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The Likely Maximum Size of Twin Subtrees
in a Large Random Tree

Miklés Béna@, Ovidiu Costin and Boris Pittel

Abstract. We call a pair of vertex-disjoint, induced subtrees of a rooted
tree twins if they have the same counts of vertices by out-degrees. The
likely maximum size of twins in a uniformly random, rooted Cayley tree
of size n — oo is studied. It is shown that the expected number of twins of
size (2 + 0)v/logn - loglog n approaches zero, while the expected number
of twins of size (2 — §)+/logn - loglog n approaches infinity.

1. Introduction and the Main Result

For a given combinatorial structure S, there is intrinsic interest in finding the
largest substructure of a given kind that is contained in S, or a set of two or
more identical substructures of maximum size that are contained in S, or the
size of the largest common substructure in two random structures S; and Ss.
For instance, finding the length of a longest increasing subsequence of a random
permutation is the famous Ulam problem (Sect. 6.5 of [4] is a basic survey of
this subject). An early collection of problems featuring the largest common
substructures in two combinatorial objects can be found in [1]. In a pioneering
paper [5], Bryant, McKenzie, and Steel proved that the maximum size of a
common subtree for two independent copies of a uniformly random binary tree
with n leaves is likely to be of order O(n'/?). Interestingly, the proof is based
on a classic result that the length of the increasing subsequence of a uniformly
random permutation is likely to be of order O(n'/?). And a recent result of
Aldous [2] is that the maximum size of this largest common subtree (maximum
agreement subtree) of two independent uniform random binary trees on n
leaves is likely to be of order at least n”, where 3 = (v/3—1)/2 ~ 0.366. Pittel
[9] proved the bound O(n'/?) for the maximum size of a subtree common to
two independent copies of a random rooted tree, namely the terminal tree of
a critical Galton—Watson branching process conditioned on the total number
of leaves being n.

Published online: 27 July 2024 T Birkhauser


http://crossmark.crossref.org/dialog/?doi=10.1007/s00026-024-00711-4&domain=pdf
http://orcid.org/0000-0002-8711-7281

M. Béna et al.

In [3], Béna and Flajolet used a bivariate generating function approach
to compute the probability that two randomly selected phylogenetic trees are
isomorphic as unlabeled trees. The requested probability was found to be as-
ymptotic to a decreasing exponential modulated by a polynomial factor. This
line of research involved the study of the expected number of symmetries in
such trees, which was initiated by McKeon in [8]; in [3], this number in large
phylogenetic trees was found to obey a limiting Gaussian distribution.

Motivated by the cited work, we study the likely maximum size of two,
almost identical, rooted (fringe) subtrees of a random rooted tree, rather than
a pair of random trees. (A subtree rooted at a vertex v is defined as a subtree
induced by v and the set of all the descendants of v.) Formally, we call two
rooted trees almost identical, twins, if they have the same counts of vertices
by their out-degrees. The twin subtrees are automatically vertex-disjoint. In
this paper, the tree in question is the uniformly random (Cayley) rooted tree
on vertex set [n]. Our main result is

Theorem 1.1. Let m,, (k) denote the expected number of twin pairs of subtrees,
with k vertices each. (a) If 6 > 0 and

K, = | exp((2+ 6)\/logn -log(logn)) |,
then ZkZKn my (k) — 0. Consequently, with high probability, the largest size
of a pair of twins is below K,,. (b) If § € (0,2) and

= Lexp((2 - 8)y/logn Togllogm) .

then my, (k,) — oo.

Note. (i) In fact, our proof of (b) consists of showing that even a smaller
expected number of twins of maximum degree |2logk,,/loglogk, | grows in-
definitely as n — oco. (ii) Going out on a limb, we conjecture that the logarithm
of the maximum twin size scaled by \/logn - log(log n) converges, in probabil-
ity, to 2.

