Exploiting Human Color Discrimination for Memory-
and Energy-Efficient Image Encoding in Virtual Reality

Nisarg Ujjainkar
nujjaink@ur.rochester.edu
University of Rochester
Rochester, NY, USA

Ethan Shahan
eshahan@u.rochester.edu
University of Rochester
Rochester, NY, USA

Kenneth Chen
kennychen@nyu.edu
New York University
New York, NY, USA

Budmonde Duinkharjav Qi Sun Yuhao Zhu
budmonde@nyu.edu gisun@nyu.edu yzhu@rochester.edu
New York University New York University University of Rochester

New York, NY, USA New York, NY, USA Rochester, NY, USA

Abstract

Virtual Reality (VR) has the potential of becoming the next
ubiquitous computing platform. Continued progress in the
burgeoning field of VR depends critically on an efficient
computing substrate. In particular, DRAM access energy is
known to contribute to a significant portion of system en-
ergy. Today’s framebuffer compression system alleviates the
DRAM traffic by using a numerically lossless compression al-
gorithm. Being numerically lossless, however, is unnecessary
to preserve perceptual quality for humans. This paper pro-
poses a perceptually lossless, but numerically lossy, system
to compress DRAM traffic. Our idea builds on top of long-
established psychophysical studies that show that humans
cannot discriminate colors that are close to each other. The
discrimination ability becomes even weaker (i.e., more colors
are perceptually indistinguishable) in our peripheral vision.
Leveraging the color discrimination (in)ability, we propose
an algorithm that adjusts pixel colors to minimize the bit
encoding cost without introducing visible artifacts. The al-
gorithm is coupled with lightweight architectural support
that, in real-time, reduces the DRAM traffic by 66.9% and
outperforms existing framebuffer compression mechanisms
by up to 20.4%. Psychophysical studies on human partici-
pants show that our system introduce little to no perceptual
fidelity degradation.

ACM Reference Format:

Nisarg Ujjainkar, Ethan Shahan, Kenneth Chen, Budmonde Duinkhar-
jav, Qi Sun, and Yuhao Zhu. 2024. Exploiting Human Color Discrimi-
nation for Memory- and Energy-Efficient Image Encoding in Virtual

Permission to make digital or hard copies of part or all of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. Copyrights for third-
party components of this work must be honored. For all other uses, contact
the owner/author(s).

ASPLOS °24, April 27-May 1, 2024, La Jolla, CA, USA

© 2024 Copyright held by the owner/author(s).

ACM ISBN 979-8-4007-0372-0/24/04.
https://doi.org/10.1145/3617232.3624860

Reality. In 28th ACM International Conference on Architectural Sup-
port for Programming Languages and Operating Systems, Volume 1
(ASPLOS ’24), April 27-May 1, 2024, La Jolla, CA, USA. ACM, New
York, NY, USA, 15 pages. https://doi.org/10.1145/3617232.3624860

1 Introduction

Virtual Reality (VR) has the potential of becoming the next
ubiquitous computing platform, after PCs and smartphones,
revolutionizing a wide variety of domains such as health-
care [7], education [9], remote communication [44, 49], pro-
fessional training [28], and industrial design [23].

Continued progress in the burgeoning field of VR depends
critically on an efficient computing substrate, driven by the
ever-growing requirement of immersive user experience and
the miniaturization of device form factors. DRAM communi-
cation energy is known to contribute significantly to the sys-
tem energy consumption. Recent studies show that DRAM
energy alone can consume upward of 30% of the total system
energy consumption during VR video rendering [27, 77]. The
DRAM bottleneck will only become worse in the future with
users questing for higher resolution and frame rate.

An effective approach to reduce DRAM traffic is frame-
buffer compression, which is universally implemented in
modern mobile SoCs for compressing any traffic in and out
of the DRAM. A classic example is the Arm Frame Buffer
Compressions (AFBC) technology, which is now in almost all
of Arm’s GPU, Video Codec, and Display Controller IPs [3].

Idea. Today’s framebuffer compression algorithm is nu-
merically lossless. Being numerically lossless is, however, un-
necessary to preserve perceptual fidelity: more compression
opportunities arise when we turn our attention to perceptual
lossless. Long-established psychophysical studies show that
humans cannot discriminate colors that are close to each
other [36, 68]. Informally, this means that many colors, while
differing in RGB values, are perceptually indistinguishable
and thus can be encoded together — a previously under-
exploited opportunity for real-time image encoding.

Critically, the discrimination ability becomes even weaker
(i.e., more colors are indistinguishable) in our peripheral vi-
sion as objects move away from fixation [14, 22, 29]. The

https://doi.org/10.1145/3617232.3624860
https://doi.org/10.1145/3617232.3624860

ASPLOS 24, April 27-May 1, 2024, La Jolla, CA, USA

eccentricity-dependent weakening of color discrimination
provides further opportunities for DRAM traffic compression:
VR displays, to provide immersive experiences, have a wide
Field-of-View (FoV) of about 100°; above 90% of a frame’s
pixels are in the peripheral vision (outside 20 °) [10, 45].

Design. Leveraging the unique color discrimination (in)ability

of human visual system, we propose a new image compres-
sion algorithm for immersive VR systems. We precisely for-
mulate the color perception-aware encoding as a constraint
optimization problem. The formulation is non-convex and
requires iterative solvers that are not amenable to real-time
execution. Leveraging empirical observations of human color
discrimination abilities, we introduce a set of principled re-
laxations, which transform the compression problem into a
convex optimization with an analytical solution.

The analytical solution, while avoiding iterative solvers,
is still compute intensive and slow to execute in real-time.
Implemented as a GPU shader executing on the Adreno 650
GPU in Oculus Quest 2, a widely used mobile VR headset,
the compression algorithm runs in a mere 2 FPS. We propose
lightweight hardware extensions for our encoding and de-
coding algorithms. The new hardware exploits the inherent
task-level and pipeline-level parallelisms in the algorithms
and can be readily combined with existing Base-Delta (BD)
encoding without changing the decoding hardware at all.

Results. We implement our architectural extensions in
RTL and synthesize the design using a TSMC 7 nm process
node. The compression algorithm reduces the memory traf-
fic by 66.9% compared to uncompressed images and by up
to 20.4% compared to the state-of-the-art real-time frame-
buffer compression [76]. We conduct IRB approved human
subject study on 11 participants. Results suggest that our
compression algorithm brings little visible artifacts to users.
In summary, this paper makes the following contributions:

e We propose an image encoding scheme to reduce DRAM
traffic in mobile VR systems. The scheme leverages the
eccentricity-dependent color discrimination (in)ability
of human visual systems.

e We show that the new encoding scheme can be for-
mulated as a convex optimization problem with an
analytical solution.

e We propose lightweight and modular hardware sup-
port to enable real-time encoding.

e ASIC synthesis and human subject studies show that
the new encoding scheme reduces the DRAM traffic
by 66.9% with little to no subjective perceptual quality
degradation.

The rest of the paper is organized as follows. Sec. 2 intro-
duces the background. Sec. 3 describes our key compression
algorithm. Sec. 4 introduces the co-designed hardware ar-
chitecture. Sec. 5 discusses the experimental methodology,
followed by the evaluation results in Sec. 6. We relate our
work to prior art in Sec. 7 and conclude in Sec. 8.

Nisarg Ujjainkar, Ethan Shahan, Kenneth Chen, Budmonde Duinkharjav, Qi Sun, and Yuhao Zhu

2 Background and Motivation

We first introduce the background of human color perception
and its eccentricity dependence, which form the psychophys-
ical basis for our compress algorithm (Sec. 2.1). We then de-
scribe today’s real-time frame compression algorithm, which
forms an important baseline for our algorithm (Sec. 2.2).

2.1 Eccentricity-Dependent Color Perception

Colors and Color Spaces. In a typical rendering pipeline, a
color is usually described in the linear RGB space with three
channels; each channel is a floating point number between 0
and 1. For output encoding, each channel in the linear RGB
color space is transformed to the common sRGB color space,
where each channel is an 8-bit integer between 0 and 255.
This transformation is non-linear, called gamma encoding,
and is described by the following function f5,,, where x €
[0, 1] represents a linear RGB channel value [24, 62]:

|12.92x | x < 0.0031308

1
[1.055x'/24 —0.055] x > 0.0031308 W

fsar(x) = {
Psychophysical studies on color discrimination commonly
operate in the DKL color space [19, 29], mainly because the
DKL space models the opponent process in the human visual
system. The DKL space is a linear transformation away from
the linear RGB color space:

[R, G, B]" =MggpopkL[K, Kz, K3]" (2)

where [R, G, B] is the color in the linear RGB space, [Kj, K, K3]
is the color in the DKL space, and Mrgp2pk1. is a 33 constant
matrix (with the same coefficients, [[0.14,0.17,0.00], [-0.21,
—0.71,-0.07], [0.21,0.72,0.07]], as in Duinkharjav et al. [22]).
Color Discrimination. It is well-established that hu-
mans can not discriminate between colors that are close to
each other [36, 68]. For instance, Fig. 1 shows four colors
that have different sRGB values but appear to be the same.

#F06077 #F26077 #F25E77 #F26075

Fig. 1. Human visual system can not discriminate colors that
close to each other. These four colors differ in tristimulus
values, but appear to be the same color.

More formally, given a reference color «, there exists a
set of colors &y, in which all the colors are perceptually
indistinguishable from «. In a linear color space such as DKL
and RGB, the set of equi-appearance colors in & form an
ellipsoid, whose center is k [41]. In the literature, such an
ellipsoid is called a discrimination ellipsoid [69].

Eccentricity Dependence. Critically, human color dis-
crimination ability is weaker in the peripheral vision [14, 22].

