(r!)2 , with z and z1/2 as above, the inequality

|H(z)| ≤ | exp(2z1/2)|
max(1,α|z|1/4)

holds, where α > 0 is an absolute constant.
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Proof. Introduce I(z) :=
∑∞

r=0
z2r

(r!)2 , arg(z) ∈ (−π/2, π/2], so that H(z2) =
I(z). It suffices to prove that, for arg(z) ∈ (−π/2, π/2],

|I0(2z)| ≤
∣
∣ exp(2z)

∣
∣

max(1,α|z|1/2)
, I0(ξ) =

∑

j≥0

(
ξ2

4

)j

(j!)2
, (2.11)

where I0(ξ) is the zero-order, modified, Bessel function, since H(z2) = I0(2z).
Here is a surprisingly simple integral formula for I0(2z) that does the job:

I0(2z) = π−1 exp(2z)
∫ 4

0

exp(−zy)√
y(4−y)

dy, arg(z) ∈ (−π/2, π/2]. (2.12)

Equation (2.12) follows from identity 10.32.2 in [6], that is,

I0(2z) = 1
π

∫ 1

−1

(1 − t2)−1/2e−2tz dt,

via substitution y = 2t+2. (Our original proof of (2.12) was from scratch. We
are grateful to the reviewer for the above reference.) Define

G(z) =

4∫

0

e−zy

√
y(4 − y)

dy, (2.13)

so that I0(2z) = π−1 exp(2z)G(z), whence |I0(2z)| = π−1| exp(2z)| · |G(z)|.
Here for �z ≥ 0

|G(z)| ≤
∫ 4

0

1√
y(4−y)

dy = π.

So, by (2.12), |I0(2z)| ≤ π−1| exp(2z)|π = | exp(2z)|. Next, let us show that
for g(z) := |G(z)|/G(|z|) we have sup

H
g(z) < ∞, where H := {z : �z ≥ 0}.

The function g is well-defined and continuous in H, since G(z) is continuous
in H and G(|z|) > 0.

We are left with showing supz∈H:|z|≥1 g(z) < ∞. Noting that G(z) =
G(z), it suffices to show this boundedness in the closed fourth quadrant QIV .
For such z we have

G(z) =
∫

Ca

e−zy

√
y(4 − y)

dy, (2.14)

where a > 0 and Ca is the oriented polygonal line joining the points y1 = 0, y2 =
a
√

i, y3 = a
√

i + 4, and y4 = 4. Since |e−zy| ≤ 1 in H and min{|y|, |4 − y|} ≥
�y = 2−1/2a, the integral over the segment (y2, y3) is bounded by 4

√
2/a,

hence it goes to zero as a → ∞. Passing to the limit a → ∞, we thus get

G(z) =
∫ ∞eiπ/4

0

e−zy

√
y(4 − y)

dy −
∫ ∞eiπ/4+4

4

e−zy

√
y(4 − y)

dy

=
∫ ∞eiπ/4

0

(
e−zu

√
u(4 − u)

− i
e−4z−zu

√
(4 + u)u

)

du.

(2.15)
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In the last integral we have |√u(4 − u)| ≥ 23/4
√|u|, |√u(4 + u)| ≥ 2

√|u|,
|e−4z| ≤ 1 and (since z ∈ QIV and arg u = π

4 ), |e−zu| ≤ e−2−1/2|z||u|. Since
2−3/4 + 2−1 < 2, we get

|G(z)| ≤ 2
∫ ∞

0

u−1/2e−2−1/2|z|u du = 25/4
√

π|z|−1/2. (2.16)

Importantly, we need this bound only for |z| ≥ 1. For those z’s, we have

G(|z|) ≥ 1
2

∫ 4

0

e−|z|y
√

y
dy ≥ 1

2 |z|−1/2

∫ 4

0

η−1/2e−η dη. (2.17)

Combining (2.16) and (2.17), we see that supz∈H:|z|≥1
|G(z)|
G(|z|) < ∞. There-

fore

|I0(2z)| = O
(| exp(2z)| · G(|z|)) = O

(| exp(2z)| · |z|−1/2
)
,

uniformly for z ∈ {H : |z| ≥ 1}. This bound and the inequality |I0(2z)| ≤
| exp(2z)|, �z ≥ 0, complete the proof of the lemma. �

2.1. Proof of Theorem 1.1, Part (a)

We use the lemma 2.2 to prove that, for

δ > 0, Kn =
⌊
exp

(
(2 + δ)