In conclusion, a reviewer indicated to us that the our problem is reminis-
cent of the study of distinct rooted subtrees in Flajolet, Sipala, and Steyaert
[7] and the study of repeated subtrees in Ralaivaosaona and Wagner [10].

2. The Proof of Theorem 1.1

Given k, r = (r9,71,...) is a sequence of counts of vertices by out-degree of a
rooted tree on [k] if and only if

dori=k, Y iri=k—1, (2.1)

and M (r), the number of such trees, is given by

(k-1 k
M(r) = NG (ro,m,...>’ (2.2)

Jj=0
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Stanley [11]. It follows that the total number of pairs of rooted subtrees, on
two respective vertex-disjoint vertex sets, each of cardinality k, that have the
same counts of vertices by out-degrees, is

Nk)y= > M) (2.3)
r meets (2.1)

Note. If we consider only subtrees of maximum out-degree (strictly) below
d (> 2) then the index i in the condition (2.1) ranges from 0 to d — 1.

Let S, (k) stand for the total number of pairs of vertex-disjoint rooted
subtrees, each with & vertices, in all the rooted trees on [n] that share the
counts of vertices by out-degree. Then

(k) = (Z) (" - k) N()(n — 2k)"=2=1( — 21)2. (2.4)

And the expected number of the pairs of twins of size k each is given by
_ Sa(k)
mp(k) = 255
The challenge is to sharply estimate N (k) given by (2.3).

Lemma 2.1. Let H(z2) :=3_ 54 G ) Then for all x5 > 0, we have

N(k) < ((2’:)(’“%,[), / H‘H(%)‘dgldgz, 2 = 25, (2.5)

£.€ ( 71'71') 7=>0

Proof. Using (2.2) for M(r), and a generating function H(z) := > o, &
we evaluate

V= ¥ ww=me-00' Y (o)

r meets (2.1) r meets (2.1) "7=0
2
Ta 5B

= (k!(k — x’fxlg ! sz xy (H (J,)}W)
r>0 >0

= (k!(k — x1x2 Z H (wlwz
r>0 J>0

= Kk — D)) [has T Y (z'%)?
>0, >0 CRREE

= (Kl(k — 1) [kl T H( “,@g (2.6)
7>0

If we count only the twins of maximum out-degree below d, then in the above
product j ranges from 0 to d — 1.

What can we get from (2.6) with a bare-minimum analytical work? One
possibility is to use a Chernoff-type inequality implied by (2.6). Note that for
a power series p(z,y) = >, ; a;jz'y’ with nonnegative real coefficients, the
inequality a; jz'y? < p(z,y) holds for all (i, j) and all (z,y) where z > 0 and
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y > 0. Dividing by 2°y’ and taking the infimum on the right-hand side, we get
that

$7
a;; < inf il y)
z>0,y>0 X yj

Applying this inequality for the power series defined by the last line of (2.6),
we get

N(k) < inf GEDDETT g (o), (2.7)

x1>0,29>0 T1Zo >0
Observe that by the elementary inequality (27") <22 for x >0

2r ml/2
S <> Bl — exp(22/2). (2.8)
r>0 >0

So, (2.7) yields

. I(k—1)1)?2 ziad)/?
N <t B e (2 )

x1>0,22>0
1 2 >0

. 1(k—1)1)2 1/2
- T >101713£2>0 % exp (256}/263% )
A straightforward computation shows that the k-dependent factor in the RHS
function attains its minimum at x; = k2 exp(fﬁ), Ty = (%)2, and
consequently
4 4k

N(k) = 0(&ksy). (2.9)
The last estimate is too crude, but the above values of x; and zo will be
used when we switch from Chernoff’s bound to a bivariate Cauchy integral,
taken on the Cartesian product of two cycles, i.e. counterclock-wise oriented
boundaries of two circles, of radii x; and z9, respectively. Essentially we will
use a bivariate version of the saddle point method, with the above discussion
allowing us to guess that (1, 22) is a promising approximation of the saddle

point itself.
Here is the switch. By (2.6) and the Cauchy formula we have

2
El(k—1)! 2123
Ny = ¢ <2m>2) ]{ e HH((j,)§>dz1d22, (2.10)
Cl ><C'2 jZO
Cy = {zs € C: zg = xge™s, & € (77r,7r)}, s = 1,2. It follows that for all
zs > 0, the claim of the lemma holds. O

