
Change Point Detection in Evolving Graph usingMartingale
Shen-Shyang Ho
Rowan University

Glassboro, New Jersey, USA
hos@rowan.edu

Tarun Teja Kairamkonda
Rowan University

Glassboro, New Jersey, USA
kairam42@rowan.edu

ABSTRACT
Many real world applications are modeled as groups of interacting
entities using dynamic graphs due to the nature of the application
domains such as sensor network, social network, computer network,
urbantra�cnetwork,andpowergrid.Achange in theevolvinggraph
or a change in the behavior of the interacting entities can be viewed
as a change in the graph distribution or graph generating process.

We describe our proposed change-point detection approach for
an evolving graph by monitoring the martingale values derived
from the extracted graph features. We demonstrate empirically that
the feature representation that encodes a graph property (or char-
acteristics) is critical in the performance of the martingale test in
detecting the change-point using two synthetic (random topology,
scale-free) graph generators and a real-world dataset. On the other
hand, we demonstrate that the theoretical false positive bound for
a martingale change-detection is preserved even when di�erent fea-
ture representations are used. We further discuss the use of multiple
martingale tests on di�erent graph features allowing one to iden-
tify which graph property changes and provide explanations to the
change-point detected.
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1 INTRODUCTION
Many real world applications exist in dynamic environments which
require the monitoring of real-time processes. Many such processes
are modeled as groups of interacting entities using dynamic graphs
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due to the nature of the application domains such as sensor network,
social network, computer network, urban tra�c network, and power
grid. One particular task of interest is anomaly detection (global or
local) in an evolving graph [6, 22, 29, 30]. A more generic task is the
change-point detection problem such that a change may not be an
anomaly. Instead, it is a change in the process or a change in the
behavior of the interacting entities [18, 20]. Such a change-point in
time is a consequence of a change in the graph distribution.

In this paper, we focus on this particular change-point detection
problem. The change point detection problem involves the identi�-
cation of a time instance when there is a deviation from the current
data generation model. We formally state the problem statement
similar to [4]:
Given a sequence of observed random variables (G: )1:= with condi-
tional density?\ (G: |G:�1,...,G1). Before change occurs, the conditional
density parameter \ =\0. After the change, \ =\1. The online problem
is to “detect the occurrence of the change as soon as possible, with a
�xed rate of false alarms” [4].

For the change point detection problem for an evolving graph, we
observe a sequence of graph snapshots (G: )1:= , one snapshot at
a time. One assumes that at current time instance C ==. At some time
instance C =: , the conditional density ?\ (G: |G:�1,...,G1) describes
some properties or characteristics (or features) that can be extracted
from snapshots of the evolving graph. Hence, to model a graph dis-
tribution or graph generation process, one needs to consider the
question “whichproperty or characteristic is used tomodel the evolv-
ing graph?” This, in turn, a�ects the performance of a change-point
detection solution implementation.

In this paper, we describe our proposed change-point detection
approach for an evolving graph bymonitoring themartingale values
derived using the features extracted from the snapshots of the evolv-
ing graph. Moreover, we demonstrate empirically that the feature
representation that encodes a graph property (or characteristics) is
critical in the performance of the martingale test in detecting the
change-point. This shows that additional factors need to be taken
into considerationwhenusingamartingale test for change-detection
problem for an evolving graph compared to its previous proposed
uses in conventional data types and models [12, 13]. On the other
hand, we demonstrate that the desirable theoretical false positive
bound for a martingale change-detection is preserved even when
di�erent feature representations are used.We further discuss the use
of multiple martingale tests on di�erent graph features allowing one
to identify which graph property changes and provide explanations
to the change-point detected.

The paper is organized as follows. We provide a brief review of
existing change detection methods for evolving graph in Section
2. In Section 3, we describe the modeling graph property distribu-
tion using graph features and embeddings. In Section 4, we describe
our proposed evolving graph change point detection method using
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martingale in detail. We describe how the martingale methods can
run in parallel to provide explanation to change-points detected. In
Section 5, we present and discuss our results on synthetic data and
a demonstration using a real-world dataset.

