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Abstract—We analyze and compare various hardware-based
epileptic seizure systems and discuss the challenges and O%portu-
nities for reducing power consumption and increasing the battery
lifetime. Furthermore, we propose a power management model
that employs patient-specific seizure patterns to manage the
power consumption of the overall system. This model determines
the patient-specific seizure pattern and switches the system to
sleep mode when the likelihood of seizure occurrence is zero or
very low. Our analysis shows that our proposed power man-
agement model could effectively reduce the power consumption
by 49% compared to the complex model while the performance
reduction is less than 1%.

Index Terms—Deep learning, energy efficiency, epileptic
seizure monitoring, patient-specific daily seizure pattern, self-
aware power management model.

I. INTRODUCTION

Epilepsy is a seizure disorder that is usually diagnosed after
at least two seizures that are not caused by other medical
disorders. Epileptic seizures may be caused by a brain inf'ury
or a genetic predisposition, while the reason is usually unclear.
According to the World Health Organization (WHO), more
than 65 million people worldwide suffer from epilepsy, with
3.4 million people in the United States [1]. Patients who
had convulsive movements and loss of consciousness are
at a greater risk of Sudden Unexpected Death in Epilepsy
(SUDEP), which is a leading cause of death in patients with
uncontrolled seizures [2].

Current commercial solutions monitor EEG in real-time
to detect the seizure onset. For example, the Responsive
Neurostimulation System (RNS) is an implantable device that
detects the occurrence of certain types of seizures and provides
stimulation to reduce the effect of a seizure [3]. Another
device, called Embrace Watch detects possible convulsive
seizures by measuring sympathetic nervous system activity
(without using EEG signals), but it fails to detect all convulsive
seizures. There is a need not only to detect seizures but also to
predict them before they happen so that the patients can take
precautions, stop certain activities (such as driving, swimming
alone, or climbing ladders), and/or reduce their effects [4].

Deep Learning (DL) methods have become the cornerstone
for modern artificial intelligence (Al) applications, especially
for healthcare, due to the unprecedented achieved accuracy [5].
DL has been applied in a wide spectrum of healthcare appli-
cations, including predicting epileptic seizures [6]. predicting
heart attacks [7], finding tumors in MRI images [8], and
forecasting COVID-19 cases [9], [10]. Although DL methods
can be designed to predict epilepsy with high accuracy [11],
the high computational resources and memory bandwidth re-
quirements are the key challenges in implementing DL models
in low-power resource-constrained devices.

As illustrated in Figure 1, an automated EEG-based, battery-
powered system for epilepsy prediction includes various hard-
ware blocks: electrodes, data acquisition and digitization,
hardware accelerator, wireless communication, and power
management. Such a system is desired to achieve continuous
monitoring and accurate prediction while maintaining low cost
and a long battery lifetime [12]. The number of channels is
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Fig. 1. A battery-powered system for predicting epileptic seizures.

determined by the number of used electrodes. These channels
are filtered and digitized by the data acquisition and digiti-
zation block, and tﬁen processed by the hardware accelerator,
which is a custom digital block that implements the DL model.
The wireless communication block shares the results with the

atient as well as the medical professionals, who can spec-
ify the patient-specific patterns and adjust antiseizure drugs
accordingly. Finally, the power management module delivers
power to all the blocks, ensuring low power consumption and
a long battery lifetime.

Digital accelerators can be custom-made for DNNs to
provide higher throughput, shorter latency, lower energy,
and higher area efficiency [13]. Although digital accelera-
tors provide better performance compared to GPUs, digital
systems (including Eoth GPUs and digital accelerators) are
fundamentally limited in handling big data efficiently due to
the separation of logic and memory (referred to as the Von
Neumann bottleneck). Consequently, the system bandwidth is
limited by the speed of accessing the data in the memory.
Moreover, memory access requires at least 10x higher energy
and longer delay compared to the actual computation in DNNS,
specifically the multiply-accumulate (MAC) operation [14].
Recent advances in circuit design and memory technologies
enable efficient computation through in-memory and near-
memory computation, as well as more efficient computation
in the analog domain and time domain. Further, it has been
shown that computation can be done more efficiently in the
analog domain [15] and time domain [16]. These technologies
open the door for more innovation in hardware accelerators to
achieve low-power and low-cost epilepsy prediction systems.