Let z be a complex number so that arg(z) € (—m, 7], and set z'/? :=
|2]"/% exp(zarg(2))-

Lemma 2.2. For H(z) =) -, ﬁ, with z and z'/? as above, the inequality

|H(z)| < |exp(221/2)]

max(1,a|z|1/4)

holds, where o > 0 s an absolute constant.
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27"

Proof. Introduce I(z) := Y77 & GIEE arg(z) € (—m/2,7/2], so that H(z?) =
I(2). Tt suffices to prove that, for arg(z) € (—7/2,7/2],

[expees)| (%)
|1p(22)| < max(Lalz17%) Ih(§) = Z>:0 Gn? (2.11)
i

where Iy(€) is the zero-order, modified, Bessel function, since H(2?) = Iy(22).
Here is a surprisingly simple integral formula for I5(2z) that does the job:

4
Io(22) = 7L exp(2 exp(=2y) g € (—m/2,7/2]. (2.12
0(22) = 7" exp(22) i W arg(z) € (—m/2,7/2]. (2.12)

Equation (2.12) follows from identity 10.32.2 in [6], that is,

1
Iy(22) = %/ (1 —t3)~Y2e728 gt
—1

via substitution y = 2¢ + 2. (Our original proof of (2.12) was from scratch. We
are grateful to the reviewer for the above reference.) Define

4
T 2.13
/ s (213)

so that In(2z) = 7~ lexp(22)G(z), whence |I5(22)] = 7 1|exp(22)| - |G(2)].
Here for ®z >0

4

G(z)| < L dy=n.

|G(2)| < /O Vr=n) Yy=m
So, by (2.12), [I5(22)| < 7| exp(22)|7 = |exp(2z)|. Next, let us show that
for g(z) := |G(2)|/G(|z|) we have supy g(z) < oo, where H := {z : z > 0}.
The function g is well-defined and continuous in H, since G(z) is continuous
in H and G(|z]) > 0.

We are left with showing sup, e, .j>1 9(2) < oo. Noting that G(z) =

G(z), it suffices to show this boundedness in the closed fourth quadrant Qry .
For such z we have

e *Y
z) = / —dy, (2.14)
c. Vy(d—y)
where a > 0 and C, is the oriented polygonal line joining the points y; = 0, y2 =
av/i,y3 = av/i + 4, and y, = 4. Since |e*¥| < 1 in H and min{|y|, |4 — y|} >
Sy = 27/2a, the integral over the segment (y2,y3) is bounded by 4v/2/a,
hence it goes to zero as a — oo. Passing to the limit a — oo, we thus get

Ooe'i'rr/4 e_zy

e~ Y coel™/ 444
e, [T e
0 Vyd—y) 1 y(4—y)
ooel™/4 e Fu ) ef4zfzu
:/ —1 du
: (JM4—w ¢m+um>

G(z) = dy

(2.15)
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In the last integral we have |\/u(4 —u)| > 2%/4\/[u], [\/u(4 + u)| > 2y/]u],

le™**] < 1 and (since z € Qv and argu = %), |e” | < e=27?I2llul . Since
273/4 1 271 < 2 we get

|G(2)| < 2/ w2727 Pzl gy — 95/, J| |12, (2.16)
0

Importantly, we need this bound only for |z| > 1. For those z’s, we have

G(2)) > 1 /4 eIzl 1ig|-1/2 /4 n 2 dp (2.17)
= 2 B \/y = 2 B . :