2 RELATEDWORK
One of the earliest change-point detection approaches, called the
sequential probability ratio test (SPRT) [26], was proposed to mon-
itor the manufacturing process of military and naval equipment
duringWorldWar II. Many early techniqueswere proposed bymath-
ematicians and statisticians and they can be found in [4]. Some of
these conventional statistical process control and monitoring tech-
niques such as cumulative sum (CUSUM) control chart [19] and
exponentially weighted moving average [21] can be applied to mod-
ern applications related to social networks [18].

Many recently proposed change-point detection approaches’ for
evolving graphs have the objective of identifying anomalies (local)
in a graph time-series in node attributes or global (snapshots) graph
anomalies. Aggarwal et al. [1] proposed a thresholding method for
dynamic changes in node labels for real-time detection of changes
in a node classi�cation task setting. Koutra et al. [16] solves the
problem of change detection in graph as the lack of similarity based
on node/edge characteristics between two graphs. Wang et al. [27]
proposed a method considering a graph sequence given a dissimi-
larity scoring function, and a threshold to detect events or changes
when the dissimilarity of two consecutive snapshots is above the
threshold in the latent space for the evolving graph.

There are research focusing on the learning of graph similarity
function to better compare graphs to identify changes. Sulem et
al. [23] proposed the use of a Siamese graph neural network to learn
a graph similarity function to compare the current graph and its
recent history. The main issues with the approach is the need to
train and learn the similarity function and it is not clear how the
threshold is chosen for the change-point detection. Recently, Floss-
dorf et. al [8] utilized multiple sets of metrics for online monitoring
of evolving graphs. They described guidelines on how to choose a
suitable metric set together with the choice of a meaningful para-
metric or non-parametric control chart. However, they showed that
the performance of their approach is application dependent.

There are research focusing on the learning of graph embeddings
to better represent graphs to identify changes. Grattarola et al. [9]
proposed two change detection tests for evolving graphs by using
graph embeddings learned using an autoencoder to represent graph
instances over time on the (non-Euclidean) constant-curvature Rie-
mannian manifolds (CCMs) which enable better computation of the
metric geodesic distances between graphs. Ferrari and Richard [7]
proposed a non-parametric approach to detect a change point lo-
cated on an unknown cluster in an evolving graph by monitoring
the nodes using graph-�ltered signals that take into consideration
the graph topology. Huang et al. [14] proposed the use of the spec-
trum of the Laplacian matrix of the graph to capture the temporal
relationship and compare graph snapshots across time.

Recently, Xie et al. [28] proposed the multi-view feature inter-
pretable change point detection method (MICPD) based on a vector
autoregressive (VAR) model to reduce high-dimensional network
data into a low-dimensional representation for tracking the change

points for multiple targets. Note that the multi-view approach is to
�ndmultiple change points in the graph structure using a a single
multidimensional vector encoding multiple feature time series.

3 MODELINGANDMONITORING FEATURE
DISTRIBUTION FOR EVOLVINGGRAPHS

In this paper, an evolving graph is represented by a sequence of
static graph snapshots (G: )1:= . Each graph snapshot is observed
one after another, and only once. As a snapshot is observed, graph
properties and features are extracted from it.

We de�ne the conditional density of the graph feature of interest
by

?\ (5 (G: ) |5 (G:�1),...,5 (G1))
such that 5 :⌧ ! F is a transformation for an input graph⌧ and
returning an output vector F (or amatrix, in general). For simplicity,
we assume

?\ (5 (G: ) |5 (G:�1),...,5 (G1))=?\ (5 (G))
is the density function for some feature vector random variables.

The transformation 5 represents a great variety of feature extrac-
tion or embeddingmethods. It could be as simple as degree centrality
calculation, SVD (Singular value decomposition), and spectral em-
bedding. It can also be more computationally expensive static graph
embeddings such asNode2Vec [10] andGraphSAGE [11] or dynamic
graph embeddings [3].

We brie�y describe the �ve graph features / embeddings and their
graph properties used in our empirical evaluation:

(1) DegreeCentrality: It is a vectorwith thenumberof elements
equals to the number of nodes. Each element is the fraction
of nodes a particular node is connected to. The values are
normalized by dividing by the maximum possible degree in
the graph.

(2) Singular value decomposition (SVD) of the adjacency
matrix: The embedding ensures that nodes that are closed to
each other based on the adjacency matrix will be closed in a
3-dimensional space such that 3 < |+ |, the number of nodes
in the graph. This embedding is sensitive to the node order in
the adjacency matrix.

