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Abstract: We study the following parabolic nonlocal 4-th order degenerate equation:
3 2
Us = —[ZnH(uX) +1In(uyy + a) + = (Uxx + @) ] ,
2 xx

arising from the epitaxial growth on crystalline materials. Here H denotes the Hilbert transform, and a > 0
is a given parameter. By relying on the theory of gradient flows, we first prove the global existence of a vari-
ational inequality solution with a general initial datum. Furthermore, to obtain a global strong solution, the
main difficulty is the singularity of the logarithmic term when u,, + a approaches zero. Thus we show that,
if the initial datum ug is such that (ug)xx + a is uniformly bounded away from zero, then such property is
preserved for all positive times. Finally, we will prove several higher regularity results for this global strong
solution. These finer properties provide a rigorous justification for the global-in-time monotone solution to
the epitaxial growth model with nonlocal elastic effects on vicinal surface.
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1 Introduction

One of the most affordable manufacturing processes to produce several key semiconductor materials is the
epitaxial growth on crystal surface [17, 18]. It is also used to design experimental materials to show high
temperature superconducting properties, or the quantum anomalous hall effect, in magnetic topological
insulators [5]. During the growth process, different coherent states are formed due to the balance of com-
peting influences, which is crucial to the study of the various structures of crystal surfaces. The presence of
these complicated competing effects usually leads to a high-order, nonlinear, nonlocal model, which requires
mathematical validations at both macroscopic and microscopic scales.

The formal derivation of the continuum limit generally starts from a mesoscopic description such as
Burton—Cabrera—Frank (BCF) step models [3, 20]; see [7, 19, 21-23]. In these models, several authors con-
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sidered a discrete energy functional

1
Ei=) cilnlxi - x| + co0-——
i ; 1 | i }| Z(Xi—Xj)z
toincorporate the global elastic interaction between steps x; and x;j, where ¢4, ¢, are proper scaling constants.
The resulting epitaxial growth model in terms of the continuum variable h(x, t), which represents the thin
film height, is

h = _[ZHH(hX) + (h)_(l + 3hx)hxx]xx- (1.1)

Here 1 1y
H(v)(x) := m J v(x —y) cot m dy
I
denotes the Hilbert transform on a periodic domain I := (0, 1). Under the assumption that the slope h, of the
thin film height h is strictly positive, i.e. hy > 0 for any t > 0, Gao, Liu and Lu [10] gave a rigorous proof of the
convergence from mesoscopic BCF step models to (1.1). They also obtained the local smooth solution whose
monotonicity is preserved up to a (positive) time.

Concerning global solutions, Dal Maso, Fonseca and Leoni [6], and Fonseca, Leoni and Lu [8] showed
the existence of a global weak solution by considering another equation for the anti-derivative u of h, which
satisfies hy = uy, + a for some constant a > 0, under the assumption that the initial datum is sufficiently
regular. That is, the authors considered the parabolic variational equation

+00, £<0,
ur = —[2nH(uy) + ®(Uxx)],y  Pa(®) := (€ +a), @) := 0, 5=0, (1.2)
3
élné + %, &>0,

on the spatial domain I = (0, 1) with periodic boundary conditions and time ¢ > 0.
It has been shown in [10, Section 2] that if uy,(t) + a > 0 for all ¢t > 0, then (1.1) can be formally written
in the form of the L?-gradient flow

U = OE_ —[ZnH(ux) +In(uyy + a) + %(uxx + a)z]xx, (1.3)
where
1 .
E() := i J J In|sin(rr(x — y))|(uxx + a)(uyy + a) dy dx + J D(Uyy + a) dx, (1.4)
11 I
S6E ,
S0 [27H(uyx) + @ (uxx + )], -

However, the two equations (1.1) and (1.3) are equivalent under the assumption that hy = uyy + a is strictly
positive for any time; see [6, Theorem 3.1] and also [10, Section 2.5]. To the best of our knowledge, for arbi-
trarily large times, whether the solution to (1.1) remains strictly monotone is a long-standing question that
was never addressed in previous literature. We also refer to [9, 11-16, 24] and the references therein for some
other related 4-th order degenerate equations. Instead of the nonlocal term H(hy) in (1.1) resulting from the
global interactions between mesoscopic steps, the 4-th order degenerate equations in [9, 11-16, 24] involve
only locally defined terms hy, hyyx due to the nearest-neighbor interactions between steps.

In this paper, we will study finer regularity properties of solutions to (1.2). First, we will prove the
existence of a solution in the evolution variational inequality (EVI) sense (see Definition 1.1 below) without
the extra regularity assumption [8, (5)] on the initial datum. The second goal is to prove the higher-order
regularity and long time behavior of the global strong solution. This is mainly achieved by carefully studying
the sub-differential of the total energy E. An important consequence is that the solution to (1.1) remains
strictly monotone, which also gives the justification that the hydrodynamic limit proved in [10] from the
mesoscopic step models to (1.1) is indeed true for any large time. Another consequence is that the global
strong solution converges exponentially to its unique equilibrium.
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One of the key issues is that the logarithmic term In(u,, + @) has an asymptote as uy, + a approaches
zero. This also leads to the issue that the sub-differential of E is not easy to characterize, and can become
quite complicated as uy, + a approaches zero. To overcome these issues, we will exploit the gradient flow
structure of (1.2) to obtain an important a priori estimate; see Section 3.2. The theory of gradient flows in
Hilbert spaces is very well developed. For the corresponding results in metric spaces, we refer the interested
readers to [1].

