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Abstract—This paper presents a CMOS-based analog neuron
circuit that utilizes a multi-level analog memory that is useful
for mixed signal neural networks. The implementation of neural
networks in the analog/mixed signal domain is crucial for edge
applications of Artificial Intelligence (AI). The proposed circuit
is able to generate both positive and negative output Multiply
and Accumulate (MAC) currents by utilizing a bipolar supply.
The multi-level analog memory is able to generate eight distinct
analog voltages to drive the analog neuron circuit. Simulation
results show that the analog neuron circuit is able to perform
linear addition over the entire MAC current range. The MAC
current per input-weight pair is between ±25µA to ±56µA.
The analog neuron circuit is able to generate 0A for zero-weight
or zero-input. Each input-weight pairs consumes 170µW. The
circuit is designed and simulated in the 65 nm technology node.

Index Terms—Analog Neuron, Two-Quadrant Analog Neuron,
Positive and Negative MAC (Multiply and Accumulate) Currents,
Bipolar Supply, Analog Memory Circuit, 3-Bit Memory, Neuron
Circuit, Edge Computing, 65 nm technology

I. INTRODUCTION

The integration of Artificial Intelligence (AI) into various
devices and systems, particularly through the use of Deep Neu-
ral Networks (DNNs), has led to significant advancements in
computer vision [1]–[3] and natural language processing [4]–
[6]. However, as the Internet of Things (IoT) continues to
advance, the need for devices that integrate AI models while
optimizing energy usage is growing. Consequently, alternative
computing approaches such as analog computation are being
investigated to address this demand [7], [8].

Analog computation is particularly well-suited for low-
energy and low-latency applications [9], [10], as it allows for
energy-efficient Vector Matrix Multiplication (VMM) through
Kirchoff’s Current Law (KCL) and Ohm’s Law. Addition-
ally, In-Memory Computing (IMC) systems utilizing non-
conventional memory technologies, such as analog memory or
RRAM, can potentially store entire models on-chip [11], [12],
eliminating the need for off-chip memory accesses. However,
the use of these non-conventional memory technologies intro-
duce new issues that must be taken into account such as CMOS
compatibility, durability, sneak path [13], and variation [14] for
successful application to the field of DNNs.
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Fig. 1. Perceptron architecture. (a) High-level architecture. (b) Archi-
tecture of the proposed perceptron.

The signed MAC operation in the crossbar architecture is
generally accomplished with one of two methods. The first
method involves performing the signed operation digitally and
assigning a negative sign in the digital domain to certain
columns. This approach is referred to as the dual array
approach to signed MAC operations. The second method,
known as the dual row approach, which is implemented in this
work, relies on a bipolar supply to perform signed operations
in the analog domain. Although the dual array approach
can reduce the latency of performing more operations in the
analog domain, it is more sensitive to variation in the memory
technology.

This paper presents a new design for an analog neuron
circuit that utilizes a two-quadrant operation. The proposed
circuit uses a recently introduced analog memory technology
to store weights [15]–[17]. This memory has been shown
to have low-power consumption and robustness to process
variations (PVT).

The contribution of this paper is as follows:

• A low-power, analog perceptron with an all-CMOS im-
plementation.

• Dual row implementation of the signed MAC operation.
• Usage of the same analog memory for both the positive

and negative weights.
• Simulation results showcasing the operation of the analog

neuron.

The remainder of this paper is structured as follows. Section
II discusses the perceptron circuit design and the I/O signals
from the perceptron. Section III presents the analytic results
of the proposed neuron. Section IV discusses the simulation
results of the proposed neuron. Section V concludes the paper.
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II. PROPOSED ANALOG NEURON CIRCUIT DESIGN

The focus of this work is on inference operations. The
overall perceptron architecture is shown in Figure 1. This
work utilizes a ±1.2V supply. The architecture of this circuit
is modular and extra input-weight pairs can be added as
needed for any particular layer in the overall DNN by adding
another Multi-Level Memory (MLM) and V-to-I converter
as shown in Figure 1(b). Each input-weight pair consists
of an Analog Multi-Level Memory (MLM) and a current
summing architecture (V to I Converter). The current summer
is connected to the shared MAC node which could be fed into
a trans-impedance amplifier in system-level implementations
of this neuron.