The use of a wearable accelerometer sensor in seizure
detection systems is prevalent because it can detect sud-
den body movements, such as jerking motions, stumbling
movements, and quick body falls, which are common phe-
nomena for most seizure types, such as generalized tonic-
clonic seizure (GTCS), tonic-clonic, myoclonic, and hyper
motor. Accelerometers utilized in seizure detection systems are
precise, three-dimensional, and energy efficient. The majority
of accelerometer applications in seizure detection emerge
as wearable devices, such as the SmartWatch Inspyre, E4
wristband, Embrace wristband, NightWatch, and a variety of
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other gadgets created by well-known technology corporations.
An accelerometer can be worn in a variety of places on
the body, including the wrist, chest, back, and ankle [17].
Channel selection is another approach, which selects only the
channels that contain the most important information, thereby
lowering the complexity, computation, and power consumption
by decreasing the amount of data being processed. In [11],
a selection algorithm is implemented to select 10 out of 23
channels on average based on the highest variance entropy
product. The results showed that appl infg such an algorithm
decreased 34% of parameters and 5p(§)0g of training time while
maintaining the same accuracy [11]. In [18], an SVM model
is tested using 2 to 6 out of 22 channels. The results showed
that applying channel selection decreased more than 93% of
the computational costs. Channel selection can be an effective
technique for reducing computational complexity, but the
algorithm itself can be complex.

The é)ower consumption of the hardware accelerator can be
reduced by network pruning to remove unimportant connec-
tions [19], [20], reducing SRAM voltages based on the level of
fault tolerance caused by bit masking, and optimizing the data
types [20]. Feature extraction, bit-wise design, and estimation
of the activation functions are some other solutions to simplify
the design and reduce the design cost.

In this paper, we discuss various systems and hardware
accelerators for epilepsy prediction and detection and compare
them in terms of performance, size, and power consumption.
Besides, According to the patient-specific daily seizure pattern,
we propose a model that can switch to low-power mode
when the chance of seizure incidence is minimal or zero.
This work can help researchers to understand the design
challenges for designing an energy-efficient, low-cost, and
portable system for epileptic seizure prediction. The remain-
der of the paper is organized as follows. The prior work
on hardware implementation for epilepsy monitoring system
are discussed and different hardware structures for epilepsy
prediction and detection systems are reviewed in section II.
In Section III, we obtained the details of our proposed model.
Finally, conclusions are drawn.

II. PRIOR WORK ON HARDWARE IMPLEMENTATIONS OF
EPILEPSY MONITORING SYSTEMS

Table I summarizes the hardware implementations of var-
ious epilepsy monitoring systems. As depicted in the table,
two commercial solutions are available for epileptic patients;
RNS performs detection and requires surgery while Embrace
is a non-invasive commercial device. RNS, an FDA-approved
therapeutic option, is one of the interventional treatment
options for people with refractory and focal epilepsy. The RN'S
system is the first commercially closed-loop responsive brain
stimulation device [21]. RNS is implanted inside the brain to
monitor EEG signals, detect seizures, and respond by applying
electrical pulses to the patient’s brain to reduce the effect
of the seizure [3], [22]. Although RNS reduces the seizure
frequency and severity, it has a high rate of false detections,
raising the question of how much of this effect is attributable
to closed-loop suppression of seizure-related ictal activity [23].
In addition, RNS i1s bulky, has a limited number of channels,
and relies on basic hard thresholding with moderate seizure
classification accuracy. Because of the power and size limits
imposed by implanted devices, complex on-chip classification
algorithms cannot be implemented [24].