Before introducing our main results, we first clarify that the functional spaces will be L%erO(I ), i.e. the
space of functions that are square integrable, periodic, with zero average, endowed with the inner product

{u,v) := J uvdx,
1

and Wll,féfo(l), defined as the space of functions in WP () that are periodic and have zero average.

Definition 1.1. Given an initial datum R
12 1

up € D(E)
we call
U : [0, +00) — D(E)' 220
a variational inequality solution to (1.3) if u(t) is a locally absolutely continuous curve such that
lim u(t) = ug
t—0

in L2(I) and

1
Ea||u(t) VI < E(v) - E(u(t)) forae.t>O0andallv e D(E).

Here, and in the rest of this paper, D(-) will denote the effective domain of a given functional, i.e.

D(E) = {v € L*(I) : E(v) < +00},

12

and D(E) "~ denotes the closure of D(E) with respect to the L? distance.
Let us state the main results below.

Theorem 1.2. Let E be the energy defined in (1.4). Given an initial datum ug € D(E)|| iz

a unique EVI solution u, in the sense of Definition 1.1, satisfying

, equation (1.3) admits

u € L (0, +00; Wpes, (I)). (1.5)

loc
Moreover, if E(ug) < +00, we have u; € L*°(0, +co; L?(I)).
Note that (1.5) allows a more general initial datum compared with both [8, Theorem 1] and [10, Theorem 1.1].
Theorem 1.3. Assume the initial datum
uo € D(OE) = {v € L*(I) : the sub-differential 9E(v) # 0},
and (ug)xx + a = ¢ > 0 for some ¢ > 0. Then the solution given by Theorem 1.2 is a global strong solution to
3 2
Ug = —[ZnH(uX) +1In(uyy + a) + = (Uxx + a) ]
2 XX

and satisfies the following assertions:

(i) The sub-differential 0E(u(t)) is single-valued for all t, and is given by
6E
— 1= [2H(ux (1)) + @' (ux(8) + @)]

(ii) The right metric derivative satisfies

llu(s) - u(®lr2y

Iuﬁrl(t) = Pl s—t || ou

LZ

forallt > 0.
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(iii) The map t — E(u(t)) is convex, while

fo |\§—fm

L exp(2(V3 - 21n2)t)

is nonincreasing and right continuous.
(iv) It holds

U [P (x + @)]x € L0, +00; L7 (1)) N L®(0, +00; L*(I)), (1.6)

(n(ux + @), [(Uxx + @)?]x € L*(0, +00; CO(I)) N L®(0, +00; CO(1)), (1.7)

Unxx € L2(0, +00; CO(I)) N L*(0, +00; CO(D)), (1.8)

U Ik (-5 8) + @)]is [(Urk (-5 8) + @)% ]xx € L2(0, +00; L2 (D). (1.9)

(v) There exists a lower bound c* > 0, defined in (3.18), such that
Ug(t) +a>c*>0 foranyt>O0.
(vi) The exponential decay to the unique equilibrium u* = 0, i.e.
lut) = u* 17, < %(E(uo) - E*))e™*“" forallt >0,

holds, where C := V3 -21n2 > 0.

We remark that the assumptions in Theorem 1.3 on the initial datum are equivalent to

OE
(Mo)xx +a = ¢ >0, [OEQ0)lzq) = |5 (o)

L < +00
due to the calculations for sub-differential 0E in Lemma 3.1 below.

As an important consequence, since the strong solution u to (1.2) satisfies uy, +a > c* >0, (1.1)
and (1.2) are equivalent in a rigorous way, and the function h, whose slope is hy = uy, + a > ¢* > 0 and
which satisfies L hdx = a, is effectively a solution to (1.1).

Another conclusion is that, for a given a, the steady state solution to (1.1) must be an oblique line with
slope a.

This paper is structured as follows. In Section 2, we show that E is A-convex (see Definition 2.1 below)
and lower semi-continuous in L(I). This allows us to use the theory of gradient flows of A-convex energies
from [1] to prove Theorem 1.2. In Section 3, we perform crucial a priori estimates and calculations of the sub-
differential of E, showing that it is indeed single-valued. This finally allows us to prove the higher regularity
results in Theorem 1.3.

2 A gradient flow approach for EVI solution

In this section, we prove the existence of a solution in the EVI sense, by following the gradient flow approach
introduced in [1].

We will work almost always in D(E) (i.e. E(u) < +00), which, as shown in Lemma 2.2 below, is contained
in Wf,;jo (I). It is worth noting that, as our energy requires uy, + a > 0 a.e., this non-negative condition is
preserved when taking the limit. Indeed, let u, ¢ D(E) be a sequence with sup,, E(u,) < +co. Then

supju s < +00.
np" n"W;efO([)

Hence, up to a sub-sequence, u, converges strongly in Lf)ero (I) to some function u € Lsero (I), satisfying
Uxxy +a>0a.e.