(3) Spectral Embedding: Eigendecomposition is performed on
the graph Laplacian. Similar to embedding using SVD on
adjacency matrix, nodes that are closed to each other in a
graphareclosed ina3-dimensional space such that3 < |+ |, the
number of nodes in the graph. This embedding is independent
of the node order in the Laplacian and hence, hidden patterns
in the original space are preserved in the embedding.

(4) Singular Values of Spectral Embedding (LSVD) [14]: It is
a vector containing the singular values of the spectral embed-
ding of a graph snapshot. The singular values (or eigenvalues)
of the Laplacian matrix encode graph structural properties.

(5) Node2Vec: It is a randomwalk-based node embedding. For
each node, the randomwalks are used to derive the represen-
tation of the neighborhood of that node. The objective is to
have node embedding as similar as possible to embeddings of
nodes in its neighborhood.

Note that we do not explicitly model the graph feature distribu-
tion functionwhen running the onlinemartingale test. Amartingale
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Figure 1: Overview of evolving graph change-point detection usingmartingale over time.

value is computed as a graph snapshot is observed and change-point
decision is based on the martingale value. We discuss the method-
ology in detail in the next section.

4 METHODOLOGY
In Section 4.1, we provide an overview of our change point detec-
tion approach. In Section 4.2, we describe in detail the martingale
change-point detection method for evolving graphs. In Section 4.3,
we discuss how the multiple extracted properties and features allow
us to monitor and explain the possible change-points with respect
to the feature distributions considered by multiple martingale tests.

4.1 Approach Overview
Figure 1 shows an overview of the process of using a martingale-
based change-point detection approach for an evolving graph rep-
resented by a sequence of graph snapshots (G: )1:= over time.
Feature matrix 5 (G: ) 2' |+ |⇥3 are extracted from a graph at time
instance : such that+ is the set of nodes for an evolving graph and
3 is the feature dimension for each node. Over time, the extracted
features are used to compute the set ( of conformal scores (di�erent
values at di�erent time instance : for a particular graph snapshot)
for all the graph snapshots observed so far. Set? contain the p-values
?: computed so far." (C) is the martingale values computed at time
instance C . Decision to declare a change-point detected is based on
the threshold value _.When a change is declared, the process is reset
(i.e., martingale value is reset to one at the next time instance).

4.2 Conformal
Evolving Graph Change-Point Detection

Themartingale change detection approachwas�rst proposed in [12]
for labeled data stream. It was further extended to handle the change
detectionproblemforregressionmodelandunlabeleddatastream[13].

In this section, we describe and discuss in detail the proposed
evolving graph change-point detection usingmartingale. First, a par-
ticular graph feature vector or matrix is extracted from an observed
graph instance G: as described in Section 3. In an online setting,
graph feature vectors 5 (G1),...,5 (G=�1),5 (G=) from time instance
C =1 to current time instance C == are used to compute themartingale
value"= at C ==.

De�nition 4.1. Given a sequence of random variables {"8 : 0 8 <
1}. It is amartingale" with respect to the sequence {/1 :0 8 <1}
(in particular,"0 is a constant value), if, for all 8 � 0 the following
conditions hold:

• "8 is a measurable function of/0,/1,···,/8 ,
• ⇢ ( |"8 |)<1,
• ⇢ ("=+1 |/0,···,/8 )="= .

Tocompute themartingalevalueat current time instance C ==, one
used p-values ?C computed from C =1 to =. A function⌘ :-=! [0,1]
is a p-value functionwith respect to any probability distribution %
over- if for all = 2# and A 2 [0,1],

%={G 2-= :⌘(G) A }A (1)

In statistical signi�cance testing, the p-value provides a measure on
howwell the data support or discredit the statistical null hypothesis.