Wearable sensors, such as the Embrace and Embrace 2
watches developed by MIT, are extremely valuable due to
their precision in detecting epilepsy seizures. Embrace watch
developed by Empathica is a wrist-worn wearable device that
monitors various physiological signals, including heartbeat,
temperature, and respiratory rate using EDA (electrodermal
activity) sensor. The watch uses machine learning to detect
patterns that may be associated with convulsive seizures [25],
[26]. The reading is obtained from the watch and transmitted
using a Bluetooth connection. The reading is then forwarded to
a cloud server and database for storage. This is only possible
if an internet connection is present. Users who have been

registered to the appropriate user can view the readings of
the main user who is wearing the watch via the cloud server
and database. When an epileptic seizure occurs, the watch
notifies the other users who are registered to the appropriate
user. Embrace?2 is the second generation with improvements
in battery life, weight, and connectivity [27]. Ictal Care365,
Neuroon, Ricola, Vigil-Aide, Epi-Care free, and Zephyr are
some examples of the possible potential solution for seizure
monitoring using biomarker detection systems, which are
available 1n the market [28].

A real-time seizure prediction system is presented in [29]
based on an EEG dataset, which has 11 seizures extracted from
4 different focal epilepsy patients and obtained by the Univer-
sity of Texas Health Center using surface implanted electrodes.
The system uses a one-class support vector machine (SVM)
and is implemented on Zynq-7000 XC7Z045 FPGA which
has the requisite FPGA fabric and DSP slices to host the
computationally demanding method. Data are converted to
Fixed-point to improve utilization of the FPGA fabric and
DSP slices. The FPGA im]iﬂementation consumes about 8
MB of the total 20 MB of block RAM (BRAM). The results
showed that the system can predict seizures 3.6 minutes prior
to clinical onset with a 3.9 mean false—lf)ositive rate (FPR)
per hour. A hardware implementation of Bit-Serial Neural
Network (BSNN) for epileptic seizure prediction is reported in
[30]. The system utilizes a bit-serial data processing unit along
with a finite state machine (FSM) to process the one-bit data
at a time at each clock cycle to reduce power consumption
and reduce area while running at low speed. The system is
implemented on an ALTERA Cyclone V FPGA using 3931
ALMs which constitutes about 7% of the Cyclone V A7
capacity. The system achieved an accuracy of 90% when tested
on the Bonn dataset [31]. For neural network computing,
parallel hardware architecture is typically employed to boost
performance. However, in this design, low power and low
cost are more important than high performance, so a bit-serial
architecture-based data processing unit (DPU) is presented
for neural network computing to reduce power and cost. An
SRAM is used to store the neural network’s weights. For bit-
serial processing, the ALU employs a proprietary multiplier. In
[32], a deep neural network (DNN), implemented in a Xilinx
Zynqg-7000 Zybo-7 FPGA, is used to predict seizures. The
system is tested on the American Epilepsy Society Seizure
Prediction Challenge dataset [33]. The results show that the
system predicts seizures with a 74% accuracy, 90% true-
positive rate, and power consumption of 1.9 W. In [34], the
RusBoosted classifier is a(tipplied to classify the data which
is suitable for unbalanced data. One channel is used and
chosen to reduce power usage and simplify the model. Four
blocks from FPGA are used: BRAM, DSP4S8E, Flip Flop (FF),
and Lookup Table with 19%, 52%, 20%, and 62% usage,
respectively.

Due to its low power consumption and area requirements,
epileptic seizure research has generally focused on ASIC
implementation. [35] obtained accuracy higher than 92% at
2.8mW power with total area of 13.47 mm?. Similarly, [36]
and [37] demonstrated on-chip seizure detection with a sensi-
tivity of 95.1% and 83.7% with a total area of 1mm? at 2.73
J and 41.2 nJ per class. However, because these processors
are not reprogrammable, ASIC-based wearable devices may
face adaption and accuracy loss issues with a more diversified
epileptic patient population.