Exploiting Human Color Discrimination for Memory- and Energy-Efficient Image Encoding in VR

Pixels falling in
peripheral vision o

ellipsoids)

0NN L

3 -
g ' Eccentricity

& Peripheral vision: weaker
color discrimination (larger

ASPLOS 24, April 27-May 1, 2024, La Jolla, CA, USA

Discrimination ellipsoids
in 25° eccentricity

Fig. 2. Color discrimination is eccentricity dependent. The discriminative ability is weaker as the eccentricity increases.
As a result, the sizes of the discrimination ellipsoids increase with the eccentricity. The two plots on the right show the
discrimination ellipsoids under a 5° and a 25° eccentricity, respectively, in the linear RGB color space (i.e., SRGB normalized to
[0, 1] without gamma [24, 62]). The discrimination ellipsoids in each plot are shown for 27 colors uniformly sampled in the

linear RGB color space between [0.2, 0.2, 0.2] and [0.8, 0.8, 0.8].

That is, for a color k, its discrimination ellipsoid &, is larger,
i.e., includes more indistinguishable colors, as k moves away
from one’s fixation. Fig. 2 shows two figures that plot the
discrimination ellipsoids under a 5° and a 25° eccentricity,
respectively, in the linear RGB color space. Eccentricity is
the angle from the center of the retina, a.k.a., current fixation
or “fovea”. The ellipsoids in the 25° plot are larger than those
in the 5° plot, suggesting that the color discrimination ability
is weaker in peripheral vision.

Color discrimination becomes weaker in the visual pe-
riphery for three reasons. First, the receptive field (RF) sizes
of Retinal Ganglion Cells (RGCs) increase with eccentricity,
a result of larger dendritic fields [17, 52] and sparser RGC
density in periphery [15]. A large RF means that a RGC in-
tegrates signals from a larger spatial area, leading to more
blurring in the (spatial) frequency domain. Second, cone
cells (which are photoreceptors responsible for vision under
normal daylight) become larger in size as eccentricity in-
creases [16], also contributing blurring in spatial frequency.
Finally, the distribution of cone cells on our retina is ex-
tremely non-uniform: over 95% of the cone cells are located
in the central region of the retina (i.e., fovea) with an ec-
centricity of below 5 ° [16, 56]. The density of the cone cells
decreases drastically in the visual periphery, which is, thus,
significantly under-sampled spatially.

The full color discrimination function ®, expressed below,
is thus parameterized by both the reference color k and the
eccentricity e:

®: (k,e) — (a,b,c) (3)

where (a, b, ¢) represents the semi-axes lengths of the dis-
crimination ellipsoid belonging to color x at an eccentricity e
in the DKL color space [19], a common color space for color

perception experiments. Given (a, b, ¢), &, the discrimina-
tion ellipsoid of color k in the DKL space, is given by:

2 2 2

(x azKl) +(y bzkz) +(Z C2’<3) -1 4)
where (k1, k2, k3) represent the three channels of the color
K.

The function ® can be implemented using a Radial Basis
Function (RBF) network [22], which is extremely efficient
to implement on GPUs in real time. In our measurement
on Oculus Quest 2 VR headset using Oculus’ OVR Metrics
Tool [5], evaluating RBF network runs in 72 FPS, matching
the display refresh rate while consuming sub 1 mW power.

AR and VR headsets, in providing an immersive experi-
ence, usually have a wide FoV that is above 100°. Therefore,
the vast majority of the pixel colors will fall in the periph-
eral vision. The eccentricity-dependent color discrimination
(in)abilities of human visual system gives opportunities to
better image compression that this paper exploits.

2.2 Real-Time Frame Compression

DRAM Traffic. A variety of data communication traffics
occur on a VR system, as illustrated in Fig. 3, such as the
traffic through DRAM, the display interface, and the wireless
communications with a remote rendering server. This paper
focuses on reducing the DRAM traffic, which occurs when
the different Intellectual Property (IP) blocks in the SoC
communicate with each other during rendering.

Each frame, the GPU writes the frame data to the frame
buffer in the GPU, which are then read by the display con-
troller. It is these DRAM traffics (i.e., GPU < frame buffer
<> DRAM controller) that this paper focuses on reducing.
When rendering a VR (360°) video, additional DRAM traffics
occur between the network interface controller, the video
codec, and the GPU [38]. While not explicitly targeted in
this paper, these traffics can also potentially be reduced by
our compression algorithm, especially in scenarios where

ASPLOS 24, April 27-May 1, 2024, La Jolla, CA, USA

/,‘.:\\ Cloud/Nearby
L]

Display Panel
1 Legend
v [

Base Station
Network Video Display
[SOC {Interface} { Codec } {GPU} { Controller }

G Wireless network traffic

o DRAM traffic (Focus
of this paper)

Display interface (eDP/
MIPI DSI) traffic

Memory { Frame Buffer

V.

Fig. 3. Different types of data communication traffic in a VR
system. This paper focuses on reducing DRAM traffic.

Original pixels

/. 93196 | 95

BD-compressed pixels

B

pase | 859380 |90 10| -2 |15 -5
95 (96 |93 | 95 o|11]3]0
84 95|89 |91 A1) 0 | 6| -4

Fig. 4. Base + Delta (BD) compression, which works in the
SRGB color space. For each pixel tile (4x4 here), we find a
base pixel (95 here), and calculate the A of all other pixels
from the base pixel. The A are smaller in magnitude and thus
require fewer bits to encode. The same compression strategy
is applied to all three color channels.

remotely rendered frames are transmitted one by one (rather
than as a video) [31, 35].

Reducing DRAM traffic is critical. It is well-established
that data transfer and memory access energy is known to
far out-weigh the energy consumption of computation. For
instance, compared to a Multiple-Accumulate (MAC) oper-
ation on 1-Byte fixed-point data, transferring one Byte of
information through DRAM consumes 800 X [39, 40] higher
energy. Reducing DRAM traffic in a visual computing system
has been a main research focus in recent years [27, 34, 76].

Framebuffer Compression Algorithms. An effective
and commonly used approach to reduce DRAM traffic in a
rendering system is framebuffer compression, which com-
presses and uncompresses every frame in and out of the
DRAM. To ensure a low per-frame latency, compression in
VR must be done on a per-frame basis, precluding video
compression methods such as H.265/VP5, which necessar-
ily require buffering a sequence of frames before compres-
sion [50, 51]. Offline image compression methods such as
JPEG and PNG are rarely used in framebuffer compression as
they are too compute-intensive. For instance, JPEG requires
chroma subsampling, transforming images to a frequency
space followed by quantization and Huffman encoding [63].

Today’s framebuffer compression methods universally use
a much faster base+delta (BD) strategy. Fig. 4 uses a simple
example to illustrate the basic idea behind BD, which com-
presses each color channel and each pixel tile individually.

Nisarg Ujjainkar, Ethan Shahan, Kenneth Chen, Budmonde Duinkharjav, Qi Sun, and Yuhao Zhu

The tile size in Fig. 4 is 4x4. In each tile, BD chooses a base
pixel and then calculates the As/offsets between all other
pixels and the base pixel. In the example of Fig. 4, the base
pixel is the first pixel. The As will necessarily have smaller
magnitudes compared to the original pixel values and, thus,
require fewer bits to encode.

The BD compression algorithm is lightweight: it works
completely in the image space, as opposed to the frequency
domain which requires an additional, compute-intensive
transformation (e.g. Fast Fourier Transform or Discrete Co-
sine Transformation); it requires only fixed-point addition
arithmetics; it is also embarrassingly parallel. Therefore, the
basic BD strategy is universally implemented in today’s mo-
bile SoCs for compressing any traffic in and out of the DRAM.
A classic example is the Arm Frame Buffer Compressions
(AFBC) technology, which is now in almost all of Arm’s GPU,
Video Codec, and Display Controller IPs [3].

3 Color Perception-Aware Compression

This section introduces a color perception-aware image en-
coding and decoding algorithm. We start by describing the
high-level ideas (Sec. 3.1), followed by a precise problem for-
mulation in the form of constraint optimization (Sec. 3.2). We
then show how this optimization problem has an analytical
solution when relaxed to a convex problem (Sec. 3.3). We
then describe the full compression algorithm (Sec. 3.4).

3.1 Key Ideas

The basic BD algorithm is numerically lossless. Our observa-
tion is that numerically lossless compression is unnecessary
to preserve perceptual equivalence — because of the inherent
the color discrimination (in)ability of human visual system.

Intuition. The basic BD algorithm encodes all the As in
a tile (off of a base pixel) rather than the original pixel values.
Thus, to improve the compression ratio over BD we must
reduce the magnitude of the As, which, intuitively, requires
bringing pixels more similar to each other.

Under a numerically lossless constraint, however, the As
between pixels are fixed. Our idea is to relax the constraint
from numerical lossless to perceptually lossless. In this way,
we could adjust pixel color values, as long as each pixel color
does not go beyond its discrimination ellipsoid, to minimize
the total number of bits required to encode the As. This
encoding is numerically lossy as we intentionally change
the color values, but will preserve the perceptual quality.

An Example. More concretely, consider the example in
Fig. 5, which shows 16 pixels in a tile on an axis. The number
of bits required to encode the entire tile is (ignoring any
metadata for now):

B=By+NxBp (5)
By =8,N =15,Bp = |logz(Max — Min + 1) | (6)

Exploiting Human Color Discrimination for Memory- and Energy-Efficient Image Encoding in VR

Original Pixels
9 in Max

Adjusted Pixels SeeeTeeSee e e
Min’ Max’

Fig. 5. An intuition illustration of our perceptual-aware com-

pression, where pixel values are adjusted to be more similar

to each other by leveraging the inherent human color dis-

crimination thresholds.

where By being 8 denotes that we need 8 bits to encode a base
pixel (assuming the common 8-bit per-channel encoding),
and N being 15 denotes that there are 15 other pixels. Bp
denotes the number of bits required to encode the A of each
of the 15 non-base pixels.

The minimum value of Bp occurs when the base pixel
is chosen to be within [Min, Max], in which case Bp =
Lloga(Max — Min + 1) . This is because the number of bits
to encode each A must be the same!, so we must accommo-
date the largest possible A, which is the difference between
the maximum and minimum pixels in the tile. Therefore, to
improve compression ratio we must reduce (Max — Min).