√
log n · log(log n)

)⌋
,

we have
∑

k≥Kn
mn(k) → 0, where mn(k) is the expected number of pairs of

twins of size k.
We turn back to the integrand in (2.5). With zs = xse

iξs , and Xj := x1xj
2

(j!)2 ,
by Lemma 2.2 and (2.8), we have

∏

j≥0

∣
∣
∣H

(
z1zj

2
(j!)2

)∣
∣
∣ ≤

∏

j≥0

exp(2X
1/2
j )

max(1,α|Xj |1/4)
exp

(
Xj

(
cos(ξ1 + jξ2) − 1

))
. (2.18)

Let us look closely at {Xj}. Using j! ≤ (
j+1
2

)j , j ≥ 1, we have

Xj ≥ x1 · xj
2(

j+1
2

)2j = x1 exp
(
2j log 2x

1/2
2

j+1

)
= x1 exp

(
2j log

2
k−1

k
j+1

)
.

The function η log
2

k−1
k

η+1 is decreasing for η ≥ 1. Pick ε ∈ (0, 1/2) and introduce

J =
⌊
ε log x1
log(log x1)

⌋
. Then, uniformly for j ≤ J ,

Xj ≥ x1 exp

(

2J log
2

k−1
k

J+1

)

= x1 exp(−2J log J + O(J))

= exp
(
(1 − 2ε) log x1 + o(log x1)

) → ∞. (2.19)

Further
J−1∑

j=1

2j log
2

k−1
k

j+1 ≥ 2
∫ J

1

η log
2

k−1
k

η+1 dη ≥ −J2 log J ;
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the last inequality follows easily from integration by parts. Therefore
∏

j<J

Xj ≥ xJ
1 exp(−J2 log J) ≥ exp

[
J(log x1 − J log J)

]

≥ exp
(
ε′(1 − ε′) log2 x1

log(log x1)

)

= x
ε′(1−ε′)

log x1
log(log x1)

1 , ∀ε′ < ε. (2.20)

The point of this bound is that the product in question exceeds x1 raised to a
sub-logarithmic power, still approaching infinity when k does. It follows from
(2.20) that
∏

j≤J

exp(2X
1/2
j )

max(1,α|Xj |1/4)
≤ exp

(
−ε′(1 − ε′) log2 x1

4 log(log x1)
+ J log α

)
exp

(
2

∑

j≤J

X
1/2
j

)

= exp
(
−ε′(1 − ε′) log2 x1

4 log(log x1)
+ O(ε log x1)

)
exp

(
2

∑

j<J

X
1/2
j

)
.

Since
exp(2X

1/2
j )

max(1,α|Xj |1/4)
≤ exp(2X

1/2
j ) for all j, the above inequality implies that

for ε′′ < ε′,
∏

j≥0

exp(2X
1/2
j )

max(1,α|Xj |1/4)
≤ exp

(
− ε′′(1−ε′′) log2 x1

4 log(log x1)

)
exp

(
2
∑

j≥0

X
1/2
j

)

= exp
(
− ε′′(1−ε′′) log2 x1

4 log(log x1)

)
exp

(
2x

1/2
1 exp(x1/2

2 )
)

≤ e2k · exp
(
− ε′′(1−ε′′) log2 k

log(log k)

)
, (2.21)

as x1 = k2 exp
(− 2(k−1)

k

)
, x2 =

(
k−1

k

)2.

Dropping the factors exp
(
Xj

(
cos(ξ1 + jξ2) − 1

))
(≤ 1) with j > 1 in

(2.18), and using (2.21), we obtain
∏

j≥0

∣
∣
∣H

(
z1zj

2
(j!)2

)∣
∣
∣ ≤ e2k · exp

(
− ε′′(1−ε

′′
) log2 k

log(log k)

)

× exp
(
x1(cos ξ1 − 1) + x1x2

(
cos(ξ1 + ξ2) − 1

))
,

ξj ∈ (−π, π). (2.22)

To use this last estimate on the right-hand side of (2.5), we need to find an
upper bound for the integral of the exponential factor above. Let I = (−π, π).
To obtain the needed upper bound, let us set

f(ξ1, ξ2) := x1(cos(ξ1) − 1) + x1x2(cos(ξ1 + ξ2) − 1).