Before proving the properties for the energy functional E, we recall the definition of A-convexity from [1]
below.
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Definition 2.1. Given a functional ¢ : LSero (I) — (—00, +00], we say ¢ is A-convex along curves in the metric
space (Lpero (I)’ " : "LZ(I)) if

1
P((1 = Oyo +ty1) < (1= O¢(yo) + tp(y1) = SALL = Ollyo -~ y1 17, foralltelo,1],

for any yo, y1 € Lpe;, (D).

Lemma 2.2. The energy E is 2C-convex with C := v/3 - 21n2 > 0, and lower semi-continuous with respect to
the weak L?-topology. Moreover, the sub-levels of E are compact in the strong L?-topology.

Proof. We prove this lemma in four steps.

(1) Boundedness of E from below. Since for any u ¢ D(FE) we have E(u) = +co, we need only to prove E > —co
on its domain D(E). First, for the second part of the energy E(u) in (1.4), given u € L3(I) such that uy, + a = 0
a.e., we have

1
JCD(uXX +a)dx = S i + alfs g + J(uxx +a) In(uy + a) dx
1 i

1 .
zlluxx"'a”p +III-1,r>1(f)£1n£. (2.1)

Second, we turn to estimating the first part of the energy E(u) in (1.4). Set
g(é) :=In|sin(1é)| < 0.

The first term in E becomes

% J(uxx + a)“ g(x = y)(uyy + a)(y) dy] dx
1 I

:=T(x)

Since g < 0 and uyy, + a > 0, we have

0<-T(x) = jg(x Y)tyy + @)1i(y) dy
R
- j[g Loc.0)( = )ty +a) - 171 dy
R
<- j[g 11— Yy + @) - 1)) dy
R

,—»—~

—{lg - 11,n] * [(uyy + @) - 11}, (2.2)

where we used the fact that x € (0, 1) implies (x — 1, x) € (-1, 1). Therefore, by Young’s inequality, we can
estimate the absolute value of the first term in E:

l% Ij(uxx + a)[ Ijg(x -V (uyy +a) dy] dxl

|§| J(”XX”)[ Jg(X—y)(uyym) dy] dx

I

=—T(x)>0

< %I Jl(uxx +a)[(-g - 1c1,1) * (A1 - (uyy + @) dx  (by (2.2))
1

<q 1| e + a8 - Lenn) * (- yy + @)

|I| ”g”Ll( 1,1) "uXX + a"LZ(I)’ (2.3)
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where

AN

1 s
lgli-1,1) =2 J —Inl|sin(ré)| d¢ = J —In|sin(w)|dw = 21n 2. (2.4)
0 0

Combining this with (2.1), we obtain
1 .
E@) 2 Sl + als gy + 111 (inf £1n &) ~ Ighos 1, ot + alfzq,
1 1
= Sl + allgsq, - =~ 2w+ alts - (2.5)

Thus —co < inf E < E(u) < +oo implies that u € Wpe,, (I). Hence D(E) ¢ Wpey, (D).
Moreover, since In ¢ < & forany & > 1, we get In(uyx + a) < uxx + a whenever u,, + a > 1, and

J(uxx +a)In(uy, + a)dx = J (Uxx + a) In(uyy + a) dx + J (Uxx + a) In(uyy + a) dx
1 {uyy+a=1} {uy+a<1}
< I + alZsgy + 11+ sup €1né.
1>¢>0

This, together with estimate (2.3) for the first term in E, shows that

2In2

S Dot @l < e+ alls g+ c. (2.6)

1 3
E() < 5 e + alls p +
(2) A-convexity in Lgero (I. First, note that if in the A-convexity inequality
1
E((1 - juo + tuy) < (1 - )E(uo) + tE(u1) - SAL1 - O)lluo - uilz

we have either E(up) = +0o or E(u1) = +00, then the inequality is trivial. Thus assume both terms are finite.
This requires (uj)xx + a > 0 a.e., i = 1, 2, and hence ((1 - t)ug + tuy)y + a > 0 a.e., too. Thus we can restrict
our attention to functions u such that uy, + a > 0 a.e.
Note that
(@) - V38" =38+¢1-2V320 foré>0.

Hence
U j[(D(uxx +a) - V3(uxy + a)?]dx is convex. 2.7)
I
Rewrite the energy as

E(u) = J[CD(uxx +a) - V3(ux + a)?] dx
I

convex
1
+ V3| + allfzm + T J(uxx + a)[ Ig(x - y)(uyy + a)dy| dx. (2.8)
1 i

Next we will prove that the sum of the last two terms in E(u) above is A-convex.
Given u, v € D(E), t € [0, 1], notice on the one hand,

j jg(x YA = Oty + @)+ tvyy + @)] - [(1 = Oy + @) + ey + a)] dy dx
I 1

= J Jg(x W[ = O (Uxx + D) (Uyy + @) + t(Vix + @) (Vyy + a) — t(1 — t)(U = V)xx(U — V)] dx dy
11