A. Analog Multi-Level Memory

Figure 2 shows the analog memory in this work, Figure 2(a),
takes an analog input and quantizes that input to one of eight
distinct memory levels which produces a stable voltage that
drives the current summer. The analog MLM has two input
signals and one output signal as shown in Figure 2(b). This
memory is described in detail in [15]–[17].

B. Neuron Architecture

As shown in Figure 3, the neuron uses a bipolar supply
+Vin and −Vin to generate the signed MAC current. The
MAC node is grounded. This circuit has two pairs of trans-
mission gates: TG1/TG2 which control zero versus non-zero
weights and TG3/TG4 which control the sign of the MAC
operation. There is a read transistor, Mread, which controls
the V-to-I operation. There is a current mirroring structure
that allows the current to be steered into the MAC node or
out of the MAC node depending on the state of the Vsel pin.

The circuit in Figure 3 has two inputs ±Vin and Vw,q . ±Vin

is the input activations in 1-bit bipolar binary form and Vw,q

is the weight which is coming from the Analog Multi-Level
Memory. TG1 and TG2 control a zero weight versus non-zero
weight. If Vzs is HIGH, TG1 is on and TG2 is off, voltage
Vw,q is allowed to through to the gate of Mread for a non-
zero weight. If Vzs is LOW, TG1 is off, TG2 is on, the gate of
Mread is connected to Vin, effectively making the gate-source
voltage of Mread zero resulting in a zero weight.

The transistor Mread acts as a current source for the current
steering architecture. Mmirror acts as a mirror for both M1

and M2. M1 is the current source for the negative MAC current
path while M2 is the current source for the positive MAC
current path. The positive MAC current path includes M2,
TG4, M3, and M4. The negative MAC current path includes
M1 and TG3. The positive MAC current path is enabled when
TG3 is on and TG4 is off, this occurs when Vsel is HIGH.
The negative MAC current path is enabled when TG3 is off
and TG4 is on, this occurs when Vsel is LOW. M3 and M4

are added to allow for current to be sourced by M4 for the
positive MAC while M1 acts as a current sink for the negative
MAC.

Matching between positive and negative currents is a key
design parameter. The unsuitability of NMOS and PMOS

Fig. 2. (a). High-level block diagram of the analog memory. (b).
transistor-level schematic of the analog memory.

transistors for the roles of current sinking and sourcing,
respectively, arises from their opposite response to gate voltage
modulation. Specifically, the overdrive of a PMOS transistor
exhibits a decreasing trend as the gate voltage is increased.
In contrast, an NMOS transistor demonstrates an increasing
trend as the gate voltage is increased. Ideally, the current
will be equal in magnitude and have opposite signs for all
voltages of Vw,q . There is some mismatch in the currents from
the positive and negative MAC operation. This non-ideality
comes from the difference in current gain from the positive
and negative current sources in the architecture. More details
will be provided in the next section.
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Fig. 3. Current Summing Architecture.

III. ANALYTIC RESULTS

The read transistor, Mread, converts the weight voltage
into a current. The read transistor is biased to operate in the
saturation region over the range of voltages that the analog
multi-level memory outputs. The transconductance of the read
transistor roughly follows that of the following equation.

gm = µnCox
W

L
(VSG − |Vth|) (1)

The read transistor has a different gain for different weight
values due to the over-drive voltage being modulated by the
output of the analog memory’s output. This is not an issue for
two reasons. First, the architecture does not change weight
values in run-time, weights are configured at the beginning
of operation and remain until new weights are loaded into the
inference machine. Second, this architecture is designed for 1-
bit input activation which results in a discrete output of eight
different levels or an output of zero in the case of zero input
or zero weight.

The read transistor forms a current source for the central
biasing branch of the current steering architecture shown in
Figure 3. The read transistor expresses differences in weight
voltages as a change in the over-drive voltage of the read
transistor. Due to velocity saturation, there is a linear rela-
tionship between gate-source voltage and drain current in the
saturation region. This results in a variable current source that
is dependent on the weight voltage while the input voltage is
binary. The current in the read transistor roughly follows the
following equation.

ID =
1

2
µnCox

W

L
(VSG − |Vth|)2 (2)

The read transistor, Mread, is a current source to the current
mirroring structure. The current mirroring structure takes this
current and replicates it in the two signed branches connected
to the drains of M1 and M2. Equation 2 explains the downward
trend in the MAC current as the weight voltage is increased. As
the weight voltage decreases, the voltage VSG increases since

the source is fixed at VDD. As the gate voltage decreases the
over-drive increases which results in a larger current at the
central biasing branch.