Clearly, f(ξ1, ξ2) ≤ 0, with equality holding if and only if cos(ξ1) = 1, and
cos(ξ1 + ξ2) = 1, where ξi ∈ I, or equivalently if and only if ξ1 = ξ2 = 0.

For max{|ξ1|, |ξ2|} ≥ π/2, we have

f(ξ1, ξ2) ≤ −ak2 < 0, (2.23)
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for some positive constant a. For max{|ξ1|, |ξ2|} ≤ π/2, using the Taylor ex-
pansion of cos, we obtain

f(ξ1, ξ2) ≤ −b[x1ξ
2
1 + x1x2(ξ1 + ξ2)2] ≤ −ck2[ξ21 + ξ22 ]. (2.24)

Combining (2.23) and (2.24), we get

f(ξ1, ξ2) ≤ −dk2[ξ21 + ξ22 ], (2.25)

for ξi ∈ I, for i = 1, 2, and some fixed constant d > 0.
Therefore,

∫

I×I

exp(f(ξ1, ξ2)) dξ1dξ2

=
∫

I×I

exp[x1(cos(ξ1) − 1) + x1x2(cos(ξ1 + ξ2) − 1)] dξ1dξ2

≤
∫

I×I

exp(−dk2(ξ21 + ξ22)) dξ1dξ2

=
∫

I

exp(−dk2ξ21) dξ1 ·
∫

I

exp(−dk2ξ22) dξ2 ≤ π

dk2
. (2.26)

Putting together (2.5), (2.22) and the last inequality, we conclude that

N(k) = exp
(
− ε′′(1−ε′′) log2 k

log(log k)

)
O

( (k!)4e2k

xk
1x

k−1
2 k4

)

= exp
(
− ε′′(1−ε′′) log2 k

log(log k)

)
O

(
(k!)4e4k

k2k+4

)
.

This bound and (2.4) imply that

Sn(k) = O

((
n

k

)(
n − k

k

)
(n − 2k)n−2k+1N(k)

)

= exp
(
− ε′′(1−ε′′) log2 k

log(log k)

)
O

(
n!(n−2k)n−2k+1(k!)2k−2k−4e4k

(n−2k)!

)
.

Using Stirling’s formula for factorials we obtain that

Sn(k) = exp
(
− ε′′(1−ε′′) log2 k

log(log k)

)
O

(
nn+1

k3

)
.

Dividing this bound by the number nn−1 of all rooted Cayley trees, we get
that the expected number of the pairs of twins of size k, i.e. mn(k) = Sn(k)

nn−1 ,
is

mn(k) = O

(
n2

k3 exp
(
− ε′′(1−ε′′) log2 k

log(log k)

))
, ∀ε′′ < ε < 1/2. (2.27)
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Since the series
∑

k≥1 k−3 converges, it follows that for

kn = exp
(
(2 + δ)

√
log n · log(log n)

)
and δ > 0 we have

∑

k≥kn

mn(k) = O
(
n2 exp

(
− ε′′(1−ε′′) log2 kn

log(log kn)

)) ∑

k≥1

k−3

= O exp
(
2
[
1 − (2 + δ)2ε′′(1 − ε′′)

]
log n + o(log n)

)
, (2.28)

uniformly for all ε′′ < 1/2. Picking ε′′ sufficiently close to 1/2, we conclude
that limn→∞

∑
k≥kn

mn(k) = 0.

2.2. Proof of Theorem 1.1, Part (b)

The claim is: If δ ∈(0, 2), kn :=
⌊
exp

(
(2−δ)

√
log n · log(log n)

)⌋
, then mn(kn) →

∞.

Proof. From here on we can, and will consider the twins of maximum out-
degree < d = dn, with dn yet to be chosen. Let us upper-bound the con-
tribution to the RHS of (2.5) for k = kn, coming from (z1 = x1e

iξ1 , z2 =
x2e

iξ2), where x1 = k2 exp
(− 2(k−1)

k

)
, x2 =

(
k−1

k

)2, and also ‖ξ‖ ≤ k−1/2+ε,
ε ∈ (0, 1/2). By Lemma 2.2,

∏

j<d

∣
∣
∣H

(
z1zj

2
(j!)2

)∣
∣
∣ ≤ exp

(
2x

1/2
1

∑

j<d

x
j/2
2
j! �(

exp(i(ξ1/2 + jξ2/2)
)
)

≤ exp
(

2x
1/2
1

∑

j<d

x
j/2
2
j! �(

exp(i(ξ1/2 + jξ2/2)
)

+ O(x1/2
1 /d!)