The bottom example in Fig. 5 illustrates what would hap-
pen when we relax the compression constraint to be percep-
tually lossless. The adjusted pixel values deviate from the
original values, but as long as they still within the respec-
tive ellipsoids, (Max — Min) is reduced without affecting
perceptual quality.

It is worth noting that to obtain the highest compression
rate it is necessary to adjust interior pixels, as is the case in
this example. The central challenge we address in this paper
is how to design a principled algorithm that maximizes the
bit reduction while being lightweight to execute in real time.

3.2 Problem Formulation

Our compression algorithm works on top of the baseline BD
algorithm. Our goal is to adjust pixel colors to minimize the
bit-length required to encode the As in a tile. The adjusted
pixel tile then goes through any existing BD compression
method. Critically, color adjustment must not violate the

11t is possible, but uncommon, to vary the number of bits to encode the
As in a tile with more hardware overhead. Following prior work [76], this
paper assumes that one single bit-length is used to encode all As in a tile.
We consider variable bit-length an orthogonal idea to this paper.

ASPLOS 24, April 27-May 1, 2024, La Jolla, CA, USA

perceptual constraints. Therefore, we formulate our com-
pression as a constraint optimization problem:

argmin Z logs| max{fs2r (p©)} — min{fior (p©)} + 11,
P Ce{R.G,B}

(7a)

where p := [po, p1, ---» PN-1], (7b)

p¢ = [p§, Py -+ Pyl C€ {RG,B} (7¢)

s.t. Vp, EpPPi € 81)1' (7d)

where p is the optimization variable, which is the collection
of N pixels in a tile (Equ. 7b); pic denotes channel C (R, G, or
B) of i-th pixel in the linear RGB space.

The constraints (Equ. 7d) provide the (convex) ellipsoid
boundary for each pixel to move while maintaining percep-
tion quality. fs,(-) is the non-linear transformation from
RGB to sRGB space (Sec. 2.1), which is ultimately where bit
encoding takes place. The objective function (Equ. 7a) min-
imizes the bit cost for encoding the As across all channels
(it is a constant cost to encode the base pixel, e.g., 8 in the
common sRGB encoding). This optimization formulation is
applied to each pixel tile independently.

Unfortunately, this optimization problem is impractical
to be solved in real-time, because the objective function is
non-convex due to the non-linearity of min, max, floor, and
fs2r (+). Empirically, we also find that the popular solvers in
Matlab spend hours while still being stuck in local optima.

Relaxation. We introduce two relaxations that turn the
problem into a convex optimization. Critically, while general
convex optimization requires iterative solvers (e.g., gradient
descent or Newton’s method [11]), our relaxed problem is
one such that it has an analytical solution. The relaxations
keep the same constraints as before (Equ. 7d) and, thus, still
enforce the perceptual quality.

The first relaxation is based on the empirical observation
that most discrimination ellipsoids are elongated along the
either the Red or the Blue axis. See the discrimination ellip-
soids in Fig. 2 for an illustration. This makes sense as human
visual perception is most sensitive to green lights [54, 69]
and, thus, has the least “wiggle room” along the Green axis.

Our idea thus is to, instead of minimizing the bit costs
across all three axes, minimize along only the Red or the
Blue axis (while still having the flexibility of adjusting all
the channels of all the pixels in a tile). Using the Blue axis
an example, this relaxation yields following new objective
function in Equ. 8a:

argmin log,| max{fy2r (p®)} — min{for(p®)} + 1), (8a)
P

= argmin max{fis, (p®)} — min{fiar (p®)}, (8b)
P

= argmin max{p®} — min{p®}. (8¢)
P

ASPLOS 24, April 27-May 1, 2024, La Jolla, CA, USA

(a) Case 1: HL > LH.

(b) Case 2: HL < LH.

Fig. 6. The two cases in adjusting color values to minimize
the A along the Blue axis. For simplicity, we draw the ellip-
soids in the B-G plane. The empty markers (Cy, Cy, Ca, Cs3) de-
note the original colors and the solid markers (Cj, C1, C;, C)
denote the adjusted colors. In both cases, colors are adjusted
along the extrema vector V.

Second, the objective function in Equ. 8a can be trans-
formed to Equ. 8b without sacrificing solution optimality,
because log; | -| is monotonically non-decreasing. We then
remove the non-linear RGB to sRGB transformation function
fs2r (). This removal does not preserve the solution optimal-
ity, but gives us a convex objective function in Equ. 8c.

Proof of Convexity. Let the objective function max{x}—
min{x} be g(x) : RN — R. To prove g(x) is convex, we
must show: Vx;,x; € RN and t € [0, 1], g(tx; + (1 —1)x;) <
tg(x1) + (1 -)g(x).

Proof. Observe that: g(tx; + (1 — t)x) := max(tx; + (1 -
£)xy) — min(tx; + (1 — 1)x,).

We know max(tx; + (1 — t)x3) < max(txq) + max((1 —
1)xy) = t max(x;)+(1—1t) max(x,). Similarly we can derive:
min(tx; + (1 — t)X) > t min(xy) + (1 — t) min(xy).

Therefore, g(tx1+(1-t)x2) < (t max(xy)+(1—t) max(xz))—
(t min(x;) + (1 = t) min(xz)) = tg(x1) + (1 —t)g(xz). O

3.3 Analytical Solution Intuition

The relaxations introduced before lead to an analytical so-
lution without requiring iterative solvers. Observe that the

Nisarg Ujjainkar, Ethan Shahan, Kenneth Chen, Budmonde Duinkharjav, Qi Sun, and Yuhao Zhu

objective function in Equ. 8c minimizes the difference be-
tween the maximum and minimum values along the Blue
axis. To achieve that, the intuition is that we must move
the colors closer to each other along the Blue axis while
making sure the adjusted colors stay within the respective
discriminative ellipsoids.

Exactly how to move the colors falls into two cases. Fig. 6
illustrates the two cases using two examples. Without losing
generality, we choose to optimize along the Blue axis in
these examples (the case along the Red axis is in principle
the same), and we plot the projection of the ellipsoids onto
the B-G plane for better visualization.

In the first case (Fig. 6a), there is no single plane that cuts
across all ellipsoids. This is because the Lowest of the Highest
points of all ellipsoids (LH) is lower than the Highest of the
Lowest points of all ellipsoids (LH). The optimal strategy is
to move all the colors higher than HL toward HL and move
all the colors lower than LH toward LH. The movement is
necessarily executed along the extrema vector, which is the
vector that connects the highest and the lowest point of an
ellipsoid. After the adjustment, the Blue channels across all
the pixels are either HL or LH. That is, the maximum A along
the Blue axis is now HL — LH, which is the smallest gap we
can get the Blue channels to be without going outside the
ellipsoid boundaries.

In the second case (Fig. 6b), there is a common plane (P)
that cuts across all four ellipsoids. In fact, there are infinitely
many such planes, because LH is higher HL; thus, any plane
between LH and HL will cut across all ellipsoids. In this case,
we can simply pick any such plane and move all the colors to
that plane. For the simplicity of implementation, we choose
the average of the LH and the HL planes as the common
plane and move colors along the extrema vectors. In this
way, the Blue channel value is exactly the same for all pixels,
requiring no A bit for the Blue channel.

3.4 Overall Compression Algorithm

We illustrate how our color adjustment algorithm fits in the
overall rendering and compression pipeline in Fig. 7. Our
adjustment algorithm takes as inputs a tile of pixels (each
with three channels) and the parameters of their correspond-
ing discrimination ellipsoids. The algorithm generates the
perceptually-adjusted pixel tile as the output. We apply the
same color adjustment strategy along both the Blue and the
Red axis for each tile, and pick the better one in the end.

It is worth noting that our algorithm does not directly per-
form compression in itself; it simply adjusts pixel colors so
that the (numerically lossless) BD encoding later can achieve
higher compression rate. Specifically, the adjusted pixel tile
will be first transformed from the linear RGB to the sRGB
space, which then goes through the usual BD compression.

Ellipsoid Transformation. The first step in our algo-
rithm is to transform the discrimination ellipsoids from the
DKL space to the linear RGB space, which is where color

Exploiting Human Color Discrimination for Memory- and Energy-Efficient Image Encoding in VR

ASPLOS 24, April 27-May 1, 2024, La Jolla, CA, USA

From Rendering Pipeline Color Adjustment Algorithm (Our Contribution) Existing BD Compression
3 col Ellipsoid Compute Compute HL Move
color Transformation Extrema & LH Planes Colors
channels
,, Pick the one Transform L Base+Delta (BD)
B channel optimization with smaller A to sRGB Compression
Ellipsoid ihaai
| | Ellipsoid Compute Compute HL Move
parameters ™ Transformation Extrema & LH Planes Colors

Fig. 7. Overview of our algorithm and how it fits in existing rendering and compression pipeline. Our algorithm takes a tile
of pixels and their corresponding discrimination ellipsoid parameters, and generate an adjusted pixel tile, which then goes

through existing BD encoding.

adjustment takes place (Sec. 3.3). While ellipsoids are axis-
aligned in the DKL color space [22], they will not be axis-
aligned after the linear transformation from the DKL to the
RGB color space. Therefore, an ellipsoid in the linear RGB
space has to take the form of a general quadric surface:

Ax? +By? +CZ2 + Dx +Ey+ Fz + Gxy + Hyz +Izx +1=0 (9)

Transforming an axis-aligned ellipsoid in the DKL space
to an ellipsoid in the linear RGB amounts to the following
matrix multiplication:

and Green axes:

dz

=2Ax+Gy+I1z+D =0 (11a)

=Gx+2By+Hz+E=0 (11b)

dx

dz

dy
These partial derivatives give us two planes, the intersection
of which is a vector v that connects the two extrema. The
extreme vector v is calculated by taking the cross product of
the normal vectors of the two planes:

o v =(2A,G,I) X (G,2B,H) (12)
A
B .
c (ToT)T 0 1/a%t The.two extrema points H and L are.theg calculated by
1/b%t finding the intersection of v and the ellipsoid:
D 0 | T 2
E 1/c“t
F 2TooTo1r 2Ti0Tir 2T —2K1/a%t|’ ,
G 2To1To2 2T11Tiy 2T51To2 0 —2K2/b2[X = (xl, X2, X3) = MRGBZDKL XV (133)
H 2TooToz 2TioTiz 2T0To2 —2k3/c%t ; ; ;
Xy 2, N
I t=1/\|5+=>+— 13b
L] / 2 p2 2 (13b)
KKK . T
t=1_(¥+b_2+c_2) (10) HzMRGBZDKLX(K1+x1t’K2 +th,K3+X3t)
L = Mygpopge, X (k1 — X1t K5 = xot, k3 = x31)T (13¢)
Too Tor Toz 7 . L
where T = [Tm Tiu Tiz] is the constant MRGBZDKL matrix in
Ty T To

Sec. 2.1, © is element-wise product, (x1, k2, k3) is the color
in DKL space, and (a, b, ¢) are the semi-axis lengths of k’s
discrimination ellipsoids. The derivation uses basic linear
transformations and is omitted here due to space constraints.