Studies on FPGA-based seizure detection, on the other
hand, have revealed partial reconfiguration, high-speed com-
plicated feature extraction, and online training capabilities.
[41] obtained 98.4% sensitivity on the Xilinx Zyng-7000
while utilizing 380mW of power at 100 MHz via FFT-based
feature extraction. Similarly, [32] obtained 74% accuracy for
seizure prediction on the Zyng-7000 with 1909 mW power.
[43] extracted 256-point FFT-based features on an FPGA and
classified them on-chip at 1.589 mW with a total area of
1409x1402 wm? for the neural network chip. [45] demon-
strated a hybrid approach in which online training is performed
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TABLE I
COMPARISON TABLE BETWEEN VARIOUS HARDWARE IMPLEMENTATIONS OF EPILEPSY MONITORING SYSTEMS

Ref Goal Implementation Data Sensitivity | FPR ML Model Power Consumption
(Num of Patient) (%) (h—1) (Watt) & CLK(MHz)
[29] Prediction FPGA sEEG (4) 100 3.9 One-Class SVM — & 50(MHz)
Private data
[30] Prediction FPGA SPFEG 90 — BSNN -
onn
[32] Prediction FPGA iEEG 90 — FC-DNN 1.9 & 25(MHz)
UPen
[34] Prediction FPGA sEEG (10) 773 0.04 RusBoosted -
European Epilepsy
[38] Prediction FPGA sEEG (8) - - - -
CHB-MIT
[39] Prediction FPGA SsEEG (5) T1.4 - DL 0.013
CHB-MIT
[40] Detection FPGA — — — Generic Algorithm —
[4T] Detection FPGA sEEG (24) 984 0.356 0.38 & 100 (MHz)
CHB-MIT
[36] Detection - sEEG (24) 95.1 338 Dual LSVM 2773 ul/class
CHB-MIT
[42] Detection TSMC 180 nm iEEG (14) 95.7 0.02 Dual LSVM -
CHB-MIT
[35] Detection TSMC 180 nm iEEG (4) - - Linear Least Square(LLS) | 0.028 & 3.125(MHz)
Long-Evans Rats
[43] Detection FPGA Data of Mice — — FFNN 0.01589 & 8 (MHz)
TSMC 180 nm
[37] Detection TSMC 65 nm 1IEEG (26) 83.7 — Boosted Tree 41.2 nJ/class
RNS Detection Commercial Device iEEG — — — —
Embrace— Detection Commercial Device Non-EEG - High- - —
Embrace 2 & Prediction Apple-Android Non-invasive FPR
[27], [28], [44] -Smartphone

on the FPGA and seizure detection is performed on-chip.
This system, however, has greater design costs, intermediate
data transfer latency, and larger space needs. FPGA’s high-
performance capabilities come at the expense of increased
power consumption and energy requirements. Therefore, de-
signing a feasible and scalable, battery-powered, FPGA-based,
seizure detection system is a major task.

III. PROPOSED MODEL BASED ON PATIENT-SPECIFIC
SEIZURE PATTERNS

To reduce energy consumption, we propose a new gener-
ation of self-aware wearable or implantable systems based
on the patient-specific daily seizure pattern. Epileptic seizures
have been shown to have biases in distribution over time at
various intervals that can be as long as 1 year or as short as 1
h [46]. In another word, the probability of seizure occurrence
for each patient can follow a particular daily pattern; For each

atient, there are some hours when the risk of having a seizure
1s high and certain hours when the risk is low or nearly zero.
Therefore, we can find a daily seizure pattern for each patient.
By analyzing the patient-specific daily seizure pattern, we can
manage the power during the day for each patient. Therefore,
during times of the day when seizures are not predicted or
have a low chance of occurring, the system can switch to a
low-power mode.