)

= exp
(
2x

1/2
1 W (ξ1, ξ2) + O(x1/2

1 x
d/2
2 /d!)

)
,

where

W (ξ1, ξ2) := cos
(

ξ1
2 + x

1/2
2 sin ξ2

2

)
exp

(
x
1/2
2 cos ξ2

2

)
.

Since x1 = Θ(k2), x2 = Θ(1), the big-O term is o(1), if d = �2 log k/ log log k�,
which we assume from now.

Clearly, W (ξ1, ξ2) ≤ exp(x1/2
2 ) = W (0, 0), and it is easy to check that

(0, 0) is a single stationary point of W (ξ1, ξ2) in [−π, π]2, whence it is a unique
maximum point of W (ξ1, ξ2) in this square. In addition,

W ′′
ξ1(0, 0) = − ex

1/2
2

4 , W ′′
ξ2(0, 0) = − (x2+x

1/2
2 )ex

1/2
2

4 , W ′′
ξ1,ξ2(0, 0) = −x

1/2
2 ex

1/2
2

4 ,

so that W ′′
ξ1

(0, 0),W ′′
ξ2

(0, 0) < 0, and

W ′′
ξ1(0, 0) · W ′′

ξ2(0, 0) − (
W ′′

ξ1,ξ2(0, 0)
)2 = x

1/2
2 e2x

1/2
2

16 > 0.

This implies that W (ξ1, ξ2) is strictly concave in the vicinity of (0, 0), and
moreover W (ξ1, ξ2) ≤ W (0, 0) − β(ξ21 + ξ22), ξs ∈ [−π, π], for a constant β > 0
as k → ∞ because x2 = Θ(1). So,

∏

j<d

∣
∣
∣H

(
z1zj

2
(j!)2

)∣
∣
∣ ≤ exp

(
2x

1/2
1 ex

1/2
2 − Θ(k‖ξ‖2) + o(1)

)
.
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Therefore,
∫

‖ξ‖≥k−1/2+ε

1

zk+1
1 zk

2

∏

j<d

H
(

z1z
j
2

(j!)2

)
dz1dz2 = O

(
exp

(
2x

1/2
1 ex

1/2
2

)

xk
1xk−1

2

∫

‖ξ ‖≥k−1/2+ε

e−Θ(k‖ξ‖2) dξ1dξ2

)

= O

(
exp

(
2k−Θ(k2ε)

)

xk
1xk−1

2

)
. (2.29)

It remains to sharply evaluate the contribution to the Cauchy integral coming
from ξ’s with ‖ξ‖ ≤ k−1/2+ε. By Lemma 2.2, we have

H(z) = π−1 exp(2
√

z)
∫ 4

0

exp(−√
zy)√

y(4−y)
dy, arg(z) ∈ [−π, π].

And, for the values of z1, z2, and j in question, arg(z1z
j
2) = ξ1 + jξ2 =

O(k−1/2+εd) = o(1). Consequently,

1

zk
1 zk−1

2

∏

j<d

H
(

z1zj
2

(j!)2

)
= π−d

zk
1 zk−1

2

∏

j<d

exp
(

2z
1/2
1 z

j/2
2

j!

)∫ 4

0

exp
(
− z

1/2
1 z

j/2
2

j! yj

)
√

yj(4−yj)
dyj .(2.30)

Here

1

zk
1 zk−1

2

∏

j<d

exp
(

2z
1/2
1 z

j/2
2

j!

)
=

exp
(
2z

1/2
1 ez

1/2
2

)
+O(x

d/2
2 /d!)

zk
1 zk−1

2
, (2.31)

and

2z
1/2
1 ez

1/2
2 = 2x

1/2
1 exp(iξ1/2 + x

1/2
2 eiξ2/2)

= 2x
1/2
1 ex

1/2
2 exp

(
iξ1/2 + x

1/2
2 (eiξ2/2 − 1)

)

= 2x
1/2
1 ex

1/2
2

[
1 + (iξ1/2 + x

1/2
2 (eiξ2/2 − 1))

+ 1
2 (iξ1/2 + x

1/2
2 (eiξ2/2 − 1))2 + O(‖ξ‖3)]

= 2x
1/2
1 ex

1/2
2

[
1 + i(ξ1/2 + x

1/2
2 ξ2/2)

−ξ21/8 − (x2 + x
1/2
2 )ξ22/8 − ξ1ξ2x

1/2
2 /4 + O(‖ξ‖3)].