Combining (2.16) and (2.17), we see that sup,cp.(.>1 % < 00. There-

2|

fore
|10(22)| = O(| exp(22)| - G(|z])) = O(J exp(22)| - |2|7/?),

uniformly for z € {H : |z| > 1}. This bound and the inequality |Ip(2z)] <
|exp(2z)], Rz > 0, complete the proof of the lemma. O

2.1. Proof of Theorem 1.1, Part (a)
We use the lemma 2.2 to prove that, for
§>0, K,=|exp((2+0)y/logn -log(logn))]|,

we have >, r- my(k) — 0, where my, (k) is the expected number of pairs of
twins of size k. ,

We turn back to the integrand in (2.5). With 25 = z5¢%+, and X := g(ﬁ;,g)ﬁé ,
by Lemma 2.2 and (2.8), we have

H ‘H( )’ = H maix(p;(ifx/\zl/zl) exp (Xj (cos(& + j&) — 1)) (2.18)

Let us look closely at {X;}. Using j! < (]7) j > 1, we have

J ) 1/2 ) QLfl
X; >z - ( tf) - =1 exp<2j log 2;:2_1 ) =11 exp<2j log — )
2

k=1
The function 1 log nfl is decreasing for n > 1. Pick € € (0,1/2) and introduce
J = le?liﬁj Then, uniformly for j < J,

h-1
X, > zexp <2J10g %_’ﬁ) =z exp(—2Jlog J + O(J))

= exp((1 — 2¢) log z1 + o(log z1)) — oco. (2.19)

Further

J-1 gk=1 J Gk=1 )
ZZjlog j+k1 22/1 nlog Ufl dn > —J?log J;
j=1
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the last inequality follows easily from integration by parts. Therefore
H X; > af exp(—J?log J) > exp|J(logz1 — Jlog J)]
j<J
2
> exp(&/(1 - ) ot )

log 1

(1 € ) O, ogx
=z, logllog@1) e/ < ¢, (2.20)

The point of this bound is that the product in question exceeds x; raised to a

sub-logarithmic power, still approaching infinity when k does. It follows from
(2.20) that

cxp(QX}/z) log? 1/2
H max(l,a|)é'j\1/4) = exp(—g’(l - 81)4102%1021951) + Jlog a) eXp(Q Z Xj )
J<J J<J
2 1/2
- eXp<—€/(1 — &) s 4 O(e log a:l)) exp<2 S x)/ )
i<J

exp(Q)(l/2
max(1,a|X;[1/4)
for e’ < ¢/,

/2
eXP(2X} ) _e’(1—¢")log® xy 1/2
max(1,a]|X;[1/4) < exp " 4log(logz1) €xXp ZX
§>0 >0

"(1—e"") log? 1/2 1/2
= eXP(_E z(llo;(lczg(fl)xl) eXP(2x1/ exp(a:Q/ ))

(1—e"Y 1o 2]@
< e -exp(—%), (2.21)

2(k—1 1\ 2
(=25) z2 = (551)"
Dropping the factors exp(Xj (cos(& + j&) — 1))(§ 1) with j > 1 in
(2.18), and using (2.21), we obtain

z1% 2k € ’(1—5”) log? k
H‘H( )‘<e eXp( logaogk))

7=>0

Since < exp(2X ]1 / 2) for all j, the above inequality implies that

as x1 = k% exp

X exp(zl(cosﬁl —1) + z122(cos(& + &) — 1)),
& € (=m,m). (2.22)

To use this last estimate on the right-hand side of (2.5), we need to find an
upper bound for the integral of the exponential factor above. Let I = (—m, 7).
To obtain the needed upper bound, let us set

f(&1,&) == x1(cos(&1) — 1) + z1xa(cos(§y + &2) — 1).