A family ofmartingales, called the powermartingale [25], indexed
by n 2 [0,1], is de�ned as

" (n )
= =

=÷
8=1

⇣
n?n�18

⌘
(2)

where the ?8s are the output p-values from the function⌘, and the
initial martingale" (n )

0 =1.
Vovk et al. [25] introduced the idea of testing exchangeability of

streaming data using (2). Ho [12] utilized the idea that a lack of data
exchangeability in the observed streaming data implies a change
occurs in the data distribution. In this paper, the data points are
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Algorithm 1 Martingale value computation at time step C
Input: Graph GC

1: EC = 5 (GC ) .
2: Compute conformal scores for (G: )1:C�1 and GC using E8 ,8 =1 9  C

based on (3)
3: Compute the p-value ?C using conformal scores based on (4);
4: Compute" (C ) using (2) with all previously computed ?8 ,8 =1 9  C �1

and ?C ;
5: if" (C ) �_ then
6: Change Point Detected;
7: Alert user of Change Point;
8: Break (from the test process);
9: else
10: Normal (continue the test process)
11: end if

snapshots of an evolving graph and the distribution change is with
respect to some properties or characteristics represented by some
feature vectors/ embeddings for the snapshots.

The fundamental building block of the martingale (2) is called
the conformal scorewhich quanti�es howmuch a data instance (an
observation or a prediction) is di�erent fromother data instance [13].
For our change-point detection problem, a snapshot of the evolving
graph is represented by a feature matrix or vector. To compute the
conformal scores for the snapshots of the graphobserved so far repre-
sented by a sequence of features (5 (G: ))1:= , we utilizeK�mean
clustering such thatK =1. Let⇠ (5 (G: ))1:= be the cluster center.
The conformal score for graph G:

( (G: )= | |5 (G: )�⇠ (5 (G: ))1:= | | (3)

such that | |2§| | is some suitable distancemeasure (for vector ormatrix).
Ap-value?= at time instance= in (2) is computedusing thep-value

function,

?= ({(G: )1:=},\=)

=
#{ 9 :2B 9 >2B=}+\=#{ 9 :2B 9 =2B=}

=
(4)

where 2B 9 is the conformal score forG9 , 9 =1,2,...,= and \= is randomly
chosen from [0,1] at time instance = [25]. The computed p-values
are independent and uniformly distributed on [0,1] if the graph
snapshots are exchangeable [24].

T������ 4.2. (Doob’s Maximal Inequality) Suppose that {": :
0: <1} is a non-negative martingale. Then for any _>0 and = 2N,

_%

✓
max
0:=

": �_

◆
⇢ ("=) . (5)

If ⇢ ("=)=⇢ ("0)=1, then one has

%

✓
max
:=

": �_

◆
 1
_

(6)

This inequality means that there is low probability that": is higher
than some high _ value. However, there is some probability for a
false detection. Inequality (6) is an upper-bound for the false positive
rate for change-point detected when there is none. The amount of
risk one is willing to take for a detection to be a false alarm will
determine the _ value.

Algorithm 1 shows step-by-step the computation of martingale
value for a snapshot of the evolving graphGC at time C . Line 1 extracts

Figure 2: Monitoring evolving graph feature distributions change formultiple
features over time.

the feature of interest using 5 on GC . Line 2 computes the conformal
scores for all the graph snapshots observed so far using (3). Line 3
computes the p-value ?C using (4) with the conformal scores com-
puted in Line 2 . Line 4 computes themartingale value at time C using
all previously computed p-values. If the martingale value is greater
than a pre-de�ned threshold _, the test signals a change-point detec-
tion, alert the user, and stop (or reset) the change detection process.
If not, the process will continue to monitor the evolving graph.

4.3 Feature-based Explanation
for Detected Change in Evolving Graph

Figure 2 shows an example of the martingale values of an evolving
graph with structural changes occurring at t=100, 200, and 300 for
an evolving graph generated using the Barabási–Albert model (see
Section 5.1 for dataset generation description). Themartingale value
is reset when it is greater than _=20. One observes from the �gure
that martingale-based change-point detection using the degree cen-
trality vector, SVD embedding, and LSVD representations are able
to detect all 3 change-points. The martingale method is unable to
detect the structural change in the evolving graph using spectral
embedding and Node2Vec features.

Wehypothesize that graph features exhibit di�erent time-varying
distribution characteristics in the evolving graph. Moreover, there
exist some featureswhose distributions donot showa change or shift
evenwhen a structural change occurs. These features do not contain
useful information about the particular structural change. Hence, by
monitoring the martingale values for di�erent features, one can pro-
vide explanation on what type of feature distribution change occurs
as a structural change occurs. It provides feature-based explanation
on why the change occurs in the evolving graph.