Color Adjustment. Once we have the ellipsoids in the
linear RGB space, we can perform color adjustment, which,
as illustrated in Fig. 6 and described in Sec. 3.3, is done in
three steps: 1) compute the extrema, i.e., the highest and
the lowest point, of each ellipsoid; 2) compute LH and HL
based on the extrema of all ellipsoids; 3) compare LH and
HL and move colors along extrema vectors accordingly. Step
2 and 3 are relatively straightforward, so here we focus on
the mathematical details of Step 1.

Extrema along the Blue axis can be computed by taking
the partial derivatives of the ellipsoid equation along the Red

where k is the pixel color in the DKL space, (a, b, ¢) are DKL
ellipsoid parameters, and Mggpzpkr. is the RGB to DKL trans-
formation matrix (Sec. 2.1). We omit the derivation details
due to space constraints, but the derivation amounts to a
simple application of line-ellipsoid intersection and linear
transformations between RGB and DKL space.

Remarks on Decoding. One desired byproduct of our
algorithm is that it requires no change to the existing frame-
buffer decoding scheme — our color adjustment algorithm
simply changes the input to BD. During decoding (e.g., by the
display controller), the existing BD decoder will construct
the sSRGB values from the BD-encoded data, which are then
sent to the display. The exact BD encoding format varies
across implementations and is not our focus. We assume the
encoding format described in Zhang et al. [76].

ASPLOS 24, April 27-May 1, 2024, La Jolla, CA, USA

Nisarg Ujjainkar, Ethan Shahan, Kenneth Chen, Budmonde Duinkharjav, Qi Sun, and Yuhao Zhu

SoC ;
GPU /| Pending PE
g Buffer
(o))
£ Color @
l— —_
s g g r4— Adjustment _2 %
; o
é 5 Unit (CAU) >
n \
| [c
o Display |\ 25 oF
5 Controller/ |\ ga 2
> 0G| | Controller/ | £5 S &
@ 8 Video |} || Eg E32
a} Codec | ' || 382 o8
| & @

Mem ‘ Compute
Extrema
Unit

DKL2RGB

Color Shift
Block
Color Shift
Block

Compute -
Extrema Block

LH Plane

HL Plane

Fig. 8. Illustration of the hardware support, which we dub Color Adjustment Unit (CAU) for our image encoding and how
CAU interfaces with the rest of the SoC. Internally, the CAU uses an array of PEs, each of which adjust colors for one tile of
pixels. CAU is fully pipelined to accept a new tile every cycle from the Pending Buffer, which receives the rendered pixels and

their discrimination ellipsoids from the GPUs.

4 Hardware Architecture

The analytical compression algorithm, while avoiding itera-
tive solvers, is still compute intensive and slow to execute in
real-time. We implement it as a GPU shader executing on the
Adreno 650 GPU in Oculus Quest 2, a widely used mobile VR
headset. The compression algorithm runs in a mere 2 FPS.
This section describes a lightweight hardware design that
accelerates the compression algorithm. Sec. 4.1 describes
how our custom hardware fits into the overall system and
Sec. 4.2 describes the hardware details.

4.1 Hardware Overview

Fig. 8 provides an overview of our architectural extension,
dubbed the Color Adjustment Unit (CAU), and how CAU
fits into existing mobile SoCs. The CAU executes the pixel
adjustment algorithm described in Sec. 3. The CAU reads
its input from an on-chip buffer, which stores the pixels and
the discrimination ellipsoid parameters generated by the
GPU. Following prior work [22], we assume that the GPU
is responsible for generating the per-pixel discrimination
ellipsoids. The generation algorithm is a lightweight RBF
network (Sec. 2.1). In our measurement, the ellipsoid gen-
eration algorithm on Oculus Quest 2 runs at the maximum
display refresh rate (72 FPS) while consuming less than 1 mW
measured using Oculus’ OVR Metrics Tool [5].

The output of the CAU enters the existing BD framebuffer
encoder, which writes the encoded data to the DRAM. Any
frame read out from the DRAM, e,g., by the Displayer Con-
troller IP block when sending the frame to the display, will
enter the BD decoder, which reconstructs the sSRGB pixels.
The figure provides a visual confirmation that our algorithm
1) works on top of, rather than replaces, BD encoding, and
2) does not change the decoding architecture.

4.2 Color Adjustment Unit

Internally, the CAU consists of an array of Processing Ele-
ments (PEs), each of which is designed to adjust colors for
one tile of pixels, which in our current design is assumed to
be 4 x 4. Each PE interfaces with a dedicated Pending Buffer,
which holds all the information of the pixel tiles generated
from the GPU. Having more PEs will allows the system to
compressing multiples tiles simultaneously.

Pipelining. The PE is fully pipelined to accept a new tile
every cycle. Fig. 8 illustrates the detailed architecture, which
has three main phases, each of which is internally pipelined.
The first phase computes the extrema. The next phases use
reduction trees to calculate HL and LH from the extrema.
The final phase move the colors along the extrema vector.

Compute Extrema Blocks. This component calculates
the extrema of all the pixels in a tile, which is naturally
parallelizable across pixel and, thus, has multiple parallel
units, each of which is responsible for one pixel. The top-
right box in Fig. 8 illustrates the microarchitecture. This
is the most compute intensive block in the CAU, since it
involves multiple divisions and square root operations. The
division and square root hardware implements Equ. 13b,
and the adder and subtractor circuit implements Equ. 13c.
The DKL-RGB transformations in Equ. 13c and Equ. 13a are
implemented through matrix vector multiplication executed
on a3 X 3 MAC array.

Compute Planes Blocks. The extrema calculated before
enters this unit, which finds the channel value for the HL
plane (maximum of the minima) and LH (minimum of the
maxima) plane. We implement this stage using two reduction
(comparator) trees to generate both planes simultaneously.

Color Shift Blocks. This block takes the original color
values and the two planes as input and outputs the modified
color values. This phase is control-flow heavy, as it involves

Exploiting Human Color Discrimination for Memory- and Energy-Efficient Image Encoding in VR

multiple condition checks, e.g., testing the relationship be-
tween a point and a plane. A custom datapath in CAU avoids
much of the inefficiencies surrounding control flows that
are detrimental to GPU performance. This hardware is a
relatively straightforward mapping from the algorithm.

Pending Buffer. The Pending Buffers store intermediate
pixels and their discrimination ellipsoids from the GPU be-
fore they are consumed by the CAU. Each buffer is interfaced
with a dedicated PE and, thus, contains the data for all the
pixel tiles to be consumed by the PE.

The buffers must be properly sized so as to not stall or
starve the CAU pipeline. In order to be independent of the
exact GPU microarchitecture details, we make a conserva-
tive estimation of the buffer size. In particular, we allocate
enough space in the buffer such that it can hold all the pixels
generated by the GPU in each CAU cycle even if the GPU
is fully utilized, in which case each shader core in the GPU
generates 1 pixel/GPU cycle. Note that the GPU and CAU
cycle times need not be the same. The number of PEs in a
CAU must be properly decided so as to not stall either the
GPU nor the CAU, as we will discuss in Sec. 6.1.

5 Experimental Methodology
5.1 Setup

Hardware. We implement our encoder and decoder units in
SystemVerilog and use an EDA flow consisting of Synopsys
and Cadence tools with the TSMC 7 nm FinFET technology
to obtain latency and area. We use Synopsys DesignWare
library for a variety of RTL implementations such as the
pipelined divider. Power is estimated using Synopsys Prime-
TimePX with fully annotated switching activity.

The DRAM energy is calculated using Micron’s System

Power Calculators [4], assuming a typical 8 Gb, 32-bit LPDDR4.

On average, the DRAM access energy per pixel is estimated
to be 3,477 pJ/pixel, matching prior work [33, 34].

Dataset and Software. We evaluate our compression
algorithm with 6 different VR scenes used in VR color per-
ception studies [22]. In each scene, each frame is rendered
with two sub-frames, one for each eye. All the frames are dy-
namically rendered (on the GPU) at run time, i.e., the frames
are neither loaded from the disk nor streamed over the net-
work. Following the common practice in color perception
studies [14, 22], we keep pixels in the central 10° FoV un-
changed, and apply the compression algorithm only on the
rest (peripheral) pixels.

As discussed in Sec. 3.4, our algorithm works in conjunc-
tion with existing BD compression. In this paper, we assume
a recent, state-of-the-art, BD algorithm described by Zhang
et al. [76], from which we obtain the final compression rate.

5.2 Human Subject Studies

We also evaluate the perceptual quality of our compression
algorithm on actual participants. We recruit 11 participants

ASPLOS 24, April 27-May 1, 2024, La Jolla, CA, USA

(a) Original frame.

(b) Color-adjusted frame.