Therefore,

2z
1/2
1 ez

1/2
2 − k log z1 − (k − 1) log z2 = 2x

1/2
1 ex

1/2
2 − k log x1 − (k − 1) log x2

+iξ1
(
x
1/2
1 ex

1/2
2 − k

)

+iξ2(x
1/2
1 ex

1/2
2 x

1/2
2 − (k − 1)

)

− 1
4
x
1/2
1 ex

1/2
2

(
ξ2
1 + (x2 + x

1/2
2 )ξ2

2 − 2ξ1ξ2x
1/2
2

)

+O(k‖ξ‖3).

Recalling that ‖ξ‖ ≤ k−1/ε, we see that O(k‖ξ‖3) = O(k−1/2+3ε) → 0, if
ε < 1/6, which we assume from now. Furthermore, the linear combination of
iξ1 and iξ2 in the above sum disappears, thanks to

x
1/2
1 ex

1/2
2 − k = 0, x

1/2
1 ex

1/2
2 x

1/2
2 − (k − 1) = 0,
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the conditions we were led to in our preliminary attempt to bound N(k). So,
we have

2z
1/2
1 ez

1/2
2 − k log z1 − (k − 1) log z2 = 2k − k log x1 − (k − 1) log x2

−k
4

(
ξ21 + (x2 + x

1/2
2 )ξ22

−2ξ1ξ2x
1/2
2

)
+ O(k‖ξ‖3).

Therefore, Eq. (2.31) becomes

1

zk
1 zk−1

2

∏

j<d

exp
( 2z

1/2
1 z

j/2
2

j!

)
= e2k

xk
1xk−1

2
exp

[−k
4

(
ξ21 + (x2 + x

1/2
2 )ξ22

−2ξ1ξ2x
1/2
2

)
+ O(k‖ξ‖3 + e−k)

]
. (2.32)

The quadratic form is negative definite, since x2 = Θ(1). We still have to
evaluate

∏

j<d

∫ 4

0

exp
(
−Zjyj

)
√

yj(4−yj)
dyj ,

Zj = Xj exp(i(ξ1/2 + jξ2/2)), Xj :=
k exp

(
−1

2

(
k−1

k

)2)

j!

(
k−1

k

)j
,

(2.33)

where d = �2 log k/ log log k�, ‖ξ‖ ≤ k−1/2+ε, ε < 1/6.
(a) Suppose that j < j(k) := � log k

log log k �. Then

k
j! ≥ k

j(k)!
= exp

(
Θ

(
log k · log log log k

log log k

)) → ∞.

So, using

I0(z) ∼ ez

(2πz)1/2

(
1 + O(z−1)

)
, |arg(z)| ≤ π

2 − δ, δ ∈ (0, π/2),

(see [6]), we have
∫ 4

0

exp
(
−Zjyj

)
√

yj(4−yj)
dyj = π exp(−2Zj)I0(2Zj)

= π exp(−2Zj) e2Zj

(4πZj)1/2

(
1 + O(Z−1

j )
)

= π
(4πZj)1/2

(
1 + O(Z−1

j )
)

= π
(4πXj)1/2 · [

1 + O
(
exp

(−Θ
(
log k · log log log k

log log k

)))]
,

implying that

∏

j<j(k)

∫ 4

0

exp
(
−Zjyj

)
√

yj(4−yj)
dyj = (1 + O(Δk))

∏

j<j(k)

π
(4πXj)1/2 ,

Δk := log k
log log k exp

(−Θ
(
log k · log log log k

log log k

))
.
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Here, by (2.33), Xj ≤ k
j! . So, using Stirling’s formula with the remainder term,

namely j! = (2πj)1/2
(

j
e

)j [1 + O(1/(j + 1))], we obtain
∏

j<j(k)

π
(4πXj)1/2 = exp[O(j(k) log j(k))] · k−j(k)/2

∏

j<j(k)

(
j
e

)j/2

= exp[O(j(k) log j(k))] · k−j(k)/2

· exp
(

1
2

∫ j(k)

0

x log(x/e) dx

)

= exp
(
− log2 k

4 log log k + O
(

log2 k
log2(log k)

))
. (2.34)

(b) Suppose that j ≥ j(k). Then, since j < d,

k
j! × ∣

∣exp(i(ξ1/2 + jξ2/2)) − 1
∣
∣ = O

(
k1/2+εd

(j(k)/e)j(k)

)

= O
(
exp(−Θ(1/2 − ε) log k)

)
.