=(1-% I Jg(x - ¥)(uxx + a)(uyy + a)dxdy + tj Jg(x - Y)(Vxx + a)(vyy + a) dxdy
11 11

—t(1-t) j jg(x )~ V)t — v)yy dxdy.
I 1
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On the other hand,

(1 = 8)(uxx + @) + E(Vix + a)"%zu) = (1 = Olltxx + a”%z(l) + tvyx + a"%zu) —t(1-Bl(u - V)xx"]%zu)-

Thus

[

V3L = 0k0c+ @)+ s+ Dl + o [ [ 8= = 0601y, 4.+ e+ @)
1

I
(1 = O(uxx + a) + t(vix + @) dy dx

a
= (1= O Vs + g + 7 [ [ 00t + @ty + @y
11
1

+ ] VBlvax + als g + i

[ [ 6=yt + @y, + @y dxay |
I1I

-t = O VBl -Vl + 1 [ [ 80 p@- vy axdy]. @)
1

1
1|
1
From (2.3), we know that

1

V3l = V)lfa gy + T

[ [ 0= 9= viextu = vy dxdy > €l - Viuali
11

2 C"u - V"%Zu),

where
C:=V3- lglri(-1,1) = V3-2In2> 0.

This, together with (2.9), implies that

U V3uxe + allfy g, + I j(uxx + a)“ g(x - y)(uyy + a)dy | dx
1

is A-convex in L2(I) with A = 2C. Thus (2.7) follows, and E is also 2C-convex in L%(I).

(3) Lower semi-continuity. Consider a sequence u, — u weakly in L?(I). We need to show
liminf E(u,) > E(u).
n—+oo

Assume, without loss of generality, that lim inf is an actual limit, and that sup,, E(u,) < +oo, as otherwise the
inequality is trivial. So we know (uy)xx + @ > 0 and uy, + a > 0 a.e.
Boundedness of energy E(u,) implies, by (2.5), that (u,)x + a is bounded in L3(I). Then we know
(Un)xx — Uy Weakly in L3(I) and u, — u strongly in H'(I). Therefore,
”uXX"iB(I) < l%rlllgoﬂl(u")x"lliﬁ(l) < +00.
This, together with (2.6), implies E(u) < +co.
We recall the previous (2.8). For the last term, we have

lim inf i J((un)xx + a)[ Jg(x = Y)((un)yy + a) dy] dx = % J(uxx + a)[ Jg(x - ¥)(uyy +a)dy | dx

due to the dominated convergence theorem. The other term

10000+ @ = V(s + @) dx+ V3l + ally
1

convex

is convex and weakly lower semi-continuous. Thus
E(u) < liminf E(uy),
n—+oo

and hence we conclude that E is lower semi-continuous with respect to the weak L?-topology.
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(4) Compactness of sub-levels. Consider asequence u, with E(u,) < c¢. Boundedness of energy E(u,) implies,
by (2.5), that (u,)x + a is bounded in L3(I). Thus there exists u such that (uy)xx — Uy weakly in L3(I), and
u, — u strongly in L>(I). By the lower semi-continuity of E,

E(u) < liminf E(uy) < c.
n—+oo
Thus we complete the proof of this lemma. O

Proof of Theorem 1.2. Notice in Lemma 2.2 we show that all hypotheses of [1, Theorem 4.0.4] are satisfied,
with energy E, Hilbert space L7, (I)and A = 2C > 0.

Then by conclusions [1, Theorem 4.0.4 (ii) and (iii)], we know there exists a unique solution u such that
u(t) € D(E), t > 0, is a locally absolutely continuous curve with lim¢_q+ u(t) = ug in L2(I) and

1d
2 dt

Then, combining it with the lower bound estimate for E in (2.5), we conclude

lu(t) - vllf2 + %Allu(t) - v||f2 + E(u(t)) < E(v) fora.e.t>O0forallv e D(E). (2.10)

o0
ue LIOC

(0, +00; Wi (I)).

Now we turn to proving u; € L%(0, +oo0; L2(I)). First, we know that ¢ — u(t)islocally Lipschitzin (0, +o0),
i.e. for any t; > O there exists L = L(tp) > O such that

lu(to + €) - u(to)"LZ(]) < L(tp)e foralle > 0.
Next, we need to show that such L(ty) can be essentially taken independent of ty. For any ¢y > 0, from (2.10)
and A = 2C > 0, we have
1d
2 dt

Then, by conclusion [1, Theorem 4.0.4 (ii)] and the lower bound estimate for E in (2.5), we know

lu(t) - u(to)llf2 < E(u(to)) — E(u(t)) fora.e.t>0.

d
O - u(to)ll?, < E(uo) + co < 00,

where ¢y is an uninfluential constant. Thus the function ¢ — [u(to) — u(t)llz2¢; is globally Lipschitz with
Lipschitz constant less than E(ug) + co, which is independent of ty. From [2, Theorem 1.17], u is differentiable
a.e. in [0, T] with respect to L?(I), and belongs to W%*°([0, T]; L(I)). Hence we know

< E(ug) + co.

|| u(to) —u(to +€)
L2(Q)

&

Thus for a.e. t we have

e L2, < E(uo) + co,

u(t+¢)—u(t)
£ L2(Q) ~

" u(t+e)—u(t)
€

and the sequence of difference quotients M is uniformly bounded in L?(I). Since u is differentiable

a.e.in [0, T] and the derivative is unique, we can define
. u(t+¢e)—u(t
oru(t) := lim u,
e—0 £
and consequently,
lo¢ullz(o, 12217y < E(uo) + co.