Clearly, f(&1,&) < 0, with equality holding if and only if cos(§) = 1, and
cos(&1 + &) = 1, where &; € I, or equivalently if and only if £ = & = 0.
For max{|&1|, |€2|} > 7/2, we have

f&1,6) < —ak? <0, (2.23)
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for some positive constant a. For max{|1], |€2|} < 7/2, using the Taylor ex-
pansion of cos, we obtain

f€1,62) < =b[x1F + mima(&r + &)%) < —ck?[6] + &3] (2.24)
Combining (2.23) and (2.24), we get
f(€1,62) < —dk*[EF + &3], (2.25)
for & € I, for ¢ = 1,2, and some fixed constant d > 0.
Therefore,

/ exp(f (€1, 62)) dérde
IxI

= /exp[ml(cos(fl) — 1) + z1ma(cos(&y + &) — 1)] d&1dés

IxI
< / exp(—dk?(€2 + €2)) deyde
IxI
242 242 0
- / exp(—dk?¢?) dt, - / exp(~di*EE) ey < . (2.26)
I I

Putting together (2.5), (2.22) and the last inequality, we conclude that

_ _61/(1_6//)10g2k (kj!)4e2k
N(k) - eXp( log(log k) )O(l']fl'gilkzl)

"(1—¢")log® k L4tk
- eXp(—E (llog(alo)g k)g )O((k2)k+4 )
This bound and (2.4) imply that

Sp(k) = O ((Z) (“ B k) (n— 2k)”‘2k+1N(k)>

- Eu(l_a//)logzk n!(n_Qk)n—2k+1(k!)2k—2k—4e4k
= exp (_ log(log k) ) O< (n—2k)! .

Using Stirling’s formula for factorials we obtain that

(1—e"Yloe? k nntl
Sulk) = exp (-t o (27 ).

Dividing this bound by the number n"~! of all rooted Cayley trees, we get

that the expected number of the pairs of twins of size k, i.e. m, (k) = iﬁ(,kl),
is

(k) = o(gi exp(—‘W)), Ve <e<1/2.  (2.27)
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Since the series Zk21 k=3 converges, it follows that for
kn = exp<(2 +9)y/logn - log(logn)> and ¢ > 0 we have
_ 2 "(1—¢") log? k 3
Z my (k) = O(n exp( (1—¢") log” kn logalogl(c),g:) )) Zk’
k>ky
— Oexp (2[1 (24 68)%"(1—¢ )] log 1 + o(log n)), (2.28)
uniformly for all ¢ < 1/2. Picking &” sufficiently close to 1/2, we conclude
that lim,—oc D _p>p, Mn(k) = 0.
2.2. Proof of Theorem 1.1, Part (b)

The claim is: If 6 €(0,2), ky,:= Lexp(@—é) logn - log(log n))J , then my, (ky,) —
0.

Proof. From here on we can, and will consider the twins of maximum out-
degree < d = d,,, with d,, yet to be chosen. Let us upper-bound the con-
tribution to the RHS of (2.5) for k = k,, coming from (z; = z1e¥, 2y =
T9e%2), where z1 = k> exp(f%), Ty = (%)2, and also ||€]| < k—1/2+e,
€ €(0,1/2). By Lemma 2.2,

H ‘H(zlzz)’ < exp<2ac1/2 Z j/
j<d

< exp <2z1/2 Z ]/zﬁ(exp( (&1/2 +]§2/2)) + O(x 1/2/d1)>

j<d

R(exp(i(&1/2 + 352/2))>

= exp(227°W (&1, &) + O(xy 25/ * /),
where
W(&1,62) —cos(§1+x2/ sin &2 ) exp(x /Cosgz)

Since x1 = O(k?), 22 = O(1), the big-O term is o(1), if d = [2log k/loglog k|,
which we assume from now.