Fig. 9. A pair of images without (left) and with (right) our
color adjustment. The two images when viewed on a con-
ventional computer display are visibly different, because the
entirety of the images will be in the viewer’s foveal vision.

(3 female; ages between 19 and 40). None of the participants
were aware of the research, the number of conditions, or
the hypothesis before taking the experiments, which were
approved by an Internal Review Board.

We face a dilemma in user study: the speed of the com-
pression algorithm implemented as a GPU shader is too slow
on today’s mobile VR headsets (e.g., 2 FPS on Oculus Quest 2
as discussed in Sec. 4) — the motivation behind our architec-
tural support, but this also means we can not use a mobile
VR headset for user study. Our approach is to run the user
study on a tethered VR headset, HTC Vive Pro Eye, which is
connected to a PC with a powerful Nvidia RTX A2000 GPU,
which runs the compression algorithm at 90 FPS, sufficient
for user study.

Each participant was shown the six VR scenes (20 seconds
each) used in a prior study [22] in random order. To en-
courage and ensure that the participants actively and freely
explored the scene, each participant was asked to perform a
scene-specific task, such as counting the number of birds in
the scene. At the end of each video, we asked the participant
whether they notice any visual artifacts.

In order for participants to isolate potential artifacts intro-
duced by our compression from other irrelevant artifacts (e.g.,
low resolution, aliasing in rendering), at the beginning of
each test we show the participant two images on a computer
display, one with and the other without our perceptual com-
pression; see examples in Fig. 9. When participants viewed
the images on the computer display, the entire frames were
in their foveal vision so the color adjustment was clearly
visible. In this way, we make sure the artifacts reported by
users resulted from compression. This is a common practice
in subjective color perception studies [22]. The user study
results should be seen as the lower bound of the quality of
compression algorithm, because the participants were aware
of and thus better identification of the artifacts.

ASPLOS 24, April 27-May 1, 2024, La Jolla, CA, USA

5.3 Baselines

We compare against four baselines:

e NoCoM: no compression;

e BD: existing BD compression based on Zhang et al. [76];

o PNG:lossless compression based on the popular Portable
Network Graphics (PNG), which is unsuitable for real-
time DRAM compression because of its high run-time
overhead even with dedicated hardware acceleration [1,
30]. For instance, the commercial IPB-PNG-E FPGA-
based IP core compresses an 800 X 600 image only at a
20 FPS [1].

e SCC: an alternative strategy to exploit color discrimi-
nation based on the Set Cover formulation, which we
describe next.

SCC uses a look-up table to map each 24-bit sRGB color
to a more compact encoding. This can be formulated as a
set cover problem [32]: find the smallest subset of SRGB
colors C C sRGB whose discrimination ellipsoids union-ed
together cover all the 22* sSRGB colors. Each new color is
then encoded with only log,[|C|] bits, where | - | denotes the
set cardinality.

The set cover problem is a classic NP-complete problem [32],
where the optimal solution requires combinatorial search.
We use a common greedy heuristics [13] and construct the
mapping tables. The encoding table consumes 30 MB and
the decoding table consumes 96 KB, too large for SCC to be
used for DRAM traffic compression in mobile SoCs.

6 Evaluation

We first show that the area and power overhead of our com-
pression scheme is negligible while ensuring real-time com-
pression (Sec. 6.1). We then present the benefits of our com-
pression scheme in DRAM traffic reduction and power sav-
ings, and analyze the sources of the savings (Sec. 6.2). We
then present our human subject studies, which show that
our compression scheme introduces little visible artifacts
(Sec. 6.3). We present a sensitivity study of the key parame-
ters in our compression scheme (Sec. 6.4). Finally, we discuss
how we can accommodate a diverse range of users (Sec. 6.5).

6.1 Area and Power Overhead

Performance. Our algorithm along with the hardware sup-
port achieves real-time compression. The CAU operates with
a cycle time of about 6 ns, which translates to a frequency of
about 166.7 MHz. The Adreno 650 GPU used in Oculus Quest
2 operates at a nominal frequency of 441 MHz, which means
during each CAU cycle (at most) three pixels are generated
by a shader core in the GPU. Given that the Adreno 650 GPU
has 512 shader cores, each CAU cycle 512 X 3 pixels (i.e.,
96 tiles) are generated. Therefore, we configure our CAU to
have 96 PEs, which are able to process 96 tiles simultaneously,
matching peak throughput of the GPU.

Nisarg Ujjainkar, Ethan Shahan, Kenneth Chen, Budmonde Duinkharjav, Qi Sun, and Yuhao Zhu

Bandwidth Reduction (%)

Fig. 10. Bandwidth reduction over baselines.

1 Base Metadata Deltas
[a) ‘ ‘ ‘ ‘
o -
- >
L OES----m-----BE - - mg - as
I
o 6
o
2
office copnite gline 4O gna onkey

Fig. 11. Distribution of bits per pixel across the three compo-
nents: base, metadata, and A. Left: BD; Right: our algorithm.

Thus, when compressing a 5408 X 2736 image (the highest
rendering resolution on Oculus Quest 2), compression adds
a delay of 173.4 us, negligible in a rendering pipeline that
operates at, say, 72 FPS with a frame time budget of 13.9 ms.

Area and Power. Our compression hardware extension
introduces little area overhead, which consists of that of the
Pending Buffers and the PEs. Each PE has an area of 0.022
mm?, resulting in a total PE size of 2.1 mm?. Each Pending
Buffer holds data for two tiles (double buffering); the total
buffer size is 36 KB, resulting in a total area of 0.03 mm?.

The area overhead is negligible compared to the size of a
typical mobile SoC. For instance, the Xavier SoC has an area
of 350 mm? (12 nm) [6], Qualcomm Snapdragon 865 SoC has
a die area of 83.54 mm? (7 nm) [8], and Apple A14 SoC has
a die area of 88 mm? (5 nm) [2]. The power consumption
of each PE and its buffer is about 2.1 yW, resulting in a
total CAU power consumption of about 201.6 uW, which we
faithfully account for in the power saving analyses later.

6.2 Results

Compression Rate. Fig. 10 shows the bandwidth reduction
of our algorithm compared to the baselines. Our algorithm
achieves a compression rate of 66.9%, 50.3%, and 15.6% over
NoCom, SCC, and BD, respectively. Unsurprisingly, the high-
est gains are against NoCoM, which is the original frames
and uses 3 Bytes (24 bits) to store each pixel.

SCC (Sec. 5.3) is able to map all the 22* (about 16.8 mil-
lion) sRGB colors to a small subset of only 32,274 colors.

Exploiting Human Color Discrimination for Memory- and Energy-Efficient Image Encoding in VR

=100 cl c2

s 8t ----UA----VA------- V4

=

R e 7 R 77 R 77 EERR 77 B

g 400 1 S-----A----v4----

[R0) 77 N 7 NN N [% B [=
° L L

Q .

© offiC® (ornlte line b0 enat ke

Fig. 12. Distribution of the two cases c¢1 and c2.

4128x2096 5408x2736

=0.54
§0.45
20.36
= 0.27
9 0.18
20.09

£ o0

Fig. 13. Power saving over BD under the lowest and highest
resolutions and four different frame rates on Oculus Quest 2.

SCC thus uses 15 bits to represent a color, reducing the stor-
age cost compared to the original frames but is still much
less efficient than BD, which is the canonical Base+Delta
approach to compression DRAM traffic in today’s mobile
SoCs. Compared to BD, we show 15.6% (up to 20.4%) higher
compression rate, because of our ability to exploit human
color discrimination to reduce the magnitudes of As.

We get the least improvement over PNG. In two scenes,
PNG actually has a higher compression rate. This matches
prior results on BD [76] and is not surprising — to get a high
compression rate PNG is computationally intensive and is
meant to be used offline; see discussion in Sec. 5.3.

Understanding Results. Our improvement over BD
comes from the fact that we require fewer bits to store the As.
Fig. 11 shows the average number of bits per pixel required
to store the base, metadata, and As in a tile. We compare the
statistics between BD (left bars) and our scheme (right bars).
It is clear that the space reduction comes from reducing the
number of bits required to store the As.

To dissect how our scheme reduces the magnitude of As,
Fig. 12 shows the distribution of tiles across the two cases in
Fig. 6: HL > LH (c1) and HL < LH (c2). We observe that c2 is
the more common case: 78.92% tiles result in this case. In c2,
there exists a common plane where all the color values can
collapse to. We can reduce the A to 0 in these tiles, essentially
eliminating the need to store A.

Power Reduction. We evaluate the power reduction un-
der different resolutions and frame rates available on Oculus
Quest 2. Fig. 13 shows the power savings under each com-
bination over BD. Across all configurations, we reduce the
power consumption by 307.2 mW on average. The power

ASPLOS 24, April 27-May 1, 2024, La Jolla, CA, USA

SIS quad® wndt - oovey

[
N

Number Of Users
o UJ O‘! (o)

I

Oﬁ\Ce f0\,“\\’(_6

Fig. 14. Number of participants (out of 11) who did not notice
any artifacts in each scene in our user study.

saving is a combination of reducing the DRAM traffic and
the power overhead of the CAU encoding (201.6 pW).

Even on the lowest resolution and frame rate combination
on Oculus Quest 2, we reduce the power consumption by
180.3 mW, which translates to about 29.9% of the total power
measured (using Oculus’ OVR Metrics Tool [5]) when ren-
dering without compression. Under the highest resolution
and frame rate combination, the power saving increases to
514.2 mW. As resolution and frame rate will likely increase
in future VR devices, the power benefits of our compression
scheme will only increase.

6.3 User Studies and Analyses

Fig. 14 shows the number of participants who did not no-
tice any artifact in each scene. On average, 2.8 participants
(standard deviation 1.5) out of 11 total participants observe
artifacts. This percentage is on par with prior color percep-
tion studies [14, 22]. We further interviewed the participants
and identified three reasons why certain participants notice
artifacts, all of which were orthogonal to the fundamental
idea of this paper and actually point to optimization oppor-
tunities in other parts of the system, which, when exploited,
can be readily integrated into our work.