The proof is thus complete. O

3 Higher regularity and globally positivity

In this section, we concentrate on proving Theorem 1.3 for the existence and regularity of the strong solu-
tion to (1.3), and for the positive lower bound for uy, + a. We will first calculate the sub-differential of E for
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Uyx + a > 01in Section 3.1. Assume Tyax is the maximal time (including the case Tpax = +00) such that

*

c
U (D) +a > > >0, te]l0, Tmaxl, (3.1)

for some positive constant c* > 0. From the local-in-time smooth solution obtained in [10], we know if the
initial datum ug satisfies (ug)yx + a > %, then Tyax > 0. In Section 3.2, we will give the key a priori estimate
to show that indeed there is a uniform lower bound c¢* such that u,,(t) + a > c* for all times ¢, and thus
Tmax = +o0o. This significantly simplifies the sub-differential computations since one of the key issues is the
singularity given by the logarithmic term In(uy(t) + a). Finally, we will prove Theorem 1.3 in Section 3.3.

3.1 Sub-differential computations when u,, + a > 0

In this subsection, we calculate the sub-differential of E when uyy + a > 0. The main result is the following.

Lemma 3.1 (sub-differential is single-valued). For any u € D(OE) such that uy, + a > O, the sub-differential
OE(u) is single-valued and is given by

0E(u) = {[2mH(uy) + @' (Uxx + @)]xx}- (3.2)
Proof. We prove this lemma in two steps.

Step 1. We first prove
[2mH(uy) + D (Uxx + a)lxx € OE(u). (3.3)

Consider an arbitrary u € D(0E) < D(E), and let ¢ be a test function. Without loss of generality, we can assume
u + @ € D(E), too, because otherwise we would have

lim Dy (Uxx + EPxx) — Dg(Uxx) -
-0 &

)

which immediately yields (3.3).
We calculate the elements of 0E(u) term by term. First, by the convexity of ®,, we have

£ J. CD;(uxx)(Pxx < J’[q)a(uxx + EQxx) — Dg(Uuxx)], (3.4)
I I

and then the term [®), (uxx)]xx belongs to the sub-differential of L D, (Uyxy) dx.
Next, we analyze the first part in the energy term:

J Jlnlsin(n(x - YUy + €@yy + a)(Uxx + EQxx + a) dy dx
1T

- j Jln|sin(n(x - YUy + a)(uxx + a) dy dx

11
=¢ J Jlnlsin(n(x =Y @yy(Uxx + @) + Pxx(uyy + a)] dy dx (3.5)
11
+ &2 J Jlnlsin(rr(x Y Pxxyy dy dx. (3.6)
T1

Again, by writing as a convolution, we have

j j In[Sin(T(x - )| @ux@yy dy dx = j ( j Inisin(r0x = Y)Igyy 1) dy )i () dx
I 1T R

(Infsin(rr x )| * (11" () Prx 11(x) dx.

T — &
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Hence, noting that x, y € I implies x — y € (-1, 1), we obtain

lj j1n|sin(n<x ~YDIPxpyy dy | < jl((lH,l) InfsinG x ) * (119™)(0))Pxd1(0)] dx
I 1 R

< |1¢=1,1) Infsin(mr x )| = (11<P”)||Lz(]R)||1I<P"||LZ(1R)

<2In2]¢"I%),

where we use (2.4). Hence the term in (3.6) is of order O(g?).
Now we turn our attention to the term in (3.5). Note first that, by a simple change of variable,

j j1n|sin(n<x — YDI[@yy Uy + @) + Pty + @)] dy dx
I 1T

-2 j [ jln|sin(n(x “ W)y + a) dy]qoxx dx
I
J
I

1
=2 J In|sin(7z(x - y))luyy dy](pxx dx + 2a [ J In|sin(77(x - y))| dy] J Pxxdx.
1 1 1
=2In2 =0

Note In|sin(71(x - y))| has an In-like singularity at x = y; hence it belongs to L?(I) for all p, and uy,, belongs
to L3(I). Thus, via integration by parts and the periodicity of I, we have

. 0 .
J In|sin(r(x — y))|uy, dy = - J uya_y In|sin(rr(x - y))|dy
i 1
172

0
= J uy(x—y)a—ylnlsin(ny)ldy
-1/2
0 1/2
= —n[ J uy(x —y) cot(y)dy - J uy(x —y) cot(y)dy |. (3.7)
-1/2 0

Note both the above integrals have a singularity at y = 0, so we need more careful estimates for the last line.
Since