Clearly, W (&1,&2) < exp(x;/Q) = W(0,0), and it is easy to check that
(0,0) is a single stationary point of W (&1, &) in [—7, 7]2, whence it is a unique
maximum point of W(§1, &) in this square. In addition,

o/ 1/2)6 1/2 51/2

WL(0.0) =~ <5 W (0,0) = - 0.0y = -
so that I/Vé’1 (0, O), W, (0,0) <0, and

L1/2 2p1/2
W{(0,0) - WE(0,0) — (WY ¢, (0, 0)) =22 >0

This implies that W (&, &) is strictly concave in the vicinity of (0,0), and
moreover W (&1,&) < W(0,0) — B(&F + £2), & € [—m, 7], for a constant 3 > 0
as k — oo because zo = ©(1). So,

H ’H()‘ < exp (202" — O(k||€]?) + o(1)).
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Therefore,
221/2 1;/2 _ 2
Bz )d21d22 = O<¥ e Ol >d£1d£2>
lell=h—1/2+e F i< llg | =k—1/2+e
exp(2k—O(k3%)
= O(%) (2.29)
12

It remains to sharply evaluate the contribution to the Cauchy integral coming
from &’s with ||€| < k~'/?*¢. By Lemma 2.2, we have

H(z) = m ' exp(2v/2) ; e% dy, arg(z) € [-m, 7.

And, for the values of z1,z5, and j in question, arg(zlzg) =& +Jjé =
O(k~1/?*2d) = o(1). Consequently,
1/2_j/2

Z1 2 221/2 J/2 cxp( = J'Z2 ) .
2hzh HH( %) k 2FfT Hexp( lj! ) 0 Vs (4—y;) dy;(2.30)
Here
2,1/2,3/2 exp 221/2¢ z§/2 +O0(z d/Q/d')
2z k ' E[dexp( - j!22 ) - ( : leé) ! (231)
J
and

22’%/262;/2 = 2217 exp(i€1 /2 + xy/*e2/?)
= 2x1/2e“”;/2 exp(i&1/2 + x§/2(6i52/2 -1))
= 22126 [1 4 (ig1 /2 + 212 (€22 — 1))
+5(€0/2 + 2,/ (%7 = 1)) + O(I€]1*)]
= 2x1/2e“’;/2 [1+i(&/2+ x1/2§2/2)
—€1/8 — (w2 + 1/")8 /8 — 160wy /4 + O(€]°).
Therefore,
2217262 _klogzy — (k- 1)log 2 = 22/2e%2” _ kloga1 — (k — 1) log
ity (2 %end” — k)
Fi€a(e}/ e a}/? — (k= 1)

)€2 — 261605/ ?)

_le/Q z; (£2+($2+$1/2

+O(K|IEN®).
Recalling that ||£] < k1%, we see that O(k[|€]|?) = O(k~1/2%3%) — 0, if

€ < 1/6, which we assume from now. Furthermore, the linear combination of
1&1 and i€ in the above sum disappears, thanks to

mimex;/z —k=0, xi/zex;ﬂxéﬂ —(k—=1)=0,
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the conditions we were led to in our preliminary attempt to bound N (k). So,
we have

22%/26%/2 —klogzy — (k—1)logzo = 2k — klogxzy — (k — 1) log xo
R GRAGCRE
—261601y) + O[],

Therefore, Eq. (2.31) becomes

1 22022972\ _ e _E( 2 1/27 42
R ET E]exp( Fi ) = ohgkl eXp[ 1 £1 (.1‘2 + z, )52
j<d

—2§1§2x1/2> +OREIP + 7). (2.32)

The quadratic form is negative definite, since zo = O(1). We still have to
evaluate

H/ ””(4 y (2.33)
kexp (- (%)2)(%)77

. Nl

Zj = Xjexp(i(&1/2+7&2/2), X;:=

where d = |2logk/loglogk|, ||| < k=/2%%, ¢ < 1/6.