5 EXPERIMENTALRESULTS
In Section 5.1,we describe the dataset and two graph generators used
in our experiment. In Section 5.2, we describe the evaluation mea-
sures used in our experimental results. In Section 5.3, we describe
our experimental design. In Section 5.4, we present and discuss our
empirical results.
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Figure 3: The mean values of the elements in the degree centrality feature
vector for |+ | nodes for an evolving graph generated using the Erdős-Rényi
model with change-point at t = 101.

5.1 Dataset Descriptions
5.1.1 Sequences of Synthetic Evolving Graph Dataset: We generate
sequencesof evolvinggraphsusing tworandomgraphmodels:Erdős-
Rényi model [5] and Barabási–Albert model [2], for our empirical
study of our proposed change-point detection approach. The ran-
dom graphs are generated using the graph generators in NetworkX
package 1.

For each snapshot of an evolving graph with |+ | nodes generated
based on the Erdős-Rényi model, an edge is created between two
nodes based on probability? . For the�rst)1 time instances, the prob-
ability is �xed at ?)1 . For the next)1 time instances, the probability
is ?)2 . The change-point occurs at)1+1. In our experiment, di�erent
X? = |?)1 � ?)2 | values are used to quantify the amount of di�er-
ences before and after change occurs in an evolving graph. Smaller
X? signi�es more di�cult change-point detection problem. Figure
3 shows the mean values of the elements in the degree centrality
feature vector for an evolving graph with |+ | nodes generated using
the Erdős-Rényi model with )1 =)2 = 100, ?)1 = 0.4 and ?)2 = 0.6.
Hence, X? =0.2. The change-point is at C =101.

A randomgraph generated based on the Barabási–Albertmodel is
agraphwhosedegreedistribution follows thepower law.Togenerate
such a random graph, an initial graph (a star graph with<+1<< |+ |
nodes) is grown by attaching new nodes each with edges that are
preferentially attached to existing nodes with high degree until we
reach |+ | nodes.< is de�ned as the number of edges to attach from a
new node to existing nodes. For the �rst)1 time instances,< is �xed
at<)1 . For the next)1 time instances,< =<)2 . The change-point
occurs at)1+1. In our experiment, di�erent X<= |<)1�<)2 | values
are used to generate changes in the scaling factor in an evolving
graph. Smaller X< signi�es more di�cult change-point detection
problem. Figure 4 shows the locations andmovement of the evolving
graph center in the 2DSVDgraph feature space for an evolvinggraph
with |+ | nodes generated using the Barabási–Albert model with
)1=)2=100,<)1 =7 and<)2 =5. Hence, X<=2. The change-point is
at C =101. The longest distance between the centers at t=100 and 101.

5.1.2 MIT Reality Dataset [17]: It is a dataset that record the social
network evolution in a student dormitory based on students’ prox-
imity. It utilizes bluetooth signals sent and received between mobile
phones over time. The signals indicate the senders’ mobile phones
were within 10 meters of receivers’ mobile phones at the time of the

1https://networkx.org/documentation/stable/reference/generators.html

Figure 4: Locations andmovement of the evolving graph center in the 2D SVD
graph feature space for an evolving graphwith |+ | nodes generated using the
Barabási–Albert model. The change-point is at C =101.

record. Proximity probability greater than 0.3 is considered as an
edge between two users. All the edges that have formed in a single
day irrespective of time are considered as edges of a single graph.
289 days of graphs are in the dataset with some missing weeks.

5.2 EvaluationMeasures
We evaluate the detection performance using mainly (i) recall, (ii)
precision, and (iii) F1 measure:

Precision =
True Positive

True Positive+False Positive

Recall =
True Positive

True Positive+False Negative

�1 =
2⇥Recall⇥Precision (Prec)

Recall+Precision
Precision is the probability that a detected change point is a true
change-point anddetectedwithin C 0 time instances.Recall is theprob-
ability that analgorithmdetected the changewithin C 0 time instances.

We also present the mean delay time (MDT) for change detection.
Wede�ne the delay time for a detected change-point as the di�erence
in time instances from the start of the change to the time instance
when it is detected andwithin C 0 time instances. If the change cannot
be detected within C 0 time instances, it is amissed detection or false
negative. A false positive (FP)(i.e., alarm) is a change-point detection
call by the algorithmwhen there is no change.