One participant who noticed subtle artifacts in three out of
the six scenes was a visual artist with “color-sensitive eyes.”
Observer variation is a known phenomenon in vision science
since the early days of color science research [26, 67, 72].
Given that color discrimination models in the literature all
target the average case in the population, the results indicate
that customizing/calibrating the model for individual users
is likely a promising approach to reduce the artifact.

Another set of participants noticed artifacts only during
rapid eye/head movement but not with a steady pose. This is
likely attributed to external factors such as rendering lag or
slow gaze detection, which is independent of our algorithm.

Finally, we found that no participant noticed any artifact
in the fortnite scene, which is a bright scene with a large
amount of green. Since our compression algorithm generally
yields green-hue shifts (see examples in Fig. 9), artifacts
are less noticeable in scenes that are green to begin with.
In contrast, dumbo and monkey, both dark scenes, have
the most noticeable artifacts. The results suggest, to the

ASPLOS 24, April 27-May 1, 2024, La Jolla, CA, USA

e—eoffice <+—thai

v—vfortnite

m—mskyline
e—edumbo

monkey

Bandwidth Reduction (%)

BD T4 Tﬁ T8 TIO T12 TIG

Fig. 15. Bandwidth reduction over NoCom under BD and
our scheme with different tile sizes denoted by T,,, where n
is the tile size.

vision science community, the need for improving the color
discrimination models in low-luminance conditions.
Objective Image Quality. To show that subjective ex-
perience, which is the focus of our work, is not equivalent
to objective quality, we evaluate the Peak-Signal-to-Noise-
Ratio (PSNR), a common objective quality metric, of all the
compressed images. On average, the PSNR of the compressed
videos is 46.0 dB (standard deviation 19.5); all but two scenes
have a PSNR below 37. A PSNR value in this range usually
indicates noticeable visual artifacts [12], which is confirmed
by our participants when they view the compressed images
on a conventional display. This result accentuates the crux
of our work: use human color perception in VR to guide
a numerically lossy scheme (hence low PSNR) for higher
compression rate with little subjective quality degradation.

6.4 Sensitivity Studies

Our evaluation so far assumes a tile size of 4 X 4. We also
evaluate our compression algorithm across different tile sizes;
the results are shown in Fig. 15 along with BD. We observe
that the compression rate drops once the tile size increases
beyond 4 X 4 and can be worse than BD when the tile size is
larger than 8 x 8.

The trend is the result of two opposing effects. On one
hand, as we increase the tile size we can amortize the cost of
storing the base pixels. On the other hand, larger tiles also
present less opportunity to bringing pixels together, because
we have to accommodate the worst case/largest difference
between two pixels in a tile (Sec. 3.1).

6.5 Discussions

To accommodate individual color perception in actual system
deployments, one can perform a per-user color calibration
procedure to build a per-user ellipsoid model. Such a proce-
dure is laid out in prior work [22], and is readily doable. Such
user-specific calibrations are routinely done when a user first
uses an AR/VR product, e.g., adjusting the pair of displays

Nisarg Ujjainkar, Ethan Shahan, Kenneth Chen, Budmonde Duinkharjav, Qi Sun, and Yuhao Zhu

to accommodate different inter-pupil distances among indi-
viduals. When a per-user ellipsoid model is available, our
fundamental idea readily applies.

It is worth noting that we can, if need be, easily turn off
our compression algorithm, which is intentionally designed
as a plug-and-play stage between normal GPU rendering and
existing BD compression (see Fig. 7). One scenario where
one might want to turn off our compression is when a user
has color vision deficiency (CVD). The color discrimination
model that underlies our compression algorithm does not
consider individuals with CVD. When such models for CVD
become available, our fundamental idea readily applies.

7 Related Work

Perception-Aware Rendering. A host of recent work
has focused on leveraging human perception to optimize
AR/VR systems. Weier et al. provide a relatively recent sur-
vey [65]. The most studied approach is foveated rendering,
which reduces rendering resolution in the visual periph-
ery [25, 46, 58, 59, 64]. Foveated rendering has been theo-
retically studied to reduce data transmission traffic in cloud
rendering [31, 35], but the decoding (reconstruction) cost is
prohibitively high (e.g., need a complicated DNN). Our ap-
proach is orthogonal to foveated rendering in that we focus
on adjusting colors rather than the spatial frequency, and
works directly on top of the existing (BD-based) framebuffer
compression framework without adding decoding cost.

Color Perception in Systems Optimizations. Color
perception is most often leveraged to reduce display energy.
To our best knowledge, this is the first paper that leverages
color perception to reduce data communication energy.

Dong et al. [20], Crayon [57], Dong and Zhong [21] all
leverage the human color discrimination to reduce OLED
power, which is known to strongly correlate with color.
Duinkharjav et al. [22] extend this approach to VR by quanti-
fying the eccentricity dependent color discrimination. Recent
work by Dash and Hu [18] builds an accurate color-vs-display
power model. None focused on reducing data traffic. Shye et
al. [55] and Yan et al. [73] leverage dark adaptation to reduce
display power. Dark adaptation will likely weaken the color
discrimination even more, potentially further improving the
compression rate — an interesting future direction.

Data Traffic Optimizations in VR. Data traffic reduc-
tion in VR has mostly been studied in the context of client-
cloud collaborative rendering, i.e., reducing wireless trans-
mission traffic. The pioneering Furion [37] system and later
developments and variants such as Coterie [42] and Q-VR [71]
cleverly decide what to rendering locally vs. remotely. For
instance, one could offload background/far objects rendering
to the server and render foreground/near object interactions
locally. EVR [38, 60] predicts user FoV trajectory and pre-
renders VR videos in the cloud. Our proposal is orthogonal

Exploiting Human Color Discrimination for Memory- and Energy-Efficient Image Encoding in VR

to the client-remote collaborative rendering, in that we focus
on reducing DRAM traffic occurred within a local device.

Zhang et al. [76] describe a BD design in encoding frame-
buffer traffic. We directly compare against this approach and
show up to 20% bandwidth savings. Zhang et al. [75] pro-
pose a content cache that exploits value equality in video
decoding, which does not apply to encoding where strict
equality is rare. Rhythmic Pixel Regions [34] drops pixel
tiles to reduce DRAM traffic in a machine vision pipeline,
whereas our focus is human visual perception in VR.

Any compression algorithm, ours included, exploits data
similarities. Recent work leverages data similarities to speed-
up rendering [66, 74, 77, 78] by eliding redundant compu-
tations (that compute same/similar data). These methods,
however, do not reduce data traffic, which we do.

General Memory Compression. Exploiting value simi-
larities to compress data traffic is a long-standing technique
in architecture [47, 48]. Recent work in approximate com-
puting extends compression to tasks that can tolerate slight
data infidelity such as image processing [43, 53] and tex-
ture mapping in rendering [61, 70]. In comparison, this pa-
per performs a principled “approximate compression” by
1) using a rigorous human perception model derived from
psychophysical experiments and 2) formulating compres-
sion as a constraint optimization with an optimal solution
(under necessary relaxations). Finally, we specifically target
VR and, thus, exploit the eccentricity dependency that is
unconcerned with before.

8 Conclusion

Aggressively lossy compression in the numerical domain can
achieve significant data traffic reduction with little percep-
tual quality loss in VR. The key is to leverage human color
discrimination (in)ability to bring pixels more similar to each
other. The resulting images, thus, permit more aggressive
compression over the classic Base+Delta scheme to reduce
DRAM traffic in a mobile SoC. We show that our compression
algorithm has an analytical form, which, when accelerated
by a dedicated hardware, can achieve real-time compression.
Future VR systems design must actively integrate human
perception into the optimization loop.

References

[1] 24-Bit 20-FPS PNG Encoder. https://ipbloq.files.wordpress.com/2017/
09/ipb-png-e-pb.pdf.

[2] Apple’s A14 SoC Under the Microscope: Die Size & Transistor Density
Revealed. https://www.tomshardware.com/news/apple-al14-bionic-
revealed.

[3] Arm Frame Buffer Compressions (AFBC). https://www.arm.com/
technologies/graphics-technologies/arm-frame-buffer-compression.

[4] Micron System Power Calculators. https://www.micron.com/support/
tools-and-utilities/power-calc.

[5] OVR Metrics Tool. https://developer.oculus.com/downloads/package/
ovr-metrics-tool/.

[6] Tegra Xavier. https://en.wikichip.org/wiki/nvidia/tegra/xavier.

ASPLOS 24, April 27-May 1, 2024, La Jolla, CA, USA

[7] The Next Frontier For Healthcare: Augmented Reality, Virtual Reality,

And The Metaverse. https://www.forbes.com/sites/saibala/2021/

11/29/the-next-frontier-for-healthcare-augmented-reality-virtual-

reality-and-the-metaverse/?sh=468f6be22894.

Xiaomi Mi 10 Teardown Analysis. https://www.techinsights.com/

blog/xiaomi-mi-10-teardown-analysis.

Murat Akcayir and Gokce Akcayir. Advantages and challenges associ-

ated with augmented reality for education: A systematic review of the

literature. Educational Research Review, 20:1-11, 2017.

[10] Rachel Albert, Anjul Patney, David Luebke, and Joohwan Kim. La-
tency requirements for foveated rendering in virtual reality. ACM
Transactions on Applied Perception (TAP), 14(4):1-13, 2017.

[11] Stephen Boyd, Stephen P Boyd, and Lieven Vandenberghe. Convex
optimization. Cambridge university press, 2004.

[12] Yang Cao, Tao Jiang, Xu Chen, and Junshan Zhang. Social-aware
video multicast based on device-to-device communications. IEEE
Transactions on Mobile Computing, 15(6):1528-1539, 2015.

[13] Vasek Chvatal. A greedy heuristic for the set-covering problem. Math-
ematics of operations research, 4(3):233-235, 1979.