” In|sin(y)|uyy (x - y) dyl < +00,

I
we have

&
lil’l’(l) J In|sin(my)|uy, (x - y)dy = 0.
E—
-£

Therefore, we could rewrite (3.7) as

1/2 e

J In|sin(ty)|uyy (x — y) dy = “lrlil‘(l) [ J In|sin(7ty)|uyy (x — y) dy + J Insin(ty)|uyy (x - y) dy]
1 € -1/2
1/2 e
= ﬂl% [ J cot(mmy)uy(x —y)dy - J cot(mmy)uy(x —y)dy (3.8)
B -1/2
- In|sin(em)|uy (x — €) + In|sin(em)|uy (x + s)]. (3.9)

The limit in (3.8) exists, and it gives the Hilbert transform term H(u, ). For the other term (3.9), we recall that
uyy € L3(I); hence uy, € W'3(I) ¢ €%?/3(I). That is, there exists some constant C; > 0, independent of x, y,
such that

luy (x + &) — uy(x - )| < C1/2¢]*3,
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and (3.9) is now bounded through
lim|[In|sin(em)|(u, (x + €) - uy(x - £))] < C1 lirr(1)||2£|2/3 In|sin(em)|| = 0.
£— PN

Therefore, we have

1
lil’I(l) E[ J J In|sin(zr(x — y)(uyy + €@yy + a)(Uxx + EQxx + a) dy dx
E—
11

- J Jlnlsin(rr(x - ¥)I(uyy + a)(uxx + a) dy dx
I1

= J- 2H (uy) @ xx dx.
1

This, together with the term [®] (uyx)]xx in (3.4), concludes step 1.

Step 2. We show that the sub-differential 0E(u) is single-valued. Assume there exists another element
n € 0E(u). To prove that Au := [21H(uy) + @' (uxx + a@)lxx = 1 as elements of [Wgéfo(l)]*, we just need to
show that

AU Q) w2 o1, wiz, 0 = T Pwd i, wia o

perg P perg perg
for all test functions ¢ belonging to a suitable dense set Z(u) ¢ Wﬁé?o(l ), which will be constructed below.
Here

(s >[W§£0 (D1 Wi, (1)

denotes the duality pairing between [ngﬁo (D]* and Wf,é?o (I), induced through the embedding chain
Wier, () — L2

perg

(D) — [Wpin, (D]".

By the definition of sub-differential, we have

>
lim 2 (AU, Q) ywzz -, w2 oy

lim E(u + eq;) - E(u)

i Bt ep) — EQW)

lim B > (1, @) yw2, e, wii, ()

. E(u-ep)-Eu)

lim . 2 (AU, =P rwzs (e, w2, (>
. E(u-¢ep)-E)

M = = =Pz o wid, -

Therefore, if both the left-hand side terms
lim E(u+ep)-E(u)
£—0 &

are finite, then we can infer

im E(u)-E(u-c€p) E(u+¢ep)-E(u)

i e < (A Qo e wiy o < i e

. Ew)-Eu-cp) . E(u+ep)-Eu)
lim ———= < (n, , . W <lim ——=.
lim - M OY w22 iy wzz, o < im .

So we need to carefully choose ¢ such that

lim EU*E9) ~E@) _ .
e—0 E e—0

E(u) - E(u-e€p) (3.10)
£

both exist.
To prove that the Gateaux derivative in (3.10) exists, the only term in E(u + £¢) that might create issues
is
J D(Uyy + A + EQyy) dx
I
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since we need Uyy + @ + £@yy > 0 a.e. to ensure that (3.10) is finite. Let
1
Zn(u) := {(p € Wﬁé‘r’g(l) : Pxx = 0on {uxx +ac< EH’ Z(u) := U Zn(W). (3.11)
n>1
Therefore, for any ¢ € Z(u), there exists Z, such that ¢y, = 0 therein. Then, by construction, for any
1
< 1
Nl @xxllze(n)

we have uyy + a + €@ > 0 a.e. It remains to check that Z(u) is dense in W;,;?O(I), i.e. for any ¢ € Wf,éfo I

there exists a sequence Y, < Z(u) such that i, — ¥ strongly in Wﬁéfo (I). This is done in Lemma 3.2 below.
Therefore, we conclude n = Au in [Wf,é?o(l)] *, and thus OF is single-valued. O

For brevity, even though the sub-differential 0E(u) is a set, we will simply write
0E(u) = [2mH(ux) + cD’(uxx +a)]xx
instead.

Lemma 3.2. The set Z(u) constructed in (3.11) is dense in Wﬁg?o (D), i.e. for any v € Wﬁéfo (I) there exists
a sequence vy, € Z(u) such that v, — v strongly in Wﬁé?o(l)

Proof. Letv e Wﬁgj ,(I) be given, and we need to approximate v with a sequence v, < Z(u). To this aim, we
first approximate vy, and then take anti-derivatives. Let

Wnp = min{vxxl{u,,+a21/n}; n},

which, intuitively, plays the role of (v,,)xx. That is, w, is constructed by first setting everything to zero on
{uyy + a < %}, and then taking the truncation from above (at height n). Then define

S

X 1 X
Zn(Xx) := an(s)ds - Wp, Wp:= l j wp(s)ds, vup(x):= Jzn(s)ds.
0 0 0

By construction, (v,)xx = Wn; hence v,, € Z(u) for any n. Moreover, since z,, = (v,)x and v,, have zero average,
by Poincaré’s inequality, we know that ||v, — vlz3¢y and |[vax — vxllz3(p) are controlled by [[(Vn)xx — Vaxllz3 (- By
construction,
100 vl s [ Wl dxs | vaPdx—o
{uxx+ta<1/n} {vx=n}

since the Lebesgue measures of both {u,, + a < %} and {vyx > n} go to zero as n — +oco. Thus we have shown
that v, — v strongly in ngjo . O

3.2 The a priori estimate

In this subsection, we show the key a priori estimate which provides the existence of a uniform lower bound
c* > 0, defined in (3.18) below, such that the solution satisfies the global-in-time positivity property

Uxx(t)+c>c* >0 forallt.