5.3 Experimental Design
For each experimental trial, the sequence of graph snapshots have
the following settings: |+ |=30,)1=)2=100with change-point at t =
101 (see Figure 3).We perform 20 trials on each experimental setting:
X? (or X<), feature representation, and the threshold _. We varying
X? (or X<), feature representation, and the threshold _ to study their
impact on the performance of our proposed method.

We used the four graph feature representations/embeddings de-
scribed in Section 3. For SVD embedding, spectral embedding, and
node2vec, we use 3 = 2. In other words, each node is represented
by a 2D vector. The degree centrality vector has 30 elements since
|+ |=30. For threshold _, we use 5, 10, 15 and 20, corresponding to a
false positive upper bound from 20% reducing to 5%. For Erdős-Rényi
model parameterX? , we vary from 0.05 to 0.2. SinceX? quanti�es the
amount of di�erences before and after change occurs in an evolving
graph. and X? =0.05 does not registered any detection, our results
start with X? =0.075. For X<, we vary from 1 to 4.
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We implement a sequential probability ratio test (SPRT) [26] simi-
lar to [15] for structural time series change detection as a baseline to
compare our proposed martingale approach. A sequences of feature
embedding for the graph snapshots can be considered as time series.
Table 1 shows its performance on the change-point detection task for
an evolving graph generated using the Barabási–Albert model. We
use SVD embedding as the feature representation here as it performs
best for our approach (see Section 5.4). We vary the Type I error
(false positive rate) U from 0.05 to 0.2 to control the detection thresh-
old for SPRT. One observe that while we can control well the false
positive close to our approach, there are many missed detections
which a�ecting the detection performance.

X< U Prec FPR Recall F1 MDT

1

0.05 0.14 0.01 0.31 0.19 17.6
0.1 0.13 0.02 0.31 0.18 18.44
0.15 0.12 0.02 0.31 0.17 18.40
0.2 0.12 0.02 0.34 0.18 23.83

2

0.05 0.09 0.05 0.5 0.15 12.6
0.1 0.09 0.05 0.49 0.15 12.97
0.15 0.08 0.05 0.5 0.14 12.83
2 0.07 0.06 0.49 0.13 12.77

3

0.05 0.04 0.12 0.5 0.07 3
0.1 0.03 0.13 0.5 0.06 3
0.15 0.03 0.13 0.5 0.06 3
2 0.03 0.13 0.5 0.06 3

4

0.05 0.04 0.12 0.5 0.07 1
0.1 0.04 0.12 0.5 0.07 1
0.15 0.04 0.12 0.5 0.06 1
0.2 0.03 0.12 0.5 0.06 1

Table 1: SPRT performance on evolving graphs generated using the Barabasi-
Albert model with the graph snapshots represented using 2-D SVD embedding.

5.4 Results and Discussions
5.4.1 E�ect of Varying Detection Threshold on False Positive Rate.
Figure 5 shows the false positive rate when we vary the detection
threshold _ from 5 to 20 on the two types of evolving graphs (Erdos-
Renyi model with X? =0.2 and Barabasi-Albert model with X<=2)
using SVD embedding and degree centrality. We observe the false
positive decreasing trend follows Theorem 4.2 but with a much
smaller false positive rate.

5.4.2 E�ect of Graph Representations and Problem Di�iculty on
Detection Performance. The problem di�culty for evolving graphs
generated using the Erdős-Rényi model is quanti�ed by X? . The
smaller the X? , the more di�cult is the change-point detection prob-
lem. Similarly, the problem di�culty for evolving graph generated
using the Barabasi-Albert model is quanti�ed by X? . The smaller the
X<, the more di�cult is the change-point detection problem.

Node2vec and spectral embedding did not perform well in our
empirical study (with majority of experiments showing high missed
detection rate). Hence, the detection performance results are not
presented here. Only results of our proposed martingale approach
using degree centrality vector representation, Laplacian SVD Sin-
gular values (LSVD), and the SVD embeddings are shown in Table
2, 3, 4, 5, 6 and 7.

From the results in Table 2, 3, 4, 5, 6 and 7, we have the following
general observations:

Figure 5: False positive rate (FPR) decreasing trendwith increasing threshold _

(1) For an evolving graphwith a change de�ned by the di�erence
(X?) in probability of an edge forming between any two nodes
(Erdős-Rényi model) in the two time segments of an evolving
graph (Table 3 and 5):

(a) degree centrality and SVDembedding showgreat detection
performance for the martingale method.