[14] Michael A. Cohen, Thomas L. Botch, and Caroline E. Robertson. The
limits of color awareness during active, real-world vision. Proceedings
of the National Academy of Sciences, 117(24):13821-13827, 2020.

[15] Christine A Curcio and Kimberly A Allen. Topography of ganglion
cells in human retina. Journal of comparative Neurology, 300(1):5-25,
1990.

[16] Christine A Curcio, Kenneth R Sloan, Robert E Kalina, and Anita E Hen-
drickson. Human photoreceptor topography. Journal of comparative
neurology, 292(4):497-523, 1990.

[17] Dennis M Dacey. The mosaic of midget ganglion cells in the human
retina. Journal of Neuroscience, 13(12):5334-5355, 1993.

[18] Pranab Dash and Y Charlie Hu. How much battery does dark mode
save? an accurate oled display power profiler for modern smartphones.
In Proceedings of the 19th Annual International Conference on Mobile
Systems, Applications, and Services, pages 323-335, 2021.

[19] Andrew M Derrington, John Krauskopf, and Peter Lennie. Chromatic
mechanisms in lateral geniculate nucleus of macaque. The Journal of
physiology, 357(1):241-265, 1984.

[20] Mian Dong, Yung-Seok Kevin Choi, and Lin Zhong. Power modeling
of graphical user interfaces on oled displays. In Proceedings of the 46th
Annual Design Automation Conference, pages 652-657, 2009.

[21] Mian Dong and Lin Zhong. Chameleon: A color-adaptive web browser
for mobile oled displays. In Proceedings of the 9th international confer-
ence on Mobile systems, applications, and services, pages 85-98, 2011.

[22] Budmonde Duinkharjav, Kenneth Chen, Abhishek Tyagi, Jiayi He,
Yuhao Zhu, and Qi Sun. Color-perception-guided display power reduc-
tion for virtual reality. ACM Transactions on Graphics (TOG), 41(6):1-16,
2022.

[23] Michele Fiorentino, Raffaele de Amicis, Giuseppe Monno, and Andre
Stork. Spacedesign: A mixed reality workspace for aesthetic indus-
trial design. In Proceedings. International Symposium on Mixed and
Augmented Reality, pages 86-318. IEEE, 2002.

[24] Edward J Giorgianni, Thomas E Madden, and Kevin E Spaulding. Color
management for digital imaging systems. In Digital color imaging
handbook, pages 239-268. CRC Press, 2017.

[25] Brian Guenter, Mark Finch, Steven Drucker, Desney Tan, and John
Snyder. Foveated 3d graphics. ACM Transactions on Graphics (TOG),
31(6):1-10, 2012.

[26] John Guild. The colorimetric properties of the spectrum. Philosophical
Transactions of the Royal Society of London. Series A, Containing Papers
of a Mathematical or Physical Character, 230(681-693):149-187, 1931.

[27] Jawad Haj-Yahya, Jisung Park, Rahul Bera, Juan Gémez Luna, Efraim
Rotem, Taha Shahroodi, Jeremie Kim, and Onur Mutlu. Burstlink:
Techniques for energy-efficient video display for conventional and vir-
tual reality systems. In MICRO-54: 54th Annual IEEE/ACM International

8

—

[9

—

https://ipbloq.files.wordpress.com/2017/09/ipb-png-e-pb.pdf
https://ipbloq.files.wordpress.com/2017/09/ipb-png-e-pb.pdf
https://www.tomshardware.com/news/apple-a14-bionic-revealed
https://www.tomshardware.com/news/apple-a14-bionic-revealed
https://www.arm.com/technologies/graphics-technologies/arm-frame-buffer-compression
https://www.arm.com/technologies/graphics-technologies/arm-frame-buffer-compression
https://www.micron.com/support/tools-and-utilities/power-calc
https://www.micron.com/support/tools-and-utilities/power-calc
https://developer.oculus.com/downloads/package/ovr-metrics-tool/
https://developer.oculus.com/downloads/package/ovr-metrics-tool/
https://en.wikichip.org/wiki/nvidia/tegra/xavier
https://www.forbes.com/sites/saibala/2021/11/29/the-next-frontier-for-healthcare-augmented-reality-virtual-reality-and-the-metaverse/?sh=468f6be22894
https://www.forbes.com/sites/saibala/2021/11/29/the-next-frontier-for-healthcare-augmented-reality-virtual-reality-and-the-metaverse/?sh=468f6be22894
https://www.forbes.com/sites/saibala/2021/11/29/the-next-frontier-for-healthcare-augmented-reality-virtual-reality-and-the-metaverse/?sh=468f6be22894
https://www.techinsights.com/blog/xiaomi-mi-10-teardown-analysis
https://www.techinsights.com/blog/xiaomi-mi-10-teardown-analysis

ASPLOS 24, April 27-May 1, 2024, La Jolla, CA, USA

(28]

[29]

(30]

(31]

(32

—

(33

[t

(34]

(35]

(36]

(37]

(38

—

(39]

[40]

[41]

[42]

(43]

[44]

(45]

Symposium on Microarchitecture, pages 155-169, 2021.

Xu Han, Ying Chen, Qinna Feng, and Heng Luo. Augmented reality
in professional training: A review of the literature from 2001 to 2020.
Applied Sciences, 12(3):1024, 2022.

Thorsten Hansen, Martin Giesel, and Karl R Gegenfurtner. Chromatic
discrimination of natural objects. Journal of Vision, 8(1):2-2, 2008.
Shizhen Huang and Tianyi Zheng. Hardware design for accelerating
png decode. In 2008 IEEE International Conference on Electron Devices
and Solid-State Circuits, pages 1-4. IEEE, 2008.

Anton S Kaplanyan, Anton Sochenov, Thomas Leimkiihler, Mikhail
Okunev, Todd Goodall, and Gizem Rufo. Deepfovea: Neural recon-
struction for foveated rendering and video compression using learned
statistics of natural videos. ACM Transactions on Graphics (TOG),
38(6):1-13, 2019.

Richard M Karp. Reducibility among combinatorial problems. Springer,
2010.

Venkatesh Kodukula, Saad Katrawala, Britton Jones, Carole-Jean Wu,
and Robert LiKamWa. Dynamic temperature management of near-
sensor processing for energy-efficient high-fidelity imaging. Sensors,
21(3):926, 2021.

Venkatesh Kodukula, Alexander Shearer, Van Nguyen, Srinivas
Lingutla, Yifei Liu, and Robert LiKamWa. Rhythmic pixel regions:
multi-resolution visual sensing system towards high-precision visual
computing at low power. In Proceedings of the 26th ACM International
Conference on Architectural Support for Programming Languages and
Operating Systems, pages 573-586, 2021.

Brooke Krajancich, Petr Kellnhofer, and Gordon Wetzstein. A percep-
tual model for eccentricity-dependent spatio-temporal flicker fusion
and its applications to foveated graphics. ACM Trans. Graph., 40, 2021.
John Krauskopf and Gegenfurtner Karl. Color discrimination and
adaptation. Vision research, 32(11):2165-2175, 1992.

Zeqi Lai, Y Charlie Hu, Yong Cui, Linhui Sun, and Ningwei Dai. Furion:
Engineering high-quality immersive virtual reality on today’s mobile
devices. In Proceedings of the 23rd Annual International Conference on
Mobile Computing and Networking, pages 409-421, 2017.

Yue Leng, Chi-Chun Chen, Qiuyue Sun, Jian Huang, and Yuhao Zhu.
Energy-efficient video processing for virtual reality. In Proceedings of
the 46th International Symposium on Computer Architecture, 2019.
Chiao Liu, Andrew Berkovich, Song Chen, Hans Reyserhove,
Syed Shakib Sarwar, and Tsung-Hsun Tsai. Intelligent vision systems—
bringing human-machine interface to ar/vr. In 2019 IEEE International
Electron Devices Meeting (IEDM), pages 10-5. IEEE, 2019.

Chiao Liu, Song Chen, Tsung-Hsun Tsai, Barbara De Salvo, and Jorge
Gomez. Augmented reality-the next frontier of image sensors and com-
pute systems. In 2022 IEEE International Solid-State Circuits Conference
(ISSCC), volume 65, pages 426-428. IEEE, 2022.

David L MacAdam. Visual sensitivities to color differences in daylight.
Josa, 32(5):247-274, 1942.

Jiayi Meng, Sibendu Paul, and Y Charlie Hu. Coterie: Exploiting frame
similarity to enable high-quality multiplayer vr on commodity mobile
devices. In Proceedings of the Twenty-Fifth International Conference
on Architectural Support for Programming Languages and Operating
Systems, pages 923-937, 2020.

Joshua San Miguel, Jorge Albericio, Andreas Moshovos, and Natalie En-
right Jerger. Doppelganger: a cache for approximate computing. In
Proceedings of the 48th International Symposium on Microarchitecture,
pages 50-61, 2015.

Ohan Oda, Carmine Elvezio, Mengu Sukan, Steven Feiner, and Bar-
bara Tversky. Virtual replicas for remote assistance in virtual and
augmented reality. In Proceedings of the 28th Annual ACM Symposium
on User Interface Software & Technology, pages 405-415, 2015.

Anjul Patney, Marco Salvi, Joohwan Kim, Anton Kaplanyan, Chris
Wyman, Nir Benty, David Luebke, and Aaron Lefohn. Towards

[46]

[47]

(48]

[49]

[50]
[51]

[52]

[53]

[54]

[55]

[56]

[57]

[58]

[59]

[60]

[61]

[62]

[63]

Nisarg Ujjainkar, Ethan Shahan, Kenneth Chen, Budmonde Duinkharjav, Qi Sun, and Yuhao Zhu

foveated rendering for gaze-tracked virtual reality. ACM Transac-
tions on Graphics (TOG), 35(6):1-12, 2016.

Anjul Patney, Marco Salvi, Joohwan Kim, Anton Kaplanyan, Chris
Wyman, Nir Benty, David Luebke, and Aaron Lefohn. Towards
foveated rendering for gaze-tracked virtual reality. ACM Trans. Graph.,
35(6), November 2016.