The current at the signed branches are roughly the following
equations for transistors M1 and M2.

I− =
W1

Wmirror
Iread (3)

IM2 =
W2

Wmirror
Iread (4)

In equation 4, Iread is being generated from Mread. I− is
being fed directly to the MAC node since it is sinking current
from the node. The positive MAC node must undergo another
conversion to convert from sinking current to sourcing current
into the node. This equation is defined by the equation shown
below.

I+ =
W2W4

WmirrorW3
Iread (5)

Based on equations 3 and 5 sizing of transistors W1 and W2

must be equal and transistors W3 and W4 must be equal
to ensure matching between the negative and positive MAC
operation. Another consideration is channel length modulation
which needs to be taken into account in design with cascoding
techniques or increasing the transistor channel length. The
length for this design was chosen to be 250 nm to minimize
the effect of channel modulation on the mirroring operations.

IV. SIMULATION RESULTS

This section goes over the simulation results of the dual row
MAC operation. Figure 4 shows the MAC current when Vin,1

is positive and Vin,2 is zero. The maximum current is 56 µA
and the minimum current is 25 µA. The stairwell characteristic
comes from the analog memory which is driving the current
steering architecture. The analog memory outputs a voltage
in the 0 to VDD range with the analog outputs centered on
0.5VDD.

Figure 5 shows the output characteristic stairwell when
both Vin,1 and Vin,2 are positive. The current summing action
of the MAC architecture can be seen in this figure, where the
maximum MAC current is 112 µA and the minimum current
is 50 µA. This is due to both the inputs being positive and
having the same weight applied to them. In actual operation,
the two inputs do not need to have the same weight as each
input/weight pair has a different analog memory to drive the
current steering architecture.

Figure 6 depicts the MAC current when Vin,1 is negative
and Vin,2 is zero. The maximum current is -25 µA and the
minimum current is -58 µA. It should be noted that Figures
4 and 6 should have equal magnitude and opposite sign if
perfect matching between the positive and negative path is
accomplished based on section III. The difference between
Figures 4 and 6 leads to Figure 7. Figure 7 quantifies
the mismatch between the positive and negative paths. The
maximum mismatch is at the two endpoint weight values
which corresponds to 1.5 µA in each case. The mismatch
of 1.5 µA is very small compared to the minimum non-zero
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Fig. 4. Output MAC Currents when Vin,1 is positive and Vin,2 is
zero.
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Fig. 5. Output MAC Currents when Vin,1 is positive and Vin,2 is
positive.

current of 25 µA. This can effectively be considered zero
in downstream operations where a trans-impedance amplifier
(TIA) would amplify the current signal generated by this stage.

Figure 8 represents the actual MAC current in the time
domain as a weight is programmed into the memory and
held. In Figure 8 the programming of the memory happens
from 0 s to 50 µs, this is outside the scope of this paper
so the programming stage will not be discussed as the focus
is on the inference stage of the MAC operation. Once the
weight is chosen and the input voltage is input to the current
summing circuit, the current is held indefinitely. The input to
this architecture is one-bit, so it is either zero or a non-zero
value determined by the analog memory.

Each input-weight pair consumes 170µW. The circuit shown
in this work consumes a maximum of 340µW when both
input-weight pairs are active.

V. CONCLUSION

The modular nature of the proposed analog neuron circuit
enables the creation of neural networks with layers of varying
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Fig. 6. Output MAC Currents when Vin,1 is negative and Vin,2 is
zero.
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Fig. 7. Output MAC Currents when Vin,1 is positive and Vin,2 is
negative with equal magnitude weights on both inputs.

MLM Programming

MAC Inference

Fig. 8. Output MAC Current when Vin,1 is positive and Vin,2 is zero.
A 1.2V weight is applied.

sizes. If a larger or smaller neural network is needed, input-
weight pairs can be added or removed from the MAC node
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in the same manner as the first two input-weight pairs shown
in this work. This level of flexibility enables this architecture
to be used in neural networks that require varying numbers
of connections for neurons, depending on the specific layer of
the network. The modular and flexible nature of this block is
a key feature that makes it an extremely versatile and valuable
tool for building neural networks of all types and sizes.
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