(b) mean delay time (MDT) before correct detection increases
with increase di�culty.

(2) For an evolving graph with a change de�ned by a shift (X<)
in the degree distribution that follows a power law (Barabasi-
Albert model) in the two time segments of an evolving graph
(Table 2 and 4):

(a) degree centrality and SVDembedding showgreat detection
performance for the martingale method.

(b) mean delay time (MDT) before correct detection increases
with increase di�cultywhen SVDembedding is used.MDT
whenusingdegree centrality remains relatively stable. This
should not be a surprising observation as the degree cen-
trality vector distribution could approximate well degree
distribution for the graph snapshots.

(3) LSVD feature has lower precision and recall, i.e., higher miss
detection. But MDT is lower, i.e., faster detection.

(4) Threshold _ does not signi�cantly a�ects MDT. The di�culty
of the change detection scenario (X?,X<) has more impact on
MDT.

5.4.3 Monitoring Multiple Graph Features for Changes in Evolving
Graph. Figure 6 shows the martingale values of the �ve graph fea-
tures on the social network evolution in a student dormitory over
289 days [17]. Here, the martingale peaks in the �gure for degree
centrality, SVD, and LSVD features show some correlation between
the change-points detected and holidays. Hence, the three features
may be good in representing and explaining changes in student
interactions in student dormitory. More investigations are needed
to study these features and their relationships to changes in object
interactions in a graph.
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Figure 6: Monitoring themartingale values of the four graph features on the social network evolution in a student dormitory over 289 days, with _ threshold set to 10.

X< _ Prec Recall F1 MDT

1

5 1 1 1 12.98
10 1 1 1 13
15 1 1 1 13.12
20 1 1 1 13.35

2

5 0.95 1 0.98 7.9
10 0.97 1 0.99 8.37
15 0.98 1 0.99 8.94
20 0.99 1 0.99 9.44

3

5 1 1 1 8.8
10 1 1 1 9.7
15 1 1 1 10.23
20 0.99 1 0.99 10.75

4

5 1 1 1 10.25
10 1 1 1 11.40
15 1 1 1 11.90
20 1 1 1 12.38

Table 2: Change point detection performance on evolving graphs with change
points generated using the Barabasi-Albert Model and graph snapshots
represented by degree centrality vector.

X? _ Prec Recall F1 MDT

0.075

5 1 1 1 11.7
10 1 1 1 14.75
15 1 1 1 15.8
20 1 1 1 16.65

0.1

5 1 1 1 12
10 1 1 1 13.5
15 1 1 1 14.1
20 1 1 1 14.71

0.15

5 1 1 1 11.85
10 1 1 1 12.825
15 1 1 1 13.584
20 1 1 1 14.137

0.2

5 1 1 1 6.4
10 1 1 1 7.13
15 1 1 1 7.48
20 1 1 1 8.0

Table 3: Change point detection performance on evolving graphs with
change points generated using the Erdos-Renyi Model and graph snapshots
represented by degree centrality vector.

X< _ Prec Recall F1 MDT

1

5 0.86 1 0.90 15.1
10 0.91 1 0.95 17.1
15 0.94 1 0.97 18.45
20 0.95 1 0.98 19.58

2

5 92 1 0.96 17
10 91 1 0.95 15.64
15 0.91 1 0.95 14.8
20 0.92 1 0.96 14.35

3

5 0.84 1 0.91 7.2
10 0.91 1 0.95 7.7
15 0.94 1 0.97 8.22
20 0.95 1 0.98 8.68

4

5 1 1 1 5.55
10 1 1 1 6.55
15 1 1 1 7.02
20 1 1 1 7.31

Table 4: Change point detection performance on evolving graphs with change
points generated using the Barabasi-Albert Model and graph snapshots
represented by SVD embedding.

6 CONCLUSIONS AND FUTUREWORK
In this paper, we describe our proposed change-point detection
approach for evolving graph by monitoring the martingale value
derived from the graph features. We demonstrate empirically that
the feature representation that encodes a graph property (or char-
acteristics) is critical in the performance of the martingale test in
detecting the change-point using two synthetic (random topology,
scale-free) graph generators and a real-world dataset. Future work
includes extensive comparisons using (1) graph generators creating
di�erent evolving graphs with change-points, (2) additional graph
features, and (3) recently proposed new approaches.
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