Gennady Pekhimenko, Vivek Seshadri, Yoongu Kim, Hongyi Xin, Onur
Mutlu, Phillip B Gibbons, Michael A Kozuch, and Todd C Mowry. Lin-
early compressed pages: A low-complexity, low-latency main memory
compression framework. In Proceedings of the 46th Annual IEEE/ACM
International Symposium on Microarchitecture, pages 172-184, 2013.
Gennady Pekhimenko, Vivek Seshadri, Onur Mutlu, Phillip B Gib-
bons, Michael A Kozuch, and Todd C Mowry. Base-delta-immediate
compression: Practical data compression for on-chip caches. In Pro-
ceedings of the 21st international conference on Parallel architectures
and compilation techniques, pages 377-388, 2012.

Thammathip Piumsomboon, Gun A Lee, Jonathon D Hart, Barrett
Ens, Robert W Lindeman, Bruce H Thomas, and Mark Billinghurst.
Mini-me: An adaptive avatar for mixed reality remote collaboration. In
Proceedings of the 2018 CHI conference on human factors in computing
systems, pages 1-13, 2018.

Charles Poynton. Digital video and HD: Algorithms and Interfaces.
Elsevier, 2012.

Tain E Richardson. The H. 264 advanced video compression standard.
John Wiley & Sons, 2011.

RW Rodieck, KF Binmoeller, and J Dineen. Parasol and midget ganglion
cells of the human retina. Journal of Comparative Neurology, 233(1):115-
132, 1985.

Joshua San Miguel, Jorge Albericio, Natalie Enright Jerger, and Aamer
Jaleel. The bunker cache for spatio-value approximation. In 2016
49th Annual IEEE/ACM International Symposium on Microarchitecture
(MICRO), pages 1-12. IEEE, 2016.

Lindsay T Sharpe, Andrew Stockman, Wolfgang Jagla, and Herbert
Jagle. A luminous efficiency function, v*(1), for daylight adaptation.
Journal of vision, 5(11):3-3, 2005.

Alex Shye, Benjamin Scholbrock, and Gokhan Memik. Into the wild:
studying real user activity patterns to guide power optimizations for
mobile architectures. In Proceedings of the 42nd annual IEEE/ACM
international symposium on microarchitecture, pages 168-178, 2009.
Hongxin Song, Toco Yuen Ping Chui, Zhangyi Zhong, Ann E Elsner,
and Stephen A Burns. Variation of cone photoreceptor packing density
with retinal eccentricity and age. Investigative ophthalmology & visual
science, 52(10):7376-7384, 2011.

Phillip Stanley-Marbell, Virginia Estellers, and Martin Rinard. Crayon:
Saving power through shape and color approximation on next-
generation displays. In Proceedings of the Eleventh European Conference
on Computer Systems, pages 1-17, 2016.

Qi Sun, Fu-Chung Huang, Joohwan Kim, Li-Yi Wei, David Luebke, and
Arie Kaufman. Perceptually-guided foveation for light field displays.
ACM Trans. Graph., 36(6), November 2017.

Qi Sun, Fu-Chung Huang, Li-Yi Wei, David Luebke, Arie Kaufman,
and Joohwan Kim. Eccentricity effects on blur and depth perception.
Optics express, 28(5):6734-6739, 2020.

Qiuyue Sun, Amir Taherin, Yawo Siatitse, and Yuhao Zhu. Energy-
efficient 360-degree video rendering on fpga via algorithm-architecture
co-design. In The 2020 ACM/SIGDA International Symposium on Field-
Programmable Gate Arrays, pages 97-103, 2020.

Mark Sutherland, Joshua San Miguel, and Natalie Enright Jerger. Tex-
ture cache approximation on gpus. In Workshop on approximate com-
puting across the stack, page 3, 2015.

Tom Forsyth. The sRGB Learning Curve. https://medium.com/
@tomforsyth/the-srgb-learning-curve-773b7f68cf7a.

Gregory K Wallace. The jpeg still picture compression standard. Com-
munications of the ACM, 34(4):30-44, 1991.

https://medium.com/@tomforsyth/the-srgb-learning-curve-773b7f68cf7a
https://medium.com/@tomforsyth/the-srgb-learning-curve-773b7f68cf7a

Exploiting Human Color Discrimination for Memory- and Energy-Efficient Image Encoding in VR

(64]

(65]

[66]

(67]

(68]

(69]

(70]

(71]

(72]

David R Walton, Rafael Kuffner Dos Anjos, Sebastian Friston, David
Swapp, Kaan Aksit, Anthony Steed, and Tobias Ritschel. Beyond blur:
Real-time ventral metamers for foveated rendering. ACM Transactions
on Graphics, 40(4):1-14, 2021.

Martin Weier, Michael Stengel, Thorsten Roth, Piotr Didyk, Elmar
Eisemann, Martin Eisemann, Steve Grogorick, André Hinkenjann,
Ernst Kruijff, Marcus Magnor, et al. Perception-driven accelerated
rendering. In Computer Graphics Forum, volume 36, pages 611-643.
Wiley Online Library, 2017.

Yu Wen, Chenhao Xie, Shuaiwen Leon Song, and Xin Fu. Post0-vr:
Enabling universal realistic rendering for modern vr via exploiting
architectural similarity and data sharing. In 2023 IEEE International
Symposium on High-Performance Computer Architecture (HPCA), pages
390-402. IEEE, 2023.

William David Wright. A re-determination of the trichromatic co-
efficients of the spectral colours. Transactions of the Optical Society,
30(4):141, 1929.

William David Wright and FHG Pitt. Hue-discrimination in normal
colour-vision. Proceedings of the Physical Society, 46(3):459, 1934.
Giuinther Wyszecki and Walter Stanley Stiles. Color science: concepts
and methods, quantitative data and formulae, volume 40. John wiley &
sons, 2000.

Chenhao Xie, Xin Fu, and Shuaiwen Song. Perception-oriented 3d
rendering approximation for modern graphics processors. In 2018 IEEE
International Symposium on High Performance Computer Architecture
(HPCA), pages 362-374. IEEE, 2018.

Chenhao Xie, Xie Li, Yang Hu, Huwan Peng, Michael Taylor, and
Shuaiwen Leon Song. Q-vr: system-level design for future mobile col-
laborative virtual reality. In Proceedings of the 26th ACM International
Conference on Architectural Support for Programming Languages and
Operating Systems, pages 587-599, 2021.

Hao Xie, Susan P Farnand, and Michael J Murdoch. Observer
metamerism in commercial displays. JOSA A, 37(4):A61-A69, 2020.

[73]

[74]

[75]

[76]

[77]

[78]

ASPLOS 24, April 27-May 1, 2024, La Jolla, CA, USA

Zhisheng Yan, Chen Song, Feng Lin, and Wenyao Xu. Exploring eye
adaptation in head-mounted display for energy efficient smartphone
virtual reality. In Proceedings of the 19th International Workshop on
Mobile Computing Systems & Applications, pages 13-18, 2018.

Ziyu Ying, Shulin Zhao, Haibo Zhang, Cyan Subhra Mishra, Sandeepa
Bhuyan, Mahmut T Kandemir, Anand Sivasubramaniam, and Chita R
Das. Exploiting frame similarity for efficient inference on edge devices.
In 2022 IEEE 42nd International Conference on Distributed Computing
Systems (ICDCS), pages 1073-1084. IEEE, 2022.

Haibo Zhang, Prasanna Venkatesh Rengasamy, Shulin Zhao, Nachiap-
pan Chidambaram Nachiappan, Anand Sivasubramaniam, Mahmut T
Kandemir, Ravi Iyer, and Chita R Das. Race-to-sleep+ content caching+
display caching: A recipe for energy-efficient video streaming on hand-
helds. In Proceedings of the 50th Annual IEEE/ACM International Sym-
posium on Microarchitecture, pages 517-531, 2017.

Haibo Zhang, Shulin Zhao, Ashutosh Pattnaik, Mahmut T Kandemir,
Anand Sivasubramaniam, and Chita R Das. Distilling the essence of
raw video to reduce memory usage and energy at edge devices. In
Proceedings of the 52nd Annual IEEE/ACM international symposium on
microarchitecture, pages 657-669, 2019.

Shulin Zhao, Haibo Zhang, Sandeepa Bhuyan, Cyan Subhra Mishra,
Ziyu Ying, Mahmut T Kandemir, Anand Sivasubramaniam, and Chita R
Das. Déja view: Spatio-temporal compute reuse for ‘energy-efficient
360 vr video streaming. In 2020 ACM/IEEE 47th Annual International
Symposium on Computer Architecture (ISCA), pages 241-253. IEEE,
2020.

Shulin Zhao, Haibo Zhang, Cyan Subhra Mishra, Sandeepa Bhuyan,
Ziyu Ying, Mahmut Taylan Kandemir, Anand Sivasubramaniam, and
Chita Das. Holoar: On-the-fly optimization of 3d holographic pro-
cessing for augmented reality. In MICRO-54: 54th Annual IEEE/ACM
International Symposium on Microarchitecture, pages 494-506, 2021.

	Abstract
	1 Introduction
	2 Background and Motivation
	2.1 Eccentricity-Dependent Color Perception
	2.2 Real-Time Frame Compression

	3 Color Perception-Aware Compression
	3.1 Key Ideas
	3.2 Problem Formulation
	3.3 Analytical Solution Intuition
	3.4 Overall Compression Algorithm

	4 Hardware Architecture
	4.1 Hardware Overview
	4.2 Color Adjustment Unit

	5 Experimental Methodology
	5.1 Setup
	5.2 Human Subject Studies
	5.3 Baselines

	6 Evaluation
	6.1 Area and Power Overhead
	6.2 Results
	6.3 User Studies and Analyses
	6.4 Sensitivity Studies
	6.5 Discussions

	7 Related Work
	8 Conclusion
	References