e determine and utilize the distribution of the number
of seizures during the day, which could help to improve
epilepsy systems to forecast patient-specific seizures through
the addition of 24-hour-cycle information. The distribution
of seizures over the 24-hour cycle for 30 patients from the
European iEEG Epilepsy Dataset is shown in Figure 2 [47],
[48]. The color in each bf,ock represents the fraction of seizures
that occurred during a certain hour. For example, patient
FR_916 had 52 seizures, and thus a block with a value of 0.2 at
2 a.m. depicts that one-fifth of the seizures occurred around 2
a.m. In this graph, dark blue blocks depict no-seizure intervals.
Once the patient-specific daily seizure pattern is established, it
can be incorporated into the prediction/detection system. The
proposed model for power management based on the patient-
specific pattern is represented in Figure 3. The patient’s data
are first read and digitalized. According to the daily seizure
pattern for a patient, the power management unit reads the

daily pattern and assigns the low-power or high-power mode;
low-power mode is given to ratio values greater than 0.025,
and high-power mode is given to ratio values greater than
0.025. The key to a patient’s daytime power management will
be this pattern. Afterward, a simple or complex ML model is
employed for the low-power or high-power mode, depending
on the assigned mode, respectively.

In this research, we employed the simple and complex
detection models in [49], [50] where the classification can be
done based on a basic set of features and a more intricate
set of features, respectively. Based on the computed threshold
in the train section, the two-level classifier in [49] determines
whether the simple model is confident to classify the incomin
data or the complicated one. Our suggested two-level self-
aware classifier, on the other hand, changes from a basic model
to a complicated model or vice versa depending on the patient-
specific seizure pattern. Making the choice to move between
two states in this situation does not need any additional
calculations. The influence of threshold (T) on the percentage
of time that the system operates in the complex model per day
(Pcomples) and the influence of threshold (T) on the model’s
performace are shown in Figure 5 and Figure 4. As it can be
seen, increasing the threshold from zero to 225 reduces the
time of being in the complex model. As a result, the basic
model, which has a lower Gmean and power consumption,
has a greater impact on system performance. The energy (E)
and Gmean for our proposed power-management model are
calculated based on tﬁe ollowing equations:

)

E= PComplea: X (EComplex) + PSimple X (ESimple)

Gmean = %(T x (Gmeang) + (225 — T) x (Gmeanc))
2)

Where Pcoompier and Psimpie refer to the percentage of time
per day using a complex and a simple model, respectively.
Gmeanc and Gmeang;mpie are the system’s per]f)ormance
in the complex and simple models, respectively. T is the
threshold which can be between 0 to 225.
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Fig. 2. Distribution seizures over the 24-hour period for the 30 patients.

The average results for 30 patients with 7' = 25 are
obtained in Table II. The energy consumption and Gmean for
our proposed sef-aware model are calculated and compared
with the simple and complex models. As it can be seen, our
proposed power-management model could effectively reduce
the power consumption by 49% compared to the complex
model however the performance reduction is less than 1 %.

The results indicate that our proposed power management
model can greatly reduce power consumption for most patients
while maintaining the performance.

IV. CONCLUSION

This paper performed a detailed analysis of the challenges
and opportunities for designing low-power epilepsy predic-
tion systems. Designing an efficient epilepsy Erediction Sys-
tem requires various levels of software and hardware opti-
mizations, including custom hardware accelerators, machine
learning models, channel selection, and statistical analysis of
patient-specific EEG data. We proposed a self-aware power-
management model to reduce the power consumption for each
patient based on the patient-specific pattern. This model is
applicable for all types of epilepsy prediction and detection
systems. The simulation results indicated that our proposed
model can effectively reduce the power consumption by 49
percent compared to the complex model without losing the

erformance. It is worth to mention that the switch between
asic and complicated models is done based on the daily

TABLE I
ESTIMATED RESULTS FOR EPILEPSY DETECTION BASED ON SIMPLE
MODEL, COMPLEX MODEL, AND OUR PROPOSED MODEL

Model Low-power mode | Gmean | Energy (u])
(Hours per Day) (%)

Simple Model 24 75.16 2.832

Complex Model 0 82.53 31.464

This Study 13 81.73 15.955
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Fig. 3. Block diagram of the proposed self-aware model.

The Effect of Threshold on the Performance of the proposed model
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Fig. 4. The effect of threshold on the model’s performance.
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Fig. 5. The effect of threshold on the percentage of time of operating with
the complex model per day.

seizure pattern that is unique for each patient and does not
require any additional computations.
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