Here and below we use the notation Θ(1/2 − ε) as a shorthand for a quantity
which is bounded below by 1/2 − ε times an absolute constant. So, we have

Zjyj = Xjyj + O
(
d‖ξ‖Xjyj

)
.

Hence,
∑

j(k)≤j<d

Zjyj =
∑

j(k)≤j<d

Xjyj + O
(
d2‖ξ‖ k

j(k)!

)

=
∑

j(k)≤j<d

Xjyj + O
(
exp(−Θ(1/2 − ε) log k)

)
,

implying that
∏

j(k)≤j<d

∫ 4

0

exp
(
−Zjyj

)
√

yj(4−yj)
dyj =

∏

j(k)≤j<d

∫ 4

0

exp
(
−Xjyj

)
√

yj(4−yj)
dyj

·[1 + O
(
exp(−Θ(1/2 − ε) log k)

)]
.

Here, using the convexity of the exponential function,

π−1

∫ 4

0

exp
(
−Xjyj

)
√

yj(4−yj)
dyj ≥ exp

(
−Xj

π

∫ 4

0

√
y

4−y dy

)
= e−2Xj .

So,
∏

j(k)≤j<d

π−1

∫ 4

0

exp
(
−Xjyj

)
√

yj(4−yj)
dyj ≥ exp

(
−2

∑

j≥j(k)

Xj

)

= exp
(
O(k/j(k)!)

)

= k
O
(
log log log k
log log k

)
. (2.35)

Combining (2.34) and (2.35) we arrive at
∏

j<d

∫ 4

0

exp
(
−Zjyj

)
√

yj(4−yj)
dyj = exp

(
− log2 k

4 log log k + O
(

log2 k
log2(log k)

))
. (2.36)
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Thus, Eqs. (2.32) and (2.36) transform Eq. (2.30) into

1

zk
1 zk−1

2

∏

j<d

H
(

z1zj
2

(j!)2

)
= e2k

xk
1xk−1

2
exp

(
− log2 k

4 log log k + O
(

log2 k
log2(log k)

))

× exp
[−k

4

(
ξ21 + (x2 + x

1/2
2 )ξ22 − 2ξ1ξ2x

1/2
2

)]
,

(2.37)

uniformly for ξ with ‖ξ‖ ≤ k−1/2+ε, ε ∈ (0, 1/6).
By (2.37), the contribution to the Cauchy integral on the RHS of (2.10)

is
e2k

xk
1xk−1

2
exp

(
− log2 k

4 log log k + O
(

log2 k
log2(log k)

))

×
∫

‖ξ‖≤k−1/2+ε

exp
[−k

4

(
ξ21 + (x2 + x

1/2
2 )ξ22 − 2ξ1ξ2x

1/2
2

)]
dξ1dξ2

= e2k

xk
1xk−1

2
exp

(
− log2 k

4 log log k + O
(

log2 k
log2(log k)

))
.

In combination with (2.29), this yields that

1
(2πi)2

∮

C1×C2

∏

j≥0

1

zk+1
1 zk

2
H

(
z1zj

2
(j!)2

)
dz1dz2 = e4k

xk
1xk−1

2
exp

(
− log2 k

4 log log k + O
(

log2 k
log2(log k)

))

= e4k

k2k exp
(
− log2 k

4 log log k + O
(

log2 k
log2(log k)

))
.

Therefore, by (2.10), N(k) (the total number of pairs of twin trees, each with
k vertices, and maximum degree �2 log k/ log log k� is given by

N(k) = (k!)4 · e4k

k2k exp
(
− log2 k

4 log log k + O
(

log2 k
log2(log k)

))
.

Combining this with (2.4), we obtain that the expected number of twin trees
of size k = o(n) in the random Cayley tree with n vertices is at least

1
nn−1

(
n

k

)(
n − k

k

)
(n − 2k)n−2k+1 · N(k)

= n2 exp
(
− log2 k

4 log log k + O
(

log2 k
log2(log k)

))
.

Observe that this lower bound depends on k almost like the upper bound
(2.27), since ε′′ can be chosen arbitrarily close to 1/2 from below .) And the
lower bound diverges to infinity if

k ≤
⌊
exp

(
(2 − δ)

√
log n · log(log n)

)⌋
.
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