In other words, if the initial datum is uniformly bounded away from zero, so is the solution at all positive
times.
Let u be a solution of

SE
U == = ~[2mH(uy) + D' (Usx + @)]xxs

satisfying (3.1) for t € [0, Tax]. Note that
o, 0
dt “Su

dt=—”g—5'2dtso
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and

E(uo) - infE > — ! —dt— Hsu

LZ(I)

+00

- j 27 H(ux (6) + O (ex(O) + @l g
RH(x() + P (Uex(O) + Dl

|20 + [ 1) + @) + 5 0ex(0) 4 @],

)

o
o

L2(I)

where C; is the Poincaré constant of I.
We show that the Hilbert transform term is controlled by the singular one. On the one hand,

[0 + @) + 2 a0 + 01?]

xIL2(1)

= 10U (6) + @il gy + %u[(uxx(t) + @Il +3 j[(uxx(n + @) Le[In(uxe(t) + @)y dx
I

= (e (t) + @l gy + %"[(uxx(t) + @)1l gy + 6l fa - (3.12)
On the other hand, from [4, Proposition 9.1.9],
4ﬂ2||H(uxx(t))IIi2(I) = 4ﬂ2||uxx(t)||fz(1) = 471 (luxx(£) + allfzm - a®). (3.13)
By the Poincaré inequality,
[ (uxx () + a)zlxllfz(l) > Cr M | (ux(8) + a)zllfzm = Cy M lux(8) + allfm)- (3.14)
Combining (3.13) and (3.14), there exists a computable constant Cy such that
47 ||H(uxx(l‘))||fza) < %"[(uxx(t) + a)zlxllfz(,) (3.15)

whenever
472 | H(ux ()22, = Co.
Thus one of the following cases must hold:

() The quantity 47| H(uxx(t)7, ;) < Co- In this case,

2nH 1 t & t 12
|2mH G 0) + [Inuc®) + @) + S () + a?]

2 4 Ot )2 + [0 + @) + 2 (a0 + 017

xIIL2(T)
3 2
x [|[mGuat) + @) + Sty + @] |, = Col. (3.16)
So the following dichotomy holds:
(a) Either
3 2
[ty + @) + S + @] |, < 2C0,

in which case we get a direct upper bound for

||[1n(uXX(t) +a)+ %(uxx(t) + a)z]

X LZ(I);
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(b) or

> ZCO,

||[ln(uxx(t) +a)+ g(u’“‘(t) * a)z]x L2(I)

i.e. the last term in (3.16) satisfies

020 + @) + S e+ @2] [, = Co 2 3 [I2ex0) + @) + S weett) + 2]

L2(I) 2n’

so (3.16) gives

iz(1) = %" [ln(”“(t) +a)+ %(uxx(t) + a)z]x ’

|2 (0) + [Inuc(6) + @) + %(uxx(t) +a)?] v

X

(II) Alternatively, if 4> IIH(uXX(t))II%Z(D > Cy, then from (3.12) and (3.15) we have the control

1
4 ||H(uxx(t))||]%2(1) < Z"[(uxx(t) + a)z]xuizu)

< %"[ln(um(t) +a)+ %(u""(t) + a)z]x IZ,Z(I)’

which gives

2

20 (0 + [0 + @)+ 2 a0 + 7] |1

2 4 H Oy + | [0 + @) + 2 (tc(0) + ]

xIIL2(T)

~ 22H O | [0 + @)+ 3 (ea0) + @]

L2()
2

1 3
2 4 H o )12 + 5 | [0 + @) + Sty + @] -

Combining all above cases, we have

2

L (by 3.12)

NG + @], [F < || (1N (8) + @) + %(uxx(t) . a)Z]X

< max{4C3, 3|2 H (D) + [In(uee0) + ) + %(uxx(t) va?] |7 (3.17)

LZ(I)}'

Since, by Lemma 2.2, the energy E is A-convex, with A = 2C = 2+/3 - 41n 2 > 0, it is well known (see, e.g.,
[1, Theorem 2.4.15]) that

t | 6ng1(”) ey = € |2 H(©) + [Inn0) + @) + ;(uxx(t) va] |,
is nonincreasing. Therefore, by the assumption u2, + a > 0 and by setting
Ho := [0EWO®) 121y = ||2nH(u2X) +[In@ud + @) + %(ufgx + a)z]x Lo < F00
we have
() + [1naa ) + @)+ S )+ @7 | < Ho.