(a) Suppose that j < j(k) := Llog)lg’ogkj Then

k .
52 s = op (O ) o

So, using
Io(2) ~ e (14 0G), Jarg(2) < 5 — 4, 6 € (0,7/2),
(see [6]), we have

4 exp(*ijj)

o V¥ild—y;)

™ exp(—QZj)Io(2Zj)

mexp(—2Z; )(47TZ 72 (1+O( ))
e (1+0(Z:h)

= gz [1+ O(exp(—O(REEEoRIat))) ]

implying that

exp Jy] -
11 / Ty =0+ 0) 11 Gty

J<j(k) J<j(k)

. logk log k - log log log k
Ak’ ' loglogk eXp( @( loglog k ))
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Here, by (2.33), X; < ﬁ So, using Stirling’s formula with the remainder term,
namely j! = (277])1/2( ) [1 +O(1/(5 + 1))], we obtain
s : : —J j\J/2
[ @s50e = ewloGk)log (k)] - k77072 TT (1)
J<j(k) J<i(k)
= explO(j (k) log j (k))] - k772

3 (k)
~exp(%/ zlog(x/e)dx)
0

log? k log? k
= oxp(— 11y + O(dionsy) ) (2:34)

(b) Suppose that j > j(k). Then, since j < d,
. . . 1/24¢
5o exp(i(é1/2 + j€2/2)) — 1| = O(W)
= O(exp(—O(1/2 — &) logk)).

Here and below we use the notation ©(1/2 — ¢) as a shorthand for a quantity
which is bounded below by 1/2 — & times an absolute constant. So, we have

Ziy; = Xjy; + O(d|€] X;v;).-
Hence,
Yo Zwi= > Xy +O(ClEl )
(k) <j<d J(k)<j<d

Z X;y; + O(exp(—O(1/2 — €)log k)),
j(k)<j<d

implying that
H / eXP JyJ dy _ H / eXP JyJ
\/ J 4 \/ J 4 J
J(k)<j<d w4 J(k)<j<d vs(4=vs)

(14 O(exp(—O(1/2 — €) logk))].

Here, using the convexity of the exponential function,

s exp(—Xjy; X; ;
/W yfze"p(‘ /V dy)‘e v

4
H ! e (- X0,) Jy]) dy; > exp(—2 Z X;
jk)<j<d o Vit ( 3> (k) )
= exp(O(k/j(k)Y))

log log log k
— ko< log log k )

So,

(2.35)
Combining (2.34) and (2. 35) we arrive at

en(Zw) g _log?k _log?k
H/ \/m dyj eXp( 4loglogk + O(log logk)))' (236)
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Thus, Egs. (2.32) and (2.36) transform Eq. (2.30) into
212 e2k log? k log? k
2Fk HH( 3 2) = k k=T eXp( TlogTog +O(log2(glogk)))

xexp[§ (€ + (2 +23)6 — 201625)],
(2.37)

uniformly for & with ||£| < k=/2%¢ ¢ € (0,1/6).
By (2.37), the contribution to the Cauchy integral on the RHS of (2.10)
is

2k log? k log? k
P R, g og
ahph=1 eXp( 4loglogk + O(logz(logk))

X / exp[— 5 (€2 + (x + 13/?)e2 — 2616023/)] dedés
[[€]|<k—1/2+e

2k log? k log? k
= wlfigfl exp(_éllcc))gglogk + O(logg(glog k)))
In combination with (2.29), this yields that

Z1 25 etk ~log’k log? k
(27rz % H k+1 2k ( ) dzydzy = k'z’;*1 eXp( 4loglog k + O(logQ(log k:))

Cy1xCo j=>0

Ak log? k log? k
= % exp(_4logglogk + O(Iog glogk)))'
Therefore, by (2.10), N (k) (the total number of pairs of twin trees, each with
k vertices, and maximum degree |2logk/loglogk]| is given by

O, 2 C O, 2
N(k) = (k)* - o exp( 4llogglo];k +O(log12%10§k)))'

Combining this with (2.4), we obtain that the expected number of twin trees
of size k = o(n) in the random Cayley tree with n vertices is at least

)3 =

2 log? k log? k
=n eXP(*uoglogk + 0(10g2(1ogk) ))
Observe that this lower bound depends on k almost like the upper bound

(2.27), since €’ can be chosen arbitrarily close to 1/2 from below.) And the
lower bound diverges to infinity if

k< Lexp((Q —9)+y/logn - log(log n))J
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