Combining this with (3.17) finally gives

I (uxx () + @)llzeo(0,+00520(D)) < Coo,2IIN(Uxx(+) + @) xllL0(0,400;22(1)) < Coo,2 Max{2Co, 3Ho},
and hence a uniform bound

¢* = e Coo2 max{2Co,3Ho} (3.18)

of uyx(-) + a away from zero.
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3.3 Proof of higher regularity and Theorem 1.3
Based on the calculations for the sub-differential, and the key a priori estimates from the previous subsec-
tions, now we are in the position to prove higher-order regularity results and Theorem 1.3.

Proof of Theorem 1.3 (i)—(iii). From [1, Proposition 1.4.4], we obtain

IOEI(u(-, ©) = min{ll§ll2qp) : § € OE(u(-, 1))}

From Lemma 3.1, we know that 0 E(u) is single-valued and is given by (3.2), which is statement (i) of Theorem
1.3. Thus statements (ii)—(iii) of Theorem 1.3 follow directly from [1, Theorem 2.4.15] since Lemma 2.2 shows
that all its hypotheses are satisfied. O

Proof of Theorem 1.3 (iv) and (v). Let v := uyy + a. By statement (iii) of Theorem 1.3, the map

to[oec,0

2 exp(2Ct)

is nonincreasing and right continuous. Since C > 0, this implies that

to 52,0

L2(I)
decreases exponentially in t. Thus u satisfies that, for any ¢ > 0,

OF  amH(u) + © ()] = [27tH () + In(uc + a) + 2 (e + a?]
bu 2 xx

is uniformly bounded in
L%(0, +00; L>(I)) N L*®(0, +00; L2(I)),

which implies
[2H(uy) + @' (v)]x € L®(0, +00; HX(I)), 27H(uy) + @' (v) € L®(0, +co; H*(I)), (3.19)
where v := uyy + a is a shorthand notation. Using that
Ugy + a € L™(0, +00; L (I))

implies
Uxx, H(uxx) € L(0, +00; L’ (1),

we get
(@' (V)]x = (nv]y + %[Vz]x € L™(0, +00; L*(I)) N L*(0, +oo0; L*(I)).

Then, by (3.12), we obtain

roo> [ Jinvee, ohs S0, 07|, de
0
+00 9
= [ Iy 1y + UV 71 + 6l 071, (3.20)
0

Hence
nv(-, O]y, [V(+, 8)*]x, Uxex € L2(0, +00; LA()).

Now that we have tyyy, H(Uxxx) € L2(0, +00; L2(I)), we can use (3.19) to infer

(@ ()], = IVl + 3 V1 € 1200, +o003 HA(D),
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and (1.6) follows. Then, using the embedding H'(I) — C°(I), we obtain
L*(0, +00; C°(D) 3 [[®' (V) 1| = [vx(BV + v 71| 2 2V3|vyl,
which implies
Vx = Uyxx € L?(0, +00; CO(D)). (3.21)
Similarly, since (3.20) and (3.21) also hold for any ¢ > 0 uniformly, we conclude (1.7) and (1.8).
Statement (v) follows from In(uyy + @) € L%°(0, +0co; L°(I)), i.e. Uyx + a = ¢* > 0 is bounded away from

zero for all ¢ > 0. Here the explicit positive lower bound c* is calculated in (3.18).
Next, by (1.6), forany ¢ > 0,

3 v b2
+00 > [ V(- O+ SIVC, 07,

- j[mn V(- el + %uv(-, %]l | dx +3 [ V(- Ole - V(- 0] dx

I

[ —

9 VX(" t)4
= j[mn VC Ol + 210 07Tl [dxr 6 [ [vae, 07 = 720 | de (3.22)

I

[ —

Note that the only negative term is
J VX( ) t)4
- | —=5dx,

V(' s t)Z
I

so we need to bound it from below. From (1.8) and the uniform lower bound uy, + a > ¢* > 0, we know

VX(' ) t)4 2
I D s el Dl < +oo
1

uniformly for t > 0. Hence (3.22) reads

> a0 v, Ol + 20, 020l
+00 || Vi, xx+§V‘; XXLZ(I)

9
2 {J[Hln V(e O]al® + Zl[V( S0 Ll? + 6V (- t)z] dx]’ = 6c|vx(-, t)”%O([)
1
uniformly for t > 0, and thus (1.9) follows. This completes the proof of statement (iv). O

Proof of Theorem 1.3 (vi). Since u is periodic with regularity (1.6)—(1.9), the steady state u* satisfies

SE 3 2
E = [ZITH(UX) + ln(uxx + a) + E(uxx * (1) ]xx =0,
which implies

27H(uy) + In(uxx + @) + %(uxx +a) = const.

This yields u* = 0 is a steady state. From Lemma 2.2, we know that g—f is strictly monotone in L2, which
implies that there is only one steady state u* = 0 such that ‘2—5 = 0. Thus, combining [1, Theorem 2.4.14] and
Lemma 2.2, we conclude the exponential decay of u(t) toits unique equilibrium u* = 0, i.e. statement (vi). [
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